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Foreword

Causality is a broad topic, and these lecture notes cover only part of it. They originated
over a period of four years as a by-product of the course on causality we taught for MSc.
mathematics students. Our aim was to give a mathematically rigorous exposition of the
graphical account to causal modeling, reasoning and inference, in the spirit of Wright,
Spirtes, Glymour, Scheines, Pearl, and many others. Since there seemed to be no book
or lecture notes out there that would fit our purpose, we decided to write our own.

The amount of material has grown over the years, and is still growing. We treat causal
modeling with causal Bayesian networks (also known as ‘DAGs’) and structural causal
models. Some unique features of our exposition are:

1. we have extended the standard formalisms with input nodes to enable a measure-
theoretically rigorous treatment of the families of probability distributions that
result from perfect interventions;

2. we allow for (sufficiently weak) cycles in structural causal models;

3. we have taken lots of care to provide a high level of mathematical rigor and con-
sistency;

4. we emphasize the central role played by the Markov property in the theory.

Our treatment is self-contained: we start with the basic definitions (with as prerequisites
only basic measure theory and probability theory), and derive everything that is neces-
sary to prove the validity of Markov properties, the do-calculus, adjustment criteria, all
the way up to extended versions of the ID algorithm and the FCI algorithm. We show
how—with relatively little extra work—the framework of causal modeling with directed
acyclic graphs can be extended to directed graphs that may have cycles.

While the advantages of mathematical rigor should be obvious, the price paid is that
the non-trivial conceptual issues are sometimes clouded by technicalities. We believe
that our treatment fills a much needed gap in the literature on causality, and consider it
complementary to the many existing writings on similar topics (which often focus more
on concepts and less on mathematical rigor).

We are indebted to our teaching assistants Leon Lang, Philip Boeken, Pim de Haan
and Noud de Kroon for providing feedback and for spotting several errors in earlier
drafts. While the current version undoubtedly still contains mistakes, we believe that it
is now ready for wider exposure. We appreciate any feedback that the reader may have,
be it on content, typos, or (we hope not) more serious mistakes.

Joris Mooij & Patrick Forré
Amsterdam

August 2024
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1. Experimental Causal Discovery

1.1. Types of Correlations
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Figure 1: Statisically significant correlation between chocolate consumption and No-
bel prizes (correlation coefficient R = 0.69, p-value for zero correlation
p = 0.0004.1

Explanation 1.1.1. What conclusions can we draw from this? Where does the correla-
tion come from? Would the correlation hold under different conditions/circumstances?
There are several explanations/stories that one could build around the observed corre-
lation between the number of Nobel prizes N and the chocolate consumption per capita
C:

a) N causes C: “Nobel prize winning countries like to celebrate with chocolate con-
sumption.”

b) N is an effect of C: “Chocolate contains brain enhancing chemicals.”

c) Feedback between N and C: Both stories hold.

1This figure is inspired by [Mes12, Figure 1]. We made a similar visualization, but using newer data
from https://www.theobroma-cacao.de/wissen/wirtschaft/international/konsum on choco-
late consumption in 2017, and from https://en.wikipedia.org/wiki/List_of_countries_by_
Nobel_laureates_per_capita on scientific Nobel laureates until 2019.
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d) Selection bias between N and C: “N and C are actually independent, but the data
used was biased. For example, only countries that end up close to the diagonal line
in Figure 1 were included in the plot.”

e) Functional constraints between N and C: “International regulations make sure that
Nobel prizes and chocolate imports are subtracted/added if they violate a linear
relationship.”

f) N and C have a common cause: “The wealth of a country determines both, how
much money goes to science and also how much people can spend on chocolate.”

g) Other explanations, e.g. measurement error, statistical coincidence, other forms of
spurious correlations, combinations of all of these, etc.?

N C

(a)

N C

(b)

N C

(c)

N C

S

(d)

N C

(e)

N C

W

(f)

Figure 2: Graphical representations of different correlation inducing scenarios.

Discussion 1.1.2. Correlation does not imply causation because there are other possible
correlation inducing scenarios. Also, correlation is symmetric, causation is asymmetric.

1.2. Causal Effects in the Real World

Example 1.2.1 (Does the thermometer cause the sun to rise?). Consider an old type
of thermometer (T ) with a needle that can—for simplicity of arguments—either point to
higher temperatures (up) or to lower temperatures (down). We also consider the state of
the sun (S), which can either be up (u) or down (d). We then observe that T correlates
with S. For simplicity, we assume a one-to-one relationship:

T S
u u
d d
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The conditional distribution P (S|T ) then looks like this:

P (S = u|T = u) = 1,

P (S = u|T = d) = 0,

P (S = d|T = u) = 0,

P (S = d|T = d) = 1.

If we are cold we are now tempted to try changing the needle in the thermometer in order
to make the sun rise and warm us up.
What is wrong with our analysis?

Discussion 1.2.2. The example 1.2.1 makes clear that there is a difference between:

1. Observing the positions of the thermometer needle T and the sun S, resulting in
an observational data set, leading to an estimate of P (S|T ).

2. Interacting with the thermometer needle T and getting the sun’s response S, re-
sulting in an interventional data set, leading to estimates for P (S| do(T )):

P (S = u| do(T = u)) = 0.5,

P (S = u| do(T = d)) = 0.5,

P (S = d| do(T = u)) = 0.5,

P (S = d| do(T = d)) = 0.5.

Definition 1.2.3 (Causal effect—informal definition). We say that a variable X has a
causal effect on another variable Y if forcing X to take on a value x, the distribution
of Y explicitly depends on x, that is:

∃x ∈ X : P (Y | do(X = x)) ̸= P (Y ).

Remark 1.2.4. 1. Again, note that example 1.2.1 shows that the condition in defi-
nition 1.2.3 is different from:

∃x ∈ X : P (Y |X = x) ̸= P (Y ).

which just uses the conditional distributions instead of the interventional distribu-
tions.

2. Also note, that the ‘do-operators’ are not operators on the observational distribu-
tion P (X, Y ) or P (Y |X), etc., or on the corresponding observational data sets.
They reflect actions/interventions in the real world leading to different distribu-
tions and corresponding data sets.

3. There are usually many possible intervention values and targets one can think of,
leading to many different interventional distributions and data sets.

4. One may think of the observational distribution as a special case of an interven-
tional distribution (where we intervene by doing nothing).
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1.3. Randomized Controlled Trials (RCT)

Principle 1.3.1 (Randomized Controlled Trial (RCT)). Assume we want to know if
‘treatment’ variable X has a causal effect on ‘outcome’ variable Y , i.e. we want to
estimate the deviation between: P (Y | do(X = x0)) and P (Y | do(X = x1)). For this we
have test subjects w1, . . . , wN . A Randomized Controlled Trial then follows the following
steps:

1. Split the population of test subjects into 2 groups (‘test group’ C1 vs. ‘control group’
C0) by random lot (or fair coin flips).

2. Give every test subject wn ∈ C1 from ‘test group’ the treatment x1 and the ones
wn ∈ C0 from ‘control group’ the control treatment x0.

3. Measure the outcome yn for each test subject wn and estimate the deviation:

D := d(P (Y | do(X = x0)), P (Y | do(X = x1))).

4. Do a statistical test if the deviation D is significantly different from 0.

5. If it is significantly different from 0 we can conclude a causal effect of X on Y ,
otherwise not.

Remark 1.3.2. The notion of a randomized controlled trial goes back several centuries.
It was already described in 1648 by Flemish physician Jan Baptista van Helmont [vH48]:
“Let us take from the itinerants’ hospitals, from the camps or from elsewhere 200 or 500
poor people with fevers, pleurisy etc. and divide them in two: let us cast lots so that one
half of them fall to me and the other half to you. I shall cure them without blood-letting
or perceptible purging, you will do so according to your knowledge (nor do I even hold
you to your boast of abstaining from phlebotomy or purging) and we shall see how many
funerals each of us will have: the outcome of the contest shall be the reward of 300 florins
deposited by each of us. Thus shall your business be concluded. O Magistrates to whose
hearts the health of your people is dear; let the trial be made for the public good, in order
to know the truth, for the sake of your life and soul and for the health of all the people,
sons, widows and orphans. Let there be a real debate to find the means of cure.”

Example 1.3.3. Example applications of randomized controlled trials are:

1. drug or vaccine testing,

2. advertisement placement,

3. evaluating public policies, etc.

4. A. Banerjee, E. Duflo, M. Kremer got the Nobel Prize in Economics 2019 for
using RCTs in poverty research, e.g. improving school attendance and performance
in poor areas via giving different towns different incentives (e.g. text books vs.
deworming medicine vs. control groups).
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Discussion 1.3.4. 1. An RCT is an ‘interventional study’ (in contrast to just ‘obser-
vational study’) since we control the treatment and ‘force’ it onto the test subjects.

2. Randomized Controlled Trials are considered the gold standard for experimental
causal discovery.

3. To further avoid biases one usually insists on double/triple blind RCT studies, i.e.
noone directly involved in the study knows who got which treatment (e.g. neither
the doctor, the experimenter, the patient, etc.).

4. Often RCTs cannot be done for ethical reasons (e.g. “smoking causes cancer” re-
search).

5. Sometimes RCTs require too many resources to be feasible.

Exercise 1.3.5. Go online, find news like “drinking wine every day is good for your
health” or “chewing gum causes diabetes”, etc., look up the original research paper and
check:

1. if they did interventional studies (like RCT) or just observational studies,

2. in case of an RCT, whether it was double/triple blind,

3. otherwise, if (and how) they ruled out other correlation inducing scenarios,

4. what bias could have possibly been introduced through the data collecting process,

5. how big the data set was, what assumptions were made, what statistical methods
were used, etc.,

6. what other ‘stories’ you could come up with in order to explain the data.

Write down your findings and talk to others about it.
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2. Transition Probability Theory

2.1. Elementary Probability Theory

Example 2.1.1 (Winning a pie with a biased die). You are allowed to roll a biased die
with 6 sides. If you roll a 5 or 6 you win a car, a 4 gives you a mug and 1, 2, 3 wins
you an apple pie. In this case the sample space is W := {1, 2, 3, 4, 5, 6} and the die
introduces a probability distribution P on W. Since the die is biased, we have to specify
each of the probability masses to throw those numbers separately:

p(1) = 0.5, p(2) = p(3) = p(4) = 0.1, p(5) = 0.15, p(6) = 0.05.

We are now interested in the probabilities of the events of winning those 3 different prices.
For this we consider the ’prize’ space: Z := {pie,mug, car}. We can then formalize the
outcome via the map F :

F : W → Z,
1, 2, 3 7→ pie,
4 7→ mug,
5, 6 7→ car.

To compute the probability of winning each of the prizes we need to ’push’ the probability
distribution P , which lives on the space W, to the space Z. We can do this as follows:

P (F = pie) = P (F−1({pie})) = P ({1, 2, 3}) = p(1) + p(2) + p(3) = 0.7,

P (F = mug) = P (F−1({mug})) = P ({4}) = p(4) = 0.1,

P (F = car) = P (F−1({car})) = P ({5, 6}) = p(5) + p(6) = 0.2,

where F−1(C) := {w ∈ W |F (w) ∈ C} is the pre-image of C ⊆ Z.

Discussion 2.1.2. The simple example 2.1.1 already provides us with the main examples
for the typical probability-theoretic terminology and important insights:

1. We call the tuple (W , P ) a probability space. It is important to note that P was
defined on W, not Z.

2. We call the map F a random variable, which is really nothing else than a map
from a probability space to another space.

3. Events are modelled by subsets B ⊆ W, not just by single elements w ∈ W. For
example consider the event that you don’t win a car. This event can’t be represented
by a single element in W or Z.

4. In this example we can compute the probability of an event by additivity of P and
the use of the probability mass function, via P (B) =

∑
w∈B p(w).

5. The distribution of the prizes, i.e. the distribution of random variable F , assigns
probabilities to events C ⊆ Z and can be computed using the pre-image of F via
P (F ∈ C) = P (F−1(C)), where the latter is now an event F−1(C) ⊆ W, which
we already know how to deal with.

12



6. The distribution of F on Z here is also called the push-forward distribution or
image distribution of P via F or just the law of F . It is often abbreviated as: PF ,
P F , F∗P or P (F ). Again note: P (F )(C) := P (F ∈ C) = P (F−1(C)).

7. So (Z, P (F )) forms a probability space on its own and as soon as we know P (F )
we don’t need any information about (W , P ) anymore if all we are interested in is
the events in Z and the law of F . All randomness on Z is fully specified by P (F ).

Example 2.1.3. Now consider the standard normal distribution N (0, 1) on R, which is
specified by the probability density function:

p(w) =
1√
2π

exp

(
−1

2
· w2

)
.

The probability of an event A ⊆ R is then given by:

P (A) =

∫
A

p(w) dw,

in case A can be integrated over (i.e. if it is not a too pathological set). For instance, if
A = [a, b] ∪ [c, d] with a ≤ b < c ≤ d we get:

P (A) =

∫ b

a

p(w) dw +

∫ d

c

p(w) dw.

Note that, even though p(w) > 0 for every w ∈ R, we have:

P ({x}) = 0 for every x ∈ R.

Now consider the random variable F : R→ R with F (w) = sin(w). It is not immediately
clear how to define the probability distribution of F when only working with probability
densities. It is even more difficult to derive the probability density for F in this setting.

Discussion 2.1.4. 1. The examples 2.1.1 and 2.1.3 show that many probability dis-
tributions can be represented either by probability mass functions (discrete case),
w 7→ p(w), or probability density functions ( absolute continuous case), w 7→ p(w).

2. Both cases have in common that one only needs a function that takes elements
w ∈ W as arguments, in contrast to subsets A ⊆ W. This is usually the reason why
only the discrete and absolute continuous cases are taught in elementary probability
theory or machine learning classes.

3. Note that, in the discrete case with K classes, one only needs to specify the K
values p(1), . . . , p(K), in contrast to the 2K values on subsets P (A) for A ∈ 2W

(the power set of W consisting of all subsets A ⊆ W), as the latter values can be
derived from the former values using additivity.
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4. We have problems defining probability distributions of random variables for abso-
lute continuous distributions when we are only allowed to work with probability
densities.

5. Measure theory is the framework that directly works with subsets A ⊆ W, in con-
trast to elements w ∈ W, and provides a unifying language that encompasses both
special cases.

2.2. Recap - Measure Theoretic Probability

Here we just remind the reader of our notations for the core concepts of measure theoretic
probability. More can be found in Appendix A.

2.2.1. Measurable Spaces and Maps

Definition 2.2.1 (σ-algebras). Let W be a set. A (non-empty) set B ⊆ 2W of subsets
A ⊆ W is called a σ-algebra on W if it satisfies the following rules:

i) empty set: ∅ ∈ B,

ii) complement: If A ∈ B then also: Ac :=W \ A ∈ B,

iii) countable union: If An ∈ B for all n ∈ N then also:
⋃

n∈NAn ∈ B.

Definition 2.2.2 (Measurable spaces). A tuple (W ,B) of a set W and a σ-algebra B
on W is called measurable space.

Remark 2.2.3 (Abuse of notation). By abuse of notation we often just call W a mea-
surable space by implicitly assuming that it is endowed with a fixed σ-algebra, which we
will indicate by BW or B(W) if needed. We will also just call a subset A ⊆ W measurable
when we actually mean that A ∈ BW .

Definition 2.2.4 (Measurable maps). Let (W ,BW) and (Z,BZ) be two measurable
spaces and f : W → Z be a map. We call f a BW-BZ-measurable map (or just mea-
surable for short) if for all B ∈ BZ the pre-image f−1(B) is an element of BW . In
formulas:

∀B ∈ BZ : f−1(B) ∈ BW .

Remember the definition of pre-image: f−1(B) := {w ∈ W | f(w) ∈ B}.

For most of the lecture we will restrict to well-behaved measurable spaces, namely
standard measurable spaces. The key point is that they all behave like the space [0, 1],
or R, with its Borel-σ-algebra. So (almost) all results for [0, 1] immediately translate to
standard measurable spaces.

Definition 2.2.5 (Standard measurable space, see [Fre15] 424A-G). A measurable space
(W ,BW) is called standard measurable space (aka standard Borel space) if it is measur-
ably isomorphic to either:

14



1. a finite measurable space {1, . . . ,M} for some M ∈ N endowed with the power set
σ-algebra 2{1,...,M}, or:

2. the countably infinite space N endowed with the power set σ-algebra 2N, or:

3. the unit interval [0, 1] endowed with its Borel σ-algebra2:

B[0,1] = σ ({[a, b] | a, b ∈ [0, 1] ∩Q, a ≤ b}) .

“Measurably isomorphic” means that there is a measurable map from one space to the
other that has a measurable inverse.

The following theorem shows that (almost) all spaces we encounter in practice are
actually standard measurable spaces, justifying our focus on standard measurable spaces
for the most of this lecture.

Theorem 2.2.6 (Kuratowski et al., see [Fre15] 424A-G). Every Borel subset of any
complete metric space that has a countable dense subset is a standard measurable space
in its Borel σ-algebra.

Example 2.2.7. R, RD, Q, Z, N, {1, . . . ,M}, [0, 1], topological manifolds, countable
CW-complexes, etc., are all standard measurable spaces.

2.2.2. Finite and Probability Measures

Definition 2.2.8 (Measures). Let (W ,B) be a measurable space. A measure µ on
(W ,B)—by definition—is a map:

µ : B → R ∪ {∞}, D 7→ µ(D),

such that:

i) non-negative: ∀A ∈ B: µ(A) ∈ [0,∞],

ii) empty set: µ(∅) = 0,

iii) countably additive (aka σ-additive): for all sequences An ∈ B, n ∈ N, with Ai ∩
Aj = ∅ for all i ̸= j, we have:

µ

(⋃
n∈N

An

)
=
∑
n∈N

µ(An).

Definition 2.2.9 (Probability and finite measures). A measure µ on (W ,BW) is called:

1. probability measure if µ(W) = 1.

2See Definition A.3.2 for the σ-algebra generated by a set of subsets.
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2. finite measure if µ(W) <∞.

3. σ-finite measure if there are Dn ∈ B, n ∈ N, with µ(Dn) <∞ and W =
⋃

n∈NDn.

Clearly, every probability measure is finite, and, every finite measure is σ-finite.

Definition 2.2.10 (The spaces of finite and probability measures). The set of all prob-
ability measures on (W ,BW) is denoted by P(W ,BW), and the set of all finite measures
by M(W ,BW), or P(W) and M(W), resp., for short. For B ∈ BW we consider the
evaluation map:

evB : M(W)→ R≥0, µ 7→ evB(µ) := µ(B).

We then endow M(W), and P(W), resp., with the smallest σ-algebra B such that all
evaluation maps evB are B-BR≥0

-measurable, where BR≥0
is the Borel-σ-algebra of R≥0,

i.e.:
BM(W) := σ

({
ev−1

B ((r,∞))
∣∣B ∈ B, r ∈ R≥0

})
.

Remark 2.2.11. The above definition implies that for measurable spaces (X ,BX ), (Y ,BY),
a map:

K : X →M(Y),
is BX -BM(Y)-measurable if and only if for all B ∈ BY the composition:

evB ◦K : X →M(Y)→ R≥0,

is BX -BR≥0
-measurable. Similarly, for P(Y).

Theorem 2.2.12 (See [Par05] Thm. 6.2 + 6.5 or [Fre15] 437R). If (W ,BW) is a standard
measurable space then also P(W) is a standard measurable space (in its usual σ-algebra).

2.2.3. The Measure Integral

For a measure µ on a measurable space (X ,BX ) the measure integral of measurable
functions f : X → R is treated in Appendix A.5. Here we just want to remind the
reader of our several different notations, which we will use interchangably during the
course:

Notation 2.2.13 (Measure integral). We abbreviate the measure integral of a measur-
able function f : X → R w.r.t. measure µ on (X ,BX ) as:∫

f dµ =

∫
f(x) dµ(x) =

∫
f(x)µ(dx).

If P is a probability measure on X = RD that is either discrete or absolute continuous
we have:

∫
f(x)P (dx) =


∑
x∈X

f(x) · p(x), if P is discrete,∫
X
f(x) · p(x) dx if P is absolute continuous,

where p either denotes the probability mass function or the probability density, resp.
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2.2.4. The Lebesgue Measure

By far the most important measure is the Lebesgue measure, which assigns the typical
D-dimensional volume to cubes, i.e. the product of their side lengths.

Definition 2.2.14 (The Lebesgue (outer) measure). The Lebesgue (outer) measure λD
on RD is given for subsets A ⊆ RD via:

λD(A) := inf

{∑
n∈N

volD
(
[a(n), b(n)]

) ∣∣∣∣∣A ⊆ ⋃
n∈N

[a(n), b(n)]

}
,

where the infimum is running over sequences of D-dimensional cubes:

[a(n), b(n)] = [a
(n)
1 , b

(n)
1 ]× · · · × [a

(n)
D , b

(n)
D ],

with a(n) = (a
(n)
1 , . . . , a

(n)
D ), b(n) = (b

(n)
1 , . . . , b

(n)
D ) ∈ RD, a(n)d ≤ b

(n)
d for d = 1, . . . , D,

n ∈ N, that jointly cover A, where the D-dimensional volume is given by:

volD
(
[a(n), b(n)]

)
:= (b

(n)
1 − a

(n)
1 ) · · · (b(n)D − a

(n)
D ), volD (∅) := 0.

Theorem 2.2.15 (The Lebesgue measure). The Lebesgue measure λD, when restricted
to the Borel-σ-algebra of RD, is the unique measure on RD that satisfies:

λD ([a, b]) = volD ([a, b]) ,

for all D-dimensional cubes [a, b]. If the dimension is clear from the context we might
just write λ for λD.

2.3. Transition Measures and Markov Kernels

2.3.1. Core Definitions

Motivation 2.3.1. If we consider a deterministic measurable map f : T → W then f
assigns to each point t ∈ T exactly one point w = f(t) ∈ W. Sometimes we rather want
to model a probabilistic map, i.e. an assignment that can be random or comes with some
uncertainties but still changes depending on the input t. The notion of Markov kernels
formalizes this. A Markov kernel K from T to W can be considered a measurable map
from T to the space of probability measures P(W) of W:

T → P(W).

It assigns to each t ∈ T a probability distribution over W, which then assigns to each
measurable subset D ⊆ W a probability value in [0, 1].

Example 2.3.2 (Markov kernels). 1. any statistical model (i.e. family of model dis-
tributions) {pθ | θ ∈ F}, can be considered a Markov kernel, which we write P (X|Θ).

2. any conditional distribution P (Y |X) can be considered a Markov kernel.
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3. a neural network with softmax output for classification with input x ∈ X , output
y ∈ Y and weights w ∈ W can be seen as a Markov kernel P (Y |X,W ).

We first start slightly more generally by defining finite transition measures.

Definition 2.3.3 (Finite transition measures and Markov kernels). Let T , W be mea-
surable spaces.

1. A (finite3) transition measure from T to W is—per definition—a measurable map:

K : T →M(W),

from T to the space of finite measures of W.

2. A transition probability or Markov kernel is—per definition—a measurable map:

K : T → P(W),

from T to the space of probability measures of W.

Notation 2.3.4 (Transition measures and Markov kernels). 1. We often use sugges-
tive notations as follows for finite transition measures and Markov kernels:

K(W |T ) : T →M(W), t 7→ K(W |T = t),

where for every fixed t ∈ T the following map:

K(W |T = t) : BW → R≥0, D 7→ K(W ∈ D|T = t),

is a finite measure, or probability measure, respectively.

2. For fixed D ∈ BW we then use the following notation for the following measurable
map:

K(W ∈ D|T ) : T → R≥0, t 7→ K(W ∈ D|T = t).

3. Since K(W |T ) takes the argument t ∈ T first, but then also D ∈ BW as a second
argument we can also indentify K(W |T ) with the following two-argument map,
which we denote with the same symbols:

K(W |T ) : BW × T → R≥0, (D, t) 7→ K(W ∈ D|T = t).

4. For Markov kernels K(W |T ) we will most of the time use the dashed arrow to W
(instead of a usual arrow to P(W)) to indicate the Markov kernel as follows:

K(W |T ) : T 99KW , (D, t) 7→ K(W ∈ D|T = t).

3In this course we will only discuss finite transition measures and just drop the word “finite” for
simplicity in the following.
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5. Note that above W and T are considered suggestive symbols only, but one could
give W the meaning to mean the (identity or) projection map prW onto W. From
the point on we also have a map T mapping to T the notation becomes ambiguous:
K(W |T ) could also mean K(W |T ) where we plugged in T for t in “T = t”, similar
to conditional expectations E[W |T ], but the meaning should become clear from the
context.

The implicit correspondence in the above discussion can more formally be summarized
as:

Lemma 2.3.5. There is a one-to-one correspondence between the following construc-
tions:

1. a finite transition measure, i.e. a measurable map:

K(W |T ) : T →M(W), t 7→ K(W |T = t).

2. a two-argument function:

K̃(W |T ) : BW × T → R≥0, (D, t) 7→ K̃(W ∈ D|T = t),

such that:

i) For each t ∈ T the map:

BW → R≥0, D 7→ K̃(W ∈ D|T = t)

is a finite measure (i.e. countably additive with K̃(W ∈ W|T = t) < ∞ for
all t ∈ T ).4

ii) For each D ∈ BW the map:

T → R≥0, t 7→ K̃(W ∈ D|T = t)

is BT -BR≥0
-measurable.

For Markov kernels the same statement holds after replacing M(W) with P(W) and
“finite measure” with “probability measure”.

Proof. The correspondence is via putting K(W ∈ D|T = t) = K̃(W ∈ D|T = t) and
vice versa. The corresponding properties hold by definition of the σ-algebra onM(W),
also see Remark 2.2.11. Working out the details is left as an exercise.

4Note that for a finite transition measure the finite value K̃(W ∈ W|T = t) can vary with t ∈ T . This
is in contrast to Markov kernels where we always have K̃(W ∈ W|T = t) = 1 for all t ∈ T .
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2.3.2. Special Cases of Markov Kernels

Example 2.3.6 (Markov kernels on discrete spaces). Consider a Markov kernel:

K(W |T ) : T 99KW , (D, t) 7→ K(W ∈ D|T = t),

where both W = {w1, . . . , wM} and T = {t1, . . . , tK} are finite discrete spaces. Then we
can define the mass function k via:

k(wi|tj) := K(W ∈ {wi}|T = tj),

and the matrix K̃ := (k(wi|tj))i,j. Then the matrix K̃ is a stochastic matrix, i.e. it has
non-negative entries and each of its columns sums to 1. K̃ then fully determines the
Markov kernel K. So in the (finite) discrete case a Markov kernel is basically nothing
else than a stochastic matrix filled with the transition probabilities.

Example 2.3.7 (Linear Gaussian Markov kernels). Let W = RM , T = RL, γ ∈ RM ,
Γ ∈ RM×L and Σ ∈ RM×M a fixed symmetric, positive-definite covariance matrix. Then:

K(W ∈ D|T = t) :=

∫
D

N (w|Γ · t+ γ,Σ) dw,

defines a Markov kernel from T to W. Markov kernels of this form are called linear
Gaussian Markov kernels. If Σ is only positive-semi-definite we call K(W |T ) a degen-
erate or generalized linear Gaussian Markov kernel.

Example 2.3.8 (Exponential families as finite transition measures). Let W be a mea-
surable space and µ a (non-zero) measure on W and S : W → RD a measurable map.
Define for t ∈ RD:

Z(t) :=

∫
W
exp

(
t⊤S(w)

)
µ(dw) ∈ (0,∞].

We then put:
T :=

{
t ∈ RD

∣∣Z(t) <∞} .
We can then define the finite transition measure K(W |T ) from T to W for D ∈ BW and
t ∈ T via:

K(W ∈ D|T = t) :=

∫
D

exp
(
t⊤S(w)

)
µ(dw).

From this we get the Markov kernel Q(W |T ) : T 99KW via normalization:

Q(W ∈ D|T = t) :=

∫
D

exp
(
t⊤S(w)− L(t)

)
µ(dw),

with log-normalizer: L(t) := logZ(t) = logK(W ∈ W|T = t).

Remark 2.3.9 (Markov kernels generalize probability distributions). Let W be a mea-
surable space.
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1. Every probability distribution P ∈ P(W) can be considered as a constant Markov
kernel from T to W via:

K : T 99KW , (D, t) 7→ K(D|t) := P (D).

2. Every Markov kernel from the one-point space: T = ∗ := {∗} to W:

K : ∗ 99KW , (D, ∗) 7→ K(D|∗),

defines a unique probability distribution P ∈ P(W) given via:

P (D) := K(D|∗).

So we can identify probability distributions on W with Markov kernels ∗ 99KW.

Remark 2.3.10 (Markov kernels generalize deterministic maps). Consider a measurable
mapping f : T → W. Then we can turn f into a Markov kernel δf via:

δf : T 99KW , (D, t) 7→ δf (D|t) := 1D(f(t)),

which puts 100% probability mass onto the function value f(t) for given t ∈ T .

2.3.3. The Doob-Radon-Nikodym Derivative

Definition 2.3.11 (Absolute continuity). Let T , W be measurable spaces and

Q(W |T ), K(W |T ) : T →M(W),

two finite transition measures. We say that Q(W |T ) is absolute continuous w.r.t.
K(W |T ) if for all t ∈ T and D ∈ BW we have the implication:

K(W ∈ D|T = t) = 0 =⇒ Q(W ∈ D|T = t) = 0.

In symbols we abbreviate this as:

Q(W |T )≪ K(W |T ).

Remark 2.3.12. For absolute continuous finite transition measures Q(W |T )≪ K(W |T )
there exists by the Theorem of Radon-Nikodym, see Theorem A.6.4 or [Kle20] Cor. 7.34,
for each t ∈ T separately a Radon-Nikodym derivative, i.e. a BW-BR≥0

-measurable map:

gt : W → R≥0,

such that for all D ∈ BW :

Q(W ∈ D|T = t) =

∫
1D(w) · gt(w)K(W ∈ dw|T = t).
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Unfortunately, the map:

g : W × T → R≥0, g(w|t) := gt(w),

is not guaranteed to be jointly measurable, i.e. (BW ⊗ BT )-BR≥0
-measurable. In case it

was, we would call it a Doob-Radon-Nikodym derivative of Q(W |T ) w.r.t. K(W |T ).
Doob invented an alternative, but a bit more restrictive approach than the usual one to
construct Radon-Nikodym derivatives for measures based on martingales. This approach
will be seen to also work for the construction of Doob-Radon-Nikodym derivatives for
finite transition measures.

Definition 2.3.13 (Doob-Radon-Nikodym derivative). Let T , W be measurable spaces
and

Q(W |T ), K(W |T ) : T →M(W),

two finite transition measures. A map

g : W × T → R≥0, (w, t) 7→ g(w|t),

is called Doob-Radon-Nikodym derivative if g is (BW ⊗ BT )-BR≥0
-measurable and for

all t ∈ T and all D ∈ BW we have:

Q(W ∈ D|T = t) =

∫
1D(w) · g(w|t)K(W ∈ dw|T = t).

In other words, g provides a Radon-Nikodym derivative simultaneously for all t ∈ T :

g(w|t) = Q(W ∈ dw|T = t)

K(W ∈ dw|T = t)
(w),

that is even jointly measurable in (w, t).

Lemma 2.3.14. If Q(W |T ) has a Doob-Radon-Nikodym derivative w.r.t. K(W |T ) then
Q(W |T ) is absolute continuous w.r.t. K(W |T ).

Proof. Should be clear, left as an exercise.

To investigate the uniqueness of the Doob-Radon-Nikodym derivative we need the
following notion of K(W |T )-null sets.

Definition 2.3.15 (Null sets). Let K(W |T ) : T → M(W) be a finite transition mea-
sure. A subset N ⊆ W × T is called K(W |T )-null if Nt := {w ∈ W | (w, t) ∈ N} is a
K(W |T = t)-null set for every t ∈ T , i.e. if for every t ∈ T there exists a measurable
set Mt ∈ BW such that K(W ∈Mt|T = t) = 0 and Nt ⊆Mt.

Lemma 2.3.16 (Essential uniqueness of the Doob-Radon-Nikodym derivative). Let T ,
W be measurable spaces and:

Q(W |T ), K(W |T ) : T →M(W),
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be two finite transition measures with Q(W |T ) ≪ K(W |T ) and let g1, g2 be two Doob-
Radon-Nikodym derivatives. Then the set:

N := {(w, t) ∈ W × T | g1(w|t) ̸= g2(w|t)}

is a K(W |T )-null set and an element of the product σ-algebra BW ⊗ BT . In this sense,
the Doob-Radon-Nikodym derivative is essentially unique.

Theorem 2.3.17 (Doob-Radon-Nikodym, see [DM83] Thm. 58, [Kle20] Ex. 11.17). Let
T , W be measurable spaces and:

K(W |T ), Q(W |T ) : T →M(W),

be two finite transition measures. Assume thatW is a standard measurable space.5 Then
the following two statements are equivalent:

1. Q(W |T ) is absolute continuous w.r.t. K(W |T ).

2. Q(W |T ) has a Doob-Radon-Nikodym derivative w.r.t. K(W |T ).

In that case the Doob-Radon-Nikodym derivative is essentially unique.

Remark 2.3.18. 1. As mentioned in the footnote5 Theorem 2.3.17 still holds if one
only requires BW to be countably generated. Further extensions could be made to
σ-algebras BW that are countably generated up to some form of null-sets.

2. With more technical conditions one could extend Theorem 2.3.17 to work for σ-
finite transition measures. A simple, but important, special case is treated in the
following Corollary 2.3.19.

Corollary 2.3.19 (Doob-Radon-Nikodym derivatives w.r.t. σ-finite measures). Let T ,
W be measurable spaces, where W is a standard5 measurable space, let

P (W |T ) : T →M(W),

be a finite transition measure and µ be a σ-finite measure on W. Then the following two
statements are equivalent:

1. P (W |T ) is absolute continuous w.r.t. µ, i.e. for all t ∈ T and D ∈ BW :

µ(D) = 0 =⇒ P (W ∈ D|T = t) = 0.

2. P (W |T ) has a Doob-Radon-Nikodym derivative w.r.t. µ, i.e. a jointly measurable
map:

p : W × T → R≥0, (w, t) 7→ p(w|t),
such that for all t ∈ T and D ∈ BW :

P (W ∈ D|T = t) =

∫
D

p(w|t)µ(dw).
5The proof shows that we actually only require that BW is countably generated.
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In that case the Doob-Radon-Nikodym derivative is essentially unique, i.e. for two such
p, say p1 and p2, the set:

N := {(w, t) ∈ W × T | p1(w|t) ̸= p2(w|t)} ∈ BW ⊗ BT ,

satisfies µ(Nt) = 0 for all t ∈ T .

Proof. Let P (W |T ) be absolute continuous w.r.t. µ. Since µ is σ-finite there exists a
probability measure Q(W ) with:

Q(W )≪ µ≪ Q(W ).

Indeed, if µ is finite, we can just put Q(W ∈ D) := µ(D)
µ(W)

. If µ is σ-finite, but not finite,

then we have a decomposition W =
⋃̇

n∈NWn with 0 < µ(Wn) <∞. We can then put:

Q(W ∈ D) :=
∑
n∈N

2−nµ(D ∩Wn)

µ(Wn)
.

By the standard Radon-Nikodym theorem there exists a Radon-Nikodym derivative q
of Q(W ) w.r.t. µ. Note that Q(W ) defines the constant Markov kernel Q(W |T ) via
Q(W |T = t) := Q(W ). We thus have the absolute continuity:

P (W |T )≪ µ≪ Q(W |T ).

By Theorem 2.3.17 we thus get a Doob-Radon-Nikodym derivative k of P (W |T ) w.r.t.
Q(W |T ). Then p given by:

p(w|t) := k(w|t) · q(w),

is a Doob-Radon-Nikodym derivative of P (W |T ) w.r.t. µ. Indeed, we get for all t ∈ T
and D ∈ BW :

P (W ∈ D|T = t) =

∫
D

k(w|t)Q(W ∈ dw|T = t) =

∫
D

k(w|t) · q(w)µ(dw).

This shows one direction.
The essential uniqueness follows similar to Lemma 2.3.16 and the other direction

similar to Lemma 2.3.14.

Corollary 2.3.20 (Absolute continuity and strictly positive densities). Let T , W be
measurable spaces, where W is a standard5, and:

P (W |T ), K(W |T ), Q(W |T ) : T →M(W),

be finite transition measures and µ be a σ-finite measure on W.

1. Q(W |T ) has a strictly positive Doob-Radon-Nikodym derivative w.r.t. K(W |T ) if
and only if:

Q(W |T )≪ K(W |T )≪ Q(W |T ).
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2. P (W |T ) has a strictly positive Doob-Radon-Nikodym derivative w.r.t. µ if and
only if:

µ≪ P (W |T )≪ µ.

Proof. The second case follows from the first using the arguments from Corollary 2.3.19.
So, first assume that Q(W |T ) has a strictly positive density q > 0 w.r.t. K(W |T ). Then
by Lemma 2.3.14 we already have: Q(W |T )≪ K(W |T ). Since q is strictly positive we
can put for w ∈ W and t ∈ T :

k(w|t) := 1

q(w|t)
> 0.

Then k is a (strictly positive) density of K(W |T ) w.r.t. Q(W |T ) and we again can use
Lemma 2.3.14 to also get: K(W |T )≪ Q(W |T ). This shows one direction.

Now assume that we have:

Q(W |T )≪ K(W |T )≪ Q(W |T ).

Then by the Doob-Radon-Nikodym Theorem 2.3.17 we have Doob-Radon-Nikodym
derivatives q and k of Q(W |T ) w.r.t. K(W |T ) and of K(W |T ) w.r.t. Q(W |T ), resp.
For all D ∈ BW and t ∈ T we thus get:∫

D

1Q(W ∈ dw|T = t) = Q(W ∈ D|T = t)

=

∫
D

q(w|t)K(W ∈ dw|T = t)

=

∫
D

q(w|t) · k(w|t)Q(W ∈ dw|T = t).

Since this holds for all D ∈ BW and t ∈ T we get that the set:

N := {(w, t) ∈ W × T | 1 ̸= q(w|t) · k(w|t)} ∈ BW ⊗ BT ,

is a Q(W |T )-null set, and because K(W |T ) ≪ Q(W |T ), also a K(W |T )-null set. We
then put:

q̃(w|t) := q(w|t) · 1N c(w, t) + 1N(w, t), (1)

k̃(w|t) := k(w|t) · 1N c(w, t) + 1N(w, t). (2)

These are then still corresponding Doob-Radon-Nikodym derivatives and satisfy for all
w ∈ W and t ∈ T :

q̃(w|t) · k̃(w|t) = 1,

which directly implies: q̃(w|t), k̃(w|t) > 0 for all w ∈ W and t ∈ T . This shows the
claim.
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Proofs - Theorem of Doob-Radon-Nikodym

Lemma 2.3.21 (Essential uniqueness of the Doob-Radon-Nikodym derivative). Let T ,
W be measurable spaces and:

Q(W |T ), K(W |T ) : T →M(W),

be two finite transition measures with Q(W |T ) ≪ K(W |T ) and let g1, g2 be two Doob-
Radon-Nikodym derivatives. Then the set:

N := {(w, t) ∈ W × T | g1(w|t) ̸= g2(w|t)}

is a K(W |T )-null set and an element of the product σ-algebra BW ⊗ BT .

Proof. Consider the set:

N> := {(w, t) ∈ W × T | g1(w|t) > g2(w|t)} = (g1 × g2)−1(∆>),

where ∆> is the measurable set:

∆> := {(r1, r2) ∈ R× R | r1 > r2} ∈ BR2 .

Since both g1 and g2 are jointly measurable that shows that N> ∈ BW ⊗ BT . It follows
that N>

t ∈ BW . Furthermore, we get:

0 = Q(W ∈ N>
t |T = t)−Q(W ∈ N>

t |T = t)

=

∫
1N>

t
(w) · g1(w|t)K(W ∈ dw|T = t)−

∫
1N>

t
(w) · g2(w|t)K(W ∈ dw|T = t)

=

∫
1N>

t
(w) · (g1(w|t)− g2(w|t))︸ ︷︷ ︸

>0 for w∈N>
t

K(W ∈ dw|T = t).

This shows that K(W ∈ N>
t |T = t) = 0. By flipping g1 and g2 we also get: K(W ∈

N<
t |T = t) = 0 and thus K(W ∈ Nt|T = t) = 0, where we notice that N = N> ∪ N<.

This shows the claim.

Theorem 2.3.22 (Existence of the Doob-Radon-Nikodym derivative, see [DM83] Thm.
58, [Kle20] Ex. 11.17). Let T , W be measurable spaces and:

K(W |T ), Q(W |T ) : T →M(W),

be two finite transition measures. Assume that W is a standard measurable space.5
Q(W |T )≪ K(W |T ) implies that Q(W |T ) has a Doob-Radon-Nikodym derivative w.r.t.
K(W |T ).
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Proof sketch. SinceW is a standard measurable space we have that BW is countably gen-
erated, i.e. BW = σ(S) with a countable S = {Dn |n ∈ N} ⊆ BW . If for example, W =
[0, 1], which we can w.l.o.g. assume, then we could choose S = {[a, b] | a ≤ b, a, b ∈ Q ∩ [0, 1]}.
We now define the following sequence of finite measurable partitions of W inductively
via:

E0 := {W}, En+1 :=

( ⋃
D∈En

{D \Dn, D ∩Dn}

)
\ {∅}, n ∈ N.

We put Bn := σ(En). Note that each En is finite and for every n ∈ N:

W =
⋃̇

D∈En

D, Bn ⊆ Bn+1 ⊆ BW = σ

(⋃
m∈N

Em

)
.

For D ∈ BW we can define the map qD : T → R≥0 via:

qD(t) :=
Q(W ∈ D|T = t)

K(W ∈ D|T = t)
·1K(W∈D|T=t)>0 =

{
Q(W∈D|T=t)
K(W∈D|T=t)

, if K(W ∈ D|T = t) > 0,

0, if K(W ∈ D|T = t) = 0.

Since Q(W ∈ D|T = t) and K(W ∈ D|T = t) are measurable in t for each fixed D we
see that qD is BT -BR≥0

-measurable. For n ∈ N we now define:

Gn(w, t) :=
∑
D∈En

1D(w) · qD(t),

and:
G(w, t) := lim inf

n∈N
Gn(w, t), g(w|t) := G(w, t) · 1G(w,t)<∞.

We immediately see that every Gn is a (BW⊗BT )-BR≥0
-measurable map. As a countable

limit of measurable functions also G and g are BW ⊗BT -measurable. We claim that g is
a Doob-Radon-Nikodym derivative of Q(W |T ) w.r.t. K(W |T ). Since we already showed
that g is jointly measurable we are left to show that for every t ∈ T and D ∈ BW we
have:

Q(W ∈ D|T = t) =

∫
1D(w) · g(w|t)K(W ∈ dw|T = t).

So in the following we can fix t ∈ T and only indicate the dependence on t with an
index:

Gt
n(w) := Gn(w, t), Gt(w) := G(w, t).

Notice that Gt
n is Bn-measurable for n ∈ N. In the following we will use that by

construction of the En for D ∈ En and m ≥ n we have the disjoint union decompositions:

D =
⋃̇

A∈Em
A⊆D

A, W =
⋃̇

D∈En

 ⋃̇
A∈Em
A⊆D

A

 .
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Let m ≥ n then we get:

Gt
n(w)

=
∑
D∈En

[
Q(W ∈ D|T = t)

K(W ∈ D|T = t)
· 1K(W∈D|T=t)>0

]
· 1D(w)

=
∑
D∈En

∑
A∈Em
A⊆D

Q(W ∈ A|T = t)

K(W ∈ D|T = t)
· 1K(W∈D|T=t)>0

 · 1D(w)

=
∑
D∈En

∑
A∈Em
A⊆D

Q(W ∈ A|T = t)

K(W ∈ D|T = t)
· 1Q(W∈A|T=t)>0 · 1K(W∈D|T=t)>0

 · 1D(w)

Q≪K
=

∑
D∈En

∑
A∈Em
A⊆D

Q(W ∈ A|T = t)

K(W ∈ D|T = t)
· 1K(W∈A|T=t)>0 · 1K(W∈D|T=t)>0

 · 1D(w)

=
∑
D∈En

∑
A∈Em
A⊆D

Q(W ∈ A|T = t)

K(W ∈ A|T = t)
· K(W ∈ A|T = t)

K(W ∈ D|T = t)
· 1K(W∈A|T=t)>0 · 1K(W∈D|T=t)>0

 · 1D(w)

=
∑
A∈Em

∑
D∈En
D⊇A

Q(W ∈ A|T = t)

K(W ∈ A|T = t)
· K(W ∈ A|T = t)

K(W ∈ D|T = t)
· 1K(W∈A|T=t)>0 · 1K(W∈D|T=t)>0 · 1D(w)

=
∑
A∈Em

Q(W ∈ A|T = t)

K(W ∈ A|T = t)
· 1K(W∈A|T=t)>0

∑
D∈En
D⊇A

·K(W ∈ A|T = t)

K(W ∈ D|T = t)
· 1K(W∈D|T=t)>0 · 1D(w)


︸ ︷︷ ︸

=Et[1A|Bn](w)

=
∑
A∈Em

[
Q(W ∈ A|T = t)

K(W ∈ A|T = t)
· 1K(W∈A|T=t)>0

]
· Et[1A|Bn](w)

= Et

[∑
A∈Em

Q(W ∈ A|T = t)

K(W ∈ A|T = t)
· 1K(W∈A|T=t)>0 · 1A

∣∣∣∣∣Bn
]
(w)

= Et

[
Gt

m

∣∣Bn] (w).
Note that we use Et[_|Bn] to indicate conditional expectations w.r.t. K(W |T = t) and
Bn. For the first conditional expectation see [Kle20] Lem. 8.10. So we get that Gt

n is a
version of Et [G

t
m | Bn] for all m ≥ n. This shows that (Gt

n)n∈N is a martingale attached
to the filtration (Bn)n∈N w.r.t. K(W |T = t). Furthermore, we can show that (Gt

n)n∈N
is uniformly integrable w.r.t. K(W |T = t), see [Kle20] Ex. 7.39. By the convergence
theorem for uniformly integrable martingales, see [Kle20] Thm. 11.7, we get that Gt

n

also converges in L1 to Gt w.r.t. K(W |T = t) and that Gt
n is a version of Et[G

t|Bn] for
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all n ∈ N. So for D ∈ En the function 1D · Gt
n is a version of Et[1D · Gt|Bn]. Taking

expectation values shows:

Et

[
1D ·Gt

]
= Et

[
Et[1D ·Gt|Bn]

]
= Et

[
1D ·Gt

n

]
= Q(W ∈ D|T = t).

Since this holds for all D ∈ En and all n ∈ N it also holds for all D ∈ BW = σ
(⋃

n∈N En
)

and we get:∫
1D(w) ·G(w, t)K(W ∈ dw|T = t) = Et

[
1D ·Gt

]
= Q(W ∈ D|T = t).

Since Q(W |T = t) is a finite measure the set {w ∈ W |G(w, t) =∞} is a K(W |T = t)-
null set and we can replace G by g under the integral. This shows the claim.

2.3.4. Transition Probability Spaces

Definition 2.3.23 (Transition probability space). Consider measurable spaces T and
W and a Markov kernel:

K(W |T ) : T 99KW , (D, t) 7→ K(W ∈ D|T = t).

Then we call the tuple (W × T , K(W |T )) a transition probability space. It generalizes
the notion of probability space, which can be recovered by taking T = ∗.
Definition 2.3.24 (Conditional random variables). A measurable map:

X : W × T → X

starting from a transition probability space (W ×T , K(W |T )) is called conditional ran-
dom variable. It generalizes the notion of random variables and can be considered a
family of random variables (measurably) parameterized by t ∈ T . For t ∈ T we also
define the measurable map:

Xt : W → X , w 7→ Xt(w) := X(w, t),

which can be considered a random variable on the probability space (W , K(W |T = t)).

Example 2.3.25 (Special conditional random variables of importance). Let (W ×
T , K(W |T )) be a transition probability space. Then we denote by:

1. T the canonical projection onto T :

T := prT : W × T → T , (w, t) 7→ T (w, t) := t.

2. ∗ the constant conditional random variable:

∗ : W × T → ∗, (w, t) 7→ ∗,

where ∗ := {∗} is the one-point space.
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2.4. Constructing Markov Kernels from Others

2.4.1. Marginal Markov Kernels

Definition 2.4.1 (Marginalizing Markov kernels). Let

K(X, Y |T ) : T 99K X × Y

be a Markov kernel in two variables. We can then define the marginal Markov kernels
as follows:

K(X|T ) : T 99K X , (A, t) 7→ K(X ∈ A, Y ∈ Y|T = t),

and:
K(Y |T ) : T 99K Y , (B, t) 7→ K(X ∈ X , Y ∈ B|T = t).

Example 2.4.2 (Marginal Markov kernels of discrete Markov kernels). Let

K(X, Y |T ) : T 99K X × Y

be a Markov kernel in two variables on discrete spaces and kX,Y |T its mass function. We
can then compute the marginal Markov kernels as follows:

kX|T (x|t) =
∑
y∈Y

kX,Y |T (x, y|t),

and:
kY |T (y|t) =

∑
x∈X

kX,Y |T (x, y|t).

Note, by abuse of notation, for simplicity, we often omit the indices and write k(x|t)
and k(y|t) instead and distinguish these two functions just by the use of the argument
symbols x and y.

2.4.2. Product of Markov Kernels

Definition 2.4.3 (Product of Markov kernels). Consider two Markov kernels:

Q(Z|Y,W, T ) : Y ×W × T 99K Z, K(W,U |T,X) : T × X 99KW ×U .

Then we define the product Markov kernel:

Q(Z|Y,W, T )⊗K(W,U |T,X) : Y × T × X 99K Z ×W × U ,

using measurable sets E ⊆ Z ×W × U via: (E, (y, t, x)) 7→∫ ∫
1E(z, w, u)Q(Z ∈ dz|Y = y,W = w, T = t)K((W,U) ∈ d(w, u)|T = t,X = x),

where the inner integration is over z ∈ Z and the outer integration over (w, u) ∈ W×U .6

6The integration ordering actually does not matter, which follows from Fubini’s theorem, Theo-
rem 2.4.7.
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Remark 2.4.4. Note that in the notation of the product of Markov kernels we use the
suggestive symbols, e.g. W in K(W,U |T,X) and W in Q(Z|Y,W, T ) to indicate which
variables will be “coupled” in the product. A more precise notation could indicate this,
e.g. by indices on the product symbol like ⊗(W1,W2) or similar. However, our shorthand
notation should not lead to much ambiguity during this course. The rule of thumb is
that the output of a kernel at the r.h.s. of the product is coupled to a matching input of
the kernel on the l.h.s. of the product.

Example 2.4.5 (Product of discrete Markov kernels). Let Q(Z|Y,W, T ) and K(W |T,X)
be two Markov kernels on finite spaces. Let P (Z,W |Y, T,X) := Q(Z|Y,W, T )⊗K(W |T,X)
be the product of Markov kernels and p, q, k the corresponding mass functions. Then
we have:

p(zi, wk|ys, xl, tj) = q(zi|ys, wk, tj) · k(wk|tj, xl),

which is just the product of mass functions. For the corresponding stochastic tensors P̃ ,
Q̃, K̃ we get that:

P̃ = Q̃⊙W,T K̃

is the entry-wise product/Hadamard product of tensors (reflecting the above formula, i.e.
indices for wk, tj are the same in q and k).

Exercise 2.4.6. Show that the product of Markov kernels is associative. Under which
conditions can we commute Markov kernels in products? For this you can use Fubini’s
theorem. See also the comments below.

Theorem 2.4.7 (Fubini’s Theorem, [Kle20] Thm. 14.19). Let (X , µ) and (Y , ν) be two
(σ-)finite measure spaces and f : X × Y → [0,∞] a (BX ⊗ BY)-B[0,∞]-measurable map.
Then we have the equalities:∫ (∫

f(x, y)µ(dx)

)
ν(dy) =

∫ (∫
f(x, y) ν(dy)

)
µ(dx) =

∫
f(x, y) d(µ⊗ ν)(x, y).

Remark 2.4.8 (Conventions about integration order). For D ∈ BX ⊗ BY Fubini’s
theorem says:∫ (∫

1D(x, y)µ(dx)

)
ν(dy) =

∫ (∫
1D(x, y) ν(dy)

)
µ(dx) =

∫
1D(x, y) d(µ⊗ν)(x, y).

The integral notation hides the fact that µ⊗ν and ν⊗µ can only be identified as measures
if we also swap the order of the spaces X and Y. µ⊗ ν lives on X × Y and ν ⊗ µ lives
on Y × X . In more precise terms, we would have:

(µ⊗ ν)(D) = (ν ⊗ µ)(Ds),

where Ds := {(y, x) ∈ Y × X | (x, y) ∈ D} ∈ BY ⊗ BX . That said, we will always make
this swap implicitly, and just write:

Q(Z|Y, T )⊗K(U |T,X) = K(U |T,X)⊗Q(Z|Y, T ),
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if there is no variable with the same symbol that occurs on the left of the conditioning
bar in one Markov kernel and on the right of the conditioning bar in the other Markov
kernel. This is justified by Fubini’s theorem and our implicit swap convention. This will
not lead to much ambiguity, when interpreted as measures under the integral, as one
can match the variables Z, U , etc., to their corresponding arguments z, u, etc., in our
suggestive notations. In a similar sense we also identify:

K(W |T = t,X = x) = K(W |X = x, T = t),

Q(X ∈ A, Y ∈ B|T ) = Q(Y ∈ B,X ∈ A|T ).

2.4.3. Composition of Markov Kernels

Definition 2.4.9 (Composition of Markov kernels). Consider two Markov kernels:

Q(Z|Y,W, T ) : Y ×W × T 99K Z, K(W,U |T,X) : T × X 99KW ×U .

Then we define their composition:

Q(Z|Y,W, T ) ◦K(W,U |T,X) : Y × T × X 99K Z,

using measurable sets C ⊆ Z via:

(C, (y, t, x)) 7→
∫
Q(Z ∈ C|Y = y,W = w, T = t)K(W ∈ dw|T = t,X = x).

Note that we implicitly marginalized U out, i.e. in the composition we integrate over all
variables (here: W and U) from the right hand Markov kernel. As a notation we will
also write:

Q(Z ∈ C|Y = y,W, T = t) ◦K(W,U |T = t,X = x)

:= (Q(Z|Y,W, T ) ◦K(W,U |T,X)) (C|(y, t, x)).

Remark 2.4.10. It is clear from the definitions 2.4.9, 2.4.3 and 2.4.1 that the compo-
sition:

Q(Z|Y,W, T ) ◦K(W,U |T,X)

is the Z-marginal of the product:

Q(Z|Y,W, T )⊗K(W,U |T,X).

Furthermore, while the operation ⊗ leaves all the variables of the second Markov kernel,
here W and U , “intact”, the operation ◦ marginalizes them all out. One could also
think of an intermediate operation that specifies which variables are marginalized out
and which stays, e.g. using a symbol ◦(W,W ) to inticate marginalization of input W (of
Q(Z|Y,W, T )) over output W (from K(W,U |T,X)). We will not further investigate this
and will only use ⊗ and ◦ as described.
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Remark 2.4.11 (Composition of deterministic Markov kernels). Consider measurable
maps:

X : T → X , Z : X → Z,

and their composition Z ◦X. Then the composition of the corresponding Markov kernels
satisfies:

δ(Z ◦X|T ) = δ(Z|X) ◦ δ(X|T ),

where δ(Z ∈ C|X = x) := 1C(Z(x)) and δ(X ∈ A|T = t) := 1A(X(t)).
So the composition of Markov kernels extends the composition of functions.

Proof.

δ(Z ∈ C|X) ◦ δ(X|T = t) =
(
δ(Z|X) ◦ δ(X|T )

)
(C|t)

=

∫
δ(Z ∈ C|X = x) δ(X ∈ dx|T = t)

=

∫
1Z−1(C)(x) δ(X ∈ dx|T = t)

= δ(X ∈ Z−1(C)|T = t)

= 1X−1(Z−1(C))(t)

= 1C(Z(X(t)))

= δ(Z(X) ∈ C|T = t)

= δ(Z ◦X ∈ C|T = t)

= δ(Z ◦X|T )(C|t).

Example 2.4.12 (Composition of discrete Markov kernels). Assume that all the spaces
in definition 2.4.9 are discrete/finite and let P (Z|T ) := Q(Z|W ) ◦K(W |T ) be the com-
position of Markov kernels. Let p, q, k denote the corresponding mass functions. Then
we get:

p(zi|tj) =
∑
k

q(zi|wk) · k(wk|tj).

If P̃ , Q̃, K̃ are the corresponding stochastic matrices then we have that:

P̃ = Q̃ K̃,

is just the usual matrix product. So in this case the composition of Markov kernels
corresponds to matrix multiplication.

2.4.4. Push-Forward of Markov Kernels

Definition 2.4.13 (Push-forward Markov kernel). Let (W×T , K(W |T )) be a transition
probability space and:

X : W × T → X
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be a conditional random variable. Then we define the push-forward Markov kernel
K(X|T ) of K(W |T ) w.r.t. X with symbols:

K(X|T ) =: X∗K(W |T ) =: K(X(W,T )|T ),

via:

K(X|T ) : T 99K X , (A, t) 7→ K(X ∈ A|T = t) := K(W ∈ X−1
t (A)|T = t),

where, again:
X−1

t (A) = X−1(A)t := {w ∈ W |X(w, t) ∈ A}.

Remark 2.4.14. We can also write push-forwards as compositions:

K(X|T ) = δ(X|W,T ) ◦K(W |T ),

where we define:

δ(X ∈ A|W = w, T = t) := 1A(X(w, t)) = 1X−1(A)(w, t).

Remark 2.4.15. For any Markov kernel

K(W |T ) : T 99KW

one can always extend it to include T = prT :

K(W,T |T ) : T 99KW × T , (E, t) 7→ K((W,T ) ∈ E|T = t) = K(W ∈ Et|T = t),

where Et = {w ∈ W | (w, t) ∈ E}. Using Definition 2.4.3, we can also write this as:

K(W,T |T ) = K(W |T )⊗ δ(T |T ),

where δ(T ∈ D|T = t) := 1D(t) for measurable D ⊆ T and t ∈ T .

2.4.5. Conditional Markov Kernels

Definition/Theorem 2.4.16 (Disintegration of Markov kernels). Let X , Y, Z be mea-
surable spaces where X and Y are standard measurable spaces. Let

K(X, Y |Z) : Z 99K X × Y

be a Markov kernel and K(Y |Z) its marginal Markov kernel given by K(Y ∈ B|Z) =
K(X ∈ X , Y ∈ B|Z). Then there exists a Markov kernel (called conditional Markov
kernel):

K(X|Y, Z) : Y × Z 99K X

such that:
K(X, Y |Z) = K(X|Y, Z)⊗K(Y |Z).
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Furthermore, K(X|Y, Z) is essentially unique in the following sense: If Q(X|Y, Z) is
another Markov kernel then we have:

K(X, Y |Z) = Q(X|Y, Z)⊗K(Y |Z),

if and only if the measurable subset N of Y × Z defined via:

N := {(y, z) ∈ Y × Z | ∃A ∈ BX : Q(X ∈ A|Y = y, Z = z) ̸= K(X ∈ A|Y = y, Z = z)}

is a K(Y |Z)-null set in Y × Z.

Remark 2.4.17. If one further assumes certain continuity conditions for the conditional
Markov kernel K(X|Y, Z) and that the marginal K(Y |Z) is strictly positive then the
conditional Markov kernel can be fully identified, not just up to such K(Y |Z)-null sets.
This is formalized in Lemma 2.4.23.

Example 2.4.18 (Conditional Markov kernel for discrete Markov kernels). Consider a
Markov kernel K(X, Y |Z) where all spaces are discrete and let k be the corresponding
mass function. Then the marginal mass functions are given by:

k(y|z) =
∑
x∈X

k(x, y|z), k(x|z) =
∑
y∈Y

k(x, y|z).

A conditional Markov kernel conditioned on Y can then be defined via the mass function:

k(x|y, z) :=

{
k(x,y|z)
k(y|z) if k(y|z) > 0,

k(x|z) if k(y|z) = 0.7

With this setting we then have for all (!) values x, y, z:

k(x, y|z) = k(x|y, z) · k(y|z).

Corollary 2.4.19 (Conditional probability distributions). Let X and Y be random vari-
ables on domain (W , P (W )) with standard measurable spaces X , Y, resp., as codomains.
Then there always exist conditional probability distributions P (X|Y ) and P (Y |X) that
are Markov kernels satisfying:8

P (X, Y ) = P (X|Y )⊗ P (Y ), P (X, Y ) = P (Y |X)⊗ P (X).

Furthermore, these conditional probability distributions are essentially unique.

7Any value assignment for this spot is somewhat arbitrary as it almost surely does not occur. Typically
this entry is defined to be 0. This is convenient but also problematic, as this would not normalize
when summing over x ∈ X . A proper alternative is to set it to be k(x|z) in this case.

8In the literature a conditional probability distribution that is also a Markov kernel would be called a
regular version of a conditional probability distribution. Since in this lecture we will not encounter
other versions we will just call this version here conditional probability distribution.
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Proofs - Disintegration of Markov Kernels In this subsection we will give a proof
for the existence and essential uniqueness of conditional Markov kernels. Another source
for similar results can be found in [Kal17].

Remark 2.4.20 (Existence of conditional Markov kernels). If K(X, Y |Z) is a Markov
kernel then we want K(X|Y, Z) such that:

K(X, Y |Z) = K(X|Y, Z)⊗K(Y |Z)

holds. The heuristic here is to make use of Doob-Radon-Nikodym derivatives, see Theo-
rem 2.3.17, for each A ∈ BX :

K(X ∈ A|Y = y, Z = z) =
K(X ∈ A, Y ∈ dy|Z = z)

K(Y ∈ dy|Z = z)
(y).

The problem is that they are only unique up to K(Y |Z)-null sets and might not be
coordinated in such a way that K(X ∈ A|Y = y, Z = z) becomes a probability measure
in A for every (y, z). To ensure this we will take extra steps: We will first take the
Doob-Radon-Nikodym derivative K(X ≤ x|Y = y, Z = z) for rational points x ∈ Q and
then for general x ∈ R put:

K(X ≤ x|Y = y, Z = z) = inf
m∈N

K(X ≤ ⌈x⌉m|Y = y, Z = z),

where ⌈x⌉m := ⌊mx+1⌋
m

∈ Q for m ∈ N. This approach will work for K(Y |Z)-almost-all
(y, z). On the remaining points (y, z) we can then make a somewhat arbitrary choice,
e.g. we can put:

K(X ≤ x|Y = y, Z = z) := K(X ≤ x|Z = z).

This will turn K(X ≤ x|Y = y, Z = z) into a valid cumulative distribution function in
x for all (y, z), which then corresponds to a proper probability measure. One then checks
that this K(X|Y, Z) is a desired conditional Markov kernel.

Theorem 2.4.21 (Existence of conditional Markov kernels). Let X ,Y ,Z be measurable
spaces where X is a standard measurable space and BY is countably generated (e.g. Y is
also a standard measurable space). Let

K(X, Y |Z) : Z 99K X × Y ,

be a Markov kernel in two variables. Then a conditional Markov kernel conditioned on
Y given Z:

K(X|Y, Z) : Y × Z 99K X ,
exists.

Proof. Since X is standard we can without loss of generality assume that X = [0, 1]. For
fixed A ∈ BX we have a finite transition measure K(X ∈ A, Y |Z) from Z to Y , which
is absolute continuous w.r.t. the marginal K(Y |Z), because of the inequality:

0 ≤ K(X ∈ A, Y ∈ B|Z = z) ≤ K(X ∈ X , Y ∈ B|Z = z) = K(Y ∈ B|Z = z).
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Since also BY is countably generated, by Doob-Radon-Nikodym, see Theorem 2.3.17, we
get a Doob-Radon-Nikodym derivative, i.e. a (jointly) measurable map:

gA : Y × Z → R≥0,

such that for all z ∈ Z and B ∈ BY :

K(X ∈ A, Y ∈ B|Z = z) =

∫
1B(y) · gA(y|z)K(Y ∈ dy|Z = z).

For x ∈ X we will define:
G(x|y, z) := g[0,x](y, z).

As a next step we want to modify G(x|y, z) such that it becomes a cumulative distribu-
tion function in x, i.e. it corresponds to a probability distribution on X . For this define
XQ := X ∩Q, which is countable and dense in X . First note that:

S := {(y, z) ∈ Y × Z |G(1|y, z) ̸= 1}

is a measurable K(Y |Z)-null set. Then, for every pair x1 < x2 in XQ consider:

E(x1,x2) := {(y, z) |G(x1|y, z) > G(x2|y, z)} ∈ BY ⊗ BZ .

Since we have the equations: ∫
1E(x1,x2),z

(y) ·G(x1|y, z)K(Y ∈ dy|Z = z)

= K(X ≤ x1, Y ∈ E(x1,x2),z|Z = z)
x1<x2

≤ K(X ≤ x2, Y ∈ E(x1,x2),z|Z = z)
=

∫
1E(x1,x2),z

(y) ·G(x2|y, z)K(Y ∈ dy|Z = z)
G(x2|y,z)<G(x1|y,z)

≤
∫
1E(x1,x2),z

(y) ·G(x1|y, z)K(Y ∈ dy|Z = z)

we necessarily have K(Y ∈ E(x1,x2),z|Z = z) = 0 for every z ∈ Z.
Then E := S ∪

⋃
x1<x2∈XQ

E(x1,x2) is also a K(Y |Z)-null set in BY ⊗ BZ .
Now for x ∈ XQ we can define:

Dx := {(y, z) |G(x|y, z) < inf
n∈N

G(x+ 1/n|y, z)} ∈ BY ⊗ BZ .

By the dominated convergence theorem (see [Kle20] Cor. 6.26) we get:∫
1Dx,z(y) ·G(x|y, z)K(Y ∈ dy|Z = z)

Dx

≤
∫
1Dx,z(y) · infn∈NG(x+ 1

n
|y, z)K(Y ∈ dy|Z = z)

= infn∈N
∫
1Dx,z(y) ·G(x+ 1

n
|y, z)K(Y ∈ dy|Z = z)

= infn∈NK(X ≤ x+ 1
n
, Y ∈ Dx,z|Z = z)

= K(X ≤ x, Y ∈ Dx,z|Z = z)
=

∫
1Dx,z(y) ·G(x|y, z)K(Y ∈ dy|Z = z).
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So equality must hold, which then implies that:∫
1Dx,z(y) ·

(
inf
n∈N

G(x+
1

n
|y, z)−G(x|y, z)

)
︸ ︷︷ ︸

>0 for y∈Dx,z

K(Y ∈ dy|Z = z) = 0.

This shows that K(Y ∈ Dx,z|Z = z) = 0 for all z ∈ Z. So D := E ∪
⋃

x∈XQ
Dx is again

a K(Y |Z)-null set in BY ⊗ BZ .
So far, we got that G, when restricted to XQ × Dc, is jointly measurable in (y, z) for
fixed x and monotone non-decreasing and continuous from above in x for fixed (y, z)
with G(1|y, z) = 1. We now aim to extend G to X × Y × Z.
For x ∈ X = [0, 1] andm ∈ N put ⌈x⌉m := min(1, ⌊mx+1⌋/m). Then ⌈x⌉m ∈ [0, 1]∩Q =
XQ. The map x 7→ ⌈x⌉m is measurable and for x ∈ [0, 1) we have:

x < ⌈x⌉m ≤ x+
1

m
.

So ⌈1⌉m = 1 and ⌈x⌉m ∈ XQ converges to x ∈ X , x ̸= 1, from above for m→∞.
We then define for all (x, y, z) ∈ X × Y × Z:

F (x|y, z) := inf
m∈N
{G(⌈x⌉m|y, z)} · 1Dc(y, z) +K(X ≤ x|Z = z) · 1D(y, z).

It is clear that F is again jointly measurable in (y, z) for fixed x and agrees with G
on XQ × Dc by construction. As a monotone approximation from above it is clearly
continuous from above, monotone non-decreasing and satifies F (1|y, z) = 1 for all (y, z).
So for fixed (y, z) now F (·|y, z) corresponds to a probability distribution K(X|Y =
y, Z = z) on BX , uniquely given by the defining relations on sets [0, x]:

F (x|y, z) =: K(X ≤ x|Y = y, Z = z),

for all x ∈ X .
Now define D ⊆ BX as the set of all A ∈ BX that satisfy:

1. the map (y, z) 7→ K(X ∈ A|Y = y, Z = z) is (BY ⊗ BZ)-BR-measurable, and:

2. for all z ∈ Z and B ∈ BY the following equation holds:

K(X ∈ A, Y ∈ B|Z = z) =

∫
1B(y) ·K(X ∈ A|Y = y, Z = z)K(Y ∈ dy|Z = z).

Since K(X, Y ∈ B|Z = z) and K(X|Y = y, Z = z) are measures in X the system D
is closed under countable disjoint unions. One can also check that D is closed under
complements and contains X = [0, 1]. So D is a Dynkin system. We already know that
for x ∈ XQ the map (y, z) 7→ K(X ≤ x|Y = y, Z = z) = F (x|y, z) is measurable. Since
for x ∈ XQ and every B ∈ BY , z ∈ Z, we have:

1B(y) ·K(X ≤ x|Y = y, Z = z) = 1B(y) ·G(x|y, z)
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up to the K(Y |Z = z)-null set Dz we already get for those x ∈ XQ:

K(X ≤ x, Y ∈ B|Z = z) =

∫
1B(y) ·K(X ≤ x|Y = y, Z = z)K(Y ∈ dy|Z = z).

This shows that E := {[0, x] |x ∈ XQ} ⊆ D. Since E is closed under finite intersections
Dynkin’s lemma (see [Kle20] Thm. 1.19) implies:

BX = σ(E) ⊆ D.

This shows that the two conditions hold for all A ∈ BX and thus that K(X|Y, Z) is the
desired conditional Markov kernel.

Lemma 2.4.22 (Essential uniqueness). If we have Markov kernels:

P (X|Y, Z), Q(X|Y, Z) : Y × Z 99K X ,

and
K(Y |Z) : Z 99K Y

with any measurable spaces X , Y, Z such that:

P (X|Y, Z)⊗K(Y |Z) = Q(X|Y, Z)⊗K(Y |Z),

then for every A ∈ BX the set:

NA := {(y, z) ∈ Y × Z |P (X ∈ A|Y = y, Z = z) ̸= Q(X ∈ A|Y = y, Z = z)}

is a measurable K(Y |Z)-null set.
If, furthermore, X is countably generated, e.g. a standard measurable space, then also
N :=

⋃
A∈BX

NA is a measurable K(Y |Z)-null set.

Proof. For fixed A ∈ BX both P (X ∈ A|Y, Z) and Q(X ∈ A|Y, Z) can be considered a
Doob-Radon-Nikodym derivative of the same transition measure MA(Y |Z) given by:

MA(Y ∈ B|Z = z) :=

∫
1B(y) · P (X ∈ A|Y, Z)K(Y ∈ dy|Z = z)

= (P (X ∈ A|Y, Z)⊗K(Y |Z)) (B|z)
= (Q(X ∈ A|Y, Z)⊗K(Y |Z)) (B|z)∫
1B(y) ·Q(X ∈ A|Y, Z)K(Y ∈ dy|Z = z).

The uniqueness statement then follows from that of Doob-Radon-Nikodym derivatives,
see Lemma 2.3.21. If now BX is countably generated then BX = σ (A) with a countable
set A that is closed under finite intersections, e.g. B[0,1] = σ ({[0, c] | c ∈ [0, 1] ∩Q}).
One then puts M :=

⋃
A∈ANA, which is, as countable union of K(Y |Z)-null sets, a

K(Y |Z)-null set. Then one can define:

D := {A ∈ BX | ∀(y, z) ∈M c : P (X ∈ A|Y = y, Z = z) = Q(X ∈ A|Y = y, Z = z)}.
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One easily sees that D is closed under complements, countable disjoint unions and
contains X . This shows that D is a Dynkin system (aka λ-system). Furthermore, we
have: A ⊆ D and that A is closed under finite intersections. By Dynkin’s lemma we get
that:

BX = σ(A) ⊆ D.
This shows that N =

⋃
A∈BX

NA ⊆M , thus N =M which is a measurable K(Y |Z)-null
set.

We now want to prove that we can recover from the ambiguity of the null sets for
conditional Markov kernel under continuity assumptions and strictly positive marginals.

Lemma 2.4.23 (Uniqueness for continuous conditional Markov kernels and strictly
positive marginals). Let X , Y, Z be Polish spaces endowed with their Borel-σ-algebra
and:

P (X|Y, Z), Q(X|Y, Z) : Y × Z → P(X ),
two continuous Markov kernels, where P(X ) carries any Hausdorff topology TX ⊆ BP(X ),
e.g. the weak∗-topology. Let

K(Y |Z) : Z 99K Y
be a Markov kernel that is strictly positive (on non-empty open subsets of Y). If we
have the equality of Markov kernels Z 99K X × Y:

P (X|Y, Z)⊗K(Y |Z) = Q(X|Y, Z)⊗K(Y |Z),

then we already have the equality of Markov kernels:

P (X|Y, Z) = Q(X|Y, Z).

Proof. Consider the set:

∆P(X ) := {(P, P ) ∈ P(X )× P(X ) |P ∈ P(X )} ,

which is a closed subset of P(X )× P(X ) because P(X ) is Hausdorff. Then the set:

N := {(y, z) ∈ Y × Z |P (X|Y = y, Z = z) ̸= Q(X|Y = y, Z = z)}
=
{
(y, z) ∈ Y × Z

∣∣ (P (X|Y = y, Z = z), Q(X|Y = y, Z = z)) /∈ ∆P(X )

}
= (P (X|Y, Z), Q(X|Y, Z))−1(∆c

P(X )),

is an open subset of Y × Z as both Markov kernels are continuous. By the essential
uniqueness from Lemma 2.4.22 we know that for all z ∈ Z we have:

K(Y ∈ N z|Z = z) = 0.

The fact that the section N z is open in Y and that K(Y |Z) is strictly positive implies
that either K(Y ∈ N z|Z = z) > 0 or that N z = ∅. Since the former was ruled out by
the essential uniqueness we get N z = ∅ for all z ∈ Z and thus N = ∅. This shows the
claim:

P (X|Y, Z) = Q(X|Y, Z).

40



2.5. Conditional Independence

2.5.1. Independence for Random Variables

Motivation 2.5.1. If we throw two dice with outcome values X and Y , resp., then
knowing the value of Y does not give us any information about the value of X, and vice
versa. We say that X and Y are independent from each other. We will formalize this
intuition for all random variables in the following.

Definition 2.5.2 (Independence of two random variables). Let (W , P (W )) be a proba-
bility space and X : W → X and Y : W → Y be two random variables. We say that X
and Y are independent if the following equation holds:

P (X, Y ) = P (X)⊗ P (Y ),

where P (X, Y ) is the joint and P (X) and P (Y ) are the corresponding marginal distri-
butions. In symbols we would write this as:

X ⊥⊥
P (W )

Y.

Lemma 2.5.3. Let (W , P (W )) be a probability space, X and Y standard measurable
spaces and X : W → X and Y : W → Y be two random variables. Then the following
statements are equivalent:

1. X ⊥⊥
P (W )

Y .

2. P (X, Y ) = P (X)⊗ P (Y ).

3. There exists a probability distribution Q(X) such that:

P (X, Y ) = Q(X)⊗ P (Y ).

4. P (X|Y ) = P (X) holds P (Y )-almost-surely, where P (X|Y ) is a version of a con-
ditional probability distribution from Cor. 2.4.19.

5. For all A ∈ BX we have:

E[1A(X)|Y ] = E[1A(X)] P (W )-a.s.

6. For all A ∈ BX and B ∈ BY we have:

P (X ∈ A, Y ∈ B) = P (X ∈ A) · P (Y ∈ B).

Proof. Exercise.

Exercise 2.5.4. Reformulate the statements in Lemma 2.5.3 for the case we either have
mass functions (discrete case) or densities w.r.t. a product measure, e.g. the Lebesgue
measure (absolute continuous case).
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We can generalize the notion of independence to arbitrary families of random variables:

Definition 2.5.5 (Mutual independence of families of random variables). Let (W , P (W ))
be a probability space and I an (index) set. For i ∈ I let Xi : W → Xi be a random
variable. We say that (Xi)i∈I is (mutually/jointly) independent if for all two disjoint
subsets J1 ∪̇ J2 ⊆ I we have the independence:

(Xj1)j1∈J1 ⊥⊥
P (W )

(Xj2)j2∈J2 .

Exercise 2.5.6 (Mutual independence for finite tuples of random variables). A finite
tuple of random variables (X1, . . . , Xn) is mutually independent if and only if:

P (X1, . . . , Xn) = P (X1)⊗ · · · ⊗ P (Xn).

Exercise 2.5.7. Let (W , P (W )) be a probability space and I an arbitrary index set. For
i ∈ I let Xi : W → Xi be a random variable. The following statements are equivalent:

1. (Xi)i∈I is (mutually/jointly) independent.

2. For every finite disjoint subsets J1, J2 ⊆ I we have the independence:

(Xj1)j1∈J1 ⊥⊥
P (W )

(Xj2)j2∈J2 .

3. For every finite subset J ⊆ I and i ∈ I \ J we have:

Xi ⊥⊥
P (W )

(Xj)j∈J .

4. For every finite subset J ⊆ I we have:

P ((Xj)j∈J) =
⊗
j∈J

P (Xj).

5. We have the equality:
P ((Xi)i∈I) =

⊗
i∈I

P (Xi),

where
⊗

i∈I P (Xi) is the product measure on X =
∏

i∈I Xi, which is determined
by the corresponding products on its finite marginals via the extension theorem of
Ionescu-Tulcea, see [IT49,Lam87] and theorem A.10.2.
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2.5.2. Conditional Independence for Random Variables

Motivation 2.5.8. 1. Consider two independent coin flips with outcome variables X
and Y , resp., with values in {0, 1}, and Z := X + Y ∈ {0, 1, 2}. If the value of Z
is known, say Z = 1, then revealing the value of Y , say Y = 0, provides us with all
the information to fully determine the value of X, here X = 0. This is despite the
fact that X and Y were assumed to be independent. This means that conditioning
on a third variable Z can destroy independence. In this case, we say that X and
Y are dependent conditioned on Z. Summarized in symbols we have:

X ⊥⊥
P (W )

Y, but: X ⊥̸⊥
P (W )

Y |Z.

2. Now consider three (mutually) independent coin flips X, W , U with values in
{0, 1}. Let Z := X +W and Y := Z + U = X +W + U . If we knew the value
of Y , say Y = 0, then we would have information about the values of X as well,
here X = 0. This shows that X and Y can not be independent random variables.
If, in contrast, we would first reveal the value of Z, say Z = 1, then the value of
X might be restricted by the value of Z, but also revealing Y would not give us
any additional information about the value of X. The reason is that Y = Z + U
and U is independent of X, W and Z = X + W . So, even though X and Y
are dependent, when conditioned on Z they become independent, as there is no
additional information gained about each others value, when revealing the other.
Summarized in symbols we have:

X ⊥̸⊥
P (W )

Y, but: X ⊥⊥
P (W )

Y |Z.

We now want to formalize conditional independence for random variables.

Remark 2.5.9 (Conditional independence). In contrast to (unconditional) indepen-
dence, see Definition 2.5.2, possible definitions of conditional independence come with
many more subtleties, due to their interplay with conditional probability distributions or
conditional expectations. Such definitions can in general be non-equivalent. However, if
we restrict ourselves to standard measurable spaces the subtleties can be resolved and the
definitions become equivalent. This is the reason that in the following we will only state
conditional independence for standard measurable spaces. We will make a clearer choice
later for conditional independence of conditional random variables.

Definition/Lemma 2.5.10 (Conditional independence for random variables). Let (W , P (W ))
be a probability space and X , Y and Z standard measurable spaces, and X : W → X
and Y : W → Y and Z : W → Z be three random variables. We then say that X is
independent of Y conditioned on Z if any of the following equivalent conditions holds:

1. P (X, Y |Z) = P (X|Z) ⊗ P (Y |Z) holds P (Z)-a.s., where P (X, Y |Z), P (X|Z),
P (Y |Z) are versions of conditional probability distributions from Cor. 2.4.19.
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2. P (X|Y, Z) = P (X|Z) holds P (Y, Z)-a.s., where P (X|Y, Z), P (X|Z) from Cor.
2.4.19.

3. There exists a Markov kernel Q(X|Z) : Z 99K X such that:

P (X, Y, Z) = Q(X|Z)⊗ P (Y, Z).

4. For every A ∈ BX and B ∈ BY we have:

E [1A(X) · 1B(Y )|Z] = E [1A(X)|Z] · E [1B(Y )|Z] P (W )-a.s.

5. For every A ∈ BX we have:

E [1A(X)|Y, Z] = E [1A(X)|Z] P (W )-a.s.

In those cases, in symbols we write:

X ⊥⊥
P (W )

Y |Z.

Proof. Exercise.

Exercise 2.5.11. Restate all the statements in Definition/Lemma 2.5.10 for discrete
random variables in terms of mass functions.

Conditional independence for random variables satisfies the following rules:

Theorem 2.5.12 (Separoid axioms for conditional independence for random variables,
see [Daw01]). Let (W , P (W )) be a probability space and X, Y , Z and U random variables
taking values in standard measurable spaces X ,Y ,Z and U , respectively. Then we have
the following rules:

1. Redundancy: If U = φ(X) a.s. is a measurable function of X, e.g. U = X, then:

U ⊥⊥
P (W )

Y |X.

2. Symmetry:
X ⊥⊥

P (W )
Y |Z =⇒ Y ⊥⊥

P (W )
X |Z.

3. Decomposition:

X ⊥⊥
P (W )

Y, U |Z =⇒ X ⊥⊥
P (W )

U |Z.

4. Weak Union:
X ⊥⊥

P (W )
Y, U |Z =⇒ X ⊥⊥

P (W )
Y |U,Z.
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5. Contraction:(
X ⊥⊥

P (W )
U |Z

)
∧

(
X ⊥⊥

P (W )
Y |U,Z

)
=⇒ X ⊥⊥

P (W )
Y, U |Z.

Proof. Exercise.

Remark 2.5.13. The separoid axioms, see Theorem 2.5.12, also hold true for random
variables that map into general (non-standard) measurable spaces if one restricts one-
self to the definition of conditional independence only involving conditional expectations
(rather than conditional probabilities or Markov kernels) in Definition 2.5.10.

Exercise 2.5.14. Assume that the random variables X, Y , Z, U have a joint density
p w.r.t. some product measure (or a joint mass function) such that p(y, u|z) > 0 for all
values y, u, z. Show that we then also have the following intersection rule:(

X ⊥⊥
P (W )

U |Y, Z
)
∧

(
X ⊥⊥

P (W )
Y |U,Z

)
=⇒ X ⊥⊥

P (W )
Y, U |Z.

2.5.3. Conditional Independence for Conditional Random Variables

Motivation 2.5.15. Assume that we are given a statistical model P (X|Θ) and a statistic
S = S(X), which is a measurable function of X. Often one wants to find such an S such
that the choice of parameter Θ = θ has no “influence” on the probability distribution of
X when S is provided. Such a statistic is usually called a sufficient statistic of X w.r.t.
P (X|Θ). In symbols we want S such that:

X ⊥⊥Θ |S.

However, the parameter variable Θ here is not a proper random variable as we have
no distribution P (Θ) specified over it. Still such a conditional independence statement
makes sense. We thus want to formalize a notion of conditional independence for con-
ditional random variables. We follow the definition of [For21]. Other approaches can be
found in [Daw79,Daw80,Daw01,CD17,RERS23,FM20].

Motivation 2.5.16. Consider a probabilistic program with input variables T , S and
output variables X, Y , Z. Whenever the program is given T and S as input, it internally
samples U,E ∼ U [0, 1] uniformly and independently from a random number generator,
then calculates:

X := T + S + U, Y := 5 · S + E, Z := X · Y,

and, finally, outputs X, Y and Z. Even though, the input T and S is provided by the
user and is not considered a random variable, we can reason about the fact that “Output
Y only depends on the input S and not on the input T .” We want to formalize such
conditional indpendence mathematically in order to be able to write this as:

Y ⊥⊥T |S.
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Definition 2.5.17 (Conditional independence for conditional random variables). Let
(W × T , K(W |T )) be a transition probability space with Markov kernel:

K(W |T ) : T 99KW .

Consider conditional random variables:

X : W × T → X , Y : W × T → Y , Z : W × T → Z.

We say that X is independent of Y conditioned on Z w.r.t. K(W |T ), in symbols:

X ⊥⊥
K(W |T )

Y |Z,

if there exists a Markov kernel:

Q(X|Z) : Z 99K X ,

such that:
K(X, Y, Z|T ) = Q(X|Z)⊗K(Y, Z|T ),

where K(Y, Z|T ) is the marginal of K(X, Y, Z|T ).9
As a special case, we define:

X ⊥⊥
K(W |T )

Y :⇐⇒ X ⊥⊥
K(W |T )

Y | ∗.

Notation 2.5.18 (Essential uniqueness). The Markov kernel Q(X|Z) appearing in the
conditional independence X ⊥⊥K(W |T ) Y |Z in definition 2.5.17 is then a version of a
conditional Markov kernel K(X|Y, Z, T ) and is thus essentially unique in the sense of
2.4.22. We will use the following suggestive notation for it:

K(X|���T, Y , Z) := Q(X|Z),

or similarly with crossed variables in different order. So we have in case of X ⊥⊥K(W |T ) Y |Z:

K(X, Y, Z|T ) = K(X|���T, Y , Z)⊗K(Y, Z|T ).

Note that K(X|���T, Y , Z) is a version of the conditional Markov kernel K(X|Y, Z, T ) and
does not depend on arguments y and t.

Remark 2.5.19 (Conditional independence includes conditional independence from T ).
We have the equivalence:

X ⊥⊥
K(W |T )

Y |Z ⇐⇒ X ⊥⊥
K(W |T )

T, Y |Z,

where T : W × T → T , (w, t) 7→ t, is the canonical projection map.
9For the equation K(X,Y, Z|T ) = Q(X|Z) ⊗ K(Y,Z|T ) to hold it is sufficient to check that for all
t ∈ T , A ∈ BX , B ∈ BY and C ∈ BZ we have:

K(X ∈ A, Y ∈ B,Z ∈ C|T = t) =

∫
C

∫
B

Q(X ∈ A|Z = z)K(Y ∈ dy, Z ∈ dz|T = t).
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Proof.

X ⊥⊥
K(W |T )

Y |Z

⇐⇒ ∃Q(X|Z) : K(X, Y, Z|T ) = Q(X|Z)⊗K(Y, Z|T )
⇐⇒ ∃Q(X|Z) : K(X,T, Y, Z|T ) = Q(X|Z)⊗K(Y, Z|T )⊗ δ(T |T )︸ ︷︷ ︸

K(T,Y,Z|T )

⇐⇒ X ⊥⊥
K(W |T )

T, Y |Z.

The middle implication “=⇒” follows by taking the product with δ(T |T ), and the reverse
implication “⇐=” by marginalizing out T , i.e. via δ(T ∈ T |T ) = 1.

Remark 2.5.20 (How to find Q(X|Z) and check for conditional independence?). In
case we have the conditional independence:

X ⊥⊥
K(W |T )

Y |Z,

we then get by definition:

K(X, Y, Z|T ) = Q(X|Z)⊗K(Y, Z|T ),

for some Markov kernel Q(X|Z). This implies for all t ∈ T the equation:

K(X,Z|T = t) = Q(X|Z)⊗K(Z|T = t).

This means that Q(X|Z) is a version of the conditional probability distribution K(X|Z, T =
t) for all t ∈ T at once, and, in addition, it is also functionally not dependent on t. So
for fixed t0 ∈ T the conditional K(X|Z, T = t0) can be changed on a K(Z|T = t0)-
null-set such that it agrees with Q(X|Z). So it is reasonable to test out versions of
K(X|Z, T = t0) for Q(X|Z). To summarize, we have the following equivalence between:

1. X ⊥⊥
K(W |T )

Y |Z,

2. There exist t0 ∈ T and a (regular) version of the conditional probability distribution
K(X|Z, T = t0) such that for all t ∈ T :

K(X, Y, Z|T = t) = K(X|Z, T = t0)⊗K(Y, Z|T = t).

Note that in the last expression the middle term has the fixed t0 and the outer two
terms have varying t ∈ T .

This equivalence allows us to narrow our search space for Q(X|Z) to such conditional
probability distributions.
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Example 2.5.21 (Conditional independence for discrete conditional random variables).
Let the situation be like in definition 2.5.17 and assume all spaces to be countable and
discrete. Let k be the mass function for K(X, Y, Z|T ). Then we have:

X ⊥⊥
K(W |T )

Y |Z,

if and only if there is a probability mass function q such that for all values x, y, z, t:

k(x, y, z|t) = q(x|z) · k(y, z|t).

Note that in this case q(x|z) is a version of k(x|z, t) for all t ∈ T at once, but that is also
independent of t. We can use this knowledge to find such a proposal q(x|z) as follows.

If there exists a t0 ∈ T such that k(z|t0) > 0 for all z ∈ Z then the conditional
k(x|z, t0) is uniquely given and equal to k(x,z|t0)

k(z|t0) . k(x|z, t0) would then necessarily agree
with q(x|z) in case of the conditional independence. So, if there exists a t0 ∈ T such
that k(z|t0) > 0 for all z ∈ Z then we get the following equivalence:

X ⊥⊥
K(W |T )

Y |Z ⇐⇒ ∀x, y, z, t : k(x, y, z|t) = k(x|z, t0) · k(y, z|t).

Again, note that in the last expression the middle term has the fixed t0 and the outer
two terms have varying t ∈ T .

This example can be generalized.

Theorem 2.5.22 (Conditional independence for conditional random variables with den-
sity). Let µX , µY and µZ reference measures on X , Y and Z, resp., and µ := µX⊗µY⊗µZ
the product measure on X × Y × Z. Assume that K(X, Y, Z|T ) has a Doob-Radon-
Nikodym derivative k w.r.t. µ and let t0 ∈ T be a fixed value. Then we have the impli-
cation:

∀t ∈ T ∀µ x, y, z. k(x, y, z|t) = k(x|z, t0) · k(y, z|t) =⇒ X ⊥⊥
K(W |T )

Y |Z,

where ∀µ means “for µ-almost-all”. If for µZ-almost-all z ∈ Z we have: k(z|t0) > 0,
then also the reverse implication holds, with k(x|z, t0) := k(x,z|t0)

k(z|t0) :

∀t ∈ T ∀µ x, y, z. k(x, y, z|t) = k(x|z, t0) · k(y, z|t) ⇐= X ⊥⊥
K(W |T )

Y |Z.

Proof. “ =⇒ ”: This is clear, as the factorization of the densities provides the needed
factorization of the corresponding Markov kernels.
“⇐=”: By assumption we have a factorization:

K(X, Y, Z|T ) = Q(X|Z)⊗K(Y, Z|T ),
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which implies for all A ∈ BX and C ∈ BZ :∫
C

∫
A

k(x, z|t0)µX (dx)µZ(dz)

= K(X ∈ A,Z ∈ C|T = t0)

=

∫
C

Q(X ∈ A|Z = z)K(Z ∈ dz|T = t0)

=

∫
C

Q(X ∈ A|Z = z) k(z|t0)µZ(dz).

This implies that we have:

∀µZ z ∈ Z.
∫
A

k(x, z|t0)µX (dx) = Q(X ∈ A|Z = z) k(z|t0),

which implies, since k(z|t0) > 0, that k(x|z, t0) = k(x,z|t0)
k(z|t0) is a density of Q(X|Z) up

µZ-null set N . Since K(Z|T )≪ µZ this N is also a K(Z|T )-null set, and thus Y ×N a
K(Y, Z|T )-null set. So for all t ∈ T , A ∈ BX , B ∈ BY , C ∈ BZ we get:∫

C

∫
B

∫
A

k(x, y, z|t)µX (dx)µY(dy)µZ(dz)

= K(X ∈ A, Y ∈ B,Z ∈ C|T = t)

=

∫
C

∫
B

Q(X ∈ A|Z = z)K(Y ∈ dy, Z ∈ dz|T = t)

=

∫
C

∫
B

∫
A

k(x|z, t0)µX (dx)K(Y ∈ dy, Z ∈ dz|T = t)

=

∫
C

∫
B

∫
A

k(x|z, t0)µX (dx) k(y, z|t)µY(dy)µZ(dz)

=

∫
C

∫
B

∫
A

k(x|z, t0) · k(y, z|t)µX (dx)µY(dy)µZ(dz).

So the corresponding Markov kernels on the lhs and rhs are the same. This implies that
the set:

M := {(x, y, z, t) | k(x, y, z|t) ̸= k(x|z, t0) · k(y, z|t)}
is a µ-null set in BX ⊗ BY ⊗ BZ ⊗ BT . So for all t ∈ T and µ-almost-all x, y, z the
following equation holds:

k(x, y, z|t) = k(x|z, t0) · k(y, z|t),

which implies the claim.

Remark 2.5.23 (Conditional independence for random variables). By Definition/Lemma
2.5.10 we recover the notion of conditional independence for random variables X, Y, Z
with standard measurable spaces as codomains by taking T := {∗}, P (W ) := K(W |∗):

X ⊥⊥
P (W )

Y |Z ⇐⇒ ∃Q(X|Z) : P (X, Y, Z) = Q(X|Z)⊗ P (Y, Z).
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Such a Q(X|Z) is then a conditional probability distribution of P (X,Z) conditioned on
Z. In suggestive notations:

Q(X|Z) =: P (X|��Y , Z) = P (X|Z).

Lemma 2.5.24 (Conditional independence for deterministic mappings). Let F : T →
F and H : T → H be measurable mappings, with F standard. We now consider
them as (deterministic) conditional random variables on the transition probability space
(W × T , K(W |T )) via:

F : W × T → F ,
(w, t) 7→ F (t),

H : W × T → H,
(w, t) 7→ H(t),

which do not depend on the ’probabilistic part’ W of K(W |T ). Let G : W × T → G be
another conditional random variable.
We write F ≾ H if there exists a measurable map φ : H → F such that:

F = φ ◦H.

Then we have the equivalence:10

F ≾ H ⇐⇒ F ⊥⊥
K(W |T )

G |H.

So F is a deterministic measurable map of H iff F is independent of G given H. Note
that the first part of the statement is independent of G.

Proof. “ =⇒ ”: This direction is rather easy. See the later separoid axioms.
“⇐=”: Since F and H are deterministic and only dependent on T we get that:

K(F,G,H|T ) = δ(F |T )⊗ δ(H|T )⊗K(G|T ).

By the conditional independence we now have a Markov kernel Q(F |H) such that we
have the factorization:

K(F,G,H|T ) = Q(F |H)⊗K(G,H|T ) = Q(F |H)⊗ δ(H|T )⊗K(G|T ).

Marginalizing out G, H and taking T = t we get from these equations:

δF (t) = δ(F |T = t) = Q(F |H(t)),

which is a Dirac measure centered at F (t). We can now define the mapping:

φ : H(T )→ F , H(t) 7→ F (t),

10The full equivalence needs Kuratowski’s extension theorem for standard measurable spaces (see
[Kec95] 12.2): Any measurable map from a (not necessarily measurable) subset of a measurable
space to a standard measurable space extends to a measurable map on the whole space. Alterna-
tively, one could define F ≾ H via existence of measurable φ : H(T ) → F such that F = φ ◦ H,
but this moves problems elsewhere.
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which is well-defined, because h := H(t1) = H(t2) implies that Q(F |H = h) is a Dirac
measure centered at F (t1) and F (t2), so F (t1) = F (t2). φ is measurable. Indeed,
its composition with δ : F → P(F), z 7→ δz equals Q(F |H), which is measurable.
Since BF = δ∗BP(F), see lemma 2.7.1 2., also φ is measurable. Since F is a standard
measurable space, φ extends to a measurable mapping φ : H → F by Kuratowski’s
extension theorem for standard measurable spaces (see [Kec95] 12.2). Finally, note that
we have F (t) = φ(H(t)) for all (w, t) ∈ W × T , which shows the claim.

Example 2.5.25 (Conditional independence for deterministic mappings). If for exam-
ple, T = T1 × T2 and Ti : W ×T1 × T2 → Ti the canonical projection onto Ti, then F is
a function in two variables (t1, t2). We then have:

F ⊥⊥
K(W |T )

T1 |T2,

if and only if F—as a function—is only dependent on the argument t2 (and not on t1).

Another example of what conditional independence of conditional random variables
can encode is the following.

Remark 2.5.26 (Existence of conditional Markov kernels expressed as conditional in-
dependence). Let X, Y be conditional random variables on transition probability space
(W × T , K(W |T )). Then we can express the existence of a conditional Markov kernel
K(X|Y, T ) as the conditional independence:

X ⊥⊥
K(W |T )

∗|Y, T,

where ∗ is the constant conditional random variable. Alternatively and equivalently, we
could also write:

X ⊥⊥
K(W |T )

T |Y, T.

Note that for standard measurable spaces X and Y the above statement always holds. In
suggestive symbols:

K(X|��T , Y, T ) = K(X|Y, T ).

Example 2.5.27 (Certain statistics expressed as conditional independence). Let P (W |Θ)
be a statistical model, considered as a Markov kernel F 99K W. Let X and Y be two
conditional random variables w.r.t. P (W |Θ). A statistic of X is a measurable map
S : X → S, which we consider as the conditional random variable S ≾ X given via:

S : W ×F → S, (w, θ) 7→ S(X(w, θ)).

1. Ancillarity. S is an ancillary statistic of X w.r.t. Θ if and only if:

S ⊥⊥
P (W |Θ)

Θ.

This means that every parameter Θ = θ induces the same distribution for S:

P (S|Θ = θ) = P (S|��Θ).
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2. Sufficiency. S is a sufficient statistic of X w.r.t. Θ if and only if:

X ⊥⊥
P (W |Θ)

Θ |S.

This means that there is a Markov kernel P (X|S,��Θ) such that:

P (X,S|Θ) = P (X|S,��Θ)⊗ P (S|Θ).

So X only “interacts” with the parameters Θ through S.

3. Adequacy. S is an adequate statistic of X for Y w.r.t. Θ if and only if:

X ⊥⊥
P (W |Θ)

Θ, Y |S.

This means we have a factorization:

P (X, Y, S|Θ) = P (X|���Θ, Y , S)⊗ P (Y, S|Θ),

for some Markov kernel P (X|���Θ, Y , S). This means that all information of X about
the parameters and labels Y is fully captured already by S.

Theorem 2.5.28. Let (W ×T , K(W |T )) be a transition probability space with Markov
kernel:

K(W |T ) : T 99KW .

Consider conditional random variables X, Y , Z with common domain W × T and
codomains X , Y and Z, resp., and T : W × T → T the canonical projection map.
We will write P (X|Z) = K(X|��T , Z) for a fixed version of the Markov kernel appearing
in the conditional independence X ⊥⊥K(W |T ) T |Z (only in case it holds).
With these notations, the following are equivalent:

1. X ⊥⊥
K(W |T )

Y |Z,

2. X ⊥⊥
K(W |T )

T, Y |Z,

3. X ⊥⊥
K(W |T )

T |Z and K(X, Y, Z|T ) = P (X|Z)⊗K(Y, Z|T ).

4. X ⊥⊥
K(W |T )

T |Z and for every t ∈ T we have: Xt ⊥⊥
K(W |T=t)

Yt |Zt.

Furthermore, any of those points implies:

K(X|���T, Y , Z) = K(X|��T , Z) K(Y, Z|T )-a.s..

and the following:
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5. For every probability distribution Q(T ) ∈ P(T ) we have the conditional indepen-
dence11:

X ⊥⊥
K(W |T )⊗Q(T )

T, Y |Z.

Proof. 3. =⇒ 1. is clear by definition.
1. ⇐⇒ 2.: by 2.5.19.
2. =⇒ 4.,5.: By assumption we have the factorization:

K(X, Y, Z, T |T ) = K(X|Z)⊗K(Y, Z, T |T ),

for some Markov kernel K(X|Z). Via marginalization and multiplication this implies
the two equations:

K(X,Z, T |T ) = K(X|Z)⊗K(Z, T |T ),
K(X, Y, Z|T )⊗Q(T )︸ ︷︷ ︸

=:Q(X,Y,Z,T )

= K(X|Z)⊗K(Y, Z|T )⊗Q(T )︸ ︷︷ ︸
=Q(Y,Z,T )

,

for every Q(T ) ∈ P(T ). The last equation shows 5.
If we take Q(T ) = δt we get:

K(Xt, Yt, Zt|T = t) = K(X|Zt)⊗K(Yt, Zt|T = t).

Together with the first of the above equations this shows 4.
4. =⇒ 3.: By X ⊥⊥K(W |T ) T |Z we have:

K(X,Z|T ) = P (X|Z)⊗K(Z|T ).

By the assumption Xt⊥⊥K(W |T=t) Yt |Zt, on the other hand, we have—for each t ∈ T
individually—a factorization:

K(X, Y, Z|T = t) = Qt(X|Z)⊗K(Y, Z|T = t),

with a Markov kernel Qt, which might depend on t ∈ T , where we suppress the indices
t on all the variables for readability everywhere. Marginalizing out Y and comparing to
the above we then get the two equalities:

P (X|Z)⊗K(Z|T = t) = K(X,Z|T = t) = Qt(X|Z)⊗K(Z|T = t).

By the essential uniqueness of such a factorization we see that P (X ∈ A|Z) only differs
from Qt(X ∈ A|Z) on a K(Z|T = t)-null set. Considered as functions of (y, z) (by
ignoring y) they are equal up to K(Y, Z|T = t)-null set. This means that we can replace
Qt(X ∈ A|Z) with P (X ∈ A|Z) for every A ∈ BX and t ∈ T . So we get the equation:

K(X, Y, Z|T = t) = P (X|Z)⊗K(Y, Z|T = t),

11Note that this again implies the second part of point 4: Xt⊥⊥Yt |Zt for every t ∈ T . So the first part
of point 4: X ⊥⊥T |Z, can then be seen as the additional obstruction to obtain the “full” conditional
independence: X ⊥⊥Y |Z.

53



for all t ∈ T and thus:

K(X, Y, Z|T ) = P (X|Z)⊗K(Y, Z|T ).

This shows 3.

Remark 2.5.29 (Discrete T ). In the setting of theorem 2.5.28, let X , Z be standard
measurable spaces and T be a countable discrete measurable space with any fixed prob-
ability distribution Q(T ) that has a strictly positive mass function. Then we get the
equivalence:

X ⊥⊥
K(W |T )⊗Q(T )

T, Y |Z ⇐⇒ X ⊥⊥
K(W |T )

Y |Z.

Proof. The rhs implies the lhs side by theorem 2.5.28. So, now assume the lhs and put:

Q(X, Y, Z, T ) := K(X, Y, Z|T )⊗Q(T ).

Its marginal is then denoted by Q(X,Z). Since X , Z are standard measurable spaces
we get a (regular) conditional probability distribution Q(X|Z), such that Q(X,Z) =
Q(X|Z)⊗Q(Z). By the assumed conditional independence we thus have:

K(X, Y, Z|T )⊗Q(T ) = Q(X, Y, Z, T )

= Q(X|Z)⊗Q(Y, Z, T )
= Q(X|Z)⊗K(Y, Z|T )⊗Q(T ).

Since Q(T ) is strictly positive and conditional Markov kernels are essentially unique we
get the sure equality:

K(X, Y, Z|T ) = Q(X|Z)⊗K(Y, Z|T ),

which implies the claim.

Corollary 2.5.30. If X , Z are standard measurable spaces then we have the equivalence:

X ⊥⊥
K(W |T )

Y |Z, T ⇐⇒ ∀t ∈ T : Xt ⊥⊥
K(W |T=t)

Yt |Zt.

Proof. This directly follows from theorem 2.5.28 4. with (Z, T ) in the role of Z and
remark 2.5.26 to get the first part of 4. In suggestive symbols:

K(X|���T, Y , Z, T ) = K(X|Z, T ) K(Z|T )-a.s.
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2.5.4. Example: Linear Gaussian Markov Kernels

Theorem 2.5.31 (Conditional independence for linear Gaussian conditional random
variables). Let T = R, X = RdX , Y = RdY and Z = RdZ . Consider a linear Gaussian
Markov kernel P (X, Y, Z|T ), which is given by a density of the form:

p(x, y, z|t) = N

xy
z

 ∣∣∣∣∣∣
ΓX

ΓY

ΓZ

 · t+
γXγY
γZ

 ,
ΣX,X ΣX,Y ΣX,Z

ΣY,X ΣY,Y ΣY,Z

ΣZ,X ΣZ,Y ΣZ,Z

 .

Then we have the following equivalence:

X ⊥⊥
P (X,Y,Z|T )

Y |Z ⇐⇒ ΣX,Y = ΣX,ZΣ
−1
Z,ZΣZ,Y ∧ ΓX = ΣX,ZΣ

−1
Z,Z ΓZ .

If this is the case then the Markov kernel Q(X|Z) coming from the conditional indepen-
dence:

P (X, Y, Z|T ) = Q(X|Z)⊗ P (Y, Z|T ),
is also a linear Gaussian Markov kernel with density:

q(x|z) = N
(
x
∣∣µX|Z(z),ΣX,X|Z

)
,

µX|Z(z) := γX + ΣX,ZΣ
−1
Z,Z (z − γZ),

ΣX,X|Z := ΣX,X − ΣX,ZΣ
−1
Z,ZΣZ,X ,

which coincides with the usual marginal conditional for t = 0, i.e.:

Q(X|Z = z) = P (X|Z = z, T = 0).

So, we also get the equivalence:

X ⊥⊥
P (X,Y,Z|T )

Y |Z ⇐⇒ P (X, Y, Z|T ) = P (X|Z, T = 0)⊗ P (Y, Z|T ).

Proof. First note that in general the conditional P (X|Y, Z, T ) is also a linear Gaussian
Markov kernel and of the form:

p(x|y, z, t) = N
(
x
∣∣µX|Y,Z,T (y, z, t),ΣX|Y,Z,T

)
,

with the following abbreviation for the covariance matrix:

ΣX|Y,Z,T := ΣX,X −
[
ΣX,Y ΣX,Z

] [ΣY,Y ΣY,Z

ΣZ,Y ΣZ,Z

]−1 [
ΣY,X

ΣZ,X

]
,

and the following abbreviation for the mean:

µX|Y,Z,T (y, z, t)

:= (ΓX · t+ γX) +
[
ΣX,Y ΣX,Z

] [ΣY,Y ΣY,Z

ΣZ,Y ΣZ,Z

]−1 ([
y
z

]
−
[
ΓY · t+ γY
ΓZ · t+ γZ

])
=
[
ΣX,Y ΣX,Z

] [ΣY,Y ΣY,Z

ΣZ,Y ΣZ,Z

]−1 [
y
z

]
+ (ΓX · t+ γX)−

[
ΣX,Y ΣX,Z

] [ΣY,Y ΣY,Z

ΣZ,Y ΣZ,Z

]−1 [
ΓY · t+ γY
ΓZ · t+ γZ

]
.
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We now want to investigate under which conditions we get the conditional indepen-
dence:

X ⊥⊥
P (X,Y,Z|T )

Y |Z.

Note that in this case the conditional independence is equivalent to the statement that
the conditional density p(x|y, z, t) is not dependent on the arguments y and t.

Let us first investigate the first term involving y:

[
ΣX,Y ΣX,Z

] [ΣY,Y ΣY,Z

ΣZ,Y ΣZ,Z

]−1 [
y
z

]
.

Note that we can use the following formula for the (2× 2)-block inverse:[
ΣY,Y ΣY,Z

ΣZ,Y ΣZ,Z

]−1

=[ (
ΣY,Y − ΣY,ZΣ

−1
Z,ZΣZ,Y

)−1 −
(
ΣY,Y − ΣY,ZΣ

−1
Z,ZΣZ,Y

)−1
ΣY,ZΣ

−1
Z,Z

−Σ−1
Z,ZΣZ,Y

(
ΣY,Y − ΣY,ZΣ

−1
Z,ZΣZ,Y

)−1
Σ−1

Z,Z + Σ−1
Z,ZΣZ,Y

(
ΣY,Y − ΣY,ZΣ

−1
Z,ZΣZ,Y

)−1
ΣY,ZΣ

−1
Z,Z

]

This leads us to require that:

[
ΣX,Y ΣX,Z

] [ (
ΣY,Y − ΣY,ZΣ

−1
Z,ZΣZ,Y

)−1

−Σ−1
Z,ZΣZ,Y

(
ΣY,Y − ΣY,ZΣ

−1
Z,ZΣZ,Y

)−1

]
= 0,

which is equivalent to:(
ΣX,Y − ΣX,ZΣ

−1
Z,ZΣZ,Y

) (
ΣY,Y − ΣY,ZΣ

−1
Z,ZΣZ,Y

)−1
= 0,

which can be further simplified, by multiplying with the inverse of the inverse, to:

ΣX,Y − ΣX,ZΣ
−1
Z,ZΣZ,Y = 0.

We also need that the mean of the conditional is not dependent on t, which leads to
the following condition coming from the second term:

0 = ΓX −
[
ΣX,Y ΣX,Z

] [ΣY,Y ΣY,Z

ΣZ,Y ΣZ,Z

]−1 [
ΓY

ΓZ

]
= ΓX −

(
ΣX,Y − ΣX,ZΣ

−1
Z,ZΣZ,Y

) (
ΣY,Y − ΣY,ZΣ

−1
Z,ZΣZ,Y

)−1
ΓY

− ΣX,ZΣ
−1
Z,Z ΓZ +

(
ΣX,Y − ΣX,ZΣ

−1
Z,ZΣZ,Y

) (
ΣY,Y − ΣY,ZΣ

−1
Z,ZΣZ,Y

)−1
ΣY,ZΣ

−1
Z,Z ΓZ

= ΓX − ΣX,ZΣ
−1
Z,Z ΓZ ,

where we made repeated use of the condition: ΣX,Y − ΣX,ZΣ
−1
Z,ZΣZ,Y = 0.

This leads us to the following equivalence for linear Gaussian Markov kernels:

X ⊥⊥
P (X,Y,Z|T )

Y |Z ⇐⇒ ΣX,Y = ΣX,ZΣ
−1
Z,ZΣZ,Y ∧ ΓX = ΣX,ZΣ

−1
Z,Z ΓZ .
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If this is the case then the Markov kernel Q(X|Z) coming from the conditional indepen-
dence:

P (X, Y, Z|T ) = Q(X|Z)⊗ P (Y, Z|T ),

is also a linear Gaussian Markov kernel with density:

q(x|z) = N
(
x
∣∣µX|Z(z),ΣX,X|Z

)
,

µX|Z(z) := γX + ΣX,ZΣ
−1
Z,Z (z − γZ),

ΣX,X|Z := ΣX,X − ΣX,ZΣ
−1
Z,ZΣZ,X ,

which is the usual marginal conditional for t = 0.

2.6. Separoid Axioms for Conditional Independence

The following asymmetric separiod axioms for conditional independence are a general-
ization of the symmetric separoid axioms due to A.P. Dawid [Daw01] and the similar
graphoid axioms due to J. Pearl and A. Paz [PP85].

Definition/Theorem 2.6.1 ((Asymmetric) separoid axioms for conditional indepen-
dence). Let (W × T , K(W |T )) be a transition probability space with Markov kernel:

K(W |T ) : T 99KW .

Consider conditional random variables X, Y , Z, U with common domain W × T and
standard measurable spaces X , Y, Z, U , resp., as codomains. Let T : W × T → T be
the canonical projection and ∗ the constant conditional random variable.
We write U ≾ X if there exists a measurable function G : X → U such that U = G ◦X.
Then the ternary relation ⊥⊥ = ⊥⊥K(W |T ) satisfies the following rules:

a) Extended Left Redundancy:

U ≾ X =⇒ U ⊥⊥Y |X.

b) T -Restricted Right Redundancy:12

X ⊥⊥∗|Z, T always holds.

c) T -Inverted Right Decomposition:

X ⊥⊥Y |Z =⇒ X ⊥⊥T, Y |Z.

d) Left Decomposition:

X,U ⊥⊥Y |Z =⇒ U ⊥⊥Y |Z.

e) Right Decomposition:
12 T -Restricted Right Redundancy, Left Weak Union and Symmetry need the existence of conditional

Markov kernels. That is the reason we assumed standard measurable spaces.
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X ⊥⊥Y, U |Z =⇒ X ⊥⊥U |Z.

f) Left Weak Union:12

X,U ⊥⊥Y |Z =⇒ X ⊥⊥Y |U,Z.

g) Right Weak Union:

X ⊥⊥Y, U |Z =⇒ X ⊥⊥Y |U,Z.

h) Left Contraction:

(X ⊥⊥Y |U,Z) ∧ (U ⊥⊥Y |Z) =⇒ X,U ⊥⊥Y |Z.

i) Right Contraction:

(X ⊥⊥Y |U,Z) ∧ (X ⊥⊥U |Z) =⇒ X ⊥⊥Y, U |Z.

j) Right Cross Contraction:

(X ⊥⊥Y |U,Z) ∧ (U ⊥⊥X |Z) =⇒ X ⊥⊥Y, U |Z.

k) Flipped Left Cross Contraction:

(X ⊥⊥Y |U,Z) ∧ (Y ⊥⊥U |Z) =⇒ Y ⊥⊥X,U |Z.

In particular, we have the equivalences:

(X ⊥⊥Y, U |Z) ⇐⇒ (X ⊥⊥Y |U,Z) ∧ (X ⊥⊥U |Z),

(X,U ⊥⊥Y |Z) ⇐⇒ (X ⊥⊥Y |U,Z) ∧ (U ⊥⊥Y |Z).

We also get:

l) T -Restricted Symmetry:12

X ⊥⊥Y |Z, T =⇒ Y ⊥⊥X |Z, T .

In the special case of T = ∗ = {∗}, the one-point space, (i.e. in the case of probability
distributions and random variables mapping to standard measurable spaces) we thus have
(unrestricted) Symmetry.

58



Proofs - Separoid Axioms for Conditional Independence
In the following let (W ×T , K(W |T )) be a transition probability space with Markov

kernel:
K(W |T ) : T 99KW ,

and conditional random variables X, Y , Z, U with common domain W × T and mea-
surable spaces X , Y , Z, U , resp., as codomains. We indicate when we need to assume
standard measurable spaces.
We will use T : W × T → T to denote the canonical projection and ∗ to denote the
constant conditional random variable.
Recall that we write U ≾ X if there exists a measurable function φ : X → U such that
U = φ ◦X.
Recall that for proving:

X ⊥⊥
K(W |T )

Y |Z,

we need to find/construct a Markov kernel Q(X|Z) such that:

K(X, Y, Z|T ) = Q(X|Z)⊗K(Y, Z|T ),

which is equivalent to:
For all t ∈ T and all measurable A ⊆ X , B ⊆ Y , C ⊆ Z we have the equation:

K(X ∈ A, Y ∈ B,Z ∈ C|T = t) =

∫
C

∫
B

Q(X ∈ A|Z = z)K(Y ∈ dy, Z ∈ dz|T = t).

We abbreviate ⊥⊥ := ⊥⊥K(W |T ) in the following.

Lemma 2.6.2 (Extended Left Redundancy).

U ≾ X =⇒ U ⊥⊥Y |X.

Proof. If U = φ(X) put Q(U ∈ D|X = x) := δφ(U ∈ D|X = x) := 1D(φ(x)) for D ⊆ U .
Then we get: ∫

C

∫
B

Q(U ∈ D|X = x)K(Y ∈ dy,X ∈ dx|T = t)

=

∫
C

∫
B

δφ(U ∈ D|X = x)K(Y ∈ dy,X ∈ dx|T = t)

=

∫
C

∫
B

1φ−1(D)(x)K(Y ∈ dy,X ∈ dx|T = t)

= K(Y ∈ B,X ∈ C ∩ φ−1(D)|T = t)

= K(Y ∈ B,X ∈ C,φ(X) ∈ D|T = t)

= K(U ∈ D, Y ∈ B,X ∈ C|T = t).

This shows the claim. In suggestive symbols:

K(U |���T, Y ,X) = δφ(U |X).
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Lemma 2.6.3 (T -Restricted Right Redundancy). Let X and Z be standard measurable
spaces. Then:

X ⊥⊥∗ |Z, T holds.

Proof. Because X and Z are standard measurable spaces we have a factorization:

K(X, ∗, Z, T |T ) = K(X|Z, T )⊗K(∗, Z, T |T ).

with the conditional Markov kernel K(X|Z, T ) of K(X,Z|T ) (via theorem 2.4.16). This
already shows the claim. In suggestive symbols:

K(X|���∗, T , Z, T ) = K(X|Z, T ).

Lemma 2.6.4 (T -Inverted Right Decomposition).

X ⊥⊥Y |Z =⇒ X ⊥⊥T, Y |Z.

Proof. By assumption we have:

K(X, Y, Z|T ) = Q(X|Z)⊗K(Y, Z|T ).

Multiplying both sides with δ(T |T ) we get:

K(X, Y, Z, T |T ) = Q(X|Z)⊗K(T, Y, Z|T ).

This shows the claim using the same Q(X|Z). In suggestive symbols:

K(X|����T, T, Y , Z) = K(X|���T, Y , Z).

Lemma 2.6.5 (Left Decomposition).

X,U ⊥⊥Y |Z =⇒ U ⊥⊥Y |Z.

Proof. Let Q(X,U |Z) be given from the left conditional independence. Then we have:

K(X,U, Y, Z|T ) = Q(X,U |Z)⊗K(Y, Z|T ).

Marginalizing out X gives:

K(U, Y, Z|T ) = Q(U |Z)⊗K(Y, Z|T ).

This shows the claim. In suggestive symbols:

K(U |���T, Y , Z) = K(X ∈ X , U |���T, Y , Z).
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Lemma 2.6.6 (Right Decomposition).

X ⊥⊥Y, U |Z =⇒ X ⊥⊥U |Z.

Proof. Let Q(X|Z) be given from the left conditional independence. We then have:

K(X,U, Y, Z|T ) = Q(X|Z)⊗K(Y, U, Z|T ).

Marginalizing out Y gives:

K(X,U,Z|T ) = Q(X|Z)⊗K(U,Z|T ).

This shows the claim. In suggestive symbols:

K(X|���T, U, Z) = K(X|����T, Y, U, Z).

Lemma 2.6.7 (Left Weak Union). Let X and U be standard measurable spaces. Then:

X,U ⊥⊥Y |Z =⇒ X ⊥⊥Y |U,Z.

Proof. By assumption we have:

K(X,U, Y, Z|T ) = Q(X,U |Z)⊗K(Y, Z|T ),

for some Markov kernel Q(X,U |Z). If we marginalize out X we get:

K(U, Y, Z|T ) = Q(U |Z)⊗K(Y, Z|T ).

Because X and U are standard measurable spaces we have a factorization:

Q(X,U |Z) = Q(X|U,Z)⊗Q(U |Z).

with the conditional Markov kernel Q(X|U,Z) (via theorem 2.4.16).
Putting these equations together we get:

K(X,U, Y, Z|T ) = Q(X,U |Z)⊗K(Y, Z|T )
= Q(X|U,Z)⊗Q(U |Z)⊗K(Y, Z|T )
= Q(X|U,Z)⊗K(U, Y, Z|T ).

In suggestive symbols, this means that: K(X|���T, Y , U, Z) is the conditional ofK(X,U |���T, Y , Z).

Lemma 2.6.8 (Right Weak Union).

X ⊥⊥Y, U |Z =⇒ X ⊥⊥Y |U,Z.
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Proof. We have the factorization:

K(X, Y, U, Z|T ) = Q(X|Z)⊗K(Y, U, Z|T ),

with some Markov kernel Q(X|Z). If we view Q(X|Z) as a function in (u, z) via:

(u, z) 7→ Q(X|Z = z),

by just ignoring the argument u then the claim follows from the same factorization
above.
In suggestive symbols:

K(X|���T, Y , U, Z) = K(X|����T, Y, U, Z).

Lemma 2.6.9 (Left Contraction).

(X ⊥⊥Y |U,Z) ∧ (U ⊥⊥Y |Z) =⇒ X,U ⊥⊥Y |Z.

Proof. By assumption we have the two factorizations:

K(X, Y, U, Z|T ) = Q(X|U,Z)⊗K(Y, U, Z|T ),
K(Y, U, Z|T ) = P (U |Z)⊗K(Y, Z|T ),

with some Markov kernels Q(X|U,Z), P (U |Z). Putting these equations together using
Q(X|U,Z)⊗ P (U |Z) we get:

K(X, Y, U, Z|T ) = (Q(X|U,Z)⊗ P (U |Z))⊗K(Y, Z|T ).

In suggestive symbols:

K(X,U |���T, Y , Z) = K(X|���T, Y , U, Z)⊗K(U |���T, Y , Z).

Lemma 2.6.10 (Right Contraction).

(X ⊥⊥Y |U,Z) ∧ (X ⊥⊥U |Z) =⇒ X ⊥⊥Y, U |Z.

Proof. By assumption we have the two factorizations:

K(X, Y, U, Z|T ) = Q(X|U,Z)⊗K(Y, U, Z|T ),
K(X,U,Z|T ) = P (X|Z)⊗K(U,Z|T ),

with some Markov kernels Q(X|U,Z), P (X|Z).
Marginalizing out Y we get the equalities:

K(X,U,Z|T ) = Q(X|U,Z)⊗K(U,Z|T ),
K(X,U,Z|T ) = P (X|Z)⊗K(U,Z|T ).
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By the essential uniqueness (see lemma 2.4.22) of such factorization we get that for every
A ∈ BX :

Q(X ∈ A|U,Z) = P (X ∈ A|Z) K(U,Z|T )-a.s.

The same equation then holds alsoK(Y, U, Z|T )-a.s. (by ignoring argument y). Plugging
that back into the first equation gives:

K(X, Y, U, Z|T ) = P (X|Z)⊗K(Y, U, Z|T ).

In suggestive symbols:

K(X|����T, Y, U, Z) = K(X|���T, Y , U, Z) = K(X|���T, U, Z) a.s.

Lemma 2.6.11 (Right Cross Contraction).

(X ⊥⊥Y |U,Z) ∧ (U ⊥⊥X |Z) =⇒ X ⊥⊥Y, U |Z.

Proof. By assumption we have the two factorizations:

K(X, Y, U, Z|T ) = Q(X|U,Z)⊗K(Y, U, Z|T ), (3)
K(X,U,Z|T ) = P (U |Z)⊗K(X,Z|T ), (4)

with some Markov kernels Q(X|U,Z), P (U |Z).
We then define the Markov kernel:

R(X,U |Z) := Q(X|U,Z)⊗ P (U |Z). (5)

We will now show that its marginal:

R(X|Z) = Q(X|U,Z) ◦ P (U |Z). (6)

will satisfy the claim.
If we marginalize out Y from equation 3 we get:

K(X,U,Z|T ) = Q(X|U,Z)⊗K(U,Z|T ). (7)

Equating equations 4 and 7 gives:

P (U |Z)⊗K(X,Z|T ) = K(X,U,Z|T ) = Q(X|U,Z)⊗K(U,Z|T ). (8)

Marginalizing out X in equation 8 on both sides gives:

K(U,Z|T ) = P (U |Z)⊗K(Z|T ). (9)

If we now plug equation 9 into 7 then we get:

K(X,U,Z|T ) = Q(X|U,Z)⊗ P (U |Z)⊗K(Z|T ) (10)
5
= R(X,U |Z)⊗K(Z|T ). (11)

63



If we marginalize out U in equation 11 and use equation 6 we arrive at:

K(X,Z|T ) = R(X|Z)⊗K(Z|T ). (12)

We now get:

Q(X|U,Z)⊗K(U,Z|T ) 7
= K(X,U,Z|T ) (13)
4
= P (U |Z)⊗K(X,Z|T ) (14)
12
= P (U |Z)⊗R(X|Z)⊗K(Z|T ) (15)
= R(X|Z)⊗ P (U |Z)⊗K(Z|T ) (16)
9
= R(X|Z)⊗K(U,Z|T ). (17)

By the essential uniqueness (see lemma 2.4.22) of such a factorization we get that for
every A ∈ BX :

Q(X ∈ A|U,Z) = R(X ∈ A|Z) K(U,Z|T )-a.s. (18)

The same equation then holds also K(Y, U, Z|T )-a.s. (by ignoring the non-occurring
argument y). Plugging equation 18 back into the equation 3 we get:

K(X, Y, U, Z|T ) = Q(X|U,Z)⊗K(Y, U, Z|T ), (19)
= R(X|Z)⊗K(Y, U, Z|T ). (20)

This shows the claim.
In suggestive symbols:

K(X|����T, Y, U, Z) = K(X|���T, Y , U, Z) ◦K(U |���T,X,Z).

Lemma 2.6.12 (Flipped Left Cross Contraction).

(X ⊥⊥Y |U,Z) ∧ (Y ⊥⊥U |Z) =⇒ Y ⊥⊥X,U |Z.

Proof. By assumption we have the two factorizations:

K(X, Y, U, Z|T ) = Q(X|U,Z)⊗K(Y, U, Z|T ),
K(Y, U, Z|T ) = P (Y |Z)⊗K(U,Z|T ),

with some Markov kernels Q(X|U,Z), P (Y |Z).
Marginalizing out Y in the first equation we get the equality:

K(X,U,Z|T ) = Q(X|U,Z)⊗K(U,Z|T ).
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Plugging all three equations into each other we get:

K(X, Y, U, Z|T ) = Q(X|U,Z)⊗K(Y, U, Z|T )
= Q(X|U,Z)⊗ P (Y |Z)⊗K(U,Z|T )
= P (Y |Z)⊗Q(X|U,Z)⊗K(U,Z|T )
= P (Y |Z)⊗K(X,U,Z|T ).

In suggestive symbols:

K(Y |����T,X,U, Z) = K(Y |���T, U, Z).

Lemma 2.6.13 (T -Restricted Symmetry). Let Y and Z be standard measurable spaces.
Then:

X ⊥⊥Y |Z, T =⇒ Y ⊥⊥X |Z, T.

Proof. This follows from Flipped Left Cross Contraction with U = ∗ and (Z, T ) for Z:

(X ⊥⊥Y |Z, T ) ∧ (Y ⊥⊥∗ |Z, T ) =⇒ Y ⊥⊥X |Z, T,

together with T -Restricted Right Redundancy:

Y ⊥⊥∗ |Z, T.

In suggestive symbols:
K(Y |����∗, T,X, Z) = K(Y |��T , Z, ∗).

2.7. Markov Kernels from Deterministic Mappings

Lemma 2.7.1. Let X , Y, Z be measurable spaces.

1. If f : X → Y is measurable then the induced map:

f∗ : P(X )→ P(Y), P 7→ f∗P = (B 7→ P (f−1(B))),

is measurable as well.

2. The map:
δ : X → P(X ), x 7→ δx = (A 7→ 1A(x)),

is measurable and δ∗BP(X ) = BX . δ is injective iff BX separates points.

3. The map:
P(X )× P(Y) → P(X × Y),

(P,Q) 7→ P ⊗Q,
is measurable.
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4. If g : X × Y → Z is measurable then the map:

P(X )× Y → P(Z),
(P, y) 7→ g∗(P ⊗ δy)

= (C 7→ P ({x ∈ X | g(x, y) ∈ C}))

is measurable as well.

Remark 2.7.2. Let f : Y ×Z → X be measurable and P (Y ) ∈ P(Y) a fixed probability
distribution. Then the map:

K(X|Z) : Z 99K X , (A, z) 7→ P (f(Y, z) ∈ A) =: K(X ∈ A|Z = z)

is a Markov kernel.

Theorem 2.7.3. Let Z be any measurable space and X = R̄ = [−∞,∞]. Let K(X|Z) :
Z 99K X be a Markov kernel, P (E) be the uniform distribution on E := [0, 1] and:

R(e|z) := inf {x̃ ∈ X |K(X ≤ x̃|z) ≥ e} ,

the (conditional) quantile function (a.k.a. inverse cumulative distribution function) of
K(X|Z). Then we can write K(X|Z) as the push-forward:

K(X|Z) = δ(R|E,Z) ◦ P (E).

More explicitly, for A ∈ BX and z ∈ Z we have:

K(X ∈ A|Z = z) = P (R(E|z) ∈ A).

Proof. We only need to check the last equation for A = [−∞, x] and x ∈ R̄. We then
use the following equivalence for x ∈ R̄, z ∈ Z and e ∈ [0, 1], see Lemma 2.7.8:

R(e|z) ≤ x ⇐⇒ e ≤ F (x|z),

where F is the conditional cumulative distribution function of K(X|Z). So we get:

P (R(E|z) ≤ x) = P (E ≤ F (x|z)) = F (x|z) := K(X ≤ x|Z = z).

The equality in the middle holds because E is uniformly distributed. This shows the
claim.

Remark 2.7.4. Let Z be any measurable space and X be a standard measurable space
with a fixed embedding ι : X ↪→ R̄ = [−∞,∞] onto a Borel subset, which always exists,
and K(X|Z) : Z 99K X a Markov kernel. Then the push-forward Markov kernel:

K(ιX|Z) : Z K(X|Z)−→ P(X ) ι∗−→ P(R̄), (A, z) 7→ K(X ∈ ι−1(A)|Z = z),

satisfies the condition of Theorem 2.7.3. So with those notations we get for all A ∈ BR̄
and z ∈ Z:

K(ιX ∈ A|Z = z) = P (R(E|z) ∈ A).
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Since ι(X ) ∈ BR̄ we get for all z ∈ Z:

0 = K(ιX ∈ ι(X )c|Z = z) = P (R(E|z) ∈ ι(X )c).

Since R is measurable we get that:

D := {(e, z) ∈ E × Z |R(e|z) ∈ ι(X )} ∈ BE ⊗ BZ ,

with P (E ∈ Dc
z) = 0 for all z ∈ Z. We can then measurably adjust R to get a measurable

map:
R̃ : E × Z → X , R̃(e|z) := ι−1(R(e|z)),

for (e, z) ∈ D and R̃(e|z) := x̃ for (e, z) ∈ Dc and a fixed point x̃ ∈ X . With this
adjustment we then get for all A ∈ BX and z ∈ Z:

K(X ∈ A|Z = z) = K(ιX ∈ ι(A)|Z = z)

= P (R(E|z) ∈ ι(A))
= P (ι(R̃(E|z)) ∈ ι(A))
= P (R̃(E|z) ∈ A),

or in short:
K(X|Z) = δ(R̃|E,Z) ◦ P (E).

In other words, Theorem 2.7.3 holds (with those slight adjustments) for all standard
measurable spaces X as well.

In terms of random variables the theorem above states that every distribution Q
can be generated by the uniform one U [0, 1] and a deterministic map. The theorem
below strengthens this claim. It says that every conditional random variable X can be
represented in terms of a uniformly distributed random variable E and a measurable
map. In short, the above is about ’in distribution’ and the one below about ’almost-
surely’ statements.

Theorem 2.7.5. Let X := R̄, U := [0, 1] and Z any measurable space. Let X, U and
Z be conditional random variables taking values in X , U and Z, resp., such that:

U ⊥⊥
K(U,X|Z)

X,Z,

with K(U |���X,Z) the uniform distribution on [0, 1]. Define the interpolated (conditional)
cumulative distribution function and its corresponding quantile function via:

F (x;u|z) := K(X < x|Z = z) + u ·K(X = x|Z = z),

R(e|z) := inf {x̃ ∈ X |F (x̃; 1|z) ≥ e} ,

and the conditional random variable E := F (X;U |Z). Then we have the (conditional)
independence:

E ⊥⊥
K(U,X|Z)

Z,

with K(E|��Z) the uniform distribution on [0, 1], and:

X = R(E|Z) K(U,X|Z)-a.s.
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Proof. After the (joint) measurabilities of F and R are checked the statement directly
follows from Lemma 2.7.10 by applying it for every z separately.

Remark 2.7.6. With a similar argument as used in Remark 2.7.4 we can in Theorem
2.7.5 replace X by any standard measurable space. We then use E := F (ιX;U |Z) to get
the conditional independence:

E ⊥⊥
K(U,X|Z)

Z,

with K(E|��Z) the uniform distribution on [0, 1], and:

X = R̃(E|Z) K(U,X|Z)-a.s.,

for some measurable function R̃.

Corollary 2.7.7. Let X and Z be random variables with values in any standard mea-
surable spaces X and Z, resp., and with a joint distribution P (X,Z). Then there exists
a uniformly distributed random variable E on [0, 1] that is P -independent of Z and a
measurable function g such that X = g(E,Z) P -almost-surely.

Proof. The regular conditional probability distribution P (X|Z) exists for standard mea-
surable spaces (and is unique up to a P (Z)-zero-set), and is a Markov kernel. Then apply
the result from above for K(X|Z) := P (X|Z) to get g(e, z) := R̃(e|z) and E.

Proofs - Deterministic Representation of Markov Kernels In this section we
generalize a few folklore results via now standard techniques that were introduced
in [Dar53,Č82].

Lemma 2.7.8. Let R̄ := [−∞,∞] be endowed with the usual ordering and Borel σ-
algebra. Let P be a probability measure on R̄ and F (x) := P ([−∞, x]). Then F : R̄ →
[0, 1] is non-decreasing, right-continuous with at most countably many discontinuities
and F (∞) = 1. So R(t) := inf F−1([t, 1]) is a well-defined map R : [0, 1] → R̄, non-
decreasing, left-continuous with at most countably many discontinuities and R(0) = −∞.
Furthermore, for x ∈ R̄ and t ∈ [0, 1] we have:

t ≤ F (x) ⇐⇒ R(t) ≤ x.

In particular, we have F (R(t)) ≥ t, thus R(t) ∈ F−1([t, 1]) the minimal element. We
also have R(F (x)) ≤ x, with equality if and only if x ∈ R([0, 1]). Furthermore, F and
R are measurable and R∗λ = P . We also have that R is a reflexive generalized inverse
of F , i.e.:

F ◦R ◦ F = F, R ◦ F ◦R = R.

Proof. From the properties of P it is clear that F is non-decreasing, right-continuous
and F (∞) = 1.
Let DF ⊆ R̄ be the set of discontinuities of F and x ∈ DF . Then there exists a
q(x) ∈ Q such that F−(x) < q(x) < F+(x). If now x1 < x2 are two such points we get:

68



q(x1) < F+(x1) ≤ F−(x2) < q(x2). So the map q : DF → Q is injective. Thus DF is
countable.
Next, we show that R(t) ∈ F−1([t, 1]), thus R(t) = minF−1([t, 1]). For this let (xn)n∈N ⊆
F−1([t, 1]) be a non-increasing sequence converging to R(t). Then by the right-continuity
F (xn) converges to F (R(t)) from above. So we have:

F (R(t)) = inf
n∈N

F (xn) ≥ t.

It follows that F (R(t)) ≥ t and thus R(t) ∈ F−1([t, 1]). This shows the claim.
R is clearly non-decreasing, thus has only a countable set of discontinuities DR ⊆ [0, 1]
by the same arguments as before, and R(0) = −∞. To see that R(t) is left-continuous
let t ∈ [0, 1] and (tn)n∈N a non-decreasing sequence converging to t from below. Then
by the monotonicity of R we have supn∈NR(tn) ≤ R(t). On the other hand we have:

t = sup
n∈N

tn ≤ sup
n∈N

F (R(tn)) ≤ F (sup
n∈N

R(tn)),

implying: supn∈NR(tn) ∈ F−1([t, 1]) and thus supn∈NR(tn) ≥ R(t), leading to equality,
which shows the claim.
For any x ∈ R̄ we have the implication:

x ≥ R(t) =⇒ F (x) ≥ F (R(t)) ≥ t.

For any x ∈ R̄ and any t ∈ [0, 1] we have the implications:

t ≤ F (x) ⇐⇒ F (x) ∈ [t, 1]
⇐⇒ x ∈ F−1([t, 1])
=⇒ x ≥ inf F−1([t, 1]) = R(t).

Together this shows for any x ∈ R̄ and t ∈ [0, 1] the equivalence:

t ≤ F (x) ⇐⇒ R(t) ≤ x.

Since F (x) ≤ F (x) we get R(F (x)) ≤ x for all x ∈ R̄. If equality holds then x ∈ R([0, 1]).
And, if x = R(t) for some t ∈ [0, 1] then we use the inequalities x ≥ R(F (x)) and
F (R(t)) ≥ t to conclude:

x ≥ R(F (x)) = R(F (R(t))) ≥ R(t) = x,

showing equality, and that:
R ◦ F ◦R = R.

Similarly for t = F (x) we get:

t ≤ F (R(t)) = F (R(F (x))) ≤ F (x) = t,

showing
F ◦R ◦ F = F.
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Now consider the uniform distribution λ on [0, 1] and any x ∈ R̄. Then we have:

(R∗λ)([−∞, x]) = λ(R−1([−∞, x]))
= λ(t ∈ [0, 1] |R(t) ≤ x)
= λ(t ∈ [0, 1] | t ≤ F (x))
= λ([0, F (x)])
= F (x)
= P ([−∞, x]).

It follows that: R∗λ = P .

Lemma 2.7.9. Let the notation be like in lemma 2.7.8. For u ∈ [0, 1] and x ∈ R̄ define:

Fu(x) := E(x;u) := P ([−∞, x)) + u · P ({x}).

Then E : R̄ × [0, 1] → [0, 1] is measurable, non-decreasing in both arguments with
F0(−∞) = 0, F1(∞) = 1, F0 is left-continuous and

Fu(x̃) ≤ F1(x̃) ≤ F0(x) ≤ Fu(x)

for any x̃ < x, u ∈ [0, 1]. We further have for every u ∈ (0, 1]:

R ◦ Fu ◦R = R,

and R ◦ Fu = idR̄ P -almost-surely for any u ∈ (0, 1].

Proof. Most of the properties are clear from its definition. Let x̃ < x then [−∞, x̃] ⊆
[−∞, x) and thus F1(x̃) ≤ F0(x).
To show R◦Fu ◦R = R fix a t ∈ [0, 1], u ∈ (0, 1] and let x := R(t). If F1 is continuous in
x then Fu = F1 and the claim R ◦ F1 ◦R = R was already shown using the inequalities:

x ≥ R(F1(x)) = R(F1(R(t))) ≥ R(t) = x.

So let us assume that F1 is discontinuous in x = R(t). Then Fu(x) ∈ (F0(x), F1(x)]. We
have:

R(Fu(x)) = min{x̃ ∈ R̄ |F1(x̃) ≥ Fu(x)}.

If F1(x̃) ≥ Fu(x) > F0(x) then x̃ ≥ x, otherwise x̃ < x leads to the contradiction
F1(x̃) ≤ F0(x). Since clearly F1(x) ≥ Fu(x) we must have:

R(Fu(x)) = x,

with x = R(t), which proves the claim: R ◦ Fu ◦R = R for u ∈ (0, 1].
We now want to show that R ◦ Fu = idR̄ P -a.s. for u ∈ (0, 1]. From R ◦ Fu ◦ R = R we
already see that R ◦ Fu|R([0,1]) = idR([0,1]). We will see below that C := R̄ \ R([0, 1]) is
measurable and P (C) = 0, which will prove the claim.
In the following we will only need F = F1. First, by lemma 2.7.8 we know that for any
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x ∈ R̄ we have R(F (x)) ≤ x with equality if and only if x ∈ R([0, 1]). So this gives us
the equivalence:

x ∈ C ⇐⇒ x > R(F (x)).

We now claim that (R(F (x)), x] ⊆ C for every x ∈ C: Indeed, If x̃ ∈ (R(F (x)), x] then:

F (x) = F (R(F (x))) ≤ F (x̃) ≤ F (x)

and thus F (x̃) = F (x), from which follows that R(F (x̃)) = R(F (x)) < x̃ and ergo
x̃ ∈ C.
It follows that C is the union of such intervals (R(F (x)), x] with x ∈ C. Furthermore,
F (C) is contained in the set of discontinuities DR of R: otherwise there would be an
x ∈ C and a t ≥ F (x) such that R(t) ∈ (R(F (x)), x] ⊆ C, which is a contradiction. Since
DR is countable it must follow that F (C) and thus also R(F (C)) is at most countable.
Write R(F (C)) = {xn |n ∈ N}, which is the set of the possible left end-points of the
above intervals. For each fixed n ∈ N let

Cn := {x ∈ C |R(F (x)) = xn},

which is, as a union of intervals (xn, x], x ∈ Cn, either of the form (xn, x̄n] or (xn, x̄n)
with x̄n := supCn. In both cases we can cover Cn by Cn,m := (xn, xn,m] with xn,m ∈ Cn

either equal to x̄n or converging to it from below for running m. So we can write C as
the countable union:

C =
⋃

n,m∈N

Cn,m.

We now have for each x = xn,m:

P (Cn,m) = P ((xn, x]) = P ((R(F (x)), x]) = F (x)− F (R(F (x))) = F (x)− F (x) = 0.

This implies:

P (C) = P

( ⋃
n,m∈N

Cn,m

)
≤
∑

n,m∈N

P (Cn,m) = 0,

showing that P (C) = 0 and thus:

R ◦ Fu = idR̄ P -a.s.

for u ∈ (0, 1].

Lemma 2.7.10. Let the notations be like in lemma 2.7.8 and lemma 2.7.9. Let λ be
the uniform distribution on [0, 1] and P̄ := P ⊗ λ the product distribution on R̄× [0, 1].
For every e ∈ [0, 1] define the event:

{E ≤ e} := {(x, u) ∈ R̄× [0, 1] | E(x;u) ≤ e}.

Then P̄ (E ≤ e) = e. In other words, the random variable:

E : R̄× [0, 1] → [0, 1],
(x, u) 7→ P ([−∞, x)) + u · P ({x}),
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is uniformly distributed under P̄ = P ⊗ λ.
Furthermore, R(E) = X P̄ -a.s., where X : R̄ × [0, 1] → R̄ is the canonical projection
onto the first factor: X(x, u) := x, which has distribution P .

Proof. First, since λ({0}) = 0 we can w.l.o.g. exclude u = 0 and restrict P̄ to R̄× (0, 1].
We have seen in lemma 2.7.9 that R ◦ Fu ◦R = R for u ∈ (0, 1], which translates to:

R ◦ E|R([0,1])×(0,1] = X|R([0,1])×(0,1].

Also with C := R̄ \R([0, 1]) we get:

P̄ (C × (0, 1]) = P (C) · λ((0, 1]) = 0 · 1 = 0.

So we get the second claim that:

R ◦ E = X P̄ -a.s.

Now we turn to {E ≤ e} for e ∈ [0, 1]. We abbreviate U : R̄ × [0, 1] → [0, 1] to be the
projection onto the second factor: U(x, u) := u, which is uniformly distributed under P̄ ,
and also p(x) := P ({x}) = F1(x)−F0(x). With these notations: E = F0(X)+U · p(X).
First, we show that P̄ (E = e) = 0 for all e ∈ [0, 1]. For this let x := R(e). Then by the
above (R(E) = X P̄ -a.s.) we have:

P̄ (E = e) = P̄ (E = e, X = x).

We have to distinguish between two cases: p(x) = 0 and p(x) > 0.
Case p(x) = 0: We have:

P̄ (E = e) = P̄ (E = e,X = x)

≤ P̄ (X = x)

= p(x)

= 0.

Case p(x) > 0: We get:

P̄ (E = e) = P̄ (E = e,X = x)

= P̄ (F0(X) + U · p(X) = e, X = x)

= P̄

(
U =

e− F0(x)

p(x)
, X = x

)
= λ

({
e− F0(x)

p(x)

})
· p(x)

= 0.

To prove P̄ (E ≤ e) = e for e ∈ [0, 1] we have several cases:
Case e ∈ F1(R̄): Let x̃ be any element in R̄ with e = F1(x̃) (e.g. x̃ = R(e)). Then we
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get:

P̄ (E ≤ e) = P̄ (E ≤ F1(x̃))

= P̄ (R(E) ≤ x̃)

R◦E=X
= P̄ (X ≤ x̃)

= P ([−∞, x̃]) · λ((0, 1])
= F1(x̃) · 1
= e.

For the cases e /∈ F1(R̄) we put x := R(e) and ẽ := F0(x).
Then by definition, x is minimal with F1(x) ≥ e. We also have ẽ = F0(x) ≤ e. Otherwise:
e < F0(x) = supx̃<x F1(x̃) implied that there existed x̃ < x with e < F1(x̃) ≤ F0(x),
which is a contradiction to the minimality of x = R(e). Since ẽ ≤ e we can decompose:

P̄ (E ≤ e) = P̄ (E < ẽ) + P̄ (E = ẽ) + P̄ (ẽ < E ≤ e).

We have already seen that the second term P̄ (E = ẽ) = 0 vanishes.
For the first term we have:

P̄ (E < ẽ) = P̄ (E < F0(x))

= P̄ (E < sup
x̃<x

F1(x̃))

= sup
x̃<x

P̄ (E ≤ F1(x̃))

(∗)
= sup

x̃<x
F1(x̃)

= F0(x)

= ẽ.

Equation (*) comes from the previous case for F1(x̃) ∈ F1(R̄).
For the third term P̄ (ẽ < E ≤ e) first note that E ∈ (ẽ, e] implies that X = x P̄ -a.s. by
applying R: Indeed, every element t ∈ (ẽ, e] ⊆ (F0(x), F1(x)] can be written as t = Fũ(x)
for an ũ ∈ (0, 1] and we can use:

R(t) = R(Fũ(R(e)) = R(e) = x.

For p(x) > 0 and the above we get:

P̄ (ẽ < E ≤ e) = P̄ (ẽ < E ≤ e, X = x)

= P̄ (0 < F0(X) + U · p(X)− F0(x) ≤ e− ẽ, X = x)

= P̄ (0 < U ≤ e− ẽ
p(x)

, X = x)

= λ

((
0,
e− ẽ
p(x)

])
· P ({x})

=
e− ẽ
p(x)

· p(x)

= e− ẽ.
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For the case p(x) = 0, P̄ (ẽ < E ≤ e, X = x) can be upper bounded by P̄ (X = x) =
p(x) = 0 as before, but we also have ẽ−e = 0 in this case, and the equality stays trivially
true as well.
Putting all together we get:

P̄ (E ≤ e) = P̄ (E < ẽ) + P̄ (E = ẽ) + P̄ (ẽ < E ≤ e)

= ẽ+ 0 + e− ẽ
= e.

This shows the claim.
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3. Graph Theory

3.1. Core Concepts

v1

v2

v3

v4 v5 v6

v7

v8

Figure 3: Conditional Acyclic Directed Mixed Graph (CADMG).

Definition 3.1.1 (Conditional directed mixed graphs (CDMG)). A conditional directed
mixed graph (CDMG) G—per definition—consists of two (disjoint) sets of vertices (also
called nodes):

i.) J , whose elements are called input nodes,

ii.) V , whose elements are called output nodes,

and two (disjoint) sets of edges:

iii.) E ⊆ (J ∪ V )× V the set of directed edges,

iv.) L ⊆ V × V/((v1, v2) ∼ (v2, v1)), the set of bi-directed edges,

with: (v1, v2) ∈ L =⇒ v1 ̸= v2 ∧ (v2, v1) ∈ L.

Notation 3.1.2. Let G = (J, V, E, L) be a CDMG. We will write:

1. v ∈ G to mean v ∈ J ∪ V ,

2. v1 v2 ∈ G to mean (v1, v2) ∈ E,

3. v1 v2 ∈ G to mean (v2, v1) ∈ E,

4. v1 v2 ∈ G to mean (v1, v2) ∈ L,

5. v1 v2 ∈ G to mean that either v1 v2 ∈ G or v1 v2 ∈ G,
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6. v1 v2 ∈ G to mean that either v1 v2 ∈ G or v1 v2 ∈ G,

7. v1 v2 ∈ G to mean that either v1 v2 ∈ G or v1 v2 ∈ G or v1 v2 ∈ G.

The star stands for a placeholder to mean: “arrowhead or tail”.

Definition 3.1.3. Let G = (J, V, E, L) be a CDMG.

1. If v1 v2 ∈ G then we call v1 and v2 adjacent in G.

2. Edges of the form v1 v2 or v1 v2 are called into v1.
Edges of the form v1 v2 or v1 v2 are called into v2.

3. Edges of the form v1 v2 or v2 v1 are called out of v1.

Remark 3.1.4. With the notations 3.1.2 the restrictions in definition 3.1.1 mean that
the nodes j ∈ J will not have any arrowheads pointing towards them: j v /∈ G. Nodes
j ∈ J can only point towards nodes v ∈ V : edges j v are allowed. Furthermore, no
two nodes in J are adjacent.

Definition 3.1.5 (Walks). Let G = (J, V, E, L) be a CDMG and v, w ∈ G.

1. A walk from v to w in G is a finite alternating sequence of adjacent nodes and
edges

v = v0, a0, v1, . . . vn−1, an−1, vn = w

in G for some n ≥ 0, i.e. such that for every k = 0, . . . , n − 1 we have that
ak = (vk, vk+1) ∈ E ∪ L or ak = (vk+1, vk) ∈ E, and with end nodes v0 = v and
vn = w. An example walk from v0 to v3 could look like:

v0 v1 v2 v3, with v0 v1, v2 v1 ∈ E, v2 v3 ∈ L.

The same node may appear multiple times in a walk. Also the trivial walk con-
sisting of a single node v0 ∈ G is allowed (if v = w). The walk is called into v0
if a0 = v0 v1, and out of v0 if a0 = v0 v1. Similarly, it is called into vn if
an−1 = vn−1 vn and out of vn if an−1 = vn−1 vn.

2. A directed walk from v to w in G is of the form:

v = v0 v1 · · · vn−1 vn = w,

for some n ≥ 0, where all arrowheads point in the direction of w and there are no
arrowheads pointing back.

3. A bi-directed walk from v to w in G is of the form:

v = v0 v1 · · · vn−1 vn = w,

for some n ≥ 0, where all edges are bi-directed.
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4. A collider walk from v to w in G is of the form:

v = v0 v1 · · · vn−1 vn = w,

for some n ≥ 0, where all nodes in between v and w have two arrowheads pointing
towards them (a.k.a. collider). Note that for n = 1 this reads: v w ∈ G.

5. A walk is called path if no node occurs more than once.

6. A bifurcation from v to w in G is a walk of the form:

v = v0 v1 · · · vk−1 vk · · · vn−1 vn = w,

such that v ̸= w, the walk contains both endnodes exactly once, every node has
at most one arrowhead pointing towards it, and both endnodes have exactly one
arrowhead pointing towards them. If the edge vk−1 vk is directed (vk−1 vk)
then we say that the bifurcation has source vk.

Definition 3.1.6 (Family relationships). Let G = (J, V, E, L) be a CDMG, v, w ∈ V
and A ⊆ J ∪ V a subset of nodes. We then define:

1. The set of parents of v in G:

PaG(v) := {w ∈ G |w v ∈ G} .

The set of parents of A in G:

PaG(A) :=
⋃
v∈A

PaG(v).

2. The set of children of v in G:

ChG(v) := {w ∈ G | v w ∈ G} .

The set of children of A in G:

ChG(A) :=
⋃
v∈A

ChG(v).

3. The set of siblings of v in G:

SibG(v) := {w ∈ G | v w ∈ G} .

4. The set of ancestors of v in G:

AncG(v) := {w ∈ G | ∃ directed walk: w · · · v ∈ G} .

Note: v ∈ AncG(v).
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The set of ancestors of A in G:

AncG(A) :=
⋃
v∈A

AncG(v).

Note: A ⊆ AncG(A).

5. The set of descendants of v in G:

DescG(v) := {w ∈ G | ∃ directed walk: v · · · w ∈ G} .

Note: v ∈ DescG(v).

The set of descendants of A in G:

DescG(A) :=
⋃
v∈A

DescG(v).

Note: A ⊆ DescG(A).

6. The set of non-descendants of A in G:

NonDescG(A) := (J ∪ V ) \DescG(A).

7. The strongly connected component of v in G:

ScG(v) := AncG(v) ∩DescG(v).

Note: v ∈ ScG(v).

The (union of) strongly connected components of A in G:

ScG(A) :=
⋃
v∈A

ScG(v).

Note: A ⊆ ScG(A).

8. The district of v in G:

DistG(v) := {w ∈ G | ∃ bi-directed walk: v v1 · · · vn−1 w ∈ G} .

Note: v ∈ DistG(v).

The district of A in G:
DistG(A) :=

⋃
v∈A

DistG(v).

Note: A ⊆ DistG(A).
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Definition 3.1.7 (Acyclicity). A CDMG G = (J, V, E, L) is called acyclic if there does
not exist any non-trivial directed walk from v to itself in G for any node v ∈ G.

Definition 3.1.8. A Conditional Directed Mixed Graph (CDMG) G = (J, V, E, L) is
called:

1. Conditional Acyclic Directed Mixed Graph (CADMG) if G is acyclic.

2. Directed Mixed Graph (DMG) if J = ∅.

3. Acyclic Directed Mixed Graph (ADMG) if G is acyclic and J = ∅.

4. Conditional Directed Graph (CDG) if L = ∅.

5. Directed Graph (DG) if J = ∅ and L = ∅.

6. Conditional Directed Acyclic Graph (CDAG) if G is acyclic and L = ∅.

7. Directed Acyclic Graph (DAG) if G is acyclic, J = ∅ and L = ∅.

Definition 3.1.9 (Topological order). Let G = (J, V, E, L) be a CDMG. A topological
order of G is a total order < of J ∪ V such that for all v, w ∈ G:

v ∈ PaG(w) =⇒ v < w.

Equivalently, it can be described as an indexing of the nodes J ∪V = {v1, . . . , vK} where
parents always precede their children.

Lemma 3.1.10. A CDMG G = (J, V, E, L) is acyclic if and only if it has a topological
order.

Definition 3.1.11 (Predecessors). Let G = (J, V, E, L) be a CDMG and < a total order
of J ∪ V . The set of predecessors of v in G are:

PredG
<(v) := {w ∈ G |w < v} .

We also put:
PredG

≤(v) := {w ∈ G |w < v} ∪ {v}.

3.2. Operations on Graphs

3.2.1. Hard Interventions on Graphs

Definition 3.2.1 (Hard intervention on CDMGs). Let G = (J, V, E, L) be a CDMG
and W ⊆ J ∪V a subset of nodes. The intervened CDMG w.r.t. W of G is the CDMG:

Gdo(W ) := (Jdo(W ), Vdo(W ), Edo(W ), Ldo(W )),

where:
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Figure 4: The CADMG from Figure 3 after hard intervention on node v7.

i.) Jdo(W ) := J ∪W ,

ii.) Vdo(W ) := V \W ,

iii.) Edo(W ) := E \ {v w | v ∈ G,w ∈ W},

iv.) Ldo(W ) := L \ {v w | v ∈ G,w ∈ W},
where we turn all nodes from W into input nodes and remove all edges into nodes from
W .

Remark 3.2.2. If G is acyclic then also Gdo(W ) is acyclic and a topological order for G
is also one for Gdo(W ).

Lemma 3.2.3 (Hard interventions commute). Let G := (J, V, E, L) be a CDMG and
W1,W2 ⊆ J ∪ V two subsets of nodes from G. Then we have:(

Gdo(W1)

)
do(W2)

=
(
Gdo(W2)

)
do(W1)

= Gdo(W1∪W2).

The following proposition expresses the existence of a bifurcation with a source in
terms of ancestral relations in intervened graphs.

Proposition 3.2.4. Let G = (J, V, E, L) be a CDMG. For v, w, c ∈ V ∪ J : there
exists a bifurcation between v and w in G with source c if and only if v ̸= w and
c ∈ AncGdo(w)(v) \ {v} and c ∈ AncGdo(v)(w) \ {w}.
Proof. A bifurcation between v and w with source c is a walk in G of the form v
· · · c · · · w, where both v and w appear exactly once on the walk. This
shows “ =⇒ ”. For the other implication, note that c ∈ AncGdo(w)(v) \ {v} implies that
there is a non-trivial directed path from c to v that does not pass through w. Similarly,
c ∈ AncGdo(v)(w) \ {w} implies that there is a non-trivial directed path from c to w that
does not pass through v. The concatenation of the two paths v · · · c · · · w
is then a bifurcation between v and w with source c.
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3.2.2. Node Splitting Interventions on Graphs

v1

v2

v3

v4

vo5

vi5

v6

vo7

vi7

v8

Figure 5: The CADMG from Figure 3 after a node-splitting hard intervention on v5 and
v7.

In this subsection we introduce node-splitting hard interventions. They were in-
troduced for the purpose of representing single-world intervention graphs (SWIGs),
which represent the same output variable both before and after a hard intervention,
see [RR13a,RR13b].

Definition 3.2.5 (Node-splitting hard intervention on CADMGs). Let G = (J, V, E, L)
be a CADMG and W ⊆ V a subset of the output nodes. The single-world intervention
graph (SWIG) w.r.t. W of G is the CADMG:

Gswig(W ) :=
(
Jswig(W ), Vswig(W ), Eswig(W ), Lswig(W )

)
,

constructed as follows. We first make two disjont copies of the nodes in W :

W o := {wo |w ∈ W} , W i :=
{
wi
∣∣w ∈ W} .

Note that we consider wo ̸= wi for w ∈ W . However, for brevity, for v ∈ J ∪ V \W we
put:

vo := vi := v.

We then define:

i.) Jswig(W ) := J ∪̇W i,

ii.) Vswig(W ) := (V \W ) ∪̇W o,

iii.) Eswig(W ) := {vi1 vo2 | v1 v2 ∈ E},

iv.) Lswig(W ) := {vo1 vo2 | v1 v2 ∈ L}.
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where we turn all nodes of W i into input nodes, removing all edges into W i, and we
turn all nodes of W o into output nodes, removing all edges out of W o.

Remark 3.2.6. For a CADMG G = (J, V, E, L), also Gswig(W ) is acyclic. If < is any
topological order of G given by enumerating all nodes v ∈ J ∪ V via:

v1 < v2 < · · · < vn,

then, for instance, a topological order for Gswig(W ) can be achieved by assigning for a
node vj ∈ W with index j the node voj the index j − 1

3
and vij the index j + 1

3
, and then

ordering all nodes according to their index value.

Lemma 3.2.7 (Two disjoint node-splitting hard interventions commute). Let G =
(J, V, E, L) be a CADMG and W1,W2 ⊆ V two disjoint subsets of the output nodes
from G. Then the CADMG obtained from first node-splitting on W1 and then node-
splitting on W2 is the same CADMG that arises from first node-splitting on W2 and
then node-splitting on W1:(

Gswig(W1)

)
swig(W2)

=
(
Gswig(W2)

)
swig(W1)

= Gswig(W1 ∪̇W2).

Lemma 3.2.8 (Disjoint hard interventions and node-splitting hard interventions com-
mute). Let G = (J, V, E, L) be a CADMG and W1 ⊆ J ∪ V and W2 ⊆ V two disjoint
subsets of nodes from G. Then the CADMG obtained from first hard intervening on W1

and then node-splitting on W2 is the same CADMG that arises from first node-splitting
on W2 and then hard intervening on W1.(

Gdo(W1)

)
swig(W2)

=
(
Gswig(W2)

)
do(W1)

.

Remark 3.2.9. Note that if W1 and W2 are not disjoint and w ∈ W1 ∩W2 ⊆ V then
first hard intervening on w turns w into an input node, for now indicated as wi, and a
node-splitting hard intervention (if we would define it for input nodes) would not change
wi. If, on the other hand, we would first split the node w into wo and wi then we
would first need to resolve the ambiguity on which of those two the hard intervention
should be applied. A hard intervention on wi would not do anything, but would leave
the additional output node wo in the graph, while hard intervening on wo would turn wo

into an additional input node, for now indicated as (wo)i. So in the latter case we are
left with two input node (wo)i, which does not have any edges, and wi, which might have
outgoing edges.

3.2.3. Intervention Nodes

More generally, interventions (both hard and soft) can be modeled graphically via aux-
iliary intervention nodes.

Definition 3.2.10 (Extending CDMGs with intervention nodes). Let G = (J, V, E, L)
be a CDMG and W ⊆ J ∪ V a subset of nodes. The extended CDMG of G w.r.t. nodes
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Figure 6: The CADMG from Figure 3 after adding intervention nodes {Iv2 , Iv7} (where
Iv2 is identified with v2 since v2 is an input node).

W ⊆ J ∪ V and corresponding intervention nodes IW = {Iw |w ∈ W} with Ij := j for
j ∈ J , is the CDMG:

Gdo(IW ) := (Jdo(IW ), Vdo(IW ), Edo(IW ), Ldo(IW )),

where:

i.) Jdo(IW ) := J ∪̇ {Iw |w ∈ W \ J},

ii.) Vdo(IW ) := V ,

iii.) Edo(IW ) := E ∪̇ {Iw w |w ∈ W \ J},

iv.) Ldo(IW ) := L,

where we just add nodes Iw for w ∈ W \ J and edges Iw w for w ∈ W \ J .

Remark 3.2.11. If a CDMG G = (J, V, E, L) is acyclic then also Gdo(IW ) is acyclic
and a topological order for Gdo(IW ) is also one for G. Any topological order of G can be
extended to one for Gdo(IW ), e.g. by putting all the Iw nodes first in the ordering.

Lemma 3.2.12 (Adding intervention nodes commutes with disjoint hard interventions).
Let G = (J, V, E, L) be a CDMG and W1,W2 ⊆ J ∪V two disjoint subsets of nodes from
G. Then we have:(

Gdo(IW1
)

)
do(IW2

)
=
(
Gdo(IW2

)

)
do(IW1

)
= Gdo(IW1∪W2

).

We also have: (
Gdo(IW1

)

)
do(W2)

=
(
Gdo(W2)

)
do(IW1

)
= Gdo(IW1

,W2).
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Lemma 3.2.13 (Adding intervention nodes commutes with disjoint node-splitting hard
interventions). Let G = (J, V, E, L) be a CADMG and W1 ⊆ V and W2 ⊆ J ∪ V two
disjoint subsets of nodes from G. Then the CADMG that arises from first introducing
intervention nodes IW2 and then splitting the nodes from W1 is the same as the CADMG
that arises from first splitting the nodes from W1 and then introducing the intervention
nodes IW2: (

Gswig(W1)

)
do(IW2

)
=
(
Gdo(IW2

)

)
swig(W1)

.

3.2.4. Marginalization of Graphs

Definition 3.2.14 (Marginalization a.k.a. latent projection on CDMGs). Let G =
(J, V, E, L) be a CDMG and W ⊆ V a subset of output nodes. Then the marginal-
ization of G w.r.t. W or the latent projection of G onto J ∪ V \W is the CDMG:

GV \W |J := G\W := (J\W , V \W , E\W , L\W ),

where:

i.) J\W := J ,

ii.) V \W := V \W ,

iii.) E\W consists of all directed edges v v with v, v ∈ J ∪ V \W for which there
exists a directed walk in G:

v w1 · · · wn−1 v,

where all intermediate nodes w1, . . . , wn−1 ∈ W (if any).13

iv.) L\W consists of all bi-directed edges v v with v, v ∈ V \W , v ̸= v, for which
there exists a bifurcation in G:

v w1 · · · wk−1 wk · · · wn−1 v,

where all intermediate nodes w1, . . . , wn−1 ∈ W (if any).

Remark 3.2.15. Marginalization preserves ancestral relations, bifurcations and acyclic-
ity:

1. For v1, v2 ∈ G with v1, v2 /∈ W we have the equivalence:

v1 ∈ AncG(v2) ⇐⇒ v1 ∈ AncG
\W

(v2).

2. For v1, v2 ∈ G \W (and, optionally, v3 ∈ G \W ): there is a bifurcation between
v1 and v2 (with source v3) in G if and only if there is a bifurcation between v1 and
v2 (with source v3) in G\W .

13Note that this may introduce self-cycles.
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3. If the CDMG G is acyclic then so is G\W and a topological order of G induces a
topological order on G\W (by just ignoring the nodes from W ).

Proof. We prove 2. Let

v1 w1 · · · wk−1 wk · · · wn−1 wn v2

or
v1 w1 · · · wk−1 v3 wk · · · wn−1 wn v2

be a bifurcation between v1 and v2 inG (with source v3, if applicable). If one marginalizes
out a single node w ∈ W that is not on the bifurcation, then the same bifurcation exists
in G\{w}. If one marginalizes out a single node wi ∈ W that appears on the bifurcation
one obtains again a bifurcation in G\{wi} (with source v3, if applicable). By induction it
follows that there is a bifurcation between v1 and v2 inG\W (with source v3, if applicable).

For the converse, assume that there exists a bifurcation between v1 and v2 in G\W

(with source v3, if applicable). For each directed edge u u′ on this bifurcation,
there exists a directed path u . . . u′ in G with all intermediate nodes in W .
Concatenating all these directed paths, one obtains a bifurcation between v1 and v2 in
G\W (with source v3, if applicable).

Lemma 3.2.16 (Marginalizations commute). Let G = (J, V, E, L) be a CDMG and
W1,W2 ⊆ V two disjoint subsets of output nodes. Then we have:(

G\W1
)\W2

=
(
G\W2

)\W1
= G\(W1∪W2).

Lemma 3.2.17 (Marginalization and intervention commute). Let G = (J, V, E, L) be a
CDMG and W1 ⊆ J ∪ V and W2 ⊆ V two disjoint subsets of nodes from G. Then we
have: (

Gdo(W1)

)\W2 =
(
G\W2

)
do(W1)

.

A similar statement holds for marginalizations and adding intervention nodes, and also
for marginalizations and node-splitting interventions.

Lemma 3.2.18 (Marginalizing out the output part of splitted nodes equals hard inter-
vention). Let G = (J, V, E, L) be a CDMG and W ⊆ V be a subset of output nodes from
G. Then the CDMG that arises by first splitting the nodes on W and then marginalizing
out the nodes from W o can be identified with the CDMG that arises by hard intervention
on W :

Gdo(W )
∼=
(
Gswig(W )

)\W o

, w 7→ wi.

3.3. σ-Separation

Definition 3.3.1 (Colliders and non-colliders). Let G = (J, V, E, L) be a CDMG and π
a walk in G:

π = (v0 · · · vn) .

A node vk, or more precisely, the position k ∈ {0, . . . , n}, on the walk π is called:
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1. a non-collider on π, if there is at most one arrowhead pointing towards vk, i.e. if
it falls into one of the following cases:

end-node: k ∈ {0, n} ,
left chain: vk−1 vk vk+1,

right chain: vk−1 vk vk+1,
fork: vk−1 vk vk+1;

2. a collider on π, if it is of the form:

vk−1 vk vk+1,

i.e. if there are two arrowheads pointing towards vk on the walk π.

Definition 3.3.2 (Blockable and unblockable non-colliders). Let G = (J, V, E, L) be a
CDMG and π a walk in G:

π = (v0 · · · vn) .

We call a non-collider vk on π an unblockable non-collider on π if it is not an end-node
(k /∈ {0, n}) and it only has outgoing edges on π to nodes in the same strongly connected
component of G. That is, it is one of the following patterns:

left chain: vk−1 vk vk+1 with vk−1 ∈ ScG(vk)
right chain: vk−1 vk vk+1 with vk+1 ∈ ScG(vk)

fork: vk−1 vk vk+1 with vk−1 ∈ ScG(vk) ∧ vk+1 ∈ ScG(vk)

Otherwise, vk is called a blockable non-collider on π. This means that vk is either an
end-node (k ∈ {0, n}) or it has at least one outgoing arrow vk vk±1 pointing to a node
vk±1 that lies in a different strongly connected component than vk, i.e. vk±1 /∈ ScG(vk).

Remark 3.3.3. If G is acyclic then all non-colliders are blockable.

Definition 3.3.4 (σ-blocked walks). Let G = (J, V, E, L) be a CDMG and C ⊆ J ∪ V
a subset of nodes and π a walk in G:

π = (v0 · · · vn) .

We say that the walk π is:

1. C-σ-open (or σ-open given C) if and only if:

i.) all colliders vk on π are in AncG(C), and:

ii.) all blockable non-colliders vk on π are not in C.

2. C-σ-blocked (or σ-blocked given C) if and only if:

i.) there exists a collider vk on π that is not in AncG(C), or:

ii.) there exists a blockable non-collider vk on π in C.
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Note that unblockable non-colliders are always C-σ-open, regardless of the subset C ⊆
V ∪ J .

Definition 3.3.5 (σ-separation). Let G = (J, V, E, L) be a CDMG and A,B,C ⊆ J ∪V
(not necessarily disjoint) subset of nodes. We then say that:

1. A is σ-separated from B given C in G, in symbols:

A
σ

⊥
G
B |C,

if every walk from a node in A to a node in J ∪B (sic!)14 is C-σ-blocked by C.

2. If that property does not hold we will write:

A
σ

̸⊥
G
B |C.

3. We also define the special case:

A
σ

⊥
G
B :⇐⇒ A

σ

⊥
G
B | ∅.

The following result is often helpful to simplify proofs and to make checking σ-
separation feasible in practice.

Proposition 3.3.6. Let G = (J, V, E, L) be a CDMG. For C ⊆ J ∪ V , and w1, w2 ∈
J ∪ V , the following are equivalent:

1. there exists a C-σ-open path between w1 and w2 in G;

2. there exists a C-σ-open walk between w1 and w2 in G;

3. there exists a C-σ-open walk between w1 and w2 in G such that all its colliders lie
in C (and not just in AncG(C)).

Remark 3.3.7. 1. By Proposition 3.3.6 we have that A⊥σ
GB |C is equivalent to

either of the following:

a) every walk from a node in A to a node in J ∪B is C-σ-blocked by C;

b) every path from a node in A to a node in J ∪B is C-σ-blocked by C.

2. Proposition 3.3.6 also shows that if A ̸⊥σ
GB |C holds then:

a) there exists a (shortest) C-σ-open path from a node in A to a node in J ∪B;

14The choice to include J here in this place is non-standard in the literature. However, if we include
J in this definition here the implied (asymmetric) separoid rules for d-/σ-separation will be of the
same form as those for Markov kernels regarding conditional independence. This is the reason we
include J here.
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b) there exists a (shortest) C-σ-open walk from a node in A to a node in J ∪B
such that all its colliders lie in C.

In practice we usually check if every path is C-σ-blocked or not. This is because there
are, in contrast to walks, only a finite number of paths in a (finite) graph. In proofs,
though, it often is easier to make use of walks, since these can be concatenated into walks
(while one cannot in general concatenate two paths and again obtain a path).

Lemma 3.3.8 (σ-separation under marginalization). Let G = (J, V, E, L) be a CDMG,
A,B,C ⊆ J ∪ V and D ⊆ V be subsets of nodes such that:

D ∩ (A ∪B ∪ C) = ∅.

Then we have the equivalence:

A
σ

⊥
G
B |C ⇐⇒ A

σ

⊥
G\D

B |C.

Remark 3.3.9. If a CDMG G is acyclic then all non-colliders are blockable. So, the
partial condition for σ-separation “a blockable non-collider in C” can be simplified to
“(any) non-collider in C”.

So in the acyclic case we can simplify the notion of σ-separation, which is usually
referred to as d-separation. However, in the non-acyclic setting d-separation (“(any)
non-collider in C”) and σ-separation (“a blockable non-collider in C”) are clearly not
equivalent anymore.

It turned out that in the non-acyclic case σ-separation is the more general concept
(and as said above it also captures the acyclic case equivalently well), see [FM17,FM18,
FM20, BFPM21]. We will first focus on CADMGs (acyclic) for which we can restrict
ourselves to the somewhat simpler d-separation. Later, we will pick up σ-separation
again when we deal with cycles.

Proofs - σ-Open Walks and Paths
The following lemma will be convenient to relate σ-open walks and paths in the notion

of σ-separation.

Lemma 3.3.10. Let G = (J, V, E, L) be a CDMG, C ⊆ V ∪J and π = (v0 · · · vn)
be a C-σ-open walk in G. Suppose vi ∈ ScG(vj) for some i, j ∈ {0, . . . , n} with i < j. If
we then replace the subwalk vi · · · vj of π by

(i) a shortest directed path vi · · · vj in G if j = n or if vj vj+1 on π, or

(ii) a shortest directed path vi · · · vj in G otherwise,

then this new subwalk is entirely within ScG(vj) and the modified walk π′ is still C-σ-open.

Proof. π′ cannot become C-σ-blocked at one of the initial nodes v0, . . . , vi−1 or at one of
the final nodes vj+1, . . . , vn on π′, since these nodes occur in the same local configuration
on π and are not C-σ-blocked on π by assumption. Furthermore, π′ cannot become
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C-σ-blocked at one of the nodes strictly between vi and vj on π′ (if there are any),
since these nodes are all non-endnode non-colliders that only point to nodes in the same
strongly connected component ScG(vj). It is also worth noting that π′ cannot become
C-σ-blocked at any of its endnodes, which could be vi or vj or both, because those
are the same in π. So in the following we can w.l.o.g. assume that both vi and vj are
non-endnodes of π and thus π′.

Case (i). By assumption vj is either a fork or a right chain (or the right endnode)
on π that is C-σ-open. Since the same blocking criteria apply to vj on π′ it remains
C-σ-open on π′. If vi = vj then also vi is C-σ-open on π′ (if vi is the left endnode or
not). If vi ̸= vj, then the new directed path vi · · · vj in π′ is C-σ-open at vi
because all nodes in between lie in the same stronly connected component ScG(vi) (or
vi is the left endnode anyways).

Case (ii). Since case (i) is solved we can assume that we have j < n with vj vj+1

in π. If vi−1 vi on π′ (or vi the left endnode) then this case is analogous to case (i).
So we can also assume that we have i > 0 and vi−1 vi on π. So π looks as follows:

π : · · · vi−1 vi · · · vj vj+1 · · · .

So there must be a smallest number k ∈ {i, . . . , j} such that a collider appears at vk on
π:

π : · · · vi−1 vi · · · vk · · · vj vj+1 · · · .

Since π is C-σ-open we have vk ∈ AncG(C). Since vi ∈ AncG(vk) (otherwise vk would
not be the first collider appearing after vi) we thus have that also vi ∈ AncG(C). So if we
replace the subwalk vi · · · vj of π by the shortest directed path vi · · · vj
in G we then get for π′ the following situation:

π′ : · · · vi−1 vi · · · vj vj+1 · · · ,

which is then C-σ-open at vi as vi ∈ AncG(C). Note that this holds also when vi = vj.
If vi ̸= vj then vj is also C-σ-open on π′ as vj points left to a node in the same strongly
connected component as vj.

So in all cases π′ stays C-σ-open.

Proposition 3.3.6. Let G = (J, V, E, L) be a CDMG. For C ⊆ J ∪ V , and w1, w2 ∈
J ∪ V , the following are equivalent:

1. there exists a C-σ-open path between w1 and w2 in G;

2. there exists a C-σ-open walk between w1 and w2 in G;

3. there exists a C-σ-open walk between w1 and w2 in G such that all its colliders lie
in C (and not just in AncG(C)).

Proof. 3 =⇒ 2 and 1 =⇒ 2 are trivial. Note that paths are walks.
2 =⇒ 3: Suppose there exists a C-σ-open walk π from w1 to w2. Then consider a

collider vk−1 vk vk+1 on π with vk ∈ AncG(C) \ C. So there exists a non-trivial
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directed path from vk to a node ck ∈ C with all other nodes not in C. If we then replace
the collider at vk in π by that path and its reverse we get:

· · · vk−1 vk · · · ck · · · vk vk+1 · · · .

This walk is then C-σ-open at all places between vk on the left and vk on the right
because they are non-colliders not in C. If we do this iteratively for all colliders not in
C we get the desired C-σ-open walk where all colliders lie in C.
2 =⇒ 1: Let π = (v0 · · · vn) be a C-σ-open walk between nodes v0 = w1 and

vn = w2 in G. If a node w occurs more than once on π, let vi be the first node on π and
vj be the last node on π that are in ScG(w). We now use Lemma 3.3.10 to construct
a new walk π′ from π by replacing the subwalk between vi and vj of π by a particular
directed path in ScG(w) between vi and vj in such a way that π′ is still C-σ-open. In
π′, the number of nodes that occurs more than once is at least one less than in π, and
all nodes within ScG(w) occur within a single segment. This replacement procedure can
be repeated until no nodes occur more than once. We have then obtained a C-σ-open
path between w1 and w2.

3.4. d-Separation

Definition 3.4.1 (d-blocked walks). Let G = (J, V, E, L) be a CDMG and C ⊆ J ∪ V
a subset of nodes and π a walk in G:

π = (v0 · · · vn) .

1. We say that the walk π is C-d-blocked or d-blocked by C to emphasize the use of
the bi-directed edges.15 if either:

i.) v0 ∈ C or vn ∈ C or:

ii.) there are two adjacent edges in π of one of the following forms:

left chain: vk−1 vk vk+1 with vk ∈ C,
right chain: vk−1 vk vk+1 with vk ∈ C,

fork: vk−1 vk vk+1 with vk ∈ C,
collider: vk−1 vk vk+1 with vk /∈ AncG(C).

2. We say that the walk π is C-d-open if it is not C-d-blocked.

Remark 3.4.2. If we consider end-nodes, left chains, right chains and forks as non-
colliders then we can simply state:
π is d-blocked by C if and only if it either contains a non-collider in C or a collider

not in AncG(C).
15The “d” here stands for “directional”. d-separation was first only used for DAGs (without bi-directed

edges). For ADMGs it was then called m-separation in [Ric03] But since the notion of m-separation
is arguably the natural extension of d-separation and to avoid introducing more definitions, we will
just call it d-separation as well, which will not create any ambiguity.

90



Definition 3.4.3 (d-separation). Let G = (J, V, E, L) be a CDMG and A,B,C ⊆ J ∪V
(not necessarily disjoint) subset of nodes. We then say that:

1. A is d-separated from B given C in G, in symbols:

A
d

⊥
G
B |C,

if every walk from a node in A to a node in J ∪B (sic!)14 is C-d-blocked by C.

2. If that property does not hold we will write:

A
d

̸⊥
G
B |C.

Remark 3.4.4. 1. A similar result from Proposition 3.3.6 holds for d-separation as
well.

2. d-separation is stable under marginalization, similar to Lemma 3.3.8.

3.5. Acyclifications

It is possible to reformulate the notion of σ-separation in terms of d-separation on a
modified and acyclic graph by making use of the following construction, which will be
the main tool to extend the acyclic theory to the cyclic one. The construction was first
proposed in the context of CBNs by [Spi94,Spi95].

Definition 3.5.1. Given a CDMG G = (J, V, E, L), we call a CADMG G′ = (J ′, V ′, E ′, L′)
an acyclification of G if

(i) G′ is acyclic;

(ii) G′ has the same input nodes and output nodes as G, i.e. J ′ = J and V ′ = V ;

(iii) for every pair of nodes (i, j) such that i ̸∈ ScG(j):

a) i j ∈ E ′ iff there exists a node j′ ∈ ScG(j) such that i j′ ∈ E;

b) i j ∈ L′ iff there exist nodes i′ ∈ ScG(i), j′ ∈ ScG(j) such that i′ j′ ∈ L;

(iv) for every pair of distinct nodes (i, j) such that i ∈ ScG(j): i j ∈ E ′ or i
j ∈ E ′ or i j ∈ L′.

The important property of acyclifications is that they can be used to express σ-
separation in a (possibly cyclic) graph in terms of d-separation in an acyclification.

Proposition 3.5.2. Let G = (J, V, E, L) be a CDMG and G′ an acyclification of G.
Then for A,B,C ⊆ V ∪ J (not necessarily disjoint) subsets of nodes we have the equiv-
alence:

A
σ

⊥
G
B |C ⇐⇒ A

σ

⊥
G′
B |C ⇐⇒ A

d

⊥
G′
B |C.
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Proof. We will show that there is a C-σ-open walk between A and B ∪ J in G if and
only if there is a C-σ-open walk between A and B ∪ J in G′. Since G′ is acyclic, this is
in turn equivalent to the existence of a C-d-open walk between A and B ∪ J in G′.

=⇒ : Suppose there is a C-σ-open walk π = (v0, . . . , vn) between A and B ∪ J in
G. All its colliders are in C and all its non-colliders are either not in C, or otherwise,
point only to nodes in the same strongly connected component. Note that each edge
between two nodes in different strongly connected components in G is also present in
G′. Edges between two nodes in the same strongly connected component, however, may
not be present in G′. Therefore, we will replace these edges with walks in G′. Consider
a subwalk (vi, . . . , vj) of maximum length that is entirely contained within a strongly
connected component in G (with possibly i = j). We distinguish different cases and
show for each case how this subwalk can be replaced by a subwalk in G′.

(i) vi · · · vj : the subwalk between vi and vj has to contain a collider, say w,
which must be in C since the walk between vi and vj is C-σ-open. We can replace
this subwalk by w in G′ such that w becomes a collider in C.

(ii) ( )vi · · · vj :16 here vi is a non-collider pointing to another strongly connected
component or vi is an endnode, and in both cases, vi /∈ C. Therefore, we can
replace the subwalk by ( )vi in G′, such that vi becomes a non-collider not
in C.

(iii) vi · · · vj( ): analogous to the previous case, we can replace it by vj( )
in G′, such that vj becomes a non-collider not in C.

(iv) ( )vi · · · vj( ): vi, vj are both not in C by assumption. If i = j, we replace this
subwalk by ( )vi( ) such that vi becomes a non-collider not in C. If i < j, we
replace this subwalk by ( )vi vj( ) with vi vj any edge connecting vi
and vj in G′, such that both vi and vj become non-colliders not in C.

By replacing all maximal subwalks of the original walk π that are contained within a
single strongly connected component of G in this way, we obtain a walk in the acyclifi-
cation G′ that is C-σ-open by construction. Note that the modified walk has the same
endpoints (v0 and vn) as the original walk.
⇐= : Suppose there is a C-σ-open walk π′ between A and B ∪ J in G′. All its

colliders are in C, and all its non-colliders are not in C. We will construct a walk π in
G with the same endpoints as π′ that is C-σ-open.

Consider a non-trivial subwalk (vi, . . . , vj) on π′ of maximum length that is entirely
contained within a strongly connected component of G. This subwalk may not be present
in G′. We distinguish different cases and show for each case how this subwalk can be
replaced by a subwalk in G.

(i) vi · · · vj : the subwalk between vi and vj has to contain a collider, say w,
which must be in C since the walk between vi and vj is C-σ-open, and must be

16We put parentheses around the first directed edge to indicate that this case also applies if vi is an
endnode, i.e., if i = 0.
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in ScG(vi) = ScG(vj) by assumption. We can replace this subwalk by vi
. . . w . . . vj in G, with possibly vi = w and possibly w = vj, with
all nodes in ScG(vi). Note that the modified walk remains C-σ-open.

(ii) ( )vi · · · vj : here vi is a non-collider pointing to another strongly connected
component or vi is an endnode, and in both cases, vi /∈ C. We can replace this
subwalk by a shortest directed walk ( )vi . . . vj in G with all nodes
in ScG(vi). Note that the modified walk remains C-σ-open.

(iii) vi · · · vj( ): analogous to the previous case, we can replace it by vi
. . . vj( ) in G.

(iv) ( )vi · · · vj( ): vi, vj are both not in C by assumption. We can replace this
subwalk by a shortest directed walk ( )vi . . . vj( ) in G with all nodes
in ScG(vi). The modified walk remains C-σ-open.

In each of the four cases, in the modified walk both vi and vj become either colliders in
C, or non-colliders not in C, or non-colliders in C that only point to a node in the same
strongly connected component of G.

Now, we will replace edges on π′ between two strongly connected components that
are not present in G. For any directed edge i j on π′ with j /∈ ScG(i), there must
be a j′ ∈ ScG(j) such that i j′ is present in G, and hence there must be a directed
path j′ . . . j entirely in ScG(j) such that we can use i j′ . . . j as
replacement in G of the edge i j. Similarly, for any bidirected edge i j on π′

with j /∈ ScG(i), there must be i′ ∈ ScG(i) and j′ ∈ ScG(j) such that i′ j′ is present
in G, and hence there must be a walk i . . . i′ j′ . . . j in G, where
i . . . i′ is entirely in ScG(i) and j′ . . . j is entirely in ScG(j), that we can
use as replacement in G of the edge i j. The new nodes introduced on π in these
replacements are non-colliders that only point to nodes in the same strongly connected
component. The endpoints of the replacement paths do not change their status: if they
were colliders in C on π′ they still are on π, and if they were non-colliders not in C on
π′ they still are on π.

Hence we have constructed a walk π in G with the same endpoints as π′ that is
C-σ-open.

The following construction shows that acyclifications exist (but it is just one out of
many possible ways to construct acyclifications).

Example 3.5.3 (The standard acyclification). Let G = (J, V, E, L) be a CDMG. Then
we define the standard acyclification of G as the CDMG G′ = (J, V, E ′, L′) where:

E ′ :=
{
v1 v2

∣∣ v1 ∈ J ∪ V, v2 ∈ V, v2 /∈ ScG(v1),∃v′2 ∈ ScG(v2) : v1 v′2 ∈ E
}
,

L′ :=
{
v1 v2

∣∣ v1, v2 ∈ V, v1 ̸= v2,∃v′1 ∈ ScG(v1), v
′
2 ∈ ScG(v2) : v1 v2 ∈ L

}
∪
{
v1 v2

∣∣ v1, v2 ∈ V, v1 ̸= v2, v1 ∈ ScG(v2)
}
.

The standard acyclification of a CDMG is acyclic, i.e. a CADMG.
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Figure 7: Top: CDMG G. Bottom: two acyclifications of G.

Proof. Assume that G′ is not acyclic. Then there exists a non-trivial cyclic directed
walk in G′:

v1 v2 · · · vk v1,

for some k ≥ 1. It is clear that k ≥ 2 because clearly v1 ∈ ScG(v1), which rules out the
existence of an edge v1 v1 ∈ G′. For simplicity we now identify vk+1 := v1 in the
following. By construction of G′ for every i = 1, . . . , k there exists v′i+1 ∈ ScG(vi+1) such
that the edge vi v′i+1 exists in G. Since v′i+1 ∈ ScG(vi+1) there also exists a directed
walk in G:

v′i+1 · · · vi+1.

Concatenating all directed walks we get the cyclic directed walk in G:

v1 v′2 · · · v2 v′3 · · · vk v′1 · · · v1.

This shows that v2 ∈ ScG(v1), which is a contradiction to the existence of the edge
v1 v2 ∈ G′. So a non-trivial cyclic directed walk in G′ cannot exist in the first place.
So G′ must be acyclic.

3.6. Separoid Axioms for σ-/d-Separation

Definition/Theorem 3.6.1 ((Asymmetric) separoid axioms for σ-separation/d-separation).
Let G = (J, V, E, L) be a CDMG and A,B,C,D ⊆ J ∪ V subsets of nodes. Then the
ternary relations ⊥ = ⊥d

G and ⊥ = ⊥σ
G satisfy the following rules:
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a) Extended Left Redundancy:

D ⊆ A =⇒ D⊥B |A.

b) J-Restricted Right Redundancy:

A⊥∅ |C ∪ J always holds.

c) J-Inverted Right Decomposition:

A⊥B |C =⇒ A⊥ J ∪B |C.

d) Left Decomposition:

A ∪D⊥B |C =⇒ D⊥B |C.

e) Right Decomposition:

A⊥B ∪D |C =⇒ A⊥D |C.

f) Left Weak Union:

A ∪D⊥B |C =⇒ A⊥B |D ∪ C.

g) Right Weak Union:

A⊥B ∪D |C =⇒ A⊥B |D ∪ C.

h) Left Contraction:

(A⊥B |D ∪ C) ∧ (D⊥B |C) =⇒ A ∪D⊥B |C.

i) Right Contraction:

(A⊥B |D ∪ C) ∧ (A⊥D |C) =⇒ A⊥B ∪D |C.

j) Right Cross Contraction:

(A⊥B |D ∪ C) ∧ (D⊥A |C) =⇒ A⊥B ∪D |C.

k) Flipped Left Cross Contraction:

(A⊥B |D ∪ C) ∧ (B⊥D |C) =⇒ B⊥A ∪D |C.

In particular, we have the equivalences:

(A⊥B ∪D |C) ⇐⇒ (A⊥B |D ∪ C) ∧ (A⊥D |C),

(A ∪D⊥B |C) ⇐⇒ (A⊥B |D ∪ C) ∧ (D⊥B |C).

We also get:
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l) J-Restricted Symmetry:

A⊥B |C ∪ J =⇒ B⊥A |C ∪ J .

For the special case of J = ∅ we have thus (unrestricted) Symmetry.

Remark 3.6.2. Let the assumptions be like in Theorem 3.6.1. We also have the following
rules:

m) Left Composition:

(A⊥B |C) ∧ (D⊥B |C) =⇒ A ∪D⊥B |C.

n) Right Composition:

(A⊥B |C) ∧ (A⊥D |C) =⇒ A⊥B ∪D |C.

o) Left Intersection: If A ∩D = ∅ then:

(A⊥B |D ∪ C) ∧ (D⊥B |A ∪ C) =⇒ A ∪D⊥B |C.

p) Right Intersection: If B ∩D = ∅ then:

(A⊥B |D ∪ C) ∧ (A⊥D |B ∪ C) =⇒ A⊥B ∪D |C.

Proofs - Separoid Axioms for σ-/d-Separation
In the following let G = (J, V, E, L) be a CDMG and A,B,C,D ⊆ J ∪ V (not neces-

sarily disjoint) subsets of nodes.

Recall that we say that A is σ-separated from B given C in G, in symbols:

A
σ

⊥
G
B |C,

if every walk from a node in A to a node in J ∪B (sic!) is σ-blocked by C.
Again, a walk π is σ-blocked by C if it either contains a blockable non-collider in C or a
collider not in C.

We abbreviate the ternary relations in the following as: ⊥ :=
σ

⊥
G

.

Lemma 3.6.3 (Extended Left Redundancy).

D ⊆ A =⇒ D⊥B |A.

Proof. If π is a walk from a node v in D to a node w in J ∪B then its first end node is
in A, so π is σ-blocked by A.

Lemma 3.6.4 (J-Restricted Right Redundancy).

A⊥∅ |C ∪ J always holds.
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Proof. If π is a walk from a node v in A to a node w in J then its last end node is in
C ∪ J , so π is σ-blocked by C ∪ J .

Lemma 3.6.5 (J-Inverted Right Decomposition).

A⊥B |C =⇒ A⊥ J ∪B |C.

Proof. If π is a walk from a node v in A to a node w in J ∪ J ∪ B then w ∈ J ∪ B. If
w ∈ J ∪B then by assumption π is σ-blocked by C.

Lemma 3.6.6 (Left Decomposition).

A ∪D⊥B |C =⇒ D⊥B |C.

Proof. If π is a walk from a node v in D to a node w in J ∪ B, then the walk π is also
a walk from A ∪D to J ∪B, which by assumption is σ-blocked by C.

Lemma 3.6.7 (Right Decomposition).

A⊥B ∪D |C =⇒ A⊥D |C.

Proof. If π is a walk from a node v in A to a node w in J ∪D, then the walk π is also
a walk from A to J ∪B ∪D, which by assumption is σ-blocked by C.

Lemma 3.6.8 (Left Weak Union).

A ∪D⊥B |C =⇒ A⊥B |D ∪ C.

Proof. Let us assume the contrary: A ̸⊥B |D∪C. Then there exists a shortest (D∪C)-
σ-open walk π from a node v in A to a node w in J ∪B in G such that every collider of
π is in D ∪ C. Then every blockable non-collider of π is not in D ∪ C.
If now π does not contain any node from D \ C then every collider of π is in C. This
implies that π is C-σ-open, which contradicts the assumption: A ∪D⊥B |C.
So we can assume now that π contains a node in D \ C. Then consider the shortest
sub-walk π̃ in π starting from the end-node w ∈ J ∪B and going back to the first node
u ∈ D \C. This means that π̃ is a walk from D \C to J ∪B where the end-node u of π̃
is the only node in D \ C. So π̃ does not contain any collider in D \ C. So all colliders
of π̃ lie in C. All blockable non-colliders of π̃ that are different from the end-node u are
also blockable non-colliders on π. They are thus not in D ∪ C by the assumption on π,
in particular, not in C. The only remaining blockable non-collider u of π̃ lies in D \ C
by construction and it thus lies not in C either. So π̃ is C-σ-open walk from A ∪D to
J ∪B. This contradicts the assumption: A ∪D⊥B |C.
So the premise: A ̸⊥B |D ∪ C, must be false. This shows: A⊥B |D ∪ C.

Lemma 3.6.9 (Right Weak Union).

A⊥B ∪D |C =⇒ A⊥B |D ∪ C.
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Proof. Follow the same steps as in Left Weak Union (Lemma 3.6.8). Soe there exists
a shortest (D ∪ C)-σ-open walk π from a node v in A to a node w in J ∪ B ∪D in G
such that every collider of π is in D ∪ C. If π does not contain any nodes from D \ C
we get a contradiction to: A⊥B ∪D |C. Then, again, we can assume that π contains
a node in D \ C. Then consider the shortest sub-walk π̃ in π from v ∈ A to a node
u ∈ D \C. This means that π̃ does not contain any collider in D \C, so they are all in
C. Furthermore, all blockable non-colliders are not in C. So π̃ is C-σ-open walk from
A to J ∪B ∪D. This contradicts the assumption: A⊥B ∪D |C.

Lemma 3.6.10 (Left Contraction).

(A⊥B |D ∪ C) ∧ (D⊥B |C) =⇒ A ∪D⊥B |C.

Proof. Let us assume the contrary: A∪D ̸⊥B |C. Then there exists a shortest C-σ-open
walk π from a node v in A ∪ D to a node w in J ∪ B in G such that every collider of
π is in C. So every blockable non-collider is not in C. In particular, v /∈ C. We now
claim that v is the only node of π that is in (A ∪D) \ C. Otherwise, there would be a
non-end-node u of π with u ∈ (A∪D) \C. Since u /∈ C the whole sub-walk from u to w
would already be a C-σ-open walk from A ∪D to J ∪ B, which is also shorter than π,
which contradicts the assumption. So we can assume that v is the only node of π that
is in (A ∪D) \ C. In particular, all blockable non-colliders of π that are different from
v are not in D \ C and thus are not in D ∪ C = (D \ C) ∪ C.
Furthermore, v cannot lie in D \ C as it would contradict the assumption: D⊥B |C.
It follows that v ∈ A \ C and π is a walk from A to J ∪ B whose colliders are in
C ⊆ D ∪ C and all blockable non-colliders are not in D ∪ C. But this contradicts the
other assumption: A⊥B |D ∪ C.

Lemma 3.6.11 (Right Contraction).

(A⊥B |D ∪ C) ∧ (A⊥D |C) =⇒ A⊥B ∪D |C.

Proof. Let us assume the contrary: A ̸⊥B∪D |C. Then there exists a shortest C-σ-open
walk π from a node v in A to a node w in J ∪B ∪D in G such that every collider of π
is in C. So every blockable non-collider is not in C and w is the only node of π that is
in (J ∪B ∪D) \ C (otherwise π could be shortened).
Also w cannot lie in D \ C as it would contradict the assumption: A⊥D |C. Thus
w ∈ (J∪B)\C and π is a walk from A to J∪B whose colliders all are in C ⊆ D∪C and
all blockable non-colliders are not in D ∪C. But this contradicts the other assumption:
A⊥B |D ∪ C.

Lemma 3.6.12 (Right Cross Contraction).

(A⊥B |D ∪ C) ∧ (D⊥A |C) =⇒ A⊥B ∪D |C.

Proof. Verbatim the same as Right Contraction (Lemma 3.6.11), only the first contra-
diction is with: D⊥A |C.
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Lemma 3.6.13 (Flipped Left Cross Contraction).

(A⊥B |D ∪ C) ∧ (B⊥D |C) =⇒ B⊥A ∪D |C.

Proof. Let us assume the contrary: B ̸⊥A∪D |C. Then there exists a shortest C-σ-open
walk π from a node v in B to a node w in J ∪A ∪D in G such that every collider of π
is in C. So every blockable non-collider is not in C and w is the only node of π that is
in (J ∪ A ∪D) \ C (otherwise π could be shortened).
Also w cannot lie in (J ∪D)\C as it would contradict the assumption: B⊥D |C. Thus
w ∈ A\C and the walk π (in reverse direction) is a walk from A to B whose colliders are
all in C ⊆ D ∪ C and all blockable non-colliders are not in D ∪ C. But this contradicts
the other assumption: A⊥B |D ∪ C.

Lemma 3.6.14 (J-Restricted Symmetry).

A⊥B |C ∪ J =⇒ B⊥A |C ∪ J.

Proof. This follows from Flipped Left Cross Contraction (Lemma 3.6.13) withD = ∅ and
C ∪ J in place of C together with J-Restricted Right Redundancy (Lemma 3.6.4).

Lemma 3.6.15 (Left Composition).

(A⊥B |C) ∧ (D⊥B |C) =⇒ A ∪D⊥B |C.

Proof. Let π be a walk from a node v in A ∪ D to a node w in J ∪ B. If v ∈ A then
π is σ-blocked by C by assumption: A⊥B |C. If v ∈ D then π is σ-blocked by C by
assumption: D⊥B |C.

Lemma 3.6.16 (Right Composition).

(A⊥B |C) ∧ (A⊥D |C) =⇒ A⊥B ∪D |C.

Proof. Let π be a walk from a node v in A to a node w in J ∪B ∪D. If w ∈ J ∪B then
π is σ-blocked by C by assumption: A⊥B |C. If w ∈ J ∪D then π is σ-blocked by C
by assumption: A⊥D |C.

Lemma 3.6.17 (Left Intersection). Assume that A ∩D = ∅, then:

(A⊥B |D ∪ C) ∧ (D⊥B |A ∪ C) =⇒ A ∪D⊥B |C.

Proof. Let us assume the contrary: A∪D ̸⊥B |C. Then there exists a shortest C-σ-open
walk π from a node v in A ∪D to a node w in J ∪B in G such that every collider of π
is in C. So every blockable non-collider is not in C and v is the only node of π that is
in (A ∪D) \ C (otherwise π could be shortened).
If v ∈ A then by the disjointness of A and D we have that v /∈ D. Then π is a walk
from A to J ∪ B whose colliders are in C ⊆ D ∪ C and all blockable non-colliders are
not in (D \ C) ∪ C = D ∪ C. This contradicts the assumption: A⊥B |D ∪ C.
If v ∈ D then similarly we get a contradiction: D⊥B |A ∪ C
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Lemma 3.6.18 (Right Intersection). Assume that B ∩D = ∅, then:

(A⊥B |D ∪ C) ∧ (A⊥D |B ∪ C) =⇒ A⊥B ∪D |C.

Proof. Let us assume the contrary: A ̸⊥B∪D |C. Then there exists a shortest C-σ-open
walk π from a node v in A to a node w in J ∪B ∪D in G such that every collider of π
is in C. So every blockable non-collider is not in C and w is the only node of π that is
in (J ∪B ∪D) \ C (otherwise π could be shortened).
If w /∈ B then w ∈ J ∪D. In this case π is a walk from A to J ∪D where every collider
is in C ⊆ B∪C and all blockable non-colliders are not in (B \C)∪C = B∪C. So π is a
(B ∪C)-σ-open walk from A to J ∪D. This contradicts the assumption: A⊥D |B ∪C.
If w /∈ D then w ∈ J ∪B. In this case π is a walk from A to J ∪B where every collider is
in C ⊆ D∪C and all blockable non-colliders are not in D∪C. So π is a (D∪C)-σ-open
walk from A to J ∪B. This contradicts the assumption: A⊥B |D ∪ C.
Since B ∩D = ∅ there are no other cases (Bc ∪Dc = J ∪ V ) and we are done.

Remark 3.6.19 (Proofs for the separoid axioms for d-separation). The proofs for the
separoid axioms for d-separation are verbatim the same as above if one exchanges the
word “blockable non-collider” with just the word “non-collider” everywhere.
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4. Causal Bayesian Networks

4.1. Core Concepts

j1 j2

v1 v2

v3

Figure 8: The Conditional Directed Acyclic Graph (CDAG) of a Causal Bayesian Net-
work (CBN) with input variables.

Definition 4.1.1 (Causal Bayesian network). A causal Bayesian network (CBN)—by
definition—consists of:

a) a conditional directed acyclic graph (CDAG): G = (J, V, E) (with finite vertex sets,
and no bidirected edges),

b) a standard measurable space Xv for every v ∈ J ∪ V ,

c) for every v ∈ V , a Markov kernel: Pv

(
Xv|XPaG(v)

)
:

XPaG(v) 99K Xv,

(A, xPaG(v)) 7→ Pv

(
Xv ∈ A|XPaG(v) = xPaG(v)

)
,

where we write for D ⊆ J ∪ V :

XD :=
∏
v∈D

Xv, X∅ := ∗ = {∗},

XD := (Xv)v∈D, X∅ := ∗,
xD := (xv)v∈D, x∅ := ∗.

Remark 4.1.2. Most existing accounts of causal Bayesian networks do not formally
distinguish input nodes from output nodes. The reasons that we do make this disctinction
are of a measure-theoretical nature. If all variables are discrete, and all probability mass
functions and Markov kernels are strictly positive, then the formal differences between
input and output nodes may be ignored and everything can be considered as output nodes.

Definition 4.1.3 (The joint Markov kernel of a causal Bayesian network with input
variables). Consider a causal Bayesian network with input variables with CDAG G =
(J, V, E) with Markov kernels Pv

(
Xv|XPaG(v)

)
for v ∈ V . For a fixed topological ordering

< of G we then define the joint Markov kernel of the CBN:

XJ 99K XV

101



as follows:

P (XV | do(XJ)) :=
>⊗

v∈V

Pv

(
Xv|XPaG(v)

)
,

where the nodes v run through V in reverse ordering of <, i.e. all parents are on the
right of all their children.

v1v2

v3 v4(a)

v2

v3 v4(b)

Figure 9: (a) Conditional Directed Acyclic Graph (CDAG) G; (b) Conditional Acyclic
Directed Mixed Graph (CADMG) G\{v1} obtained after marginalizing out v1.

Example 4.1.4. The CDAG G displayed in Figure 9(a) and Markov kernels P1(X1),
P3(X3|X1, X2), P4(X4|X1, X3) give a joint Markov kernel of a CBN:

P (X1, X3, X4| do(X2)) = P4(X4|X1, X3)⊗ P3(X3|X1, X2)⊗ P1(X1).

Exercise 4.1.5. Show that the definition of the joint Markov kernel of a CBN is inde-
pendent of the topological ordering.

Notation 4.1.6. By abuse of notation, we will refer to the tuple:

M =
(
G = (J, V, E),

(
Pv(Xv|XPaG(v))

)
v∈V

)
,

or just to the tuple:
M = (G,P (XV | do(XJ)))

as the CBN, keeping the single Markov kernels Pv(Xv|XPaG(v)) and the spaces Xv implicit.

Remark 4.1.7 (Marginalization and conditioning). Let P (XV | do(XJ)) be the joint
Markov kernel of a CBN. We can extend it to a joint Markov kernel including XJ :

P (XV , XJ | do(XJ)) = P (XV | do(XJ))⊗ δ(XJ |XJ).

For any A,B ⊆ J ∪ V we then also have the marginal conditional Markov kernel:

P (XA|XB, do(XJ)),

which exists by theorem 2.4.16 due to the use of standard measurable spaces and is unique
up to a P (XB| do(XJ))-null set.
Furthermore, if C ⊆ J and we have:

XA ⊥⊥
P (XV |do(XJ ))

XJ |XC ,
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then we also have a Markov kernel:

P (XA| do(XC))

that fits into the equation:

P (XA, XC | do(XJ)) = P (XA| do(XC))⊗ P (XC | do(XJ)).

Note that this P (XA| do(XC)) is unique up to a P (XC | do(XJ))-null set. Since, further,
P (XC | do(XJ)) = δ(XC |XJ), we even get that P (XA| do(XC)) is unique (not just up to
null sets). In other words, the above conditional independence states that P (XA| do(XJ))
is only dependent on the arguments from XC and can be represented by a Markov kernel
P (XA| do(XC)).

Definition 4.1.8 (Causal Bayesian network with latent variables). A causal Bayesian
network with latent variables (L-CBN)— per definition—consists of a CBN:

M =
(
G+ = (J, V +, E+),

(
Pv(Xv|XPaG

+
(v)
)
)
v∈V +

)
,

together with a disjoint decomposition of the output nodes V + = V ∪̇U into observed
nodes V and unobserved nodes U .

Remark 4.1.9. In the Definition 4.1.8 we make the distinction between the set of ob-
served nodes V and that of unobserved nodes U . We could have made that distinction
already earlier in the graph theory chapters and introduce CDAGs G+ = (J, (V, U), E+),
where we make the distinction between these node types part of the (or a new) definition.
However, most of the time these sets are mathematically treated the same way and we
could just consider their union V + = V ∪̇U . Usually the distinction between V and U
is only made to indicate which variables are marginalized out. Also, it often happens
that one considers the same CBN in different settings, and which variables are observed
and unobserved depends on the setting (for example, during training of a classifier both
features and labels are observed, while during testing only features are observed). For all
these reasons, we do not consider the specification of which variables are observed and
which are latent part of the model.

Notation 4.1.10. 1. We will also often just denote a causal Bayesian network with
latent variables by the tuple:

M =
(
G+ = (J, (V, U), E+),

(
Pv(Xv|XPaG

+
(v)
)
)
v∈V ∪U

)
,

or just:
M =

(
G+, P (XV ∪U | do (XJ))

)
.

2. We refer to the marginal Markov kernel of M :

P (XV | do (XJ))

as the observable Markov kernel.
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3. We call the marginalized CADMG of M :

G := (J, V, E, L) := (G+)\U

the (induced) observable CADMG.

4. We will often just refer to M as “a CBN with observed nodes V ” or “a CBN with
latent nodes U” or “a CBN with observed CADMG G” to mean that M is a causal
Bayesian network with latent variables with latent nodes U and observed nodes V .

Example 4.1.11. Consider again the CADG G displayed in Figure 9(a) (see also Ex-
ample 4.1.4). If we assume v1 to be a latent variable (and v3, v4 to be observed output
variables), we obtain an L-CBN

M =
(
G+ = (J, (V, U), E+),

(
Pv(Xv|XPaG

+
(v)
)
)
v∈V ∪U

)
,

with J = {v2}, V = {v3, v4}, U = {v1}. Its induced observable CADMG G :=
(G+)\{v1} is displayed in Figure 9(b). Its observable Markov kernel is the marginal
P (X3, X4| do(X2)) of the Markov kernel:

P (X1, X3, X4| do(X2)) = P4(X4|X1, X2)⊗ P2(X3|X1, X2)⊗ P1(X1).

4.2. Global Markov Property

Theorem 4.2.1 (Global Markov property for causal Bayesian networks). Consider a
causal Bayesian network M with observable CADMG G = (J, V, E, L) and observable
Markov kernel P (XV | do(XJ)). Then for all A,B,C ⊆ J ∪ V (not necessarily disjoint)
we have the implication:

A
d

⊥
G
B |C =⇒ XA ⊥⊥

P (XV | do(XJ ))
XB |XC .

Remark 4.2.2. If one wants to make the implicit dependence on J in Theorem 4.2.1
more explicit one can equivalently also write:

A
d

⊥
G
J ∪B |C =⇒ XA ⊥⊥

P (XV |do(XJ ))
XJ , XB |XC .

Notation 4.2.3. Let A,B,C ⊆ J ∪ V with XA⊥⊥P (XV | do(XJ ))XB |XC, then we have a
factorization:

P (XA, XB, XC | do(XJ)) = Q(XA|XC)⊗ P (XB, XC | do(XJ)),

for some Markov kernel: Q(XA|XC). If we marginalize out XB and the deterministic
XC∩J , we get:

P (XA, XC∩V | do(XJ)) = Q(XA|XC)⊗ P (XC∩V | do(XJ)).
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So we see that Q(XA|XC) is a conditional Markov kernel:

P (XA|XC∩V , do(XJ))

that does only depend on XJ∩C in the do-part. So we will use the following notation for
Q(XA|XC) (or in any other order behind the conditioning line):

P (XA|XC∩V , do(XC∩J),����do(XJ)) := Q(XA|XC).

Note that by Theorem 2.5.28 we may (but do not need to) explicitly mention XB as in:

P (XA|��XB, XC∩V , do(XC∩J),����do(XJ)),

because the Markov kernels are almost surely equal:

P (XA|XC∩V , do(XC∩J),����do(XJ)) = P (XA|��XB, XC∩V , do(XC∩J),����do(XJ)) P (XC |XJ)-a.s..

In these suggestive notations we can state the global Markov property (Theorem 4.2.1)
as:

A
d

⊥
G
B |C

=⇒ P (XA|XB, XC , do(XJ))

= P (XA|��XB, XC∩V , do(XC∩J),����do(XJ))) P (XB, XC |XJ)-a.s.
= P (XA|XC∩V , do(XC∩J),����do(XJ)) P (XB, XC |XJ)-a.s..

Proofs - Global Markov Property
The proof of the global Markov property follows similar arguments as used in [LDLL90,

Ver93,Ric03,FM17,FM18,RERS23], namely chaining the separoid axioms together in an
inductive way. The main difference here is that we never rely on the Symmetry property
but instead use the left and right versions of the separoid axioms separately.

Theorem 4.2.4 (Global Markov property for causal Bayesian networks). Consider a
causal Bayesian network M with observable CADMG G = (J, V, E, L) and observable
Markov kernel P (XV | do(XJ)). Then for all A,B,C ⊆ J ∪ V (not-necessarily disjoint)
we have the implication:

A
d

⊥
G
B |C =⇒ XA ⊥⊥

P (XV | do(XJ ))
XB |XC .

If one wants to make the implicit dependence on J more explicit one can equivalently
also write:

A
d

⊥
G
J ∪B |C =⇒ XA ⊥⊥

P (XV |do(XJ ))
XJ , XB |XC .
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Proof. Because d-separation is preserved under marginalization:

A
d

⊥
G
B |C ⇐⇒ A

d

⊥
G+
B |C,

we can directly assume that we work with the causal Bayesian network without latent
variables that marginalizes to the given one. So w.l.o.g. L = ∅ and G is a CDAG.
We then do induction by #V .

0.) Induction start: V = ∅. This means that A,B,C ⊆ J . The assumption:

A
d

⊥
G
B |C,

implies that we must have that A ⊆ C. Otherwise a trivial walk from A ⊆ J to J ∪ B
would be C-open. Since A,B,C ⊆ J we have the factorization:

P (XA, XB, XC | do(XJ)) =
⊗
w∈A

δ(Xw|Xw)︸ ︷︷ ︸
=:Q(XA|XC)

⊗
⊗
w∈B

δ(Xw|Xw)⊗
⊗
w∈C

δ(Xw|Xw)︸ ︷︷ ︸
=P (XB ,XC | do(XJ ))

.

Because A ⊆ C the Markov kernel Q(XA|XC) :=
⊗

w∈A δ(Xw|Xw) really is a Markov
kernel from XC 99K XA. This already shows:

XA ⊥⊥
P (XV |do(XJ ))

XB|XC .

(IND): Induction assumption: The global Markov property holds for all causal Bayesian
networks (with input variables, but without latent variables and without bi-directed
edges) with #V < n (and arbitrary J).

1.) Now assume: #V = n > 0 and A⊥d
GB |C.

Since G is acyclic we can find a topological order < for G where the elements of J are
ordered first. Let v ∈ V be its last element, which is thus childless.
Note that, since ChG(v) = ∅, the marginalization G\{v} has no bi-directed edges and
thus induces again a causal Bayesian network without latent variables with #V \{v} =
n− 1 < n.
Furthermore, we have the factorization:

P (XV | do(XJ)) = Pv(Xv|XPaG(v))⊗
⊗

w∈PredG<(v)\J

Pw(Xw|XPaG(w))︸ ︷︷ ︸
P (X

PredG<(v)\J |do(XJ ))

.

This factorization implies that we already have the conditional independence:

Xv ⊥⊥
P (XV |do(XJ ))

XPredG<(v) |XD,

where we put D := PaG(v).

In the following we will distinguish between 4 cases:
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A.) v ∈ A \ C,

B.) v ∈ B \ C,

C.) v ∈ C,

D.) v /∈ A ∪ J ∪B ∪ C,

Note that v ∈ V , thus v /∈ J , which shows that the above cover all possible cases.
Further note that:

A
d

⊥
G
B |C,

implies that:
A ∩ (J ∪B) ⊆ C.

Otherwise a trivial walk from A to J ∪ B would be C-open. This shows that A \ C,
(J ∪B) \ C and C are pairwise disjoint.

Case D.): v /∈ A∪J ∪B ∪C. Then we can marginalize out v and use the equivalence:

A
d

⊥
G
B |C ⇐⇒ A

d

⊥
G\v

B |C.

With #V \{v} < n and induction (IND) we then get:

XA ⊥⊥
P (XV | do(XJ ))

XB |XC .

This shows the claim in case D.

Case A.): v ∈ A \ C. Then we can write:

A = A′ ∪̇ (A ∩ C) ∪̇ {v},
B = B′ ∪̇ (B ∩ C),

with some disjoint A′ ⊆ A \ C and B′ ⊆ B \ C. We then have the implications:

A
d

⊥
G
B |C Right Decomposition

============⇒ A
d

⊥
G
B′ |C

Left Decomposition
===========⇒ A′

d

⊥
G
B′ |C

marginalization, v/∈A′∪J∪B′∪C
==================⇒ A′

d

⊥
G\{v}

B′ |C

induction (IND)
=========⇒ XA′ ⊥⊥

P (XV | do(XJ ))
XB′ |XC . (#1)
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On the other hand we have with D = PaG(v):

A
d

⊥
G
B |C Right Decomposition, B′⊆B

================⇒ A
d

⊥
G
B′ |C

Left Weak Union, A=A′ ∪̇ (A∩C) ∪̇ {v}
======================⇒ {v}

d

⊥
G
B′ |A′ ∪̇C

(∗), see below
========⇒ D

d

⊥
G
B′ |A′ ∪̇C

marginalization, v/∈D∪J∪B′∪A′∪C
====================⇒ D

d

⊥
G\{v}

B′ |A′ ∪̇C

induction (IND)
=========⇒ XD ⊥⊥

P (XV |do(XJ ))
XB′ |XA′ ∪̇C

A′ ∪̇C
===⇒ XD ⊥⊥

P (XV |do(XJ ))
XB′ |XA′ , XC . (#2)

(*) holds since every (A′ ∪̇C)-open walk w · · · from a w ∈ D = PaG(v) to J ∪ B′

extends to an (A′ ∪̇C)-open walk from v to J ∪ B′ via v w · · · , as w stays a
non-collider in the extended walk (not in A′ ∪̇C) and v /∈ A′ ∪̇C.

As discussed above we also already have the conditional independence:

Xv ⊥⊥
P (XV |do(XJ ))

XPredG<(v) |XD.

With this and A′ ∪̇B′ ∪̇C ⊆ PredG
<(v) we get the implications:

Xv ⊥⊥
P (XV | do(XJ ))

XPredG<(v) |XD

Right Decomposition
============⇒ Xv ⊥⊥

P (XV |do(XJ ))
XA′ , XB′ , XC |XD

Right Weak Union
==========⇒ Xv ⊥⊥

P (XV |do(XJ ))
XB′ |XA′ , XC , XD

Left Contraction, (#2)
=============⇒ Xv, XD ⊥⊥

P (XV |do(XJ ))
XB′ |XA′ , XC

Left Decomposition
===========⇒ Xv ⊥⊥

P (XV |do(XJ ))
XB′ |XA′ , XC

Left Contraction, (#1)
=============⇒ XA′ , Xv ⊥⊥

P (XV | do(XJ ))
XB′ |XC

XJ -Inverted Right Decomposition
===================⇒ XA′ , Xv ⊥⊥

P (XV | do(XJ ))
XJ , XB′ , XC |XC

Right Decompositon, B⊆B′ ∪̇C
==================⇒ XA′ , Xv ⊥⊥

P (XV | do(XJ ))
XB |XC . (#3)

By (Extended) Left Redundancy we have:

XA′ , Xv, XC ⊥⊥
P (XV | do(XJ ))

XB |XA′ , Xv, XC .
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With this we get the implications:

XA′ , Xv, XC ⊥⊥
P (XV |do(XJ ))

XB |XA′ , Xv, XC

Left Contraction, (#3)
=============⇒ XA′ , Xv, XA′ , Xv, XC ⊥⊥

P (XV | do(XJ ))
XB |XC

Left Decomposition, A⊆A′ ∪̇ {v} ∪̇C
=====================⇒ XA ⊥⊥

P (XV | do(XJ ))
XB |XC .

This shows the claim in case A.

Case B.): v ∈ B \ C. Then we can write:

A = A′ ∪̇ (A ∩ C),
B = B′ ∪̇ (B ∩ C) ∪̇ {v},

with some disjoint A′ ⊆ A \ C and B′ ⊆ B \ C.
We then have the implications:

A
d

⊥
G
B |C Left Decomposition

===========⇒ A′
d

⊥
G
B |C

Right Decomposition
============⇒ A′

d

⊥
G
B′ |C

marginalization, v/∈A′∪J∪B′∪C
==================⇒ A′

d

⊥
G\{v}

B′ |C

induction (IND)
=========⇒ XA′ ⊥⊥

P (XV | do(XJ ))
XB′ |XC . (#1’)

Again with D = PaG(v) we get:

A
d

⊥
G
B |C Left Decomposition

===========⇒ A′
d

⊥
G
B |C

Right Decomposition
============⇒ A′

d

⊥
G
B′ ∪ {v} |C

Right Weak Union
==========⇒ A′

d

⊥
G
{v} |B′ ∪̇C

(•), see below
========⇒ A′

d

⊥
G
D |B′ ∪̇C

marginalization, v/∈A′∪J∪D∪B′∪C
====================⇒ A′

d

⊥
G\{v}

D |B′ ∪̇C

induction (IND)
=========⇒ XA′ ⊥⊥

P (XV | do(XJ ))
XD |XB′ ∪̇C

B′ ∪̇C
====⇒ XA′ ⊥⊥

P (XV |do(XJ ))
XD |XB′ , XC . (#2’)
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(•) holds since every (B′ ∪̇C)-open walk · · · w from A′ to a w ∈ J ∪ D extends to
a (B′ ∪̇C)-open walk from A′ to J ∪ {v}, either because w ∈ J or via · · · w v if
w ∈ D = PaG(v). Note again that w stays a non-collider in the extended walk (outside
of B′ ∪̇C) and v /∈ B′ ∪̇C.

As before we will use the following conditional independence:

Xv ⊥⊥
P (XV |do(XJ ))

XPredG<(v) |XD.

With this and A′ ∪ J ∪B′ ∪ C ⊆ PredG
<(v) we get the implications:

Xv ⊥⊥
P (XV | do(XJ ))

XPredG<(v) |XD

Right Decomposition
============⇒ Xv ⊥⊥

P (XV | do(XJ ))
XA′ , XB′ , XC |XD

Right Weak Union
==========⇒ Xv ⊥⊥

P (XV | do(XJ ))
XA′ |XB′ , XC , XD

Flipped Left Cross Contraction, (#2’)
======================⇒ XA′ ⊥⊥

P (XV | do(XJ ))
XD, Xv |XB′ , XC

Right Decomposition
============⇒ XA′ ⊥⊥

P (XV | do(XJ ))
Xv |XB′ , XC

Right Contraction, (#1’)
==============⇒ XA′ ⊥⊥

P (XV | do(XJ ))
XB′ , Xv |XC

XJ -Inverted Right Decomposition
===================⇒ XA′ ⊥⊥

P (XV | do(XJ ))
XJ , XB′ , Xv, XC |XC

Right Decomposition, B⊆B′ ∪̇ {v} ∪̇C
======================⇒ XA′ ⊥⊥

P (XV | do(XJ ))
XB |XC . (#3’)

By Redundancy we have:

XA′ , XC ⊥⊥
P (XV | do(XJ ))

XB |XA′ , XC .

With this we get the implications:

XA′ , XC ⊥⊥
P (XV |do(XJ ))

XB |XA′ , XC

Left Contraction, (#3’)
=============⇒ XA′ , XA′ , XC ⊥⊥

P (XV | do(XJ ))
XB |XC .

Left Decomposition, A⊆A′ ∪̇C
=================⇒ XA ⊥⊥

P (XV | do(XJ ))
XB |XC .

This shows the claim in case B.

Case C.): v ∈ C. Then we can write:

A = A′ ∪̇ (A ∩ C),
B = B′ ∪̇ (B ∩ C),
C = C ′ ∪̇ {v},

110



with some pairwise disjoint A′ ⊆ A \ C, B′ ⊆ B \ C and C ′ ⊆ C.
We then get the implications.

A
d

⊥
G
B |C Left Decomposition

===========⇒ A′
d

⊥
G
B |C

Right Decomposition
============⇒ A′

d

⊥
G
B′ |C

C=C′ ∪̇ {v}
======⇒ A′

d

⊥
G
B′ |C ′ ∪̇ {v}

We now claim that:
A′

d

⊥
G
B′ |C ′ ∪̇ {v}

implies that one of the following statements holds:

A′ ∪̇ {v}
d

⊥
G
B′ |C ′ ∨ A′

d

⊥
G
B′ ∪̇ {v} |C ′.

Assume the contrary:

A′ ∪̇ {v}
d

̸⊥
G
B′ |C ′ ∧ A′

d

̸⊥
G
B′ ∪̇ {v} |C ′.

So there exist shortest C ′-open walks π1 and π2 in G such that all colliders are in C ′:

π1 : A′ ∪ {v} ∋ u0 · · · uk ∈ J ∪B′,

and:
π2 : A′ ∋ w0 · · · wm ∈ J ∪ (B′ ∪̇ {v}).

So all non-colliders of π1 and π2 are outside of C ′. Since we consider shortest walks and
v /∈ C ′ at most an end node of π1 and π2 could be equal to v. Otherwise one could
shorten the walk.
Then note that v /∈ A′ and v /∈ J ∪B′, thus: uk ̸= v and w0 ̸= v.
If now πi does not contain v as an (end) node, then πi would be (C ′ ∪̇ {v})-open, which
is a contradiction to the assumption:

A′
d

⊥
G
B′ |C ′ ∪̇ {v}.

So we can assume that the other end nodes equal v, i.e.: u0 = v and wm = v.
Furthermore, both π1 and π2 are non-trivial walks, since u0 ̸= uk and w0 ̸= wm. Since v
is childless and k,m ≥ 1 we have that the πi are of the forms:

π1 : v u1 · · · uk,

and:
π2 : w0 · · · wm−1 v,
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with u1, wm−1 ∈ D = PaG(v). Then the following walk:

A′ ∋ w0 · · · wm−1 v u1 · · · uk ∈ J ∪B′,

is a (C ′ ∪̇ {v})-open walk from A′ to J ∪B′, in contradiction to:

A′
d

⊥
G
B′ |C ′ ∪̇ {v}.

So the claim:
A′ ∪̇ {v}

d

⊥
G
B′ |C ′ ∨ A′

d

⊥
G
B′ ∪̇ {v} |C ′,

must be true. So we reduced case C to case A or case B, which then imply:

XA, Xv ⊥⊥
P (XV | do(XJ ))

XB |XC′ ∨ XA ⊥⊥
P (XV | do(XJ ))

XB, Xv |XC′ .

If we apply Left Weak Union to the left and Right Weak Union to the right we get:

XA ⊥⊥
P (XV | do(XJ ))

XB |XC′ , Xv,

which implies:
XA ⊥⊥

P (XV | do(XJ ))
XB |XC .

This shows the claim in case C.

4.3. Operations on Causal Bayesian Networks

4.3.1. Hard Interventions on Causal Bayesian Networks

Definition 4.3.1 (Hard intervention on causal Bayesian network). Consider a causal
Bayesian network (CBN) given by:

M =
(
G = (J, V, E),

(
Pv(Xv|XPaG(v))

)
v∈V

)
.

Now let W ⊆ J ∪ V be any subset. Then we define the intervened causal Bayesian
network w.r.t. W via:

1. CDAG: Gdo(W ) = (J ∪W,V \W,Edo(W )), and:

2. Markov kernels: Pv(Xv|XPaG(v)) for v ∈ V \W .

Its observable Markov kernel is then:

P (XV \W | do(XJ∪W )) =
⊗

v∈V \W

Pv(Xv|XPaG(v)).

Note that if v ∈ V \W then PaG(v) = PaGdo(W )(v).

112



Remark 4.3.2. Note that the above notations imply for every v ∈ V and W ⊆ V \ {v}
the identifications:

Pv(Xv|XPaG(v)) = P (Xv| do(XJ∪V \W )) = P (Xv| do(XPaG(v))),

which we will use interchangably in the following.

Remark 4.3.3 (Hard intervention on causal Bayesian network with latent variables).
We define hard interventions on an L-CBN the same way as on a CBN, but we usually
only allow for interventions on sets W ⊆ J ∪ V , i.e. with W ∩ U = ∅, where U is the
set of latent variables.

4.3.2. Node-Splitting Hard Interventions on Causal Bayesian Networks

Definition 4.3.4 (Node-splitting hard intervention on causal Bayesian network). Con-
sider a causal Bayesian network (CBN) given by (G,P (XV | do(XJ))) with CDAG:
G = (J, V, E) and Markov kernels: Pv(Xv|XPaG(v)) for v ∈ V . Now let W ⊆ V be
any subset. Then we define the node-splitting hard intervention w.r.t. W as the causal
Bayesian network given by:

1. CDAG: G′ := Gswig(W ) = (J ∪̇W i,W o ∪̇V \W,Eswig(W )), and:

2. Markov kernels for v ∈ V :

Pvo(Xvo ∈ A|XPaG
′
(vo) = x̃) := Pv(Xv ∈ A|XPaG(v) = x̃),

where for brevity we put vo := v for v ∈ V \W .

Remark 4.3.5. Similarly, we can define node-splitting hard interventions on causal
Bayesian network with latent variables, but allow only W with W ∩ U = ∅.

4.3.3. Soft Interventions on Causal Bayesian Networks

Remark 4.3.6 (Modelling soft interventions on causal Bayesian networks). Consider a
causal Bayesian network given by (G,P (XV | do(XJ))) with CDAG: G = (J, V, E) and
Markov kernels: Pv(Xv|XPaG(v)) for v ∈ V .
Let W ⊆ J ∪ V . In order to model a soft intervention on variables Xw for w ∈ W \ J ,
we introduce intervention nodes Iw w for w ∈ W \ J , which come with new input
variables XIw , and replace the Markov kernel:

Pw(Xw|XPaG(w))

for w ∈ W \ J by one that models the dependence on the soft intervention variables
properly:

Pw(Xw|XPaG(w), XIw).

For w ∈ J , we simply identify Iw with w. So the softly intervened causal Bayesian
network w.r.t. W then has:
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1. CDAG: Gdo(IW ) = (J ∪̇ {Iw |w ∈ W \ J}, V, E ∪̇ {Iw w |w ∈ W \ J}), and:

2. Markov kernels:

Pv(Xv|XPaG(v)) for v ∈ V \W , and:

Pw(Xw|XPaG(w), XIw) for w ∈ W \ J .

Note that PaGdo(IW )(w) = PaG(w) ∪̇ {Iw} for w ∈ W \ J and PaGdo(IW )(v) = PaG(v) for
v ∈ V \W .
Remark 4.3.7 (Modelling hard interventions with intervention nodes). It is sometimes
beneficial to model hard interventions with intervention nodes. Let the setting be like in
Remark 4.3.6. When we model hard interventions with intervention nodes we make the
further more specific choices for w ∈ W \ J :

1. XIw := Xw ∪̇ {⋆},

2. Pw(Xw ∈ A|XPaG(w) = xPaG(w), XIw = xIw) :={
Pw(Xw ∈ A|XPaG(w) = xPaG(w)), if xIw = ⋆,

δ(Xw ∈ A|Xw = xIw) = 1A(xIw), if xIw ̸= ⋆.

Note that the CDAG will then rather be: Gdo(IW ) in contrast to: Gdo(W ).
The above choices reflect that if we put XIw = ⋆ then no intervention occurs and the
value of Xw is (probabilistically) determined using the usual Markov kernel. But if we
put XIw = xIw ̸= ⋆ then we change the value of Xw to xIw (with 100% probability)
independent of the values of its parents. This is then similar to the hard intervention:
do(Xw = xIw). This allows us to model simultaneously the unintervened and an inter-
vened version of the CBN with a single CBN.
Remark 4.3.8. Again, we can do all the above also with causal Bayesian network with
latent variables, but allow only W with W ∩ U = ∅.

4.3.4. Marginalization of Causal Bayesian Networks

Definition 4.3.9 (Marginalization of causal Bayesian network with latent variables).
Consider a causal Bayesian network with latent variables (L-CBN):

M =
(
G+ = (J, (V, U), E+),

(
Pv(Xv|XPaG

+
(v)
)
)
v∈V ∪U

)
,

Let W ⊆ V be a subset. We then define the marginalized L-CBN by just replacing V with
V \W and U with U ∪̇W . The Markov kernels Pv for v ∈ V ∪̇U = (V \W ) ∪̇ (U ∪̇W )
stay the same.
With this definition the observable Markov kernel marginalizes to:

P
(
XV \W | do (XJ)

)
,

and the observable CADMG becomes:

(G+)\(U ∪̇W ) = G\W ,

i.e. the marginalized G w.r.t. W .
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4.4. Standard Forms of Causal Bayesian Networks

Definition 4.4.1. Consider two causal Bayesian network with latent variables (L-CBNs):

M1 =

(
G+

1 =
(
J1, (V1, U1), E

+
1

)
,
(
P1,v(Xv|X

PaG
+
1 (v)

)
)
v∈U1∪V1

)
,

M2 =

(
G+

2 =
(
J2, (V2, U2), E

+
2

)
,
(
P2,v(Xv|X

PaG
+
2 (v)

)
)
v∈U2∪V2

)
.

We call them interventionally equivalent if all of the following conditions hold:

1. J1 = J2 =: J ,

2. V1 = V2 =: V ,

3. X1,v = X2,v =: Xv for all v ∈ J ∪ V ,

4. for all subsets W ⊆ V we have the equality of the intervened Markov kernels:

P1

(
XV \W | do (XJ∪W )

)
= P2

(
XV \W | do (XJ∪W )

)
.

Definition 4.4.2 (Cliques and maximal cliques of undirected graphs). Let G = (V, L) be
an undirected graph. A set of nodes W ⊆ V is called a clique17 of G if for all w1, w2 ∈ W
with w1 ̸= w2 we have that the edge w1 w2 ∈ L. A clique W is called a maximal
clique of G if for every clique W̃ of G with W ⊆ W̃ we have that W = W̃ .

Definition/Theorem 4.4.3 (Standard forms of L-CBNs). Consider a causal Bayesian
network M with latent variables (L-CBN) with observable CADMG G = (J, V, E, L).
Let

C := {W ⊆ V |W maximal clique of (V, L)} .

the sets of all maximal cliques of the (undirected) graph consisting only of the nodes from
V and the bi-directed edges from G. Define the set of (latent) nodes:

Ũ := {ũW |W ∈ C} ,

and directed edges:
Ẽ+ := E ∪̇ {ũW w |W ∈ C, w ∈ W} .

Then there exists an L-CBN of the form:

M̃ =
(
G̃+ =

(
J, (V, Ũ), Ẽ+

)
,
(
P̃v(Xv|XPaG̃

+
(v)
)
)
v∈V ∪Ũ

)
that is interventionally equivalent to M . Furthermore, we can choose to arrange them
in one of the following ways:
17A clique is also called complete subgraph in the literature.
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1. Structural causal model form: All Markov kernels for v ∈ V are deterministic:

P̃v(Xv ∈ A|XPaG
+
(v)

= x̃) = δ(Rv ∈ A|XPaG
+
(v)

= x̃),

for some measurable maps Rv, v ∈ V . OR:

2. Canonical form: All latent variables ũW with #W = 1 and the corresponding
variables, edges and Markov kernels can be removed from M̃ as well, leaving us
only with the latent variables ũW with W ∈ C and #W ≥ 2.

Remark 4.4.4. Consider the standard forms M̃ of M from Definition/Theorem 4.4.3.

1. In particular, we have:

a) (G̃+)\Ũ = G,

b) PaG̃
+

(Ũ) = ∅,

c) ChG̃+

(u) ∈ C for every u ∈ Ũ .

2. We can use measurable embeddings/isomorphisms: Xu ↪→ [0, 1] for u ∈ Ũ to further
restrict to the case:

a) Xu
∼= [0, 1],

b) P̃u(Xu) is the uniform distribution on [0, 1].

3. Note that the Markov kernels dependent on XŨ might not be unique as we can
always transform [0, 1] to [0, 1] in strange ways.

4. The construction of the canonical form generally18 leads to an interventionally
equivalent L-CBN with the smallest number of latent variables such that its ob-
servable CADMG stays unchanged.

5. The construction of the structural causal model form generally18 leads to an in-
terventionally equivalent L-CBN with the smallest number of latent variables such
that its observable CADMG stays unchanged and such that every Markov kernel
with non-trivial input is deterministic.

Remark 4.4.5 (Marginalizations and hard interventions on standard forms). Let the
following L-CBN be in one of the standard forms:(

G+ = (J, V, U,E+), P (XV ∪U | do (XJ))
)
.

Now let W ⊆ V then we defined the marginalization w.r.t. W by replacing V with V \W
and U with U ∪W . We could re-define the marginalization as a corresponding standard
form of that procedure.
Similarly we could post-process hard interventions with standardization steps.

18Excluding degenerate L-CBNs. In those cases one could possibly remove even more latent variables.
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Proofs - Standard Forms of Causal Bayesian Networks

Proof. Step 1. For every v ∈ V ∪U we can write the Markov kernel Pv as the composition
of a deterministic one and a uniform distribution Pv̄(Xv̄) on Xv̄ := [0, 1] by Remark 2.7.4:

Pv(Xv|XPaG
+
(v)
) = δ(Rv|Xv̄, XPaG

+
(v)
) ◦ Pv̄(Xv̄).

We now put:

Ū := U ∪̇ {v̄ | v ∈ V ∪ U}, Ē+ := E+ ∪̇ {v̄ v | v ∈ V ∪ U} ,

and to get M̄ we add the Pv̄ to M and replace Pv for v ∈ V ∪ U by the deterministic
one given by:

P̄v(Xv ∈ A|Xv̄, XPaG
+
(v)
) := δ(Rv ∈ A|Xv̄, XPaG

+
(v)
).

Then Ḡ+ clearly marginalizes to G+ (when we marginalize out all the v̄ again) and the
marginal of:

P̄v(Xv ∈ A|Xv̄, XPaG
+
(v)
)⊗ P̄v̄(Xv̄),

in the defining product of the joint Markov kernel is Pv(Xv|XPaG
+
(v)
) for all v ∈ V ∪ U

by construction again.
Step 2. Marginalize out all u ∈ U . Let us first look at the Markov kernel side if we
marginalize out Xu in the defining product of the joint Markov kernel for u ∈ U :∫

Xu

⊗
v∈ChḠ

+
(u)

P̄v(Xv|XPaḠ
+
(v)\{u}, Xu = xu) δ(Ru ∈ dxu|XPaḠ

+
(u)

)

=
⊗

v∈ChḠ
+
(u)

P̄v(Xv|XPaḠ
+
(v)\{u}, Xu = Ru(XPaḠ

+
(u)

)),

which is again a product (only) because we marginalized a deterministic Markov kernel
out. So we define:

P̂v(Xv|XPaĜ
+
(v)
) := P̄v(Xv|XPaḠ

+
(v)\{u}, Xu = Ru(XPaḠ

+
(u)

)),

which is as the composition of deterministic Markov kernels again a deterministic Markov
kernel. From this we also read off that we need to consider the graph Ĝ+ with:

PaĜ
+

(v) := PaḠ
+

(v) \ {u} ∪ PaḠ
+

(u),

i.e. the CDAG from (Ḡ+)\U where we removed all bi-directed edges, and with latent
nodes Û = Ū \ U . Then note that for u ∈ U we have:

ChḠ+

(u) = Ch(Ḡ+)\U (ū).
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This implies that we recover the removed bi-directed edges if we further marginalize out
all the ū, i.e.:

(Ĝ+)\Û = (Ḡ+)\Ū = (G+)\U = G.

Step 3. We marginalize out all nodes u ∈ Û with ChĜ+

(u) = ∅. For those u we have:

P̂ (XV , XÛ | do(XJ)) = P̂u(Xu|XPaĜ
+
(u)

)⊗ P̂ (XV , XÛ\{u}| do(XJ)).

So marginalizing out Xu does not interfere with the rest of the Markov kernels. So from
now on we can w.l.o.g. assume that #ChĜ+

(u) ≥ 1 for all u ∈ Û .
Step 4. Since (Ĝ+)\Û = G we have that for each u ∈ Û the set ChĜ+

(u) is a clique
of (V, L). So we can (arbitrarily) assign u to any maximal clique W of (V, L) with
ChĜ+

(u) ⊆ W . So let W be a fixed maximal clique of (V, L) and u1, . . . , uk ∈ Û be all
u ∈ Û that we assigned to W . Then we consider the space:

XũW
:=

k∏
ℓ=1

Xuℓ
,

and the variables:
XũW

:= (Xuℓ
)ℓ=1,...,k.

Then every Markov kernel dependent on such an Xuℓ
can be written as a Markov kernel

dependent on XũW
, by only using the uℓ component. We will then replace u1, . . . , uk by

the single node ũW and every edge of form uℓ v by ũW v. If we do this for all
u ∈ Û and maximal cliques W of (V, L) we arrive at the CADMG G̃+ = (J, V, Ũ, Ẽ+),
with:

Ẽ+ := E ∪̇ {ũW w |W ∈ C, w ∈ W} .

So we arrived at the desired structural causal model form and one can convince oneself
that at each step we get an interventionally equivalent L-CBN to the step before.

The canonical form follows from the structural causal model form by marginalizing
out all Xu with #ChG̃+

(u) ≤ 1, i.e. by replacing the left (deterministic) Markov kernel
dependent on Xu in the product:

Pv(Xv|XPaG̃
+
(v)\{u}, Xu)⊗ Pu(Xu),

by the composition:
Pv(Xv|XPaG̃

+
(v)\{u}, Xu) ◦ Pu(Xu),

which then might not be deterministic anymore.
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5. Identification of Causal Effects in CBNs

This section investigates under which circumstances one can identify causal effects and
estimate them just from observational data alone under the (strong) assumption that
the underlying causal graph is known. More generally, we ask the question when an
interventional Markov kernel of a causal Bayesian network can be identified from the
causal graph G and the observational Markov kernel alone.

We will see that the main tool to allow for such statements is the global Markov
property, see Theorem 4.2.1, applied to the causal Bayesian network that is augmented
with further intervention variables.

We first study under which graphical conditions interventions don’t have an effect
or when one essentially can replace interventions with conditioning operations. These
rules will be summarized as the three rules of do-calculus. The main references are
[Pea93a,Pea93b,Pea09], also see [Pea95a,FM20,For21].

We then study under which graphical criteria one gets explicit adjustment formulas to
estimate interventional Markov kernels from observational ones. The literature mentions
the backdoor criterion, see [Pea93a, Pea93b, Pea09], the extended backdoor criterion,
see [PP10,SdWR10], the selection backdoor criterion, see [BTP14], criteria for selection
without/partial external data, see [CB17, CTB18], and all their generalizations to the
cyclic case, see [FM20], also see [SP06a,PTKM15,For21].

Finally, we present the ID-algorithm, which can decide just by processing the causal
graph G if an interventional Markov kernel can be identified by the observational one
(under further assumptions, like strict positivity, etc.). If the algorithm does not output
FAIL then it also presents a formula to estimate the queried interventional Markov
kernel. The main references for the ID-algorithm are [Pea09,GP95,Tia02,TP02,Tia04,
SP06b,HV06,HV08,RERS23,FM20].

5.1. Do-Calculus

Remark 5.1.1 (Recap). Consider an L-CBN:

M =
(
G+ =

(
J, (V, U), E+

)
,
(
Pv(Xv| do(XPaG

+
(v)
))
)
v∈V ∪U

)
.

Then we get the joint Markov kernel over all input, observed and unobserved output
variables as follows:

P (XV , XU , XJ | do(XJ)) :=
⊗

v∈U∪V

Pv

(
Xv| do(XPaG

+
(v)
)
)
⊗
⊗
j∈J

δ(Xj|Xj).

Further, for D ⊆ J ∪V and B ⊆ V \D we get the combined hard and soft interventions:

P
(
XV \D, XU , XJ∪D, XIB | do(XIB , XJ∪D)

)
:=⊗

v∈V \(B∪D)

Pv

(
Xv| do(XPaG

+
(v)
)
)
⊗
⊗
v∈B

Pv

(
Xv| do(XPaG

+
(v)
, XIv)

)
⊗
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⊗
v∈U

Pv

(
Xv| do(XPaG

+
(v)
)
)
⊗
⊗

j∈J∪D

δ(Xj|Xj)⊗
⊗
v∈B

δ(XIv |XIv),

where we need to reorder all the factors such that the product is in reverse order of a topo-
logical order and where we use the following Markov kernels to model hard interventions
as soft interventions, v ∈ B:

Pv

(
Xv| do

(
X

PaG
+
(v)
, XIv = xIv

))
:=

{
Pv

(
Xv| do

(
X

PaG
+
(v)

))
, if xIv = ⋆,

δ(Xv|Xv = xIv), if xIv ̸= ⋆.

Finally we can also marginalize (i.e. integrating out) and condition to get:

P (XA|XC , do(XJ∪D, XIB)) ,

for any A,B,C,D ⊆ J ∪ V .
For more suggestive formulas later on we also freely permute the order of symbols behind
the conditioning line, e.g.:

P (XA| do(XF ), XC , do(XD)) := P (XA|XC , do(XD, XF )) .

Please note that no matter in which order we write the do-part and conditioning part
behind the conditioning line |, we always assume that we perform the intervention (do)
first and afterwards condition.
We will also make use of the following CADMG:

Gdo(IB ,D) = (G+
do(IB ,D))

\U .

W.l.o.g. we can assume: B ∩D = ∅.

Theorem 5.1.2. [Almost-sure do-calculus—in detail] Consider an L-CBN:

M =
(
G+ =

(
J, (V, U), E+

)
,
(
Pv(Xv| do(XPaG

+
(v)
))
)
v∈V ∪U

)
.

Let A,B,C ⊆ V and D ⊆ J ∪ V be such that A,B,C,D are pairwise disjoint.
Further assume that we have reference measures µv on Xv for every v ∈ V that are
each equivalent to a probability measure (in terms of absolute continuity).19 We then put
µF :=

⊗
v∈F µv for F ⊆ V .

1. Insertion/deletion of observation: Assume:

A
d

⊥
Gdo(D)

B |C ∪D.

19Recall the connection between absolute continuity and strictly positive densities in Corollary 2.3.20.
All σ-finite measures satisfy this assumption.
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For a fixed finite index set I consider subsets B(i) ⊆ B, for i ∈ I, and pick for
each i ∈ I an arbitrary version of a conditional Markov kernel:

P (XA|XB(i) , XC , do(XD∪J)) : XB∪C∪D∪J → XB(i)∪C∪D∪J → P(XA),

of P (XA, XB(i) , XC | do(XD∪J)). Then there exists a measurable P (XB, XC | do(XD∪J))-
null set N ⊆ XB∪C∪D∪J , such that all those Markov kernels are equal on the com-
plement N c.

Note that if µB∪C ≪ P (XB, XC | do(XD∪J)) then N is also a µB∪C-null set, i.e. for
every xD∪J ∈ XD∪J we have: µB∪C(NxD∪J

) = 0.

If we also have the reverse P (XB, XC | do(XD∪J))≪ µB∪C then we can change the
above conditional Markov kernels on a µB∪C-null set N while they remain versions
of the corresponding conditional Markov kernel.20

2. Action/observation exchange: Assume:

A
d

⊥
Gdo(IB,D)

IB |B ∪ C ∪D.

For a fixed finite index set I consider decompositions B = B
(i)
1 ∪̇B

(i)
2 , for i ∈ I,

and pick for each i ∈ I an arbitrary version of a conditional Markov kernel:

P (XA|XB
(i)
1
, do(X

B
(i)
2
), XC , do(XD∪J)) : XB∪C∪D∪J → P(XA),

of P (XA, XB
(i)
1
, XC | do(XB

(i)
2
, XD∪J))⊗µB

(i)
2

and assume the following absolute con-
tinuities:

µB∪C ≪ P (X
B

(i)
1
, XC | do(XB

(i)
2
, XD∪J))⊗ µB

(i)
2

for all i ∈ I.21 Then there exists a measurable µB∪C-null set N ⊆ XB∪C∪D∪J , such
that all those conditional Markov kernels are equal on the complement N c.

If we also assume the reverse absolute continuities for all i ∈ I:

P (X
B

(i)
1
, XC | do(XB

(i)
2
, XD∪J))⊗ µB

(i)
2
≪ µB∪C ,

20Note that the absolute continuities: µB∪C ≪ P (XB , XC |do(XD∪J)) ≪ µB∪C hold if
P (XB , XC |do(XD∪J)) has a strictly positive Doob-Radon-Nikodym derivative w.r.t. µB∪C . Fur-
thermore, the converse is also true for σ-finite reference measures µB∪C by Corollary 2.3.20.

21If you instead expected to pick for each i ∈ I an arbitrary version of a conditional Markov kernel:

P (XA|XB
(i)
1
,do(X

B
(i)
2
), XC ,do(XD∪J)) : XB∪C∪D∪J → P(XA),

of P (XA, XB
(i)
1
, XC |do(XB

(i)
2
, XD∪J)) and to assume the absolute continuities

µ
B

(i)
1 ∪C

≪ P (X
B

(i)
1
, XC |do(XB

(i)
2
, XD∪J))≪ µ

B
(i)
1 ∪C

for all i ∈ I: that would lead to a similar, but slightly weaker statement.
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then all those conditional Markov kernels are versions of each other.22

3. Insertion/deletion of action: Assume:

A
d

⊥
Gdo(IB,D)

IB |C ∪D.

For a fixed finite index set I consider subsets B(i) ⊆ B, for i ∈ I, and pick for
each i ∈ I an arbitrary version of a conditional Markov kernel:

P (XA| do(XB(i)), XC , do(XD∪J)) : XB∪C∪D∪J → XB(i)∪C∪D∪J → P(XA),

of P (XA, XC | do(XB(i) , XD∪J)) and assume the following absolute continuities:

µC ≪ P (XC | do(XB(i) , XD∪J))

for all i ∈ I. Then there exists a measurable µC-null set N ⊆ XB∪C∪D∪J , such that
all those conditional Markov kernels are equal on the complement N c.

If we also assume the reverse absolute continuities for all i ∈ I:

P (XC | do(XB(i) , XD∪J))≪ µC ,

then all those conditional Markov kernels are versions of each other.23

The proof can be found in at the end of this section.
We now summarize on how to apply Theorem 5.1.2 more concretely as a corollary.

Corollary 5.1.3 (Almost-sure do-calculus—simplified). Consider an L-CBN:

M =
(
G+ =

(
J, (V, U), E+

)
,
(
Pv(Xv| do(XPaG

+
(v)
))
)
v∈V ∪U

)
.

Further assume that we have reference measures µv on Xv for every v ∈ V . We then put
µF :=

⊗
v∈F µv for F ⊆ V . Let A,B,C ⊆ V and D ⊆ J ∪ V be such that A,B,C,D

are pairwise disjoint. Then we have the following 4 rules relating marginal conditional
to marginal interventional Markov kernels:

22Note that the absolute continuities: µB∪C ≪ P (X
B

(i)
1
, XC |do(XB

(i)
2
, XD∪J)) ⊗ µ

B
(i)
2
≪ µB∪C hold

if the absolute continuities: µ
B

(i)
1 ∪C

≪ P (X
B

(i)
1
, XC |do(XB

(i)
2
, XD∪J)) ≪ µ

B
(i)
1 ∪C

hold, which
hold if P (X

B
(i)
1
, XC |do(XB

(i)
2
, XD∪J)) has a strictly positive Doob-Radon-Nikodym derivative w.r.t.

µ
B

(i)
1 ∪C

. Furthermore, the converse is also true for σ-finite reference measures µ
B

(i)
1 ∪C

by Corollary
2.3.20.

23Note that absolute continuities: µC ≪ P (XC |do(XB(i) , XD∪J)) ≪ µC hold if
P (XC |do(XB(i) , XD∪J)) has a strictly positive Doob-Radon-Nikodym derivative w.r.t. µC .
Furthermore, the converse is also true for σ-finite reference measures µC by Corollary 2.3.20.
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1. Insertion/deletion of observation, for J ⊆ D: Assume that we want to establish
the a.s.-equality:

P (XA|XB, XC , do(XD)) = P (XA|XC , do(XD)) µB∪C-a.s.,

then it is sufficient to assume/check the following d-separation and absolute conti-
nuities:

A
d

⊥
Gdo(D)

B |C ∪D, µB∪C ≪ P (XB, XC | do(XD))≪ µB∪C .

2. Action/observation exchange, for J ⊆ D: Assume that we want to establish the
a.s.-equality:

P (XA|XB, XC , do(XD)) = P (XA| do(XB), XC , do(XD)) µB∪C-a.s.,

then it is sufficient to assume/check the following d-separation and absolute conti-
nuities:

A
d

⊥
Gdo(IB,D)

IB |B ∪ C ∪D, µB∪C ≪ P (XB, XC | do(XD))≪ µB∪C ,

µC ≪ P (XC | do(XB, XD))≪ µC .

3. Insertion/deletion of action, for J ⊆ D: Assume that we want to establish the
a.s.-equality:

P (XA| do(XB), XC , do(XD)) = P (XA|XC , do(XD)) µC-a.s.,

then it is sufficient to assume/check the following d-separation and absolute conti-
nuities:

A
d

⊥
Gdo(IB,D)

IB |C ∪D, µC ≪ P (XC | do(XB, XD))≪ µC ,

µC ≪ P (XC | do(XD))≪ µC .

4. Deletion of input: If

A
d

⊥
Gdo(D)

J |C ∪D, µC ≪ P (XC | do(XD∪J))≪ µC .

then there exists a Markov kernel P (XA|XC , do(XD,���XJ\D)) such that:

P (XA|XC , do(XD,���XJ\D)) = P (XA|XC , do(XD∪J)) µC-a.s..

Note that the two-sided absolute continuities hold for σ-finite reference measures iff the
indicated Markov kernel has a strictly positive Doob-Radon-Nikodym derivative w.r.t. the
corresponding reference product measure by Corollary 2.3.20.
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Proof. The proof follows directly from Theorem 5.1.2.
For the last rule (‘Deletion of input’), one can take the Markov kernel as

P (XA|XC , do(XD,���XJ\D)) := Q(XA|XC , XD)

where Q(XA|XC , XD) is defined in the proof of Proposition 5.1.7 point 3, for the special
case B = IB = ∅. The proof of Theorem 5.1.2 rule 3 then applies (as it doesn’t depend
crucially on the assumption J ⊆ D, or B ̸= ∅), which shows the claim.

Remark 5.1.4. Note that in Corollary 5.1.3 (in contrast to Proposition 5.1.7 and The-
orem 5.1.2) we cannot easily formulate the independence of variables XJ\D in the pre-
sented way. If we accept the above then we can simplify the formulas (as done in Corol-
lary 5.1.3) and assume that J ⊆ D and thus D ∪ J = D, which makes then the d-
separation requirements weaker (due to extra conditioning on J). For the case where J
does not fully lie in D one either needs to use Proposition 5.1.7 and Theorem 5.1.2 or
the global Markov property, Theorem 4.2.1, directly.

Proofs - Do-Calculus

Lemma 5.1.5. For pairwise disjoint B,C ⊆ V and D ⊆ V ∪J and a measurable subset
N ⊆ XB∪C∪D∪J the following statements are equivalent:

1. N is a P (XB, XC | do(XIB , XD∪J))-null set.

2. For every decomposition B = B1 ∪̇B2 the set N is a P (XB, XC | do(XB2 , XD∪J))-
null set.

3. For every decomposition B = B1 ∪̇B2 the set N is a P (XB1 , XC | do(XB2 , XD∪J))-
null set.

Proof. Every value xIB = (xIv)v∈B ∈ XIB defines a decomposition B = B1 ∪̇B2 via:

B1 := {v ∈ B |xIv = ⋆} , B2 := {v ∈ B |xIv ∈ Xv} .

So running through all values xIB ∈ XIB is the same as running through all subsets
B2 ⊆ B and all values xB2 ∈ XB2 , while putting xIB1

= ⋆ for B1 = B \B2. Furthermore,
we have the following identities:

P ((XB, XC) ∈ NxD∪J
| do(XIB = xIB , XD∪J = xD∪J))

= P ((XB, XC) ∈ NxD∪J
| do(XIB1

= ⋆,XIB2
= xB2 , XD∪J = xD∪J))

= P ((XB, XC) ∈ NxD∪J
| do(XB2 = xB2 , XD∪J = xD∪J))

= (P (XB1 , XC | do(XB2 = xB2 , XD∪J = xD∪J))⊗ δ(XB2|XB2 = xB2)) (NxD∪J
)

= P ((XB1 , XC) ∈ N(xB2
,xD∪J )| do(XB2 = xB2 , XD∪J = xD∪J)).

So the first line vanishes for all values xIB ∈ XIB and xD∪J ∈ XD∪J if and only if any
other line vanishes for all subsets B2 ⊆ B and all values xB2 ∈ XB2 and xD∪J ∈ XD∪J .
This shows the claim.
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Remark 5.1.6 (Null sets—again). In the following we will often make statements like:
“The Markov kernel K(XA|XB, XC , XD) is unique up to a measurable K(XB|XC , XD)-
null set in XB∪C”, (rather than in XB∪C∪D). This means that the corresponding null set
N can be considered constant in XD\(B∪C), or, more precisely, that N is of the form:

N =M ×XD\(B∪C) ⊆ XB∪C∪D,

with M ⊆ XB∪C.

Proposition 5.1.7 (Do-calculus—existence and uniqueness). Consider an L-CBN:

M =
(
G+ =

(
J, (V, U), E+

)
,
(
Pv(Xv| do(XPaG

+
(v)
))
)
v∈V ∪U

)
.

Let A,B,C ⊆ V and D ⊆ J ∪ V be such that A,B,C,D are pairwise disjoint.
Then we have the following 3 rules relating marginal conditional to marginal interven-
tional Markov kernels:

1. Insertion/deletion of observation: If we have:

A
d

⊥
Gdo(D)

B |C ∪D,

then there exists a Markov kernel:

P
(
XA|��XB, XC , do(XD∪�J

)
)
: XC ×XD 99K XA,

that is a version of:
P (XA|XB2 , XC , do(XD∪J)) ,

for every subset B2 ⊆ B simultaneously. Note that this Markov kernel is only
dependent on xC and xD, and constant in xJ\D.

Such a Markov kernel is unique up to a measurable P (XC | do(XD∪J))-null set in
XC∪D.

2. Action/observation exchange: If we have:

A
d

⊥
Gdo(IB,D)

IB |B ∪ C ∪D,

then there exists a Markov kernel:

P
(
XA|��do(XB), XC , do(XD∪�J

)
)
: XB ×XC ×XD 99K XA,

that is a version of:

P (XA|XB1 , do(XB2), XC , do(XD∪J)) ,

for every decomposition: B = B1 ∪̇B2, simultaneously.
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Such a Markov kernel is unique up to a measurable P (XB, XC | do(XIB , XD∪J))-
null set in N ⊆ XB∪C∪D, i.e. N is a P (XB1 , XC | do(XB2 , XD∪J))-null set for every
decomposition B = B1 ∪̇B2 simultaneously.

3. Insertion/deletion of action: If we have:

A
d

⊥
Gdo(IB,D)

IB |C ∪D,

then there exists a Markov kernel:

P
(
XA|�����do(XB), XC , do(XD∪�J

)
)
: XC ×XD 99K XA,

that is a version of:
P (XA| do(XB2), XC , do(XD∪J))

for every subset B2 ⊆ B simultaneously. Note that this Markov kernel is only
dependent on xC and xD, and constant in xJ\D.

Such a Markov kernel is unique up to a measurable P (XC | do(XIB , XD∪J))-null set
N ⊆ XC∪D, i.e. N is a P (XC | do(XB2 , XD∪J))-null set for every subset B2 ⊆ B
simultaneously.

Proof. We make use of the global Markov property (GMP), theorem 4.2.1.
1.) The assumption:

A
d

⊥
Gdo(D)

B |C ∪D,

implies the conditional independence by GMP 4.2.1:

XA ⊥⊥
P (XV | do(XD∪J ))

XB |XC , XD.

So we get the following factorization, where we can omit the deterministic variables from
XD on the left of the conditioning lines:

P (XA, XB, XC | do(XD∪J)) = Q(XA|XC , XD)⊗ P (XB, XC | do(XD∪J)) ,

for some Markov kernel Q(XA|XC , XD). Here Q(XA|XC , XD) serves as a version of the
conditional Markov kernel:

P (XA|XB, XC , do(XD∪J)) .

If we marginalize out XB1 for any decomposition B = B1 ∪̇B2 in the above factorization
we also get:

P (XA, XC , XB2| do(XD∪J)) = Q(XA|XC , XD)⊗ P (XC , XB2| do(XD∪J)) ,

showing that Q(XA|XC , XD) is also a version of:

P (XA|XB2 , XC , do(XD∪J)) .
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In particular, this holds forB2 = ∅. This shows all the claimed properties forQ(XA|XC , XD).
Now consider another Markov kernel K(XA|XC , XD) and the measurable sets:

Ñ := {xC∪D ∈ XC∪D |Q(XA|XC = xC , XD = xD) ̸= K(XA|XC = xC , XD = xD)} ,
N := {xC∪D∪J ∈ XC∪D∪J |Q(XA|XC = xC , XD = xD) ̸= K(XA|XC = xC , XD = xD)}

= Ñ ×XJ\D.

If K(XA|XC , XD) is a version of:

P (XA|XB2 , XC , do(XD∪J)),

for every subset B2 ⊆ B simultaneously, then this holds, in particular, for B2 = ∅. Since
conditional Markov kernels are essentially unique, by Theorem 2.4.16, we have that N
is a P (XC | do(XD∪J))-null set.

2.) The assumption:

A
d

⊥
Gdo(IB,D)

IB |B ∪ C ∪D,

implies the conditional independence by GMP 4.2.1:

XA ⊥⊥
P (XV | do(XIB

,XD∪J ))
XIB |XB, XC , XD.

So we have the following factorization:

P (XA, XB, XC | do(XIB , XD∪J)) = Q(XA|XB, XC , XD)⊗ P (XB, XC | do(XIB , XD∪J)) ,
(21)

for some Markov kernel Q(XA|XB, XC , XD), which serves as a version of the conditional
Markov kernel:

P (XA|XB, XC , do(XIB , XD∪J)) ,

and which is independent of XIB .
We fist claim that for a Markov kernel Q(XA|XB, XC , XD) the equation 21 is equiva-

lent to the system of equations 22 indexed by subsets B2 ⊆ B and with B1 := B \B2:

P (XA, XB1 , XC | do(XB2 , XD∪J)) = Q(XA|XB, XC , XD)⊗ P (XB1 , XC | do(XB2 , XD∪J)) .
(22)

Indeed, we can look at the different input values for XIB = (XIB1
, XIB2

) in equation 21.
For B1 we put: XIB1

= ⋆ = (⋆)v∈B1 and for B2 we take values: XIB2
= xB2 ∈ XB2 . This

implies:

P (XA, XB, XC | do(XB2 = xB2 , XD∪J))

= P
(
XA, XB, XC | do(XIB1

= ⋆,XIB2
= xB2 , XD∪J)

)
= Q(XA|XB, XC , XD)⊗ P

(
XB, XC | do(XIB1

= ⋆,XIB2
= xB2 , XD∪J)

)
,

= Q(XA|XB, XC , XD)⊗ P (XB, XC | do(XB2 = xB2 , XD∪J)) .
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So we get the equations:

P (XA, XB, XC | do(XB2 , XD∪J)) = Q(XA|XB, XC , XD)⊗ P (XB, XC | do(XB2 , XD∪J)) ,

where we can further marginalize out the deterministic XB2 :

P (XA, XB1 , XC | do(XB2 , XD∪J)) = Q(XA|XB, XC , XD)⊗ P (XB1 , XC | do(XB2 , XD∪J)) .

Note that we can also go back by multiplying with δ(XB2 |XB2). This shows the inter-
mediate claim.

The equation 22 already implies thatQ(XA|XB, XC , XD) is a version of the conditional
Markov kernel:

P (XA|XB1 , XC , do(XB2 , XD∪J)) , (23)

for every decomposition: B = B1 ∪̇B2 simultaneously.
Now consider another Markov kernel K(XA|XB, XC , XD) and the measurable sets:

Ñ :=
{
xB∪C∪D ∈ XB∪C∪D

∣∣Q(XA|XB = xB, XC = xC , XD = xD)

̸= K(XA|XB = xB, XC = xC , XD = xD)
}
,

N := Ñ ×XJ\D.

If K(XA|XB, XC , XD) now is also a version of the conditional Markov kernel 23 for every
decomposition B = B1 ∪̇B2 simultaneously, then N is a P (XB1 , XC | do(XB2 , XD∪J))-
null set for every decomposition B = B1 ∪̇B2, because conditional Markov kernels are
essentially unique, see Theorem 2.4.16. By Lemma 5.1.5 this statement is equivalent for
N to be a P (XB, XC | do(XIB , XD∪J))-null set.

3.) The assumption:

A
d

⊥
Gdo(IB,D)

IB |C ∪D,

implies the conditional independence by GMP 4.2.1:

XA ⊥⊥
P (XV |do(XIB

,XD∪J ))
XIB |XC , XD.

So we have the following factorization:

P (XA, XC | do(XIB , XD∪J)) = Q(XA|XC , XD)⊗ P (XC | do(XIB , XD∪J)) , (24)

for some Markov kernel Q(XA|XC , XD), which serves as a version of the conditional
Markov kernel:

P (XA|XC , do(XIB , XD∪J)) ,
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and which is independent of XIB .
We can now look at the different input values for any decomposition: B = B1 ∪̇B2. For
this we put: XIB1

= ⋆ = (⋆)v∈B1 and XIB2
= xB2 ∈ XB2 . This implies:

P (XA, XC | do(XB2 = xB2 , XD∪J))

= P
(
XA, XC | do(XIB1

= ⋆,XIB2
= xB2 , XD∪J)

)
= Q(XA|XC , XD)⊗ P

(
XC | do(XIB1

= ⋆,XIB2
= xB2 , XD∪J)

)
,

= Q(XA|XC , XD)⊗ P (XC | do(XB2 = xB2 , XD∪J)) .

So we get for every subset B2 ⊆ B:

P (XA, XC | do(XB2 , XD∪J)) = Q(XA|XC , XD)⊗ P (XC | do(XB2 , XD∪J)) , (25)

which shows that Q(XA|XC , XD) is a version of the conditional Markov kernel:

P (XA|XC , do(XB2 , XD∪J)) , (26)

for every subset B2 ⊆ B simultaneously.
Now consider another Markov kernel K(XA|XC , XD) and the measurable sets:

Ñ := {xC∪D ∈ XC∪D |Q(XA|XC = xC , XD = xD) ̸= K(XA|XC = xC , XD = xD)} ,
NB2 := XB2 × Ñ ×XJ\D.

Now assume that K(XA|XC , XD) is a version of the conditional Markov kernel in (26)
for every subset B2 ⊆ B simultaneously. Then for every subset B2 ⊆ B set NB2 is
a P (XC | do(XB2 , XD∪J))-null set, because of the essential uniqueness of conditional
Markov kernels, see Theorem 2.4.16. More concretely, for xB2 ∈ XB2 and xD∪J ∈ XD∪J
we get the equations:

0 = P (XC ∈ (NB2)(xB2
,xD∪J )| do(XB2 = xB2 , XD∪J = xD∪J))

= P (XC ∈ ÑxD
| do(XB2 = xB2 , XD∪J = xD∪J))

= P (XC ∈ ÑxD
| do(XIB1

= ⋆,XIB2
= xB2 , XD∪J = xD∪J))

= P (XC ∈ ÑxD
| do(XIB = (⋆, xB2), XD∪J = xD∪J)).

Since we have this for all decompositions B = B1 ∪̇B2 and all values xB2 ∈ XB2 we are
running through all values xIB ∈ XIB . This shows that Ñ is a P (XC | do(XIB , XD∪J))-null
set in XC∪D.

Theorem 5.1.2. [Almost-sure do-calculus—in detail] Consider an L-CBN:

M =
(
G+ =

(
J, (V, U), E+

)
,
(
Pv(Xv| do(XPaG

+
(v)
))
)
v∈V ∪U

)
.

Let A,B,C ⊆ V and D ⊆ J ∪ V be such that A,B,C,D are pairwise disjoint.
Further assume that we have reference measures µv on Xv for every v ∈ V that are
each equivalent to a probability measure (in terms of absolute continuity).24 We then put
µF :=

⊗
v∈F µv for F ⊆ V .

24Recall the connection between absolute continuity and strictly positive densities in Corollary 2.3.20.
All σ-finite measures satisfy this assumption.
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1. Insertion/deletion of observation: Assume:

A
d

⊥
Gdo(D)

B |C ∪D.

For a fixed finite index set I consider subsets B(i) ⊆ B, for i ∈ I, and pick for
each i ∈ I an arbitrary version of a conditional Markov kernel:

P (XA|XB(i) , XC , do(XD∪J)) : XB∪C∪D∪J → XB(i)∪C∪D∪J → P(XA),

of P (XA, XB(i) , XC | do(XD∪J)). Then there exists a measurable P (XB, XC | do(XD∪J))-
null set N ⊆ XB∪C∪D∪J , such that all those Markov kernels are equal on the com-
plement N c.

Note that if µB∪C ≪ P (XB, XC | do(XD∪J)) then N is also a µB∪C-null set, i.e. for
every xD∪J ∈ XD∪J we have: µB∪C(NxD∪J

) = 0.

If we also have the reverse P (XB, XC | do(XD∪J))≪ µB∪C then we can change the
above conditional Markov kernels on a µB∪C-null set N while they remain versions
of the corresponding conditional Markov kernel.25

2. Action/observation exchange: Assume:

A
d

⊥
Gdo(IB,D)

IB |B ∪ C ∪D.

For a fixed finite index set I consider decompositions B = B
(i)
1 ∪̇B

(i)
2 , for i ∈ I,

and pick for each i ∈ I an arbitrary version of a conditional Markov kernel:

P (XA|XB
(i)
1
, do(X

B
(i)
2
), XC , do(XD∪J)) : XB∪C∪D∪J → P(XA),

of P (XA, XB
(i)
1
, XC | do(XB

(i)
2
, XD∪J))⊗µB

(i)
2

and assume the following absolute con-
tinuities:

µB∪C ≪ P (X
B

(i)
1
, XC | do(XB

(i)
2
, XD∪J))⊗ µB

(i)
2

for all i ∈ I.26 Then there exists a measurable µB∪C-null set N ⊆ XB∪C∪D∪J , such
that all those conditional Markov kernels are equal on the complement N c.

25Note that the absolute continuities: µB∪C ≪ P (XB , XC |do(XD∪J)) ≪ µB∪C hold if
P (XB , XC |do(XD∪J)) has a strictly positive Doob-Radon-Nikodym derivative w.r.t. µB∪C . Fur-
thermore, the converse is also true for σ-finite reference measures µB∪C by Corollary 2.3.20.

26If you instead expected to pick for each i ∈ I an arbitrary version of a conditional Markov kernel:

P (XA|XB
(i)
1
,do(X

B
(i)
2
), XC ,do(XD∪J)) : XB∪C∪D∪J → P(XA),

of P (XA, XB
(i)
1
, XC |do(XB

(i)
2
, XD∪J)) and to assume the absolute continuities

µ
B

(i)
1 ∪C

≪ P (X
B

(i)
1
, XC |do(XB

(i)
2
, XD∪J))≪ µ

B
(i)
1 ∪C

for all i ∈ I: that would lead to a similar, but slightly weaker statement.
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If we also assume the reverse absolute continuities for all i ∈ I:

P (X
B

(i)
1
, XC | do(XB

(i)
2
, XD∪J))⊗ µB

(i)
2
≪ µB∪C ,

then all those conditional Markov kernels are versions of each other.27

3. Insertion/deletion of action: Assume:

A
d

⊥
Gdo(IB,D)

IB |C ∪D.

For a fixed finite index set I consider subsets B(i) ⊆ B, for i ∈ I, and pick for
each i ∈ I an arbitrary version of a conditional Markov kernel:

P (XA| do(XB(i)), XC , do(XD∪J)) : XB∪C∪D∪J → XB(i)∪C∪D∪J → P(XA),

of P (XA, XC | do(XB(i) , XD∪J)) and assume the following absolute continuities:

µC ≪ P (XC | do(XB(i) , XD∪J))

for all i ∈ I. Then there exists a measurable µC-null set N ⊆ XB∪C∪D∪J , such that
all those conditional Markov kernels are equal on the complement N c.

If we also assume the reverse absolute continuities for all i ∈ I:

P (XC | do(XB(i) , XD∪J))≪ µC ,

then all those conditional Markov kernels are versions of each other.28

Proof. W.l.o.g. we can assume all µv to be probability measures.
1.) Let Q(XA|XC , XD) be the Markov kernel from Proposition 5.1.7 point 1. Recall

that conditional Markov kernels are essentially unique by Theorem 2.4.16. This shows
that the set:

Ñ (i) :=
{
xB(i)∪C∪D∪J ∈ XB(i)∪C∪D∪J

∣∣Q(XA|XC = xC , XD = xD)

̸= P (XA|XB(i) = xB(i) , XC = xC , do(XD∪J = xD∪J))
}
,

is a (measurable) P (XB(i) , XC | do(XD∪J))-null set. So the lifted set:

N (i) :=
{
xB∪C∪D∪J ∈ XB∪C∪D∪J

∣∣Q(XA|XC = xC , XD = xD)

̸= P (XA|XB(i) = xB(i) , XC = xC , do(XD∪J = xD∪J))
}
,

27Note that the absolute continuities: µB∪C ≪ P (X
B

(i)
1
, XC |do(XB

(i)
2
, XD∪J)) ⊗ µ

B
(i)
2
≪ µB∪C hold

if the absolute continuities: µ
B

(i)
1 ∪C

≪ P (X
B

(i)
1
, XC |do(XB

(i)
2
, XD∪J)) ≪ µ

B
(i)
1 ∪C

hold, which
hold if P (X

B
(i)
1
, XC |do(XB

(i)
2
, XD∪J)) has a strictly positive Doob-Radon-Nikodym derivative w.r.t.

µ
B

(i)
1 ∪C

. Furthermore, the converse is also true for σ-finite reference measures µ
B

(i)
1 ∪C

by Corollary
2.3.20.

28Note that absolute continuities: µC ≪ P (XC |do(XB(i) , XD∪J)) ≪ µC hold if
P (XC |do(XB(i) , XD∪J)) has a strictly positive Doob-Radon-Nikodym derivative w.r.t. µC .
Furthermore, the converse is also true for σ-finite reference measures µC by Corollary 2.3.20.
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is then a (measurable) P (XB, XC | do(XD∪J))-null set. Then also the finite union:

N :=
⋃
i∈I

N (i) ⊆ XB∪C∪D∪J ,

is a (measurable) P (XB, XC | do(XD∪J))-null set as well. Note that on the complement
N c all Markov kernels agree with Q(XA|XC , XD) and are thus all equal on N c.

2.) Consider the Markov kernel Q(XA|XB, XC , XD) from Proposition 5.1.7 point 2
and for i ∈ I the measurable set:

N (i) :=
{
xB∪C∪D∪J ∈ XB∪C∪D∪J

∣∣Q(XA|XB = xB, XC = xC , XD = xD)

̸= P (XA|XB
(i)
1

= x
B

(i)
1
, do(X

B
(i)
2

= x
B

(i)
2
), XC = xC , do(XD∪J = xD∪J))

}
.

Again, by the essential uniqueness of conditional Markov kernels, Theorem 2.4.16, the
set N (i) is a P (X

B
(i)
1
, XC | do(XB

(i)
2
, XD∪J))⊗ µB

(i)
2

-null set. The absolute continuity:

µB∪C ≪ P (X
B

(i)
1
, XC | do(XB

(i)
2
, XD∪J))⊗ µB

(i)
2
,

then renders N (i) a µB∪C-null set. This shows that the finite union:

N :=
⋃
i∈I

N (i),

is a µB∪C-null set as well. Again, note that on the complement N c all Markov kernels
agree with Q(XA|XB, XC , XD) and are thus all equal on N c.

3.) Consider the Markov kernel Q(XA|XC , XD) from Proposition 5.1.7 point 3 and
for i ∈ I the measurable set:

Ñ (i) :=
{
xB(i)∪C∪D∪J ∈ XB(i)∪C∪D∪J

∣∣Q(XA|XC = xC , XD = xD)

̸= P (XA| do(XB(i) = xB(i)), XC = xC , do(XD∪J = xD∪J))
}
.

Again, by the essential uniqueness of conditional Markov kernels, Theorem 2.4.16,
the set Ñ (i) is a P (XC | do(XB(i) , XD∪J))-null set. By the absolute continuity µC ≪
P (XC | do(XB(i) , XD∪J)) we get that Ñ (i) is a µC-null set. This shows that the measur-
able set:

N (i) :=
{
xB∪C∪D∪J ∈ XB∪C∪D∪J

∣∣Q(XA|XC = xC , XD = xD)

̸= P (XA| do(XB(i) = xB(i)), XC = xC , do(XD∪J = xD∪J))
}
.

is a µC-null set as well. Then the finite union:

N :=
⋃
i∈I

N (i),

is also a µC-null set. Again, note that on the complement N c all Markov kernels agree
with Q(XA|XC , XD) and are thus all equal on N c.
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5.2. Adjustment Criteria and Formulae

Motivation 5.2.1. Consider an L-CBN:

M =
(
G+ =

(
J, (V, U), E+

)
,
(
Pv(Xv| do(XPaG

+
(v)
))
)
v∈V ∪U

)
.

For simplicity assume that there are no input variables, i.e. J = ∅. Then the joint
distribution is “do-free” and given as:

P (XV , XU) =
⊗

v∈U∪V

Pv

(
Xv| do(XPaG

+
(v)
)
)
,

with observational distribution as its marginal: P (XV ).
We also have all the interventional distributions for W ⊆ V :

P (XV \W , XU | do(XW )) =
⊗

v∈U∪V \W

Pv

(
Xv| do(XPaG

+
(v)
)
)
,

with marginals: P (XV \W | do(XW )).
If we wanted to learn the distribution P (XV ) we could do an observational study and
apply the usual statistical or machine learning techniques. If, in contrast, we wanted
to learn interventional distributions: P (XV \W | do(XW )) from data (e.g. whether vac-
cination makes people immune to a disease), we typically would need to perform an
interventional study where we intervene on the variables XW and set them to different
values. This usually requires expensive, time-consuming randomized control trials with
an own group for each possible value of XW .
If we assume that we know the causal graph G+ or G we could try to leverage the rules
of do-calculus in a clever way and might be able to go from expressions involving do(W )
to expressions only involving do(D) for a (much) smaller subset D ⊆ W , ideally D = ∅.
Practically this would mean that we would need a much smaller randomized control trial
and save time and resources.
For example, if we have the graph only involving the edge: v1 v2 we have that:

P (X2| do(X1)) = P (X2|X1),

which can be estimated using observational data only, e.g. via supervised learning.
So the question of identifiability is now: Assuming that the causal graph is known, under
which circumstances is a causal effect P (XA| do(XB)) already determined by the obser-
vational distribution P (XV )? When can causal effects be identified via distributions that
have less interventions in them?

Notation 5.2.2. Consider an L-CBN:

M =
(
G+ =

(
J, (V, U), E+

)
,
(
Pv(Xv| do(XPaG

+
(v)
))
)
v∈V ∪U

)
.

We are interested in estimating the conditional causal effect:

P (XA|XC , do(XB, XD)),
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but we only have data from:
P (XV |XC , do(XD)).

The following index sets will have the following roles:

1. A: the outcome variables of interest.

2. B: the treatment or intervention variables.

3. C: general conditional (context) variables under which the data was collected.

4. D: general interventional (context) variables that were set by the experimenter,
J ⊆ D.

5. F0: core adjustment variables, i.e. features that were measured.

6. F1: additional measured adjustment variables.

7. F = F0 ∪ F1.

8. H: additional unobserved variables.

Theorem 5.2.3 (General adjustment formula). Consider an L-CBN:

M =
(
G+ =

(
J, (V, U), E+

)
,
(
Pv(Xv| do(XPaG

+
(v)
))
)
v∈V ∪U

)
.

Assume that all the following conditions hold in the graphs G+
do(IB ,D):

(F0 ∪H)
d

⊥
G+

do(IB,D)

IB |(C ∪D), (27)

A
d

⊥
G+

do(IB,D)

(F1 ∪ IB) |(B ∪ F0 ∪H ∪ C ∪D), (28)

H
d

⊥
G+

do(IB,D)

B |(F ∪ C ∪ IB ∪D). (29)

Further assume that we have reference measures µv on Xv, v ∈ V ∪H, such that:

µB∪C∪F∪H ≪ P (XB, XC , XF , XH | do(XD))≪ µB∪C∪F∪H ,

µC∪F∪H ≪ P (XC , XF , XH | do(XB, XD))≪ µC∪F∪H .

Then we have the adjustment formula:

P (XA|XC , do(XB, XD)) = P (XA|XB, XC , XF , do(XD))◦P (XF |XC , do(XD)) µB∪C-a.s.
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Proof. With help of Corollary 5.1.3 (2nd rule) we can establish the a.s.-equality:

P (XA|XF0 , XH , XC , XB, do(XD)) = P (XA|XF0 , XH , XC , do(XB, XD)) µF0∪H∪C∪B-a.s.,
(30)

using the assumptions (implied by eq. 28):

A
d

⊥
G+

do(IB,D)

IB |(B ∪ F0 ∪H ∪ C ∪D),

µF0∪H∪C∪B ≪ P (XF0 , XH , XC , XB| do(XD))≪ µF0∪H∪C∪B,

µF0∪H∪C ≪ P (XF0 , XH , XC | do(XB, XD))≪ µF0∪H∪C .

With help of Corollary 5.1.3 (3rd rule) we can establish the a.s.-equality:

P (XF0 , XH |XC , do(XB, XD)) = P (XF0 , XH |XC , do(XD)) µC-a.s., (31)

using the assumptions (implied by eq. 27):

(F0 ∪H)
d

⊥
G+

do(IB,D)

IB |(C ∪D),

µC ≪ P (XC | do(XB, XD))≪ µC ,

µC ≪ P (XC | do(XD))≪ µC .

With help of Corollary 5.1.3 (1st rule) we can establish the a.s.-equality:

P (XA|XF0 , XH , XC , XB, do(XD)) = P (XA|XF0 , XF1 , XH , XC , XB, do(XD)) (32)
µF0∪F1∪H∪C∪B-a.s.,

using the assumptions (implied by eq. 28):

A
d

⊥
G+

do(D)

F1 |(B ∪ F0 ∪H ∪ C ∪D),

µF0∪F1∪H∪C∪B ≪ P (XF0 , XF1 , XH , XC , XB| do(XD))≪ µF0∪F1∪H∪C∪B.

With help of Corollary 5.1.3 (1st rule) we can establish the a.s.-equality:

P (XH |XF , XC , do(XD)) = P (XH |XF , XC , XB, do(XD)) µF∪C∪B-a.s., (33)

using the assumptions (implied by eq. 29):

H
d

⊥
G+

do(D)

B |(F ∪ C ∪D),

µF∪C∪B ≪ P (XF , XC , XB| do(XD))≪ µF∪C∪B.
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These a.s.-equations together with the chain rule gives us the following µB∪C-a.s.-
equation:

P (XA|XC , do(XB, XD))

= P (XA|XF0 , XH , XC , do(XB, XD)) ◦ P (XF0 , XH |XC , do(XB, XD))
30
= P (XA|XF0 , XH , XC , XB, do(XD)) ◦ P (XF0 , XH |XC , do(XB, XD))
31
= P (XA|XF0 , XH , XC , XB, do(XD)) ◦ P (XF0 , XH |XC , do(XD))

= P (XA|XF0 , XH , XC , XB, do(XD)) ◦ P (XF0 , XF1 , XH |XC , do(XD))
32
= P (XA|XF0 , XF1 , XH , XC , XB, do(XD)) ◦ P (XF0 , XF1 , XH |XC , do(XD))

= P (XA|XF , XH , XC , XB, do(XD)) ◦ P (XF , XH |XC , do(XD))

= P (XA|XF , XH , XC , XB, do(XD)) ◦ (P (XH |XF , XC , do(XD))⊗ P (XF |XC , do(XD)))
33
= P (XA|XF , XH , XC , XB, do(XD)) ◦ (P (XH |XF , XC , XB, do(XD))⊗ P (XF |XC , do(XD)))

= P (XA|XF , XC , XB, do(XD)) ◦ P (XF |XC , do(XD)).

Note that the disintegration:

P (XF , XH |XC , do(XD)) = P (XH |XF , XC , do(XD))⊗ P (XF |XC , do(XD))

holds (only) P (XC | do(XD))-a.s., as for the conditional P (XH |XF , XC , do(XD)) we have
the ambiguity if it is considered a conditional of P (XF , XH |XC , do(XD)), for which then
we have “sure” equality, or, if it is considered a conditional of P (XF , XH , XC | do(XD)),
for which then we have only the above “almost-sure” equality. Further note, that by the
assumption on the reference measures, the above equality then also holds µC-a.s.

Corollary 5.2.4 (Conditional interventional backdoor covariate adjustment formula).
Consider an L-CBN:

M =
(
G+ =

(
J, (V, U), E+

)
,
(
Pv(Xv| do(XPaG

+
(v)
))
)
v∈V ∪U

)
.

Assume that the conditional interventional backdoor criterion in the graphs Gdo(IB ,D)

holds:

1. F
d

⊥
Gdo(IB,D)

IB |(C ∪D), and:

2. A
d

⊥
Gdo(IB,D)

IB |(B ∪ F ∪ C ∪D).

Further assume the following absolute continuities:

µB∪C∪F ≪ P (XB, XC , XF | do(XD))≪ µB∪C∪F ,

µC∪F ≪ P (XC , XF | do(XB, XD))≪ µC∪F .

Then we have the adjustment formula:

P (XA|XC , do(XB, XD)) = P (XA|XB, XC , XF , do(XD))◦P (XF |XC , do(XD)) µB∪C-a.s.
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Proof. It follows by the same arguments as in Theorem 5.2.3 with F1 = H = ∅.

Without the conditioning set, i.e. C = ∅, and direct careful analysis we get a version
with slightly weaker positivity assumptions:

Corollary 5.2.5 (Interventional backdoor covariate adjustment formula). Consider an
L-CBN:

M =
(
G+ =

(
J, (V, U), E+

)
,
(
Pv(Xv| do(XPaG

+
(v)
))
)
v∈V ∪U

)
.

Assume that the interventional backdoor criterion in the graphs Gdo(IB ,D) holds:

1. F
d

⊥
Gdo(IB,D)

IB |D, and:

2. A
d

⊥
Gdo(IB,D)

IB |(B ∪ F ∪D).

Further assume the following absolute continuity:

P (XF | do(XD))⊗ P (XB| do(XD))≪ P (XF , XB| do(XD)).

Then we have the adjustment formulas:

P (XA, XF | do(XB, XD)) = P (XA|XF , XB, do(XD))⊗ P (XF | do(XD)) P (XB| do(XD))-a.s.,
P (XA| do(XB, XD)) = P (XA|XF , XB, do(XD)) ◦ P (XF | do(XD)) P (XB| do(XD))-a.s.

Proof. First, note that “do(XD)” appears in every Markov kernel in the above formulas.
So for readability, we will drop it in the following everywhere.

By the first d-separation assumption we see by Proposition 5.1.7 (rule 3) that we have
the “sure” equality: P (XF | do(XB)) = P (XF ). By the second d-separation assumption
we see by Proposition 5.1.7 (rule 2) that we have a Markov kernel P (XA|XF , do(XB))
that is also a version of P (XA|XF , XB). So any version of P (XA|XF , XB) can be changed
on a P (XF , XB)-null set N ⊆ XB × XF to get P (XA|XF , do(XB)). The absolute conti-
nuity assumption implies that N is also a P (XF ) ⊗ P (XB)-null set. This implies that
we have the equations of Markov kernels:

P (XA|XF , XB)⊗ P (XF )⊗ P (XB) = P (XA|XF , do(XB))⊗ P (XF )⊗ P (XB)

= P (XA|XF , do(XB))⊗ P (XF | do(XB))⊗ P (XB)

= P (XA, XF | do(XB))⊗ P (XB).

By the essential uniqueness of conditional Markov kernels we get that:

P (XA, XF | do(XB)) = P (XA|XF , XB)⊗ P (XF ) P (XB)-a.s.

Marginalizing out XF on both sides gives us the remaining claim.

We can now further specialize to the case with C = D = J = ∅ and immediately get:
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Corollary 5.2.6 (Backdoor covariate adjustment). Assume that the backdoor criterion
holds:

1. F
d

⊥
Gdo(IB)

IB, and:

2. A
d

⊥
Gdo(IB)

IB |(B ∪ F ).

Further assume the following absolute continuity:

P (XF )⊗ P (XB)≪ P (XF , XB).

Then we have the adjustment formulas:

P (XA, XF | do(XB)) = P (XA|XF , XB)⊗ P (XF ) P (XB)-a.s.,
P (XA| do(XB)) = P (XA|XF , XB) ◦ P (XF ) P (XB)-a.s.

Remark 5.2.7. An example how the adjustment formula may fail if the strict positivity
assumptions are not met is provided in Example 5.3.29.

5.3. The ID-Algorithm

Consider an L-CBN:

M =
(
G+ =

(
J, (V, U), E+

)
,
(
Pv(Xv| do(XPaG

+
(v)
))
)
v∈V ∪U

)
,

with observable CADMG G. For subsets A,B,C ⊆ V we want to infer the conditional
interventional distribution P (XA|XB, do(XJ∪C)) in terms of (repeated products and)
conditional marginals of the observable Markov kernel P (XV | do(XJ)) and knowledge
of G. In this subsection we will restrict ourselves to the case P (XA| do(XJ∪C)) with
no conditioning and present the ID-algorithm, which can tell if this is possible or not
(in precise terms), and if so, provides us with a formula to do so. We will start this
subsection with a series of necessary definitions, notations and lemmata. The main
references are [Pea09,GP95,Tia02,TP02,Tia04,SP06b,HV06,HV08,RERS23,FM20].

5.3.1. Core Definitions and Notations

Definition 5.3.1 (Identifiability of interventional distributions/Markov kernels). Let
G = (J, V, E, L) be a CADMG and B ⊆ V and C ⊆ J ∪ V disjoint subsets. We say
that the interventional distribution/Markov kernel of C onto B is identifiable from G,
or, more in generic symbols, that P (XB| do(XJ∪C)) is identifiable from P (XV | do(XJ))
(and G), if for every two L-CBNs M1 and M2 with the same:

1. observable CADMG G1 = G2 = G, and:

2. underlying spaces X1,v = X2,v =: Xv for v ∈ J ∪ V , and:
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3. observable Markov kernels P1(XV | do(XJ)) = P2(XV | do(XJ)),

we also have the equality of the interventional Markov kernels:

P1(XB| do(XJ∪C)) = P2(XB| do(XJ∪C)).

Sometimes we further restrict the class of CBNs to define/achieve identifiability, e.g.
by adding “for linear Gaussian CBNs” or “for discrete CBNs with strictly positive mass
functions”, etc., and then only require M1 and M2 to come from such classes.

In the following we introduce a somewhat more vague, but constructive, notion of
identifiability, which we coin trackability that allows us to follow certain marginalization,
conditioning and multiplication steps to arrive at the wanted interventional Markov
kernel.

Definition 5.3.2 (Trackability (up to specifications)). Let G = (J, V, E, L) be a CADMG
and B ⊆ V and C ⊆ J ∪ V disjoint subsets.

1. We say that the interventional distribution/Markov kernel of C onto B is trackable
from G, or simply that P (XB| do(XJ∪C)) is trackable from P (XV | do(XJ)) (and
G), if there exists a finite sequence of operations, only involving marginalization,
conditioning and multiplication of Markov kernels, applied to previously determined
Markov kernels, starting from P (XV | do(XJ)), with predetermined target sets Tn ⊆
G, indicating on which variable the operation is applied to, such that for every
L-CBNs M with observable CADMG G we can compute P (XB| do(XJ∪C)) from
P (XV | do(XJ)) when we follow the above sequence of operations (and this should
work no matter which version of conditional Markov kernels were used).

2. We say that P (XB| do(XJ∪C)) is trackable up to specifications “xyz” from P (XV | do(XJ))
(and G), if the same as above holds true, but whenever we condition, which leads
to a Markov kernel only up so some null sets, we use the specifications “xyz” to
pick a certain version of conditional Markov kernel at each step such that following
the pre-specified operations leads to P (XB| do(XJ∪C)).

3. We say that P (XB| do(XJ∪C)) is trackable up to oracle choices from P (XV | do(XJ))
(and G) if there exists a conditional Markov kernel at each conditioning step (“cho-
sen by an oracle that knows M”) such that following these operations leads to
P (XB| do(XJ∪C)).

4. Again, we sometimes further restrict the class of CBNs to define/achieve track-
ability (up to oracle choices), e.g. by adding “for linear Gaussian CBNs” or “for
discrete CBNs with strictly positive mass functions”, etc., and then only allow M
to come from such classes.

Example 5.3.3. To illustrate how such a series of operations could look like consider
the CADMG G from Figure 11 with V = {v1, v2, v3}. We assume that the observational
distribution P (X1, X2, X3) is given. A list of operations could look like:
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1. Condition P (X1, X2, X3) on (X1, X2) and get a version P (X3|X1, X2).

Further specification could be (if possible): “take a continuous version” or “take a
version that is only dependent on variables X1” or ”take a strictly positive version”.

2. Marginalize out (X2, X3) from P (X1, X2, X3) and get P (X1).

3. Take the product of the previous two Markov kernels: P (X3|X1, X2)⊗ P (X1).

4. Marginalize out X1 from the last Markov kernel and get: P (X3|X1, X2) ◦ P (X1).

Lemma 5.3.4. Let G = (J, V, E, L) be a CADMG.

1. If P (XB| do(XJ∪C)) is trackable from P (XV | do(XJ)) then it is also identifiable.

2. If P (XB| do(XJ∪C)) is trackable up to oracle choices from P (XV | do(XJ)) then it
is also trackable (and thus identifiable) for discrete CBNs M with strictly positive
mass functions: p(xV | do(xJ)) > 0 for all xV , xJ .

Proof. The first point is clear as the sequence of operations always ends in the same
result. For discrete CBNs M with strictly positive mass functions conditional Markov
kernels are unambiguous, thus a sequence of marginalization, conditioning and products
always leads to the same result. Note that marginals, conditionals and products of
strictly positive mass functions also are strictly positive mass functions.

v1 v2
(a)

v1 v2
(b)

v1 v3 v2
(c)

Figure 10: (a) A DAG with two nodes. (b) An ADMG with two nodes. (c) An ADMG
with three nodes. The interventional distribution P (X2| do(X1)) is trackable
up to oracle choices from P (X1, X2, X3) in (a) and (c), but not in (b).

Example 5.3.5. Consider the DAG G = (V,E) from Figure 10 (a) with V = {v1, v2}
and E = {v1 v2}. Let X1 := {a, b, c} and X2 := {0, 1}. Define the following Markov
kernels P1(X1) := P1(X2) := P (X1) via:

P (X1 = a) :=
1

2
, P (X1 = b) :=

1

2
, P (X1 = c) := 0,

and further:

P1(X2| do(X1 = a)) = Bern(1/4), P2(X2| do(X1 = a)) = Bern(1/4),

P1(X2| do(X1 = b)) = Bern(3/4), P2(X2| do(X1 = b)) = Bern(3/4),

P1(X2| do(X1 = c)) = Bern(1/8), P2(X2| do(X1 = c)) = Bern(7/8).
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Then we have two CBNs with observable DAG G, the same underlying spaces and the
same observable Markov kernel:

P (X1, X2) := P1(X2| do(X1))⊗ P1(X1) = P2(X2| do(X1))⊗ P2(X1),

given by:

M1 := (G, (P1(X1), P1(X2| do(X1)))) ,

M2 := (G, (P2(X1), P2(X2| do(X1)))) .

Furthermore, consider the Markov kernel P (X2|X1) given by:

P (X2|X1 = a) = Bern(1/4),

P (X2|X1 = b) = Bern(3/4),

P (X2|X1 = c) = Bern(5/8).

We thus have three different versions of the conditional Markov kernels of P (X1, X2):

P (X2|X1) ̸= P1(X2| do(X1)) ̸= P2(X2| do(X1)) ̸= P (X2|X1).

This shows that the interventional distribution P (X2| do(X1)) is not identifiable (and
thus not trackable) from P (X1, X2) and G. However, it is trackable up to oracle choices
from P (X1, X2) and G. It would thus be trackable (and identifiable) for discrete CBNs
with strictly positive mass functions, e.g. here if we also put positive mass on P (X1 =
c) > 0.

Notation 5.3.6. Let G = (J, V, E, L) be a CADMG, < a topological order of G and let
v ∈ C ⊆ V . We then put:

Anc[C](v) := AncGdo(Cc)(v) ∩ C,

Pred
[C]
< (v) := Pred

Gdo(Cc)

< (v) ∩ C = PredG
<(v) ∩ C,

Dist[C](v) := DistGdo(Cc)(v) ∩ C = DistGdo(Cc)(v),

Dist
[C]
< (v) := Dist[C](v) ∩ Pred

[C]
< (v),

D[C] :=
{
Dist[C](v)

∣∣∣ v ∈ C} .
Similarly, if we use the subscript ≤ we then also include v. Also note that the dependence
on G in the above constructions is implicit.

Notation 5.3.7 (The key interventional Markov kernels). Let M be an L-CBN with
with observable CADMG G = (J, V, E, L) and C ⊆ V any subset. We will abbreviate:

Q[C] := P (XC | do(XJ∪V \C)) = P (XC | do((((((((((
X(J∪V )\(PaG(C)∪C), XPaG(C)\C)),

where the latter identification comes from Lemma 5.3.8 (using the global Markov prop-
erty), which is “surely” determined, and not just up to some null-set.

Note that we have the corner cases:

Q[V ] = P (XV | do(XJ)), Q[∅] = δ∗.
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Lemma 5.3.8. Let M be an L-CBN with with observable CADMG G = (J, V, E, L) and
C ⊆ V any subset. Then we have the identification:

P (XC | do(XJ∪V \C)) = P (XC | do((((((((((
X(J∪V )\(PaG(C)∪C), XPaG(C)\C)).

Proof. This follows from the global Markov property with:

C
d

⊥
G

do(I
V \(C∪PaG(C))

,PaG(C)\C)

IV \(C∪PaG(C)) |PaG(C) \ C.

To elaborate the latter, let P := PaG(C) \ C and W := V \ (C ∪ PaG(C)) and:

V ′ := V \ P = C ∪̇W, J ′ := (J \ P ) ∪̇P, G′ := Gdo(IW ,P ).

Now consider a walk from a node c ∈ C to a node j ∈ J ′ ∪̇ IW in G′:

π : c · · · j.

If j ∈ P then the walk is blocked by P at the endnode j ∈ P . So lets assume the case
j /∈ P . Then the walk is of the form:

π : c · · · w j,

with a w ∈ W . So we can write it further as:

π : c = c0 c1 · · · ck v · · · w j,

with c0, . . . , ck ∈ C for some k ≥ 0, and v /∈ C, the first occuring node not in C (on
π from the left). Note that v = w is possible. If the edge ck v is of the form
ck v then v ∈ P and the walk is blocked by P at the non-collider v. So we can
assume the case where the edge is of the form ck v. This means that on the subwalk
ck v · · · w j we must have at least one collider. This collider is then
blocked by P as no collider can be an ancestor of a node in P inside G′, because P
consists only of input nodes of G′.

This shows the claim:
C

d

⊥
G′
IW |P.

The rest then follows from the global Markov property.

5.3.2. The Interventional Ordered Local Markov Property

One of the ingredient for the ID-algorithm is the ability to track (up to oracle choices) the
interventional Markov kernel Q[D] for districts D of G from Q[V ]. The key ingredient
to achieve this is the interventional ordered local Markov property, which provides us
with certain well-behaved Markov kernels that appear in factorizations of both Q[V ]
and Q[D].
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Definition 5.3.9 (The preceding Markov blanket of a node). Let G = (J, V, E, L) be a
CADMG and < a topological order. For v ∈ V we make the following abbreviations:

G≤(v) := PredG
≤(v),

DiG≤(v) := DistG≤(v)(v),

DiG<(v) := DiG≤(v) \ {v} ,
PaDG

<(v) := PaG(DiG≤(v)) \DiG≤(v),
MbG

<(v) := PaDG
<(v) ∪̇DiG<(v)

= PaG(DistG≤(v)(v)) ∪DistG≤(v)(v) \ {v} .

We call DiG≤(v) the preceding district and MbG
<(v) the preceding Markov blanket of v

in G w.r.t. <. Note that this definition depends on the topological order < and that we
have the inclusions:

DiG<(v) ⊆ MbG
<(v) ⊆ PredG

<(v).

Proposition 5.3.10 (Interventional ordered local Markov property). Let M be an L-
CBN with with observable CADMG G = (J, V, E, L) and a fixed topological order <.
Then for every v ∈ V we have the conditional independence:

Xv ⊥⊥
P (XV | do(XI

V \DiG≤(v)
,XJ ))

XPredG<(v) |XMbG<(v).

In particular, there exists a Markov kernel, denoted by:

Q(Xv|XMbG<(v)) or Q(Xv|XDiG<(v), do(XPaDG
<(v))),

that simultaneously is a version of:

P (Xv|XPred
[V ]
< (v)

, do(XJ)) and P (Xv|XPred
[D]
< (v)

, do(XJ∪V \D)),

for every subset D ⊆ V with DiG≤(v) ⊆ D, e.g. D = DistG(v).

Proof. This follows from the global Markov property, Theorem 4.2.1, together with the
d-separation statement:

{v}
d

⊥
Gdo(I

V \DiG≤(v)
)

PredG
<(v) |MbG

<(v).

See Lemma 5.3.12 and Lemma 5.3.13.

Proofs - The Interventional Ordered Local Markov Property
For the next two Lemmata we introduce some shorter notations:

143



Notation 5.3.11. Let G = (J, V, E, L) be a CADMG, < a topological order for G and
v ∈ V a fixed node. For a subset W ⊆ J ∪ V we abbreviate:

W< := {w ∈ W |w < v} , W≤ := {w ∈ W |w < v ∨ w = v} ,

and W> and W≥ accordingly.

The next Lemma is the graphical center piece that makes the ID-algorithm possible. It
could be called the graphical version of an “interventional ordered local Markov property”,
whose distributional counterpart is stated in the Lemma after.

Lemma 5.3.12. Let G = (J, V, E, L) be a CADMG, < a topological order for G and
v ∈ V a fixed node. Let D ⊆ V be a subset such that v ∈ D and DistG≤(D≤) ⊆ D, where
G≤ := PredG

≤(v) is the ancestral subgraph of predecessors of v in G, e.g. D = DistG(v)

or D = DistG≤(v). Then we have the d-separation statement:

{v}
d

⊥
Gdo(IV \D≤

)

V< |PaG(D≤) ∪D<.

Proof. We abbreviate:

G̃ := Gdo(IV \D≤ ), F := PaG(D≤) ∪D<.

Assume the contrary to the claim and let π be a shortest path from v to a node w ∈
J ∪̇ IV \D ∪̇V< in the graph G̃. It is clear that w ̸= v.

If w ∈ F then π is blocked by F at the endnode w. So we can assume that w /∈ F ,
in particular, w /∈ D≤. So there exist v0, . . . , vk ∈ D≤ for some k ≥ 0 and w̃ /∈ D≤ such
that π is of the form:

π : v = v0 · · · vk w̃ · · · w,

where w̃ is the first node from the left that is not in D≤, which exists since w /∈ D≤.
Since vk ∈ D≤ it is clear that w̃ /∈ IV \D≤ . So w̃ ∈ J ∪ V \D≤.

If the edge vk w̃ is of the form vk w̃ then w̃ ∈ PaG(D≤). So in this case π is
blocked at the non-collider w̃ by F .

So we can assume the case vk w̃. This implies that w̃ cannot lie in the set of input
nodes of G̃, which implies that w̃ /∈ J ∪ IV \D≤ . With this we then get that w̃ ∈ V \D≤.

Assume the case that w̃ ∈ V> and π is of the form:

π : v = v0 · · · vk w̃ = w̃0 · · · w̃m = w,

where the subwalk w̃0 · · · w̃m has no colliders. Because of the edge vk w̃ this
subwalk necessarily is directed to the right and we get:

π : v = v0 · · · vk w̃ = w̃0 · · · w̃m = w.

Then the endnode w is not an input node, w /∈ J ∪ IV \D≤ , and v < w̃ ≤ w̃m = w, thus
w ∈ V>. But this is a contradiction to w ∈ J ∪̇ IV \D ∪̇V<. So this case cannot occur.
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Now assume the case that w̃ ∈ V> and π is of the form:

π : v = v0 · · · vk w̃ = w̃0 · · · w̃m · · · w,

for some m ≥ 0, with a directed subwalk w̃0 · · · w̃m, where w̃m is the first node
after w̃ where a collider occurs, which could be w̃ itself. Again we have v < w̃ ≤ w̃m

and thus w̃m ∈ V>. This implies that w̃m /∈ AncG(F ), since AncG(F ) ⊆ J ∪ V<. So π is
blocked by F at the collider w̃m.

So we are left with the cases vk w̃ and w̃ ∈ V< \D≤.
Now consider the case of a directed edge vk w̃ and w̃ ∈ V< \D≤. If vk ̸= v then

π is blocked at the non-collider vk ∈ D< by F . So we can assume that vk = v. This
implies v < w̃ and thus w̃ ∈ V>, which contradicts w̃ ∈ V<. So this cannot occur.

Now consider the case of a bidirected edge vk w̃ and w̃ ∈ V< \ D≤. Then both
nodes vk, w̃ ∈ G≤ and w̃ ∈ DistG≤(vk). By the assumption of this Lemma we have:

w̃ ∈ DistG≤(vk) ⊆ DistG≤(D≤) ⊆ D ∩G≤ = D≤.

So w̃ ∈ D≤, which contradicts w̃ /∈ D≤. So this case cannot neither occur.
So we have shown that in all cases that can occur the path π in G̃ is blocked by F .

This shows the claim.

The last Lemma allows us to use the global Markov property for the existence of
special Markov kernels that are of importance for the ID-algorithm:

Lemma 5.3.13 (Interventional ordered local Markov property). Let M be an L-CBN
with with observable CADMG G = (J, V, E, L) and a fixed topological order < and fixed
v ∈ V . Let G≤ := PredG

≤(v) be the ancestral sub-CADMG of predecessors of v in G and
let:

D≤ := DistG≤(v), F := PaG(D≤) ∪D≤ \ {v} .

Then we have the conditional independence:

Xv ⊥⊥
P (XV≤ | do(XIV \D≤

,XJ ))
XV< |XF .

In particular, there exists a Markov kernel:

Q(Xv|XF )

that simultaneously is a version of:

P (Xv|XH , do(XJ∪V \S)),

for every subsets H,S ⊆ V such that D≤ ⊆ S ⊆ V and F ∩ S< ⊆ H ⊆ V<. Note that
this includes the corner cases:

1. P (Xv|XV< , do(XJ)),
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2. P (Xv|XF∩V< , do(XJ)),

3. P (Xv|XS< , do(XJ∪V \S)),

4. P (Xv|XF∩S< , do(XJ∪V \S)),

5. P (Xv|XD< , do(XJ∪V \D≤)).

Proof. By Lemma 5.3.12 we have the d-separation:

{v}
d

⊥
Gdo(IV \D≤

)

V< |F.

By the global Markov property, Theorem 4.2.1, we get:

Xv ⊥⊥
P (XV≤ | do(XIV \D≤

,XJ ))
XV< |XF .

So there exists a Markov kernel Q(Xv|XF ) such that:

P (XV≤ | do(XIV \D≤
, XJ)) = Q(Xv|XF )⊗ P (XV<| do(XIV \D≤

, XJ)). (#)

For a subset S ⊆ V with D≤ ⊆ S we have:

V \D≤ = (V \ S) ∪̇ (S \D≤).

By putting XIS\D≤
= ⋆ and XIV \S = xV \S we get:

P (XV≤| do(XV \S, XJ)) = Q(Xv|XF )⊗ P (XV<| do(XV \S, XJ)).

Now consider another subset H ⊆ V< with F ∩ S< ⊆ H. Then marginalizing out
XV≤\({v}∪H) gives us:

P (Xv, XH | do(XJ∪V \S)) = Q(Xv|XF )⊗ P (XH | do(XJ∪V \S)).

This shows that Q(Xv|XF ), simultaneously, is a version of:

P (Xv|XH , do(XJ∪V \S)),

for every subsets H,S ⊆ V such that D≤ ⊆ S ⊆ V and F ∩ S< ⊆ H ⊆ V<. This shows
the claim.

5.3.3. Ancestral Sets and Districts

Lemma 5.3.14 (Ancestral subsets are trackable). Let M be an L-CBN with with observ-
able CADMG G = (J, V, E, L) and A ⊆ V be a subset such that A = Anc[V ](A). Then
we have the equality between the interventional distribution Q[A] and the A-marginal of
Q[V ]:

Q[A] = P (XA| do(XJ∪V \A)) = P (XA| do(XJ)).
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Proof. By Lemma 5.3.8 we only have to show the right identity:

Q[A] = P (XA| do(XJ∪V \A))
!
= P (XA| do(XJ)).

The latter follows again from the global Markov property and the d-separation:

A
d

⊥
Gdo(IV \A)

IV \A | J.

This d-separation holds true since every walk from a node v ∈ A to a node j ∈ J ∪̇ IV \A
is either blocked by J as the endnode j ∈ J or is of the form:

π : v a1 · · · ak w′ · · · w j,

with a w ∈ V \ A, j ∈ IV \A, a1, . . . , ak ∈ A for some k ≥ 0 and w′ /∈ A, the first node
not in A on π from the left (w′ = w possible). In case the edge ak w′ is of the form
ak w′ we have:

w′ ∈ AncG(A) \ A = AncG(A) \ Anc[V ](A) ⊆ J.

So in this case the walk is blocked at the non-collider w′ by J . So we can consider the case
where the edge is of the form ak w′. Then the subwalk ak w′ · · · w j
must contain a collider. This collider can not be an ancestor of J , as J are the input
nodes. So the walk is blocked by J in all cases.

Remark 5.3.15 (Districts are trackable up to oracle choices). Let M be an L-CBN with
observable CADMG G = (J, V, E, L).

1. Since the Markov kernel Q(Xv|XMbG<(v)) coming from the interventional ordered
local Markov property, see Proposition 5.3.10, is a version of both:

P (Xv|XPred
[V ]
< (v)

, do(XJ)) and P (Xv|XPred
[D]
< (v)

, do(XJ∪V \D)),

for D = DistG(v), which are marginal conditionals of the interventional distribu-
tions Q[V ] and Q[D], resp., the Q(Xv|XMbG<(v))’s are trackable from either quantity
up to oracle choices.

2. We get the following factorization by the chain rule for every D ∈ D[V ]:

Q[V ] =
>⊗

v∈V

P (Xv|XPred
[V ]
< (v)

, do(XJ)) =
>⊗

v∈V

Q(Xv|XMbG<(v)),

Q[D] =
>⊗

v∈D

P (Xv|XPred
[D]
< (v)

, do(XJ∪V \D)) =
>⊗

v∈D

Q(Xv|XMbG<(v)).

3. In particular, Q[D] is trackable from Q[V ] up to oracle choices by first determining
Q(Xv|XMbG<(v)) for v ∈ D via marginalization and conditioning and then taking the
product of Markov kernels in reverse order of <.
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4. The above seems to give us something like a factorization:

Q[V ] =
>⊗

v∈V

Q(Xv|XMbG<(v)) =

 >⊗
D∈D[V ]

>⊗
v∈D

Q(Xv|XMbG<(v))

=

 >⊗
D∈D[V ]

( >⊗
v∈D

Q(Xv|XMbG<(v))

)
=

 >⊗
D∈D[V ]

Q[D],

where the products in brackets are not well-defined in the naive way, as the districts
of a CADMG don’t need to be topologically ordered. Nonetheless, if we are given
a fixed topological order < and the interventional Markov kernels Q[D] for every
D ∈ D[V ] then we can first track Q(Xv|XMbG<(v)) from Q[D] up to oracle choices
for every v ∈ D and every D ∈ D[V ] and then take the product on the top left.

Definition 5.3.16. Let M be an L-CBN with observable CADMG G = (J, V, E, L) and
a fixed topological order <. Let D ⊆ D[V ] be a set of districts of G. Then we put:[

>⊗
D∈D

]
Q[D] :=

>⊗
v∈

⋃
D∈D D

Q(Xv|XMbG<(v)),

where the product on the right is taken in reverse topological order. Note that for G′ :=
Gdo(Dc) and v ∈ D we have MbG′

< (v) = MbG
<(v). So the set MbG

<(v) can be determined
by the subgraph G′ and < alone.

5.3.4. The ID-Algorithm

Now we come to the main part of this section, the ID-algorithm for the identification of
causal effects, or, more precisely, the trackability up to oracle choices of interventional
Markov kernels, from the observable Markov kernel. The main references are [Pea09,
GP95,Tia02,TP02,Tia04,SP06b,HV06,HV08,RERS23,FM20].

Algorithm 5.3.17 (ID-algorithm). Let M be an L-CBN with with observable CADMG
G = (J, V, E, L) and a fixed topological order <. Let ∅ ̸= B ⊆ V and C ⊆ J ∪ V be
two disjoint subsets of nodes. We want to query if the interventional Markov kernel
P (XB| do(XJ∪C)) is trackable up to oracle choices from the observable Markov kernel
P (XV | do(XJ)) = Q[V ] and G.

1. Put BC := AncGdo(C)(B) \ (J ∪ C) ⊆ V .

Then P (XB| do(XJ∪C)) is the B-marginal of P (XBC | do(XJ∪C)) = Q[BC ].

So we are left to determine if we can track Q[BC ] from Q[V ] up to oracle choices.

2. Find the districts D[BC ] = {S1, . . . , SK} and put Ak,0 := V for k = 1, . . . , K.

Note that Q[Ak,0] = Q[V ] is trivially tracked from Q[V ].
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3. For each k = 1, . . . , K repeat the following steps recursively for ℓ ∈ N:

a) Take the district in Ak,ℓ:

Dk,ℓ := Dist[Ak,ℓ](Sk)

We can track Q[Dk,ℓ] from Q[Ak,ℓ] up to oracle choices by Remark 5.3.15.

b) Take the ancestral closure in Dk,ℓ:

Ak,ℓ+1 := Anc[Dk,ℓ](Sk).

We can track Q[Ak,ℓ+1] from Q[Dk,ℓ] via marginalization by Lemma 5.3.14.

c) If Dk,ℓ = Ak,ℓ or Ak,ℓ+1 = Dk,ℓ then stop for this k and put:

S̆k := Dk,ℓ.

Otherwise, repeat with: ℓ← ℓ+ 1.

4. When the algorithm has stopped then for every k = 1, . . . , K we have:

S̆k = Anc[S̆k](Sk) = Dist[S̆k](Sk) ⊇ Sk.

Furthermore, we have tracked all Q[S̆k]’s recursively from Q[V ] up to oracle choices.

5. If there is any k = 1, . . . , K with S̆k ̸= Sk then the ID-algorithm outputs: FAIL.

6. Otherwise, we have for all k = 1, . . . , K that Q[Sk] = Q[S̆k] and we can track
Q[BC ] from Q[V ] up to oracle choices via:

Q[BC ] =

 >⊗
Sk∈D[BC ]

Q[Sk],

and P (XB| do(XJ∪C)) as the B-marginal thereof.

Corollary 5.3.18 (Soundness up to oracle choices). The ID-algorithm 5.3.17 is sound
up to oracle choices. This means that if it does not produce FAIL for input B,C ⊆ G
then P (XB| do(XJ∪C)) is trackable up to oracle choices from P (XV | do(XJ)) and G.

Proof. This is clear as each step in the ID-algorithm is trackable up to oracle choices.
Note that the operations at each step can be formulated by knowing G, B and C alone
without knowing M in advance.

Theorem 5.3.19 (Soundness up to null-sets). Let G = (J, V, E, L) be a CADMG with
a fixed topological order <. Consider the class of L-CBNs M with observable CADMG
G such that the following holds:

1. Each measurable space Xv comes equipped with a fixed measure µv for v ∈ V ,
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2. for every subset D ⊆ V the interventional Markov kernel Q[D] = P (XD| do(XJ∪V \D))
is absolute continuous w.r.t. the product measure µD :=

⊗
v∈D µv and vice versa:

µD ≪ Q[D]≪ µD.

If the ID-algorithm does not produce FAIL for input B,C ⊆ G, then P (XB| do(XJ∪C)) is
“almost-surely” trackable from P (XV | do(XJ)) and G for such CBNs M , i.e. the Markov
kernel that was output by the ID-algorithm equals P (XB| do(XJ∪C)) up to a µV \BC -null
set in XJ∪V \BC (see Remark 5.3.20 below).

Proof. See Theorem 5.3.31.

Remark 5.3.20. 1. For the almost-sure soundness in Theorem 5.3.19 to hold one
implicitely needs/is allowed to make slight relaxations to the ID-algorithm 5.3.17:

Instead of insisting on taking the conditionals Q(Xv|XMbG
′

< (v)
) of Q[D] for v ∈ D ⊆

V one takes any version of that conditional of Q[D]⊗µV \D that is only dependent
on predecessors of v, which will always be possible as Q(Xv|XMbG

′
< (v)

) is an existing
such version.

2. The conditions of Theorem 5.3.19 are satisfied for a L-CBNs M with CDAG G+ =
(J, U ∪̇V,E) if every Markov kernel Pv(Xv| do(XPaG

+
(v)
)) has a strictly positive

Doob-Radon-Nikodym derivative/density w.r.t. the measure µv for all v ∈ V , see
Lemma 5.3.33.

Theorem 5.3.21 (From almost-sure to sure soundness). In addition to the conditions
in Theorem 5.3.19 assume:

1. Xv is a Polish space for every v ∈ J ∪ V ,

2. µV is strictly positive (on non-empty open subsets of XV ),

3. the queried interventional Markov kernel is continuous as a map:

P (XB| do(XJ∪C)) : XJ∪C → P(XB).

Then the output P̂ (XB|XJ∪V \BC ) of the ID-algorithm (in the not-FAIL case) can be
changed on a µV \BC -null set in XJ∪V \BC such that it becomes continuous as a map:

P̂ (XB|XJ∪V \BC ) : XJ∪V \BC → P(XB).

Every such continuous version of P̂ (XB|XJ∪V \BC ) is then necessarily identical to the in-
terventional Markov kernel P (XB| do(XJ∪C)). These conditions thus allow us to recover
from the ambiguity resulting from the null-sets.

Proof. The existence of such a null-set is clear, because P̂ (XB|XJ∪V \BC ) is µV \BC -almost-
surely equal to P (XB| do(XJ∪C)), and the latter was assumed to be continuous. The
uniqueness follows from Lemma 2.4.23
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Remark 5.3.22. The statement of Theorem 5.3.21 can be further relaxed by asking
for Polish spaces Xv only for v ∈ V , strict positivity only for µV \BC and only for the
continuity of the maps:

XC\J → P(XB), xC\J 7→ P (XB| do(XJ∪C = (xJ , xC\J)),

for every xJ ∈ XJ separately, by then applying the criterion from Theorem 5.3.21 for
each partial input xJ ∈ XJ separately.

Example 5.3.23. All stated assumptions of Theorems 5.3.19 and 5.3.21 are satisfied if
every Markov kernel of the L-CBN M is linear Gaussian:

Pv(Xv ∈ dxv| do(XPaG
+
(v)

= x
PaG

+
(v)
)) = N (dxv|Γv · xPaG+

(v)
+ γv,Σv),

with transition matrix Γv, translation vector γv and positive definite covariance matrix
Σv ≻ 0 and Lebesgue measures µv, v ∈ U ∪ V .

Theorem 5.3.24 (Completeness, see [HV08]). The ID-algorithm is complete.
More precisely, if the ID-algorithm outputs FAIL for subsets B,C ⊆ G = (J, V, E, L)

then there exist two L-CBNs M1 and M2 with the same observable CADMG G, the same
and discrete underlying spaces Xv for v ∈ J∪V , and the same observable Markov kernels
P1(XV | do(XJ)) = P2(XV | do(XJ)) that have strictly positive mass functions such that:

P1(XB| do(XJ∪C)) ̸= P2(XB| do(XJ∪C)).

In particular, in case of FAIL, P (XB| do(XJ∪C)) is not identifiable from P (XV | do(XJ))
and G.

Remark 5.3.25 (Identification of conditional causal effects, see [Tia04]). If we want to
know if the conditional interventional Markov kernel P (XA|XB, do(XJ∪C)) is trackable
up to oracle choices from P (XV | do(XJ)) and G then we can run the ID-algorithm for
A ∪ B and C. If it does not output FAIL then P (XA∪B| do(XJ∪C)) is trackable up to
oracle choices from P (XV | do(XJ)) and G and by conditioning on XB afterwards so will
P (XA|XB, do(XJ∪C)) be.

However, note that there is a “conditional” version of the ID-algorithm, see [Tia04],
that can check if (and conclude that) P (XA|XB, do(XJ∪C)) is trackable up to oracle
choices from P (XV | do(XJ)) and G even if the (unconditional) ID-algorithm outputs
FAIL for P (XA∪B| do(XJ∪C)).

Examples

Example 5.3.26. Consider the DAG G = (V,E) from Figure 10 (a) with V = {v1, v2},
E = {v1 v2}. We want to determine if we can identify P (X2| do(X1)) from P (X1, X2)
in case we have a discrete CBN with strictly positive mass function: p(x1, x2, x3) > 0.
For this let B := {v2} and C := {v1}. Note that we have the topological order v1 < v2.
We then follow the steps of the ID-algorithm:
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1. Q[V ](x1, x2) := p(x1, x2).

2. BC = AncGdo(C)(B) \ C = {v2}.

3. D[BC ] = {S = {v2}}. So we compute:

a) D0 = Dist[V ](S) = {v2}. Compute:

Q[D0](x2|x1) = q(x2|x1) =
Q[V ](x1, x2)

Q[V ](x1)
= p(x2|x1).

b) A1 = Anc[D0](S) = {v2} = D0, thus S̆ = D0 = {v2} = S. Compute:

Q[S](x2|x1) = Q[D0](x2|x1) = p(x2|x1).

4. Since S̆ = S = {v2} we can compute:

Q[BC ](x2|x1) = Q[S1](x2|x1) = p(x2|x1).

So we can identify P (X2| do(X1)) from P (X1, X2) as the conditional P (X2|X1) via the
mass function from above.

Example 5.3.27. Consider the ADMG G = (V,E, L) from Figure 10 (b) with V =
{v1, v2}, E = {v1 v2} and L = {v1 v2}. We want to determine if we can identify
P (X2| do(X1)) from P (X1, X2) in case we have a discrete CBN with strictly positive
mass function: p(x1, x2, x3) > 0. For this let B := {v2} and C := {v1}. Note that we
have the topological order v1 < v2. We then follow the steps of the ID-algorithm:

1. Q[V ](x1, x2) := p(x1, x2).

2. BC = AncGdo(C)(B) \ C = {v2}.

3. D[BC ] = {S = {v2}}. So we compute:

a) D0 = Dist[V ](S) = {v1, v2}. Compute:

q(x1) = Q[V ](x1) = p(x1),

q(x2|x1) =
Q[V ](x1, x2)

Q[V ](x1)
= p(x2|x1),

Q[D0](x1, x2) = q(x2|x1) · q(x1) = p(x1, x2).

b) A1 = Anc[D0](S) = {v1, v2} = D0, thus S̆ = D0 = {v1, v2}. Compute:

Q[S̆](x1, x2) = Q[D0](x1, x2) = p(x1, x2).

4. Since S̆ = {v1, v2} ≠ {v2} = S the ID-algorithms outputs: FAIL.
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v1

v2 v3

(a) v1

v2 v3

(b) v1

v2 v3

(c)

Figure 11: A DAG with three nodes and its intervened graphs.

So we can not identify P (X2| do(X1)) from P (X1, X2) and G.

Example 5.3.28. Consider the DAG G = (V,E, L) from Figure 11 with V = {v1, v2, v3},
E = {v1 v2, v1 v3, v2 v3}. We want to determine if we can identify P (X3| do(X2))
from P (X1, X2, X3) in case we have a discrete CBN with strictly positive mass function:
p(x1, x2, x3) > 0. For this let B := {v3} and C := {v2}. Note that we have the topological
order v1 < v2 < v3. We then follow the steps of the ID-algorithm:

1. Q[V ](x1, x2, x3) := p(x1, x2, x3).

2. BC = AncGdo(C)(B) \ C = {v1, v3}.

3. D[BC ] = {S1 = {v1} , S2 = {v3}}, see Figure 11 (b).

4. For S1 = {v1}:
a) D1,0 = Dist[V ](S1) = {v1}. Compute:

Q[D1,0](x1) = q(x1) = Q[V ](x1) = p(x1).

b) A1,1 = Anc[D1,0](S1) = {v1} = D1,0, thus S̆1 = D1,0. Compute:

Q[S̆1](x1) = Q[D1,0](x1) = p(x1).

c) S1 = {v1} = S̆1. Compute:

Q[S1](x1) = Q[S̆1](x1) = p(x1).

5. For S2 = {v3}:
a) D2,0 = Dist[V ](S2) = {v3}. Compute:

Q[D2,0](x3|x1, x2) = q(x3|x1, x2) =
Q[V ](x1, x2, x3)

Q[V ](x1, x2)
= p(x3|x1, x2).

b) A2,1 = Anc[D2,0](S1) = {v3} = D2,0. thus S̆2 = D2,0. Compute:

Q[S̆2](x3|x1, x2) = Q[D2,0](x3|x1, x2) = p(x3|x1, x2).
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c) S2 = {v3} = S̆2. Compute:

Q[S2](x3|x1, x2) = Q[S̆2](x3|x1, x2) = p(x3|x1, x2).

6. Since both S̆1 = S1 = {v1} and S̆2 = S2 = {v3} we can compute:

Q[BC ](x1, x3|x2) = Q[S2](x3|x1, x2) · Q[S1](x1)

= p(x3|x1, x2) · p(x1),

p(x3| do(x2)) =
∑
x1

Q[BC ](x1, x3|x2)

=
∑
x1

p(x3|x1, x2) · p(x1).

So we can identify P (X3| do(X2)) from P (X1, X2, X3) via the mass function from above.

Example 5.3.29 (Counter example when mass functions are not strictly positive). Con-
sider the DAG G = (V,E, L) from Figure 11 with V = {v1, v2, v3}, E = {v1 v2, v1 v3, v2 v3}.
We want to determine if we can identify P (X3| do(X2)) from P (X1, X2, X3) in case
we do NOT have a strictly positive mass function: p(x1, x2, x3) > 0. We assume
X1 = X2 = X3 = {0, 1}.

p(x1 = 1) :=
1

2
, p(x2| do(x1)) := δx1(x2),

p(x3 = 1| do(x1 = 0, x2 = 0)) :=
1

4
, p(x3 = 1| do(x1 = 1, x2 = 0)) :=

3

4
,

p(x3 = 1| do(x1 = 0, x2 = 1)) :=
1

8
, p(x3 = 1| do(x1 = 1, x2 = 1)) :=

3

8
.

Then we get for the (X1, X2)-marginal of the observational distribution P (X1, X2) =
P (X2| do(X1))⊗ P (X1) the mass functions:

p(x1 = 0, x2 = 0) = p(x1 = 1, x2 = 1) =
1

2
,

p(x1 = 1, x2 = 0) = p(x1 = 0, x2 = 1) = 0.

Note that this shows that P (X1, X2) and thus P (X1, X2, X3) do not have a strictly posi-
tive mass functions. With this a valid conditional for the observational joint distribution
P (X1, X2, X3) conditioned on (X1, X2) is:

p(x3 = 1|x1 = 0, x2 = 0) :=
1

4
, p(x3 = 1|x1 = 1, x2 = 0) :=

3

8
,

p(x3 = 1|x1 = 0, x2 = 1) :=
5

8
, p(x3 = 1|x1 = 1, x2 = 1) :=

3

8
.
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The interventional distribution is given by:

p(x3| do(x2)) =
∑
x1

p(x3| do(x1, x2)) · p(x1),

p(x3 = 1| do(x2 = 0)) =
1

2
(p(x3 = 1| do(x1 = 0, x2 = 0)) + p(x3 = 1| do(x1 = 1, x2 = 0)))

=
1

2

(
1

4
+

3

4

)
=

1

2
,

p(x3 = 1| do(x2 = 1)) =
1

2
(p(x3 = 1| do(x1 = 0, x2 = 1)) + p(x3 = 1| do(x1 = 1, x2 = 1)))

=
1

2

(
1

8
+

3

8

)
=

1

4
.

On the other hand, using the other conditional mass functions instead, gives us:

p̂(x3|x2) :=
∑
x1

p(x3|x1, x2) · p(x1),

p̂(x3 = 1|x2 = 0) =
1

2
(p(x3 = 1|x1 = 0, x2 = 0) + p(x3 = 1|x1 = 1, x2 = 0))

=
1

2

(
1

4
+

1

2

)
=

3

8

̸= 1

2
= p(x3 = 1| do(x2 = 0)),

p̂(x3 = 1|x2 = 1) =
1

2
(p(x3 = 1|x1 = 0, x2 = 1) + p(x3 = 1|x1 = 1, x2 = 1))

=
1

2

(
5

8
+

1

8

)
=

3

8

̸= 1

4
= p(x3 = 1| do(x2 = 1)).

This shows that the “surrogate” Markov kernel P̂ (X3|X2) := P (X3|X1, X2) ◦ P (X1),
which would be proposed by both the ID-algorithm and the backdoor criterion, is NOT
equal to the interventional Markov kernel P (X3| do(X2)) = P (X3| do(X1, X2)) ◦ P (X1),
not even P (X2)-almost-surely.

Example 5.3.30. Consider the ADMG G = (V,E, L) from Figure 12 with V = {v1, v2, v3},
E = {v1 v2, v2 v3}, J = ∅ and L = {v1 v3}. We want to determine if we can
identify P (X3| do(X1)) from P (X1, X2, X3) in case we have a discrete CBN with strictly
positive mass function: p(x1, x2, x3) > 0. For this let B := {v3} and C := {v1}. Note
that we have the topological order v1 < v2 < v3. We then follow the steps of the ID-
algorithm:

1. Q[V ](x1, x2, x3) := p(x1, x2, x3).

2. BC = AncGdo(C)(B) \ C = {v2, v3}.
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v1 v2 v3
(a)

v1 v2 v3
(b)

v1 v2 v3
(c)

v1 v2 v3
(d)

v1 v2 v3
(e)

v1 v2 v3
(f)

Figure 12: An ADMG and its mutilations, corresponding to the interventional Markov
kernels: (a) Q[{v1, v2, v3}], (b) Q[{v2, v3}], (c) Q[{v3}], (d) Q[{v2}], (e)
Q[{v1, v2}], (f) Q[{v2, v3}].

3. D[BC ] = {S1 = {v3} , S2 = {v2}}, see Figure 12 (b).

4. For S1 = {v3}:
a) D1,0 = Dist[V ](S1) = {v1, v3}, see Figure 12 (a), (f). Compute:

q(x1) = Q[V ](x1) = p(x1),

q(x3|x1, x2) =
Q[V ](x1, x2, x3)

Q[V ](x1, x2)
= p(x3|x1, x2),

Q[D1,0](x1, x3|x2) = q(x3|x1, x2) · q(x1) = p(x3|x1, x2) · p(x1).

b) A1,1 = Anc[D1,0](S1) = {v3}. see Figure 12 (f), (c). Compute:

Q[A1,1](x3|x2) =
∑
x1

Q[D1,0](x1, x3|x2) =
∑
x1

p(x3|x1, x2) · p(x1).

c) D1,1 = Dist[A1,1](S1) = {v3} = A1,1, thus S̆1 = A1,1 . Compute:

Q[S̆1](x3|x2) = Q[A1,1](x3|x2) =
∑
x1

p(x3|x1, x2) · p(x1).

d) S1 = {v3} = S̆1. Compute:

Q[S1](x3|x2) = Q[S̆1](x3|x2) =
∑
x1

p(x3|x1, x2) · p(x1).

5. For S2 = {v2}:
a) D2,0 = Dist[V ](S2) = {v2}, see Figure 12 (a), (d). Compute:

Q[D2,0](x2|x1) = q(x2|x1) =
Q[V ](x1, x2)

Q[V ](x1)
= p(x2|x1).
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b) A2,1 = Anc[D2,0](S1) = {v2} = D2,0. thus S̆2 = D2,0. Compute:

Q[S̆2](x2|x1) = Q[D2,0](x2|x1) = p(x2|x1).

c) S2 = {v2} = S̆2. Compute:

Q[S2](x2|x1) = Q[S̆2](x2|x1) = p(x2|x1).

6. Since both S̆1 = S1 = {v3} and S̆2 = S2 = {v2} we can compute:

Q[BC ](x2, x3|x1) = Q[S2](x2|x1) · Q[S1](x3|x2)

= p(x2|x1) ·
∑
x′
1

p(x3|x′1, x2) · p(x′1),

p(x3| do(x1)) =
∑
x2

Q[BC ](x2, x3|x1)

=
∑
x2

p(x2|x1) ·
∑
x′
1

p(x3|x′1, x2) · p(x′1)

=
∑
x′
1,x

′
2

p(x3|x′1, x′2) · p(x′1) · p(x′2|x1).

So we can identify P (X3| do(X1)) from P (X1, X2, X3) via the mass function from above.

Proofs - Soundness Criteria We have seen in Corollary 5.3.18 that the ID-Algorithm
5.3.17 is sound up to oracle choices. In this subsection we want to investigate the pos-
sibility of other forms of soundness that would allow for stronger forms of identifiability
and/or trackability.

Theorem 5.3.31 (Soundness up to null-sets). Let G = (J, V, E, L) be a CADMG with
a fixed topological order <. Consider the class of L-CBNs M with observable CADMG
G such that the following holds:

1. The measurable spaces Xv come equipped with a measure µv, v ∈ V ,

2. for every subset D ⊆ V the interventional Markov kernel Q[D] = P (XD| do(XJ∪V \D))
is absolute continuous w.r.t. the product measure µD := ⊗v∈Dµv and vice versa:

µD ≪ Q[D]≪ µD.

If the ID-algorithm does not produce FAIL for input B,C ⊆ G, then P (XB| do(XJ∪C)) is
“almost-surely” trackable from P (XV | do(XJ)) and G for such CBNs M , i.e. the Markov
kernel that was output by the ID-algorithm equals P (XB| do(XJ∪C)) up to a µV \BC -null
set in XJ∪V \BC .
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Proof. Since by the second assumption we have for each µv and any fixed value x{v}c :

P (Xv| do(X{v}c = x{v}c))≪ µv ≪ P (Xv| do(X{v}c = x{v}c)),

we can w.l.o.g. assume that the µv are probability measures for v ∈ V .
a) Now consider any subset A ⊆ V and D ∈ D[A] and v ∈ D. We abbreviate:

G′ := Gdo(V \A), A< := Pred
[A]
< (v), D< := Pred

[D]
< (v).

Assume that we have a Markov kernel:

K[A] = P̃ (XA| do(XJ∪V \A)) : XJ∪V \A 99K XA,

such that:
K[A] = Q[A] µV \A-a.s.

Note that the almost sure equality from above implies the equality:

K[A]⊗ µV \A = Q[A]⊗ µV \A. (34)

We want to show that if we perfom the steps of the ID-algorithm that computes Q[D]
from Q[A] on K[A] then the corresponding output, abbreviated as K[D], satisfies:

K[D] = Q[D] µV \D-a.s.

For this consider any version of the conditional of the following marginal of K[A]:

P̃ (XA≤| do(XJ∪V \A)) w.r.t. P̃ (XA<| do(XJ∪V \A)),

which we will denote by:
K(Xv|XJ∪V \A≥).

This by definition will satisfy:

P̃ (XA≤| do(XJ∪V \A)) = K(Xv|XJ∪V \A≥)⊗ P̃ (XA<| do(XJ∪V \A)). (35)

This then implies:

P (XA≤ | do(XJ∪V \A))⊗ µV \A(XV \A)

Eq. 34
= P̃ (XA≤| do(XJ∪V \A))⊗ µV \A(XV \A)

Eq. 35
= K(Xv|XJ∪V \A≥)⊗ P̃ (XA<| do(XJ∪V \A))⊗ µV \A(XV \A)

Eq. 34
= K(Xv|XJ∪V \A≥)⊗ P (XA<| do(XJ∪V \A))⊗ µV \A(XV \A).

This shows that K(Xv|XJ∪V \A≥) is a version of the conditional of:

P (XA≤ | do(XJ∪V \A))⊗ µV \A(XV \A) w.r.t. P (XA< | do(XJ∪V \A))⊗ µV \A(XV \A).
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Note that by the interventional ordered local Markov property, Proposition 5.3.10, there
exists a Markov kernel Q(Xv|XMbG

′
< (v)

) that simultaneuously is a version of both:

P (Xv|XA< , do(XJ∪V \A)) and P (Xv|XD< , do(XJ∪V \D)),

and is thus, in particular, another version of the conditional of:

P (XA≤| do(XJ∪V \A))⊗ µV \A(XV \A) w.r.t. P (XA<| do(XJ∪V \A))⊗ µV \A(XV \A).

Now consider the (measurable) set where these two conditional Markov kernels deviate:

Ñ :=
{
xJ∪V \A≥ ∈ XJ∪V \A≥

∣∣∣K(Xv|XJ∪V \A≥ = xJ∪V \A≥) ̸= Q(Xv|XMbG
′

< (v)
= x

MbG
′

< (v)
)
}
,

and N := Ñ ×XA≥ ⊆ XJ∪V . Since conditional Markov kernels are essentially unique we
get that for every xJ ∈ XJ we have:(

Q[A]⊗ µV \A
)
(NxJ |xJ) = 0.

Since, by assumption, we have: µA ≪ Q[A], we get for every xJ ∈ XJ :(
µD ⊗ µV \D

)
(NxJ ) = µV (N

xJ ) =
(
µA ⊗ µV \A

)
(NxJ ) = 0.

Since, by assumption, we also have: Q[D]≪ µD, we get for every xJ ∈ XJ :(
Q[D]⊗ µV \D

)
(NxJ |xJ) = 0.

Let N̂ := Ñ ×XA≥\D≥ . Since D≥ ⊆ A≥ the set N is of the form:

N = Ñ ×XA≥ = N̂ ×XD≥ .

So the above shows that we have for every xJ ∈ XJ :(
P (XD< | do(XJ∪V \D))⊗ µV \D(XV \D)

)
(N̂xJ |xJ) =

(
Q[D]⊗ µV \D

)
(NxJ |xJ) = 0.

This shows that K(Xv|XJ∪V \A≥) and Q(Xv|XMbG
′

< (v)
) agree up to a measurable(

P (XD<| do(XJ∪V \D))⊗ µV \D(XV \D)
)
-null set. Remember that Q(Xv|XMbG

′
< (v)

) satis-
fies:

P (XD≤| do(XJ∪V \D)) = Q(Xv|XMbG
′

< (v)
)⊗ P (XD<| do(XJ∪V \D)).

Together with the above we thus get:

P (XD≤| do(XJ∪V \D))⊗ µV \D(XV \D)

= Q(Xv|XMbG
′

< (v)
)⊗ P (XD< | do(XJ∪V \D))⊗ µV \D(XV \D)

= K(Xv|XJ∪V \A≥)⊗ P (XD<| do(XJ∪V \D))⊗ µV \D(XV \D).

This shows that K(Xv|XJ∪V \A≥) is version of the conditional of:

P (XD≤ | do(XJ∪V \D))⊗µV \D(XV \D) w.r.t. P (XD< | do(XJ∪V \D))⊗µV \D(XV \D).
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If we let v run through D = {v1, . . . , vK}, v1 < v2 < · · · < vK in reverse topological
order we inductively get:

Q[D]⊗ µV \D

= P (XD| do(XJ∪V \D))⊗ µV \D(XV \D)

= K(XvK |XJ∪V \A≥vK
)⊗ P (XD<vK

| do(XJ∪V \D))⊗ µV \D(XV \D)

= K(XvK |XJ∪V \A≥vK
)⊗ P (XD≤vK−1

| do(XJ∪V \D))⊗ µV \D(XV \D)

= K(XvK |XJ∪V \A≥vK
)⊗K(XvK−1

|XJ∪V \A≥vK−1
)⊗ P (XD<vK−1

| do(XJ∪V \D))⊗ µV \D(XV \D)

= · · ·

=

(
>⊗

v∈D

K(Xv|XJ∪V \A≥v
)

)
⊗ µV \D(XV \D).

Since such factorizations are essentially unique we get that:

Q[D] =
>⊗

v∈D

K(Xv|XJ∪V \A≥v
) =: K[D] µV \D-a.s.

This shows the claim.
b) We now reverse the situation. For a subset A ⊆ V and every D ∈ D[A] =
{D1, . . . , DL}, consider that we are given a Markov kernel:

K[D] = P̃ (XD| do(XJ∪V \D)) : XJ∪V \D 99K XD,

such that:
K[D] = Q[D] µV \D-a.s.,

which implies the equality:

K[D]⊗ µV \D = Q[D]⊗ µV \D. (36)

We want to show that we then also have:

K[A] :=

 >⊗
D∈D[A]

K[D] = Q[A] µV \A-a.s.

For this fix a node v ∈ D and note that Q(Xv|XMbG
′

< (v)
) satisfies:

P (XD≤| do(XJ∪V \D)) = Q(Xv|XMbG
′

< (v)
)⊗ P (XD<| do(XJ∪V \D)). (37)

We then get the equalities:

P̃ (XD≤| do(XJ∪V \D))⊗ µV \D(XV \D)

Eq. 36
= P (XD≤ | do(XJ∪V \D))⊗ µV \D(XV \D)

Eq. 37
= Q(Xv|XMbG

′
< (v)

)⊗ P (XD<| do(XJ∪V \D))⊗ µV \D(XV \D)

Eq. 36
= Q(Xv|XMbG

′
< (v)

)⊗ P̃ (XD<| do(XJ∪V \D))⊗ µV \D(XV \D).
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So Q(Xv|XMbG
′

< (v)
) is a conditional of:

P̃ (XD≤ | do(XJ∪V \D))⊗µV \D(XV \D) w.r.t. P̃ (XD< | do(XJ∪V \D))⊗µV \D(XV \D),

that does not depend on XA≥ (as MbG′

< (v) ⊆ A<).
Now consider any other version of the conditional of:

P̃ (XD≤| do(XJ∪V \D))⊗µV \D(XV \D) w.r.t. P̃ (XD< | do(XJ∪V \D))⊗µV \D(XV \D),

that does not depend on variables attached to A≥ and which we will denote by:

K(Xv|XJ∪V \A≥).

Note that such a Markov kernel exists, as Q(Xv|XMbG
′

< (v)
) is such one.

The same argumentation with K(Xv|XJ∪V \A≥) in place of Q(Xv|XMbG
′

< (v)
), using Eq.

36, shows that both, Q(Xv|XMbG
′

< (v)
) and K(Xv|XJ∪V \A≥), are then conditionals of

P (XD≤| do(XJ∪V \D))⊗µV \D(XV \D) w.r.t. P (XD<| do(XJ∪V \D))⊗µV \D(XV \D),

that do not depend on XA≥ . Now let:

Ñ :=
{
xJ∪V \A≥ ∈ XJ∪V \A≥

∣∣∣K(Xv|XJ∪V \A≥ = xJ∪V \A≥) ̸= Q(Xv|XMbG
′

< (v)
= xMbG<(v))

}
,

and N := Ñ × XA≥ ⊆ XJ∪V . Again, since both are versions of the same conditional we
get: (

Q[D]⊗ µV \D
)
(NxJ |xJ) = 0,

for every xJ ∈ XJ . Since Q[D]≪ µD we get for every xJ ∈ XJ :(
µA ⊗ µV \A

)
(NxJ ) = µV (N

xJ ) =
(
µD ⊗ µV \D

)
(NxJ ) = 0.

Since also Q[A]≪ µA we get for every xJ ∈ XJ :(
Q[A]⊗ µV \A

)
(NxJ |xJ) = 0.

Since N = Ñ ×XA≥ we get for every xJ ∈ XJ :(
P (XA<| do(XJ∪V \A))⊗ µV \A(XV \A)

)
(ÑxJ |xJ) =

(
Q[A]⊗ µV \A

)
(NxJ |xJ) = 0.

This shows that the Markov kernels Q(Xv|XMbG
′

< (v)
) and K(Xv|XJ∪V \A≥) are equal up

to some
(
P (XA< | do(XJ∪V \A))⊗ µV \A(XV \A)

)
-null set. Note that with this we get the
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factorization, using A = {v1, . . . , vK}, v1 < · · · < vK :

Q[A]⊗ µV \A

= P (XA≤vK
| do(XJ∪V \A))⊗ µV \A(XV \A)

= Q(XvK |XMbG
′

< (vK)
)⊗ P (XA<vK

| do(XJ∪V \A))⊗ µV \A(XV \A)

= K(XvK |XJ∪V \A≥vK
)⊗ P (XA<vK

| do(XJ∪V \A))⊗ µV \A(XV \A)

= K(XvK |XJ∪V \A≥vK
)⊗ P (XA≤vK−1

| do(XJ∪V \A))⊗ µV \A(XV \A)

= K(XvK |XJ∪V \A≥vK
)⊗Q(XvK |XMbG

′
< (vK)

)⊗ P (XA<vK−1
| do(XJ∪V \A))⊗ µV \A(XV \A)

= · · ·

=

(
>⊗

v∈A

K(Xv|XJ∪V \A≥)

)
⊗ µV \A(XV \A)

=

 >⊗
D∈D[A]

K[D]

⊗ µV \A(XV \A)

= K[A]⊗ µV \A(XV \A).

Since such factorizations are essentially unique we get:

K[A] = Q[A] µV \A-a.s.

This shows the claim.
c) Now let D ⊆ V and A ⊆ D with A = Anc[D](A). Consider that we are given a

Markov kernel:
K[D] = P̃ (XD| do(XJ∪V \D)) : XJ∪V \D 99K XD,

such that:
K[D] = Q[D] µV \D-a.s.,

which implies the equality:

K[D]⊗ µV \D = Q[D]⊗ µV \D.

We want to show that the A-marginal of K[D] equals Q[A] up to µV \A-null set.
For this let K[A] be the A-marginal of K[D]:

K[A] := P̃ (XA| do(XJ∪V \D)) : XJ∪V \A → XJ∪V \D 99K XA.

Note that Q[A] is the A-marginal of Q[D]. Marginalizing out XD\A on both sides in the
above equation gives us:

K[A]⊗ µV \D = Q[A]⊗ µV \D.

Multiplying both sides with µD\A gives:

K[A]⊗ µV \A = K[A]⊗ µV \D ⊗ µD\A = Q[A]⊗ µV \D ⊗ µD\A = Q[A]⊗ µV \A.
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Since such factorizations are essentially unique we get:

K[A] = Q[A] µV \A-a.s.

This shows the claim.
This covers all cases of the ID-algorithm and thus shows the claim.

Theorem 5.3.32 (Soundness up to continuous choices for strictly positive CBNs). Let
G = (J, V, E, L) be a CADMG with a fixed topological order <. Consider the class of
L-CBNs M with observable CADMG G such that the following holds:

1. The spaces Xv are Polish spaces for v ∈ J ∪ V ,

2. for every subset D ⊆ V the interventional Markov kernel Q[D] = P (XD| do(XJ∪V \D))
is strictly positive (on non-empty open subsets of XD), and:

3. for every v ∈ D the Markov kernel Q(Xv|X
Mb

Gdo(Dc)
< (v)

) can be chosen to be con-

tinuous, viewed as a map: X
Mb

Gdo(Dc)
< (v)

→ P(Xv).

If the ID-algorithm does not produce FAIL for input B,C ⊆ G, then P (XB| do(XJ∪C)) is
identifiable and trackable “up to continuous choices of conditional Markov kernels” from
P (XV | do(XJ)) and G for such CBNs M , i.e. if every occuring conditional Markov kernel
is chosen to be continuous (which will always be possible by the assumptions made).

Proof. For a district D ∈ D[V ] and v ∈ D, by assumption, there exists a continuous
version of Q(Xv|XMbG<(v)), which is also a version of:

P (Xv|XPred
[V ]
< (v)

, do(XJ)) and P (Xv|XPred
[D]
< (v)

, do(XJ∪V \D)).

We abbreviate V< := Pred
[V ]
< (v) and D< := Pred

[D]
< (v) in the following.

Now consider any continuous version of the conditional Markov kernel P (Xv|XV< , do(XJ)).
Note that such a version always exists because Q(Xv|XMbG<(v)) is already an existing
continuous version. Since P (XV<| do(XJ)) is strictly positive, as the marginal of Q[V ],
Lemma 2.4.23 implies then the “sure” equality:

P (Xv|XV< , do(XJ) = Q(Xv|XMbG<(v)).

So any continuous version of P (Xv|XV< , do(XJ) necessarily agrees with Q(Xv|XMbG<(v))
on all points.

Similarly, using the same arguments, we get that Q(Xv|XMbG<(v)) is “surely” equal to
every continuous version of the conditional P (Xv|XD< , do(XJ∪V \D)), as also the Markov
kernel P (XD<| do(XJ∪V \D)) is strictly positive, as a marginal of Q[D]. So we get:

Q(Xv|XMbG<(v)) = P (Xv|XD< , do(XJ∪V \D)).
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This means that if we pick a/the continuous version of the conditional P (Xv|XV< , do(XJ)
then it is “surely” equal to the/every continuous version of the conditional P (Xv|XD< , do(XJ∪V \D)):

P (Xv|XV< , do(XJ) = Q(Xv|XMbG<(v)) = P (Xv|XD< , do(XJ∪V \D)).

These arguments, repeated for subgraphs, then show that in the ID-algorithm for
every occuring conditional and product (e.g. for districts and the final product) we end
up with distinct and correct choices for all Markov kernels. This then also shows the
identifiability of such CBNs M (in the not-FAIL case).

Lemma 5.3.33. Consider an L-CBN:

M =
(
G+ =

(
J, (V, U), E+

)
,
(
Pv(Xv| do(XPaG

+
(v)
))
)
v∈V ∪U

)
,

with observable CADMG G = (J, V, E, L) and fixed topological order <. Assume that for
every v ∈ V we have a measure µv on Xv such that Pv(Xv| do(XPaG

+
(v)
)) has a (strictly

positive) density w.r.t. µv:
p(xv| do(xPaG+

(v)
)) > 0.

Furthermore, we put for xV ∈ XV , xU ∈ XU , xJ ∈ XJ :

p(xV |xU , do(xJ)) :=
∏
v∈V

p(xv| do(xPaG+
(v)
)),

and then integrate in reverse order of <:

p(xV | do(xJ)) :=
∫
· · ·
∫
XU

p(xV |xU , do(xJ))
>⊗

u∈U

Pu(Xu ∈ dxu| do(XPaG
+
(v)

= x
PaG

+
(v)
)).

Then the former is a (strictly positive) density of P (XV , XU | do(XJ)) w.r.t.
>⊗

v∈V

µv ⊗>

>⊗
u∈U

Pu(Xu| do(XPaG
+
(v)
)),

and the latter a (strictly positive) density of P (XV | do(XJ)) w.r.t.

µV :=
⊗
v∈V

µv.

Similarly, for every D ⊆ V the interventional Markov kernel P (XD| do(XJ∪V \D)) has a
(strictly positive) density w.r.t. µD :=

⊗
v∈D µv.

Proof. The claim can be shown by integrating the above densities over product sets
A =

∏
v Av. Inductively we can use Fubini’s theorem and:∫

Av

p(xv| do(xPaG+
(v)
))µv(dxv) = Pv(Xv ∈ Av| do(XPaG

+
(v)

= x
PaG

+
(v)
)).

Regarding strict positivity, note that if f(x) > 0 for all x, then
∫
f dµ > 0 for non-trivial

µ. So strict positivity is preserved through integration.
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6. Structural Causal Models

Structural Causal Models (SCMs), also known as Structural Equation Models (SEMs),
or Non-Parametric Structural Equation Models (NP-SEMs), provide a class of causal
models that can model causal cycles. SCMs trace back to the early work on path analysis
by geneticist Sewall Wright [Wri21], made their way to econometrics [Haa43, SW60],
and became popular in AI due to the work of Judea Pearl [Pea09] and many others. In
these lecture notes, we give a modern treatment inspired by our own research on the
matter [BFPM21,FM20].

6.1. Motivation

While causal Bayesian networks (with input nodes and latent variables) provide a pow-
erful causal modeling class, there is an important aspect of causality that cannot be
modeled with causal Bayesian networks, namely causal cycles. For example, increasing
temperature at the poles may cause sea ice to melt, which leads to more absorption
of sunlight because white ice is replaced by blue sea water, which in turn leads to fur-
ther temperature increase (see also Figure 13(a)). Because a causal Bayesian network
is acyclic by definition, such a model can only be described by a causal Bayesian net-
work by introducing multiple variables corresponding with measurements of the same
quantities at different points in time (Figure 13(b)). In contrast, an SCM can directly
represent causal cycles and is often appropriate for modeling systems with feedback loops
that are stable, i.e., where negative feedback dominates potential positive feedback. An
illustrative example is a system composed of different masses connected via springs in
an environment with friction (see also Section 6.12).

v1 v2

v3

(a) v1;t0

v2;t0

v3;t0

v1;t1

v2;t1

v3;t1

v1;t2

v2;t2

v3;t2

v1;t3

v2;t3

v3;t3

(b)

Figure 13: (a) Directed Graph (DG) representing a causal cycle. As an example, v1
could be the average temperature in a certain area at the North pole, v2 the
amount of sea ice present in the area, and v3 the amount of sunlight absorbed
in the area. This gives an example of a positive (self-reinforcing) feedback
loop. (b) Alternative Directed Acyclic Graph (DAG) where the variables
correspond with the same quantities but measured at different time points
t0 < t1 < t2 < t3.
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v1

v2

v3

v4

(a) v13

v24

(b)

Figure 14: (a) ADMG with output nodes v1, v2, v3, v4 corresponding with endogenous
variables X1, X2, X3, X4. (b) DMG corresponding to a coarser representation
obtained by merging variables into X13 := (X1, X3) and X24 := (X2, X4).

Even if a ‘fine-grained’ causal model is acyclic, merging variables may introduce cycles
at a more ‘coarse-grained’ level of description.

Example 6.1.1. Suppose that we have a CBN with the ADMG in Figure 14(a), repre-
senting four variables X1, X2, X3, X4. If we chose an alternative representation in terms
of pairs X13 := (X1, X3) and X24 := (X2, X4), then we would end up with a CBN with
the DMG in Figure 14(b). However, that is a contradiction as the graph of a CBN is
acyclic by definition.

This example shows that the class of CBNs is not closed under the operation of
merging variables. The class of (simple) SCMs to be introduced later is actually closed
under the operation of merging variables.

Finally, there exist systems in which the directionality of causal relations is context-
dependent.

Example 6.1.2. Consider Ohm’s law V = IR (voltage equals current times resistance)
to model the voltage across and current through a resistance. If we connect the resistance
to a voltage source, the voltage determines the current. If we connect the resistance to a
current source, then it is the other way around: the current determines the voltage. Both
cases separately can be modeled with a CBN (Figure 15(a–b), respectively). If we let a
coin flip determine which of the two sources the resistance is connected to, we obtain a
mixture which cannot be modeled as a single CBN (Figure 15(c)).

Similar behavior is often encountered in complex systems in biology, chemistry, en-
gineering and economy. This is yet another motivation to extend the causal modeling
framework to allow for cycles.

In this chapter, we will introduce the class of SCMs, which generalize CBNs to allow
for cycles, which allows us to deal elegantly with all motivating examples discussed here.

6.2. Definition

An SCM is specified in terms of (deterministic) functions and distributions, rather than
in terms of Markov kernels (stochastic functions). In contrast with many definitions
encountered in the literature,29 we will explicitly distinguish three types of variables:
29For example, [Pea09] only formally distinguishes exogenous latent random variables and endogenous

variables.
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V I

R

(a) V I

R

(b)

C

V I

R

(c)

Figure 15: Different causal models corresponding to modeling the current through a
resistance using Ohm’s law. (a) Voltage causes current. (b) Current causes
voltage. (c) Mixture model where the causal relationship between voltage
and current depends on the result of a coin flip.

endogenous variables, exogenous latent random variables and exogenous observed input
variables. The endogenous variables are the variables whose causal relations we wish to
model, whereas the exogenous variables are required to model the remaining causes of
the endogenous variables.

Definition 6.2.1 (Structural Causal Model). A Structural Causal Model is a tuple
M = (J, V,W,X , P, f) such that

• J, V,W are disjoint finite sets of labels for the exogenous input variables, the en-
dogenous variables and the exogenous random variables, respectively;

• the domain X =
∏

i∈J ∪̇V ∪̇W Xi is a product of standard measurable spaces Xi;

• the exogenous distribution P is a probability distribution on XW that factorizes as
a product P =

⊗
w∈W Pw of probability distributions Pw ∈ P(Xw);

• the causal mechanism is specified by the measurable function f : X → XV .

Often, the causal mechanism f and the exogenous distribution P depend (in a measurable
way) on exogenous parameters θ ∈ XΘ, which we may make explicit by writing f θ and P θ

instead, giving a parameterized SCM M θ =
(
J, V,W,X , P θ, f θ

)
. The family (M θ)θ∈XΘ

is then an SCM family.30

One can also think about an SCM as describing an input/output system, with free
inputs J , random inputs W with distribution P , outputs V and input/output mecha-
nism f . Structural causal models can be regarded as a marriage of statistical models
as traditionally used in statistics (a parameterized family of distributions) with deter-
ministic causal models (deterministic input/output systems) that are used informally in
disciplines like physics and engineering.
30In line with the convention in machine learning, the word “model” refers to a SCM with a fixed choice

of the parameters, and “model family” to a family of models indexed measurably by parameters.
This contrasts with the terminology in statistics, where a family of distributions indexed measurably
by parameters is called a “statistical model”.
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Remark 6.2.2. There are three crucial assumptions embodied in the modeling approach
using SCMs:

1. The distinction between endogenous and exogenous variables: exogenous variables
(i.e., exogenous input variables, exogenous random variables, and exogenous pa-
rameters) are not caused by endogenous variables, by assumption;

2. Exogenous random variables are mutually independent, and independent of the
exogenous input variables in the sense that their probability distribution does not
depend on the values of the exogenous input variables; however, we do allow for
“dependencies” between exogenous input variables;

3. Exogenous input variables do not come with a probability distribution (and the
SCM only specifies the range of possible values they may take);

4. Exogenous parameters are distinguished from exogenous random variables in that
the former describe “population” properties whereas the latter describe “individual”
quantities.

Remark 6.2.3. Not all types of variables need to be present. Rather than giving separate
definitions for ‘degenerate’ cases, we can stay in the formalism by defining what happens
for empty label sets. For example, suppose the SCM is deterministic, i.e., W = ∅. Then
XW is an empty product (i.e., a product over 0 spaces), and by definition becomes a
space ∗ = {∗} with a single element ∗, with the trivial sigma algebra {∅, {∗}}. The only
possible probability distribution on such a space is the trivial distribution, i.e., P ({∗}) =
1. Similarly, it often happens that there are no exogenous input variables (if J is empty).

6.3. Solving the Structural Equations

6.3.1. Structural Equations and Potential Outcomes

An SCM defines structural equations, which are used to define the potential outcomes of
the SCM.

Definition 6.3.1 (Potential outcomes, structural equations). Let M = (J, V,W,X , P, f)
be an SCM and xJ ∈ XJ an input value. A random variable X

do(xJ )
V ∪W with codomain

XV ×XW is called a potential outcome of M for input xJ if the following two conditions
hold:31

1. its W -component has the exogenous distribution specified by M :

X
do(xJ )
W ∼ P,

2. it satisfies the structural equations entailed by M for input xJ :

X
do(xJ )
V = f

(
xJ , X

do(xJ )
V , X

do(xJ )
W

)
a.s.. (38)

31Another notation for potential outcomes, commonly encountered in the literature, is XV ∪W (xJ).
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In case J = ∅ we also write XV ∪W := X
do(∗)
V ∪W and refer to it simply as an outcome of M .

The SCM encodes the probability distributions of its (potential) outcomes. However,
the structural equations (38) may have no solution or may have multiple different so-
lutions. Therefore, even if a (potential) outcome exists (for a given input), it could be
that its distribution is not uniquely determined by the SCM.

Example 6.3.2. Consider an SCM with parameters α, β ∈ R, endogenous real-valued
variables X1, X2, real-valued exogenous input X3, and structural equations for input
x3 ∈ R given by: {

X
do(x3)
1 = αX

do(x3)
2

X
do(x3)
2 = βX

do(x3)
1 + x3.

If αβ = 1, then (X
do(x3=0)
1 , X

do(x3=0)
2 ) = (αx, x) is a potential outcome for input x3 = 0

for any value of x ∈ R. Any mixture of these potential outcomes is also a potential
outcome for input x3 = 0. If αβ = 1, then for input x3 ̸= 0, the SCM admits no
potential outcomes. If αβ ̸= 1, then the potential outcomes are unique and given by
(X

do(x3)
1 , X

do(x3)
2 ) = ( αx3

1−αβ
, x3

1−αβ
).

In practice, an SCM is often specified more informally by writing down the corre-
sponding structural equations and by giving the exogenous distribution of XW . Any
variables appearing on the r.h.s. of some structural equation that do not correspond
with a structural equation for which that variable appears on the l.h.s., nor have a
specified distribution, are then implicitly taken as exogenous inputs or parameters.

Example 6.3.3 (Linear regression model with fixed design for the effect in terms of its
cause). Assume that Y = αX+β+ϵ with Y ∈ R representing the effect, X ∈ R the cause,
ϵ ∼ N (0, σ2) independent normally distributed measurement noise, and α, β, σ2 ∈ R
parameters.

This can be understood as the specification of an SCM M (α,β,σ2) =
(
J, V,W,X , P σ2

, fα,β
)

with J = {X}, V = {Y }, W = {ϵ}, X = R3, exogenous distribution P σ2
= N (0, σ2)

and causal mechanism fα,β : R3 → R : (x, y, ϵ) 7→ αx+ β + ϵ.
If ϵ ∼ N (0, σ2), then (Y do(x), ϵdo(x)) := (αx + β + ϵ, ϵ) is a potential outcome of

M (α,β,σ2). Often, one just refers to Y do(x) as the potential outcome.

6.3.2. Solutions

The language of conditional random variables allows us to give a neat definition of the
solution of an SCM, which can also be thought of as a measurable family of (potential)
outcomes with a shared underlying probability space.

Definition 6.3.4 (Solutions of an SCM). Let M = (J, V,W,X , P, f) be an SCM. Let
(U×XJ , K(U |XJ)) be a transition probability space and X : U×XJ → X be a conditional
random variable. If its push-forward Markov kernel K(X|XJ) satisfies

K(XW |XJ) = P (XW ),
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K(XJ |XJ) = δ(XJ |XJ)

and X satisfies the structural equations

XV = f(XJ , XV , XW ) K(X|XJ)-a.s.. (39)

then X is called a solution of M . Since the XJ component is trivial, we also refer to the
component

XV ∪W : U × XJ → XV ∪W

as a solution of M .

Remark 6.3.5. Let M = (J, V,W,X , P, f) be an SCM and X : U × XJ → XV ∪W be a
solution of M . Then for any xJ ∈ XJ ,

X
do(xJ )
V ∪W : U → XV ∪W : u 7→ X(u, xJ)

is a (potential) outcome of M (for input xJ).

Not every SCM has solutions. Also, if they exist, solutions are not necessarily unique,
even if they have the same underlying transition probability space.

Example 6.3.6. Consider an SCM with parameters α, β, µ, σ ∈ R, endogenous real-
valued variables X1, X2, exogenous random real-valued variable W1 with exogenous dis-
tribution N (µ, σ2), and structural equations{

X1 = αX2

X2 = βX1 +W1.

If αβ = 1, µ = 0 and σ2 = 0, then (X1, X2,W1) = (αx, x,W1) is a solution for any
x ∈ R and W1 ∼ N (µ, σ2). Any mixture of those solutions is also a solution in that
case. If αβ = 1 and µ ̸= 0 or σ2 ̸= 0, then the SCM admits no solutions. If αβ ̸= 1,
then all solutions (X1, X2,W1) satisfy (X1, X2) = ( αW1

1−αβ
, W1

1−αβ
) a.s. and W1 ∼ N (µ, σ2).

The following remark relates the terminology to the cases most often considered in
the literature.

Remark 6.3.7. If J = ∅, a solution of an SCM can be identified with a random variable
XV ∪W with codomain XV × XW such that XW ∼ P and that satisfies the structural
equations:

Xv = fv
(
XV , XW

)
a.s. (40)

for each v ∈ V .
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6.3.3. Markov Kernels of Solutions

Each solution of an SCM “has” a Markov kernel (similarly to how each random variable
has a distribution).

Notation 6.3.8. Let conditional random variable X : U ×XJ → X on transition space
(U × XJ , K(U |XJ)) be a solution of an SCM M = (J, V,W,X , P, f). Its push-forward

P (X | do(XJ)) := K(X|XJ) = X∗K(U |XJ)

is a Markov kernel XJ 99K X that we refer to as the Markov kernel of M corresponding
to X. Since the J-component is trivial, we also refer to its marginal P (XV ∪W | do(XJ))
as such.

Not all solutions of an SCM may yield the same Markov kernel (see also Exam-
ple 6.3.6). Therefore, even if the SCM M is specified, the notation “P (X | do(XJ))” is
ambiguous, since it does not specify which solution the Markov kernel comes from. Be-
cause we will mostly restrict attention to so-called ‘simple’ SCMs for which the Markov
kernel turns out to be unique, we will not worry about this.

Remark 6.3.9. In case J = ∅, the Markov kernel P (X | do(XJ)) corresponding to a
solution X can be identified with its distribution P (X), and one often refers to it as the
distribution of M corresponding to X.

6.3.4. Solution functions

We can construct solutions and (potential) outcomes in terms of solution functions of
an SCM:

Definition 6.3.10 (Solution function of an SCM). Given an SCM M = (J, V,W,X , P, f),
we call a measurable function g : XJ × XW → XV a solution function of M if for all
xJ ∈ XJ , for all xW ∈ XW , g(xJ , xW ) satisfies the structural equations:32

g(xJ , xW ) = f
(
xJ , g(xJ , xW ), xW

)
.

Remark 6.3.11. If g is a solution function for SCM M = (J, V,W,X , P, f), then for
any random variable XW : U → XW with distribution P :

1. Xdo(xJ )
V,W := (g(xJ , XW ), XW ) is a (potential) outcome for M for input xJ ∈ XJ ;

2. XV,W := (g(XJ , XW ), XW ) is a solution of M with underlying transition probability
space (U × XJ , P (XW ));

3. its corresponding Markov kernel is the push-forward

(g, idXW
)∗(P ⊗ δ(XJ |XJ)).

32One can weaken this requirement by replacing the quantifiers by “for all xJ ∈ XJ , for P -almost all
xW ∈ XW ” but we will not do so here, as the additional generality of the resulting theory comes at
the cost of more technicalities in most definitions and proofs. See also [BFPM21].
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Not all (potential) outcomes, solutions and Markov kernels of an SCM can be obtained
in this way. For example, mixtures of solutions are also solutions, but not all mixtures
can be obtained as the push-forward through a solution function.

Example 6.3.12. For an SCM with endogenous real variables X1, X2 and structural
equations {

X1 = X2,

X2 = X3
1 ,

any real-valued random variable Y for which P (Y ∈ {−1, 0, 1}) = 1 provides a solution
(X1, X2) := (Y, Y ). This includes all mixtures over the three possible states (−1,−1),
(0, 0), (1, 1), which form a two-dimensional convex space. However, it has only three
solution functions (mapping ∗ to either (−1,−1), (0, 0) or (1, 1)). Therefore, only three
solutions can be constructed from a solution function as in Remark 6.3.11 (namely the
extreme points of the convex space).

As a more extensive example, we now formalize the chocolate-Nobel prize example
discussed in Section 1.1 as different SCMs according to some of the causal hypotheses.

Example 6.3.13. For a given country, consider two real-valued variables: annual choco-
late consumption in kilograms per capita (C), and the number of Nobel prize win-
ners per year per capita (N). We can consider the following linear SCM families
M θ =

(
J, V,W,X , P θ, f θ

)
.

1. N causes C: (“Nobel prizes are celebrated with massive chocolate feasts”)
J = {N}, V = {C}, W = ∅, θ = (α, β) ∈ XΘ := R2, XN = R, XC = R,
fα,β : (xN , xC) 7→ α + βxN . It has structural equations

X
do(xN )
C = α + βxN .

For a given parameter θ, the SCM M θ has a unique solution function, gα,β : xN 7→
α + βxN , and unique potential outcomes of the form X

do(xN )
C = α + βxN .

2. C causes N : (“chocolate contains brain enhancing chemicals”)
J = {C}, V = {N}, W = ∅, θ = (γ, δ) ∈ XΘ := R2, XC = R, XN = R,
fγ,δ : (xC , xN) 7→ γ + δxC. It has structural equations

X
do(xC)
N = γ + δxC .

For a given parameter θ, the SCM M θ has a unique solution function, gγ,δ : xC 7→
γ + δxC, and unique potential outcomes of the form X

do(xC)
N = γ + δxC.

3. W causes C and N , version 1: (“inhabitants of wealthy countries eat more chocolate
and conduct more scientific research”)
J = {W}, V = {C,N}, W = ∅, θ = (α, β, γ, δ) ∈ XΘ := R4, XW = R, XC = R,
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XN = R, f θ : (xW , xC , xN) 7→ (α + βxW , γ + δxW ) ∈ XC × XN . It has structural
equations

X
do(xW )
C = α + βxW ,

X
do(xW )
N = γ + δxW .

For a given parameter θ, the SCM M θ has unique solution function gθ : xW 7→
(α+ βxW , γ + δxW ) ∈ XC ×XN and it has unique potential outcomes of the form
X

do(xW )
C,N = (α + βxW , γ + δxW ).

4. W causes C and N , version 2: (“similar to version 1, but now the probability
distribution of wealth is modeled”):
J = ∅, V = {C,N}, W = {W}, θ = (α, β, γ, δ, σ) ∈ XΘ := R4 × [0,∞), XW = R,
XC = R, XN = R, f θ : (xC , xN , xW ) 7→ (α + βxW , γ + δxW ) ∈ XC × XN , P θ =
N (0, σ2). It has structural equations

XC = α + βXW ,

XN = γ + δXW .

For a given parameter θ, the SCM M θ has unique solution function gθ : xW 7→
(α + βxW , γ + δxW ) ∈ XC × XN and it has outcomes of the form XC,N = (α +
βXW , γ + δXW ) for some random variable XW ∼ N (0, σ2).

6.3.5. Sampling from an SCM

One can use the solution function to sample from the corresponding Markov kernel of
an SCM.

Remark 6.3.14. Given a solution function g : XJ × XW → XV of an SCM M =
(J, V,W,X , P, f), we can sample from its corresponding Markov kernel in the following
way:
1: for i = 1, . . . , n do
2: input x(i)J

3: for each w ∈ W do
4: sample X

(i)
w ∼ P (Xw)

5: end for
6: for each v ∈ V do
7: sample X

(i)
v ← g(x

(i)
J , x

(i)
W )

8: end for
9: output (x

(i)
J , X

(i)
W , X

(i)
V )

10: end for

We can think of this as a model of the data-generating process that yields a sequence
of samples (

x
(1)
J , X

(1)
W , X

(1)
V

)
,
(
x
(2)
J , X

(2)
W , X

(2)
V

)
, . . . ,

(
x
(n)
J , X

(n)
W , X

(n)
V

)
.
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While the X(i)
W are independent, we are not assuming anything about how the values

x
(i)
J are determined. More precisely, the above sampling process will lead to the fol-

lowing distribution for the exogenous random variables, given a certain input sequence
x
(1)
J , . . . , x

(n)
J :

(X
(1)
W , . . . , X

(n)
W ) | x(1)J , . . . , x

(n)
J ∼ P (X

(1)
W )⊗ · · · ⊗ P (X(n)

W ).

In words: the X(n)
W are independent and identically distributed according to P , given the

entire sequence x(1)J , . . . , x
(n)
J . Jointly, the data-generating process leads to the following

distribution:

(X
(1)
V ∪W , . . . , X

(n)
V ∪W ) | x(1)J , . . . , x

(n)
J ∼ K(X

(1)
V ∪W |x

(1)
J )⊗ · · · ⊗K(X

(n)
V ∪W |x

(n)
J ),

with K(XV ∪W |XJ) the Markov kernel obtained from the push-forward

(g, idXW
)∗(P ⊗ δ(XJ |XJ)).

Marginally on the endogenous variables, the above data-generating process will lead to
the following distribution of the observed data, given a certain input sequence:

(X
(1)
V , . . . , X

(n)
V ) | x(1)J , . . . , x

(n)
J ∼ K(X

(1)
V |x

(1)
J )⊗ · · · ⊗K(X

(n)
V |x

(n)
J ),

with K(XV |XJ) the Markov kernel obtained from the push-forward

g∗(P ⊗ δ(XJ |XJ)).

The ordering of the operations (input, sample, calculate, output) in this sampler mat-
ters. In particular, note that the values xJ of the exogenous input variables are deter-
mined before the exogenous random variables XW are sampled. Swapping this ordering
may lead to dependence XW ⊥̸⊥XJ between the exogenous random and exogenous input
variables (i.e., P (XW | do(XJ)) ̸= P (XW )). The ordering chosen here is compatible with
the assumption that the exogenous random variables are latent. Indeed, suppose that
some “agent” decides on the values of the exogenous inputs xJ . If this agent could ob-
serve XW before it decides on the values of the inputs, the agent could choose the values
of XJ dependent on the values of XW .33

If the SCM admits multiple solution functions, this sampler depends explicitly on the
choice of the solution function. So one way to think about SCMs that admit multiple
solution functions is that they are incomplete models of a data-generating process.

Example 6.3.15 (Continuing Example 6.3.13). We can sample from the SCMs in Ex-
ample 6.3.13 as follows:

33If the SCM is misspecified in the sense that “nature” choses the values of XW dependent on the values
of XJ , then one can find another SCM by reparameterizing XW to make it independent of XJ again.
Thus, the assumption that XW ∼ P (XW ) rather than XW ∼ K(XW |do(XJ)) in Definition 6.2.1
can be made without loss of generality.
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1. N causes C: (“Nobel prizes are celebrated with massive chocolate feasts”)

1: input α, β, n
2: for i = 1, . . . , n do
3: input x(i)N ;
4: X

(i)
C ← α + βx

(i)
N ;

5: output (X
(i)
C , x

(i)
N )

6: end for

2. C causes N : (“chocolate contains brain enhancing chemicals”)

1: input γ, δ, n
2: for i = 1, . . . , n do
3: input x(i)C ;
4: X

(i)
N ← γ + δx

(i)
C ;

5: output (x
(i)
C , X

(i)
N )

6: end for

3. W causes C and N , version 1: (“inhabitants of wealthy countries eat more choco-
late and conduct more scientific research”)

1: input α, β, γ, δ, n
2: for i = 1, . . . , n do
3: input x(i)W ;
4: X

(i)
C ← α + βx

(i)
W ;

5: X
(i)
N ← γ + δx

(i)
W .

6: output (X
(i)
C , X

(i)
N , x

(i)
W )

7: end for

4. W causes C and N , version 2: (“similar to version 1, but now the probability dis-
tribution of wealth is modeled”):

1: input α, β, γ, δ, σ2, n
2: for i = 1, . . . , n do
3: sample X

(i)
W ∼ N (0, σ2);

4: X
(i)
C ← α + βx

(i)
W ;

5: X
(i)
N ← γ + δx

(i)
W .

6: output (X
(i)
C , X

(i)
N , X

(i)
W )

7: end for
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6.4. Interventions

The reason that equations (38) are called structural is that one cannot simply rewrite
them in the way one is used to when solving a set of equations without changing the
causal semantics of the model. This can be formalized by defining how interventions
affect an SCM.

In this section we define interventions as operations on SCMs that map a given SCM
and an intervention target (and optionally, an intervention value or distribution) to an
intervened SCM. The operation may change the types of the variables it is targeting.
We will consider four intervention types: three variants of a hard intervention, and
soft interventions. The three hard intervention variants differ in what type of variables
the intervened variables become: endogenous variables, exogenous random variables, or
exogenous input variables. As there are many ways in the real world to intervene on (or
“to perturb”, or simply “to change”) a given system, this is only the tip of an iceberg of
how one could formalize such interventions.34

Remark 6.4.1. We will not consider interventions that target exogenous random vari-
ables. This allows the modeler to make less stringent assumptions when modeling a
data-generating process with an SCM.35

6.4.1. Hard interventions

We start with hard interventions that turn all intervened variables into endogenous
variables with specified values, overriding the default causal mechanisms that determined
their values before the intervention was performed.

Definition 6.4.2 (Hard intervention with specified target values). Given an SCM M =
(J, V,W,X , P, f), an intervention target T ⊆ J ∪ V and an intervention value ξT ∈ XT ,
we define the intervened SCM

Mdo(XT=ξT ) :=
(
J \ T, V ∪ T,W,X , P, (fV \T , ξT )

)
.

More explicitly, the components of the intervened causal mechanism f̃ : X → XV ∪T are
given by:

f̃j(x) =

{
ξj j ∈ T
fj(x) j ∈ V \ T,

for j ∈ V ∪ T .

This replaces the targeted exogenous variables by endogenous variables and adds struc-
tural equations to set their values as specified, replaces the existing structural equations
of the form X

do(xJ )
j = fj(xJ , X

do(xJ )
V , X

do(xJ )
W ) for j ∈ T ∩ V to structural equations of

34We do not introduce node-splitting interventions for SCMs, as it is not entirely obvious to us how to
do this in a sensible way; a possibility might be to generalize these to scc-splitting interventions.

35If an intervention on an exogenous random variable in a model is really required, one can always
make an endogenous copy of it, and then intervene on the endogenous copy.
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the simple form X
do(xJ\T )

j = ξj, and leaves the other structural equations invariant. This
operation “endogenizes” exogenous input variables, reflecting that the intervened model
now specifies their values as prescribed by the hard intervention. The values of the other
endogenous variables are still determined by their original causal mechanisms.

Example 6.4.3. A hard intervention do(XN = ξN) changes the SCM “W causes C and
N , version 2” from Example 6.3.13 into the SCM with J = ∅, V = {C,N}, W = {W},
θ = (α, β, γ, δ, σ) ∈ R4 × [0,∞), XW = R, XC = R, XN = R, f̃ θ : (xC , xN , xW ) 7→
(α + βxW , ξN) ∈ XC ×XN , P θ = N (0, σ2). It has structural equations

XC = α + βXW ,

XN = ξN .

Another common variant of hard interventions are stochastic hard interventions, where
the intervention values are drawn independently from a specified (independent) distri-
bution.

Definition 6.4.4 (Stochastic hard intervention). Given an SCM M = (J, V,W,X , P, f),
an intervention target T ⊆ J∪V and an intervention target distribution QT ∈

⊗
t∈T P(Xt),

we define the intervened SCM

Mdo(XT∼QT ) :=
(
J \ T, V \ T,W ∪ T,X , P ⊗QT , fV \T

)
.

More explicitly, the intervened exogenous distribution is given by

P ⊗QT =

[⊗
w∈W

Pw

]
⊗

[⊗
t∈T

Qt

]
.

Intuitively, this assigns random values to the intervention target variables by sampling
from independent intervention distributions Qt for t ∈ T , thereby turning the targeted
variables into exogenous random variables. A hard intervention on an exogenous input
variable turning it into an exogenous random variable can be interpreted as “imposing a
distribution” on the exogenous input variable. For example, if treatment is considered
an exogenous input variable (the model does not specify how treatment is determined
by the physician for each patient), and we then intervene to let treatment be determined
by a coin flip instead (when setting up an RCT), we are imposing a distribution on the
treatment variable.

Example 6.4.5. The SCM “W causes C and N , version 2” from Example 6.3.13 is
obtained from a stochastic intervention on the SCM “W causes C and N , version 1”
from that example.

The third variant of hard interventions only specifies the intervention targets, but
makes no assertions about the intervention values (not even their distribution).

Definition 6.4.6 (Hard intervention with unspecified value). Given an SCM M =
(J, V,W,X , P, f) and an intervention target T ⊆ J ∪ V , we define the intervened SCM

Mdo(T ) :=
(
J ∪ T, V \ T,W,X , P, fV \T

)
.
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Intuitively, this operation replaces endogenous variables and exogenous random vari-
ables with exogenous input variables. The intervened model no longer specifies the
causal mechanisms that determine the values of these variables, but instead treats them
as exogenous inputs that are independent of the (remaining) exogenous random vari-
ables in the model. This reflects that after this hard intervention, the values for these
variables are no longer determined by the system, but are set externally (e.g., by the
experimenter performing the intervention) to values chosen independently of the values
of the exogenous random variables, while the values of the other endogenous variables
are still determined by their original causal mechanisms.

Example 6.4.7. A hard intervention do(N) changes the SCM “W causes C and N ,
version 2” from Example 6.3.13 into the intervened SCM with: J = {N}, V = {C},
W = {W}, θ = (α, β, γ, δ, σ) ∈ R4 × [0,∞), XW = R, XC = R, XN = R, f̃ θ :
(xN , xC , xW ) 7→ α + βxW , P θ = N (0, σ2). It has structural equation

X
do(xN )
C = α + βX

do(xN )
W .

For a given parameter θ, its solution function is unique and given by g̃θ : (xN , xW ) 7→
α+βxW . It has potential outcomes of the form X

do(xN )
C = α+βX

do(xN )
W for some random

variable Xdo(xN )
W ∼ N (0, σ2).

Remark 6.4.8. We will interpret exogenous input variables in SCMs always as if they
represent a hard intervention with unspecified target values. While the target values
are unspecified, this does imply certain assumptions regarding the data-generating pro-
cess (that is, as to how the values can be chosen). Indeed, the data-generating process
described in Section 6.3.5 implies that

X
(1)
W , . . . , X

(n)
W ⊥⊥X

(1)
J , . . . , X

(n)
J .

Here are two examples of settings in which this can be a realistic modeling assumption:

1. If XJ is randomized (the agent that determines the value of X(i)
J just samples it

from an independent source of randomness);

2. If the agent that determines the value of X(i)
J has no access to the values of

X
(1)
W , . . . , X

(n)
W before or while deciding the value of X(i)

J .

Exercise 6.4.9. Suppose you are interested in studying the relationship between age and
body mass index. Is it a good idea to represent age as an exogenous input variable in an
SCM? Why, or why not?

Summarizing, we have now seen three different ways of representing hard interven-
tions, which are all ‘hard’ in the sense that they completely override the default causal
mechanisms of their endogenous targets, so that their values are no longer determined
by those of other endogenous variables. The three variants differ in how we decide to
model the intervened variables: as exogenous inputs, as exogenous random variables, or
as endogenous variables with a constant value.36

36Since most accounts on SCMs do not provide for the possibility of exogenous input variables, the two
variants most often seen in the literature are the latter two.
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Proposition 6.4.10. Let M = (J, V,W,X , P, f) be an SCM. Hard interventions do(T1 . . . ),
do(T2 . . . ) with disjoint targets T1, T2 ⊆ J ∪ V (of any of the three variants) commute:

(Mdo(T1... ))do(T2... ) = (Mdo(T2... ))do(T1... ).

Proof. This follows by writing out the definitions and checking commutativity of the
operations performed on the various components of the SCM tuple one-by-one.

6.4.2. Soft interventions (mechanism changes)

Soft interventions replace the causal mechanism of an endogenous variable by another
causal mechanism (also known as mechanism changes),

Definition 6.4.11 (Soft intervention). Given an SCM M = (J, V,W,X , P, f) and an
intervention target T ⊆ V , a soft intervention on M targeting T yields an intervened
SCM of the form

M̃ :=
(
J, V,W,X , P, f̃

)
where

f̃(x) =

{
fv(x) v ∈ V \ T
f̃v(x) v ∈ T

for measurable functions f̃v : X → Xv (v ∈ T ).

6.4.3. Intervention variables

It is often convenient to combine an SCM and one or more intervened versions of the
SCM together in a single SCM. This can be done by introducing intervention variables
that indicate whether, and possibly encode how, an intervention is performed.

Example 6.4.12. Consider an SCM with endogenous variables X1, X2, exogenous ran-
dom variables E1, E2 and structural equations:

X1 = f1(X2, E1), X2 = f2(X1, E2).

After a hard intervention do(X2 = x2) the structural equations become:

X1 = f1(X2, E1), X2 = x2.

We can combine both into a single SCM by adding an intervention variable I2 (an ex-
ogenous input variable) and change the structural equations into:

X1 = f1(X2, E1), X2 =

{
f2(X1, E2) I2 = 0

x2 I2 = 1.

While there are many ways of intervening, and also many ways of encoding specific
interventions, a special case that we will encounter frequently is the following way of
using intervention variables to model hard interventions on subsets of B for some subset
B ⊆ V of endogenous variables.
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Definition 6.4.13. Let M = (J, V,W,X , P, f) be an SCM. Let B ⊆ V ∪ J . For each
b ∈ B ∩ V , we introduce an additional “intervention variable” Ib, which will become an
exogenous input variable; for j ∈ B ∩ J , we just set Ij := j. We denote IB := (Ib)b∈B.
We define an extended SCM

Mdo(IB) :=

(
J ∪ IB, V,W,X ×

∏
b∈B∩V

XIb , P, f̃

)

with XIb := Xb ∪̇ {⋆}, with causal mechanism f̃ with components

v ∈ V ∩B : f̃v(xV ∪J∪W∪B) :=

{
fv(xV ∪J∪W ) xIv = ⋆

xIv xIv ∈ Xv

v ∈ V \B : f̃v(xV ∪J∪W∪B) := fv(xV ∪J∪W )

For b ∈ B ∩ V , xIb = ⋆ encodes that there is no intervention on b, while xIb ̸= ⋆ encodes
that the hard intervention do(Xb = xIb) is performed.

This provides a way to simultaneously encode {Mdo(XC) : C ⊆ B} into a single SCM
Mdo(IB) and we will make use of it to derive the do-calculus (see Section 7.1).

6.5. Composition and decomposition

If we think about an SCM as modeling a “system”, then we also obtain a model for any
“subsystem” in the following way.

Definition 6.5.1 (Taking a submodel of an SCM). Given an SCM M = (J, V,W,X , P, f)
and a subset V ′ ⊆ V of its endogenous variables, we define its submodel on V ′ as the
SCM

M [V ′] := (J ∪ (V \ V ′), V ′,W,X , P, fV ′) .

Remark 6.5.2. Note that this is just the intervened SCM Mdo(V \V ′).

Given two SCMs, such that some of the variables of one SCM can be used as (part of
the) exogenous input of the other, and possibly vice versa, we can compose them into a
single SCM.37

Definition 6.5.3 (Composing two SCMs). Given two SCMs M = (J, V,W,X , P, f) and
M̃ =

(
J̃, Ṽ, W̃, X̃ , P̃, f̃

)
and two subsets C ⊆ J∩(Ṽ ∪W̃ ) and C̃ ⊆ (V ∪W )∩J̃ satisfying

the following conditions:

1. for all c ∈ C, (X )c = (X̃ )c,

2. for all c ∈ C̃, (X )c = (X̃ )c,
37In practice, one may have to relabel the variables first before one can perform this composition

operation, by changing the index sets of the SCMs to ensure that the right variables become coupled.
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3. (J \ C) ∩ (J̃ \ C̃) = ∅,

4. V ∩ Ṽ = ∅,

5. W ∩ W̃ = ∅,

we define the composed SCM

comp(M,C, M̃, C̃) :=
(
(J \ C) ∪̇ (J̃ \ C̃), V ∪̇ Ṽ,W ∪̇ W̃,X ◦, P ◦, f ◦

)
,

where

X ◦ := X(J\C) ∪̇V ∪̇W × (X̃ )(J̃\C̃) ∪̇ Ṽ ∪̇ W̃ ,

P ◦ := P ⊗ P̃,
f ◦ := (f, f̃).

The special case C = ∅ will also be denoted as M̃ ◦ M , and likewise the special case
C̃ = ∅ will be denoted as M ◦ M̃ .

One can consider the decomposition (taking submodels) as ‘dual to’ the composition
(combining submodels). These operations formalize the notion of modularity, that is,
an SCM can be thought of modeling a system consisting of interacting components by
modeling for each component separately how it interacts with the other components.
The submodels on individual variables correspond with ‘atomic’ subsystems that cannot
be (or won’t be) decomposed into smaller parts.

6.6. Unique solvability and simple SCMs

Definition 6.6.1. An SCM M = (J, V,W,X , P, f) is called uniquely solvable if it has
a unique solution function.

Remark 6.6.2. This means two things:

i) it has a solution function g : XJ × XW → XV , i.e., a measurable function that
satisfies

∀xJ ∈ XJ∀xW ∈ XW : g(xJ , xW ) = f
(
xJ , g(xJ , xW ), xW

)
; (41)

ii) all its solution functions must be equal, i.e., for any solution functions g, g̃ : XJ ×
XW → XV , we have that for all xJ ∈ XJ , for all xW ∈ XW :

g(xJ , xW ) = g̃(xJ , xW ).

The following result gives two useful properties of unique solvability. The first provides
an equivalent formulation that makes it easier to check whether an SCM is uniquely
solvable, the second provides an important consequence regarding the Markov kernels
of the SCM.
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Theorem 6.6.3. Let M = (J, V,W,X , P, f) be an SCM.

1. M is uniquely solvable if and only if for all xJ ∈ XJ , for all xW ∈ XW , the equation

xV = f(xJ , xV , xW )

has a unique solution for xV ∈ XV .

2. If M is uniquely solvable, it has a unique Markov kernel

PM(XV , XW | do(XJ)) = (g, idXW
)∗

((⊗
w∈W

Pw(Xw)

)
⊗ δ(XJ |XJ)

)

where g is the unique solution function of M . The distribution of any potential
outcome Xdo(xJ )

V ∪W for input xJ ∈ XJ is given by PM(XV , XW | do(XJ = xJ)).

Proof. 1. “ =⇒ ”: Let g : XJ×XW → XV be a solution function for M . Let ξW ∈ XW ,
ξJ ∈ XJ . The equation xV = f(xV , ξJ , ξW ) does have a solution for xV (indeed,
g(ξJ , ξW ) is such a solution). Suppose its solution is not unique, i.e., it has another
solution x̃v ̸= g(ξJ , ξW ). Consider the modified function

g̃ : XJ ×XW → XV : (xJ , xW ) 7→

{
x̃V xJ = ξJ ∧ xW = ξW

g(xJ , xW ) otherwise

g̃ is measurable (because g is measurable), satisfies (41), and hence it provides a
solution function. However, g̃ ̸= g, which contradicts the assumed unique solvabil-
ity.

“ ⇐= ”: This boils down to proving that the measurability of f and the uniqueness
of the solutions implies the measurability of the solution function. We exploit
that we are dealing with standard measurable spaces. Define the function g :
XJ × XW → XV by letting g(xJ , xW ) be the (unique) solution xV of the equation
xV = f(xV , xJ , xW ), with xV ∈ XV . The graph of this function is

graph(g) = {(xJ , xW , xV ) ∈ XJ ×XW ×XV : xV = g(xJ , xW )}.

By assumption, we have that xV = g(xJ , xW ) ⇐⇒ xV = f(xV , xJ , xW ) for all
x ∈ X . Hence,

graph(g) = {(xJ , xW , xV ) ∈ XJ ×XW ×XV : xV = f(xV , xJ , xW )}.

Defining the function

h : XJ ×XW ×XV → XV ×XV : (xJ , xW , xV ) 7→ (xV , f(xV , xJ , xW ))

and the diagonal ∆ = {(xV , xV ) : xV ∈ XV } ⊆ X 2
V , this shows that

graph(g) = h−1(∆).
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Since h is measurable and ∆ is a measurable set (because XV is Hausdorff), h−1(∆)
is a measurable set. By [Kec95, 14.12], because all spaces are (isomorphic to) Borel
spaces, the fact that graph(g) is a measurable set implies that g is a measurable
function. Hence g is a solution function. The unique solvability of M follows since
this is the only possible solution function.

2. Assume M to be uniquely solvable and let g : XJ×XW → XV be its unique solution
function. The push-forward (g, idXW

)∗(P ) of the exogenous distribution P of M
(interpreted as a constant Markov kernel from XJ to XW ) provides a Markov kernel
for M .

Let K(XV , XW | XJ) denote any Markov kernel for M corresponding to a solution
X : U×XJ → X . Pick any xJ ∈ XJ . We have to show that K(XV , XW | XJ = xJ)

is a unique distribution. The distribution K(XV , XW | XJ = xJ) is that of Xdo(xJ )
V ∪W ,

which is a potential outcome of M .

Since Xdo(xJ )
V ∪W is a potential outcome of M , we have that Xdo(xJ )

W ∼ P and

X
do(xJ )
V = f(xJ , X

do(xJ )
V , X

do(xJ )
W ) a.s.

This implies that
X

do(xJ )
V = g(xJ , X

do(xJ )
W ) a.s.

By modifying the random variable Xdo(xJ )
V ∪W on a null set, we can obtain a random

variable Y do(xJ )
V ∪W such that we get equality everywhere:

Y
do(xJ )
V = g(xJ , Y

do(xJ )
W ).

This shows that the distribution of Y do(xJ )
V ∪W , and hence that of Xdo(xJ )

V ∪W , is that
of the push-forward of the exogenous distribution P through the unique function
gxJ

: XW → XV : xW 7→ (g(xJ , xW ), xW ). The latter push-forward distribution is
unique.

The first equivalence states that one gets the measurability of the solution function
for free from the measurability of the causal mechanism f and the uniqueness of the
solutions of the structural equations. Note that for the special case of no exogenous
input variables (J = ∅), the above shows that uniquely solvable SCMs induce a unique
distribution.

For SCMs whose causal mechanism is linear in terms of the endogenous variables, we
can give a sufficient condition for unique solvability, and explicitly write down the form
of their solution function.

Definition 6.6.4. An SCM M = (J, V,W,X , P, f) is called linear if all endogenous
variables are real-valued (i.e., Xv = R for v ∈ V ), and each component of the causal
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mechanism is an affine combination of endogenous variables with coefficients that may
depend on exogenous variables, i.e., of the form

fv(x) =
∑
u∈V

Bvu(xJ , xW )xu + cv(xJ , xW ),

where B(xJ , xW ) ∈ RV×V is a family of matrices (or: a matrix-valued function XJ ×
XW → RV×V ) and c(xJ , xW ) ∈ RV is a family of real-valued offsets (or: a vector-valued
function XJ ×XW → RV ).

For linear SCMs, unique solvability is equivalent to the invertability of a certain ma-
trix.

Proposition 6.6.5. Let M = (J, V,W,X , P, f) be a linear SCM. Then, for any set L ⊆
V , the submodel M [L] is uniquely solvable if and only if the matrices IL − BLL(xJ , xW )
are invertible for all xJ ∈ XJ , xW ∈ XW , where IL ∈ RL×L the identity matrix and
BLL(xJ , xW ) ∈ RL×L the submatrix of B(xJ , xW ). Its unique solution function is then:

g : RV \L × RJ∪W → RL

: (xV \L, xJ , xW ) 7→ (IL −BLL(xJ , xW ))−1
(
BL,V \L(xJ , xW )xV \L + cL(xJ , xW )

)
.

If an SCM is uniquely solvable, this does not necessarily mean that it is still uniquely
solvable after performing some intervention. To avoid the complications introduced in
case solutions are absent, or present but not unique, we will henceforth make strong
assumptions regarding the existence and uniqueness of solutions. We (mostly) restrict
our attention to a subclass of SCMs that we refer to as simple SCMs, which are SCMs
that are uniquely solvable and remain so after any hard intervention:

Definition 6.6.6. An SCM M = (J, V,W,X , P, f) is called simple if the intervened
SCM Mdo(T ) is uniquely solvable for all T ⊆ V .

Note that this includes unique solvability of M itself for T = ∅.
Example 6.6.7. Consider an SCM with structural equations

X1 = W1

X2 = W2

X3 = X1X4 +W3

X4 = X2X3 +W4

where the X’s are considered real-valued endogenous variables and the W ’s exogenous
variables with domains (−1, 1) ⊂ R. We can solve the system of structural equations for
X in terms of W :

X1 = W1

X2 = W2

X3 =
W3 +W1W4

1−W1W2

X4 =
W2W3 +W4

1−W2W1
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Similarly, we can take any subset of the structural equations and solve it for the variables
appearing on the l.h.s. of the equations in the subset, and obtain a unique solution. For
example, only solving the structural equations for X3 and X4, we obtain:

X3 =
W3 +W1W4

1−W1X2

X4 =
W2W3 +W4

1−W2X1

where the variables X1 and X2 are now considered as exogenous input variables (instead
of endogenous variables). Hence, any subset of the structural equations has a unique
solution for the variables appearing on the l.h.s. in terms of the remaining ones on the
r.h.s., which means that this SCM is simple.

Corollary 6.6.8. If M is simple, then its Markov kernel PM(XV , XW | do(XJ)) and all
intervened Markov kernels

PMdo(T )
(XV \T , XW | do(XJ∪T ))

for T ⊆ V exist and are unique.

Proof. This follows from Theorem 6.6.3.

We will make use of the following notation for intervened Markov kernels of simple
SCMs.

Notation 6.6.9. For a simple SCM M , we write for T ⊆ V :

PM(XV \T , XW | do(XJ), do(XT )) := PMdo(T )
(XV \T , XW | do(XJ∪T ))

The fact that these SCMs are relatively simple to deal with (because we do not have to
worry about non-existence or non-uniqueness of solutions) motivated their name. Even
though simplicity is a strong assumption, the class of simple SCMs is more expressive
than the class of L-CBNs since it allows to model causal cycles (to some extent).

6.7. Equivalence Notions

Equivalence relations are ubiquitous in mathematics. They capture the notion that
mathematical objects can be “equivalent” from some point of view.

Definition 6.7.1. Let Z be a set and R ⊆ Z2 be a relation on Z (i.e., a subset of
ordered pairs of Z). R is called an equivalence relation if

1. R is reflexive: (a, a) ∈ R for all a ∈ Z;

2. R is symmetric: (a, b) ∈ R ⇐⇒ (b, a) ∈ R for all a, b ∈ Z;

3. R is transitive: if (a, b) ∈ R and (b, c) ∈ R then (a, c) ∈ R for all a, b, c ∈ Z.
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In this section, we will discuss two important equivalence relations between SCMs. For
simplicity of exposition, we provide the definitions only for simple SCMs (the general
definitions are provided in [BFPM21] for SCMs without exogenous input variables).38

Definition 6.7.2. Let M = (J, V,W,X , P, f) and M̃ = (J̃, Ṽ, W̃, X̃ , P̃, f̃) be two simple
SCMs and O ⊆ V ∩ Ṽ a subset. We say that:

1. M and M̃ are observably equivalent w.r.t. O if XO = X̃O, XJ∩J̃ = X̃J∩J̃ and their
marginal Markov kernels coincide:

PM(XO | do(XJ)) = PM̃(XO | do(XJ̃)).

This has to be interpreted as both Markov kernels being a version of a Markov
kernel XJ∩J̃ 99K XO, i.e., PM(XO | do(XJ)) must be essentially constant in xJ\J̃
and PM̃(XO | do(XJ̃)) must be essentially constant in xJ̃\J .

39

2. M and M̃ are interventionally equivalent w.r.t. O if for every subset T ⊆ O the
intervened SCMs Mdo(T ) and M̃do(T ) are observably equivalent w.r.t. O \ T ;

If O = V ∩ Ṽ , we may omit the qualitifier “w.r.t. O”.

More generally, one could define interventional equivalence not only with respect to
an observed set of variables, but also with respect to a given set of interventions.

Interventional equivalence is a stronger property than observable equivalence:

Proposition 6.7.3. For simple SCMs M, M̃ and a subset O ⊆ V ∩ Ṽ : Interventional
equivalence of M and M̃ w.r.t. O implies observable equivalence of M and M̃ w.r.t. O.

Proof. This is trivial (consider the intervention targeting T = ∅).

However, the reverse implication does not hold in general. This expresses that causal
modeling is more refined than probabilistic modeling.

Example 6.7.4 (Observable equivalence does not imply interventional equivalence).
Consider the SCM M with

W ∼ N (µ, σ2),

N = W,

C = α + βN,

38 [BFPM21] also define a stronger notion of equivalent SCMs which is useful when weakening the “for
all” quantifier over values of exogenous random variables by the “for almost all” quantifier. Since
here we will only work with the “for all” quantifier, there is no need to discuss that equivalence
relation here.

39In other words,

PM (XO | do(XJ)) = PM (XO | do(XJ∩J̃)) = PM̃ (XO | do(XJ∩J̃)) = PM̃ (XO | do(XJ̃)).
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and the SCM M̃ with

W ∼ N (µ̃, σ̃2),

C = W,

N = α̃ + β̃C.

These SCMs are simple and their distributions are respectively

PM(N,C) = N
((

µ
α + βµ

)
,

(
σ2 βσ2

βσ2 β2σ2

))
and

PM̃(N,C) = N
((

α̃ + β̃µ̃
µ̃

)
,

(
β̃2σ̃2 β̃σ̃2

β̃σ̃2 σ̃2

))
For certain parameter choices, they are observably equivalent (to be precise, they are
observable equivalent iff µ = α̃+ β̃µ̃ and µ̃ = α+ βµ and σ2 = β̃2σ̃2 and βσ2 = β̃σ̃2 and
β2σ2 = σ̃2). However, they are not interventionally equivalent except for very special
parameter choices (to be precise, they are interventionally equivalent iff β = β̃ = 0 and
σ2 = σ̃2 = 0 and µ = α̃ and µ̃ = α).

6.8. Marginalizations

When modeling a system, we sometimes want to “hide” details of a subsystem. The
following operation on SCMs that we call “marginalization” is a causal analogue of
the marginalization of probability distributions. The computer program analogy of the
marginalization operation is to hide details within a subroutine. Intuitively, a marginal-
ization of an SCM over a subset of endogenous variables L is obtained by first solving
a subsystem (the structural equations corresponding to the endogenous variables in L)
followed by substituting the solution function of the subsystem into the remaining struc-
tural equations (corresponding to the endogenous variables in V \ L).

Definition 6.8.1. Let M = (J, V,W,X , P, f) be an SCM and L ⊆ V such that the
submodel M [L] is uniquely solvable. Let g[L] : XJ × XV \L × XW → XL be the unique
solution function for M [L]. Then we call M\L = (J, V \L,W,XJ×XV \L×XW , P, f̃) with

f̃(xJ , xV \L, xW ) = fV \L(xJ , xV \L, g
[L](xJ , xV \L, xW ), xW )

the marginalization of M over L.

For simple SCMs, marginalizations are obviously defined over any subset L ⊆ V .

Notation 6.8.2. We will also use the notation MO := M\(V \O) for a subset O ⊆ V
of endogenous variables when we want to emphasize which endogenous variables remain
after marginalization.

Marginalization preserves unique solvability, as the following lemma shows.
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Lemma 6.8.3. Let M = (J, V,W,X , P, f) be an SCM and L ⊆ V such that M [L] is
uniquely solvable. If M is uniquely solvable then its marginalization M\L is uniquely
solvable, and the unique solution function for M\L is gV \L = prV \L ◦ g, where g : XJ ×
XW → XV is the unique solution function for M and prK : XV → XK : x 7→ xK is the
canonical projection on K ⊆ V .

Proof. Let K := V \ L and let g[L] : XJ∪K × XW → XL be the unique solution function
for M [L] = Mdo(K). From the properties of the solution functions, we derive that for all
x ∈ X ,{

xL = gL(xJ , xW )

xK = gK(xJ , xW )
⇐⇒ xV = g(xJ , xW ) ⇐⇒ xV = f(x) ⇐⇒

{
xL = fL(x)

xK = fK(x)

⇐⇒

{
xL = g[L](xJ , xK , xW )

xK = fK(xJ , xK , xL, xW )
⇐⇒

{
xL = g[L](xJ , xK , xW )

xK = fK(xJ , xK , g
[L](xJ , xK , xW ), xW )

⇐⇒

{
xL = g[L](xJ , xK , xW )

xK = f̃(xJ , xK , xW )

where f̃ is the causal mechanism of M\L. Hence for all xJ ∈ XJ , xW ∈ XW , xK ∈ XK :

xK = gK(xJ , xW ) ⇐⇒ xK = f̃(xJ , xK , xW ).

Therefore, gK = prK ◦ g is the unique solution function for M\L, and the marginalized
SCM M\L is uniquely solvable.

Remark 6.8.4. This also directly implies that if M is uniquely solvable and its marginal-
ization M\L over L ⊆ V is defined, the Markov kernel of the marginalization is obtained
by marginalizing the original Markov kernel:

PM\L(XV \L, XW | do(XJ)) = PM(XV \L, XW | do(XJ)).

This explains the name ‘marginalization’.

Under certain conditions, hard interventions and marginalization commute (i.e., it
does not matter in which order we apply them).

Proposition 6.8.5. Let M = (J, V,W,X , P, f) be an SCM. For L ⊆ V such that M [L]

is uniquely solvable, and a hard intervention do(T . . . ) with target T ⊆ J ∪ V (of any of
the three variants) such that L ∩ T = ∅:

(Mdo(T ... ))\L = (M\L)do(T ... ).

Proof. This follows by writing out the definitions and checking commutativity of the
operations performed on the various components of the SCM tuple one-by-one.

We will show that for simple SCMs, the marginalization operation preserves the causal
semantics on the remaining variables. A key step is the following proposition, which gives
conditions under which it does not matter whether we marginalize at once or in steps.
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Proposition 6.8.6. Let M = (J, V,W,X , P, f) be an SCM and L1, L2 ⊆ V such that
L1 ∩ L2 = ∅. If M [L1] is uniquely solvable, and (M\L1)

[L2] is uniquely solvable, then
M [L1∪L2] is uniquely solvable, and in that case it does not matter if we first marginalize
over L1 and then L2, or both at once, i.e:

(M\L1)\L2 =M\(L1∪L2).

Proof. Write K1 = V \L1. Let g[L1] : XJ∪K1×XW → XL1 be the unique solution function
of M [L1], i.e., for all x ∈ X :

xL1 = g[L1](xJ , xK1 , xW ) ⇐⇒ xL1 = fL1(x).

Let f̃ : XJ ×XK1 ×XW → XK1 with

f̃(xJ , xK1 , xW ) = fK1(xJ , xK1 , g
[L1](xJ , xK1 , xW ), xW )

be the causal mechanism of the marginal SCM M\L1 .
If (M\L1)

[L2] is uniquely solvable, it has a unique solution function g̃[L2] : XJ ×
XV \(L1∪L2) ×XW → XL2 , i.e., for all x ∈ X :

xL2 = g̃[L2](xJ , xV \(L1∪L2), xW ) ⇐⇒ xL2 = f̃L2(xJ , xL2 , xK1\L2 , xW )

Define the function h : XJ ×XV \(L1∪L2) ×XW → XL1∪L2 by

hL1(xJ , xV \(L1∪L2), xW ) = g[L1](xJ , xK1\L2 , g̃
[L2](xJ , xV \(L1∪L2), xW ), xW )

hL2(xJ , xV \(L1∪L2), xW ) = g̃[L2](xJ , xV \(L1∪L2), xW )

Then for all x ∈ X :{
xL1 = fL1(x)

xL2 = fL2(x)

⇐⇒

{
xL1 = g[L1](xJ , xK1 , xW )

xL2 = fL2(xJ , xK1 , xL1 , xW )

⇐⇒

{
xL1 = g[L1](xJ , xK1 , xW )

xL2 = fL2(xJ , xK1 , g
[L1](xJ , xK1 , xW ), xW )

⇐⇒

{
xL1 = g[L1](xJ , xK1\L2 , xL2 , xW )

xL2 = g̃[L2](xJ , xV \(L1∪L2), xW )

⇐⇒

{
xL1 = g[L1](xJ , xK1\L2 , g̃

[L2](xJ , xV \(L1∪L2), xW ), xW )

xL2 = g̃[L2](xJ , xV \(L1∪L2), xW )

⇐⇒ xL1∪L2 = h(xJ , xV \(L1∪L2), xW )

where in the first equivalence we used the unique solvability of M [L1], in the second
equivalence we used substitution, in the third equivalence we used the unique solvability
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of (M\L1)
[L2], in the fourth equivalence we used substitution again, and in the fifth

equivalence we used the definition of h. Therefore, h is the unique solution function for
M [L1∪L2], which must therefore be uniquely solvable. By checking the definition, one
concludes that (M\L1)\L2 =M\(L1∪L2).

Proposition 6.8.7. Let M = (J, V,W,X , P, f) be a simple SCM. For any L ⊆ V , its
marginalization M\L is also simple.

Proof. Let T ⊆ V \ L. By Proposition 6.8.5, the marginalization commutes with the
hard intervention:

(M\L)do(T ) = (Mdo(T ))\L.

Because M is simple, also Mdo(T ) is simple (by Proposition 6.4.10), and in particular it is
uniquely solvable. From Lemma 6.8.3 it follows that also its marginalization (Mdo(T ))\L
is uniquely solvable. This means that (M\L)do(T ) is uniquely solvable. Since this holds
for any T ⊆ V \ L, M\L is simple.

Corollary 6.8.8. Let M = (J, V,W,X , P, f) be a simple SCM. For L1, L2 ⊆ V with
L1 ∩ L2 = ∅,

(M\L1)\L2 = (M\L2)\L1 =M\(L1∪L2).

These commutation relations and compatibilities now allow us to give a straightfor-
ward proof that the causal semantics are preserved under marginalization. While this
holds generally [BFPM21], we will here only prove this for simple SCMs.

Theorem 6.8.9. Let M = (J, V,W,X , P, f) be a simple SCM, L ⊆ V , and M\L its
marginalization over L. Then M and M\L are observably and interventionally equivalent
(w.r.t. V \ L).

Proof. Write O = V \ L. We first show that the marginal Markov kernels PM(XO |
do(XJ)) and PM\L(XO | do(XJ)) are the same. The former is obtained as:

PM(XO | do(XJ)) = (prO ◦ g)∗(P ) = (gO)∗(P ),

where g : XJ × XW → XV is the unique solution function of M and prO : XV ∪W → XO

is the canonical projection on the O components. The latter is obtained as:

PM\L(XO | do(XJ)) = (gO)∗(P )

since by Lemma 6.8.3, gO is the (unique) solution function of M\L. This means that
both push-forwards are identical.

Let T ⊆ O. Then (M\L)do(T ) = (Mdo(T ))\L by Proposition 6.8.5. The observable
equivalence ofMdo(T ) and (Mdo(T ))\L w.r.t. O\T hence implies the observable equivalence
of Mdo(T ) and (M\L)do(T ) w.r.t. O \ T . Since this holds for all T ⊆ O, M and M\L are
interventionally equivalent w.r.t. O.

So the marginalization operation indeed effectively hides the details of a subsystem,
while preserving the causal semantics on the remaining part.
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6.9. Graphical Representations

We can represent the qualitative structure of an SCM by means of graphs. The directed
edges in such a graph will express the following “parent”-relation that captures functional
dependencies in the structural equations / causal mechanisms of the SCM.

Definition 6.9.1. Let M = (J, V,W,X , P, f) be an SCM. For i ∈ J ∪V ∪W and j ∈ V ,
we say that i is a parent of j according to M if there does not exist a measurable function
f̃j : X(J∪V ∪W )\{i} → Xj such that for all x ∈ X ,

xj = fj(x) ⇐⇒ xj = f̃j(x\i),

where x\i is shorthand for x(J∪V ∪W )\{i}.

In words, i is a parent of j if the solutions of the structural equation for j depend on
the value of variabe i. By definition, exogenous (input and random) variables have no
parents.

Using directed edges to encode the parent-relationship, we define two graphical rep-
resentations. The more fine-grained representation represents all the variables as nodes.
We will also frequently use a coarser representation that represents only the endogenous
variables and the exogenous input variables as nodes (but not the exogenous random
variables).

Definition 6.9.2. Let M = (J, V,W,X , P, f) be an SCM. The CDG (J, V ∪W,E) with
input nodes J , output nodes V ∪W , and directed edges

E = {i j : i ∈ J ∪W ∪ V, j ∈ V : i is parent of j according to M}

is called the graph of the SCM and will be denoted as G+(M).
The marginalized graph (G+(M))\W in which all exogenous random nodes have been

marginalized out (via Definition 3.2.14), will be called the causal graph of the SCM and
denoted as G(M).40

Remark 6.9.3. The causal graph G(M) = (J, V, E, L) has input nodes J , output nodes
V , directed edges

E = {i j : i ∈ J ∪ V, j ∈ V : i is parent of j according to M}

and bidirected edges

L = {j k : j ∈ V, k ∈ V, j ̸= k : j and k have a common parent in according to M}.

In other words, G(M) is obtained from G+(M) by replacing the nodes representing the
exogenous random variables and their outgoing directed edges with bidirected edges, i.e.,
any pattern w with w ∈ W is replaced by .
40The reason we use the adjective “causal” is to emphasize that every node in the causal graph has a

causal interpretation, as the corresponding variable can be targeted by a hard intervention.
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X1 X2 X3
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XA XC

G+(M̃)

X1 X2 X3

G(M̃)

Figure 16: The graphs of the interventionally equivalent SCMs M (left) and M̃ (right)
corresponding to Example 6.9.4. The corresponding causal graphs (that do
not represent exogenous random variables as nodes) are shown in the bottom
row.

Note that observably equivalent SCMs may have different graphs, and even interven-
tionally equivalent SCMs may have different graphs.

Example 6.9.4. Consider the SCM M with endogenous variables X1, X2, X3 with co-
domains {−1, 1}, {−1, 1}, {−2, 0, 2}, respectively, and structural equations

X1 = XA

X2 = X1XB

X3 = X2 +XB,

with independent exogenous random variables XA, XB ∼ Uni({−1, 1}). Its graph G+(M)
and its causal graph G(M) are depicted in Figure 16 (left top and bottom, respectively).

Consider also the SCM M̃ with endogenous variables X1, X2, X3 with co-domains
{−1, 1}, {−1, 1}, {−2, 0, 2}, respectively, and structural equations

X1 = XA

X2 = XC

X3 = X2 +X1XC ,

with independent exogenous random variables XA, XC ∼ Uni({−1, 1}). Its graph G+(M̃)
and causal graph G(M̃) are depicted in Figure 16 (right top and bottom, respectively).
M̃ was obtained from M by making a change of variables xC = x1xB. One can check
that M̃ is interventionally equivalent to M (with respect to {1, 2, 3}), even though its the
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graph G+(M) differs from the graph G+(M̃), and its causal graph G(M) differs from
the causal graph G(M̃).41

We already provided definitions for hard interventions on graphs (Definition 3.2.1) and
for marginalizations (latent projections) of graphs (Definition 3.2.14). The mapping that
maps an SCM to its graph is compatible with the elementary operations on SCMs and
on graphs.

Proposition 6.9.5. Let M = (J, V,W,X , P, f) be an SCM. Then

• Hard interventions: for T ⊆ J ∪ V ,

G+(Mdo(T )) = (G+(M))do(T ) and G(Mdo(T )) = (G(M))do(T ).

• Marginalizations: If M is simple, then for L ⊆ V ,

G+(M\L) ⊆ (G+(M))\L.

Proof. The first statement follows by writing out the definitions.
The second statement is somewhat more involved. We will first prove it in case

L = {ℓ} consists of a single node. Let G+ := G+(M). By using the definition of the
parent relation (repeatedly), we can find a function f̃ℓ : XPaG

+
(ℓ)
→ Xℓ such that for all

x ∈ X :
xℓ = fℓ(x) ⇐⇒ xℓ = f̃ℓ(xPaG+

(ℓ)
).

Since ℓ /∈ PaG
+

(ℓ) because M is simple, the unique solution function g̃ℓ : XJ∪V \{ℓ}∪W →
Xℓ of Mdo(V \{ℓ}) satisfies g̃ℓ(x\ℓ) = f̃ℓ(xPaG+

(ℓ)
), i.e., it only depends on the parents of ℓ.

When constructing the marginalized causal mechanism for M\{ℓ}, we substitute g̃ℓ(x\ℓ)
into the ℓ’th input of the causal mechanism fj ofM , for j ∈ V \{ℓ}. Since g̃ℓ only depends
on PaG

+

(ℓ), we get that PaG̃
+

(j) ⊆ PaG
+

(j) \ {ℓ}∪PaG+

(ℓ), where G̃+ = G+(M\ℓ). But
we also have Pa(G

+)\{ℓ}(j) = PaG
+

(j) \ {ℓ} ∪ PaG
+

(ℓ) by definition of the graphical
marginalization. Hence PaG̃

+

(j) ⊆ Pa(G
+)\{ℓ} for all j ∈ V \ {ℓ}, and we have shown

that G+(M\{ℓ}) ⊆ (G+(M))\{ℓ}. For the general case, we can make use of induction and
the facts that both for graphs and simple SCMs, we can obtain a marginalization over a
subset by repeatedly marginalizing out a single remaining node in the subset, in arbitrary
order. Finally, note that G(M\L) = (G+(M\L))

\W ⊆ ((G+(M))\L)\W = G(M)\L.

6.10. Self-Cycles

Our goal was to allow for possible cycles in an SCM. This means that we may also
encounter self-cycles.

41Even node-splitting interventions would not allow to distinguish the two SCMs.
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(a) W X (b) W X

Figure 17: Graphs without and with a self-cycle in Example 6.10.1.

Example 6.10.1. Consider an SCM with an endogenous variable X ∈ R and an exoge-
nous random variable W ∈ R.

If it has structural equation

X = X −X3 +W,

then its graph is the one in Figure 17(a). In particular, it does not have a self-cycle at
X, since X is not a parent of itself. Indeed, the structural equation is equivalent to

X =
3
√
W,

where X does not appear on the r.h.s..
On the other hand, if it has structural equation

X = X −X2 +W 2,

then its graph is the one in Figure 17(b), which in particular contains a self-cycle at X.

Self-cycles complicate matters because they indicate solvability issues.
To understand why self-cycles are in some sense inevitable, consider an SCM with

structural equations

X1 = X2

X2 = X3

X3 = X1

Marginalizing out X2 and X3 gives an SCM with structural equation

X1 = X1,

which turns the cycle X1 X3 X2 X1 into a self-cycle X1 X1. Self-cycles
are of no concern, though, when restricting to the class of simple SCMs.

Proposition 6.10.2. For j ∈ V , there is a self-cycle j j in G+(M) if and only if
M [j] is not uniquely solvable. In particular, graphs of simple SCMs have no self-cycles.
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L-CBNs
acyclic SCMs

simple SCMs

SCMs

Figure 18: Venn diagram for different causal modeling classes.

6.11. Acyclic SCMs

A subclass of SCMs that is often considered are acyclic SCMs.

Definition 6.11.1. An SCM M is called acyclic if its graph G+(M) is acyclic.

Note that this holds if and only if its causal graph G(M) is acyclic. If one models
static systems, then using acyclic SCMs rules out the presence of causal cycles (e.g.,
feedback loops) in the system. Acyclic SCMs are a subclass of the more general class of
simple SCMs.

Proposition 6.11.2. Acyclic SCMs are simple.

Proof. We first show that acyclic SCMs are uniquely solvable. Let M be an acyclic
SCM. Its graph G+ := G+(M) is acyclic, and hence has a topological order <. Consider
fv, the causal mechanism for v ∈ V . The parents PaG

+

(v) precede v in the topological
order. Since fv can be rewritten to be constant in the non-parents of v (similar to how
this was done in the proof of Proposition 6.9.5), we can consider fv : X → Xv as a
function fv : XPredG

+
< (v)

→ Xv instead. We can then inductively define the components

gv : XJ ×XW → Xv : (xJ , xW ) 7→ fv(gPredG+
< (v)

(xJ , xW ))

that together form a solution function g : XJ∪W → XV . This construction also exhibits
the uniqueness of g : XJ∪W → XV .

Next consider Mdo(T ), the intervened SCM for a hard intervention on M with target
T ⊆ V . It has graph G+(Mdo(T )) = (G+)do(T ), whose edges form a subset of the edges of
G+ (but where some output nodes have become input nodes), and hence is also acyclic.
Therefore, also Mdo(T ) is uniquely solvable. Since this holds for all targets T ⊆ V , we
conclude that M is simple.

Figure 18 shows a Venn diagram to illustrate the relationships between the different
classes of causal models that we introduced. We will show that in a precise sense, acyclic
SCMs and L-CBNs are equally expressive.
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Definition 6.11.3. Let M = (J, V,W,X , P, f) be a simple SCM and let M̃ be an L-CBN
with graph G̃+ = (J̃, Ṽ ∪̇ Ũ, Ẽ), spaces X̃ṽ for ṽ ∈ Ṽ ∪ Ũ ∪ J̃ , and Markov kernels

Pṽ

(
Xṽ|XPaG̃

+ (ṽ)
)
.

We say that M is interventionally equivalent to M̃ w.r.t. O ⊆ V ∩Ṽ if XO = X̃O, XJ∩J̃ =
X̃J∩J̃ , and for any hard intervention do(T ) with T ⊆ O, the intervened Markov kernel
PM(XO\T | do(XJ∪T )) of M equals the intervened Markov kernel P (XO\T | do(XJ̃∪T )) of
M̃ .

Proposition 6.11.4. i) Given an acyclic SCM M = (J, V,W,X , P, f) and a subset
O ⊆ V , we can construct an L-CBN M̃ with observed output variables Ṽ = O,
latent output variables Ũ = (V ∪W ) \ O, input variables J , graph G+(M), and
spaces Xv for v ∈ V ∪W ∪ J that is interventionally equivalent to M w.r.t. O.

ii) Given an L-CBN M̃ =
(
G+ = (J, (O,U), E+),

(
Pv(Xv|XPaG

+
(v)
)
)
v∈O∪U

)
with ob-

served variables O, we can construct an acyclic SCM M with input variables J ,
endogenous variables O and causal graph G(M) ⊆ (G+)\U that is interventionally
equivalent to M̃ w.r.t. O.

Proof. i) Let M = (J, V,W,X , P, f) be an acyclic SCM with graph G+(M) = (J, V ∪
W,E). Define M̃ as the L-CBN with observed output variables Ṽ = O, latent
output variables Ũ = (V ∪W )\O, input variables J , graph G+ := G+(M), spaces
Xv for v ∈ V ∪W ∪ J , and the following Markov kernels. For v ∈ V , we write its
structural equation as:

xv = fv(xPaG+
(v)
)

with fv : XPaG
+
(v)
→ Xv, where v /∈ PaG

+

(v) because the graph is acyclic. We then
define the corresponding (deterministic) Markov kernel

Pv

(
Xv|XPaG

+
(v)

)
:= δfv(Xv|XPaG

+
(v)
),

encoding the causal mechanisms of M . The Markov kernels for w ∈ W are defined
as:

Pw

(
Xw|XPaG

+
(w)

)
:= Pw(Xw),

encoding the exogenous distributions of M , where we note that PaG
+

(w) = ∅. One
can check that this L-CBN M̃ does the job.

ii) Let
M̃ =

(
G+ = (J, (O,U), E+),

(
Pv(Xv|XPaG

+
(v)
)
)
v∈O∪U

)
be an L-CBN. For every v ∈ O ∪̇U , we can write the Markov kernel Pv as the
composition of a deterministic one and a uniform distribution Pv̄(Xv̄) on Xv̄ :=
[0, 1] by Remark 2.7.4:

Pv(Xv|XPaG
+
(v)
) = δ(fv|Xv̄, XPaG

+
(v)
) ◦ Pv̄(Xv̄)
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for some measurable function fv : Xv̄ × XPaG
+
(v)
→ Xv. Here, we introduced new

variables v̄ for each v ∈ O ∪̇U .

Define now the SCM M̄ =
(
J,O ∪̇U, Ō ∪̇ Ū,XJ ×XO ∪̇U ×XŌ ∪̇ Ū , P, f

)
by taking

P (XŌ ∪̇ Ū) =
⊗

v̄∈Ō ∪̇ Ū

Pv̄(Xv̄)

and
f = (fv)v∈O ∪̇U .

That is, the uniformly distributed random variables Xv̄ become the exogenous
random variables, all independent and uniformly distributed on [0, 1], and the
components of the causal mechanism correspond to the deterministic functions
used to represent the Markov kernels. The marginalized SCM M := M̄\U does the
job, as one can check.

Simple SCMs are more expressive than acyclic SCMs because they can model (suffi-
ciently weak) causal cycles. SCMs in general are even more expressive because they can
also model stronger cycles that not necessarily lead to unique solvability under any hard
intervention, but this generality comes with a substantially increased complexity of the
theory and interpretability. Simple SCMs form a “sweet spot” in the sense that they
allow cyclic relationships yet their theory is not much more complicated than that of
acyclic SCMs: the main difference consists in replacing d-separation with σ-separation.

Exercise 6.11.5. Show that all simple SCMs with two endogenous binary variables X, Y
must be acyclic.

Even SCMs may not be the ultimate way of modeling cyclic causal systems. Indeed, for
such systems, it might be that the conceptual notion of interventions targeting variables
is misguided in general, and perhaps should be replaced by the notion of intervening on
functional constraints [BvDM21].

6.12. Examples

In many systems occurring in the real world, feedback loops between observed variables
are present. Such systems can often be described by a system of (random) differential
equations. The equilibrium states of such systems can sometimes be causally modelled
by an SCM [BM18].

For illustration purposes we provide two examples, the first consisting of interacting
masses that are attached to springs that can be described at equilibrium with a sim-
ple SCM, the second being the famous price-supply-demand model that has been very
popular in econometrics, and which corresponds to a non-simple SCM at equilibrium.
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m1 m2 m3 m4 m5

k0 k1 k2 k3 k4 k5

Q0 Q6

Q0 Q1 Q2 Q3 Q4 Q5 Q6

k0 k1 k2 k3 k4 k5

ℓ0 ℓ1 ℓ2 ℓ3 ℓ4 ℓ5

Figure 19: Damped coupled harmonic oscillator (top) and the graph of the SCM that de-
scribes the positions of the masses at equilibrium (bottom) of Example 6.12.1
for d = 5, where the spring lengths and constants are considered as exogenous
input variables.

Example 6.12.1 (Damped coupled harmonic oscillator). Consider a one-dimensional
system of d masses mi ∈ R (i = 1, . . . , d) with positions Qi. The masses are coupled by
springs, with spring constants ki > 0 (i = 0, . . . , d) and equilibrium lengths ℓi > 0 (i =
0, . . . , d − 1), under influence of friction with friction coefficients bi > 0 (i = 1, . . . , d).
The endpoints are considered fixed at positions Q0 < Qd+1 (see Figure 19 (top)). From
elementary physics, we know that the equations of motion of this system are given by the
following differential equations

d2Qi

dt2
=

ki
mi

(Qi+1 −Qi − ℓi) +
ki−1

mi

(Qi−1 −Qi + ℓi−1)−
bi
mi

dQi

dt
i = 1, . . . , d.

The dynamics of the masses, in terms of the position Qi, velocity dQi

dt
and acceleration

dQ2
i

dt2
, is described by a single and separate equation of motion for each mass. Under

friction, i.e., bi > 0 (i = 1, . . . , d), there is a unique equilibrium position, where the
sum of forces vanishes for each mass. If one moves one or several masses out of their
equilibrium positions and releases them, then the masses will start to oscillate, but even-
tually these oscillations dampen out and the masses converge to their unique equilibrium
position. At equilibrium (i.e., for t → ∞) the velocity dQi

dt
and acceleration d2Qi

dt2
of the

masses vanish (i.e., dQi

dt
, d

2Qi

dt2
→ 0), and thus the following equation holds at equilibrium

0 =
ki
mi

(Qi+1 −Qi − ℓi) +
ki−1

mi

(Qi−1 −Qi + ℓi−1)

for each mass (i = 1, . . . , d). By solving each of these equations w.r.t. Qi, we obtain that
the equilibrium positions Qi of the masses are given by

Qi =
ki(Qi+1 − ℓi) + ki−1(Qi−1 + ℓi−1)

ki + ki−1

.

By considering the ℓi, ki and Q0 and Qd+1 as exogenous input variables, and the Qi
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(i = 1, . . . , d) as endogenous variables, we arrive at an SCM with causal mechanism

fi(q, ℓ, k) =
ki(qi+1 − ℓi) + ki−1(qi−1 + ℓi−1)

ki + ki−1

.

for i = 1, . . . , d. Its graph is depicted in Figure 19 (bottom). This SCM allows us to
describe the equilibrium behavior of the system under perfect intervention. For example,
when forcing the mass j to a fixed position Qj = ξj with 0 ≤ ξj ≤ L, the equilibrium
positions of the masses correspond to the solutions of the intervened model Mdo(Qj=ξj).

Exercise 6.12.2. Prove that the SCM that describes the equilibrium states of a damped
coupled harmonic oscillator is simple (see also Proposition 6.6.5). Hint: you can use that
the determinant of a tridiagonal matrix of the following form is given by the expression
on the r.h.s.:

det


k0 + k1 −k1
−k1 k1 + k2 −k2

−k2 k2 + k3
. . .

. . . . . . −kd−1

−kd−1 kd−1 + kd

 =
d∑

i=0

d∏
j=0
j ̸=i

kj

Next, we show that a well-known equilibrium model from economics can be described
by a (non-simple) SCM. This example illustrates how self-cycles enrich the class of SCMs.

Example 6.12.3 (Price, supply and demand). Let D denote the demand and S the
supply of a quantity of a product. The price of the product is denoted by R. The following
system of differential equations describes how the demanded and supplied quantities are
determined by the price, and how price adjustments occur in the market:

D = βDR + ED

S = βSR + ES

dR

dt
= D − S,

where ED and ES are exogenous random influences on the demand and supply respec-
tively, βD < 0 is the reciprocal of the slope of the demand curve, and βS > 0 is the
reciprocal of the slope of the supply curve. At equilibrium, dR

dt
= 0, and hence the price

is determined implicitly by the condition that demanded and supplied quantities should
be equal. At equilibrium, hence, we obtain an SCM M with causal mechanism defined
by:

fD(d, s, r, eD, eS) := βDr + eD

fS(d, s, r, eD, eS) := βSr + eS

fR(d, s, r, eD, eS) := r + (d− s).
Note how we use a self-cycle for r in order to implement the equilibrium equation d = s
as the causal mechanism for the price r. Its graph is depicted in Figure 20 (left).
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Figure 20: The graph of the SCM M of Example 6.12.3.

Exercise 6.12.4. Prove that the SCM M that describes the equilibrium states of the
price-supply-demand model is uniquely solvable, but not simple. Consider the following
interventions: do(D = δ), do(S = σ), do(R = ρ), and all possible combinations thereof.
Which of (the combinations of) these interventions give an intervened SCM that is still
uniquely solvable? Which of these interventions on the SCM correspond with the equilib-
rium state of a similarly intervened market dynamics model? Summarizing: could this
be a realistic causal equilibrium model of an ideal market, or is there something wrong
with it (perhaps due to the self-cycle)?

(Bonus: can you model the equilibrium with an SCM without self-cycles?)

While the price-supply-demand example shows that not all cyclic SCMs that occur
“in the wild” are simple, we have chosen to restrict ourselves mostly to simple SCMs for
this lecture. Generalizations of the theory presented here for simple SCMs to non-simple
ones are provided in [BFPM21].

We will finish this section by showing that SCMs are simple if the causal mechanisms
are sufficiently weak and smooth.

Proposition 6.12.5. Let M = (J, V,W,X , P, f) be an SCM with real-valued endogenous
variables, that is, Xv = R for each v ∈ V . If for each subset U ⊆ V , and for all values
xW ∈ XW , xJ ∈ XJ , xV \U ∈ XV \U , the mapping

XU → XU : xU 7→ f(xJ , xV \U , xU , xW )

is Lipschitz continuous with Lipschitz constant LU(xJ , xV \U , xW ) < 1 with respect to
some norm || · ||, then M is simple.

Proof. By definition, M is simple if for all U ⊆ V , for all xW ∈ XW , for all xJ ∈ XJ , for
all xV \U ∈ XV \U , the equation

xU = f(xJ , xV \U , xU , xW ) (42)

has a unique solution for xU ∈ XU . This is a fixed point equation for xU , and hence it
has a unique solution by Banach’s fixed point theorem if it is a contraction (Lipschitz
continuous with Lipschitz constant < 1 with respect to some norm || · ||).
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Remark 6.12.6. This also provides us with a method for sampling from a simple SCM
that satisfies the assumption in Proposition 6.12.5. The solution to equation (42) can be
obtained by iterating the updates

x
(n+1)
U = f(xJ , xV \U , x

(n)
U , xW )

until convergence.
To give a more concrete example: a class of SCMs that satisfies the contractivity

condition is given by neural networks with sufficiently weak weights.
Example 6.12.7. Let M = (J, V,W,X , P, f) be an SCM with real-valued variables, that
is, Xk = R for each k ∈ V ∪W ∪ J . Suppose that the causal mechanism is of the form

fu = h

(∑
j∈J

Aujxj +
∑
w∈W

Auwxw +
∑
v∈V

Auvxv + bu

)
, u ∈ V,

with weights A ∈ RV×(V ∪W∪J), biases b ∈ RV and activation function h : R→ R.
The conditions in Proposition 6.12.5 are satisfied if the following conditions both hold:
1. supx∈R |h′(x)| ≤ C with 0 < C <∞, and

2. ||AUU || < 1
C

for every subset U ⊆ V of cardinality #(U) ≥ 2, where || · || can be
one of the matrix norms: || · ||p, p ≥ 1, or || · ||∞.

Proof. By the mean value theorem, it suffices to show that for every subset U ⊆ V of
cardinality #(U) ≥ 2 and every value (xJ , xW , xV \U) the partial derivative is bounded:

sup
xU∈XU

∥∥∥∥∂fU∂xU
(xJ , xV \U , xU , xW )

∥∥∥∥ ≤ LU(xJ , xV \U , xW ) < 1

for || · || some matrix norm. In our case we have:
∂fU
∂xU

(xJ , xV \U , xU , xW ) = diag(η)UUAUU .

where η is a vector in RV with entries

ηv = h′(Av(xJ , xV , xW )⊤ + bv).

If |h′(x)| ≤ C < ∞ for all x ∈ R, and || · || is either || · ||p, p ≥ 1, or || · ||∞, then
|| diag(η)UU || ≤ C. Since ||AUU || < 1

C
we get

|| diag(η)UUAUU || ≤ || diag(η)UU || · ||AUU || =: LU(xJ , xV \U , xW ) < C
1

C
= 1.

Remark 6.12.8. Note that we can put C = 1 for popular activation functions h(x) like
tanh(x), ReLU(x) = max(0, x), σ(x) = 1

1+exp(−x)
, LeakyRelu, and SoftPlus (x) = ln(1 +

ex). Further note that by using one of these activation functions h(x) and || · || = || · ||∞
all the conditions are satisfied if we choose the weights Av,k such that for all v ∈ V :∑

k∈V ∪W∪J

|Av,k| < 1,

and Av,v = 0. While this is far from necessary, it is easy to check.
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6.13. Acyclifications

By making use of the ‘acyclification’, we can extend the global Markov property for L-
CBNs to a global Markov property for simple SCMs. The difference is that the Markov
property for SCMs is formulated in terms of σ-separation rather than d-separation.
With the help of this Markov property, we can derive a very analogous theory for simple
SCMs as for L-CBNs, with a do-calculus and adjustment. In Section 3.5, we defined
acyclifications of a CDMG. We can also define an operation with the same name on
SCMs.

Definition 6.13.1 (Acyclification of SCM). Let M = (J, V,W,X , P, f) be a simple SCM
with causal graph G(M). For each strongly connected component C ⊆ V of G(M) (i.e., a
set of the form ScG(M)(v) for v ∈ V ), let g[C] : XJ∪(V \C)∪W → XC be the unique solution
function for M [C]. Define f̃ : XJ ×XV ×XW → XV by its components

f̃v(xJ , xV , xW ) = g[Sc
G(M)(v)]

v (xJ , xV \C , xW )

for v ∈ V . Macy = (J, V,W,X , P, f̃) is called the acyclification of M .

The crucial property of this definition is the following result, which also motivates its
name.

Proposition 6.13.2. Let M = (J, V,W,X , P, f) be a simple SCM. Its acyclification
Macy is acyclic and observably equivalent to M .

Proof. We construct a directed graph S from G := G(M) with its strongly connected
components {ScG(v) : v ∈ V ∪J ∪W} as nodes, and directed edges C D if there is a
directed edge c d in G with c ∈ C, d ∈ D and C ̸= D. The graph S cannot contain a
directed cycle, as that would imply the existence of a directed cycle in G that traverses
more than one of its strongly connected components. Hence S is a DAG.

Choose a topological ordering < of S. Any node C in S can only have incoming
directed edges in S from PredS

<(C). This implies that for v ∈ V , C = ScG(v) can only
have incoming edges in G from

⋃
PredS

≤(C). That implies that the causal mechanism fC
can only depend on variables in

⋃
PredS

≤(C), and hence the unique solution function gC ,
and therefore f̃C , can depend on variables in

⋃
PredS

<(C) only. Therefore, for v, w ∈ V ,
a directed edge w v in G(Macy) implies w ∈

⋃
PredS

<(Sc
G(v)). We can therefore

refine the topological ordering < of S to a topological ordering of G(Macy), by arbitrarily
ordering the nodes within each strongly connected component of G. Hence G(Macy) is
acyclic.
M and Macy are observably equivalent by construction: for all x ∈ X ,

x = f̃(x)

⇐⇒ ∀C ∈ S ∩ V : xC = f̃C(x)

⇐⇒ ∀C ∈ S ∩ V : xC = g[C](xJ , xV \C , xW )

⇐⇒ ∀C ∈ S ∩ V : xC = fC(x)

⇐⇒ x = f(x).
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The SCM notion of acyclification is compatible with the graphical notion of acyclifi-
cation:

Proposition 6.13.3. Let M be a simple SCM. Then G+(Macy) ⊆ G̃+ for any graphical
acyclification G̃+ of G+(M), and G(Macy) ⊆ G̃ for any graphical acyclification G̃ of
G(M).

Proof. Write G := G(M). Let G̃+ be a graphical acyclification of G+(M). By definition,
G+(Macy) and G̃+ have the same nodes (input nodes J and output nodes V ∪ W ).
G+(Macy) has no bidirected edges, but G̃+ might. If there is a directed edge i j in
G+(Macy) with i ∈ J ∪V ∪W and j ∈ V , then the solution function g[ScG(j)] of M [ScG(j)]

depends on xi. This can only happen if i /∈ ScG(j) and i is a parent of some k according
to M with k ∈ ScG(j), i.e., if i k in G. In that case, i j in G̃+ by definition of
the graphical acyclification.

Let G̃ be a graphical acyclification of G(M). By definition, G(Macy) and G̃ have the
same nodes (input nodes J and output nodes V ). If G(Macy) has a bidirected edge i j
(with i, j ∈ V ) then there exists a k ∈ W such that i k j in G+(Macy). Then the
solution function g[Sc

G(i)] of M [ScG(i)] depends on xk, and the solution function g[Sc
G(j)]

of M [ScG(j)] depends on xk. This implies that there exist i′ ∈ ScG(i) and j′ ∈ ScG(j)
such that k is a parent of both i′ and j′ according to M , i.e., i′ k j′ in G+(M).
Therefore, the bidirected edge i′ j′ is present in G(M). By definition, then, i j
must be present in G̃. If there is a directed edge i j in G(Macy) with i ∈ J ∪ V
and j ∈ V , then the solution function g[ScG(j)] of M [ScG(j)] depends on xi. This can only
happen if i /∈ ScG(j) and i is a parent of some j′ according to M with j′ ∈ ScG(j),
i.e., if i j′ in G(M). In that case, i j in G̃ by definition of the graphical
acyclification.

Hence, two nodes in the same strongly connected component of G+(M) do not have
any edge between them in G+(Macy), whereas they necessarily have a connecting edge
in any acyclification G̃+ of G+(M). For two nodes in different strongly connected com-
ponents of G+(M), the edges in G+(Macy) are also present in G̃+, but not necessarily
vice versa, as some parent-relations may cancel out in the solution function.

6.14. Markov Properties

With the help of the acyclifications, we can easily derive a Markov property for simple
SCMs from the Markov property for CBNs by reducing the general cyclic case to an
acyclic case.

Corollary 6.14.1 (Global Markov property for simple SCMs). Let M = (J, V,W,X , P, f)
be a simple SCM with graph G+(M) and Markov kernel PM(XV , XW | do(XJ)). Then
for all A,B,C ⊆ J ∪ V ∪W (not necessarily disjoint) we have the implication:

A
σ

⊥
G+(M)

B |C =⇒ XA ⊥⊥
PM (XV ,XW |do(XJ ))

XB |XC .
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If one wants to make the implicit dependence on J more explicit one can equivalently
also write:

A
σ

⊥
G+(M)

J ∪B |C =⇒ XA ⊥⊥
PM (XV ,XW | do(XJ ))

XJ , XB |XC .

For the causal graph G(M), we get similar statements: for all A,B,C ⊆ J ∪ V (not
necessarily disjoint),

A
σ

⊥
G(M)

B |C =⇒ XA ⊥⊥
PM (XV |do(XJ ))

XB |XC

or, equivalently,42

A
σ

⊥
G(M)

J ∪B |C =⇒ XA ⊥⊥
PM (XV | do(XJ ))

XJ , XB |XC .

Proof. Choose an acyclification G̃+ of G+(M). Then:

A
σ

⊥
G+(M)

B |C ⇐⇒ A
d

⊥̃
G+
B |C

=⇒ A
d

⊥
G+(Macy)

B |C

=⇒ XA ⊥⊥
PMacy (XV ,XW |do(XJ ))

XB |XC

⇐⇒ XA ⊥⊥
PM (XV ,XW | do(XJ ))

XB |XC .

For the various implications / equivalences, we used:

1. G̃+ is an acyclification of G+(M) together with Proposition 3.5.2;

2. G+(Macy) ⊆ G̃+ from Proposition 6.13.3, and that removing edges cannot turn a
d-separation into a d-connection;

3. the global Markov property Theorem 4.2.1 forMacy interpreted as a causal Bayesian
network as in the proof of Proposition 6.11.4 point i) (with deterministic Markov
kernels for the endogenous variables, and purely probabilistic Markov kernels for
the exogenous random variables), exploiting Proposition 6.13.2 that states that
the acyclification Macy is acyclic;

4. by Proposition 6.13.2, the acyclification Macy has the same Markov kernel as the
original SCM M .

The Markov property for G(M) follows as a special case by restricting A,B,C ⊆ J ∪V ,
and noting that

A
σ

⊥
G(M)

B |C =⇒ A
σ

⊥
G+(M)

B |C

and that
XA ⊥⊥

PM (XV ,XW | do(XJ ))
XB |XC =⇒ XA ⊥⊥

PM (XV | do(XJ ))
XB |XC .

42Occassionally, we will use a shorthand notation, writing ⊥⊥PM
instead of the longer ⊥⊥PM (XV | do(XJ )).
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7. Causal Domain Adaptation with SCMs

7.1. Do-calculus for simple SCMs

With the global Markov property for simple SCMs, it becomes straightforward to derive
the do-calculus for simple SCMs. First we will introduce some notation. The setting
will be that a simple SCM M = (J, V,W,X , P, f) is given. For B ⊆ V , we will introduce
intervention variables (Ib)b∈B to jointly encode different intervened SCMs {Mdo(XC) :
C ⊆ B} into a single SCM Mdo(IB) as in Definition 6.4.13. We will denote the causal
graph of M by G := G(M) and the causal graph of Mdo(IB) by Gdo(IB) = G(Mdo(IB)).
In the do-calculus, we make use of the extended graph Gdo(IB) to test the separation
statement, while the conclusion about the properties of certain Markov kernels concerns
those of the original SCM M .

The Markov kernel of simple SCM M exists, is unique, and is denoted by PM(XV |
do(XJ)). For a subset T ⊆ V , we write

PM(XV \T | do(XJ , XT )) := PMdo(T )
(XV \T | do(XJ , XT )).

By conditioning on a subset S ⊆ V \ T , we obtain the conditional Markov kernel

PM(XV \(T∪S) | XS, do(XJ , XT )).

The only modification to the do-calculus for simple SCMs as compared to that for
causal Bayesian networks is that we have to replace all d-separations by σ-separations.

Theorem 7.1.1 (Almost-sure do-calculus for simple SCMs, simplified). Let M = (J, V,W,X , P, f)
be a simple SCM with causal graph G = G(M). Assume that we have σ-finite reference
measures µv on Xv for every v ∈ V and put µF :=

⊗
v∈F µv for F ⊆ V . Let A,B,C ⊆ V

and D ⊆ V ∪J be such that A,B,C,D are pairwise disjoint. Then we have the following
4 rules relating Markov kernels that can be generated from the SCM:

1. Insertion/deletion of observation, for J ⊆ D: if

A
σ

⊥
Gdo(D)

B |C ∪D, µB∪C ≪ PM(XB, XC | do(XD))≪ µB∪C ,

then:

PM(XA|XB, XC , do(XD)) = PM(XA|XC , do(XD)) µB∪C-a.s..

2. Action/observation exchange, for J ⊆ D: if

A
σ

⊥
Gdo(IB,D)

IB |B ∪ C ∪D, µB∪C ≪ PM(XB, XC | do(XD))≪ µB∪C ,

µC ≪ PM(XC | do(XB, XD))≪ µC ,

then:

PM(XA|XB, XC , do(XD)) = PM(XA| do(XB), XC , do(XD)) µB∪C-a.s..
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3. Insertion/deletion of action, for J ⊆ D: if

A
σ

⊥
Gdo(IB,D)

IB |C ∪D, µC ≪ PM(XC | do(XB, XD))≪ µC ,

µC ≪ PM(XC | do(XD))≪ µC ,

then

PM(XA| do(XB), XC , do(XD)) = PM(XA|XC , do(XD)) µC-a.s..

4. Deletion of input: If

A
σ

⊥
Gdo(D)

J |C ∪D, µC ≪ PM(XC | do(XD∪J))≪ µC ,

then there exists a Markov kernel PM(XA|XC , do(XD,���XJ\D)) such that:

PM(XA|XC , do(XD,���XJ\D)) = PM(XA|XC , do(XD∪J)) µC-a.s..

Proof. The proof is analogous to that of Corollary 5.1.3, except that it applies the
global Markov property for simple SCMs, Corollary 6.14.1, instead of the one for causal
Bayesian networks, Theorem 4.2.1.

While the derivation of the do-calculus relies essentially on the global Markov prop-
erty, sometimes one can make use of the global Markov property and a more careful
analysis of null sets to obtain stronger conclusions. In particular, Proposition 5.1.7 and
Theorem 5.1.2 also hold for simple SCMs if one replaces the d-separation statements
by the analogous σ-separation statements (but we will not bother to write out these
statements in detail).

7.2. Adjustment

Let M = (J, V,W,X , P, f) be a simple SCM. Let us assume J ⊆ D. We are interested
in estimating the conditional causal effect:

PM(XA|XC , do(XB, XD)),

but we only have data from:

PM(XA, XB, XF |XC , do(XD)).

This is an example of a causal domain adaptation problem. The following (pairwise
disjoint) index sets will have the following roles:

A ⊆ V : the outcome variables of interest.

B ⊆ V : the treatment or intervention variables.
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C ⊆ V : general conditional (context) variables under which the data was collected.

J ⊆ D ⊆ V ∪ J : general interventional (context) variables that were set by the exper-
imenter.

F0 ⊆ V : core adjustment variables, i.e. features that were measured.

F1 ⊆ V : additional measured adjustment variables, with F = F0 ∪ F1.

Although we could in addition assume additional unobserved variables H ⊆ V ∪W like
for Theorem 5.2.3, the (positivity and independence) assumptions regarding these latent
variables are rather strong, so for simplicity and without loss of too much (practical)
generality, we will here only consider the special case H = ∅. We will make use of the
same extended SCM Mdo(IB) with intervention variables Ib for b ∈ B and graph Gdo(IB)

as for stating the do-calculus.

Theorem 7.2.1 (General adjustment formula for simple SCMs). Given a simple SCM
M = (J, V,W,X , P, f) with causal graph G = G(M). Assume that all the following
σ-separations hold in the graph Gdo(IB ,D):

F0

σ

⊥
Gdo(IB,D)

IB |(C ∪D), (43)

A
σ

⊥
Gdo(IB,D)

(F1 ∪ IB) |(B ∪ F0 ∪ C ∪D). (44)

Further assume that we have reference measures µv on Xv, v ∈ V , such that:

µB∪C∪F ≪ P (XB, XC , XF | do(XD))≪ µB∪C∪F ,

µC∪F ≪ P (XC , XF | do(XB, XD))≪ µC∪F .

Then we have the adjustment formula:

PM(XA|XC , do(XB, XD)) = PM(XA|XB, XC , XF , do(XD))◦PM(XF |XC , do(XD)) µB∪C-a.s.

Proof. Analogous to that of Theorem 5.2.3, but now using the global Markov property
for simple SCMs, Corollary 6.14.1, instead of the one for causal Bayesian networks,
Theorem 4.2.1.

For the special case F1 = C = ∅, by a direct more careful analysis we get a version
with weaker positivity assumptions:

Theorem 7.2.2 (Interventional backdoor covariate adjustment formula). Let M =
(J, V,W,X , P, f) be a simple SCM with causal graph G = G(M). Assume that the
interventional backdoor criterion in the graph Gdo(IB ,D) holds:

1. F
σ

⊥
Gdo(IB,D)

IB |D, and:
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2. A
σ

⊥
Gdo(IB,D)

IB |(B ∪ F ∪D).

Further assume the following absolute continuity:

PM(XF | do(XD))⊗ PM(XB| do(XD))≪ PM(XF , XB| do(XD)).

Then we have the adjustment formulas:

PM(XA, XF | do(XB, XD)) = PM(XA|XF , XB, do(XD))⊗ PM(XF | do(XD)) PM(XB| do(XD))-a.s.,
PM(XA| do(XB, XD)) = PM(XA|XF , XB, do(XD)) ◦ PM(XF | do(XD)) PM(XB| do(XD))-a.s.

Proof. Analogous to that of Corollary 5.2.5, but now using the global Markov property
for simple SCMs, Corollary 6.14.1, instead of the one for causal Bayesian networks,
Theorem 4.2.1.

We can now further specialize to the case with F1 = C = D = J = ∅ and immediately
get:

Corollary 7.2.3 (Backdoor covariate adjustment for simple SCMs). Given a simple
SCM M = (J, V,W,X , P, f) with causal graph G = G(M). Assume that the backdoor
criterion holds:

1. F
σ

⊥
Gdo(IB)

IB, and:

2. A
σ

⊥
Gdo(IB)

IB |(B ∪ F ).

Further assume the following absolute continuity:

PM(XF )⊗ PM(XB)≪ PM(XF , XB).

Then we have the adjustment formulae:

PM(XA, XF | do(XB)) = PM(XA|XF , XB)⊗ PM(XF ) PM(XB)-a.s.,
PM(XA| do(XB)) = PM(XA|XF , XB) ◦ PM(XF ) PM(XB)-a.s.

The literature often fails to mention the strict positivity assumptions, even though
without sufficient positivity, the various backdoor criteria may not hold. A simple ex-
ample of how the adjustment formula may fail if the strict positivity assumptions are
not met is provided in Example 5.3.29.
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7.3. Bounds on causal effects

If causal effects cannot be identified from the observable distribution, we may still be
able to derive informative bounds (see also Figure 21). We first prove the consistency
property of solution functions of simple SCMs.

Proposition 7.3.1. Let M = (J, V,W,X , P, f) be a simple SCM. Let g : XJ×XW → XV

be the solution function of M . Let V = A ∪̇B be a partition of the endogenous variables
of M , and let g[B] : XA ×XJ ×XW → XB be the solution function of M [B]. Then

gB(xJ , xW ) = g[B](gA(xJ , xW ), xJ , xW )

for all x ∈ X .

Proof. For all x ∈ X :{
xA = fA(x),

xB = fB(x)
⇐⇒

{
xA = gA(xJ , xW ),

xB = gB(xJ , xW ).

Also, for all x ∈ X :

xB = fB(x) ⇐⇒ xB = g[B](xA, xJ , xW ).

Hence, for all x ∈ X :{
xA = fA(x),

xB = fB(x)
=⇒

{
xA = gA(xJ , xW ),

xB = g[B](xA, xJ , xW )
=⇒

{
xA = gA(xJ , xW ),

xB = g[B](gA(xJ , xW ), xJ , xW ).

The uniqueness of the solution function g of M now implies the consistency statement.

This proposition shows that the “consistency assumption” commonly made in the po-
tential outcomes framework holds true for potential outcomes induced by simple SCMs.

[MN98] proved the following ‘natural’ bounds. We point out here that they also hold
for simple SCMs.

Theorem 7.3.2 (Natural bounds on causal effect). Let M be a simple SCM with en-
dogenous variables V ⊇ {1, 2, 3} and no exogenous input variables. Assume that X1 is
discrete. Then

PM(X1 = a,X2 ∈ B|X3 ∈ C) ≤ PM(X2 ∈ B|X3 ∈ C, do(X1 = a))

≤ PM(X1 = a,X2 ∈ B|X3 ∈ C) + PM(X1 ̸= a|X3 ∈ C).
(45)

for any a ∈ X1, measurable B ⊆ X2, and measurable C ⊆ X3 with PM(X3 ∈ C) > 0.
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X1 X2

X3

(a) X1 X2

X3

(b)

Figure 21: Two causal graphs of simple SCMs. In (a), the Markov kernel
PM(X2 | do(X1), X3) is identifiable (under positivity assumptions) from
PM(X1, X2, X3). In (b), it is not identifiable, but we can still bound it using
the natural bounds if both X1 and X3 are discrete.

Proof. We use the consistency X2 = X
do(X1=X1)
2 and elementary probability theory:

PM(X1 = a,X2 ∈ B|X3 ∈ C) = PM(X1 = a,X
do(X1=a)
2 ∈ B|X3 ∈ C)

≤ PM(X
do(X1=a)
2 ∈ B|X3 ∈ C)

= PM(X1 = a,X
do(X1=a)
2 ∈ B|X3 ∈ C)

+ PM(X1 ̸= a,X
do(X2=a)
2 ∈ B|X3 ∈ C)

≤ PM(X1 = a,X2 ∈ B|X3 ∈ C) + PM(X1 ̸= a|X3 ∈ C)

The statement follows since

PM(X2 ∈ B|X3 ∈ C, do(X1 = a)) = PM(X
do(X1=a)
2 ∈ B|X3 ∈ C).

This so-called “natural” bound can be shown to be tight. Remarkably, we do not need
to make any assumptions regarding the causal relations between the three endogenous
variables. This allows us to bound the causal effect of X1 on X2 in the presence of
confounding and cycles. Unfortunately, it can be shown that there exists no analogous
bound in case X1 is real-valued.

If one has a priori knowledge about the range of X2 (in case it is real-valued), one can
also derive a bound on the expected result of an intervention [MP13].

Corollary 7.3.3. In the situation of Theorem 7.3.2, suppose that X2 = [α, β] and 0 <
PM(X1 = a|X3 ∈ C) < 1. Then

PM(X1 = a|X3 ∈ C)EM(X2|X1 = a,X3 ∈ C) + αPM(X1 ̸= a|X3 ∈ C)
≤ EM(X2|X3 ∈ C, do(X1 = a))

≤ PM(X1 = a|X3 ∈ C)EM(X2|X1 = a,X3 ∈ C) + βPM(X1 ̸= a|X3 ∈ C).
(46)
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Proof. Using consistency, we get:

PM(X
do(X1=a)
2 ∈ B|X3 ∈ C)

= PM(X1 = a|X3 ∈ C)PM(X
do(X1=a)
2 ∈ B|X1 = a,X3 ∈ C)

+ PM(X1 ̸= a|X3 ∈ C)PM(X
do(X1=a)
2 ∈ B|X1 ̸= a,X3 ∈ C)

= PM(X1 = a|X3 ∈ C)PM(X2 ∈ B|X1 = a,X3 ∈ C)
+ PM(X1 ̸= a|X3 ∈ C)PM(X

do(X1=a)
2 ∈ B|X1 ̸= a,X3 ∈ C).

Integrating over X2, the assumption X2 = [α, β], interval arithmetic, and affinity of
expected values, gives:

EM(X
do(X1=a)
2 |X3 ∈ C)

= PM(X1 = a|X3 ∈ C)EM(X2|X1 = a,X3 ∈ C)
+ PM(X1 ̸= a|X3 ∈ C)EM(X

do(X1=a)
2 |X1 ̸= a,X3 ∈ C)

∈ PM(X1 = a|X3 ∈ C)EM(X2|X1 = a,X3 ∈ C) + PM(X1 ̸= a|X3 ∈ C)[α, β].
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8. Counterfactuals with SCMs

Counterfactuals are questions of the kind “Fred obtained a cum laude for his PhD; would
he have obtained it also if he were female?”. Counterfactuals consider a hypothetical
situation that is “contrary to the fact”, that is, which differs from what was actually
observed. One of the big practical obstacles of dealing with counterfactual probabilities
is that they are typically not identifiable from experimental data, and at best only
bounds on such quantities can be obtained. For systems with (almost) deterministic
causal relations, these bounds may become quite informative, but tend to become more
loose as the stochasticity in the system increases. While it would thus perhaps be easiest
to avoid counterfactuals altogether, they do appear naturally in law and engineering.
Humans also have a tendency to communicate using counterfactuals, and the grammar
of many languages distinguishes counterfactual statements. This might be an inductive
bias towards dealing with (almost) deterministic systems.

In this chapter, we will focus on counterfactuals that are hypothetical statements (or
questions) regarding the effects of some action that is contrary-to-fact, closely following
Pearl’s approach to counterfactuals. One can consider other types of counterfactuals as
well, for example “backtracking” counterfactuals. Dealing with counterfactuals appears
to be one of the least well-defined, but perhaps also most intriguing, aspects of causality.

8.1. Modeling counterfactuals via twinning

For example, suppose you are healthy but drank too much beer last night and now suffer
from a hangover. A counterfactual statement is then: “If I had not drunk so much beer
yesterday, I would feel much better now.” This statement invites one to imagine an
alternative world in which everything is the same as in the actual world, with the sole
difference that you did not drink beer last night. We can then use our causal model of the
world to predict the consequences of this action (e.g., since you were in a healthy state
and did not drink so much beer, you most likely will feel well in this alternative world).43

This example already shows the ambiguity typically encountered in counterfactuals: if
for you, not drinking beer means that you drink wine instead, then you may actually
feel worse than if you had drunk beer.

Indeed, the truth value of such statements is often hard to determine in case the
“world” is partially latent or not fully understood. When debugging a computer program,
one makes heavy use of counterfactuals: “if I had put a minus sign there, then the output
of my program would have been correct”. In case the full source code is available,
it is in principle straightforward to work out whether such a statement is correct or
not, but it becomes more difficult if the full source code is not available. It becomes
even more challenging when the output of the computer program is stochastic or it

43The word “counterfactual” is also commonly used in the causal inference literature in a weaker sense,
describing the potential outcome of a hypothetical situation that is not necessarily “contrary to the
fact”. For example, some would refer to “If I drink too much beer tonight, I will have a hangover
tomorrow” as a counterfactual statement as well. It is important to be aware of this to avoid possible
confusion. We will only use the word “counterfactual” in its strong (contrary-to-fact) sense.
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is impossible to reproduce its complete input. Generally, in situations where the full
causal mechanism is unknown, or exogenous randomness is latent, counterfactuals may
not be well-defined quantities. Nevertheless, counterfactual thinking is very common
in humans, and toddlers already bombard their parents with counterfactual questions,
presumably as a means for them to build internal causal models of the world.

The mathematical formalization of counterfactuals proposed by Pearl provides some
clarification, but it also points out their inherent complexity and strong dependence on
the chosen model.44 It mimics the reasoning steps we mentally perform when thinking
about counterfactuals by constructing a “(f)actual” world and a parallel “counterfactual”
world, which is minimally different in some aspect. The crucial (and often untestable)
assumption is that the exogenous random variables have the same values in both worlds.
A good analogy here is that of two identical twins that share the same latent genetics.
Before we give the definition, we will introduce some bookkeeping notation.

Notation 8.1.1. Given an index set Z we define a primed copy Z ′ := {z′ : z ∈ Z},
where each z′ is a “primed” copy of z (distinguishable from z itself because of the attached
prime symbol). We will also write (z′)◦ = z for z ∈ Z, where the superscript ◦ removes
the prime, i.e., it maps back to the original of the primed index.

The following operation on SCMs (also known as the “twin-network approach” of
[BP94b]) provides one possible way of modeling counterfactuals.45

Definition 8.1.2. Let M = (J, V,W,X , P, f) be an SCM. We define the twinned SCM
of M as the SCM M twin =

(
J twin = J∪̇J ′, V twin = V ∪̇V ′,W,X twin, P, f twin

)
with J ′ =

{j′ : j ∈ J} a copy of J and V ′ = {v′ : v ∈ V } a copy of V , the twinned domain given
by

X twin = XJ ×XJ ′ ×XV ×XV ′ ×XW

where Xj′ = Xj for all j ∈ J and Xv′ = Xv for all v ∈ V , and the twinned causal
mechanism components given by

f twin
u

(
(xJ , xJ ′), (xV , xV ′), xW

)
=

{
fu(xJ , xV , xW ) u ∈ V,
fu◦(xJ ′ , xV ′ , xW ) u ∈ V ′.

The twinning operation is used to create copies of variables (so that in addition to
the one in the factual world, we have its copy in the counterfactual world) that can have
different values to describe contrary-to-fact situations. A specific choice in modeling
counterfactuals in this way is the assumption that all exogenous random variables have

44Consider this a warning before attempting to predict counterfactual statements in a data-driven way,
for example, using a neural network.

45The twinning operation can be applied to any SCM, but not to any L-CBN, as L-CBNs typically do
not explicitly model latent random variables. Only for the subclass of L-CBNs that are in SCM form
(see Definition 4.4.3), i.e., for which every node with at least one parent comes with a deterministic
Markov kernel, could we define a twinning operation that is analogous to the one we define for
SCMs.

213



the same value in the actual and in the counterfactual world. This is a very strong (and
typically untestable) assumption.

The English language has a special grammatical construct to express counterfactuals:
“If I had studied better, I would have passed the exam,” instead of “If I study better, I
will pass the exam.” For the first statement, we first twin the SCM and then intervene
on it, for the second, we just intervene on the SCM and there is no need for twinning.46

The twinning operation is compatible with marginalization.

Proposition 8.1.3. Let M = (J, V,W,X , P, f) be an SCM. For L ⊆ V such that M [L]

is uniquely solvable,
(M\L)

twin = (M twin)\(L∪L′).

Proof. This follows by writing out the definitions and checking commutativity of the
operations performed on the various components of the SCM tuple one-by-one.

Hard interventions are compatible with the twinning operation, in the following sense:

Proposition 8.1.4. Let M = (J, V,W,X , P, f) be an SCM.

• For T ⊆ J ∪ V , xT ∈ XT :

(M twin)do(XT=xT ,XT ′=xT ) = (Mdo(XT=xT ))
twin.

• For T ⊆ J ∪ V :
(M twin)do(T,T ′) = (Mdo(T ))

twin.

Proof. These properties follow by writing out the definitions and checking commutativity
of the operations performed on the various components of the SCM tuple one-by-one.

Another important property of the twinning operation is that it preserves unique
solvability and simplicity.

Lemma 8.1.5. Let M = (J, V,W,X , P, f) be an SCM. Let T1 ⊆ J∪V and T2 ⊆ J∪V . If
gdo(T1) : XJ∪T1×XW → XV \T1 is a solution function of Mdo(T1) and gdo(T2) : XJ∪T2×XW →
XV \T2 is a solution function of Mdo(T2) then

gtwin : X(J∪T1)∪(J ′∪T ′
2)
×XW → XV \T1 ×XV ′\T ′

2

: (x(J∪T1)∪(J ′∪T ′
2)
, xW ) 7→

(
gdo(T1)(xJ∪T1 , xW ), gdo(T2)(xJ ′∪T ′

2
, xW )

)
is a solution function of (M twin)do(T1∪T ′

2)
. In case gdo(T1) and gdo(T2) are unique, gtwin is

also the unique solution function of (M twin)do(T1∪T ′
2)
.

46Note that when considering two potential outcomes Xdo(xJ ), Xdo(x′
J ) of SCM M for different inputs

xJ , x
′
J we do not necessarily assume that X

do(xJ )
W = X

do(x′
J )

W ; we only assume that they have the
same distribution, that is, X

do(xJ )
W ∼ X

do(x′
J )

W . This choice has been made to avoid introducing
implicitly defined “cross-world” assumptions. In our opinion, it is better to explicitly introduce such
counterfactuals with the twinning construction, because this enforces one to think about which vari-
ables are shared across potential worlds and which get an (independently resampled, or reevaluated)
copy.
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Proof. Let f twin denote the causal mechanism of M twin. For all x ∈ XJ × XJ ′ × XV ×
XV ′ ×XW ,

x(V ∪V ′)\(T1∪T ′
2)
= f twin

(V ∪V ′)\(T1∪T ′
2)
(x)

⇐⇒

{
xV \T1 = fV \T1(xJ , xV , xW )

xV ′\T ′
2

= fV \T2(xJ ′ , xV ′ , xW )

⇐=

{
xV \T1 = gdo(T1)(xJ∪T1 , xW )

xV ′\T ′
2

= gdo(T2)(xJ ′∪T ′
2
, xW )

⇐⇒ x(V ∪V ′)\(T1∪T ′
2)
= gtwin(xJ∪T1 , xJ ′∪T ′

2
, xW )

In case gdo(T1) and gdo(T2) are unique, the “ ⇐= ” becomes an “ ⇐⇒ ”.

Proposition 8.1.6. Let M = (J, V,W,X , P, f) be an SCM. If M is uniquely solvable,
then M twin is uniquely solvable. Furthermore, if M is simple, then M twin is simple.

Proof. The first statement follows directly from Lemma 8.1.5 by taking T1 = T2 = ∅.
The second statement follows from Lemma 8.1.5 in combination with Theorem 6.6.3.

We can also define a twinning operation on graphs. We will only define this for graphs
without bidirected edges.

Definition 8.1.7. Let G = (J, V ∪W,E) be a CDG such that PaG(W ) = ∅. Write
J ′ := {j′ : j ∈ J} and V ′ := {v′ : v ∈ V } for copies of J and V , respectively. The
twinned graph Gtwin(J,V ) is defined as the CDG

(
J∪̇J ′, V ∪̇V ′ ∪W,Etwin

)
with directed

edges

Etwin := E∪{w v′ : w ∈ W, v ∈ V,w v ∈ E}∪{i′ v′ : i ∈ J∪V, v ∈ V, i v ∈ E}.

In words, we copy the nodes J∪V (but not the nodes W ) and copy the edges accordingly.

The graphical and the SCM twinning operations are compatible:

Proposition 8.1.8. Let M = (J, V,W,X , P, f) be an SCM. Then

(G+(M))twin(J∪V ) = G+(M twin).

Proof. Follows by writing out the definitions.

The simplest non-trivial example of a twin SCM is the following.

Example 8.1.9. Consider an SCM with exogenous input variable X, endogenous vari-
able Y , exogenous random variable W , and structural equation:

Y do(x) = f(x,W )

Its graph is depicted in Figure 22. Twinning adds an exogenous input variable X ′, an
endogenous variable Y ′, and structural equation

(Y ′)do(x
′) = f(x′,W )
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factual counterfactual

Figure 22: Left: Graph G+(M) of SCM M . Right: Graph G+(M twin) =
(G+(M))twin(X,Y ) of the twinned SCM M twin. The exogenous random vari-
able W is shared between the factual and counterfactual “world”, whereas
the exogenous input variable X and the endogenous (output) variable Y may
differ between the two worlds (with X ′ and Y ′ denoting the corresponding
variables in the counterfactual “world”).

but keeps the same endogenous random variable W . The graph of the twinned SCM is
also shown in Figure 22.

For instance, X could be the number of glasses of beer you consumed yesterday evening,
Y the severity of a headache the next morning, and W would represent all other possible
causes of a headache (e.g., COVID-19, a concussion obtained in a rugby game, the
number of glasses of wine you consumed yesterday evening, . . . ). When stating “If I
had not drunk so much beer yesterday, I would feel much better now,” we imagine a
counterfactual world in which the value of W is the same as in the (f)actual world, but
X ′ (and therefore Y ′) may have different values in the counterfactual world than the
corresponding values X (and Y ) in the factual world.

8.2. Counterfactual Equivalence

In Definition 6.7.2, we defined the notions of observable and interventional equivalence
for simple SCMs. We can add a more fine-grained notion of equivalence by making use
of the twinning operation, which we refer to as counterfactual equivalence.47

Definition 8.2.1. Let M = (J, V,W,X , P, f) and M̃ = (J̃, Ṽ, W̃, X̃ , P̃, f̃) be two simple
SCMs and O ⊆ V ∩ Ṽ a subset. We say that M and M̃ are counterfactually equivalent
w.r.t. O if the twin SCMs M twin and M̃ twin are interventionally equivalent w.r.t. O∪O′,
where O′ ⊆ V ′ ∩ Ṽ ′ is the copy of O.

More generally, one could define counterfactual equivalence not only with respect to
an observed set of variables, but also with respect to a given set of interventions.

We get the following important corollary of Theorem 6.8.9.

Corollary 8.2.2. Let M = (J, V,W,X , P, f) be a simple SCM, L ⊆ V , and M\L its
marginalization over L. Then M and M\L are observably, interventionally and counter-
factually equivalent w.r.t. V \ L.
47The definition of counterfactual equivalence for (possibly non-simple) SCMs is provided in [BFPM21]

for SCMs without exogenous input variables.
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Proof. The observable and interventional equivalence is the claim of Theorem 6.8.9.
Write K = V \ L. By Proposition 8.1.3, (M\L)

twin = (M twin)\(L∪L′). Since M twin and
its marginalization (M twin)\(L∪L′) are interventionally equivalent w.r.t. K ∪K ′, M and
M\L are counterfactually equivalent w.r.t. K.

Lemma 8.2.3. Let M = (J, V,W,X , P, f) be a simple SCM. Then M and M twin are
interventionally equivalent w.r.t. V .

Proof. We have to show that for any T ⊆ V , Mdo(T ) and (M twin)do(T ) are observably
equivalent w.r.t. V \ T . Let T ⊆ V . Let gdo(T ) : XJ∪T × XW → XV \T the solution
function of Mdo(T ) and g : XJ ×XW → XV the solution function of M .

By Lemma 8.1.5 with T1 = T , T2 = ∅,

g̃ : X(J∪T )∪J ′ ×XW → XV \T ×XV ′

: (x(J∪T )∪J ′ , xW ) 7→
(
gdo(T )(xJ∪T , xW ), g(xJ ′ , xW )

)
is the unique solution function of (M twin)do(T ). Note that gdo(T ) ◦ prXJ∪T×XW

= g̃V \T .
Then PMdo(T )

(XV \T | do(XJ∪T )) is the push-forward (gdo(T ))∗(P ) of the exogenous
distribution of Mdo(T ) (interpreted as a constant Markov kernel XJ∪T 99K XW ). We ob-
tain the Markov kernel P(Mtwin)do(T )

(XV \T | do(XJ∪T∪J ′)) as the push-forward (g̃V \T )∗(P )

of the exogenous distribution P of (M twin)do(T ), now interpreted as a constant Markov
kernel XJ∪T × XJ ′ → XW . Since gdo(T ) ◦ prXJ∪T×XW

= g̃V \T , we obtain the desired
conclusion.

Counterfactual equivalence is a stronger equivalence relation than interventional equiv-
alence.

Proposition 8.2.4. For simple SCMs M, M̃ and a subset O ⊆ V ∩ Ṽ : Counterfactual
equivalence of M and M̃ w.r.t. O implies interventional equivalence of M and M̃ w.r.t.
O.

Proof. Let O′ ∈ V ′ ∩ Ṽ ′ be the copy of O. Suppose M and M̃ are counterfactually
equivalent w.r.t. O. Then M twin and M̃ twin are interventionally equivalent w.r.t. O∪O′.
For every T ⊆ O ∪ O′, (M twin)do(T ) and (M̃ twin)do(T ) are observably equivalent w.r.t.
(O ∪O′) \ T .

We have to show that M and M̃ are interventionally equivalent w.r.t. O. That is, we
have to show that for every S ⊆ O, Mdo(S) and M̃do(S) are observably equivalent w.r.t.
O \ S.

Now take S ⊆ O. Then (using Proposition 8.1.4),

(Mdo(S))
twin = (M twin)do(S,S′)

and
(M̃do(S))

twin = (M̃ twin)do(S,S′)

are observably equivalent w.r.t. (O∪O′)\ (S ∪S ′) = (O \S)∪ (O′ \S ′), and hence w.r.t.
O \ S. By Lemma 8.2.3, (Mdo(S))

twin and Mdo(S) are interventionally equivalent w.r.t.
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V \ S. Hence (Mdo(S))
twin and Mdo(S) are observably equivalent w.r.t. O \ S. Similarly,

(M̃do(S))
twin and M̃do(S) are observably equivalent w.r.t O \ S. Hence, by transitivity,

Mdo(S) and M̃do(S) are observably equivalent w.r.t O \ S.

However, the reverse implication does not hold in general. Together with Proposi-
tion 6.7.3, Proposition 8.2.4 expresses that causal modeling is more refined than proba-
bilistic modeling, and counterfactual modeling is more refined than interventional mod-
eling. This formalizes what Pearl refers to as the “causal hierarchy” or “ladder of causa-
tion”.

In general, interventional equivalence does not imply counterfactual equivalence. Even
interventionally equivalent SCMs with the same causal mechanism (that differ only in
terms of their exogenous distributions) may not be counterfactually equivalent. For
example, the SCMsMρ andMρ′ with ρ ̸= ρ′ in the following example are interventionally
equivalent, but not counterfactually equivalent.

Example 8.2.5 (Interventional equivalence does not imply counterfactual equivalence
[Daw02]). For parameter ρ ∈ [−1, 1], consider the SCM Mρ with binary exogenous input
variable X ∈ {0, 1}, endogenous variable Y ∈ R, a single latent exogenous random
variable W = (W1,W2) ∈ R2 with exogenous distribution(

W1

W2

)
∼ N

((
0
0

)
,

(
1 ρ
ρ 1

))
and structural equation

Y = W1(1−X) +W2X.

In a medical setting, this SCM could be used to model whether a patient was treated or
not (x = 1 vs. x = 0) and the corresponding potential outcome (Y do(x=1) vs. Y do(x=0)).

Suppose that in the actual world we did not assign treatment to a patient (x = 0) and
the outcome was Y do(x=0) = y ∈ R. Consider the counterfactual query “What would the
outcome have been, had we assigned treatment to this patient?”. We can answer this
question by introducing a parallel counterfactual world in which the exogenous random
variables for each patient have the same values as in the actual world, but treatment
and outcome may differ. For this, consider the twin SCM (Mρ)twin. The counterfactual
query then asks for

P(Mρ)twin((Y ′)do(x
′=1) | Y do(x=0) = y),

where Y do(x=0) is the factual outcome, and (Y ′)do(x
′=1) is the counterfactual outcome

(which are both marginal potential outcomes of the twinned SCM). One can calculate
that

P(Mρ)twin

(
(Y ′)do(x

′=1), Y do(x=0)
)
= N

((
0
0

)
,

(
1 ρ
ρ 1

))
and hence P(Mρ)twin((Y ′)do(x

′=1) | Y do(x=0) = y) = N (ρy, 1− ρ2) (by the general formula
for conditioning a multivariate Gaussian distribution). Note that the answer to the
counterfactual query depends on a quantity ρ that we cannot identify from the Markov
kernel PMρ(Y | do(X)), as it is independent of ρ. Therefore, even unlimited data from
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a randomized controlled trial would not suffice to determine the value of this particu-
lar counterfactual query. Indeed, SCMs Mρ and Mρ′ with ρ ̸= ρ′ are interventionally
equivalent, but not counterfactually equivalent.

The lesson of this example is that if one attempts to learn an SCM from data (even
from randomized controlled trials with arbitrarily large sample size) it can happen that
one still cannot identify the values of some counterfactual probabilities. In other words,
data-driven estimation of counterfactual probabilities can be an ill-posed problem. Nev-
ertheless, counterfactual are central in court cases (e.g., to determine responsibility, “the
physician treated the patient with drug A and the patient died, would the patient still
be alive if the physician had abstained from the treatment?”). The above example shows
that one can be on very slippery terrain when it comes to answering such questions.

We have seen that interventionally equivalent SCMs do not need to have the same
graphs. Even counterfactually equivalent SCMs may have different graphs (see Exam-
ple 9.5.16).

8.3. Exogenous reparameterizations

Since exogenous random variables are considered latent, certain reparameterizations of
those may preserve part of the causal semantics of the observed variables.

Definition 8.3.1. Let M = (J, V,W,X , P, f) be an SCM. Let W̃ be a finite index set
disjoint from J ∪V ∪W , and XW̃ =

∏
w̃∈W̃ Xw̃ the product of standard measurable spaces

Xw̃. Let f̃ : XJ ×XV ×XW̃ → XV and Φ : XJ ×XW → XW̃ be measurable mappings such
that:

i) for all xJ ∈ XJ , xV ∈ XV , xW ∈ XW ,

f(xJ , xV , xW ) = f̃(xJ , xV ,Φ(xJ , xW )),

and

ii) there exists a distribution P̃ =
⊗

w̃∈W̃ P̃w̃ with P̃w̃ ∈ P(Xw̃) for all w̃ ∈ W̃ such
that

(idXJ
,Φ)∗ (δ(XJ |XJ)⊗ P ) = δ(XJ |XJ)⊗ P̃,

where P =
⊗

w∈W Pw with Pw ∈ P(Xw) for all w ∈ W .

Then we call the SCM

Mrepar(f̃ ,Φ) =
(
J, V, W̃,XJ ×XV ×XW̃ , P̃, f̃

)
an exogenous reparameterization of M .

Note that the P̃ occurring in this definition is unique, and hence the exogenous repa-
rameterization Mrepar(f̃ ,Φ) is well-defined (given f̃ and Φ).

Exogenous reparameterizations are compatible with hard interventions.
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Lemma 8.3.2. Let M = (J, V,W,X , P, f) be an SCM, and Mrepar(f̃ ,Φ) =
(
J, V, W̃, X̃ , P̃, f̃

)
an exogenous reparameterization of M . For an intervention target T ⊆ V ∪ J :

(Mrepar(f̃ ,Φ))do(T ) = (Mdo(T ))repar(f̃\T ,Φ).

Proof. This follows by writing out the definitions.

The twinning operation is only compatible with exogenous reparameterizations under
restrictive assumptions.

Lemma 8.3.3. Let M = (J, V,W,X , P, f) be an SCM, and Mrepar(f̃ ,Φ) =
(
J, V, W̃, X̃ , P̃, f̃

)
an exogenous reparameterization of M . If Φ is constant in XJ , that is, Φ(xJ , xW ) =
Φ(x̃J , xW ) for all xW ∈ XW and all xJ , x̃J ∈ XJ , then:

(Mrepar(f̃ ,Φ))
twin = (M twin)repar(f̃ twin,Φ).

Proof. This follows by writing out the definitions. In particular, we check that

f twin(xJ , xJ ′ , xV , xV ′ , xW ) = (f(xJ , xV , xW ), f(xJ ′ , xV ′ , xW ))

= (f̃(xJ , xV ,Φ(xW )), f̃(xJ ′ , xV ′ ,Φ(xW ))

= f̃ twin(xJ , xJ ′ , xV , xV ′ ,Φ(xW )).

For the last equality, we need that Φ does not depend on XJ .

Theorem 8.3.4. Let M = (J, V,W,X , P, f) be an SCM, and Mrepar(f̃ ,Φ) =
(
J, V, W̃, X̃ , P̃, f̃

)
an exogenous reparameterization of M . If both M and Mrepar(f̃ ,Φ) are simple,48 then M
is observably and interventionally equivalent to Mrepar(f̃ ,Φ) w.r.t. V . If, furthermore, Φ
does not depend on XJ , then M is even counterfactually equivalent to Mrepar(f̃ ,Φ) w.r.t.
V .

Proof. Let g : XJ × XW → XV be the solution function of M , and g̃ : XJ × XW̃ → XV

the solution function of M̃ :=Mrepar(f̃ ,Φ). g satisfies

xV = f(xJ , xV , xW ) ⇐⇒ xV = g(xJ , xW )

for all xJ ∈ XJ , xV ∈ XV and xW ∈ XW , while g̃ satisfies

xV = f̃(xJ , xV , xW̃ ) ⇐⇒ xV = g̃(xJ , xW̃ )

for all xJ ∈ XJ , xV ∈ XV and xW̃ ∈ XW̃ . By assumption, for all xJ ∈ XJ , xV ∈ XV , xW ∈
XW ,

f(xJ , xV , xW ) = f̃(xJ , xV ,Φ(xJ , xW )).

48This assumption is only needed because we avoided to define the equivalence relations for arbitrary
SCMs.
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Hence, the following equation holds for all xJ ∈ XJ , xW ∈ XW :

g(xJ , xW ) = g̃(xJ ,Φ(xJ , xW )).

In other words,
g = g̃ ◦ (idXJ

,Φ).

We now show that the marginal Markov kernels PM(XV | do(XJ)) and PMrepar(f̃ ,Φ)
(XV |

do(XJ)) are the same. By Theorem 6.6.3,

PM(XV | do(XJ)) = (g)∗ (δ(XJ |XJ)⊗ P (XW ))

= (g̃ ◦ (idXJ
,Φ))∗ (δ(XJ |XJ)⊗ P (XW ))

= (g̃)∗

(
δ(XJ |XJ)⊗ P̃ (XW̃ )

)
= PMrepar(f̃ ,Φ)

(XV | do(XJ)).

This shows the observable equivalence w.r.t. V .
Let T ⊆ V . Then (Mrepar(f̃ ,Φ))do(T ) = (Mdo(T ))repar(f̃\T ,Φ) by Lemma 8.3.2. The ob-

servable equivalence of Mdo(T ) and (Mdo(T ))repar(f̃\T ,Φ) w.r.t. V \ T hence implies the
observable equivalence of Mdo(T ) and (Mrepar(f̃ ,Φ))do(T ) w.r.t. V \ T . Since this holds for
all T ⊆ V , M and Mrepar(f̃ ,Φ) are interventionally equivalent w.r.t. V .

Assume now that Φ does not depend on XJ . By Lemma 8.3.3, (Mrepar(f̃ ,Φ))
twin =

(M twin)repar(f̃ twin,Φ). Since M twin and its exogenous reparameterization (M twin)repar(f̃ twin,Φ)

are interventionally equivalent w.r.t. V ∪ V ′, M and Mrepar(f̃ ,Φ) are counterfactually
equivalent w.r.t. V .

A special case of interest is obtained for ‘pointwise’ surjective mappings Φ.

Corollary 8.3.5. If xW 7→ Φ(xJ , xW ) is surjective for all xJ ∈ XJ , then unique solvabil-
ity of M implies unique solvability of Mrepar(f̃ ,Φ), and simplicity of M implies simplicity
of Mrepar(f̃ ,Φ).

Proof. Let g : XJ ×XW → XV be the solution function of M . It satisfies

xV = f(xJ , xV , xW ) ⇐⇒ xV = g(xJ , xW )

for all xJ ∈ XJ , xV ∈ XV and xW ∈ XW . Let Ψ : XJ × XW̃ → XW be an arbitrary
left-inverse of Φ (i.e., Φ(xJ ,Ψ(xJ , xW̃ )) = xW̃ for all xJ ∈ XJ , xW̃ ∈ XW̃ , implying
(idXJ

,Φ) ◦ (idXJ
,Ψ) = (idXJ

, idXW̃
)) and define

g̃(xJ , xW̃ ) := g(xJ ,Ψ(xJ , xW̃ ))

for all xJ ∈ XJ , xW̃ ∈ XW̃ . Then

xV = f̃(xJ , xV , xW̃ ) ⇐⇒ xV = f̃(xJ , xV ,Φ(xJ ,Ψ(xJ , xW̃ )))

⇐⇒ xV = f(xJ , xV ,Ψ(xJ , xW̃ ))

⇐⇒ xV = g(xJ ,Ψ(xJ , xW̃ ))

⇐⇒ xV = g̃(xJ , xW̃ )
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for all xJ ∈ XJ , xV ∈ XV , xW̃ ∈ XW̃ . So g̃ is the unique solution function of Mrepar(f̃ ,Φ).
Hence, unique solvability of M implies unique solvability of Mrepar(f̃ ,Φ) by Theorem 6.6.3.

Now suppose that M is simple. Let T ⊆ V . By Lemma 8.3.2,

(Mrepar(f̃ ,Φ))do(T ) = (Mdo(T ))repar(f̃\T ,Φ).

The unique solvability of Mdo(T ) implies that of (Mdo(T ))repar(f̃\T ,Φ), and hence that of
(Mrepar(f̃ ,Φ))do(T ). Therefore, Mrepar(f̃ ,Φ) is simple.

One example of an exogenous reparameterization of this type that one encounters
occassionally is the operation of merging exogenous random variables.

Example 8.3.6 (Merging exogenous random variables). Let M = (J, V,W,X , P, f) be
an SCM. Let W̃ be a partition of W . Take for XW̃ =

∏
w̃∈W̃ Xw̃ the product of standard

measurable spaces Xw̃ =
∏

w∈w̃ Xw. Let Φ : XW → XW̃ be the natural identification that
maps xW = (xw)w∈W ∈ XW with components xw ∈ Xw to xW̃ = (xw̃)w̃∈W̃ ∈ XW̃ with
components xw̃ = (xw)w∈w̃ ∈ Xw̃. Because W̃ is a partition of W , Φ is a bijection. Take

f̃ : XJ ×XV ×XW̃ → XV : (xJ , xV , xW̃ ) 7→ f(xJ , xV ,Φ
−1(xW̃ )).

It is immediate from Definition 8.3.1 that

Mrepar(f̃ ,Φ) =
(
J, V, W̃,XJ ×XV ×XW̃ , P̃, f̃

)
is an exogenous reparameterization of M . Because Φ is independent of xJ and bijective,
Mrepar(f̃ ,Φ) is observably, interventionally and counterfactually equivalent to M w.r.t. V
in case M is simple.

The following example shows that an exogenous reparameterization need not be coun-
terfactually equivalent w.r.t. V if Φ depends on XJ .

Example 8.3.7. Consider the acyclic SCM M with exogenous input variable X1 with
co-domain {−1, 1}, endogenous variables X2, X3 with co-domains {−1, 1}, {−2, 0, 2},
respectively, and causal mechanism

X2 = f2(X1, XB) = X1XB

X3 = f3(X2, XB) = X2 +XB,

with exogenous random variable XB ∼ Uni({−1, 1}). Consider the exogenous reparam-
eterization M̃ with exogenous random variable XB̃ with co-domain {−1, 1}, mapping
Φ : {−1, 1}2 → {−1, 1} : (x1, xB) 7→ x1xB, and causal mechanism

X2 = f̃2(XB̃) = XB̃

X3 = f̃3(X1, X2, XB̃) = X2 +X1XB̃.
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Its exogenous distribution is Φ∗(P(XB)) = Uni({−1, 1}) = P(XB̃). It is indeed an
exogenous reparameterization:

f̃(x1, x2,Φ(x1, xB)) = (Φ(x1, xB), x2 + x1Φ(x1, xB))

= (x1xB, x2 + x1x1xB)

= (x1xB, x2 + xB)

= f(x1, x2, xB).

Both M and M̃ are acyclic, hence simple. By Theorem 8.3.4, M̃ is observably and
interventionally equivalent to M w.r.t. {X2, X3}. However, M̃ is not counterfactually
equivalent to M w.r.t. {X2, X3}, as one can check explicitly.

8.4. Parameterizing SCMs using response functions

The following technique of “response functions” [BP94a] provides an example of an ex-
ogenous reparameterization. It has been used—amongst others—to derive bounds on
counterfactual probabilities and to obtain tests for valid instruments. Here we will ex-
plain the idea using an example rather than with a general formal treatment (in that
way avoiding some heavy bookkeeping).

Definition 8.4.1. Let M = (J, V = {v},W,XJ ×XV ×XW , P, f) be a simple SCM with
XJ discrete, Xv discrete, and XW an arbitrary standard measurable space.

Let W̃ = {w̃} be a singleton and consider the space of (measurable) functions49

XW̃ := (Xv)
XJ = {ϕ : XJ → Xv}.

The SCM M induces a function Φ : XW → XW̃ that assigns to each exogenous random
value xW ∈ XW the corresponding response function in XW̃ , that is, Φ(xW ) is the func-
tion xJ 7→ fv(xJ , xW ). The SCM Mrepar(f̃ ,Φ) =

(
J, V = {v}, W̃,XJ ×XV ×XW̃ , P̃, f̃

)
with as exogenous distribution the push-forward P̃ = (Φ)∗(P ) and causal mechanism
f̃(xJ , xW̃ ) = xW̃ (xJ) (which just evaluates the response function xW̃ in the input xJ) is
called a response variable parameterization of M .

We call it a parameterization because it preserves the important causal semantics:

Proposition 8.4.2. The response variable parameterization of M in Definition 8.4.1 is
an exogenous reparameterization of M and is counterfactually equivalent to M w.r.t. V .

Proof. Note that:
f(xJ , xW ) = Φ(xW )(xJ) = f̃(xJ ,Φ(xW ))

for all xJ ∈ XJ , xW ∈ XW . Because M and M̃ are both acyclic, they are both simple, and
the claim now follows from Theorem 8.3.4, noting that Φ does not depend on XJ .
49 [BP94a] call these functions “response functions”, and a random variable taking values in XW̃ a

“response-function variable”.
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Corollary 8.4.3. Let M = (J, V,W,X , P, f) be a simple SCM with discrete exogenous
input space XJ . Let v ∈ V be an endogenous variable in M taking values in a discrete
space Xv. Then there exists an SCM that is counterfactually equivalent to M w.r.t.
{v} that has just a single endogenous variable (V = {v} with space Xv) and exogenous
random space (Xv)

XJ .

Proof. First marginalize out all endogenous variables except v, and then take the re-
sponse variable parameterization of this marginal SCM. It has the desired exogenous
random space, and note that both operations preserve counterfactual equivalence w.r.t.
{v}.

8.5. Bounding counterfactual probabilities

We have seen that unless one is willing to make very strong modeling assumptions,
obtaining counterfactual probabilities from data can be impossible. In certain cases,
though, it is possible to derive bounds on counterfactual probabilities from (intervened)
Markov kernels [BP94a]. One way to derive such bounds on counterfactuals exploits the
response function parameterization.

As a motivation, consider a medical setting in which a patient may either be treated
(or not) and a week later the patient is cured (or not). Suppose a patient participating
in a randomized controlled trial was assigned to the control group and hence not treated
(do(x = 0)), and it turned out one week later that this patient was not cured (Y do(x=0) =
0). The patient now wonders “would I have been cured, had I been assigned to the
treatment group?”. By making use of the response-function parameterization, we can
obtain a bound that does not depend on the specific parameters of the SCM, yielding
a “worst-case” lower bound and a “best-case” upper bound on the probability that the
patient would then be cured.

Proposition 8.5.1 (Bounding counterfactual probabilities). For a simple SCM M with
a single binary exogenous input variable X ∈ {0, 1} and a binary endogenous variable
Y ∈ {0, 1} (and perhaps additional endogenous variables, and with an arbitrary number
of exogenous random variables taking values in arbitrary standard measurable spaces),
the counterfactual probability

PMtwin((Y ′)do(x
′=1) = 1 | Y do(x=0) = 0)

(with Y do(x=0) the factual outcome, and (Y ′)do(x
′=1) the counterfactual outcome) is bounded

by

q0|0 −min(q0|0, q0|1)

q0|0
≤ PMtwin((Y ′)do(x

′=1) = 1|Y do(x=0) = 0) ≤
min(q0|0, q1|1)

q0|0
,

where qy|x := PM(Y = y | do(X = x)).

Proof. Denote the 3-dimensional probability simplex by ∆3 = {r = (r00, r01, r10, r11) ∈
[0, 1]4 : r00 + r01 + r10 + r11 = 1}. We know from Corollary 8.4.3 that without loss of
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generality, we may assume that the SCM has only a single binary endogenous variable
Y and an exogenous random variable taking values in {0, 1}{0,1}. That SCM must then
lie in the family {Mρ : ρ ∈ ∆3}, where the SCM Mρ with parameter ρ has binary
exogenous input variable X, binary endogenous variable Y , a single latent exogenous
random variable W ∈ {f00, f01, f10, f11}, exogenous distribution P ρ(W = fw) = ρw, and
structural equation

Y do(x) = W (x),

where we defined response functions f00, f01, f10, f11 : {0, 1} → {0, 1} by:

f00 : 0 7→ 0, 1 7→ 0;

f01 : 0 7→ 0, 1 7→ 1;

f10 : 0 7→ 1, 1 7→ 0;

f11 : 0 7→ 1, 1 7→ 1.

We will derive a bound on the counterfactual probability

P(Mρ)twin((Y ′)do(x
′=1) = 1 | Y do(x=0) = 0).

We first update the distribution of W with the observed outcome:

P(Mρ)twin(W = w|Y do(x=0) = 0) =


ρ00

ρ00+ρ01
w = f00,

ρ01
ρ00+ρ01

w = f01,

0 w = f10,

0 w = f11.

Because of the counterfactual equivalence of Mρ and M w.r.t. Y , we have that qy|x :=
PM(Y = y | do(X = x)) = P(Mρ)twin(Y = y | do(X = x)). This Markov kernel is given
explicitly by:

x y qy|x
0 0 ρ00 + ρ01
0 1 ρ10 + ρ11
1 0 ρ00 + ρ10
1 1 ρ01 + ρ11

For our particular counterfactual probability of interest, we have the equality

P(Mρ)twin((Y ′)do(x
′=1) = 1|Y do(x=0) = 0) =

ρ01
q0|0

.

From the non-negativity of the ρ’s and the table above, we can derive the bound

q0|0 −min(q0|0, q0|1) ≤ ρ01 ≤ min(q0|0, q1|1)

and hence
q0|0 −min(q0|0, q0|1)

q0|0
≤ P(Mρ)twin((Y ′)do(x

′=1) = 1|Y do(x=0) = 0) ≤
min(q0|0, q1|1)

q0|0
.

Since Mρ is counterfactually equivalent to the original SCM M w.r.t. Y , the same bound
also holds for M instead of Mρ.
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As an illustration, suppose that q0|0 ≈ 1 and q1|1 ≈ 1. Then the bound tells us
that PMtwin((Y ′)do(x

′=1) = 1|Y do(x=0) = 0) ≈ 1 as well. Thus, for almost-deterministic
relations, we can tightly bound this counterfactual probability.
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9. Causal Relations and Confounding

In this chapter, we will formalize various elementary causal relations. Our treatment ex-
tends conventional notions as we explicitly allow for exogenous input nodes to represent
hard interventions with unspecified intervention values. For each causal relation, we give
a graphical and several SCM versions of the notion, and show how these are related.
Typically, the absence of a certain causal relation in the graph implies its absence in the
SCM, but not vice versa. We will also connect these versions to certain patterns in a set
of observable and interventional Markov kernels, and to various formulations in terms
of potential outcomes and counterfactuals.

9.1. Faithfulness

Before we start, we introduce a certain “genericity” notion called faithfulness. It is
the converse statement of the global Markov property: loosely speaking it says that
every conditional independence in the Markov kernel of a causal model must correspond
with a d-separation or σ-separation in the causal graph corresponding to the model.
Originally, this notion was only defined for the d-separation Markov property (applicable
to acyclic models and certain subclasses of cyclic SCMs) and referred to as “faithfulness”.
To avoid confusion, we explicitly distinguish two versions: σ-faithfulness for simple
SCMs (corresponding to Corollary 6.14.1), and d-faithfulness for acyclic SCMs and causal
Bayesian networks (corresponding to Theorem 4.2.1).

Definition 9.1.1. Let M = (J, V,W,X , P, f) be a simple SCM with causal graph G(M)
and Markov kernel PM(XV | do(XJ)). M is called σ-faithful if for all A,B,C ⊆ J ∪ V
(not necessarily disjoint):

A
σ

⊥
G(M)

B |C ⇐= XA ⊥⊥
PM (XV |do(XJ ))

XB |XC . (47)

It is called d-faithful if for all A,B,C ⊆ J ∪ V (not necessarily disjoint):

A
d

⊥
G(M)

B |C ⇐= XA ⊥⊥
PM (XV |do(XJ ))

XB |XC . (48)

For a subset O ⊆ V , we say that M is σ-faithful w.r.t. O if (47) holds for all (not
necessarily disjoint) A,B,C ⊆ J ∪O, and we define d-faithful w.r.t. O analogously.

In words, a simple SCM is called σ-faithful (d-faithful) if each conditional indepen-
dence in the induced Markov kernel is due to a σ-separation (d-separation) in its causal
graph. Note that σ-faithfulness is a stronger assumption than d-faithfulness (as σ-
separation implies d-separation).

Remark 9.1.2. These notions behave properly under marginalization: a simple SCM
M is σ/d-faithful w.r.t. O ⊆ V if and only if its marginalization MO is σ/d-faithful.

Faithfulness may fail for various reasons:
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• Deterministic relationships may lead to additional conditional independences, but
are not exploited by the Markov property;

• Effects may cancel out;

• If cycles are present, and (i) all variables are discrete, or (ii) interactions are linear,
σ-faithfulness may fail;

• If cycles are present, and the system is “perfectly adapting”.

An example of a deterministic relationship leading to a faithfulness violation is the
following.

Example 9.1.3. Take an SCM M with three endogenous variables X, Y, Z and two
exogenous random variables U,W , with structural equations

X = 5, Y = X + U, Z = X +W.

Then Y ̸⊥σ
G(M) Z and Y ̸⊥d

G(M) Z, but Y ⊥⊥PM
Z. This simple (even acyclic) SCM is

neither σ-faithful nor d-faithful, due to X being constant.

The next example illustrates how canceling effects may lead to a faithfulness violation.

Example 9.1.4. Take an SCM M with three endogenous variables X, Y, Z and three
exogenous random variables WX ,WY ,WZ, with structural equations

X = WX , Y = X +WY , Z = Y −X +WZ .

Then X ̸⊥σ
G(M) Z and X ̸⊥d

G(M) Z, but X ⊥⊥PM
Z. This simple (even acyclic) SCM is

neither σ-faithful nor d-faithful, due to cancellation of the direct causal influences of X
on Z with the indirect causal influence of X via Y on Z.

One can show that in certain special cases, the global Markov property in terms of
d-separation even holds for cyclic simple SCMs.

Proposition 9.1.5. Let M = (J, V,W,X , P, f) be a simple SCM with causal graph
G(M) and Markov kernel PM(XV | do(XJ)). If J = ∅ and one of the three conditions
applies:

1. all spaces Xv with v ∈ V are discrete, or

2. the causal mechanism f is affine and the exogenous distribution has a density w.r.t.
Lebesgue measure, or

3. M is acyclic,

then for all A,B,C ⊆ J ∪ V (not necessarily disjoint):

A
d

⊥
G(M)

B |C =⇒ XA ⊥⊥
PM (XV | do(XJ ))

XB |XC .

The proofs are given in [FM17].
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9.2. Causal Relations

We are now ready to formalize Definition 1.2.3 (finally!), that is, the notion of “a causes
b”.

9.2.1. Causal relations (graphical notion)

We typically give the following causal interpretation to a CDMG.

Definition 9.2.1. Let G be a CDMG with input nodes J and output nodes V . Let
a ∈ J ∪ V and b ∈ V . If a /∈ AncG(b) then we say that a is not a cause of b according
to G; otherwise, we say that a is a cause of b according to G.

Remark 9.2.2. Marginalization of a graph preserves its causal relations (see also Re-
mark 3.2.15). In particular, a is a cause of b according to G if and only if a b is
present in in G\(V \{a,b}). Furthermore, a is a cause of b according to G if and only if a
is a cause of b according to Gdo(a). Finally, note that a is a cause of b according to G if
and only if Ia is a cause of b according to Gdo(Ia).

The following reformulates the causal relation in terms of a separation statement.

Proposition 9.2.3. Let G be a CDMG with input nodes J and output nodes V . Let
b ∈ V . For a ∈ J ∪ V :

a ̸∈ AncG(b) ⇐⇒ b
σ

⊥
Gdo(Ia)

Ia | J \ {Ia}. (49)

Proof. Suppose that there exists a walk in Gdo(Ia) between b and Ia ∪ J that is σ-open
given J \{Ia}. Then there exists such a walk without colliders (Proposition 3.3.6 and the
observation that no node in J can be a collider on a walk). Such a walk cannot contain
a node from J \ {Ia}, since that would either be an end node (σ-blocking the walk)
or a non-collider node pointing only to nodes in another strongly connected component
(σ-blocking the walk). Therefore it must be of the form Ia a · · · b. Since it cannot
contain a collider, it must be a directed walk, and hence Ia ∈ AncGdo(Ia)(b). Vice versa,
any directed walk from Ia to b in Gdo(Ia) is σ-open given J \ {Ia}, as it cannot contain
a node in J \ {Ia}.

Remark 9.2.4. We can rewrite the r.h.s. of (49), distinguishing the cases a ∈ J and
a ∈ V , as follows:

b
σ

⊥
Gdo(Ia)

Ia | J \ {Ia} ⇐⇒

{
b⊥σ

G a | J \ {a} a ∈ J
b⊥σ

Gdo(Ia)
Ia | J a ∈ V.

9.2.2. Causal relations (interventional notion)

The most common notion of causation is the interventional one.
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Definition 9.2.5. Let M = (J, V,W,X , P, f) be a simple SCM. Let a ∈ J ∪ V and
b ∈ V . If

Xb ⊥⊥
PMdo(Ia)

XIa |XJ\{Ia}, (50)

we say that a is not a rung-2 cause of b according to M . Otherwise, we say that a is a
rung-2 cause of b according to M .

Remark 9.2.6. We can rewrite (50), distinguishing the cases a ∈ J and a ∈ V , as
follows:

Xb ⊥⊥
PMdo(Ia)

XIa |XJ\{Ia} ⇐⇒

{
Xb⊥⊥PM

Xa |XJ\{a} a ∈ J,
Xb⊥⊥PMdo(Ia)

XIa |XJ a ∈ V.

Alternatively, we can write (50) as:

PM(Xb | do(XJ∪{a})) = PM(Xb | do(XJ\{a})),

or, distinguishing the two cases, as:{
PM(Xb | do(XJ)) = PM(Xb | do(XJ\{a}),����do(Xa)) a ∈ J,
PM(Xb | do(XJ), do(Xa)) = PM(Xb | do(XJ)) a ∈ V.

Remark 9.2.7. Marginalization of an SCM preserves the rung-2 causal relations be-
tween the remaining variables.

Remark 9.2.8. Rung-2 causal relations are invariant under interventional equivalence
of SCMs. More precisely: a is a rung-2 cause of b according to M implies that a is
a rung-2 cause of b according to M̃ if M is interventionally equivalent to M̃ w.r.t.
{a, b} ∩ V . Note: if M and M̃ are interventionally equivalent, then so are Mdo(Ia) and
M̃do(Ia) for a ∈ (V ∩ Ṽ ) ∪ (J ∩ J̃).

Remark 9.2.6 shows that the two cases a ∈ V and a ∈ J mean something subtly differ-
ent, and one may wonder why we chose to work with Mdo(Ia) rather than Mdo(a) (which
would treat the two cases in the same way). The reason is that the observable Markov
kernel may provide additional information beyond that provided by the interventional
Markov kernels, as the following example shows.

Example 9.2.9. Consider the SCM M with endogenous variables Xa, Xb ∈ {−1,+1},
exogenous random variable Xw ∈ {−1, 1}, and structural equations:

Xa = Xw,

Xb = XaXw,

where Xw ∼ U({−1, 1}). Note that PM(Xb = 1 | do(Xa = xa)) = 1
2

for xa ∈ {−1, 1}.
However, PM(Xb = 1) = 1. Hence, a is a rung-2 cause of b according to M . So we
cannot detect that a causes b from the interventional Markov kernel PM(Xb | do(Xa))
only, but we can if we additionally compare with the observational distribution PM(Xb).
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Consider now the SCM Mdo(a), with endogenous variable Xb ∈ {−1,+1}, exogenous
random variable Xw ∈ {−1,+1}, exogenous input variable Xa ∈ {−1,+1}, and struc-
tural equation:

Xb = XaXw.

According to Mdo(a), a is not a rung-2 cause of b.
We conclude that a can be a rung-2 cause of b according to some SCM M , while a is

not a rung-2 cause of b according to Mdo(a) (which might be a little surprising at first
sight).50

9.2.3. Causal relations (counterfactual notion)

A more ‘refined’ notion of causation (but also harder to detect in practice) can be
obtained by considering counterfactuals.

Definition 9.2.10. Let M = (J, V,W,X , P, f) be a simple SCM. Let a ∈ J ∪ V and
b ∈ V . We say that a is not a rung-3 cause of b according to M if:

∀xJ\{Ia} ∈ XJ\{Ia},∀xIa , xIa′ ∈ Xa :

P(Mdo(XJ\{Ia}=xJ\{Ia}),do(Ia))
twin(Xb = Xb′ | do(XIa = xIa), do(XIa′

= xIa′ )) = 1.
(51)

Otherwise, we say that a is a rung-3 cause of b according to M .

Remark 9.2.11. We can rewrite (51) for a ∈ V as:

∀xJ ∈ XJ ,∀xa ∈ Xa : P((Mdo(XJ=xJ ))
twin)do(a)(Xb = Xb′ | do(Xa = xa)) ̸= 1;

and for a ∈ J as:

∀xJ\{a} ∈ XJ\{a},∀xa, x′a ∈ Xa : P(Mdo(XJ\{a}=xJ\{a})
)twin(Xb = Xb′ | do(Xa = xa), do(Xa′ = x′a)) ̸= 1.

Remark 9.2.12. Marginalization of an SCM preserves the rung-3 causal relations of
the remaining variables.

Remark 9.2.13. Rung-3 causal relations are invariant under counterfactual equivalence
of SCMs. More precisely: a is a rung-3 cause of b according to M implies that a is a rung-
3 cause of b according to M̃ if M is counterfactually equivalent to M̃ w.r.t. {a, b} ∩ V .
Note: if M and M̃ are counterfactually equivalent, then so are Mdo(Ia) and M̃do(Ia) for
a ∈ (V ∩ Ṽ ) ∪ (J ∩ J̃).

The following example shows that the presence of a rung-3 causal relation does not
necessarily imply the presence of a rung-2 causal relation. Intuitively, the causal effect
can go unnoticed if it averages out.

50This example also shows that the claim in [PJS17, Proposition 6.13] is incorrect.
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Example 9.2.14. Consider the SCM M with exogenous input variable Xa ∈ {−1,+1},
endogenous variable Xb ∈ {−1,+1}, exogenous random variable Xw ∈ {−1, 1}, and
structural equation:

Xb = XaXw,

where Xw ∼ U({−1, 1}). Note that a is a rung-3 cause of b according to M , but a is not
a rung-2 cause of b according to M . Indeed, due to the uniform distribution of Xw the
dependence of b on a averages out.

So, for example, a drug can have a beneficial effect on all males and an adversary
effect on all females, and still have no effect on the entire population (if the positive
effect exactly cancels out the negative effect on average).

9.2.4. Hierarchy of causal relations

The following result shows the logical relations between various notions of causation. It
is somewhat reminiscent of Pearl’s causal hierarchy. A more readable version will be
formulated as Corollary 9.2.17.

Proposition 9.2.15. Let M = (J, V,W,X , P, f) be a simple SCM with causal graph
G(M). Let a ∈ J ∪ V , b ∈ V . Pick an arbitrary x0Ia ∈ XIa (for example, x0Ia = ⋆ for
a ∈ V ). Write “∨∼xw ∈ XW ” as a shorthand of “for P -almost all xw ∈ XW ”. Denote the
solution function of Mdo(Ia) by g. Consider the properties:51

(i) a ̸∈ AncG(M)(b);

(ii) ∀xJ\{Ia} ∈ XJ\{Ia}, ∀xW ∈ XW , ∀xIa ∈ XIa: gb(xIa , xJ\{Ia}, xW ) = gb(x
0
Ia
, xJ\{Ia}, xW );

(iii) ∀xJ\{Ia} ∈ XJ\{Ia}, ∨∼xW ∈ XW , ∀xIa ∈ XIa: gb(xIa , xJ\{Ia}, xW ) = gb(x
0
Ia
, xJ\{Ia}, xW );

(iv) ∀xJ\{Ia} ∈ XJ\{Ia}, ∀xIa ∈ XIa, ∨∼xW ∈ XW : gb(xIa , xJ\{Ia}, xW ) = gb(x
0
Ia
, xJ\{Ia}, xW );

(v) ∀xJ\{Ia} ∈ XJ\{Ia}, ∀xIa ∈ XIa: P (gb(xIa , xJ\{Ia}, XW )) = P (gb(x
0
Ia
, xJ\{Ia}, XW )).

Then (i) =⇒ (ii) =⇒ (iii) =⇒ (iv) =⇒ (v). If Mdo(Ia) is σ-faithful, then (v) =⇒
(i).

Proof. (i) =⇒ (ii): Applying Lemma 9.2.16 to Mdo(Ia) with B = AncG
+(Mdo(Ia))(b) ∩ V

and noting that a ̸∈ AncG(M)(b) ⇐⇒ a ̸∈ AncG
+(M)(b) ⇐⇒ a ̸∈ AncG

+(Mdo(Ia))(b) ⇐⇒
Ia ̸∈ PaG

+(Mdo(Ia))(B), we obtain that gb is constant in xIa . (ii) =⇒ (iii) =⇒ (iv) =⇒
(v) is trivial. (v) =⇒ (i) follows from the definition of σ-faithfulness in combination
with Proposition 9.2.3.

51Note that the ordering of the quantifiers matters! In particular, ∨∼xW∀xV =⇒ ∀xV ∨∼xW , whereas
the converse doesn’t hold in general (but does hold if XV is discrete).
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Lemma 9.2.16. Let M = (J, V,W,X , P, f) be a simple SCM with graph G+ := G+(M).
Let B ⊆ V . Denote the (unique) solution function of M by g. Then gB : XJ×XW → XB

is constant in (J ∪W ) \ PaG+

(B):52

∀x ∈ X : gB(xJ , xW ) = gB(x(J∪W )∩PaG+
(B)

).

Proof. One conceptually elegant way to prove this would be to apply the variation
independence version of the global Markov property. Since we have not formulated this
here, we will give a direct proof.

First, note that for every v ∈ V , there exists a “structurally minimal” function f̃v :
X

PaG
+
(v)
→ Xv, a “version” of the causal mechanism for v that only depends on the

parents of v:
xv = fv(x) ⇐⇒ xv = f̃v(xPaG+

(v)
)

for all x ∈ X . This follows by induction from Definition 6.9.1. Hence, for all x ∈ X ,

xB = fB(x) ⇐⇒ xB = f̃B(xPaG+
(B)

) = f̃B(xPaG+
(B)\B, xB∩PaG+

(B)
).

Also, for all x ∈ X ,

xB = fB(x) ⇐⇒ xB = g[B](xJ , xW , xV \B)

where g[B] is the (unique) solution function of M [B]. By the uniqueness of the solution
function of M [B], then, the function g[B] must be constant in xk for k ∈ (J ∪ W ∪
(V \ B)) \ (PaG+

(B) \ B). Furthermore, since for all x ∈ X , xB = gB(xJ , xW ) implies
xB = g[B](xJ , xW , xV \B), also gB must be constant in xk for k ∈ (J∪W )\(PaG+

(B)\B) =

(J ∪W ) \ PaG+

(B).

Corollary 9.2.17. Let M = (J, V,W,X , P, f) be a simple SCM with causal graph G(M).
Let a ∈ J ∪ V , b ∈ V . Consider the following statements:

(i’) a is not a cause of b according to G(M);

(iv’) a is not a rung-3 cause of b according to M ;

(v’) a is not a rung-2 cause of b according to M .

Then (i’) =⇒ (iv’) =⇒ (v’). If Mdo(Ia) is faithful, also (v’) =⇒ (i’).

Proof. (i’) is equivalent to (i) in Proposition 9.2.15, and likewise, (iv’) to (iv) and (v’)
to (v).

Example 9.2.18. Consider the SCM M with exogenous input variable Xa ∈ R, endoge-
nous variable Xb ∈ R, exogenous random variable Xw ∈ R, and structural equation

Xb = 1Xa(Xw)

and exogenous distribution Xw ∼ N (0, 1). Then for all xa ∈ R, g(xa, Xw) = 0 a.s., so
property (iv) in Proposition 9.2.15 holds. However, it is not the case that for almost all
Xw, we have that gb(xa, Xw) = gb(x

′
a, Xw) for all xa, x′a, which means that property (iii)

in Proposition 9.2.15 does not hold.
52We slightly abuse notation by identifying two functions with different domains.
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Example 9.2.19. Consider the SCM M with exogenous input variable Xa ∈ {0, 1},
endogenous variable Xb ∈ {0, 1}, exogenous random variable Xw ∈ {0, 1}, and structural
equations

Xb = Xa ∧Xw

with P (Xw = 0) = 1. Then Xb = 0 with probability 1, hence property (iii) in Proposi-
tion 9.2.15 holds. However, property (ii) in Proposition 9.2.15 does not hold.

Example 9.2.20. Consider the SCM M with exogenous input variable Xa ∈ R, en-
dogenous variables Xc, Xd, Xb ∈ R, exogenous random variable Xw ∈ R, and structural
equations

Xc = Xa,

Xd = −Xa

Xb = Xc +Xd +Xw

with Xw ∼ N (0, 1). Then (i) in Proposition 9.2.15 does not hold, but (ii) in Proposi-
tion 9.2.15 holds.

Remark 9.2.21. The reverse implications in Proposition 9.2.15 need not hold. Some
counterexamples are:

• (v) ≠⇒ (iv): Example 9.2.14.

• (iv) ≠⇒ (iii): Example 9.2.18.

• (iii) ≠⇒ (ii): Example 9.2.19.

• (ii) ≠⇒ (i): Example 9.2.20.

However, note that (iii) and (iv) are equivalent if Xa is discrete. Also, (ii) and (iii) are
equivalent if XW is discrete and the exogenous distribution is strictly positive.

While we have given names to the notions (i), (iv) and (v), we consider notions (ii)
and (iii) not as relevant (although they are useful as intermediate steps when deriving
the logical relationships between the various notions). Indeed, notion (ii) is too strong
if we cannot intervene to set values of exogenous random variables, but are limited to
drawing samples from P (XW ). Notion (iii) is less relevant because it does not have
an interpretation in terms of the data generating processes that we are considering: it
corresponds with first drawing a value for XW from P (XW ), and afterwards deciding on
a value for Xa. In practice, this would require the agent or experimenter to have access
to the realization of XW when deciding on the value of Xa. However, that is inconsistent
with the modeling assumption that XW is latent for the agent.53

53One could also consider a setting in which some, but not all, information about the value xW is
accessible to the experimenter. For example, some exogenous random variables could be considered
“observable” and others “latent”, while they would all be considered “non-intervenable”. We will not
consider this as it would complicate matters further.
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We have formalized the main principle of how we can learn about causal relations in
the world: by actively changing some part of the world (choosing the intervention values
independently) and observing the response of other parts of the world. The independence
assumption is key to distinguish mere correlation from causation.54

9.3. Direct Causal Relations

Another important notion is that of direct causation. Essentially, “a causes b directly”
means that a causes b even when performing a hard intervenion on all other endoge-
nous variables. Since we distinguished different notions of “a causes b”, we also end up
distinguishing analogous notions of “a causes b directly”.

One should keep in mind that the notion of direct causation is always relative to
some set of variables.55 In particular, this property is not necessarily preserved under
marginalization.

We start again with the graphical notion. First, we need a graphical analogue of the
notion of “submodel”.

Definition 9.3.1. Let G = (J, V, E, L) be a CDMG with input nodes J and output
nodes V . For A ⊆ V , we define the submodel of G on A as G[A] := Gdo(V \A) =
(J ∪ (V \ A), A, {v a ∈ E | v ∈ V, a ∈ A} , {a a′ ∈ L | a, a′ ∈ A}).

We now define the graphical notion:

Definition 9.3.2. Let G be a CDMG with input nodes J and output nodes V . Let
a ∈ J ∪ V and b ∈ V . We say that a is a direct cause of b (w.r.t. V ∪ J) according to G
if a is a cause of b according to G[{a,b}∩V ].

Remark 9.3.3. Note that this holds if and only if a ∈ PaG(b). This provides the causal
interpretation of directed edges in a causal graph.

Similarly, we define the rung-2 notion:

Definition 9.3.4. Let M = (J, V,W,X , P, f) be a simple SCM. Let a ∈ J ∪ V and
b ∈ V . We say that a is a rung-2 direct cause of b (w.r.t. J ∪ V ) according to M if and
only if a is a rung-2 cause of b according to M [{a,b}∩V ].

54As a less mathematical and more philosophical footnote: it is interesting to speculate about how this
relates to the notion of a free will. If an agent is not convinced that it chose the intervention values
independently of other past aspects of the world, it cannot validly perform this causal reasoning
step. An agent without a free will to choose these values could therefore never conclude that its
actions have a causal effect on the world, as it could also just be a puppet steered by higher powers,
and any dependence it observes between its actions and aspects of the world could also be ascribed
to confounding. So perhaps that is why evolution equipped us with the impression that we have a
free will.

55This is implicitly communicated by the qualification “according to M ” or “according to G(M)”, but is
easy to forget in practice when modeling some system causally, especially when one has not decided
yet on the (complete) set of endogenous variables that need to be considered.
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Remark 9.3.5. Remember that a is a rung-2 cause of b according to M means:

PM(Xb | do(XJ∪{a})) ̸= PM(Xb | do(XJ\{a})).

Spelling this out, a being a rung-2 direct cause of b according to M means that:

PM(Xb | do(X(J∪V )\{a,b}), do(Xa)) ̸= PM(Xb | do(X(J∪V )\{a,b})).

In words: changing a influences the distribution of b even when intervening to hold all
other endogenous variables fixed.

Remark 9.3.6. Rung-2 direct causal relations are invariant under interventional equiv-
alence of SCMs. More precisely: a is a rung-2 direct cause of b (w.r.t. J ∪ V ) according
to M implies that a is a rung-2 direct cause of b (w.r.t. J ∪ V ) according to M̃ if M is
interventionally equivalent to M̃ w.r.t. {a, b} ∩ V .

Similarly, we define the rung-3 notion:

Definition 9.3.7. Let M = (J, V,W,X , P, f) be a simple SCM. Let a ∈ J ∪ V and
b ∈ V . We say that a is a rung-3 direct cause of b (w.r.t. J ∪ V ) according to M if and
only if a is a rung-3 cause of b according to M [{a,b}∩V ].

Remark 9.3.8. Remember that a is a rung-3 cause of b according to M means:

∃xJ\{Ia} ∈ XJ\{Ia}, ∃xIa , xIa′ ∈ Xa :

P(Mdo(XJ\{Ia}=xJ\{Ia}),do(Ia))
twin(Xb = Xb′ | do(XIa = xIa), do(XIa′

= xIa′ )) ̸= 1.

Spelling this out, a being a rung-3 direct cause of b according to M means that:

∃x(J\{Ia})∪(V \{a,b}) ∈ X(J\{Ia})∪(V \{a,b}),∃xIa , xIa′ ∈ Xa :

P(Mdo(X(J\{Ia})∪(V \{a,b})=x(J\{Ia})∪(V \{a,b})),do(Ia))
twin(Xb = Xb′ | do(XIa = xIa), do(XIa′

= xIa′ )) ̸= 1.

Remark 9.3.9. Rung-3 direct causal relations are invariant under counterfactual equiv-
alence of SCMs. More precisely: a is a rung-3 direct cause of b (w.r.t. J ∪ V ) according
to M implies that a is a rung-3 direct cause of b (w.r.t. J ∪ V ) according to M̃ if M is
counterfactually equivalent to M̃ w.r.t. {a, b} ∩ V .

We get a similar hierarchy of these notions:

Corollary 9.3.10. Let M = (J, V,W,X , P, f) be a simple SCM with causal graph G(M).
Let a ∈ V ∪ J and b ∈ V . Consider the following statements:

(i’) a is not a direct cause of b (w.r.t. V ∪ J) according to G(M);

(iv’) a is not a rung-3 direct cause of b (w.r.t. V ∪ J) according to M ;

(v’) a is not a rung-2 direct cause of b (w.r.t. V ∪ J) according to M .

(i’) =⇒ (iv’) =⇒ (v’). If M [{a,b}∩V ]
do(Ia)

is faithful, also (v’) =⇒ (i’).
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Proof. Apply Corollary 9.2.17 to M [{a,b}∩V ] and use that G(M [{a,b}∩V ]) = (G(M))[{a,b}∩V ]

(which follows from Proposition 6.9.5).

Identifying a direct causal relation may not be very practical, as it seems to require
intervening on all endogenous and exogenous input variables (except b) simultaneously.
So, empirically, “a is a direct cause of b w.r.t. J ∪ V ” is a strong statement (the more
variables are contained in J ∪ V , the stronger it becomes).

9.4. Common Causes

Another important notion is that of “having a common cause”. Essentially, “c is a
common cause of a, b” means that c causes b even when performing a hard intervention
on a, and c causes a even when performing a hard intervention on b. Equivalently,
it means that c is a direct cause of both a and b with respect to {a, b, c}. Since we
distinguished different notions of “a causes b”, we also end up distinguishing analogous
notions of “a and b have common cause c”.

We start again with the graphical notion.

Definition 9.4.1. Let G be a CDMG with input nodes J and output nodes V . Let
a, b ∈ V and c ∈ V ∪ J such that a, b, c are distinct. We say that c is a common cause
of a and b according to G if c is a cause of a according to Gdo(b) and c is a cause of b
according to Gdo(a).

Remark 9.4.2. Equivalent formulations are:

• if there exists a bifurcation with source c in G between a and b (use Proposi-
tion 3.2.4).

• if a c and c b are both present in G\(V \{a,b,c}) (use Remark 3.2.15).

Note that we do not consider exogenous random variables as candidate common causes.
The reason is that we do not necessarily want to give these variables a causal interpre-
tation (remember that we also did not formally define the effect of a hard intervention
targeting such variables), in which case it would be misleading to refer to such a variable
as a “common cause”.

Similarly, we define the rung-2 notion:

Definition 9.4.3. Let M = (J, V,W,X , P, f) be a simple SCM. Let a, b ∈ V and c ∈
V ∪ J such that a, b, c are distinct. We say that c is a rung-2 common cause of a, b
according to M if and only if c is a rung-2 cause of a according to Mdo(b) and c is a
rung-2 cause of b according to Mdo(a).

Remark 9.4.4. Remember that c is a rung-2 cause of b according to M means:

PM(Xb | do(XJ∪{c})) ̸= PM(Xb | do(XJ\{c})).

Spelling this out, c being a rung-2 common cause of a, b according to M means that:

PM(Xa | do(XJ∪{c}), do(Xb)) ̸= PM(Xa | do(XJ\{c}), do(Xb)) and
PM(Xb | do(XJ∪{c}), do(Xa)) ̸= PM(Xb | do(XJ\{c}), do(Xa)).
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Remark 9.4.5. The rung-2 notion of having a common cause is invariant under in-
terventional equivalence of SCMs. More precisely: c is a rung-2 common cause of a, b
according to M implies that c is a rung-2 common cause of a, b according to M̃ if M is
interventionally equivalent to M̃ w.r.t. {a, b, c} ∩ V .

Similarly, we define the rung-3 notion:

Definition 9.4.6. Let M = (J, V,W,X , P, f) be a simple SCM. Let a, b ∈ V and c ∈
V ∪ J such that a, b, c are distinct. We say that c is a rung-3 common cause of a, b
according to M if and only if c is a rung-3 cause of a according to Mdo(b) and c is a
rung-3 cause of b according to Mdo(a).

We will leave it to the reader to spell out explicitly what this means.

Remark 9.4.7. The rung-3 notion of having a common cause is invariant under coun-
terfactual equivalence of SCMs. More precisely: c is a rung-3 common cause of a, b
according to M implies that c is a rung-3 common cause of a, b according to M̃ if M is
counterfactually equivalent to M̃ w.r.t. {a, b, c} ∩ V .

We get a similar hierarchy of these notions:

Corollary 9.4.8. Let M = (J, V,W,X , P, f) be a simple SCM with causal graph G(M).
Let a, b ∈ V and c ∈ V ∪ J such that a, b, c are distinct. Consider the following state-
ments:

(i’) c is not a common cause of a, b according to G(M);

(iv’) c is not a rung-3 common cause of a, b according to M ;

(v’) c is not a rung-2 common cause of a, b according to M .

(i’) =⇒ (iv’) =⇒ (v’). If Mdo(b),do(Ic) and Mdo(a),do(Ic) are both faithful, also (v’) =⇒
(i’).

Proof. Apply Corollary 9.2.17 to Mdo(a) and Mdo(b), and use Proposition 6.9.5.

We could go on to define “direct common causes” (in analogy to how we defined “direct
causes” in terms of “causes”) but we will not do so here, as this concept does not seem
to be of much importance.

9.5. Confounding

The important notion of “confounding” or “spurious dependence” is somewhat tricky to
define, especially if we do not exclude the possibility of cycles. Roughly speaking, we say
that two endogenous variables are confounded if their joint distribution is not entirely
explained by their mutual causal effects.
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9.5.1. Confounding (graphical notion)

Definition 9.5.1. Let G be a CDMG with input nodes J and output nodes V . Let
a, b ∈ V be distinct output nodes. If there exists a bifurcation between a and b in G,
either without source or with source c ∈ V , then we say that a and b are confounded
according to G.56 Otherwise, we say that a and b are unconfounded according to G.

Remark 9.5.2. Marginalization of a graph preserves confoundedness (see also Re-
mark 3.2.15). In particular, a and b are confounded according to G if and only if a b
is present in G\(V \{a,b}).

Proposition 9.5.3. Let M = (J, V,W,X , P, f) be a simple SCM with causal graph
G(M). Let a, b ∈ V with a ̸= b. If a and b are unconfounded according to G(M) then

a
σ

⊥
G(Mtwin

do(a′,b))
b′ | J, J ′, a′, b.

Proof. Suppose there exists a σ-open walk in the graph G(M twin
do(a′,b)) between a and

b′ ∪ J ∪ J ′ ∪ {a′, b}. Then there exists a σ-open walk in the graph G+(M twin
do(a′,b)) between

a and b′ ∪ J ∪ J ′ ∪ {a′, b}. There must be such a walk of minimal length. In particular,
it contains a and b′ both at most once. It cannot contain nodes from J ∪ J ′ ∪ {a′, b}, as
such a node would either be an end node of the walk (σ-blocking it) or a non-collider
node pointing only to nodes in another strongly connected component (σ-blocking the
walk). Hence the walk must be between a and b′. It cannot contain any collider. It
cannot be a directed walk because it has to pass through a node in W corresponding to
an exogenous random variable in M , but those nodes have no incoming edges. Therefore
it must be a walk of the form a · · · w · · · b′ with w ∈ W , because only
nodes in W can be ancestors of endogenous nodes in different “worlds”. Note that the
subwalk a · · · w must consist of nodes in V ∪ {w} and cannot contain b. Also,
the subwalk w · · · b′ must consist of nodes in V ′ ∪ {w} and cannot contain a′.
By “removing the primes” from the nodes in this subwalk, we obtain a walk of the form
a · · · w · · · b in G+(M), which is seen to be a bifurcation with source
w ∈ W . But then there exists a bifurcation in G(M) between a and b without source,
contradicting the assumptions.

9.5.2. Confounding (counterfactual notion)

Definition 9.5.4. Let M = (J, V,W,X , P, f) be a simple SCM. Let a, b ∈ V with a ̸= b.
Let gdo(a) be the solution function of Mdo(a), and gdo(b) the solution function of Mdo(b).
If for all values xJ ∈ XJ , xJ ′ ∈ XJ , xa′ ∈ Xa, xb ∈ Xb:

gdo(b)a (xb, xJ , XW )⊥⊥ gdo(a)b (xa′ , xJ ′ , XW )

with XW ∼ P , then we say that a and b are rung-3 unconfounded according to M .
56The reason we exclude bifurcations with as source an exogenous input node is that these will not lead

to “spurious dependences” in the “strata” of the Markov kernel.
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Remark 9.5.5. This is equivalent to:

Xa ⊥⊥
P
Mtwin

do(a′,b)

Xb′ |XJ , XJ ′ , Xa′ , Xb.

Indeed, for all xJ ∈ XJ , xJ ′ ∈ XJ , xa′ ∈ Xa, xb ∈ Xb:(
gdo(b)a (xb, xJ , XW ), g

do(a)
b (xa′ , xJ ′ , XW )

)
∼ PMtwin

do(a′,b)
(Xa, Xb′ | do(XJ = xJ , XJ ′ = xJ ′ , Xa′ = xa′ , Xb = xb)).

Remark 9.5.6. Rung-3 unconfoundedness is invariant under counterfactual equivalence
of SCMs. More precisely: a and b are rung-3 unconfounded according to M implies that
a and b are rung-3 unconfounded according to M̃ if M is counterfactually equivalent to
M̃ w.r.t. {a, b}.

However, the notion of rung-3 unconfoundedness is not invariant under interventional
equivalence.

Example 9.5.7. Consider again the SCM M in Example 9.2.9. It has endogenous
variables Xa, Xb ∈ {−1,+1}, exogenous random variable Xw ∈ {−1, 1}, and structural
equations:

Xa = Xw,

Xb = XaXw,

where Xw ∼ U({−1, 1}).
According to M , a and b are rung-3 confounded (indeed, the potential outcomes have

perfect dependence). M is interventionally equivalent to SCM M̃ with endogenous vari-
ables Xa, Xb ∈ {−1,+1}, exogenous random variables Xu, Xw ∈ {−1, 1}, and structural
equations:

Xa = Xu,

Xb = XaXw

where Xu, Xw ∼ U({−1, 1}) are independent. According to M̃ , a and b are rung-3
unconfounded.

Proposition 9.5.8. Let M = (J, V,W,X , P, f) be a simple SCM with causal graph
G(M). Let a, b ∈ V with a ̸= b. If a and b are unconfounded according to G(M) then a
and b are rung-3 unconfounded according to M .

Proof. By Proposition 9.5.3,

a
σ

⊥
G(Mtwin

do(a′,b))
b′ | J, J ′, a′, b.

By the global Markov property applied to M twin
do(a′,b), we obtain that

Xa ⊥⊥
P
Mtwin

do(a′,b)

Xb′ |XJ , XJ ′ , Xa′ , Xb.

The claim follows from Remark 9.5.5.

240



9.5.3. Confounding (potential outcomes notion)

In the potential outcome literature, one also encounters other definitions of unconfound-
edness that are formulated in terms of potential outcomes. These can only be applied if
a and b are not part of a cycle, and hence this notion is less general than Definition 9.5.4.
We will show how these notions can be seen as a special case of Definition 9.5.4, under
the assumption that the potential outcomes are induced by a simple SCM.

Proposition 9.5.9. Let M = (J, V,W,X , P, f) be a simple SCM. Let a, b ∈ V with
a ̸= b. Suppose that b is not a rung-3 cause of a according to M . Then a and b are
rung-3 unconfounded according to M if and only if

∀xJ , xJ ′ ∈ XJ ∀xa′ ∈ Xa : ga(xJ , XW )⊥⊥ gdo(a)b (xa′ , xJ ′ , XW ) (52)

for XW ∼ P (XW ) (where gdo(a) denotes the solution function of Mdo(a), and g the solu-
tion function of M).

Proof. Let XW ∼ P (XW ). If b is not a rung-3 cause of a according to M , then for all
xJ ∈ XJ , for all xb ∈ Xb, for P (XW )-almost all xW ∈ XW :

gdo(b)a (xb, xJ , xW ) = ga(xJ , xW ).

Hence,
∀xJ , xJ ′ ∈ XJ ∀xa′ ∈ Xa : ga(xJ , XW )⊥⊥ gdo(a)b (xa′ , xJ ′ , XW )

if and only if

∀xJ , xJ ′ ∈ XJ ∀xa′ ∈ Xa ∀xb ∈ Xb : g
do(b)
a (xb, xJ , XW )⊥⊥ gdo(a)b (xa′ , xJ ′ , XW ).

Remark 9.5.10. (52) is equivalent to:

Xa ⊥⊥
P
Mtwin

do(a′)

Xb′ |XJ , XJ ′ , Xa′ .

Indeed, for all xJ ∈ XJ , xJ ′ ∈ XJ , xa′ ∈ Xa:(
ga(xJ , XW ), g

do(a)
b (xa′ , xJ ′ , XW )

)
∼ PMtwin

do(a′)
(Xa, Xb′ | do(XJ = xJ , XJ ′ = xJ ′ , Xa′ = xa′)).

We now relate this to the assumptions regarding unconfoundedness that are usually
made in the potential outcome literature. We consider the case J = ∅. Let M be an
SCM satisfying the assumptions of Proposition 9.5.9. Let XW be a random variable with
distribution XW ∼ P . Let gdo(a) be the solution function of Mdo(a), and g the solution
function of M . We can then define potential outcomes Xa for M and Xdo(xa)

b for Mdo(a)

(the latter with input xa):

Xa := ga(XW )

X
do(xa)
b := g

do(a)
b (xa, XW )
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for all xa ∈ Xa.57 Equation (52) can then also be written in terms of these potential
outcomes as

∀xa ∈ Xa : Xa⊥⊥Xdo(xa)
b .

In the more common notation, for binary treatment T := Xa ∈ {0, 1} and corresponding
potential outcomes Y (t) := X

do(xa)
b with xa = t, this reads as:

∀t ∈ {0, 1} : T ⊥⊥Y (t).

This property (of the treatment variable and the corresponding potential outcome vari-
ables) is referred to as “exchangeability” or “ignorability” in the potential outcome frame-
work, and expresses within that framework the assumption of “no confounding” when the
task is to estimate the causal effect of a on b. One should keep in mind the assumption
that b is not a rung-3 cause of a. In this setting, this can be written as:

∀y ∈ Y : T (y) = T a.s.,

where we wrote Y := Xb for the possible values of the outcome, and denoted “potential
treatments” T (y) := X

do(Xb=xb)
a := g

do(b)
a (xb, XW ) with xb = y.

9.5.4. Confounding (interventional notion)

Another notion of confounding is defined at the level of (interventional) distributions.
If we have a “treatment” and an “outcome variable” (and assume that outcome does not
cause treatment), then we consider them to have “no confounding bias” if the distribution
of the outcome does not depend on whether we just observed the treatment, or if we
intervened to impose the treatment. We provide here the definition only in case the
treatment and outcome variable are not part of a causal cycle, leaving the question of
how to properly define this notion in full generality for simple SCMs as an open research
question.

Definition 9.5.11. Let M = (J, V,W,X , P, f) be a simple SCM. Let a ̸= b ∈ V .
Assume b is not a rung-2 cause of a according to M . Then we say that a and b have no
confounding bias according to M if:

PM(Xb | do(Xa), do(XJ)) = PM(Xb |Xa, do(XJ)) PM(Xa | do(XJ))-a.s.. (53)

Colloquially, confounding bias is also often referred to as “spurious dependence”. Also,
we could say that there is no confounding bias if and only if “causation equals correlation”.
If we train a prediction model that estimates E(Xb |Xa), and we know that Xb does not
cause Xa and Xa and Xb have no confounding bias, then we can use the model for
making causal predictions, that is, for estimating E(Xb | do(Xa)). The assumption that
two variables have no confounding bias is often (perhaps too often) made in practice.58

57Note that we use the same exogenous random variable XW to “couple” these potential outcomes.
58If one doesn’t rule out possible confounding bias, one can still obtain bounds on causal predictions,

see Theorem 7.3.2.
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Remark 9.5.12. We can write (53) equivalently as:

Xb ⊥⊥
PMdo(Ia)

XIa |X{a}∪J .

Indeed, this conditional independence means that there exists a Markov kernel Xa ×
XJ 99K Xb that is a version of PM(Xb |Xa, do(XJ)) and PM(Xb | do(Xa), do(XJ)) simul-
taneously (see proof of Proposition 5.1.7). This has to be PM(Xb | do(Xa), do(XJ)).

Remark 9.5.13. “Having no confounding bias” is invariant under interventional equiv-
alence of SCMs. More precisely: if a and b have no confounding bias according to M ,
then a and b have no confounding bias according to M̃ if M is interventionally equivalent
to M̃ w.r.t. {a, b}.

Proposition 9.5.14. Let M = (J, V,W,X , P, f) be a simple SCM. Let a, b ∈ V be
distinct endogenous variables such that b is not a rung-3 cause of a according to M . If a
and b are rung-3 unconfounded according to M , then a and b have no confounding bias
according to M .

Proof. Let XW ∼ P (XW ). Proposition 9.5.9 states:

∀xJ , xJ ′ ∈ XJ∀x′a ∈ Xa : ga(xJ , XW )⊥⊥ gdo(a)b (x′a, xJ ′ , XW ).

Consistency (Proposition 7.3.1) of M{a,b} implies:

∀xJ ∈ XJ∀xW ∈ XW : g
do(a)
b (ga(xJ , xW ), xJ , xW ) = gb(xJ , xW ).

Hence, for all xJ ∈ XJ , for P (ga(xJ , XW ))-almost every xa ∈ Xa:

P (gb(xJ , XW ) | ga(xJ , XW ) = xa) = P (g
do(a)
b (ga(xJ , XW ), xJ , XW ) | ga(xJ , XW ) = xa)

= P (g
do(a)
b (xa, xJ , XW ) | ga(xJ , XW ) = xa)

= P (g
do(a)
b (xa, xJ , XW )).

Hence, in the usual notation:

PM(Xb | do(XJ), do(Xa)) = PM(Xb | do(XJ), Xa) PM(Xa | do(XJ))-a.s.

This yields the following criterion to detect the existence of certain bifurcations in
G(M):

Corollary 9.5.15. Let M = (J, V,W,X , P, f) be a simple SCM with causal graph G(M).
Let a, b ∈ V with a ̸= b. Assume that b does not cause a according to G(M). If a and
b have confounding bias according to M , then a and b must be confounded according to
G(M).

Proof. Combine Proposition 9.5.14, Corollary 9.2.17 and Proposition 9.5.8.
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Figure 23: Example 9.5.16: (a) G+(M); (b): G(M); (c): G(M̃); (d-e) causal graphs of
two other SCMs interventionally equivalent to M .

This condition for identifying confoundedness in a causal graph is sufficient, but not
necessary, as the next example shows.

Example 9.5.16. Consider the (acyclic) SCM M with binary endogenous variables X1,
X2, X3 ∈ {−1, 1} and a single exogenous random variable E = (E1, E2, E3) ∈ {−1, 1}3,
structural equations:

X1 = E1

X2 = E2

X3 = E3,

and exogenous distribution given by P (E = e) = 1
4
δe3=e1e2.

Consider now the (acyclic) SCM M̃ with binary endogenous variables X1, X2, X3 ∈
{−1, 1} and two exogenous random variables E1, E2 ∈ {−1, 1}, and structural equations:

X1 = E1

X2 = E2

X3 = E1E2,

where E1, E2 ∼ U({−1, 1}) are independent.
The causal graphs of M and M̃ are depicted in Figure 23. M and M̃ are intervention-

ally equivalent. The bidirected edge X1 X2 in G(M) is not present in G(M̃) (see
Figure 23). Analogously to M̃ , one can define interventionally equivalent SCMs that
have another combination of two out of the three bidirected edges of G(M). Note that
X1 and X2 have no confounding bias according to each of these SCMs (as are X1 and
X3, and X2 and X3). Still, within the interventional equivalence class, these three SCMs
with two bidirected edges each have a minimal causal graph. In other words, there exists
no interventionally equivalent SCM with less than two bidirected edges and without any
directed edges in its causal graph.

This example shows that it is possible that no pair of endogenous variables has con-
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founding bias, although bidirected edges are still necessary to represent exogenous de-
pendences between endogenous variables.59

Remark 9.5.17. How to define “a and b have confounding bias” if a and b are part of
a causal cycle is at present an open research problem.

59This suggests to extend the definition of confounding bias to a group of variables rather than just a
pair of variables, but we will not do so here.
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10. Causal Discovery & Estimation with SCMs

So far, we always assumed that an SCM was fully specified, and derived theory to
draw conclusions from the given SCM. For example, the do-calculus provides precise
relationships between certain Markov kernels induced by the SCM, which enables us to
perform causal reasoning.

However, often we do not have sufficient information regarding the system that we
are modeling to completely specify an SCM. For example, we may only know what
the observed variables are, but not what the graph of the SCM is, let alone know the
latent spaces, exogenous distribution and exact causal mechanisms. Can we still perform
causal reasoning with such incompletely specified models? The answer turns out to
be affirmative, if one is willing to make certain assumptions (that—unfortunately—are
typically untestable).

In the rest of this chapter we will focus on the question of how to deduce partial
knowledge about the SCM from given Markov kernels. When this knowledge pertains
only to the causal graph of the SCM, this is often called causal discovery. When it
pertains to parameters of the SCM, for example, when estimating the causal effect of a
variable on another, this is often referred to as causal inference (although “inference” is
often interpreted much broader as drawing conclusions from data and prior beliefs).

In the next chapter, we will go one step further, and replace the deduction of SCM
properties from Markov kernels by the estimation of SCM properties from data, i.e., we
replace Markov kernels by finite samples. This will lead to statistical considerations. In
particular, we will focus on estimating the conditional independences of an SCM from
data.

In this chapter, we will make use of the simple SCM formalism. Similar (more restric-
tive) results can be obtained in the L-CBN formalism.

10.1. Randomized Controlled Trials

The notion of randomized controlled trials (also known as A/B-testing in engineering),
is centuries old. It was already proposed by the Flemish physician Jan Baptista van
Helmont [vH48] in 1648. As of today, it still provides the ‘gold standard’ for discovering
causal relations and for the estimation of causal effects.

The experimental procedure is as follows. Consider two variables, “treatment” C and
“outcome” X. In the simplest setting, one considers a binary treatment variable, where
C = 1 corresponds to “treat with drug” and C = 0 corresponds to “treat with placebo” in
a medical setting, or with “arm A” and “arm B” in an engineering setting. For example,
the drug could be aspirin, and outcome could be the severity of headache perceived two
hours later. Patients are split into two groups, the treatment and the control group, by
means of a coin flip that assigns a value of C to every patient.60 Patients are treated
depending on the assigned value of C, i.e., patients in the treatment group are treated

60Usually this is done in a double-blind way, so that neither the patient nor the doctor knows which
group a patient has been assigned to.
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with the drug and patients in the control group are treated with a placebo. Some time
after treatment, the outcome X is measured for each patient. This yields a data set
(Cn, Xn)

N
n=1 with two measurements (Cn, Xn) for the nth patient. If the distribution of

outcome X significantly differs between the two groups, one concludes that treatment is
a cause of outcome.

Let us formalize this in the causal modeling language of SCMs. Apart from that
treatment may have a causal effect on outcome, there are likely many other factors
that influence outcome. Some have been measured, others not. For obvious practical
reasons, we are not going to explicitly model all of them. Formally, we will assume
that an accurate causal model of the situation is provided by some (unknown) simple
SCM with observed variables C and X, and possibly other latent variables. We will
consider the outcome variable X as endogenous. But what type of variable should we
consider the treatment variable C to be (which is not necessarily binary)? We have two
possibilities: exogenous input, or endogenous. We will discuss both of these possibilities
in sequence.

Let us start by considering the treatment variable C as an exogenous input variable.
This choice encodes into the SCM that outcome X does not cause treatment C. We
are interested in answering two questions. The first is “Does treatment cause outcome
according to G(M)?”, where M is the underlying (unknown) SCM. Since there are only
two observed variables, this is equivalent to asking “Is C X in G(M)?”. The second
question is “What is the causal effect of treatment on outcome?”. We interpret this as
asking for the Markov kernel PM(X | do(C)).

Proposition 10.1.1. Let M be a simple SCM with a single exogenous input variable C
and a single endogenous variable X. A dependence

X ⊥̸⊥
PM (X|do(C))

C (54)

implies that C causes X according to G(M).

Proof. This follows immediately from Corollary 9.2.17.

The second question is, in this case, trivially answered.
The other option is to consider the treatment variable as endogenous. One situation

in which this is more appropriate is so-called “imperfect compliance”. If trial subjects do
not all comply with prescribed treatment, for whatever reasons, then we can no longer
identify the coin flip outcome with treatment, (even though coin flip outcome may still
be an important cause of treatment).

In this modeling variant, we assume the existence of a simple SCMM with endogenous
variables C,X, both of which are observed (and possibly other latent variables). C here
retains the meaning of treatment (but is no longer necessarily identifiable with the coin
flip result). Under additional assumptions regarding the exogeneity of the treatment
variable, we again obtain a similar statement as before.

Proposition 10.1.2. Let M̃ be a simple SCM with two observed endogenous variables
C,X, and no exogenous input variables. Under the following two assumptions:
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1. X does not cause C according to G(M̃), and

2. C and X are unconfounded according to G(M̃),

a dependence
X ⊥̸⊥

PM̃ (X,C)

C (55)

implies that C causes X according to G(M̃), and the causal effect of C on X satisfies:

PM̃

(
X | do(C)

)
= PM̃(X |C) PM̃(C)-a.s.. (56)

Proof. The first assumption is equivalent to C X /∈ G(M̃), and the second assump-
tion is equivalent to C X /∈ G(M̃). Hence, out of the eight possible graphs G(M̃),
only two satisfy the assumptions:

C X C X C X C X

C X C X C X C X

By the Markov property, if the edge C X were absent in G(M̃), then X ⊥⊥PM̃ (X,C)C.
In both cases, rule 2 of the causal do-calculus applied to G̃ yields the identity (56).

Equation (54) is equivalent to the existence of values c, c′ ∈ XC such that

PM(X | do(C = c)) ̸= PM(X | do(C = c′)).

Equation (55) is equivalent to the existence of values

PM̃(X |C = c) ̸= PM̃(X |C = c′)

for every version of PM̃(X |C). These two statements are subtly different. We will see
in the next chapter, that as long as C is discrete, they are actually not that different
when testing these statements from a finite sample.

Apart from assuming that there exists a simple SCM that provides an accurate model,
in both cases, we made the following (implicit or explicit) causal assumptions regarding
the treatment variable:

1. outcome X does not cause treatment C according to G(M);

2. outcome X and treatment C are unconfounded according to G(M).

As a first remark, we opted here for the strongest version of the notions “does not cause”
and “are unconfounded”—the graphical ones. This might not be necessary for deriving
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the desired conclusions, but it surely is convenient.61 The first assumption is commonly
deemed justified if the outcome is an event that occurs later in time than the treatment
event.62 The second assumption is usually defended by appealing to randomization.
Indeed, if treatment is decided solely by a coin flip, then it seems hard to imagine some
factor that can influence the outcome of the coin flip and also influence the outcome
X.63 If in addition it is ensured that all subjects are included in the data set, to
avoid introducing selection bias, then it is hard to conceive of any remaining source of
confounding bias between outcome X and treatment C.64

We have shown (in two slightly different ways) that under these assumptions, if the
distribution of the outcome X differs between the two groups of patients (“treatment
group” with C = 1 vs. “control group” with C = 0), then treatment must be a cause of
outcome, at least in this population of patients.

If one formally considers treatment as an exogenous input variable, but then also as-
sumes that its values are randomly assigned, then the differences between both modeling
approaches are purely cosmetical. However, there is one advantage that the exogenous
input approach has over the other approach: here we do not model at all how the val-
ues of treatment are chosen (except for the exogeneity assumptions). This allows more
freedom in the experimental design and sampling scheme design. For example, one can
decide prior to conducting the RCT that the sampling scheme should end up with an
equal number of patients in both groups. In case treatment is assigned by flipping a coin
for each patient, it is rather unlikely that we will end up with exactly the same number
of patients in both groups.

10.2. Estimating average treatment effects

Another way to formalize the randomized controlled setting is by using potential out-
comes. For a binary treatment variable, one introduces two random variables per patient:
X

do(cn=1)
n and X

do(cn=0)
n , corresponding to the potential outcomes for the n’th patient

if we treat the patient, or not, respectively. Given the actual treatment Cn, we then
define the actual outcome as Xn := X

do(cn=Cn)
n . In practice, we only observe the actual

outcome for each patient, while the other potential outcome for each patient remains
latent.

The task of estimating the causal effect of treatment on outcome is then often formu-
lated as estimating the average treatment effect (ATE)

τ := E(Xdo(cn=1)
n −Xdo(cn=0)

n ).

61Some researchers prefer potential outcomes because these do not require them to make such graphical
assumptions, or even to talk about a graph at all. In our opinion, causal graphs are very conve-
nient to communicate causal modeling assumptions, and we are willing to pay the price for slightly
strengthening the untestable assumptions from rung-3 to the graphical rung.

62The only exception seems to be certain scenarios involving time travel in science fiction novels/movies.
63Perhaps an almighty God could be such a factor, though this possibility is often met with skepticism

in scientific circles.
64An example in which selection bias would be present is if patients in the placebo group that become

too ill drop out of the study (for example, for ethical reasons) and are not included in the data.
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To do so, one assumes that Cn is randomized. This motivates the assumption that
treatment and outcome are unconfounded:

Xdo(cn=0)
n ⊥⊥Cn, Xdo(cn=1)

n ⊥⊥Cn

(which follows if one assumes an underlying SCM from Proposition 9.5.9). One can then
show that the difference-in-means estimator

τ̂ :=
1

|n : Cn = 1|

N∑
n=1
Cn=1

Xn −
1

|n : Cn = 0|

N∑
n=1
Cn=0

Xn

is an unbiased, consistent estimator of the ATE τ . Curiously enough, while we can
speak of the difference Xdo(cn=1)

n − Xdo(cn=0)
n as the individual treatment effect, this is

in many applications an unobservable quantity; however, the average treatment effect
can be estimated from observed data. In the SCM setting, we can think of the potential
outcomes as counterfactuals in a twin SCM. However, when assuming an underlying
SCM, there is no need to go to the counterfactual level, as one can simply define the
ATE as

τ := EM(X | do(C = 1))− EM(X | do(C = 0)).

In the presence of observed covariates Z, one often considers also the conditional average
treatment effect (CATE), which we can define as

EM(X | do(C = 1), Z)− EM(X | do(C = 0), Z).

when assuming an underlying SCM. There is a large body of literature that considers
the question of studying the (asymptotic) efficiency of estimators of the (conditional)
average treatment effect. For a nice account of this surprisingly non-trivial inference
problem, see e.g. [Wag20].

10.3. Local Causal Discovery

Although the most reliable way to discover causal relations and to estimate their effects
is by means of a randomized controlled trial, it is not always possible or feasible to
perform such an experiment. One alternative is provided by the Local Causal Discovery
(LCD) algorithm [Coo97].

LCD is a constraint-based causal discovery algorithm which means that it discovers
causal relations by combining the results of conditional independence tests on data. It
can be used for the purely observational causal discovery setting where certain back-
ground knowledge is available that is weaker than that for the randomized controlled
trial. In particular, no randomization is necessary.

The basic idea behind the LCD algorithm is the following result of [Coo97] (originally
formulated for L-CBNs, but easily generalized to simple SCMs):

Proposition 10.3.1. Let M be a simple SCM with three endogenous variables V =
{1, 2, 3} and no exogenous input variables (J = ∅). Suppose that it is σ-faithful. If X2
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Figure 24: All possible causal graphs detected by LCD.

is not a cause of X1 according to G(M), the following conditional (in)dependencies65 in
the observational distribution PM(X1, X2, X3)

X1⊥̸⊥X2, X2⊥̸⊥X3, X1⊥⊥X3 |X2

imply that the causal graph G(M) must be one of the three DMGs in Figure 24. Hence,

1. X3 is not a cause of X2 according to G(M);

2. X2 is a direct cause of X3 w.r.t {1, 2, 3} according to G(M);

3. X2 and X3 are unconfounded according to G(M);

4. the causal effect of X2 on X3 according to M is identified as:

PM

(
X3 | do(X2)

)
= PM(X3 |X2) PM(X2)-a.s.. (57)

Proof. The proof proceeds by enumerating all (possibly cyclic) DMGs on three variables
that the causal graph G(M) could be, and ruling out the ones that do not satisfy the
assumptions. The assumption that X2 is not a cause of X1 according to G implies that
there is no directed edge X2 X1 in the graph G(M). If there were an edge between
X1 and X3, X1⊥⊥X3 |X2 would not hold (σ-faithfulness). Also, since X1⊥̸⊥X2, X1 and
X2 must be adjacent (Markov property). Similarly, X2 and X3 must be adjacent. X2

cannot be a collider on any walk between X1 and X3 (σ-faithfulness). Since the only
possible edges between X1 and X2 are X1 X2 and X1 X2 (both of which are
into X2), this means that there must be a directed edge X2 X3, but there cannot
be a bidirected edge X2 X3 or directed edge X2 X3. In other words, the only
three possible causal graphs are the ones in Figure 24. The causal do-calculus applied
to G(M) yields (57).

Note that one can apply this to the marginalization M{1,2,3} in case V ⊇ {1, 2, 3}.
In one of the first applications of LCD, it was discovered that nausea causes vomiting

[SC99]. The next example provides another successful application of LCD.

Example 10.3.2. PIP2 and PIP3 are phospholipids that play an important role in hu-
man immune system cells. Figure 25 shows a scatter plot of PIP2 and PIP3 expression
levels, measured in individual human immune system cells, after activation of certain
protein signaling cascades in these cells [SPP+05]. The measurements have been per-
formed under two different experimental conditions: observational (C = 0, in blue), and
65Henceforth, we will no longer always explicitly write the Markov kernel as a subscript to the condi-

tional independence symbol if it is clear from the context which Markov kernel is meant.
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Figure 25: “Text-book” example of an LCD pattern in flow cytometry data of [SPP+05].
See Example 10.3.2 for details.

after intervening by administering the chemical compound Psitectorigenin to the cells
before measuring the PIP2 and PIP3 levels (C = 1, in red). The experimental proto-
col justifies the assumption that neither PIP2 nor PIP3 expression levels can cause the
experimental condition (because these expression levels were measured after the experi-
mental condition had been imposed on the cells). Also, assuming the cells to be properly
randomized before split into the two groups (corresponding with the two experimental
conditions) we can conclude that the experimental condition C and PIP2 are uncon-
founded, and similarly that C and PIP3 are unconfounded. The scatter plot suggests the
following conditional independence:

PIP3 ⊥⊥
P (PIP2,P IP3 |do(C))

C |PIP2,

which can also be confirmed with statistical conditional independence tests. Therefore,
we have an LCD pattern with X1 = C, X2 = PIP2, X3 = PIP3, which allows us
to infer that the PIP2 expression level causes the PIP3 expression level. Under the
randomization assumption, we can even infer that Psitectorigenin exposure is a cause
of PIP2 expression levels. This is in line with the Psitectorigenin being known as an
inhibitor of PIP2, reducing the quantity of PIP2 in cells after exposure of the cells to
this inhibitor.

A high-dimensional adaptation has also been shown to be successful in predicting the
effects of gene knockout on gene expression levels from large-scale interventional yeast
gene expression data [VM19].

In case more than three variables have been observed, one can run LCD on all triples
of variables for which its assumptions apply. In that case, one should keep in mind that
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a direct edge in a marginalized graph does not imply the presence of the directed edge in
the original graph (only the presence of a directed path). In other words, with respect to
a larger set of observed variables, the causal relations found by LCD are not necessarily
direct.

In case of more than three observed variables, one can also replace the single variable
X2 in the LCD algorithm by a subset of variables, a so-called separating set. This
idea is exploited efficiently in case of many variables in the Invariant Causal Prediction
algorithm [PBM16].

10.4. Y-structures

For both the randomized controlled trial and the LCD algorithm, we need prior knowl-
edge: we need to know already that one of the variables is not a cause of another one.
It turns out that in the absence of any such causal background knowledge, we can some-
times still deduce causal relationships from observed conditional independences. The
simplest such example is given by the “Y-structure” pattern [Man06]. We here also give
the generalization of the Y-structure pattern to simple SCMs.

Proposition 10.4.1. Let M be a simple SCM with endogenous variables V = {1, 2, 3, 4}
and no exogenous input variables (J = ∅). Suppose that it is σ-faithful. The following
conditional (in)dependencies in the observational distribution PM(X1, X2, X3, X4)

X1⊥̸⊥X4, X2⊥̸⊥X4, X1⊥⊥X2,
X1⊥⊥X4 |X3, X2⊥⊥X4 |X3, X1⊥̸⊥X2 |X3,

imply that the causal graph G(M) must be one of the nine DMGs in Figure 26. Hence,

1. X4 is not a cause of X3 according to G(M);

2. X3 is a direct cause of X4 w.r.t. {1, 2, 3, 4} according to G(M);

3. X3 and X4 are unconfounded according to G(M);

4. the causal effect of X3 on X4 according to M satisfies:

PM

(
X4 | do(X3)

)
= PM(X4 |X3) PM(X3)-a.s.. (58)

Proof. By using the global Markov property and the faithfulness assumption, one can
check that the only (cyclic or acyclic) graphs that are compatible with the observed
conditional independences are the ones in Figure 26. The statements now follow.

Note that one can apply this to the marginalization M{1,2,3,4} in case V ⊇ {1, 2, 3, 4}.
This example illustrates how conditional independence patterns in the observational

distribution allow one to infer certain features of the underlying causal model. This
principle is exploited more generally by constraint-based methods, and implicitly, by
score-based methods that optimize a penalized likelihood over (equivalence classes of)
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Figure 26: Causal graphs satisfying the “Y-structure” pattern on four variables.

causal graphs. In Chapter 12 we will describe in detail one of the most sophisticated
constraint-based causal discovery methods, Fast Causal Inference (FCI).

Typically, the graph cannot be completely identified from purely observational data.
For example, in the Y-structure case, the conditional independences in the observational
data do not allow to conclude whether the dependence between X1 and X3 is explained
by X1 being a cause of X3, or by X1 and X3 having a latent common cause, or because
of some latent selection mechanism, or a combination of those. However, under an
appropriate faithfulness assumption, one can deduce the Markov equivalence class of
the graph from the conditional independences in the observational data, i.e., the class
of all DMGs that induce the same separations.

A significant practical disadvantage of causal discovery methods from purely observa-
tional data is that they typically need very large sample sizes and strong assumptions
in order to work reliably (even on simulations).
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10.5. Minimal Separating Sets, Minimal Connecting Sets

Minimal separating sets and minimal connecting sets are useful in that they give a
relationship between certain separation properties of the graph and ancestral relations
in the graph [SMR99,CH11]. This can also be seen as a simple form of causal discovery.

Definition 10.5.1. Let X, Y, Z, S be sets of nodes in a CDMG G with input nodes J
and output nodes V . We say that the minimal σ-separation

X
σ

⊥
G
Y | S ∪ [Z]

holds if and only if

X
σ

⊥
G
Y | S ∪ Z ∧ ∀Q ⊊ Z : X

σ

̸⊥
G
Y | S ∪Q.

In words: all nodes in Z are required (in the context of the nodes in S) to σ-separate X
from Y . The minimal d-separation X ⊥d

G Y | S ∪ [Z] is defined analogously.

Minimal separating sets imply the presence of certain ancestral relations (this gener-
alizes a result of [SMR99]). But first we prove a little lemma.

Lemma 10.5.2. Let G be a CDMG with input nodes J and output nodes V . Let i, j ∈
J ∪ V and Z ⊆ J ∪ V . If π is a Z-σ-open or Z-d-open walk between i and j in G, then
every node on π is in AncG(({i, j} \ J) ∪ Z).

Proof. Suppose k is a node on π. Then either k is a collider, or there is a directed
subwalk from k to a collider on π, or to an endnode of π that is not in J . In all cases,
k ∈ AncG(({i, j} \ J) ∪ Z). This holds for both d-separation and σ-separation.

Proposition 10.5.3. Let {x}, {y}, S, Z be mutually disjoint sets of nodes in a CDMG
G with input nodes J and output nodes V . Then:

x
σ

⊥
G
y | S ∪ [Z] =⇒ Z ⊆ AncG({x, y} ∪ S).

A similar statement holds for d-separation.

Proof. Write A := AncG({x, y} ∪ S). Let z ∈ Z. Suppose that z /∈ A. Let Q = A ∩ Z.
Then z /∈ Q, and therefore Q ⊆ Z\{z}. Then there is a (Q∪S)-σ-open path π between x
and {y}∪J in G. Then every node on π is in AncG(({x, y}\J)∪Q∪S) (Lemma 10.5.2).
Therefore, every node on π is in A. Hence no node in Z \Q is on π. Therefore, adding
(Z \Q) to (Q ∪ S) cannot σ-block π. Hence x ̸⊥G y | Z ∪ S. Contradiction.

Similarly, we define minimal connections.
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Definition 10.5.4. Let X, Y, Z, S be sets of nodes in a CDMG G with input nodes J
and output nodes V . We say that the minimal σ-connection

X
σ

̸⊥
G
Y | S ∪ [Z]

holds if and only if

X
σ

̸⊥
G
Y | S ∪ Z ∧ ∀Q ⊊ Z : X

σ

⊥
G
Y | S ∪Q.

In words: all nodes in Z are required (in the context of the nodes in S) to σ-connect X
with Y . The minimal d-connection X ̸⊥d

G Y | S ∪ [Z] is defined analogously.

Note that despite the notation, a minimal connection is not the logical negation of a
minimal separation.

Minimal connections imply the absence of certain ancestral relations:

Proposition 10.5.5. Let {x}, {y}, S, {z} be mutually disjoint sets of nodes in a CDMG
G with input nodes J and output nodes V . Then

x
σ

̸⊥
G
y | S ∪ [{z}] =⇒ z /∈ AncG({x, y} ∪ S)

and a similar statement holds for d-separation.

Proof. There exists a S ∪ {z}-σ-open path between x and y ∪ J in G that contains a
collider in AncG({z}) that is not in AncG(S). If z ∈ AncG(S) this would be a contra-
diction. If z ∈ AncG(x), then we can consider the walk between x and y obtained from
composing the subpath of the original path between y and the first collider (starting
from y) in AncG({z}) \ AncG(S) with a directed path to z and then on to x, without
passing through nodes in S. This walk between x and y must be σ-open given S, a
contradiction. Similarly we obtain a contradiction if z ∈ AncG(y).

The same proof works also for d-separation.
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(a) Ga:

X1 X2X3

(b) Gb:

X1 X2X3

(c) Gc:

X1 X2X3

XbXa

(d) Gd:

X1 X2X3

XbXa

(e) Ge:

X1 X2X3

Xc

Figure 27: Graphs for the instrumental variable model. (a,c,e) acyclic; (b,d) cyclic. Gc

and Gd are canonical representations with explicit latent exogenous random
nodes of Ga and Gb, respectively; Ge models the instrument as an exogenous
input variable. In all cases, X3 is the instrument for estimating the causal
effect of treatment X1 on outcome X2.

10.6. Instrumental variables

Instrumental variables can sometimes be used to estimate causal effects in the presence of
confounding. Suppose one is interested in estimating the causal effect of one variable on
another. If conducting a randomized controlled trial is not an option, but observational
data is available, one can in some cases identify the causal effect from the data using the
techniques in Sections 7.1 and 7.2. However, in case the two variables are confounded,
the causal effect is not identifiable in general. In certain settings, one can make use
of a so-called instrument, a variable that affects treatment but does not directly affect
outcome. Under additional modeling assumptions (e.g., linearity), the causal effect can
become identifiable even in the presence of confounding.

We define the instrumental variable model as the family of simple SCMs that (after
marginalization) have a graph that is a subgraph of the one shown in Figure 27(b).
Here, X3 is called the instrument for estimating the causal effect of treatment X1 on
outcome X2. Confounding between X1 and X2 is allowed, as well as between X3 and X1.
However, a direct effect of X3 on X2 and confounding between X3 and X2 are ruled out
(the directed edge X3 X2 and the bidirected edge X3 X2 must both be absent).
While we allow for a cycle between X1 and X2, this is usually excluded (which would
correspond to the graph in Figure 27(a) instead).

Under additional assumptions (for example, linearity), the causal effect of X1 on X2
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becomes identifiable from observable data P (X1, X2, X3) and consistent estimators for
the causal effect P (X2 | do(X1)) of X1 on X2 can be derived.

Definition 10.6.1. Let M be a simple SCM with graph depicted in Figure 27(d), where
we assume that X1, X2, X3 are observed real-valued endogenous variables, and Xa, Xb

are latent exogenous random variables. Let the corresponding structural equations be of
the form:

X1 = f1(X2, X3, Xa, Xb),

X2 = f2(X1, Xb) = βX1 + h(Xb),

X3 = f3(Xa),

where f1, f2, f3 are measurable functions, with f1 and f3 arbitrary but f2 of this specific
form (linear in X1 and additive in h(Xb) for some measurable function h). We call M
a linear instrumental variable SCM.66

The coefficient β measures by how many units X2 would change if we changed X1 by
one unit via an intervention, and thus quantifies the causal effect P (X2| do(X1)) of X1

on X2. It can be estimated from observational data as long as the instrument is relevant
(correlated with the treatment variable).

Proposition 10.6.2. Let M be a linear instrumental variable SCM. If Cov(X1, X3) ̸= 0,
then β is identifiable from PM(X1, X2, X3):

β =
Cov(X2, X3)

Cov(X1, X3)
.

Proof. First note that Xb⊥σ
G(M)X3, and hence Xb⊥⊥PM

X3. By the separoid axioms this
implies: h(Xb)⊥⊥PM

X3, and hence Cov(h(Xb), X3) = 0. Therefore,

Cov(X2, X3) = Cov(βX1 + h(Xb), X3) = β Cov(X1, X3).

Remark 10.6.3. In the derivation of Proposition 10.6.2, one can replace X3 by ϕ(X3)
for an arbitrary function ϕ : X3 → R, and obtain the result that if Cov(X1, ϕ(X3)) ̸= 0,
then β is identifiable from PM(X1, X2, ϕ(X3)):

β =
Cov(X2, ϕ(X3))

Cov(X1, ϕ(X3))
.

More specifically, we could use a binary feature ϕ : X3 → {0, 1} to obtain

β =
E(X2 |ϕ(X3) = 1)− E(X2 |ϕ(X3) = 0)

E(X1 |ϕ(X3) = 1)− E(X1 |ϕ(X3) = 0)
.

This is the classical IV estimator for binary instruments.
66This can be considered abuse of terminology, as it is not a linear SCM according to Definition 6.6.4.
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But how does one know in practice whether the SCM of the system under study is
indeed as assumed in Definition 10.6.1? More in particular, how does one know that
the SCM (after marginalization) of the system under study has a graph that is indeed
a subgraph of the one in Figure 27(b)? These are strong assumptions indeed. It turns
out that one can sometimes recognize that these assumptions are incompatible with
the data. [Pea95b] derived constraints that are imposed on the conditional distribution
P (X1, X2 |X3) by the causal structure of the acyclic IV model. This instrumental in-
equality can be used to derive statistical tests for the validity of an instrument (and
therefore, the validity of the estimated causal effects). We here extend Pearl’s original
proof to allow for a cycle between X1 and X2. First, we show how to reduce the cyclic
setting to the acyclic one.

Lemma 10.6.4. Let Gb, Gc be the graphs in Figure 27(b) and 27(c), respectively. Let M
be a simple SCM such that G(M{1,2,3}) ⊆ Gb (that is, its marginalization on X1, X2, X3

has a graph that is a subgraph of Gb). Then there exists a simple SCM M̃ with G(M̃) ⊆
Gc that is observably equivalent to M w.r.t. {1, 2, 3}.

Proof. We construct M̃ from M in three steps. First, we marginalize out all endoge-
nous variables of M , except for {1, 2, 3}: M (1) := M{1,2,3}. By Theorem 6.8.9, M (1) is
observably equivalent to M w.r.t. {1, 2, 3}. Second, we merge the remaining exogenous
random variables: the ancestors of X3 are combined into Xa, and the remaining ones
into Xb (note that there are no exogenous random variables that are both ancestor of X3

and X2 by assumption). By Example 8.3.6, this yields an SCM M (2) that is observably
equivalent to M (1) w.r.t. {1, 2, 3}. The graph of M (2) can only be a subgraph of the one
in Figure 27(d). Denote the causal mechanism of M (2) by f , and the unique solution
function of (M (2))[{1,2}] by g[12]. It is the unique function that satisfies:{

g
[12]
1 (X3, Xa, Xb) = f1

(
g
[12]
2 (X3, Xa, Xb), X3, Xa, Xb

)
g
[12]
2 (X3, Xa, Xb) = f2

(
g
[12]
1 (X3, Xa, Xb), Xb

)
for all X3 ∈ X3, Xa ∈ Xa, Xb ∈ Xb. This implies that:{

X1 = f1(X2, X3, Xa, Xb)

X2 = f2(X1, Xb)
⇐⇒

{
X1 = g

[12]
1 (X3, Xa, Xb)

X2 = f2(X1, Xb)

for all X3 ∈ X3, Xa ∈ Xa, Xb ∈ Xb. Let M (3) be a copy of M (2), except that its causal
mechanism is f̃ , defined by

f̃(x) =
(
g
[12]
1 (x), f2(x), f3(x)

)
.

Then M (3) and M (2) are observably equivalent w.r.t. {1, 2, 3}, as they have the same
solution function. The graph of M (3) can only be a subgraph of the one in Figure 27(c).

With this, we can extend Pearl’s original result to the cyclic case.
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Proposition 10.6.5 (Instrumental inequality, [Pea95b]). Suppose that X1,X2,X3 are
discrete. Let M be a simple SCM such that M{1,2,3} has a graph that is a subgraph of
the one in Figure 27(b). Then its conditional distribution PM(X1, X2 |X3) satisfies the
following instrumental inequality:

max
x1∈X1

∑
x2∈X2

max
x3∈X3

P (X1 = x1, X2 = x2 |X3 = x3) ≤ 1. (59)

Proof. By Lemma 10.6.4, we can assume without loss of generality that M is a simple
SCM with graph that is a subgraph of the one in Figure 27(c). The global Markov prop-
erty applied to M implies that Xb⊥⊥PM

X3. It also implies that X2⊥⊥PM
X3 |X1, Xb.67

Now, for any x1 ∈ X1, x2 ∈ X2, x3 ∈ X3 (using short-hand notation):

PM(x1, x2 |x3) =
∫
Xb

PM(x1, x2 |x3, xb)PM(Xb ∈ dxb |x3)

=

∫
Xb

PM(x1|x3, xb)PM(x2|x3, x1, xb)PM(Xb ∈ dxb |x3)

=

∫
Xb

PM(x1|x3, xb)PM(x2|x1, xb)PM(Xb ∈ dxb)

≤
∫
Xb

PM(x2|x1, xb)PM(Xb ∈ dxb),

where we used the independences Xb⊥⊥PM
X3 and X2⊥⊥PM

X3 |X1, Xb and the fact that
conditional probabilities are ≤ 1.

Hence

max
x1∈X1

∑
x2∈X2

max
x3∈X3

PM(x1, x2 |x3) ≤ max
x1∈X1

∑
x2∈X2

max
x3∈X3

∫
Xb

PM(x2|x1, xb)PM(Xb ∈ dxb)

≤ max
x1∈X1

∑
x2∈X2

∫
Xb

PM(x2|x1, xb)PM(Xb ∈ dxb)

≤ max
x1∈X1

∫
Xb

∑
x2∈X2

PM(x2|x1, xb)PM(Xb ∈ dxb)

≤ max
x1∈X1

∫
Xb

PM(Xb ∈ dxb)

≤ max
x1∈X1

1

= 1.

67Note that we could not have concluded this directly from the graph in Figure 27(d) in the cyclic case,
because that graph has X2 ̸⊥σ

G(M) X3 |X1, Xb
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Example 10.6.6. For example, in case X1, X2, X3 are all binary, the non-trivial instru-
mental inequalities read:

P (X1 = 0, X2 = 0 | X3 = 0) + P (X1 = 0, X2 = 1 | X3 = 1) ≤ 1

P (X1 = 0, X2 = 0 | X3 = 1) + P (X1 = 0, X2 = 1 | X3 = 0) ≤ 1

P (X1 = 1, X2 = 0 | X3 = 0) + P (X1 = 1, X2 = 1 | X3 = 1) ≤ 1

P (X1 = 1, X2 = 0 | X3 = 1) + P (X1 = 1, X2 = 1 | X3 = 0) ≤ 1.

While these inequalities are necessary, they may not be sufficient. For the all-binary
case, though, one can prove their sufficiency, for example by making use of the response
function parameterization [Bon01].

Notation 10.6.7. For measurable spaces T ,W, denote by P(T 99K W) the set of all
Markov kernels from T to W.

Proposition 10.6.8. Suppose that #(X2) = #(X3) = 2 (binary instrument and out-
come) and #(X1) = n with n ≥ 2. Then the instrumental inequality (59) is sharp (in
the acyclic case, as well as in the more general cyclic case).

Proof. Let X1,X2,X3 be finite standard measurable spaces, and let ni := #(Xi) < ∞
denote their cardinalities. DefineM to be the set of all simple SCMs that have a variable
with label i and corresponding state space Xi, for i = 1, 2, 3. Define families of SCMs:

Ma := {M ∈M : G(M{1,2,3})
{1,2,3} ⊆ Ga,∀x3 ∈ X3 : 0 < PM(X3 = x3)},

Mb := {M ∈M : G(M{1,2,3})
{1,2,3} ⊆ Gb,∀x3 ∈ X3 : 0 < PM(X3 = x3)},

Mc := {M ∈M : G(M{1,2,3}) ⊆ Gc,∀x3 ∈ X3 : 0 < PM(X3 = x3)},
Me := {M ∈M : G(M{1,2}) ⊆ Ge},

where the graphs Ga, Gb, Gc, Ge are defined in Figure 27, and we write H ⊆ G if H is a
subgraph of G. Define the families of corresponding (conditional) Markov kernels

Pa := {PM(X1, X2 |X3) :M ∈Ma},
Pb := {PM(X1, X2 |X3) :M ∈Mb},
Pc := {PM(X1, X2 |X3) :M ∈Mc},
Pe := {PM(X1, X2 | do(X3)) :M ∈Me},

which are subsets of P(X3 99K X1 ×X2). Finally, we define

PIV := {P (X1, X2 |X3) ∈ P(X3 99K X1 ×X2) : P satisfies (59)}. (60)

We will prove that Pa = Pb = Pc = Pe = PIV .
First, we show that Pa = Pb = Pc. Note that Mb ⊇ Ma ⊇ Mc, and therefore
Pb ⊇ Pa ⊇ Pc. For any M ∈ Mb, we can construct M̃ ∈ Mc with the help of
Lemma 10.6.4 that is observably equivalent to M w.r.t. X1, X2, X3. Hence Pb ⊆ Pc.
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Second, we show that Pc = Pe. Let M ∈ Mc and denote its causal mechanism by f .
With the help of Remark 2.7.4, we may represent PM(Xa |X3) as a deterministic function
h of X3 and an independent (uniformly distributed) random variable Xu ∼ Uni(0, 1):

PM(Xa |X3) = δ(h|X3, Xu) ◦ P (Xu).

This implies that setting Xa := h(X3, Xu) will reproduce PM(Xa |X3). We now define
an SCM

M̃ :=
(
J = {3}, V = {1, 2},W = {c},X1 ×X2 ×X3 ×Xc, P̃, f̃

)
with Xc := Xb × Xu the space of the merged exogenous random variables (Xb, Xu),
P̃ (Xc) = PM(Xb)⊗ P (Xu) (under the natural identification Xc = (Xb, Xu)) and

f̃(x) = (f1(x3, h(x3, xu)), f2(x1, xb)).

By construction , M̃ ∈ Me and PM̃(X1, X2 | do(X3)) = PM(X1, X2 | X3). Hence
Pc ⊆ Pe. Vice versa, let M ∈ Me. Then we can put the uniform distribution on
X3 to obtain an SCM M̃ := Mdo(X3∼Uni({0,1})) in Mc. Then PM(X1, X2 | do(X3)) =
PM̃(X1, X2 | do(X3)) and by rule 2 of the do-calculus (Theorem 7.1.1), PM̃(X1, X2 |
do(X3)) = PM̃(X1, X2 | X3) Hence Pe ⊆ Pc.

Third, we show that we can without loss of generality assume a response function
parameterization forMe. More precisely, we show that Pe = P∗

e , where

P∗
e := {PM(X1, X2 | do(X3)) :M ∈M∗

e}

with

M∗
e := {M = (J = {3}, V = {1, 2},W = {c},X1 ×X2 ×X3 ×X ∗

c , P, f
∗) ∈Me},

where the exogenous random state space is:

X ∗
c := (X1)

X3 × (X2)
X1 = {ϕ : X3 → X1} × {ψ : X1 → X2},

and the causal mechanism is: {
f ∗
1 (x3, xc) = (xc)1(x3)

f ∗
2 (x1, xc) = (xc)2(x1),

while the exogenous distribution P ∈ P(X ∗
c ) is arbitrary.

Because M∗
e ⊆ Me, we obviously have that P∗

e ⊆ Pe. It remains to show that
P∗

e ⊇ Pe. Let M = (J = {3}, V = {1, 2},W = {c},X , P, f) ∈Me. It induces a function
ΦM : Xc → X ∗

c that assigns to each value xc ∈ Xc the corresponding response function
pair in X ∗

c :
ΦM(xc) = (x3 7→ f1(x3, xc), x1 7→ f2(x1, xc)).
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The exogenous reparameterization

Mrepar(f∗,ΦM ) = (J = {3}, V = {1, 2},W = {c},X1 ×X2 ×X3 ×X ∗
c , (ΦM)∗(P ), f

∗)

of M is an element ofM∗
e and is observably equivalent to M w.r.t. V by Theorem 8.3.4.

Hence P∗
e ⊇ Pe.

Finally, we show that P∗
e = PIV . Consider P(X3 99K X1 × X2) as a subset of

Rn1n2n3 , by identifying a certain Markov kernel K ∈ P(X3 99K X1 × X2) with the
tuple (K(x1, x2|x3))(x1,x2,x3)∈X1×X2×X3 . This subset is a (convex) polyhedral set. Con-
sider the set of possible exogenous distributions P(X ∗

c ) as a subset of Rn
n3
1 n

n1
2 via iden-

tifying a certain distribution Q ∈ P(X ∗
c ) with the tuple (Q(xc))xc∈X ∗

c
(and note that

#(X ∗
c ) = #(X1)

#(X3)×#(X2)
#(X1) = nn3

1 n
n1
2 ). This subset is also a (convex) polyhedral

set.
The solution function g∗ : X3 × Xc → X1 × X2 × X3 corresponding to the response

function causal mechanism f ∗ is given by

g∗(x3, xc) =
(
(xc)1(x3), (xc)2((xc)1(x3)), x3

)
.

This induces a linear mapping G∗ : Rn
n3
1 n

n1
2 → Rn1n2n3 that maps the canonical basis

vector exc to the vector ∑
x3∈X3

eg∗(x3,xc).

The probability simplex in Rn
n3
1 n

n1
2 (which corresponds with P(X ∗

c )) is mapped by G∗

to a subset of Rn1n2n3 (which corresponds with P(X3 99K X1 × X2)). This subset must
be a (convex) polyhedral set, as it is the image under a linear mapping of a (convex)
polyhedral set. By Proposition 10.6.5, it must be a subset of PIV .

Conversely, we will show that each extreme point of PIV can be obtained in this way
from a point of P∗

e . Pick x1 ∈ X1, x2 ∈ X2, x
′
1 ∈ X1, x

′
2 ∈ X2 with x′2 = x2 if x′1 = x1.

Then any response function mechanism f ∗ satisfying:

(xc)1(x3) =

{
x1 x3 = 0

x′1 x3 = 1

(xc)2(x̃1) =


x2 x̃1 = x1

x′2 x̃1 = x′1
arbitrary otherwise

gives an extreme point of PIV . Indeed, by Lemma 10.6.9, the extreme points of PIV are:

{δx1,x2|0 + δx′
1,x

′
2|1 : x1, x

′
1 ∈ X1;x2, x

′
2 ∈ X2 : x

′
1 ̸= x1}

∪ {δx1,x2|0 + δx1,x2|1 : x1 ∈ X1, x2 ∈ X2}.

Vice versa, for each extreme point of PIV the above response function mechanism f ∗

realizes it.
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Lemma 10.6.9. Consider the real vector space Rn1n2n3 spanned by basis vectors {δx1,x2|x3 :
x1 ∈ X1, x2 ∈ X2, x3 ∈ X3}. For n2 = n3 = 2 (binary instrument and outcome) and
n1 ≥ 2 arbitrary, PIV as defined in (60) and considered as a subset of this vector space
(by identifying P (X1, X2 | X3) with

∑
x1∈X1

∑
x2∈X2

∑
x3∈X3

δx1,x2|x3P (X1 = x1, X2 = x2 |
X3 = x3)) is a polyhedral set with extreme points

{δx1,x2|0 + δx′
1,x

′
2|1 : x1, x

′
1 ∈ X1;x2, x

′
2 ∈ X2 : x

′
1 ̸= x1}

∪ {δx1,x2|0 + δx1,x2|1 : x1 ∈ X1, x2 ∈ X2}.

Proof. Considered as a subset of Rn1n2n3 , PIV is a polyhedral set defined by the linear
(in)equalities

∀x1 ∈ X1 : P (X1 = x1, X2 = 0 |X3 = 0) + P (X1 = x1, X2 = 1 |X3 = 1) ≤ 1

∀x1 ∈ X1 : P (X1 = x1, X2 = 0 |X3 = 1) + P (X1 = x1, X2 = 1 |X3 = 0) ≤ 1

∀x1 ∈ X1, x2 ∈ X2, x3 ∈ X3 : P (X1 = x1, X2 = x2 |X3 = x3) ≥ 0

∀x3 :
∑
x1,x2

P (X1 = x1, X2 = x2 |X3 = x3) = 1

An elementary result in convex geometry states that x ∈ Rn is an extreme point of a
polyhedral set S ⊆ Rn (defined by a set of linear (in)equality constraints) if and only
if x is feasible (i.e., x ∈ S) and there exists a subset of at least n constraints that are
active and linearly independent.68

We have 2n1 IV constraints, 4n1 positivity constraints, and 2 normalization con-
straints. The dimensionality of the vector space is 4n1, hence we need at least 4n1 active
constraints. Extreme points must be properly normalized, and hence both normalization
constraints are active for extreme points. So we have to look for all feasible points for
which at least 4n1 − 2 of the 2n1 + 4n1 inequality constraints are active.

First, pick x1, x
′
1 ∈ X1 with x′1 ̸= x1 and pick x2, x

′
2 ∈ X2. One can check that the

kernel δx1,x2|0 + δx′
1,x

′
2|1 satisfies the IV inequalities, and that precisely 2 IV inequalities

are active. Also, 4n1 − 2 nonnegativity constraints are active. Finally, both normal-
ization constraints are active. One can check that the active constraints are linearly
indepdendent.

Second, pick x1 ∈ X1 and x2 ∈ X2. One can check that the kernel δx1,x2|0+δx′
1,x

′
2|1 with

x′1 = x1 and x′2 = x2 satisfies the IV inequalities, and that precisely 2 IV inequalities
are active. Also, 4n1 − 2 nonnegativity constraints are active. Finally, both normal-
ization constraints are active. One can check that the active constraints are linearly
indepdendent.

Now we check whether these are all extreme points. Pick a feasible point y ∈ Rn1n2n3 .
We will refer to the indices i with yi ̸= 0 (yi = 0) as the “non-zero (zero) entries of y”,
and to the indices j in an active IV inequality constraint aTy = 1 with aj ̸= 0 as the
“active entries of the IV inequality”, and say that two such entries overlap if i = j. We
68An (in)equality constraint aTx ≤ c or aTx ≥ c or aTx = c is active if aTx = c. A set of constraints

(each of the form aTi x ≤ ci or aTi x ≥ ci or aTi x = ci for ai ∈ Rn and ci ∈ R) is called linearly
independent if the vectors {ai}i are linearly independent.
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also call the yi corresponding to P (X1, X2 |X3 = x3) a “stratum”. We proceed case by
case.

1. More than two IV inequalities are active in y. This yields a contradiction with the
normalization constraints.

2. Exactly two IV inequalities are active in y. Then y must contain at least 4n1 − 4
zero entries, of which at most two can overlap with the active IV inequality entries.

a) If there are no overlaps, then y must be 0 in all other entries, but then the
active constraints would not be linearly independent, as one can check.

b) If at least one of these overlaps, then yj = 1 with j the other active entry in
the active IV inequality with the overlap. This implies 2n1 − 1 zeroes in the
stratum of j, so in total we have identified 2n1 zeroes in y. We need 2n1 − 4
more active constraints. Consider the other IV inequality. Since yj = 1, the
active entry corresponding to that stratum must be a zero entry of y. Hence,
yk = 1 for k the other active entry in this IV inequality. Thus this gives us
the extreme points already identified.

3. Exactly one IV inequality is active in y. Then we need to pick 4n1− 3 zero entries
corresponding to active nonnegativity constraints.

a) Suppose none of these entries overlaps. Then we have 4n1 − 2 locations for
these zeros. We can pick one nonzero entry that’s not an active IV inequality
entry. The normalization constraint implies yj = 1 for one of the two active
IV inequality entries, and hence yk = 0 for the other one. Contradiction.

b) Suppose exactly one of these entries overlaps. We need 2n1 − 3 more active
constraints. Only two possible non-zero entries for y remain. In order for the
active constraints to span the entire vector space, at least one of these should
be a zero entry. But then yj = 1 for the other entry, which activates another
IV inequality. Contradiction.

c) If there are two overlapping zeroes the IV inequality couldn’t be active.

4. Zero IV inequalities are active in y. Then y must contain at least 4n1 − 2 zero
entries. Because of the normalization constraints, we need one non-zero entry
in both strata, and it must actually be a 1. This will activate at least one IV
inequality. Contradiction.
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11. Independence Testing

In this lecture, we will consider the following questions. How can we test whether. . .

• . . . two random variables are independent?

• . . . two random variables are conditionally independent given a third random vari-
able?

• . . . a random variable is independent of a non-random variable?

• . . . a transitional random variable is conditionally independent of a transitional
random variable, given another transitional random variable?

We will consider these questions only for the special case of finite categorical variables,
i.e., variables that take values in finite spaces. In particular, we will discuss a test known
as the G test. This has been defined in the literature for random variables, but we will
extend it here to a general case involving transitional random variables (with “purely”
random and “purely” non-random variables as special cases). We will state conditions
under which the tests are asymptotically valid and consistent.

11.1. Marginal Independence for Categorical Random Variables

Consider two categorical random variables X, Y taking values in finite spaces X and Y ,
respectively, with 2 ≤ |X | < ∞ and 2 ≤ |Y| < ∞, and joint distribution P (X, Y ). We
can represent the density in a table (assuming X = {1, . . . , k} and Y = {1, . . . , l}):

Y = 1 Y = 2 . . . Y = l
X = 1 θ11 θ12 . . . θ1l θ1+
X = 2 θ21 θ22 . . . θ2l θ2+

...
...

... . . . ...
...

X = k θk1 θk2 . . . θkl θk+
θ+1 θ+2 . . . θ+l θ++ = 1

where we introduced the parameter θ ∈ XΘ by setting θxy = P (X = x, Y = y) for
x ∈ X , y ∈ Y . We introduce here the convention that a “+” index denotes summation
over that index, i.e.,

θ+y :=
∑
x∈X

θxy, θx+ :=
∑
y∈Y

θxy, θ++ :=
∑
x∈X

∑
y∈Y

θxy.

For the parameter space we take the (|X ||Y| − 1)-dimensional simplex:

XΘ := {θ ∈
∏

(x,y)∈X×Y

[0, 1] : θ++ = 1}.
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With Remark 2.5.23, we get:

X ⊥⊥
P (X,Y )

Y ⇐⇒ P (X, Y ) = P (X)⊗ P (Y ),

where P (X) and P (Y ) are the marginal distributions of P (X, Y ). In the discrete case
we consider here, this holds if and only if

∀x ∈ X , y ∈ Y : θxy = θx+θ+y.

The parameters satisfying this constraint form the allowed parameters under the null
hypothesis of independence H0 : X ⊥⊥Y . We introduce the corresponding restricted
parameter space

X 0
Θ := {θ ∈ XΘ : θxy = θx+θ+y ∀x ∈ X , y ∈ Y} ⊆ XΘ.

We can also write the null hypothesis as H0 : θ ∈ X 0
Θ. As alternative hypothesis we take

that of dependence, i.e., H1 : X ⊥̸⊥Y , or equivalently, H1 : θ ∈ X 1
Θ with X 1

Θ := XΘ \ X 0
Θ.

Suppose now that we have independent and identically distributed data (Xn, Yn)
N
n=1

with (Xn, Yn) |Θ ∼ P (X, Y | Θ) for all n = 1, . . . , N , with the “true” parameter θ
unknown. In other words, we assume for the joint distribution on the observed data

P ((Xn, Yn)
N
n=1 | Θ) =

N⊗
n=1

P (Xn, Yn | Θ),

where each P (Xn, Yn | Θ) is a copy of the Markov kernel P (X, Y | Θ). We define the
counts as the number of observations with a given value (x, y) ∈ X × Y :

Nxy :=
N∑

n=1

1(x,y)(Xn, Yn).

We can represent them in a contingency table:

Y = 1 Y = 2 . . . Y = l
X = 1 N11 N12 . . . N1l N1+

X = 2 N21 N22 . . . N2l N2+
...

...
... . . . ...

...
X = k Nk1 Nk2 . . . Nkl Nk+

N+1 N+2 . . . N+l N++ = N

where we used a similar summation convention for the counts as for the parameters.
The classical frequentist procedure for deciding between two hypotheses H0 : θ ∈ X 0

Θ

and H1 : θ ∈ XΘ \ X 0
Θ is as follows. One comes up with a test statistic T (D), which is

a function of the data D ∼ P (D | Θ), whose value should help us distinguish between
the two hypotheses. We will consider here one-sided tests, where a large value of T (D)
is in favor of H1 while a small value of T (D) is in favor of H0. Then one chooses a
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particular significance level α ∈ (0, 1). From the observed data d, one then calculates a
corresponding p-value p(d), which is the probability under the null hypothesis that the
test statistic has the observed or a more extreme value. For the one-sided tests we will
consider here, the p-value can be defined as

p(d) := sup
θ∈X 0

Θ

P (T (D) ≥ T (d) | θ).

Then, a decision is taken: if p(d) ≤ α, one considers this as sufficient evidence to reject
H0 (and accept H1), while if p(d) > α, one does not reject H0 as the evidence in the
data is considered insufficient to do so. Often, the main desideratum is to control the
probability of a Type I error (i.e., the error of incorrectly rejecting the null hypothesis),
which can be achieved by choosing α sufficiently small. Indeed, from the definition of
the p-value it follows that:

∀α ∈ (0, 1)∀θ ∈ X 0
Θ : P (p(D) ≤ α | θ) ≤ α.

For causal discovery, however, we need a more symmetric treatment of the two hypothe-
ses, as there we require both the probability of a Type I error and of a Type II error
(i.e., the error of incorrectly rejecting the alternative hypothesis) to be small. Before we
investigate this tradeoff, let us first propose a concrete test statistic for the case at hand
and obtain an approximate expression for the corresponding p-value.

Here we will work out the details of the likelihood ratio test, which for this particular
case is also known as the G test. We start by writing down the likelihood of the data:

P ((Xn, Yn)
N
n=1 | θ) =

N∏
n=1

θXnYn =
∏
x∈X

∏
y∈Y

θNxy
xy

where we used the counts as a sufficient statistic of the data. This is a multinomial
distribution with parameters (θxy)x∈X ,y∈Y andN . Maximizing the likelihood with respect
to the parameters θ ∈ XΘ, we obtain the well-known maximum likelihood estimator

θ̂xy =
Nxy

N
,

i.e., the fractions of the different outcomes in the data. Under the null hypothesis H0,
θxy = θx+θ+y, and the likelihood factorizes:

θ ∈ X 0
Θ =⇒ P ((Xn, Yn)

N
n=1 | θ) =

∏
x∈X

∏
y∈Y

(θx+θ+y)
Nxy

=

(∏
x∈X

∏
y∈Y

θ
Nxy

x+

)(∏
x∈X

∏
y∈Y

θ
Nxy

+y

)

=

(∏
x∈X

θ
Nx+

x+

)(∏
y∈Y

θ
N+y

+y

)
.
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This is just the product of two independent multinomial distributions with (variation-
ally independent) parameters (θx+)x∈X and (θ+y)y∈Y (and N), respectively. Hence, the
restricted maximum likelihood estimator under H0 is

θ̂0xy = θ̂0x+θ̂
0
+y =

Nx+

N

N+y

N
.

The likelihood ratio is obtained by dividing the likelihood for θ̂ by the likelihood for θ̂0:

supθ∈X 0
Θ∪X 1

Θ
P ((Xn, Yn)

N
n=1 | θ)

supθ∈X 0
Θ
P ((Xn, Yn)Nn=1 | θ)

=
P ((Xn, Yn)

N
n=1 | θ̂)

P ((Xn, Yn)Nn=1 | θ̂0)
=
∏
x∈X

∏
y∈Y

(
θ̂xy

θ̂0x+θ̂
0
+y

)Nxy

=
∏
x∈X

∏
y∈Y

(
NxyN

Nx+N+y

)Nxy

.

(61)

The likelihood ratio test statistic is defined as 2 times the natural logarithm of this ratio:

GN := 2 log
supθ∈X 0

Θ∪X 1
Θ
P ((Xn, Yn)

N
n=1 | θ)

supθ∈X 0
Θ
P ((Xn, Yn)Nn=1 | θ)

= 2
∑
x∈X

∑
y∈Y

Nxy log
NxyN

Nx+N+y

. (62)

Since counts can be zero, one should interpret 0 log 0
n

in this expression as 0 (for n ∈ N).
We will now consider the asymptotic behavior of the test statistic under the null

hypothesis. This will yield an approximation for the p-value that we can use also for finite
samples. As a simplifying assumption, we will henceforth assume that all probabilities
are positive,69 i.e.,

θxy > 0 ∀x ∈ X , y ∈ Y . (63)

Proposition 11.1.1. Under H0 : X ⊥⊥Y , and with regularity assumption (63),

GN ⇝ χ2
ν

with ν = (|X | − 1)(|Y| − 1) as sample size N → ∞. In words, the test statistic GN

converges in distribution70 as N → ∞ to a chi-squared distribution with ν degrees of
freedom.71

Proof. This is a direct application of Theorem 4.43 in [BJvdV17], for which a proof
is provided in Chapter 16 in [vdV98]. One has to be careful here to use a differ-
ent parameterization—in terms of (variationally) independent parameters—i.e., such
69The singularities for vanishing values of θxy can be dealt with, but require special attention. For

simplicity we study only the regular case here.
70We say that a sequence of real-valued random variables X1, X2, . . . converges in distribution to X∞,

and write Xn ⇝ X∞, if P (Xn ≤ x) → P (X∞ ≤ x) for all x ∈ R such that ξ 7→ P (X∞ ≤ ξ) is
continuous at x.

71The chi-square distribution with ν degrees of freedom is defined as the distribution of a sum of squares
of ν independent standard normal random variables, i.e, of

∑ν
i=1 Z

2
i where Zi ∼ N(0, 1) are i.i.d..
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that the parameter space contains an open part of R|X ||Y|−1, when calculating the
score function and the Fisher information matrix when checking the regularity con-
ditions. For example, one can choose a pair (k, l) ∈ X × Y and take parameters
θx,y = ϑx,y for x ̸= k or y ̸= l, and θk,l = 1 −

∑
(x,y)̸=(k,l) ϑx,y. The dimension-

ality of XΘ is |X ||Y| − 1, while that of X 0
Θ is (|X | − 1) + (|Y| − 1). The degrees

of freedom of the asymptotic chi-square distribution is the difference of the two, i.e.,
ν = (|X ||Y| − 1)− ((|X | − 1) + (|Y| − 1)) = (|X | − 1)(|Y| − 1).

An alternative proof will be provided later in a more general setting (see Proposi-
tion 11.3.2).

One therefore obtains an approximate level α test (i.e., a test with Type I error
asymptotically upper bounded by α) by rejecting H0 when GN ≥ χ2

ν,1−α. Here, χ2
ν,1−α :=

F−1
χ2
ν
(1−α) is the upper α quantile of the χ2-distribution with ν degrees of freedom, with

Fχ2
ν

the corresponding distribution function (cumulative density function) and F−1
χ2
ν

its
inverse (i.e., the quantile function). Indeed, if θ ∈ X 0

Θ, then P (GN ≥ χ2
ν,1−α | θ) → α,

for any α ∈ (0, 1). Since

GN ≥ χ2
ν,1−α ⇐⇒ GN ≥ F−1

χ2
ν
(1− α) ⇐⇒ Fχ2

ν
(GN) ≥ 1− α ⇐⇒ 1− Fχ2

ν
(GN) ≤ α,

the corresponding approximate p-value is 1 − Fχ2
ν
(GN); if this is smaller than or equal

to the chosen threshold α, we reject H0. This test is called the G-test.
But what about the Type II error? If we let the sample size N grow, we would hope

that the probability of a wrong test result becomes arbitrarily small, and vanishes in the
limit N →∞.

Definition 11.1.2. A (conditional) independence test is called consistent if the probabil-
ities of both Type I and Type II errors converge to 0, no matter what the true parameter
value is.

To obtain consistency, it is not an option to just control Type I error at a fixed level α;
instead, one has to use a level αN that depends on the sample size N , and converges to
0 (implying that Type I error converges to 0). However, because of the tradeoff between
Type I and Type II errors, the rate at which αN converges to 0 has to be chosen carefully
in order to be able to guarantee that also Type II error vanishes asymptotically. As we
shall see, the convergence rate of αN should be chosen sufficiently slow.

While it is often easier to calculate the Type I error than the Type II error of a test,
in this case we can actually analyze the asymptotic behavior of the test statistic under
the alternative hypothesis H1. Define

ÎN :=
∑
x∈X

∑
y∈Y

θ̂xy log
θ̂xy

θ̂x+θ̂+y

=
GN

2N

where we used that θ̂0x+ = θ̂x+ and θ̂0+y = θ̂+y. This is an estimator (the so-called “plug-in
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estimator” I(θ̂)) of the mutual information I(X;Y ):

I(θ) :=
∑
x∈X

∑
y∈Y

θxy log
θxy

θx+θ+y

=
∑
x∈X

∑
y∈Y

P (X = x, Y = y | θ) log P (X = x, Y = y | θ)
P (X = x | θ)P (Y = y | θ)

=: I(X;Y | θ).

With Jensen’s inequality, one can show that I(X;Y | θ) ≥ 0, and that I(X;Y | θ) =
0 ⇐⇒ X ⊥⊥Y | Θ = θ. Note further that the function XΘ → [0,∞) : θ 7→ I(θ) is
continuous.

With this observation, we can prove the asymptotic consistency of the G-test under
assumptions on the critical values used for deciding between H0 and H1.

Corollary 11.1.3. Consider an infinite sequence of G tests performed on the first N
samples of an infinitely large data set (Xn, Yn)

∞
n=1, where one accepts H1 : X ⊥̸⊥Y if

GN ≥ τN , and otherwise accepts H0 : X ⊥⊥Y , for some given sequence of thresholds τN .
Under the regularity assumption (63), this sequence of tests is asymptotically consistent
if τN →∞ but τN/N → 0.

Proof. We start by a simple application of the strong law of large numbers. Let θ ∈ XΘ.
Since the (Xn, Yn) are assumed to be i.i.d., and

E
(
1(x,y)(Xn, Yn)

)
= θxy

for all x ∈ X , y ∈ Y , we conclude that Nxy/N
a.s.→ θxy for all x ∈ X , y ∈ Y by the strong

law of large numbers.72 Hence θ̂xy
a.s.→ θxy. Hence, also θ̂+x

a.s.→ θ+x and θ̂y+
a.s.→ θy+.

Furthermore, by continuity, I(θ̂) a.s.→ I(θ). Hence, GN/N
a.s.→ 2I(θ).

Under H1, we have I(θ) > 0, and since by assumption τN/N → 0, 1GN<τN
a.s.→ 0. Since

a.s. convergence implies convergence in probability,

θ ∈ X 1
Θ =⇒ P (GN < τN | θ)→ 0.

Thus, the probability of a Type II error vanishes asymptotically.
This same approach doesn’t work for the Type I error. The reason is that even though

we assume τN → ∞, and we know that GN/N
a.s.→ 0 under H0, this does not suffice to

conclude anything about the probability of the event GN ≥ τN . But we can make use of
Proposition 11.1.1, which states that GN ⇝ χ2

ν underH0. Since the distribution function
of χ2

ν is continuous, this implies uniform convergence of the distribution functions:

sup
x∈R
|FGN

(x)− Fχ2
ν
(x)| → 0.

Hence
|FGN

(τN)− Fχ2
ν
(τN)| ≤ sup

x∈R
|FGN

(x)− Fχ2
ν
(x)| → 0.

72The convergence is “almost surely”, i.e., Nxy/N
a.s.→ θxy means that P (Nxy/N → θxy | θ) = 1.
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Since τN →∞, Fχ2
ν
(τN)→ 1. Hence, also FGN

(τN)→ 1. We conclude that

θ ∈ X 0
Θ =⇒ P (GN ≥ τN | θ)→ 0,

i.e., the probability of a Type I error converges to 0.

While one traditionally focuses mostly on Type I error control, in causal discovery we
are more interested in having both small Type I and Type II error. In order to achieve
this (at least asymptotically, i.e., for sufficiently large sample sizes), we can thus make
use of a sequence of thresholds that satisfies the assumptions in the corollary. In terms
of p-values, this means that to bound the Type I error, a fixed critical value α suffices,
but for consistency we let αN → 0 with a rate such that χ2

ν,1−αN
/N → 0.

While for a finite sample, we can give guarantees (at least approximately) on the Type
I error, it will often be impossible to provide guarantees on the Type II error without
making strong assumptions on the parameters. Indeed, since the mutual information
I(X;Y ) (a measure of the dependence of X and Y ) can be arbitrarily close to zero for
weakly dependent X and Y , one cannot know in advance how many samples will be
needed to be able to distinguish it from an independence.73

11.2. Conditional Independence for Categorical Random
Variables

We now extend the G test to a conditional independence test that we will refer to as
the conditional G test.

Consider three categorical random variables X, Y, Z taking values in spaces X , Y
and Z, respectively (with 2 ≤ |X | < ∞, 2 ≤ |Y| < ∞ and 1 ≤ |Z| < ∞) and
joint distribution P (X, Y, Z). With Remark 2.5.23, we get (because finite spaces are
standard):

X ⊥⊥
P (X,Y,Z)

Y |Z ⇐⇒ P (X, Y, Z) = P (X|Z)⊗ P (Y, Z)

⇐⇒ P (X, Y |Z) = P (X|Z)⊗ P (Y |Z) P (Z)-a.s.
⇐⇒ ∀z ∈ Z :

[
P (Z = z) > 0 =⇒
P (X, Y | Z = z) = P (X | Z = z)P (Y | Z = z)

]
⇐⇒ ∀z ∈ Z :

[
P (Z = z) > 0 =⇒ X ⊥⊥

P (X,Y |Z=z)
Y
]
.

This suggests that we can make use of an independence test for two categorical variables
on each “stratum” corresponding to conditioning on a specific value Z = z that has
positive probability to occur.

We parameterize the conditional kernel P (X, Y |Z) in terms of parameters (θxy|z)x∈X ,y∈Y,z∈Z
which live in space

XΘXY |Z := {θ ∈
∏

x∈X ,y∈Y,z∈Z

[0, 1] : ∀z∈Z
∑

x∈X ,y∈Y

θxy|z = 1}.

73This is referred to as the lack of “uniformly consistent” (conditional) independence tests.
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With the summation convention, we can write the normalization condition as θ++|z = 1
for all z ∈ Z. For those z ∈ Z with P (Z = z) > 0, we have

P (X = x, Y = y, Z = z | Θ = θ)

P (Z = z | Θ = θ)
= P (X = x, Y = y | Z = z,Θ = θ) = θxy|z.

We also parameterize the marginal distribution P (Z) in terms of parameters (θz)z∈Z
which live in space

XΘZ
:= {θ ∈

∏
z∈Z

[0, 1] :
∑
z∈Z

θz = 1}.

Any joint distribution of X, Y and Z can then be parameterized as

P (X = x, Y = y, Z = z | Θ = θ) = θzθxy|z,

with parameter space
XΘ := XΘZ

×XΘXY |Z .

We formulate the null hypothesis H0 : X ⊥⊥Y |Z of independence in terms of the
parameters as

∀x ∈ X , y ∈ Y ,∀z ∈ Z : θxy|z = θx+|zθ+y|z

(for convenience, we have strengthened it a bit; strictly speaking, we only need this
relation to hold for all z ∈ Z with θz > 0; however, since the data will not convey any
information on θxy|z for such z, this does not matter). The corresponding restricted
parameter space is

X 0
ΘXY |Z

:= {θ ∈ XΘ : θxy|z = θx+|zθ+y|z ∀x ∈ X , y ∈ Y , z ∈ Z}.

We can then also write the null hypothesis as H0 : θ ∈ X 0
Θ with X 0

Θ := XΘZ
×X 0

ΘXY |Z
. As

alternative hypothesis we take that of dependence, i.e., H1 : X ⊥̸⊥Y |Z, or equivalently,
H1 : θ ∈ X 1

Θ, where X 1
Θ := XΘZ

×X 1
ΘXY |Z

with X 1
ΘXY |Z

:= XΘXY |Z \ X 0
ΘXY |Z

.
Suppose now that we have independent and identically distributed data (Xn, Yn, Zn)

N
n=1

with (Xn, Yn, Zn) ∼ P (X, Y, Z | Θ) for all n = 1, . . . , N , with the “true” parameter
Θ ∈ XΘ unknown. In other words, we assume for the joint distribution on the observed
data

P ((Xn, Yn, Zn)
N
n=1 | Θ) =

N⊗
n=1

P (Xn, Yn, Zn | Θ),

where each P (Xn, Yn, Zn | Θ) is a copy of the Markov kernel P (X, Y, Z | Θ). We define
the counts as the number of observations with a given value (x, y, z) ∈ X × Y × Z:

Nxyz :=
N∑

n=1

1(x,y,z)(Xn, Yn, Zn).
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We again work out the details of the likelihood ratio test, and start by writing down
the likelihood of the data:

P ((Xn, Yn, Zn)
N
n=1 | Θ) =

N∏
n=1

(θXn,Yn|ZnθZn) =
∏
x∈X

∏
y∈Y

∏
z∈Z

(θ
Nxyz

xy|z θ
Nxyz
z )

=

(∏
z∈Z

θN++z
z

)(∏
z∈Z

∏
x∈X

∏
y∈Y

θ
Nxyz

xy|z

)

where we used the counts as a sufficient statistic of the data. We recognize the first factor
as the likelihood of a multinomial distribution with parameters (θz)z∈Z and N . The
second factor is a product of the likelihoods of multinomial distributions with parameters
(θxy|z)x∈X ,y∈Y and N++z, for each z ∈ Z. Maximizing the likelihood with respect to the
parameters θ ∈ XΘ, we obtain the maximum likelihood estimator(

θ̂xy|z, θ̂z

)
=

(
Nxyz

N++z

,
N++z

N

)
.

Under the null hypothesis H0, θxy|z = θx+|zθ+y|z, and the likelihood factorizes over X
and Y :

θ ∈ X 0
Θ =⇒ P ((Xn, Yn, Zn)

N
n=1 | θ) =

(∏
z∈Z

θN++z
z

)∏
z∈Z

∏
x∈X

∏
y∈Y

(θx+|zθ+y|z)
Nxyz

=

(∏
z∈Z

θN++z
z

)∏
z∈Z

(∏
x∈X

θ
Nx+z

x+|z

)(∏
y∈Y

θ
N+yz

+y|z

)
.

The restricted maximum likelihood estimator under H0 is(
θ̂0xy|z, θ̂

0
z

)
=
(
θ̂0x+|z θ̂

0
+y|z, θ̂

0
z

)
=

(
Nx+zN+yz

N2
++z

,
N++z

N

)
.

The likelihood ratio is obtained by dividing the likelihood for θ̂ by the likelihood for θ̂0:

supθ∈X 0
Θ∪X 1

Θ
P ((Xn, Yn, Zn)

N
n=1 | θ)

supθ∈X 0
Θ
P ((Xn, Yn, Zn)Nn=1 | θ)

=
P ((Xn, Yn, Zn)

N
n=1 | θ̂)

P ((Xn, Yn, Zn)Nn=1 | θ̂0)
=
∏
z∈Z

∏
x∈X

∏
y∈Y

(
θ̂xy|z

θ̂0x+|z θ̂
0
+y|z

)Nxyz

=
∏
z∈Z

∏
x∈X

∏
y∈Y

(
NxyzN++z

Nx+zN+yz

)Nxyz

,

where the factors involving the marginal P (Z) cancel out. The likelihood ratio test
statistic is defined as 2 times the natural logarithm of this ratio:

GN := 2 log
supθ∈XΘ0∪X 1

Θ
P ((Xn, Yn, Zn)

N
n=1 | θ)

supθ∈X 0
Θ
P ((Xn, Yn, Zn)Nn=1 | θ)

= 2
∑
z∈Z

∑
x∈X

∑
y∈Y

Nxyz log
NxyzN++z

Nx+zN+yz

.

(64)
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We will now consider the asymptotic behavior of the test statistic under both hy-
potheses. As a simplifying assumption, we will henceforth assume that all probabilities
are positive, i.e., {

θz > 0 ∀z ∈ Z, and
θxy|z > 0 ∀x ∈ X , y ∈ Y , z ∈ Z.

(65)

Proposition 11.2.1. Under H0 : X ⊥⊥Y |Z, and with regularity assumption (65)

GN ⇝ χ2
ν

with ν = |Z|(|X | − 1)(|Y| − 1) as sample size N → ∞. In words, the test statistic
GN converges in distribution as N → ∞ to a chi-squared distribution with ν degrees of
freedom.

Proof. This is analogous to the proof of Proposition 11.1.1. The dimensionality of XΘ

is |Z|(|X ||Y| − 1) + (|Z| − 1), while that of X 0
Θ is |Z|

(
(|X | − 1) + (|Y| − 1)

)
+ (|Z| − 1).

The degrees of freedom of the asymptotic chi-square distribution is the difference of the
two, i.e., ν = |Z|(|X | − 1)(|Y| − 1).

One therefore obtains an approximate level α test (i.e., a test with Type I error
asymptotically upper bounded by α) by rejecting H0 when GN ≥ χ2

ν,1−α.
Define

ÎN :=
∑
z∈Z

θ̂z
∑
x∈X

∑
y∈Y

θ̂xy|z log
θ̂xy|z

θ̂x+|z θ̂+y|z
=
GN

2N

where we used that θ̂0x+|z = θ̂x+|z and θ̂0+y|z = θ̂+y|z. This is a plug-in estimator of the
conditional mutual information I(X;Y |Z):

I(θ) :=
∑
z∈Z

θz
∑
x∈X

∑
y∈Y

θxy|z log
θxy|z

θx+|zθ+y|z

=
∑
z∈Z

∑
x∈X

∑
y∈Y

P (X = x, Y = y, Z = z | Θ = θ) log
P (X = x, Y = y|Z = z,Θ = θ)

P (X = x|Z = z,Θ = θ)P (Y = y|Z = z,Θ = θ)

=: I(X;Y |Z).

With Jensen’s inequality, one can show that I(X;Y |Z) ≥ 0, and that I(X;Y |Z) =
0 ⇐⇒ X ⊥⊥Y |Z. Note further that the function XΘ → [0,∞) : θ 7→ I(θ) is continuous.

With this observation, we can prove the asymptotic consistency of the conditional
G-test under assumptions on the critical values used for deciding between H0 and H1.

Corollary 11.2.2. Consider an infinite sequence of conditional G tests performed on
the first N samples of an infinitely large data set (Xn, Yn, Zn)

∞
n=1, where one accepts H1 :

X ⊥̸⊥Y |Z if GN ≥ τN , and otherwise accepts H0 : X ⊥⊥Y |Z, for some given sequence
of thresholds τN . Under the regularity assumption (65), this sequence is asymptotically
consistent if τN →∞ but τN/N → 0.
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Proof. This is very similar to the proof of Corollary 11.1.3.
We again apply the strong law of large numbers. Let θ ∈ XΘ. Since (Xn, Yn, Zn) are

assumed to be i.i.d., and

E
(
1(x,y,z)(Xn, Yn, Zn)

)
= θxy|zθz

for all x ∈ X , y ∈ Y , z ∈ Z, we conclude that Nxyz/N
a.s.→ θxy|zθz for all x ∈ X , y ∈ Y , z ∈

Z by the strong law of large numbers. Hence, also N++z/N
a.s.→ θz for all z ∈ Z. Hence,

using (65), θ̂z
a.s.→ θz, θ̂xy|z

a.s.→ θxy|z, θ̂+x|z
a.s.→ θ+x|z, and θ̂y+|z

a.s.→ θy+|z. By continuity,
I(θ̂)

a.s.→ I(θ). Hence, GN/N
a.s.→ 2I(θ).

We can now reason analogously as in the proof of Corollary 11.1.3 to conclude that
the probability of a Type II error vanishes asymptotically.

For an asymptotic estimate of the probability of a Type I error, we can make use of
Proposition 11.2.1, which states that GN ⇝ χ2

ν . This part of the proof is identical to
the corresponding part of the proof of Corollary 11.1.3.

11.3. Marginal Independence of a Random and a Non-Random
Variable

Consider two variables X,C taking values in finite spaces X , C, respectively, (i.e., with
2 ≤ |X | < ∞ and 2 ≤ |C| < ∞). Assume that X is a random variable, while C is an
input variable, and consider a Markov kernel K(X | C) : C 99K X . We will derive a test
for the independence

X ⊥⊥
K(X|C)

C.

With Definition 2.5.17, this independence holds if and only if there exists a Markov
kernel Q(X) : ∗ 99K X such that:

K(X | C) = Q(X).

The latter means that
K(X | C = c) = Q(X) (66)

for all c ∈ C.
Suppose we obtain data (Xn, cn)

N
n=1 such that the Xn are conditionally independent

and identically distributed given cn for all n = 1, . . . , N . In other words, we assume the
data is sampled from the following Markov kernel:

K((Xn)
N
n=1 | (cn)Nn=1) =

N⊗
n=1

K(Xn | Cn = cn),

where each K(Xn | Cn) is a copy of the (“true” but unknown kernel) K(X | C).
Note that this is a weaker assumption regarding the sampling scheme than we would

have made if C were random. In particular, we make no assumption at all regard-
ing how the sequence of values c1, c2, . . . , cN is chosen. It could be a sequence like
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0, 1, 0, 1, 0, 1, 0, 1, . . . , for example, which would be (if sufficiently long) very unlikely to
occur if all cn would be independently sampled from some distribution. This extends
the possible experimental designs that we can handle to include for example randomized
controlled trials in which the protocol is such that a certain prespecified number N+|0
of subjects enters the control group, and a certain prespecified number N+|1 enters the
treatment group. If the values of cn were chosen i.i.d. with a coin flip, then it would
be very unlikely that this assignment satisfies the protocol. Considering C to be an ex-
ogenous input variable instead (with values that are not necessarily randomly assigned),
allows us to test for the independence of outcome X and treatment C under a broader
range of experimental protocols.

We define the counts as the number of observations with a given value (x, c) ∈ X ×C:

Nx|c :=
N∑

n=1

1(x,c)(Xn, cn).

We will take H0 : X ⊥⊥C as the null hypothesis of a frequentist test for the indepen-
dence of X and C. We parameterize the Markov kernel K(X | C) in terms of parameters
(θx|c)x∈X ,c∈C := K(X = x | C = c) in a space

Θ := {θ ∈
∏

x∈X ,c∈C

[0, 1] : ∀c∈C
∑
x∈X

θx|c = 1}.

With the summation convention, we can write the normalization condition as θ+|c = 1
for all c ∈ C. The null hypothesis H0 : X ⊥⊥C, equivalent to (66), can be expressed in
terms of the parameters as H0 : θ ∈ Θ0, where we introduced the restricted parameter
space

Θ0 := {θ ∈ Θ : ∀x∈X ,c∈C,c′∈C : θx|c = θx|c′}.
As alternative hypothesis we will take H1 : X ⊥̸⊥C, the negation of the null hypothesis,
i.e., H1 : θ ∈ Θ1 with Θ1 := Θ \Θ0.

We will again work out the likelihood ratio test. We first write down the “conditional”
likelihood of the data:

K
(
(Xn)

N
n=1 | (cn)Nn=1, θ

)
=

N∏
n=1

θXn|cn =
∏
x∈X

∏
c∈C

θ
Nx|c
x|c

where we used the counts as a sufficient statistic of the data. Maximizing the likelihood
with respect to the parameters, we obtain the maximum likelihood estimator

θ̂x|c =
Nx|c

N+|c
,

i.e., the fractions of the different outcomes within each subgroup with C = c. Under H0,
we can write θx|c = θx|∗ for some θx|∗ ∈ Θ0, and the likelihood simplifies:

θ ∈ Θ0 =⇒
∏
x∈X

∏
c∈C

θ
Nx|c
x|∗ =

∏
x∈X

θ
Nx|+
x|∗ .
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The maximum likelihood estimator under H0 is then

θ̂0x|c =
Nx|+

N
.

The likelihood ratio is obtained by dividing the likelihood for θ̂ by the likelihood for
θ̂0:

supθ∈Θ0∪Θ1
K((Xn)

N
n=1 | (cn)Nn=1, θ)

supθ∈Θ0
K((Xn)Nn=1 | (cn)Nn=1, θ)

=
∏
x∈X

∏
c∈C

(
θ̂x|c

θ̂0x|c

)Nx|c

=
∏
x∈X

∏
c∈C

(
Nx|c

N+|c

N

Nx|+

)Nx|c

.

(67)
This is of exactly the same form as the likelihood ratio (61) for testing X ⊥⊥P (X,C)C with
two random variables X,C. The likelihood ratio test statistic is defined as 2 times the
natural logarithm of this ratio:

GN := 2 log
supθ∈Θ0∪Θ1

K((Xn)
N
n=1 | (cn)Nn=1, θ)

supθ∈Θ0
K((Xn)Nn=1 | (cn)Nn=1, θ)

= 2
∑
x∈X

∑
c∈C

Nx|c log
Nx|cN

Nx|+N+|c

We (miraculously?!) arrived at the same test statistic as before. This time, we cannot
make use of the general result on the asymptotic distribution under the null hypothesis
of likelihood ratio tests. Indeed, that result pertains when dealing with a likelihood
with only a finite number of parameters to be estimated, whereas here we have an
asymptotically infinite number of “parameters” c1, c2, . . . . Therefore, we will resort to a
more direct analysis of the case at hand. The end result will recover the previous results
for random variables as a special case. Perhaps surprisingly, it turns out that under
reasonable assumptions on the sequence c1, c2, . . . we can apply the standard G test and
ignore the non-random nature of the cn’s.

We will start with rewriting the test statistic. We introduce the space

ΘC := {γ ∈
∏
c∈C

[0, 1] :
∑
c∈C

γc = 1}.

Consider now the function

g : Θ×ΘC : (θ, γ) 7→ :=
∑
c∈C

γc
∑
x∈X

θx|c log
θx|c∑

c∈C γcθx|c

=
∑
c∈C

γcKL
(
θX|c ∥

∑
c∈C

γcθX|c

)
,

(68)

where we introduced the notation θX|c := (θx|c)x∈X ∈ RX , and where the Kullback-
Leibler divergence between two probability distributions P,Q ∈ P(X ) is defined as:

KL(P ∥Q) :=
∑
x∈X

P (X = x) log
P (X = x)

Q(X = x)
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(and we identified a probability distribution on X with its probability mass function,
encoded as a parameter vector in RX ). Note that

GN = 2Ng(θ̂, γ̂)

with
γ̂c :=

N+|c

N

for all c ∈ C.74 The components of γ̂ are just the fractions of observations with a
certain value of c. The asymptotic analysis will be conditional on the sequence of γ̂’s,
or equivalently, on the sequence of counts N+|c.

Because the counts (Nx|c)x∈X have a multinomial distribution for each c ∈ C, we can
calculate that

Eθ̂x|c =
1

N+|c

N∑
n=1

1c(cn)θx|c = θx|c

and

Cov(θ̂x|c, θ̂x′|c′) =
1

N+|cN+|c′

N∑
n=1

N∑
n′=1

Cov
(
1(x,c)(Xn, cn)1(x′,c′)(Xn′ , cn′)

)
=

1

N+|cN+|c′

N∑
n=1

1c(cn)1c′(cn)
(
δxx′θx|c − θx|cθx′|c

)
=

1

N+|c
δcc′θx|c(δxx′ − θx′|c).

Assume that N+|c →∞ for every c ∈ C. Because

Nx|c =
N∑

n=1
cn=c

1x(Xn),

where the 1x(Xn) can be seen as i.i.d. vectors in RX , we can apply the multivariate
central limit theorem to conclude that√

N+|c(θ̂x|c − θx|c)⇝ N (0,Σ) (69)

with covariance matrix Σ with entries

(Σ)x|c,x′|c′ = δcc′θx|c(δxx′ − θx′|c). (70)

The central limit theorem thus provides the rate at which the ML estimate θ̂ converges
to the true parameter θ. The likelihood ratio statistic GN is a function of θ̂ and γ̂. The
asymptotic analysis of GN can be obtained by performing a Taylor expansion of g around
the true θ. This expansion can be done “uniformly” in γ̂.
74We write γ̂ rather than γ to indicate that it is an (N -dependent) function of the observed data, rather

than a “true” fixed quantity.
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Lemma 11.3.1. Let θ ∈ Θ0 be positive, i.e., such that there exists a δ > 0 with θx|c ≥ δ

for all x ∈ X , c ∈ C. Let γ ∈ ΘC. For θ̂ with ∥θ̂ − θ∥ sufficiently small and θ̂ P→ θ,

g(θ̂, γ) =
1

2
(θ̂ − θ)T∇2

θg(θ, γ)(θ̂ − θ) + oP (∥θ̂ − θ∥2), (71)

with
∇2

θg(θ, γ) = diag

(
1

θX|∗

)
⊗
(
diag(

√
γ)
(
IC −

√
γ
√
γT
)
diag(

√
γ)
)

where θX|∗ = (θx|c)x∈X for an arbitrary c ∈ C.75 The remainder term oP (∥θ̂ − θ∥2) can
be chosen to be a function f(θ, θ̂) that does not depend on γ, and for which

f(θ, θ̂)

∥θ − θ̂∥2
P→ 0.

Proof. The second order Taylor expansion of g around the true θ is:

g(θ + ϵ, γ) = g(θ, γ) + ϵT∇θg(θ, γ) +
1

2
ϵT∇2

θg(θ, γ)ϵ+ o(∥ϵ∥2),

where ∇θg is the (partial) gradient of g with respect to θ, and ∇2
θg is the Hessian of g

with respect to θ, and the remainder term o(∥ϵ∥2) can be taken of the form M∥ϵ∥3 if
the third-order partial derivatives of g at (θ, γ) are bounded. For a random ϵ = θ̂ − θ
we obtain

g(θ̂, γ)− g(θ, γ) = (θ̂ − θ)T∇θg(θ, γ) +
1

2
(θ̂ − θ)T∇2

θg(θ, γ)(θ̂ − θ) + oP (∥θ̂ − θ∥2), (72)

where the remainder term is now random, and converges in probability to 0 at rate
∥θ̂ − θ∥2. We will proceed by calculating the terms in the Taylor expansion.

The Kullback-Leibler divergence has the important property that KL(P ∥Q) ≥ 0 and
KL(P ∥Q) = 0 ⇐⇒ P = Q for all P,Q ∈ P(X ). Together with the definition (68),
this immediately implies that under H0, g(θ, γ) = 0 for all γ ∈ ΘC .

The gradient ∇θg of g w.r.t. θ has components:

∂g

∂θx|c
= γc log

θx|c∑
c′∈C γ

′
cθx|c′

.

Under H0, θx|c = θx|∗ for all x ∈ X , c ∈ C, and it follows that the gradient vanishes for
all γ ∈ ΘC .

Next, the Hessian w.r.t. θ:

∂2g

∂θx|c∂θx′|c′
= γc

(
1

θx|c
δxx′δcc′ −

γc′∑
c′′∈C γc′′θx|c′′

δxx′

)
.

75Here, we used the Kronecker product notation for matrices, and diag(v) is a diagonal matrix with
the components of vector v on the diagonal.
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Under H0, θx|c = θx|∗ for all x ∈ X , c ∈ C, this simplifies to

∂2g

∂θx|c∂θx′|c′
=

1

θx|∗
γc (δxx′δcc′ − γc′δxx′) .

By using the Kronecker product notation, this can be written as stated in the lemma.
Finally, to obtain the remainder term, we calculate the third order partial derivatives:

∂3g

∂θx|c∂θx′|c′∂θx′′|c′′
= γcδx,x′′δx,x′

(
− 1

θ2x|c
δc,c′′δcc′ +

γc′γc′′

(
∑

c′′′∈C γc′′′θx|c′′′)
2

)
.

These can be bounded uniformly in γ, using the assumption that all components of θ
are bounded away from zero.

We are now ready to prove the following result on the asymptotic distribution of GN

under the null hypothesis, which is (surprisingly?) similar to Proposition 11.1.1.

Proposition 11.3.2. Let θ ∈ Θ be positive, i.e., such that θx|c > 0 for all x ∈ X , c ∈ C.
Assume that N+|c →∞ for all c ∈ C. Under H0 : X ⊥⊥K(X |C)C, the likelihood ratio test
statistic (67) converges to a χ2 distribution,

GN ⇝ χ2
ν ,

with ν = (|X | − 1)(|C| − 1) degrees of freedom.

Proof. We first note that θ̂ a.s.→ θ (for any θ ∈ Θ) by applying the strong law of large
numbers. Indeed, since the Xn are assumed to be conditionally i.i.d. given cn, and

E
(
1(x,c)(Xn, cn)

)
= θx|c1c(cn)

for all x ∈ X , c ∈ C, and N+|c →∞ for all c ∈ C, we conclude that Nx|c/N+|c
a.s.→ θx|c for

all x ∈ X , c ∈ C by the strong law of large numbers.
Since this implies convergence in probability θ̂

P→ θ, Lemma 11.3.1 gives that under
H0,

g(θ̂, γ̂) =
1

2
(θ̂ − θ)T∇2

θg(θ, γ̂)(θ̂ − θ) + oP (∥θ̂ − θ∥2)

where
∇2

θg(θ, γ̂) = diag

(
1

θX|∗

)
⊗
(
diag(

√
γ̂)
(
IC −

√
γ̂
√
γ̂
T )

diag(
√
γ̂)
)

and the remainder term does not depend on γ̂. Defining

SN :=
√
N diag

(
1√
θX|∗

⊗
√
γ̂

)
(θ̂ − θ)

where ⊗ denotes the Kronecker product of two vectors (in this case the all-ones vector
1X ∈ RX and the vector

√
γ̂ ∈ RC), and the orthogonal projection76

Γ̂ := IX ⊗
(
IC −

√
γ̂
√
γ̂
T
)
,

76That is, Γ̂T = Γ̂ = Γ̂2.
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we can write

N(θ̂ − θ)T∇2
θ(θ, γ̂)(θ̂ − θ) = ST

N Γ̂SN = ∥Γ̂SN∥2.

Under H0, θx|c = θx|∗ for all c ∈ C, and therefore (69) simplifies to:
√
N
√
γ̂c(θ̂x|c − θx|∗)⇝ N (0,Σ)

where the covariance matrix Σ from (70) simplifies to

(Σ)x|c,x′|c′ = δcc′θx|∗(δxx′ − θx′|∗).

Hence, scaling with
√
θx|∗ gives

SN =
√
N
√
γ̂c

1√
θx|∗

(θ̂x|c − θx|∗)⇝ N (0, Σ̃)

where the covariance matrix Σ from (70) simplifies to

(Σ̃)x|c,x′|c′ = δcc′
(
δxx′ −

√
θx|∗

√
θx′|∗

)
,

which can be written using Kronecker product notation as

Σ̃ =
(
IX −

√
θX|∗

√
θTX|∗

)
⊗ IC.

Let V̂ ∈ SO(RC) be rotations that map
√
γ̂ to e1. Then

IC −
√
γ̂
√
γ̂
T
= P√

γ̂
⊥ = V̂ TPe⊥1

V̂

(where Pv⊥ is the orthogonal projection on the subspace orthogonal to v), and therefore

∥Γ̂SN∥2 = ∥(IX ⊗ V̂ TPe⊥1
V̂ )SN∥2 = ∥(IX ⊗ Pe⊥1

)(IX ⊗ V̂ )SN∥2.

We can apply Lemma 11.3.3 to conclude that (IX ⊗ V̂ )SN ⇝ N (0, Σ̃) as well (even
though V̂ is an N -dependent rotation). Then

(IX ⊗ Pe⊥1
)(IX ⊗ V̂ )SN ⇝ N

(
0, P√

θX|∗
⊥ ⊗ Pe⊥1

)
and hence

∥Γ̂SN∥2 ⇝ χ2
ν

with ν = (|X | − 1)(|C| − 1). With Slutsky’s Lemma, also

GN = 2Ng(θ̂, γ̂) = N(θ̂ − θ)T∇2
θ(θ, γ̂)(θ̂ − θ) +NoP (∥θ̂ − θ∥2)⇝ χ2

ν .
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So, also the asymptotic distribution under the null hypothesis is the same as for the
case of two random variables, even though we used a different parameterization, and
we relaxed the assumption that the cn’s are i.i.d.: we only assumed that N+|c →∞ for
each c.77 In particular, this result applies also to the case when C is a random variable.
Hence, we have reobtained Proposition 11.1.1 as a special case.

Lemma 11.3.3. Let Q be a rotationally symmetric probability measure on the standard
Borel space Rk (i.e., Q ◦ U = Q for all U ∈ SO(Rk)), and P1, P2, . . . a sequence of
probability measures on Rk. Then

Pn ⇝ Q ⇐⇒ Pn ◦ Un ⇝ Q

for any sequence U1, U2, . . . of rotations in SO(Rk).

Proof. We make use of the Lévy-Prokhorov metrization of the weak topology. For two
probability distributions P,Q on Rk (with its Borel σ-algebra BRk), it is defined as

d(P,Q) := inf{ϵ > 0 : ∀A ∈ BRk : P (A) ≤ Q(Aϵ) + ϵ ∧ Q(A) ≤ P (Aϵ) + ϵ},

where Aϵ := ∪a∈ABϵ(a) with Bϵ(a) := {v ∈ Rk : ∥v − a∥ < ϵ}. The Lévy-Prokhorov
metric is invariant under rotations. Indeed, for U ∈ SO(Rk), we have that UA ∈
BRk ⇐⇒ A ∈ BRk , and (UA)ϵ = U(Aϵ) for A ∈ BRk and ϵ > 0, hence d(P ◦U,Q ◦U) =
d(P,Q) for all probability measures P,Q on Rk. The rotation invariance of the Lévy-
Prokhorov metric implies that if Q is rotationally symmetric (i.e., Q = Q ◦ U for all
U ∈ SO(Rn)), then

Pn ⇝ Q ⇐⇒ d(Pn, Q)→ 0

⇐⇒ d(Pn ◦ Un, Q ◦ Un)→ 0

⇐⇒ d(Pn ◦ Un, Q)→ 0

⇐⇒ Pn ◦ Un ⇝ Q

Summarizing, we started from quite a different sampling scheme, and did not treat C
as a random variable, yet we ended up with exactly the same likelihood ratio test for
testing X ⊥⊥K(X|C)C as we derived for testing the independence X ⊥⊥P (X,C)C between
two random variables.

What about the consistency of this test? To show consistency, it turns out that we
need a stronger assumption than N+|c → ∞, but it will still be weaker than the i.i.d.
assumption we made for the case that C is random.

Corollary 11.3.4. Consider an infinite sequence of G tests performed on the first N
samples of an infinitely large data set (Xn, cn)

∞
n=1, where one accepts H1 : X ⊥̸⊥C if

GN ≥ τN , and otherwise accepts H0 : X ⊥⊥C, for some given sequence of thresholds τN .
77If some of the N+|c stay finite asymptotically, then these c’s can be ignored, and we still get asymp-

totically a chi-square distribution, but with less degrees of freedom.
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Assume that θ ∈ Θ is positive, i.e., such that θx|c > 0 for all x ∈ X , c ∈ C. Assume
further that the fractions N+|c/N →∞ are bounded away from zero asymptotically, i.e.,
there exists ϵ > 0 such that for all c ∈ C, N+|c/N ≥ ϵ for large N . Then this sequence
of tests is asymptotically consistent if τN →∞ but τN/N → 0.

Proof. In the proof of Proposition 11.3.2 we already saw that θ̂ a.s.→ θ for any θ ∈ Θ.
Assume that H1 holds, i.e., θ ∈ Θ1. Then g(θ, γ) = I(γ, θ◦γ) > 0 for all γ ∈ ΘC . Θ1 is

open in Θ, so B̄δ(θ)∩Θ = {θ̃ ∈ Θ : ∥θ− θ̃∥ ≤ δ} ⊆ Θ1 for δ small enough. Since θ̂ a.s.→ θ,
θ̂ ∈ B̄δ(θ) ∩ Θ for large N a.s.. By assumption, for large N γ̂ ∈ {γ̃ ∈ [ϵ, 1]|C| : γ̃+ = 1},
which is a closed subset of ΘC . Since I is continuous, it attains a (positive) minimum
value over the closed subset (B̄δ(θ) ∩ Θ) × {γ̃ ∈ [ϵ, 1]|C| : γ̃+ = 1} ⊆ Θ × ΘC . Hence,
GN/N = 2g(θ̂, γ̂) a.s. has a positive lower bound for large N . We can now reason
analogously as in the proof of Corollary 11.1.3 to conclude that the probability of a
Type II error vanishes asymptotically.

For an asymptotic estimate of the probability of a Type I error, we can make use of
Proposition 11.3.2, which states that GN ⇝ χ2

ν under H0. This part of the proof is
identical to the corresponding part of the proof of Corollary 11.1.3.

The conditions in this corollary are sufficient, but not necessary. For example, not all
the rates N+|c have to be lower bounded, it suffices if this is the case for a subset of C for
which the distributions K(X | C = c) differ. It also shows how consistency could fail:
e.g., if the distributions K(X | C = c) only differ on some subset of C, but that subset
is not observed sufficiently often asymptotically. This is in line with the intuition that
when testing for the presence of a causal effect of C on X in a controlled setting (not
necessarily randomized, i.e., as in Proposition 10.1.1), if nothing is known about how X
might depend on C, it is best to gather sufficient data for each value that C can take.

11.4. The general categorical case

Finally, let us consider the most general case of testing a conditional independence
involving transitional random variables (including “purely random” and “purely non-
random” variables as special cases). Again, we will restrict ourselves to the case that all
variables take values in finite spaces. We will formulate a general version of the G test.

Suppose we have three transitional random variables X, Y, Z and an input variable C,
taking values in spaces X ,Y ,Z, C, respectively. Assume that all the spaces X ,Y ,Z, C
are finite. Suppose we have a kernel K(X, Y, Z|C) : C 99K X × Y × Z. We formulate a
statistical test for testing the conditional independence

H0 : X ⊥⊥
K(X,Y,Z|C)

Y |Z

against the alternative
H1 : X ⊥̸⊥

K(X,Y,Z|C)

Y |Z.

The null hypothesis is equivalent, by definition, to the existence of a kernel K(X|Z)
such that

K(X, Y, Z | C) = K(X | Z)⊗K(Y, Z | C).

284



It will turn out to be helpful to consider the equivalent hypotheses

H0 : X ⊥⊥
K(X,Y,Z|C)

Y,C |Z

against the alternative
H1 : X ⊥̸⊥

K(X,Y,Z|C)

Y,C |Z

instead.
Suppose we obtain data (Xn, Yn, Zn, cn)

N
n=1 such that the (Xn, Yn, Zn) are conditionally

independent and identically distributed given cn for all n = 1, . . . , N . In other words,
we assume the data is sampled from the following Markov kernel:

K((Xn, Yn, Zn)
N
n=1 | (cn)Nn=1) =

N⊗
n=1

K(Xn, Yn, Zn | Cn = cn),

where each K(Xn, Yn, Zn | Cn) is a copy of the (“true” but unknown kernel) K(X, Y, Z |
C). We parameterize this kernel K(X, Y, Z | C) as

K(X = x, Y = y, Z = z | C = c) = θxyz|c

with θ in
Θ = {θ ∈

∏
(x,y,z,c)∈X×Y×Z×C

: θ+++|c = 1 ∀c ∈ C}.

We will not work out the details, as these are analogous to what we have seen before,
but will directly formulate the likelihood ratio test statistic:

GN = 2
∑
x∈X

∑
y∈Y

∑
z∈Z

∑
c∈C

Nxyzc log
NxyzcN++z+

Nx+z+N+yzc

. (73)

With the correspondence (X, (Y,C), Z) ↔ (X, Y, Z), this likelihood ratio statistic is
seen to be identical to (64), the one for the case of three random variables. Note that
this likelihood ratio treats C and Y on equal footing. This, again, suggests that for the
asymptotic analysis we will obtain a similar result as that for the conditional G test
with purely random variables, albeit under milder assumptions on the sampling scheme
for C. We will not work out the details here, but directly formulate the result.

Proposition 11.4.1. Let θ ∈ Θ be positive, i.e., such that θxyz|c > 0 for all x ∈
X , y ∈ Y , z ∈ Z, c ∈ C. Assume that N+++|c → ∞ for all c ∈ C. Under H0 :
X ⊥⊥K(X,Y,Z |C) Y,C |Z, the likelihood ratio test statistic (73) converges to a χ2 distri-
bution,

GN ⇝ χ2
ν ,

with ν = |Z| (|X | − 1)(|Y||C| − 1) degrees of freedom.

Proof. Note that the likelihood ratio test statistic (73) is a sum over z ∈ Z of a likelihood
ratio test statistic of the form (67) (where (Y,C) in the former corresponds with C in
the latter).
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We also obtain a similar result as before on the asymptotic consistency.

Corollary 11.4.2. Consider an infinite sequence of G tests performed on the first N
samples of an infinitely large data set (Xn, Yn, Zn, cn)

∞
n=1, where one decides{

H0 : X ⊥⊥K(X,Y,Z |C) Y,C |Z if GN < τN ,

H1 : X ⊥̸⊥K(X,Y,Z |C) Y,C |Z if GN ≥ τN ,

for some given sequence of thresholds τN . Assume that θ ∈ Θ is positive, i.e., such
that θxyz|c > 0 for all x ∈ X , y ∈ Y , z ∈ Z, c ∈ C. Assume further that the fractions
N+++|c/N → ∞ are bounded away from zero asymptotically, i.e., there exists ϵ > 0
such that for all c ∈ C, N+++|c/N > ϵ for large N . Then this sequence of tests is
asymptotically consistent if τN →∞ but τN/N → 0.
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12. The Fast Causal Inference Algorithm

In this final chapter, we present an extension of the Fast Causal Inference (FCI) al-
gorithm. The FCI algorithm is one of the highlights in the field of constraint-based
causal discovery. It was originally designed for purely observational (non-experimental)
data and relied on the assumption of acyclicity, but allowed for latent variables (ei-
ther marginalized over, or conditioned upon in case of selection bias) [SMR95,SMR99].
Later, the algorithm was augmented with additional ‘orientation rules’ and this aug-
mented FCI algorithm was shown to be complete in a certain sense [Zha08].78 While
the FCI algorithm was originally designed for the acyclic setting, it was recently dis-
covered that it also works in case cycles are present (more specifically, for σ-faithful
simple SCMs) [MC20]. While that work made a simplification by assuming no selection
bias, we prove here that the FCI algorithm is sound even when the data is generated
according to a conditional Markov kernel induced by a σ-faithful simple SCM, or in
other words, that it can cope with the possible presence of cycles and selection bias. In
other recent work, the FCI algorithm has been extended to incorporate prior knowledge
regarding exogeneity and unconfoundedness of context variables (of the same type that
we used for modeling the treatment variable in randomized controlled trials) [MMC20].
Such an extension with exogenous input nodes allows to generalize the idea of causal
discovery in a randomized controlled trial to multiple treatment and outcome variables.
We also incorporate that extension here, and provide a ‘unified’ extended FCI algorithm
that allows for cycles (under certain assumptions), selection bias and exogenous input
variables.

12.1. Modeling selection bias

We model selection bias as follows.

Notation 12.1.1. We will assume the existence of a simple SCM M = (J, V +,W,X , P, f),
with endogenous variables V + = V ∪̇S.79 We assume that only the endogenous variables
in V are observed, as well as the exogenous input variables J . The latent variables in S
have the role of latent selection variables. In other words, we will assume that the data
is distributed according to the marginal Markov kernel of M on V after conditioning on
S:

PM(XV | XS ∈ ξS, do(XJ))

for some measurable set ξS ⊆ XS.80

78The augmented version of [Zha08] is often referred to simply as ‘the FCI algorithm’, and we will do
so here as well.

79Alternatively, one could assume endogenous variables V + = V ∪̇S ∪̇L where S are used as selection
variables. We could then start by marginalizing out the variables in L to arrive at the setting that
is our starting point here.

80Note that we did not include the exogenous random variables here; we are treating them as if they were
unobserved. If some (or all) exogenous random variables are observed, then we have three options:
(i) include them, but ignore the additional background knowledge that they are independent (that
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This models a process that filters the data according to the value of XS (like in
a rejection sampler).81 One practical example of such a filtering process leading to
selection bias is the following.

Example 12.1.2. After the exam, the teacher hands out evaluation forms to the stu-
dents and asks them to evaluate the course. When analyzing this evaluation, the teacher
needs to be aware of possible selection bias. For example, if the students that were most
dissatisfied with the course already dropped out earlier on and never filled in the evalua-
tion form, the observed evaluations may not be representative of the opinions of all the
students that started the course. Here, the selection variable may be the binary indicator
‘student filled in the evaluation form’.

Our goal in the rest of this chapter will be to deduce as much as possible about the
graph GV +|J(M) from the Markov kernel PM(XV | XS ∈ ξS, do(XJ)). FCI is an example
of a constraint-based causal discovery algorithm, which means that it only utilizes the
conditional independence information of this Markov kernel.

Proposition 12.1.3. Given a Markov kernel K(XV | XJ). Suppose there exists a simple
SCM M = (J, V +,W,X , P, f), with endogenous variables V + = V ∪̇S, such that

K(XV | XJ) = PM(XV | XS ∈ ξS, do(XJ))

for some measurable set ξS ⊆ XS. Then there exists a simple SCM M̃ =
(
J, Ṽ +,W,X , P, f̃

)
,

with endogenous variables Ṽ + = V ∪̇ {s̃}, such that

PM(XV | XS ∈ ξS, do(XJ)) = PM̃(XV | Xs̃ = 1, do(XJ))

and AncG(M)(S) = AncG(M̃)(s̃).

Proof. Define M̂ =
(
J, V̂ +,W,X , P, f̂

)
, with endogenous variables V̂ + = V ∪̇S ∪̇ {s̃},

and f̂V := fV , f̂S := fS, f̂s̃(x) := 1ξS(xS). Now take M̃ = M̂\S.

12.2. Inducing walks

The key notion in this chapter is that of σ-inducing walks. We define σ-inducing walk
as a generalization to CDMGs of the notion of inducing path [VP90] in DAGs.

Definition 12.2.1. Let G be a CDMG with input nodes J , output nodes V + = V ∪̇S
and let i, j ∈ V ∪̇ J be distinct nodes. A walk π in G between i and j is called σ-inducing
given S if each collider on π is in AncG({i, j} ∪ S), and each non-endpoint non-collider

is, treating them as if they were endogenous), (ii) make endogenous copies and include those; (iii)
include them and make use of the additional background knowledge that they are independent.
Here, we chose for the second option.

81It is helpful to think about such a filtering step as an intervention on the population level, but may
lead to confusion when interpreted as an intervention on the individual level.
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(a) i j k (b) i j k (c) i j k

l

(d) j i k (e) i k

s

(f) i l

s

k

Figure 28: Examples of non-trivial σ-inducing paths in CDMGs. (a) The path i
j k is a σ-inducing path between i and k. (b) The path i j k is a
σ-inducing path between i and k. (c) The path i j k is a σ-inducing
path between i and k. The nodes i and k cannot be σ-separated by any
subset not containing i, k (indeed, i ̸⊥σ k and i ̸⊥σ k | j in all three graphs,
and additionally i ̸⊥σ k | l and i ̸⊥σ k | {j, l} in the graph in (c)). (d) The
path i k is σ-inducing, while there is no σ-inducing path between i and
j, nor between j and k. (e) The path i s k is σ-inducing given {s}.
(f) The path i s l k is σ-inducing given {s}.

on π is unblockable. If it is a path, it is called a σ-inducing path given S between i and
j.82

If two nodes are adjacent in G, any edge connecting the two is a σ-inducing walk (path)
given S between them, for any S. Figure 28 shows some simple nontrivial examples of
σ-inducing paths.

Lemma 12.2.2. Let G be a CDMG with input nodes J , output nodes V + = V ∪̇S and
let i, j ∈ V ∪̇ J be distinct nodes. If i ∈ ScG(j) then there exists a σ-inducing path given
S in G between i and j.

Proof. There exists a directed path in G from i to j that is entirely contained in ScG(j),
and therefore all its non-endpoint nodes are unblockable non-colliders.

The notion of σ-inducing walk has the following important properties.

Proposition 12.2.3. Let G be a CDMG with input nodes J , output nodes V + = V ∪̇S
and let i ∈ V (but i /∈ J) and j ∈ V ∪̇ J be distinct nodes. Then the following are
equivalent:

(i) There is a σ-inducing path given S in G between i and j;

(ii) There is a σ-inducing walk given S in G between i and j;

(iii) i ̸⊥σ
G j |S ∪ Z for all Z ⊆ (V ∪ J) \ {i, j};

82In most of the literature, the graph is assumed to be acyclic, and then the notion is referred to simply
as “inducing”.
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(iv) i ̸⊥σ
G j |S ∪ Z for Z = (AncG({i, j} ∪ S) ∪ J) \ {i, j}.

Proof. The proof is similar to that of Theorem 4.2 in [RS02].
(i) =⇒ (ii) is trivial.
(ii) =⇒ (iii): Assume the existence of a σ-inducing walk given S between i and j in

G. Let Z ⊆ (V ∪ J) \ {i, j}. Consider all walks in G between i and j with the property
that all colliders on it are in AncG({i, j} ∪ S ∪ Z), and each non-endpoint non-collider
on it is not in S∪Z or is unblockable. Such walks exist, since the σ-inducing walk is one.
Let µ be such a walk with a minimal number of colliders. We show that all colliders on
µ must be in AncG(S ∪ Z). Suppose on the contrary the existence of a collider k on µ
that is not ancestor of S ∪ Z. It is either ancestor of i or of j, by assumption. If j ∈ J ,
it cannot be ancestor of j, and hence must be ancestor of i. Otherwise, we can assume
it to be ancestor of i without loss of generality. Then there is a directed path π from k
to i in G that does not pass through any node of S ∪Z. Then the subwalk of µ between
k and j can be concatenated with the directed path π into a walk between i and j that
has the property, but has fewer colliders than µ: a contradiction. Therefore, µ is σ-open
given S ∪ Z. Hence, i and j are σ-connected given S ∪ Z.

(iii) =⇒ (iv) is trivial.
(iv) =⇒ (i): Suppose that i and j are σ-connected given Z = (AncG({i, j}∪S)∪J)\
{i, j}. Let π be a path between i and {j}∪J that is σ-open given Z. The end nodes of π
must be i and j, because J \{i, j} ⊆ Z. We show that π must be a σ-inducing path given
S. First, all colliders on π are in AncG(Z), but not in J , and hence in AncG({i, j} ∪ S).
Second, let k be any non-endpoint non-collider on π. Then there must be a directed
subpath of π starting at k that ends either at the first collider on π next to k or at
an end node of π, and hence k must be in Z. Since π is σ-open given Z, k must be
unblockable. Hence, all non-endpoint non-colliders on π must be unblockable.

In words: there is a σ-inducing path between two nodes in a CDMG (provided they
are not both input nodes) if and only if the two nodes cannot be σ-separated by any
subset of the other nodes.

Remark 12.2.4. Two input nodes cannot be σ-separated by some subset of other nodes.
Indeed, the trivial path j is σ-open as long as we don’t condition on j itself. On the other
hand, there may, or may not, be a σ-inducing path given S between two input nodes.
For example, in the CDMG j1 i j2 with j1, j2 ∈ J the path j1 i j2 is
σ-inducing given {i} but not σ-inducing given ∅. This is why Proposition 12.2.3 does
not consider the case i, j ∈ J .

The orientations of the outermost edges on a σ-inducing path contain important in-
formation about ancestral relations.

Lemma 12.2.5. Let G be a CDMG with input nodes J , output nodes V + = V ∪̇S
and let i, j ∈ V ∪̇ J be distinct. If there exists a σ-inducing path given S between i
and j in G, and all σ-inducing paths given S in G between i and j are out of j, then
j ∈ AncG({i} ∪ S).
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Proof. Let µ be a σ-inducing path given S between i and j in G. It must be of the form
i · · · l j (with possibly l = i). First we show that l cannot be in ScG(j). If l ∈ ScG(j),
then let π be a directed path in G from l to j that is entirely contained in ScG(j). Let
m be the node on µ closest to i that is also on π (possibly m = l). The subpath of π
between j and m can be concatenated with the subpath of µ between m and i into a
walk between j and i. This must be a σ-inducing path given S between i and j that is
into j by construction: contradiction. Hence l cannot be in ScG(j).

If µ is a directed path all the way to i, then clearly, j ∈ AncG({i} ∪ S). Otherwise, it
must contain a collider. Let k be the collider on µ closest to j. k must be ancestor of i
or j or S. In the first and third cases, clearly j ∈ AncG({i} ∪ S). In the second case, all
nodes on the subpath of µ between j and k must be in ScG(j), a contradiction.

Lemma 12.2.6. Let G be a CDMG with input nodes J , output nodes V + = V ∪̇S and
let i, j ∈ V ∪̇ J be distinct. If there exists a σ-inducing path given S between i and j in
G into j, and i /∈ AncG({j} ∪ S), then there exists a σ-inducing path given S between i
and j in G that is both into i and into j.

Proof. Let µ be a σ-inducing path given S between i and j in G into j. This rules out
j ∈ J . If µ is into i, we are done. Therefore, suppose it is of the form i · · · j. It
cannot be a directed path, since i /∈ AncG({j} ∪ S). Therefore, there must be a collider
k on µ such that µ is of the form i . . . k · · · j (with the subpath between
i and k directed). Then k ∈ AncG({i}) (sic!), and hence all nodes on µ between i and k
must be in ScG(i). Let π be a directed path in G from k to i that is entirely contained
in ScG(i). Let l be the node on µ closest to j that is also on π (possibly l = k). Then
l ̸= j, because otherwise j ∈ ScG(i), contradicting i /∈ AncG({j} ∪ S). The non-trivial
subpath of π between i and l can be concatenated with the non-trivial subpath of µ
between l and j into a walk between i and j. This must be a σ-inducing path given S
between i and j that is both into i and into j.

Lemma 12.2.7. Let G be a CDMG with input nodes J , output nodes V + = V ∪̇S and
let i, j ∈ V ∪̇ J be distinct. If there is a σ-inducing path in G given S between i and j
that is into j, and k ∈ ScG(j), then there is a σ-inducing path in G given S between i
and k that is into k.

Proof. The σ-inducing path given S in G between i into j can be extended by a directed
path within ScG(k) to a σ-inducing walk given S in G between i and k that is into k.

Lemma 12.2.8. Let G be a CDMG with input nodes J , output nodes V + = V ∪̇S. If
there is a σ-inducing path in G given S between j ∈ J and v ∈ V , then j ∈ AncG({v}∪S).

Proof. The σ-inducing path in G must start out of j by definition. If it is a directed path
from j all the way to v, then clearly j ∈ AncG(v) ⊆ AncG({v} ∪ S). Otherwise, it will
contain a directed path from j to a collider. That collider must be in AncG({j, v} ∪ S),
but since it cannot be in AncG(j), it has to be in AncG({v} ∪ S). This means that
j ∈ AncG({v} ∪ S).
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12.3. Partial Ancestral Graphs

It is often convenient when performing causal reasoning to be able to represent a set
of CDMGs in a compact way. For this purpose, partial ancestral graphs (PAGs) have
been introduced [SMR99,Zha06]. In order to deal with possible cycles (in simple SCMs),
selection bias and exogenous input nodes, we extend the definition to σ-PAGs.
σ-PAGs have two node types, input nodes and output nodes (just like CDMGs). They

also have multiple edge types. In addition to the three edge types for CDMGs ( , ,
), there is an undirected edge ( ) and there are five edge types involving a circle

edge mark: , , , , . Each edge i j has two edge marks, one at each
node, with each edge mark either a tail, arrowhead or circle. For example, the directed
edge i j has a tail at i and an arrowhead at j, while the bi-circle edge i j has
two circle edge marks. All 9 possible combinations of edge marks can occur on an edge
in a σ-PAG. We will make use of the “∗” symbol to denote any of the three edge marks.
So the notation i j can stand for all 9 possible edge types between i and j, whereas
i j is shorthand for three possible edge types, as are i j and i j. Edges of the
form i j and j i are called into i. Edges of the form i j and j i are called
out of i.

In order to define σ-PAGs, we extend the definitions of (directed) walks, (directed)
paths and colliders to cover these new edge types.

Definition 12.3.1. Let H = (J, V, E) be a mixed graph with input nodes J , output nodes
V and edges E of the types { , , , , , , , , }.83 Let v, w ∈ V ∪ J .

1. If there is an edge v w between v and w (of any type), we call v and w adjacent
in H.

2. Define AdjH(v) to be the nodes adjacent to v in H.

3. A triple of distinct nodes (a, b, c) in H form a triangle if each pair of nodes in the
triple is adjacent in H.

4. A triple of distinct nodes (a, b, c) in H is called unshielded if b is adjacent to both
a and c in H, but a is not adjacent to c in H.

5. A walk between v and w in H is a finite alternating sequence of nodes and edges

v = v0, a0, v1, . . . vn−1, an−1, vn = w

in H for some n ≥ 0, i.e. such that for every k = 0, . . . , n − 1 we have that
vk, vk+1 ∈ V ∪J and ak = vk vk+1 ∈ E, and with end nodes v0 = v and vn = w.

6. A walk is called a path if no node occurs more than once on the walk.

83Formally, we no longer introduce separate sets to represent the edges of each type, but merge them
into the single set E.
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7. A directed walk (path) from v to w in H is a walk (path) of the form:

v = v0 v1 · · · vn−1 vn = w,

for some n ≥ 0.

8. A path v0 . . . vn in H is called a possibly directed path from v0 to vn if
for each i = 1, . . . , n, the edge vi−1 vi is not into vi−1 and is not out of vi (i.e.,
each edge must be of the form vi−1 vi, vi−1 vi, vi−1 vi or vi−1 vi).

9. A directed cycle is a directed walk v . . . w, concatenated with the directed
edge w v.

10. An almost directed cycle is a directed walk v . . . w, concatenated with the
bidirected edge w v.

11. A path of the form v0 . . . vn (with each edge of the form vi vi+1) is
called a circle path.

12. A path v0 . . . vn in H is called uncovered if every subsequent triple
(vk−1, vk, vk+1) for 1 < k < n is unshielded.

13. A triple of consecutive nodes vk−1 vk vk+1 on a walk in H is called definite
collider if it is of the form vk−1 vk vk+1.

14. A triple of consecutive nodes vk−1 vk vk+1 on a walk in H is called a
definite non-collider if it is of the form vk−1 vk vk+1 or vk−1 vk vk+1.
Furthermore, we also refer to the end nodes v0 and vn of a walk between v0 and vn
in H as definite non-colliders.

15. A path between v and w in H is called a definite collider path if every non-endpoint
node on the path is a definite collider on the path.

16. If there is a directed walk from v to w in H then we say that v is ancestor of
w in H, and we write v ∈ AncH(w). For W ⊆ V ∪ J , we define AncH(W ) :=⋃

w∈W AncH(w).

17. If there is a directed walk from v to w in H then we say that w is descendant of
v in H, and we write w ∈ DescH(v). For W ⊆ V ∪ J , we define DescH(W ) :=⋃

w∈W DescH(w).

18. A walk between v, w ∈ V ∪ J (with v ̸= w) in H is called definitely inducing if
every non-endpoint node is a definite collider in AncH({v, w}).

19. A walk between v and w in H is called definitely open given Z ⊆ V ∪ J if

a) every node on the walk is a definite collider or definite non-collider, and

b) every definite collider is in AncH(Z), and
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c) every definite non-collider is not in Z.

We can now define:84

Definition 12.3.2. A mixed graph H = (J, V, E) with input nodes J , output nodes
V and edges E of the types { , , , , , , , , } is called a partial
σ-ancestral graph (σ-PAG) if all of the following conditions hold:

1. Between any two distinct nodes there is at most one edge, and there are no edges
between a node and itself;

2. No input node is adjacent to any other input node;

3. The graph contains no directed cycles, no almost directed cycles, and no unshielded
triple of the form i j k (“σ-ancestral”);

4. There is no definitely inducing path between any two distinct non-adjacent nodes
(“maximal”);

σ-PAGs are used to represent a set of CDMGs as follows.

Definition 12.3.3. Let H = (J, V, E) be a mixed graph with input nodes J , output nodes
V and edges E of the types { , , , , , , , , }. Let G be a CDMG
with input nodes J and output nodes V + = V ∪̇S. We say that H represents G given S
if all of the following hold:

1. Between any two distinct nodes in H there is at most one edge, and there are no
edges between a node and itself;

2. Two distinct nodes i, j ∈ V ∪ J are adjacent in H if and only if {i, j} ̸⊆ J and
there is a σ-inducing path between i and j given S in G;

3. If i j in H then i /∈ AncG({j} ∪ S);

4. If i j in H then i ∈ AncG({j} ∪ S);

Hence, adjacencies represent σ-inducing paths, arrowheads represent non-ancestorship
(of the adjacent node or S), and tails represent ancestorship (of the adjacent node or
S). Some examples are given in Figure 29. Note in particular that a directed edge in
a σ-PAG does not necessarily imply a direct causal relationship (for example, the edge
i k in Figure 29(a)). Figure 30 provides an example of a mixed graph that satisfies
all conditions of a σ-PAG except the maximality.

The following elementary properties shows that certain important properties of the
CDMG are encoded in a mixed graph that represents it.
84We have incorporated two extensions of the usual definition of PAG [Zha06]: we allow for input

nodes, and we have weakened the condition of being ancestral to σ-ancestral. A mixed graph is
called ancestral if it has no directed cycles, no almost directed cycles, and no triples of the form
i j k.
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(a) i j k (b) i j k (c) i j k

(d) j i k (e) i k (f) i l k

(g) X1 X2

X3

X4

(h) X1 X2 X3 (i) X1 X2 X3

Figure 29: Various example σ-PAGs, representing respectively the CDMGs: (a) in Fig-
ure 28(a); (b) in Figures 28(a–b); (c) in Figures 28(a–b); (d) in Figure 28(d);
(e) in Figure 28(e); (f) in Figure 28(f); (g) of all Y-structures in Figure 26;
(h) of all LCD structures in Figure 24; (i) of all LCD structures in Figure 24.

i

j k

l

Figure 30: This mixed graph is not a valid σ-PAG, because it is not maximal: it has a
definitely inducing path i j k l while i and l are non-adjacent.
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Lemma 12.3.4. Let H = (J, V, E) be a mixed graph with input nodes J , output nodes
V and edges E of the types { , , , , , , , , }. Let G be a CDMG
with input nodes J and output nodes V + = V ∪̇S. Suppose that H represents G given
S. Then for any two nodes i, j in H:

(i) i ∈ AncH(j) implies i ∈ AncG({j} ∪ S).

(ii) If i j in H, then there exists a σ-inducing path given S in G between i and j
that is into j.

(iii) If i j in H, then there exists a σ-inducing path given S in G between i and j
that is both into i and into j.

Proof. (i) Suppose H contains a directed path i = v0 . . . vn = j. Note that for
all k = 0, . . . , n − 1, vk /∈ AncG(S) implies vk ∈ AncG(vk+1). By induction, then,
v0 /∈ AncG(S) implies v0 ∈ AncG(vn).

(ii) There exists a σ-inducing path given S between i and j in G because i and j
are adjacent in H and H represents G given S. If all σ-inducing paths given S
between i and j in G were out of j, then by Lemma 12.2.5, j ∈ AncG({i} ∪ S),
contradicting the orientation i j in H. Therefore, there must be a σ-inducing
path given S between i and j in G that is into j. This shows (ii).

(iii) This follows from case (ii) in combination with Lemma 12.2.6.

We will frequently use that every mixed graph (of a certain type) that represents a
CDMG must be a valid σ-PAG.

Proposition 12.3.5. Let H = (J, V, E) be a mixed graph with input nodes J , output
nodes V and edges E of the types { , , , , , , , , }. Let G be a
CDMG with input nodes J and output nodes V + = V ∪̇S. If H represents G given S,
then H is a σ-PAG.

Proof. By assumption: there is at most one edge between two distinct nodes; there are
no edges between a node and itself; no input node is adjacent to any other input node.

We show that H is σ-ancestral. First, suppose that H contained a directed path
i = v0 . . . vn = j. By Lemma 12.3.4, then i ∈ AncG({j} ∪ S). If H contained
an edge j i, this would imply i /∈ AncG({j} ∪ S), a contradiction. Hence such edges
cannot occur. This means that no directed cycles and no almost directed cycles occur
in H. It remains to show that no unshielded triple of the form i j k can occur in
H. We prove this by contradiction. Since j ∈ AncG({k}∪S) but j /∈ AncG({i}∪S), we
must have j ∈ AncG(k). Also, k ∈ AncG({j}∪S). Since j ∈ AncG(k) and j /∈ AncG(S),
we must have k ∈ AncG(j). But then j ∈ ScG(k), which gives a contradiction with
Lemma 12.2.7.

We continue to show that H is maximal. Suppose there is a definitely inducing path
µ in H between two distinct nodes u, v ∈ V ∪ J . We first show that this implies that
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{u, v} ̸⊆ J . If u, v ∈ J , then a definitely inducing path between them cannot consist of
a single edge, because all node pairs in J are non-adjacent in H by assumption. Hence
it must be of the form u w1 . . . wn v (with n ≥ 1) with w1, wn ∈ V . But since
all nodes w1, . . . , wn are definite colliders, none of them is in AncG(S). Since all nodes
w1, . . . , wn are in AncH({u, v}), by Lemma 12.3.4, they must all be in AncG({u, v}).
Since G is a CDMG, they must all be in {u, v} ⊆ J , a contradiction. Hence, there
cannot be a definitely inducing path in H between two nodes in J .

Every edge i j on µ corresponds with a σ-inducing path πij given S in G between
i and j. By Lemma 12.3.4, these σ-inducing paths can be chosen to be into i if the
edge is i j, into j if the edge is i j, and both into i and j if the edge is i j.
Concatenate all πij (following the edge ordering of µ) into a walk π in G between u
and v. Every non-endpoint node on µ is a definite collider on µ, by assumption. By
construction, these nodes then become colliders on π. Since definite colliders on µ are
in AncH({u, v}) by assumption, they are in AncG({u, v} ∪ S) by Lemma 12.3.4. All
colliders on some πij are in AncG({i, j} ∪ S). Hence, they are in AncG({u, v} ∪ S).
So, all colliders on π are in AncG({u, v} ∪ S). All non-endpoint non-colliders on some
πij are unblockable, and therefore all non-endpoint non-colliders on π are unblockable.
Therefore, π is a σ-inducing walk given S in G. So there must also be a σ-inducing path
given S in G between u and v. Because H represents G given S, we conclude that u, v
must be adjacent in H.

The following result shows that every CDMG can be represented by a σ-PAG given
some set of selection nodes.

Proposition 12.3.6. Let G be a CDMG with input nodes J and output nodes V + =
V ∪̇S. There exists a σ-PAG, denoted PAGσ(G |S), that represents G given S.

Proof. We will construct a mixed graph H with input nodes J and output nodes V as
follows. Let two nodes i, j ∈ J ∪ V be adjacent in H if and only if i ̸= j, {i, j} ̸⊆ J
and there is a σ-inducing path given S between i, j in G. In that case, orient the edge
between i and j in H as follows:

i j if i ∈ AncG({j} ∪ S) and j ∈ AncG({i} ∪ S),
i j if i ∈ AncG({j} ∪ S) and j /∈ AncG({i} ∪ S),
i j if i /∈ AncG({j} ∪ S) and j ∈ AncG({i} ∪ S),
i j if i ̸∈ AncG({j} ∪ S) and j ̸∈ AncG({i} ∪ S).

It is obvious by construction that H represents G given S. It is a valid σ-PAG by
Proposition 12.3.5.

The σ-PAG constructed in this way contains no circle edge marks by construction,
and is therefore maximally informative about ancestral relations (that is, as informative
as a σ-PAG can be).

Proposition 12.3.7. Let G be a CDMG with input nodes J and output nodes V + =
V ∪̇S and H a σ-PAG that represents G given S. If i j k in H (with i, j, k

297



distinct nodes) and j ∈ ScG(k), then i k in H and k /∈ AncG({i}∪S). If, additionally,
the edge in H between i and j is i j, then also i /∈ AncG({k} ∪ S).

Proof. Since ScG(k) ⊇ {j, k}, k cannot be in J .
By Lemma 12.3.4, i j in H implies the existence of a σ-inducing walk between i

and j given S in G that is into j. This can be extended by concatenation with a directed
path from j to k into a σ-inducing walk between i and k given S in G that is into k.
Hence, there must be an edge i k in H.

If k ∈ AncG({i} ∪ S), then also j ∈ AncG({i} ∪ S) because j ∈ AncG(k), a contradic-
tion.

If i j in H, then i /∈ AncG({j} ∪ S). If i ∈ AncG({k} ∪ S), then i ∈ AncG(k)
because i /∈ AncG(S); hence also i ∈ AncG(k) = AncG(j), a contradiction.

The following important result states that the existence of a definitely open path in a
σ-PAG representing a CDMG may imply the existence of a corresponding σ-open path
in the CDMG.

Proposition 12.3.8. Let G be a CDMG with input nodes J and output nodes V + =
V ∪̇S and H a σ-PAG that represents G given S. Let, for n ≥ 2,

π = q0 q1 q2 . . . qn−1 qn

be a definitely Z-open path in H, for Z ⊆ (J ∪ V ) \ {q0, qn}, such that q2, . . . , qn−1 are
definite colliders, and q1 is either a definite non-collider or a definite collider. Then
there exists a (Z ∪ S)-σ-open path in G between q0 and qn.

Proof. The nodes q0, q1, . . . , qn in J ∪ V must all be distinct. For i = 1, . . . , n, let µi be
a σ-inducing path in G between qi−1 and qi that is into qi−1 if the edge qi−1 qi on π,
and into qi if the edge qi−1 qi on π (see Lemma 12.3.4). These can be concatenated
into a walk µ = (µ1, . . . , µn) in G between q0 and qn:

µ1 µn︷ ︸︸ ︷ ︷ ︸︸ ︷
q0 · · · q1 . . . q2 · · · · · · qn−2 . . . qn−1 · · · qn︸ ︷︷ ︸ ︸ ︷︷ ︸

µ2 µn−1

Let Z ⊆ (J ∪ V ) \ {q0, qn}. Since π is assumed to be definitely Z-open, q2, . . . , qn−1 are
all in AncH(Z). We must have that q1 ∈ AncG({q0, q2} ∪ Z ∪ S), as can be seen by
considering the two mutually exclusive cases:

• q1 is a definite collider on π. Then q1 ∈ AncH(Z). By Lemma 12.3.4, q1 ∈
AncG(Z ∪ S).

• q1 is a definite non-collider on π. Then q1 /∈ Z, but q1 ∈ AncG({q0, q2}∪S) because
either q0 q1 or q1 q2 must be on π.

In any case, q1 ∈ AncG({q0, q2} ∪ Z ∪ S).
Consider all walks in G between q0 and qn with the property that
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(a) i

j

k

l

(b) i

j

k

l

Figure 31: Example that shows that not all definitely open paths in a σ-PAG that rep-
resents a CDMG imply the existence of a corresponding σ-open path in the
CDMG. (a) CDMG in which i⊥σ k, represented by the σ-PAG in (b) in which
a definitely open path i j l k exists.

1. all colliders on it are in AncG({q0, qn} ∪ Z ∪ S), and

2. each non-endpoint non-collider on it is not in {q0, qn} ∪ Z ∪ S or is unblockable.

Such walks exist, since the concatenation µ = (µ1, . . . , µn) is one, as we will now show.
To show that the first property holds for µ, note that q2, . . . , qn−1 are in AncH(Z) and

hence, by Lemma 12.3.4, q2, . . . , qn−1 ∈ AncG(Z∪S), a subset of AncG({q0, qn}∪Z∪S).
We already saw that q1 ∈ AncG({q0, qn} ∪ Z ∪ S), which holds in particular if q1 is a
collider on µ. Every internal collider on some µi is in AncG({qi−1, qi} ∪ S), and hence
also these ‘internal’ colliders on µ are in AncG({q0, qn} ∪ Z ∪ S).

For the second property, note that all non-endpoint non-colliders on some µi are
unblockable by assumption. q2, . . . , qn−1 cannot be non-colliders on µ. If q1 is a non-
collider on µ, then it must be a definite non-collider on π and hence q1 /∈ Z (and by
assumption, q1 /∈ S). Hence, the second property also holds for µ.

Let ν be a walk satisfying both properties above with a minimal number of colliders.
We show that all colliders on ν must be in AncG(Z ∪ S).

Suppose on the contrary the existence of a collider k on ν that is not in AncG(Z ∪S).
It must then be in AncG({q0, qn}), by assumption. Then there exists a directed path in
G from k to q0 that does not pass through qn, or there exists a directed path from k to
qn that does not pass through q0. Without loss of generality, assume the former: there
is a directed path in G from k to q0 in G that does not pass through Z ∪S ∪{qn}. Let π
be a shortest path of that type. The directed path π from k to q0 can be concatenated
with the subwalk of ν between k and qn (which is into k) into a walk between q0 and qn.
This walk has the property, but has fewer colliders than ν: a contradiction.

Therefore, ν is a (Z ∪S)-σ-open walk in G between q0 and qn. This means that there
must also exist a (Z ∪ S)-σ-open path in G between q0 and qn.

12.4. Unshielded triples

One of the key steps in the FCI algorithm is the orientation of “unshielded triples”. The
following proposition will later be used to “orient” the edges in unshielded triples in a
σ-PAG representing a CDMG.
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Proposition 12.4.1. Let G be a CDMG with input nodes J and output nodes V + =
V ∪̇S and H a σ-PAG that represents G given S. If (i, j, k) form an unshielded triple
in H with i ∈ V (and j, k ∈ V ∪ J), then either

(i) j /∈ Z for each Z ⊆ (V ∪J)\{i, k} such that i⊥σ
G k |Z∪S, and j /∈ AncG({i, k}∪S),

or

(ii) j ∈ Z for each Z ⊆ (V ∪J)\{i, k} such that i⊥σ
G k |Z∪S, and j ∈ AncG({i, k}∪S).

Proof. Case (i): j /∈ AncG({i, k} ∪ S). By orienting the edge marks at j on the path
i j k in H into i j k (if not already oriented that way), we obtain a
σ-PAG H̃ that represents G. Let Z ⊆ (V ∪ J) \ {i, k} such that i⊥σ

G k |Z ∪S. If j ∈ Z,
the path i j k would be definitely Z-open in H̃. By Proposition 12.3.8, this
implies the existence of a (Z ∪ S)-σ-open walk in G between i and k, a contradiction.
Hence j /∈ Z.

Case (ii): j ∈ AncG({i, k} ∪ S). By orienting the edge marks at j on the path
i j k in H into i j k (if j ∈ AncG({i} ∪ S)) or i j k (if
j ∈ AncG({k}∪S)) or i j k (if j ∈ AncG({i}∪S)∩AncG({k}∪S)), we obtain a
σ-PAG H̃ that represents G. Let Z ⊆ (V ∪ J) \ {i, k} such that i⊥σ

G k |Z ∪S. If j /∈ Z,
the path i j k is definitely Z-open in H̃. By Proposition 12.3.8, this implies
the existence of a (Z ∪ S)-σ-open walk in G between i and k, a contradiction. Hence
j ∈ Z.

Note that in the first case, we can orient the edges as i j k (if they were not
already oriented in this way) to obtain a σ-PAG H̃ that also represents G. In the second
case, we cannot orient the edges, since we don’t know whether j ∈ AncG({i} ∪ S) or
j ∈ AncG({k} ∪ S) or both.

12.5. Discriminating paths

Another step in the FCI algorithm is related to the notion of “discriminating paths”.
This can be considered as an extension of the notion of unshielded triple.

Definition 12.5.1. A path π = (i, j, q1, . . . , qn, k) (with n ≥ 1) in a mixed graph H is a
discriminating path for j if:

(i) i is not adjacent to k in H, and

(ii) for r = 1, . . . , n: qr is a definite collider on π and a parent of i in H.

Figure 32 illustrates this notion.

300



kkqnqn−1· · ·q1jji

Figure 32: Discriminating path (i, j, q1, . . . , qn, k) for j between i and k. Only j and k
could be an input node, all other nodes must be output nodes.

Remark 12.5.2. It is instructive to think about a discriminating path rather as a certain
collection of paths:

i qn k

i qn−1 qn k

i qn−2 qn−1 qn k

...
i q1 . . . qn−1 qn k

i j q1 . . . qn−1 qn k

with the additional requirement that i and k are not adjacent.

The following quintessential property of discriminating paths is analogous to that of
unshielded triples.

Proposition 12.5.3. Let G be a CDMG with input nodes J and output nodes V + =
V ∪̇S and H a σ-PAG that represents G given S. If (i, j, q1, . . . , qn, k) is a discriminating
path in H for j between i and k, then either

(i) j /∈ Z for each Z ⊆ (V ∪J)\{i, k} such that i⊥σ
G k|Z∪S, and j /∈ AncG({q1, i}∪S),

or

(ii) j ∈ Z for each Z ⊆ (V ∪J)\{i, k} such that i⊥σ
G k|Z ∪S, and j ∈ AncG({i}∪S).

In both cases, i /∈ AncG({j} ∪ S).

Proof. Since q1 is a parent of i in H, q1 ∈ AncG({i}∪S). Because q1 is a definite collider
in H, q1 /∈ AncG(S). Hence q1 ∈ AncG(i) \ {i}, which means that i ∈ V . Also, this
implies that i /∈ AncG(j); otherwise, q1 ∈ AncG(j) which contradicts j q1 in H.
Hence i /∈ AncG({j} ∪ S).

We first show that if Z ⊆ (V ∪J)\{i, k} such that i⊥σ
G k |Z∪S, then {q1, . . . , qn} ∈ Z.

This can be seen from the various subpaths in Remark 12.5.2. From the first path: if
qn /∈ Z then this path would be definitely open in H, and hence (by Proposition 12.3.8)
there must be a (Z ∪ S)-σ-open walk in G between i and k, which would contradict
i⊥σ

G k |Z ∪ S. Once we have shown that {qn, qn−1, . . . , qn−r+1} ∈ Z for 1 ≤ r < n, we
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see from the r + 1’th path that qn−r ∈ Z to avoid definitely opening up this path in H,
and thereby avoiding the existence of a (Z ∪ S)-σ-open path in G between i and k.

Case (i): j /∈ AncG({q1, i} ∪ S). By orienting the edge marks at j on the path
i j q1 in H into i j q1 (if not already oriented that way), we obtain a
σ-PAG H̃ that represents G. Let Z ⊆ (V ∪ J) \ {i, k} such that i⊥σ

G k |Z ∪S. If j ∈ Z,
the discriminating path in H̃ is definitely Z-open. By Proposition 12.3.8, this implies
the existence of a (Z ∪ S)-σ-open walk in G between i and k. Contradiction. Hence
j /∈ Z.

Case (ii): j ∈ AncG({q1, i} ∪ S). Since q1 ∈ AncG(i), this implies j ∈ AncG({i} ∪ S).
We already concluded above that i /∈ AncG({j} ∪ S). By orienting the the edge i j
in H as i j, we obtain a σ-PAG H̃ that represents G. Let Z ⊆ (V ∪ J) \ {i, k} such
that i⊥σ

G k |Z ∪ S. If j /∈ Z, the discriminating path in H̃ is definitely Z-open. By
Proposition 12.3.8, this implies the existence of a (Z ∪ S)-σ-open walk in G between i
and k. Contradiction. Hence j ∈ Z.

Note that in the first case, we can orient i j q1 (as far as the edge marks were
not already oriented in this way) to obtain a σ-PAG H̃ that also represents G. In the
second case, we can orient i j (as far as the edge marks were not already oriented in
this way) to obtain a σ-PAG H̃ that also represents G.

12.6. Independence models and Markov equivalence

We start with an abstract definition of an “independence model”, where we extend the
common definition to allow for input nodes.

Definition 12.6.1. Given two disjoint sets J, V (the ‘inputs’ and ‘outputs’, respectively),
we call a subset of

{(A,B,C) : A,B,C ⊆ J ∪ V,A ∩ J = ∅, J ⊆ B ∪ C}

an independence model over V | J . For an element (A,B,C) of an independence model,
we also say that C separates A from B.

Independence models can be used to encode all (conditional) independences in a
Markov kernel.

Definition 12.6.2. For a Markov kernel K(XV |XJ) : XJ 99K XV , we define its inde-
pendence model to be

IM(K(XV |XJ)) := {(A,B,C) : A,B,C ⊆ J∪V,A∩J = ∅, J ⊆ B∪C : XA ⊥⊥
K(XV |XJ )

XB | XC},

i.e., the set of all conditional independences (of restricted form) that K(XV |XJ) satisfies.

Independence models can also encode all separations in a graph.
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Definition 12.6.3. For a CDMG G with input nodes J and output nodes V , define its
σ-independence model to be

IMσ(G) := {(A,B,C) : A,B,C ⊆ J ∪ V,A ∩ J = ∅, J ⊆ B ∪ C : A
σ

⊥
G
B | C},

i.e., the set of all σ-separations (of restricted form) entailed by the graph. Define its
d-independence model to be

IMd(G) := {(A,B,C) : A,B,C ⊆ J ∪ V,A ∩ J = ∅, J ⊆ B ∪ C : A
d

⊥
G
B | C},

i.e., the set of all d-separations (of restricted form) entailed by the graph.

Both IMd(G) and IMσ(G) are independence models over V | J (with J the input
nodes of G and V the output nodes of G). For CADMGs, σ-separation is equivalent to
d-separation, and hence, if G is acyclic, then IMd(G) = IMσ(G).

When conditioning on a set of selection variables, we can also define conditional in-
dependence models from graphs as follows.

Definition 12.6.4. For a CDMG G with input nodes J and output nodes V + = V ∪̇S,
define its σ-independence model given S to be

IMσ(G |S) := {(A,B,C) : A,B,C ⊆ J ∪ V,A ∩ J = ∅, J ⊆ B ∪ C : A
σ

⊥
G
B | C ∪ S},

i.e., the set of all σ-separations (of restricted form) involving nodes not in S, when also
conditioning on S. Define its d-independence model given S to be

IMd(G |S) := {(A,B,C) : A,B,C ⊆ J ∪ V,A ∩ J = ∅, J ⊆ B ∪ C : A
d

⊥
G
B | C ∪ S},

i.e., the set of all d-separations (of restricted form) involving nodes not in S, when also
conditioning on S.

Hence, also IMσ(G |S) and IMd(G |S) are independence models over V | J (with J the
input nodes of G and V the output nodes of G except for those in S). For CADMGs,
σ-separation is equivalent to d-separation, and hence, if G is acyclic, then IMd(G |S) =
IMσ(G |S).

For notational convenience, we define symmetrized versions of independence models.

Definition 12.6.5. Given two disjoint sets J, V (the ‘inputs’ and ‘outputs’, respectively),
and an independence model I over V | J , we define the symmetrized independence model
as

I+ := I ∪ {(B,A,C) : (A,B,C) ∈ I}.

The input to the extended FCI algorithm will consist of an independence model over
V | J , and its output will consist of a mixed graph with input nodes J and output nodes
V . One of the nice properties of the extended FCI algorithm is that if the input of FCI
is the independence model of a CDMG given S, then the output of FCI will be a σ-PAG
that represents the “Markov equivalence class” of the CDMG (at least if S = ∅ or J = ∅).
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Definition 12.6.6. Let G1, G2 be two CDMGs with input nodes J and output nodes
V +
1 = V ∪̇S1, V +

2 = V ∪̇S2, respectively. We call G1 and G2 σ-Markov equivalent
w.r.t. V | J if IMσ(G1 |S1) = IMσ(G2 |S2), and d-Markov equivalent w.r.t. V | J if
IMd(G1 |S1) = IMd(G2 |S2).

When exploiting conditional independences for causal discovery, one typically has to
make some kind of faithfulness assumption. The faithfulness assumption that we will
make for the extended FCI algorithm will be that the (restricted) conditional indepen-
dences in the conditioned Markov kernel are identical to the (restricted) σ-separations
in the graph, given S:

IM(PM(XV | XS ∈ ξS, do(XJ))) = IMσ(GV +|J(M) |S).

12.7. Skeleton search

The FCI algorithm consists of two phases, the skeleton search phase, which is followed
by the orientation phase. In this subsection, we describe the skeleton search phase.

Definition 12.7.1. Given a σ-PAG H = (J, V, E), its skeleton is the mixed graph
skel(H) := (J, V, F ) with the same nodes, and with a bicircle edge i j in F if and
only if i j in E (i.e., if i and j are adjacent in H).

Hence, the only edge type occurring in the skeleton is the bicircle edge. The skeleton
has no edge between any pair of input nodes. We will later frequently refer to the
unordered pairs of nodes that may be adjacent:

Definition 12.7.2. For input nodes J and output nodes V , define

separable(V |J) := {{i, j} : i ∈ V, j ∈ J ∪ V, i ̸= j}.

The aim of the skeleton search phase of the FCI algorithm is to construct the skeleton
of the σ-PAG that represents a CDMG given S from the σ-independence model given
S of the CDMG. It does this by testing for each separable edge in the skeleton whether
it can find any subset of nodes that separates the two nodes. If it finds a separating set
between an (unordered) pair of distinct nodes {i, j}, the set is stored as sepset({i, j}).
The orientation phase later makes use of these separating sets found in the skeleton
phase.

A brute-force search over all possible subsets of (J∪V )\{i, j}, as in Algorithm 1, would
be a straightforward solution. However, it is also computationally extremely expensive
for all but the smallest cardinalities of V and J , and statistically not very reliable in case
the separations have to be tested with conditional independence tests on finite data.

To get some inspiration on how to address this, we will first describe the skeleton
search phase of the PC algorithm, an ancestor of the FCI algorithm designed for DAGs
[SGS00]. The PC skeleton phase (Algorithm 2) searches for separating sets of increasing
cardinality. As candidates for a separating set between nodes i, j ∈ H, it considers all
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Algorithm 1 Brute-force skeleton algorithm.
1: input Input node set J ; output node set V ; independence model I over V | J
2: output mixed graph H with input nodes J and output nodes V ; separating sets

sepset

3: H ← (J, V, ∅)
4: for each (i, j) ∈ separable(V |J) do
5: add edge i j to H
6: for each Z ⊆ (V ∪ J) \ {i, j} do
7: if (i, j, Z) ∈ I+ then ▷ found a separating set
8: delete edge i j from H
9: sepset({i, j})← Z

10: break
11: end if
12: end for
13: end for

Algorithm 2 Original PC skeleton algorithm.
1: input Output node set V ; independence model I over V | ∅
2: output mixed graph H with output nodes V ; separating sets sepset
3: initialize H as a complete graph with only bicircle ( ) edges
4: n← 0
5: repeat
6: repeat
7: select i, j ∈ V with i j in H and #(AdjH(i) \ {j}) ≥ n
8: select a subset Z ⊆ AdjH(i) \ {j} of cardinality n
9: if (i, j, Z) ∈ I+ then

10: delete edge i j from H
11: sepset({i, j})← Z
12: end if
13: until no more such tuples (i, j, Z) can be selected
14: n← n+ 1
15: until for all i, j ∈ V with i j in H, #(AdjH(i) \ {j}) < n
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subsets of AdjH(i) and all subsets of AdjH(j). The rationale is that if G is a DAG, then
either PaG(i) ⊆ AdjH(i) or PaG(j) ⊆ AdjH(j) d-separates i from j.

We can easily extend this to deal with input nodes as well, see Algorithm 3. We may
restrict ourselves to search for separating sets that contain all nodes in J (except j itself,
if j ∈ J). We therefore only need to consider subsets of neighbours of i that are not in
J , in increasing cardinality.

Algorithm 3 Extended PC skeleton algorithm PCskeleton(J, V, I).
1: input Input node set J ; output node set V ; independence model I over V | J
2: output mixed graph H with input nodes J and output nodes V ; separating sets

sepset

3: H ← (J, V, ∅)
4: for each (i, j) ∈ separable(V |J) do
5: add edge i j to H
6: end for
7: n← 0
8: repeat
9: repeat

10: select i ∈ V, j ∈ V ∪ J with i j in H and #(AdjH(i) \ (J ∪ {j})) ≥ n
11: select a subset Z ⊆ AdjH(i) \ (J ∪ {j}) of cardinality n
12: if (i, j, Z ∪ (J \ {j})) ∈ I+ then
13: delete edge i j from H
14: sepset({i, j})← Z ∪ (J \ {j})
15: end if
16: until no more such tuples (i, j, Z) can be selected
17: n← n+ 1
18: until for all i ∈ V, j ∈ V ∪ J with i j in H, #(AdjH(i) \ (J ∪ {j})) < n

The underlying idea may no longer hold if G is a CADMG or a CDMG, or in case of
selection bias. The original proposal (which motivated the somewhat optimistic adjective
“Fast” in the name of the FCI algorithm [SMR95]) replaces the subsets of adjacent nodes
by so-called “Possible-D-Sep” sets.85 Before we can define these, we need some definitions
and theory.

Definition 12.7.3. Let G be a CDMG with input nodes J and output nodes V + = V ∪̇S.
For distinct nodes i, j ∈ V ∪̇ J , define SEPG(i, j) as the set of nodes k ∈ V such that
k ̸= i and there is a walk π in G between i and k such that every node on π is in
AncG({i, j} ∪ S), and every non-endpoint non-collider on π is unblockable.

The name SEPG(i, j) is motivated by the following property.

85An alternative search strategy was proposed that can be considerably faster in practice, for which
it can be shown that the corresponding FCI+ algorithm is of polynomial-time complexity in the
number of nodes, as long as the degree of the DPAG is bounded [CMH13].
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Proposition 12.7.4. Let G be a CDMG with input nodes J and output nodes V + =
V ∪̇S. Let i ∈ V and j ∈ J ∪ V be distinct nodes. If there exists no σ-inducing walk
given S between i, j in G, then SEPG(i, j)∩{i, j} = ∅ and i⊥σ

G j | SEPG(i, j)∪(J \{j})∪S.

Proof. By definition, SEPG(i, j) ⊆ AncG({i, j} ∪ S) and i /∈ SEPG(i, j). If j ∈ SEPG(i, j),
the walk π in Definition 12.7.3 between i and j must be σ-inducing given S. Since there
exists no σ-inducing walk given S between i, j in G by assumption, j /∈ SEPG(i, j).

We prove the σ-separation by contradiction. Write Z := SEPG(i, j) ∪ (J \ {j}) ∪ S.
Suppose there exists a path in G between i and {j} ∪ J that is σ-open given Z. It
cannot end in a node in J \ {j}, and hence it must end in j. Let π = v0 . . . vn
with v0 = i and vn ∈ j be such a path consisting of a minimal number of nodes. Every
node on π must be in AncG({i, j} ∪ S) ∪ J , since by Lemma 10.5.2, each node on π is
in AncG(({i, j} \ J) ∪ Z), and Z ⊆ AncG({i, j} ∪ S) ∪ J . π can only contain nodes in J
as endnodes (otherwise we could shorten the path). In other words, the only node on π
that could be in J is j.

Denote the subwalk of π from va to (and including) vb by π(va, vb), for 0 ≤ a ≤ b ≤ n.
We will show that for all k = 1, . . . , n, π(v0, vk) has the property that every non-endpoint
non-collider on it is unblockable. The property trivially holds for k = 1. Suppose it
holds for k < n. Since v0, . . . , vk are all in AncG({i, j} ∪ S), and all non-endpoint
non-colliders on π(v0, vk) are unblockable, we conclude that vk ∈ SEPG(i, j). If vk is a
non-collider on π(v0, vk+1), it must be unblockable, because π(v0, vk+1) is Z-σ-open and
vk ∈ SEPG(i, j) ⊆ Z. So the property also holds for k + 1.

In particular, we can conclude that j = vn ∈ SEPG(i, j), a contradiction.

In practice, one does not know the set SEPG(i, j) if G is unknown. One can, however,
easily obtain a ‘bound’ on this set by identifying a superset.

Definition 12.7.5. Let H0 = (J, V, E) be a mixed graph with input nodes J , output
nodes V and edges E of the types { , , , , , , , , }. For i ∈ V, j ∈
J ∪ V distinct, we define posSEPH0

(i, j) ⊆ V to consist of those nodes k ∈ V such that
k ̸∈ {i, j} and there is a path between i and k in H0 such that for every subsequent triple
a b c on the path, either the triple is a definite collider in H0, or a triangle in
H0.

We can now show that:

Lemma 12.7.6. Let G be a CDMG with input nodes J and output nodes V + = V ∪̇S.
Let H0 be the mixed graph constructed by lines 3–8 of Algorithm 4 when run on the
independence model IMσ(G |S). Then, for i ∈ V and j ∈ J ∪ V distinct nodes, if there
is no σ-inducing path given S in G between i and j, then SEPG(i, j) ⊆ posSEPH0

(i, j).

Proof. Note that the skeleton of H0 is a supergraph of the skeleton of PAGσ(G |S), i.e.,
every adjacency in PAGσ(G |S) must also be an adjacency in H0. Let k ∈ SEPG(i, j).
Since there is no σ-inducing path given S in G between i and j, {i, j} ∩ SEPG(i, j) = ∅
by Proposition 12.7.4, and hence k ̸= i and k ̸= j. By definition, there is a path π in
G between i and k with the property that every node on π is in AncG({i, j} ∪ S) ∩ V ,
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and every non-endpoint non-collider on π is unblockable. There is a corresponding path
π′ in H0 between i and k that consists of the same sequence of nodes (but may have
different edges between the nodes).

Consider a subsequent triple a b c on π. Suppose b is a collider on π. In
H0, a must also be adjacent to b, and b to c. If a and c are not adjacent in H0, then
a separating set for a and c was found during the construction of H0, or a and c are
both in J . The latter would be a contradiction. Therefore, it will have been oriented
as a definite collider in H0 according to Proposition 12.4.1. Otherwise (if a and c are
adjacent in H0), it forms a triangle in H0. If b is a non-collider on π, then it must be
unblockable. But in that case, a b c is a σ-inducing walk given S between a and
c in G. Hence, (a, b, c) will form a triangle in H0. Therefore, k ∈ posSEPH0

(i, j).

Algorithm 4 Extended FCI skeleton algorithm FCIskeleton(J, V, I).
1: input Input node set J ; output node set V ; independence model I over V | J
2: output mixed graph H with input nodes J and output nodes V ; separating sets

sepset

3: (H0, sepset)← PCskeleton(J, V, I)
4: for each unshielded triple (i, j, k) in H0 with i, j ∈ V do ▷ orient colliders
5: if j /∈ sepset({i, k}) then
6: orient it as i j k
7: end if
8: end for
9: for each i ∈ V, j ∈ V ∪ J with i ̸= j do ▷ construct Possible-D-Sep sets

10: calculate posSEPH0
(i, j)

11: end for
12: H ← (J, V, {i j : i j ∈ H0}) ▷ forget orientations
13: n← 0
14: repeat ▷ search for separating sets
15: repeat
16: select i ∈ V, j ∈ V ∪ J with i j in H and #(posSEPH0

(i, j)) ≥ n
17: select a subset Z ⊆ posSEPH0

(i, j) of cardinality n
18: if (i, j, Z ∪ (J \ {j})) ∈ I then
19: delete edge i j from H
20: sepset({i, j})← Z ∪ (J \ {j})
21: end if
22: until no more such tuples (i, j, Z) can be selected
23: n← n+ 1
24: until for all i ∈ V, j ∈ V ∪ J with i j in H, #(posSEPH0

(i, j)) < n

So we do not need to search over all possible subsets of (J ∪V )\{i, j} for a separating
set between i, j, but only the subsets in posSEPH0

(i, j). The skeleton phase of the
extended FCI algorithm is described in Algorithm 4. It is an extension of the original
FCI skeleton search [SMR95] to deal with input nodes. It first runs the extended PC
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skeleton phase (Algorithm 3) and orients unshielded triples, obtaining a directed mixed
graph H0. Then it calculates the sets posSEPH0

(i, j) for all distinct pairs (i, j) with
i ∈ V, j ∈ J ∪ V . If i⊥σ

G j | Z ∪ S for some Z ⊆ (J ∪ V ) \ {i, j}, then i⊥σ
G j | Z∗ ∪ S

for some Z∗ ⊆ posSEPH0
(i, j). Since some of the oriented colliders may be incorrect in

H0 (because the PC skeleton phase may not have found all separating sets), it removes
all orientations from H0 and then continues with a more extensive search for separating
sets, similar to how the PC skeleton phase is done, but now using posSEPH0

(i, j) instead
of AdjH0

(i) \ {j} to find candidate nodes for the separating set.

Theorem 12.7.7. The extended FCI skeleton algorithm (Algorithm 4) is sound: if its
input consists of the σ-independence model IMσ(G |S) given S of a CDMG G, then its
output will be skel(PAGσ(G |S)). Furthermore, i⊥σ j | sepset({i, j}) for all i ∈ V, j ∈
V ∪ J for node pairs (i, j) ∈ separable(V |J) that are non-adjacent in the skeleton.

Proof. Let G be a CDMG with input nodes J and output nodes V + = V ∪̇S and
I = IMσ(G |S) its σ-independence model given S. By Lemma 12.7.6, the mixed graph
H0 constructed by lines 3–8 has the property that for distinct i ∈ V, j ∈ J ∪V , if there is
no σ-inducing path given S inG between i and j, then SEPG(i, j) ⊆ posSEPH0

(i, j). Thus,
if i ∈ V and j ∈ J ∪ V are not adjacent in skel(PAGσ(G |S)), then we are guaranteed
that for some subset Z ⊆ posSEPH0

(i, j), we have that i⊥σ
G j |(Z ∪ J) \ {j} ∪ S. The

graph H constructed in lines 12–24 will be a mixed graph with input nodes J and output
nodes V that only has bicircle edges. It has an edge between any pair of distinct nodes
i, j ∈ J ∪ V if and only if {i, j} ̸⊆ J and there is no set Z ⊆ (J ∪ V ) \ {i, j} such that
i⊥σ

G j |Z ∪ S. Furthermore, if there is no edge in H between a pair of distinct nodes
i, j ∈ J ∪V , then either {i, j} ⊆ J , or i⊥σ

G j | sepset({i, j})∪S. By Proposition 12.2.3,
this implies that two distinct nodes i, j ∈ J ∪ V are adjacent in H at this stage if and
only if there is a σ-inducing walk given S in G between i and j. Hence H must be
skel(PAGσ(G |S)).

12.8. FCI Algorithm

We are now ready to describe a causal inference algorithm that is an extension of the
original Fast Causal Inference (FCI) algorithm of [SMR95] to deal with input nodes
and cycles. It is presented as Algorithm 5. Its input is an independence model over
V | J , where V and J are index sets of output and input nodes, respectively. Its output
is a mixed graph with input nodes J and output nodes V . It starts with a skeleton
phase (line 3, see Algorithm 4) that is aimed at deducing the adjacencies between the
nodes, and to find sets that separate two separable node pairs. Then, it runs various
orientation rules (lines 4–16) that iteratively orient circle edge marks into tails and
arrowheads. Note that by convention, the labeled nodes within each orientation rule are
assumed to be distinct (for example, in R0, it is implicitly assumed that i ̸= j ̸= k ̸= i).
For the special case J = ∅, the algorithm reduces to the standard formulation of the
FCI algorithm [Zha08].86

86Compared to the standard formulation of [Zha08], which assumes no input nodes, we have adapted
the skeleton search phase (by starting with a mixed graph that contains no edges between input
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Algorithm 5 Extended FCI Algorithm.
1: input Input node set J ; output node set V ; independence model I over V | J
2: output mixed graph H with input nodes J and output nodes V
3: (H, sepset)← FCIskeleton(J, V, I)
4: for each edge j v in H with j ∈ J , v ∈ V do
5: orient j v
6: end for
7: repeat

R0 if i j k in H with i /∈ J , and i and k are not adjacent in H, then orient
i j k if j /∈ sepset({i, k})

8: until this orientation rule is not applicable
9: repeat

R1 if i j k in H with i /∈ J , and i and k are not adjacent in H, then orient
i j

R2 if i j k or i j k in H, and i k in H, then orient i k

R3 if i j k and i l k and l j in H with i /∈ J , and i and k are not
adjacent in H, then orient l j

R4 if (i, j, q1, . . . , qn, k) is a discriminating path in H for j, and if i j in H, then
orient i j if j ∈ sepset({i, k}) and orient i j q1 if j /∈ sepset({i, k})

10: until none of these orientation rules is applicable
11: repeat

R5 if i j in H, and there is an uncovered circle path i k · · · l j
in H such that i is not adjacent to l and j is not adjacent to k, then orient
i k · · · l j i

12: until this orientation rule is not applicable
13: repeat

R6 if i j k in H, then orient j k

R7 if i j k in H with i /∈ J , and i and k are not adjacent in H, then orient
i j

14: until none of these orientation rules is applicable
15: repeat

R8 if i j k in H, and i k in H, then orient i k

R9 if i k, and π = (i, j, . . . , k) is an uncovered possibly directed path in H from
i to k such that j and k are not adjacent in H, then orient i k

R10 if i k in H, j k l in H, π1 is a uncovered possibly directed path in
H from i to j, and π2 is a uncovered possibly directed path in H from i to l,
then let u1 be the node adjacent to i on π1 (possibly u1 = j) and u2 the node
adjacent to i on π2 (possible u2 = l); if u1 ̸= u2, and u1 and u2 are not adjacent
in H, then orient i k

16: until none of these orientation rules is applicable

310



Theorem 12.8.1 (Extended FCI Soundness). The Extended FCI algorithm (Algorithm 5)
is sound: if its input consists of the σ-independence model IMσ(G |S) of a CDMG G
given S, then its output will be a valid σ-PAG H that represents G given S.

Proof. Let G be a CDMG with input nodes J and output nodes V + = V ∪ S and
I = IMσ(G |S) its σ-independence model given S.

The skeleton phase in line 3, which invokes Algorithm 4, is sound (Theorem 12.7.7).
That is, it computes H = skel(PAGσ(G |S)), and sepset will contain a separating set
of i and j for every edge i j absent in H with i ∈ V, j ∈ J ∪ V, i ̸= j. The next
step, line 4, orients the edges between input and output nodes in H. The result is then
a valid σ-PAG that represents G given S. The rest of the proof proceeds by induction.

Now that the skeleton has been determined, the orientations (edge marks) of the edges
will be deduced. We show for each of the orientation rules that under the assumption
that the current H is a valid σ-PAG that represents G given S, applying the rule yields
an updated H that is still a valid σ-PAG that represents G given S. We first exploit
the modeling assumptions on the input nodes in line 4 to partially orient edges con-
necting input and output nodes. The soundness of this orientation step stems from
Lemma 12.2.8.

Some of the rules (R1, R3, R5, R6, R7, R9, R10) assume that rule R0 has been
exhaustively applied, which is the reason that rule R0 is performed before the other
orientation rules are performed. Additionally, rule R6 assumes that rule R5 has been
exhaustively applied.

In the following, we will always assume that the antecedent of the rule holds for a
mixed graph H that is a valid σ-PAG that represents CDMG G given S. This implies,
in particular, that if v w in H or v w in H, then v /∈ J .

R0 “If i j k in H, with i /∈ J , and i and k are not adjacent in H, then orient
i j k if j /∈ sepset({i, k}).”
It follows from Proposition 12.4.1 that H still represents G given S after the
orientation of the unshielded collider.

R1 “If i j k in H with i /∈ J , and i and k are not adjacent in H, then orient
i j.”
We first show that j ∈ AncG(i). Since the triple (i, j, k) is an unshielded triple
in H with i /∈ J , but has not been oriented as a collider by R0, we conclude
that j ∈ sepset({i, k}). By Proposition 12.4.1, j ∈ AncG({i, k} ∪ S). Since H
represents G and j k in H, j ̸∈ AncG({k} ∪ S). Therefore, j ∈ AncG(i). Thus
if we orient i j, the mixed graph still represents G given S. In particular,
the orientation i j k with i, k non-adjacent cannot occur. Therefore, if we
orient i j, the resulting mixed graph H will still represent G.

nodes, limiting the paths in the calculation of the posSEPH0
(i, j) sets to output nodes only, and by

including all input nodes, except j itself, into the separating set). Furthermore, we added step 4 to
orient the edges between input and output nodes. The formulation of orientation rules R0, R1, R3,
R7 is slightly different for this extended version (as these would not be valid in case both i, k ∈ J),
and the rest of the algorithm is unchanged.
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R2 “If i j k or i j k in H, and i k in H, then orient i k.”
By the antecedent of the rule, and sinceH representsG, we have k /∈ AncG({j}∪S).
In case i j k, we have i ∈ AncG({j} ∪ S), so if k were in AncG(i), it would
follow that k ∈ AncG({j} ∪ S), a contradiction. In case i j k, we have
j ∈ AncG({k}∪S), so if k were in AncG(i), it would follow that j ∈ AncG({i}∪S),
a contradiction. Hence, in both cases, we must have k ̸∈ AncG(i). In both cases,
we also have k /∈ AncG(S) because of the arrowhead on j k. Therefore, after
orienting i k in H, the resulting mixed graph still represents G.

R3 “If i j k and i l k and l j in H with i /∈ J , and i and k are not
adjacent in H, then orient l j.”
Since (i, l, k) is an unshielded triple in H with i /∈ J that was not oriented as a col-
lider byR0, we must have that l ∈ AncG({i, k}∪S) by Proposition 12.4.1. Assume,
for the sake of contradiction, that j ∈ AncG({l} ∪ S). Then j ∈ AncG({i, k} ∪ S).
This contradicts that j /∈ AncG({i, k} ∪ S) from i j k in H. Hence,
j /∈ AncG(l ∪ S). After orienting l j in H, the resulting mixed graph still
represents G.

R4 “If (i, j, q1, . . . , qn, k) is a discriminating path in H for j, and if i j in H, then
orient i j if j ∈ sepset({i, k}) and orient i j q1 if j /∈ sepset({i, k}).”
It follows immediately from Proposition 12.5.3 that applying this rule yields an
updated mixed graph that still represents G.

R5 “If i j in H, and there is an uncovered circle path i k · · · l j
in H such that i is not adjacent to l and j is not adjacent to k, then orient
i k · · · l j i.”
There is an uncovered cycle consisting of (at least 4) edges in H. Lemma 12.8.2
implies that each node on the uncovered cycle must be in AncG(S). Hence we can
orient all edges on the cycle as undirected, and this yields a mixed graph that still
represents G given S.

R6 “If i j k in H, then orient j k.”
Only R5 could have introduced the undirected edge. In that case, we know that
both i and j are in AncG(S) from Lemma 12.8.2. Hence we can orient j k and
the updated mixed graph will still represent G given S.

R7 “If i j k in H with i /∈ J , and i and k are not adjacent in H, then orient
i j.”
Suppose after orienting i j k, the mixed graph would still represent G
given S. If j ∈ AncG({k} ∪ S), then we could further orient i j k and
the mixed graph would still represent G given S, yielding a contradiction because
an unshielded triple of that form cannot occur. So j /∈ AncG({k} ∪ S), and we
can orient i j k to obtain a mixed graph that still represents G given
S. But then we have an unshielded collider (i, j, k) with i /∈ J that should have
been oriented by R0, another contradiction. Hence we can orient i j and the
resulting mixed graph will still represent G given S.
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R8 “If i j k in H, and i k in H, then orient i k.”
It follows immediately from Lemma 12.3.4 that i ∈ AncG({k}∪S). Thus, applying
this rule yields an updated mixed graph that still represents G.

R9 “If i k, and π = (i, j, . . . , k) is an uncovered possibly directed path in H from i
to k such that j and k are not adjacent in H, then orient i k.”
Note that j /∈ J as either i j or i j. The unshielded triple (j, i, k), with
j /∈ J , was not oriented as a collider by R0, and therefore i ∈ AncG({j, k} ∪ S).
If i ∈ AncG(j), then Lemma 12.8.3 then states that i ∈ AncG(k). Therefore, we
conclude that i ∈ AncG({k} ∪ S). Applying the rule therefore yields an updated
mixed graph that still represents G.

R10 “Suppose that i k in H, j k l in H, π1 is a uncovered possibly directed
path in H from i to j, and π2 is an uncovered possibly directed path in H from
i to l. Let u1 be the node adjacent to i on π1 (possibly u1 = j) and u2 the node
adjacent to i on π2 (possibly u2 = l). If u1 ̸= u2, and u1 and u2 are not adjacent
in H, then orient i k.”
Because u1 lies on a possibly directed path starting at i, it cannot be in J ; the same
holds for u2. The unshielded triple (u1, i, u2), with u1, u2 /∈ J , was not oriented by
rule R0, which implies that i ∈ AncG({u1, u2}∪S). If i ∈ AncG(u1), Lemma 12.8.3
gives that i ∈ AncG(j). If i ∈ AncG(u2), Lemma 12.8.3 gives that i ∈ AncG(l). In
both cases, i ∈ AncG({k} ∪ S), because j k l in H. So we conclude that
i ∈ AncG({k} ∪ S) and can orient i k to obtain an updated mixed graph that
still represents G given S.

Since each of these orientation rules leaves the skeleton (adjacencies) of H invariant, and
after each orientation rule, H still represents G, H remains a valid σ-PAG throughout
the orientation phase by Proposition 12.3.5.

The following two lemmata are applicable after the initial phase of the extended FCI
algorithm, once rule R0 has been exhaustively applied. The first concerns uncovered
circle paths, the second uncovered possibly directed paths.

Lemma 12.8.2. Let H be a mixed graph that represents G given S in which rule R0
has been exhaustively applied. If i j in H, and there is an uncovered circle path
i k · · · l j in H such that i is not adjacent to l and j is not adjacent to
k, then every node on the path is in AncG(S).

Proof. There is an uncovered cycle consisting of (at least 4) edges in H. Note that
none of the nodes on the cycle can be in J , as each node has two or more circle edge
marks. Suppose we orient one of the circles into an arrowhead and the new mixed graph
still represents G given S. Then we could make use of rule R1 repeatedly to orient
the whole cycle as a directed cycle, and the resulting mixed graph should still represent
G given S. However, that would be a contradiction, since it contains a directed cycle.
Hence, any circle edge mark on the cycle that we orient as an arrowhead would yield a
mixed graph that no longer represents G given S. In other words, each node on the cycle
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must be ancestor in G of its neighboring node, or of the selection set S. This implies
that every node on the cycle must be in AncG(S). Indeed, if a given node on the cycle
is not in AncG(S), then it must be ancestor in G of its neighbors. Its neighbors then
cannot be in AncG(S) either, and therefore must be ancestor in G of their neighbors.
But then we would have an unshielded triple of nodes that are in the same strongly
connected component of G: a contradiction with Lemma 12.2.2.

Lemma 12.8.3. Let H be a mixed graph that represents G given S in which rule R0
has been exhaustively applied. Let v1 . . . vn be an uncovered possibly directed
path from v1 to vn (with n ≥ 2) in H. If there is an edge k v1 in H and if
v1 ∈ AncG({v2} ∪ S), then we conclude that v1 ∈ AncG(vn).

Proof. Note that v1, v2, . . . , vn are all not in J , because each of them must have an
arrow head or circle edge mark. We can orient v1 v2 because of the assumption
that v1 ∈ AncG({v2} ∪ S). Note that v1 ∈ AncG(v2) because v1 /∈ AncG(S) due to
the arrowhead at v1 on the edge k v1. If n = 2, then we immediately conclude
that v1 ∈ AncG(vn). So assume n > 2. We distinguish two cases: v2 ∈ AncG(v1) and
v2 /∈ AncG(v1).

If v2 /∈ AncG(v1), we can orient v1 v2, since v2 ∈ AncG(S) would imply v1 ∈
AncG(S), a contradiction. By the same reasoning as in the proof of rule R1, we conclude
that v2 ∈ AncG(v3), and that we can orient v2 v3. We can iterate this reasoning
subsequently on all remaining edges on the uncovered possibly directed path to deduce
that vi ∈ AncG(vi+1) and we can orient vi vi+1, for i = 3, . . . , n − 1. This leads to
the conclusion that v1 ∈ AncG(vn).

If v2 ∈ AncG(v1), that is v2 ∈ ScG(v1), then we can orient v1 v2. By Lemma 12.2.7,
this implies that k and v2 must be adjacent in H as well. This edge can be oriented as
k v2, because v2 ∈ AncG({k}∪S) would imply v1 ∈ AncG({k}∪S), a contradiction.
The assumption v2 /∈ AncG({v3}∪S) gives a contradiction: we could then orient v2 v3,
obtaining an unshielded triple v1 v2 v3. Hence v2 ∈ AncG({v3} ∪ S), and we can
orient v2 v3. Because of the arrowhead in k v2 at v2, v2 /∈ AncG(S), and hence
v2 ∈ AncG(v3). If v3 ∈ AncG({v2} ∪ S), then v3 ∈ ScG(v2) (as v3 ∈ AncG(S) \ AncG(v2)
would contradict v2 /∈ AncG(S)). But then v1 and v3 must lie in the same strongly
connected component of G, and should therefore be adjacent in H by Lemma 12.2.2,
which they are not. Hence v3 /∈ AncG({v2} ∪ S) and we can orient v2 v3. The
reasoning now proceeds as in the previous case, and leads to the conclusion that v2 ∈
AncG(vn). Because v1 ∈ AncG(v2), also v1 ∈ AncG(vn).

The soundness of the Extended FCI algorithm immediately implies its consistency
when using consistent conditional independence tests.

Corollary 12.8.4 (Extended FCI Consistency). Let M = (J, V +,W,X , P, f) be a
simple SCM with endogenous variables V + = V ∪̇S ∪̇L (note that we allow addi-
tional latent endogenous variables L here). Let ξS ⊆ XS be a measurable set with
PM(XS ∈ ξS | do(XJ = xJ)) > 0 for all xj ∈ XJ . Assume that we have access to
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infinitely many samples distributed according to the marginal Markov kernel of M on V
after selecting on S:

PM(XV | XS ∈ ξS, do(XJ = xJ)).

Assume also that the following faithfulness assumption holds:

IM(PM(XV | XS ∈ ξS, do(XJ = xJ))) = IMσ(GV ∪S | J(M) |S).

When using asymptotically consistent conditional independence tests (on the i.i.d. sam-
ples of the Markov kernel PM(XV | XS ∈ ξS, do(XJ = xJ))), the Extended FCI al-
gorithm (Algorithm 5) provides an asymptotically consistent estimate Ĥ of the σ-PAG
FCI(IMσ(GV ∪S | J(M) |S)), which represents GV ∪S | J(M) given S.

Proof. The asymptotic consistency of the conditional independence tests means that
the probability of a wrong test result (either Type I or Type II error) vanishes asymp-
totically. Since IM(PM(XV | XS ∈ ξS, do(XJ = xJ))) consists of finitely many con-
ditional independence statements, the test results will agree completely with this con-
ditional independence model with arbitrarily high probability given sufficiently many
samples. By the faithfulness assumption, this conditional independence model agrees
with IMσ(GV ∪S | J(M) |S). By the soundness of the Extended FCI algorithm (Theo-
rem 12.8.1), the σ-PAG that FCI outputs will equal FCI(IMσ(GV ∪S | J(M) |S)) with
arbitrarily high probability given sufficiently many samples.

Because conditional independence tests are not uniformly consistent (as there is no
upper bound on the number of samples needed to distinguish an arbitrarily weak depen-
dence from an independence, without additional assumptions), also the Extended FCI
algorithm is not uniformly consistent. In other words, it is not known in advance how
many samples will be needed to yield a reliable result.

12.9. Completeness

For acyclic G without input nodes (that is, if G is an ADMG), the FCI algorithm was
shown to be complete [Zha08] in the sense that all edge marks that could possibly be
oriented based on the information in IMσ(G |S) will be oriented. Using results on the
characterization of Markov equivalence classes of maximal ancestral graphs [ARSZ05], it
can additionally be shown that the σ-PAG output by FCI represents the Markov equiv-
alence class of G with respect to V in case G is an ADMG. By employing acyclifications,
these results have been extended to cyclic G [MC20], still without input nodes, and with
the additional assumption of no selection bias (S = ∅). The known completeness results
have very long proofs, and we will therefore not provide these here. Instead, we will
only formulate these results, and refer the interested reader to the original papers for
the proofs.

We make the following assumption in order to state the known completeness results.87

87While we believe that it is straightforward to extend the completeness results to allow for both cycles
and selection bias, it is known that the Extended FCI algorithm (Algorithm 5) is incomplete when
also allowing for input nodes.
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Assumption 12.9.1. Given node set V , let:

• GV be the set of all pairs (G,S) of acyclic DMGs G with output nodes V + = V ∪̇S
for some disjoint set S (‘acyclicity’), or

• GV be the set of all pairs (G, ∅) of DMGs G with output nodes V + = V ∪̇ ∅ (‘no
selection bias’).

In both cases, all DMGs in GV have J = ∅ (‘no input nodes’).

In the absence of input nodes (for J = ∅), we can interpret FCI as a mapping that
maps an independence model (on V ) to a mixed graph (with nodes V ). By Theo-
rem 12.8.1, it maps IMσ(G |S), the σ-independence model of a DMG G given S, to a
σ-PAG FCI(IMσ(G |S)) that represents G given S. Additionally, the following (incom-
plete) completeness results are known.

Theorem 12.9.2 (Some FCI completeness results). Under Assumption 12.9.1, the Ex-
tended FCI algorithm (Algorithm 5) is:

(i) arrowhead complete: for all (G,S) ∈ GV , for all i ̸= j ∈ V : there is an arrow-
head i j in FCI(IMσ(G |S)) if i /∈ AncG̃({j} ∪ S) for all (G̃, S̃) ∈ GV with
IMσ(G̃ | S̃) = IMσ(G |S);

(ii) tail complete: for all (G,S) ∈ GV , for all i ̸= j ∈ V : there is a tail i j
in FCI(IMσ(G |S)) if i ∈ AncG̃({j} ∪ S) for all (G̃, S̃) ∈ GV with IMσ(G̃ | S̃) =
IMσ(G |S);

(iii) Markov complete: for all (G1, S1) ∈ GV and (G2, S2) ∈ GV : IMσ(G1 |S1) =
IMσ(G2 |S2) if and only if FCI(IMσ(G1 |S1)) = FCI(IMσ(G2 |S2)).

Proof. The first two claims are proved in [Zha08] under the additional assumption of
acyclicity. In [MC20] it is explained how the characterization of the Markov equivalence
classes of [ARSZ05] can be used to then prove the third claim under that additional
assumption. Furthermore, in [MC20] it is shown how to generalize these results to the
cyclic setting by employing acyclifications, but only under the additional assumption of
no selection bias.

Arrowhead and tail completeness express that the σ-PAG output by FCI is maximally
oriented: any arrowhead or tail that could possibly be deduced from IMσ(G |S), will have
been oriented as such in the σ-PAG. The soundness and Markov completeness properties
together imply that the σ-PAG output by FCI, when given as input the σ-independence
model of a directed mixed graph given some set of latent selection nodes, represents the
σ-Markov equivalence class of G with respect to the observed nodes. In other words,
FCI provides a graphical characterization of the σ-Markov equivalence class.
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A. Appendix: Measure Theoretic Probability

This appendix provides a crash course (or rather, refresher) of concepts from measure
theoretic probability.

A.1. Why Measure Theory?

Discrete and absolute continuous distributions are not general enough

Example A.1.1 (Simple example of a non-discrete non-absolute-continuous distribu-
tion). Consider a uniformly distributed random variable on the interval X := [0, 1], i.e.
X ∼ U [0, 1], which has probability density:

p(x) = 1[0,1](x).

Consider an exact copy of X, which we call Y := X, on Y := [0, 1]. Now consider
the joint distribution of (X, Y ) on X × Y = [0, 1]2. Then only values on the diagonal
∆ := {(x, x) |x ∈ [0, 1]} can be realized by (X, Y ). This simple distribution on [0, 1]2 is
not discrete (as it can attain uncountably many values), and it is also not absolute contin-
uous, since we have:

∫
∆
dx dy = 0, i.e. the (2-dimensional) area of the (1-dimensional)

line is zero. This implies that any density function p would satisfy:
∫
∆
p(x, y) dx dy = 0

as well. This is in contrast to the fact that a probability distribution should always be
normalized:

1 = P ((X, Y ) ∈ ∆) =

∫
∆

p(x, y) dx dy.

Note that we don’t need a probability density to be able to assign probabilities to subsets
D ⊆ [0, 1]2. We can just use the push-forward map:

(X, Y ) : [0, 1]→ [0, 1]× [0, 1], x 7→ (x, x).

and compute:
P ((X, Y ) ∈ D) = P ({x ∈ [0, 1] | (x, x) ∈ D}),

where P on the right here denotes the uniform distribution on [0, 1].
Notation A.1.2 (Unifying the notations to measure theoretic ones). Let X be a random
variable taking values in space X and with probability distribution P . Let F : X → R be
a function. Then we will change the notations for expectation values as follows.

1. Let X be a discrete random variable with probability mass function p. Then define:

E[F (X)] =
∑
x∈X

F (x) · p(x)

=:

∫
F (x)P (dx)

=:

∫
F (x) dP (x)

=:

∫
F dP.

We will consider sums to be special cases of measure integrals.
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2. Let X be a absolute continuous random variable with probability density function
p. Then define:

E[F (X)] =

∫
X
F (x) · p(x) dx

=:

∫
F (x)P (dx)

=:

∫
F (x) dP (x)

=:

∫
F dP.

So both cases can be unified with the 3 commonly used notations:

E[F (X)] =

∫
F dP =

∫
F (x) dP (x) =

∫
F (x)P (dx).

Note that in both cases we also can write: P (A) =
∫
1A dP .

Exercise A.1.3. Show that the following relation holds:∫
F (x)P (dx) =

∫
z P F (dz).

Defining probability distributions on all subsets is too general

Remark A.1.4. When we want to work with a (probability) measure µ we at least want
to require that it is countably additive, i.e. that for pairwise disjoint subsets An ⊆ X ,
n ∈ N, we have:

µ

(⋃
n∈N

An

)
=
∑
n∈N

µ(An).

We will see below that if we do not restrict the subsets An in some way we will encounter
strange behaviour.

Theorem A.1.5 (Vitali, non-existence of Lebesgue measure on all subsets). There does
NOT exist a measure λ on [0, 1] such that:

1. λ can measure every subset A ⊆ [0, 1], and:

2. λ ([a, b]) = b− a for all a ≤ b with a, b ∈ [0, 1].

In other words, there does NOT exist a uniform distribution on [0, 1] that can consistently
assign values to all subsets.
But: such a measure with property 2. exists on the set B[0,1] of all so called Borel subsets
(or even Lebesgue subsets) of [0, 1]. Similar statements hold for higher dimensions and
RD and higher dimensional volumes.
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Example A.1.6 (Vitali set). Consider the following equivalence relation on [0, 1]:

r1 ∼ r2 :⇐⇒ r2 − r1 ∈ Q.

Let [0, 1]/∼ be the set of equivalence classes. By the axiom of choice there exists a
representative system V ⊆ [0, 1] for [0, 1]/∼. This means that the map:

V → [0, 1]/∼, v 7→ [v],

is bijective. V is called Vitali set and we claim that V is not Lebesgue-measurable.
For this let q ∈ Q and consider the subset:

Vq := V + q := {v + q | v ∈ V } ⊆ R.

Let Q := [−1, 1]∩Q. Note that [0, 1] and Vq are uncountable while Q and Q are countably
infinite. We then have the inclusions:

[0, 1] ⊆
⋃
q∈Q

Vq ⊆ [−1, 2].

The right inclusion is clear as:

V + [−1, 1] ⊆ [0, 1] + [−1, 1] ⊆ [−1, 2].

For the left inclusion let x ∈ [0, 1]. By construction there exists a v ∈ V such that
v ∼ x. So x − v ∈ Q. Since x, v ∈ [0, 1] we also have that x − v ∈ [−1, 1]. So
q := x− v ∈ [−1, 1]∩Q = Q. This shows that x ∈ Vq for a q ∈ Q. Thus both inclusions
are shown.
If we now assumed that V would be Lebesgue-measurable then every Vq would be as well
as a translated version of V . We then would get that: λ(Vq) = λ(V ) for every q ∈ Q.
So we would get:

1 = λ ([0, 1]) ≤ λ

(⋃
q∈Q

Vq

)
≤ λ ([−1, 2]) = 3,

which implies:

[1, 3] ∋ λ

(⋃
q∈Q

Vq

)
=
∑
q∈Q

λ(Vq) =
∑
q∈Q

λ(V ),

which is contradictory. Indeed, λ(V ) = 0 can be ruled out as the sum would sum up to
0 /∈ [1, 3]. But also λ(V ) > 0 can be ruled out as this would sum up to ∞ /∈ [1, 3]. So
the Vitali set V can not be Lebesgue-measurable.

Theorem A.1.7 (Banach-Tarski paradox). The 3-dimensional unit ball B1(z) = {x ∈
R3 | ∥x − z∥ ≤ 1} centered at z ∈ R3 can be partitioned into a finite number of disjoint
sets A1, . . . , AK (e.g. K = 5) such that each can then be rotated and translated in R3

such that they form TWO 3-dimensional unit balls B1(y1) and B1(y2).
Note that the unit balls have well-defined volume (i.e. 3-dimensional Lebesgue measure)
and translation and rotations are very well behaved and preserve volume, while the subsets
Ak are very pathological (i.e. non-Lebesgue-measurable).
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Figure 33: Illustration of the Banach-Tarski paradox.88

=⇒ Measure theory is the unifying ‘safe space’ for probability theory!

A.2. Core Concepts

Motivation A.2.1. As discussed before in remark A.1.4, we want to define probability
measures P on a space W. We want them to follow (at least) these rules:

i) normalized: P (W) = 1, P (∅) = 0.

ii) complement: P (Ac) = 1− P (A) for A ⊆ W.

iii) σ-additivity (aka countably additivity): For pairwise disjoint subsets An ⊆ W,
n ∈ N:

P

(⋃
n∈N

An

)
=
∑
n∈N

P (An).

Such rules implicitly assume that P can measure the sets W and ∅; and that P can
measure the complement Ac if it can measure A; and that P can measure the (disjoint)
union

⋃
n∈NAn if it can measure each of the An.

As illustrated by the theorems A.1.5 and A.1.7, this is in general NOT possible to do for
all subsets of W (i.e. for all elements of the power set 2W).
This problem is solved and formalized by the notion of σ-algebras of subsets of the space
W.

Definition A.2.2 (σ-algebras). Let W be a set. A (non-empty) set B ⊆ 2W of subsets
A ⊆ W is called a σ-algebra on W if it satisfies the following rules:

i) empty set: ∅ ∈ B,

ii) complement: If A ∈ B then also: Ac :=W \ A ∈ B,

iii) countable union: If An ∈ B for all n ∈ N then also:
⋃

n∈NAn ∈ B.

Definition A.2.3 (Measurable spaces). A tuple (W ,B) of a set W and a σ-algebra B
on W is called measurable space.

88https://en.wikipedia.org/wiki/Banach-Tarski_paradox
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Remark A.2.4 (Abuse of notation). By abuse of notation we often just call W a mea-
surable space by implicitly assuming that it is endowed with a fixed σ-algebra, which
we will indicate by BW or B(W) if needed. We will also just call a subsets A ⊆ W
measurable when we actually mean that A ∈ BW .

Definition A.2.5 (Measures). Let (W ,B) be a measurable space. A measure µ on
(W ,B) - by definition - is a mapping:

µ : B → R ∪ {∞}, D 7→ µ(D),

such that:

i) non-negative: ∀A ∈ B: µ(A) ∈ [0,∞],

ii) empty set: µ(∅) = 0,

iii) countably additive (aka σ-additive): for all sequences An ∈ B, n ∈ N, with Ai ∩
Aj = ∅ for all i ̸= j, we have:

µ

(⋃
n∈N

An

)
=
∑
n∈N

µ(An).

Definition A.2.6 (Probability/finite/σ-finite measures). A measure µ on (W ,B) is
called:

1. probability measure if µ(W) = 1.

2. finite measure if µ(W) <∞.

3. σ-finite measure if there are Dn ∈ B, n ∈ N, with µ(Dn) <∞ and W =
⋃

n∈NDn.

Definition A.2.7 (Measure spaces/probability spaces). A triple (W ,B, µ) consisting
of a measurable space (W ,B) and a measure µ on (W ,B) is called measure space (and
probability space if µ is a probability measure).
Again, by abuse of notation, we often omit the σ-algebra in the notation and call (W , µ)
a measure space, probability space, resp.

Definition A.2.8 (Measurable mappings). Let (W ,BW) and (Z,BZ) be two measurable
spaces and f :W → Z be a mapping. We call f a BW-BZ-measurable mapping (or just
measurable for short) if for all B ∈ BZ the pre-image f−1(B) is an element of BW . In
formulas:

∀B ∈ BZ : f−1(B) ∈ BW .

Remember the definition of pre-image: f−1(B) := {w ∈ W | f(w) ∈ B}.
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Definition A.2.9 (Push-forward measure). Let X : (W ,BW)→ (X ,BX ) be measurable
and µ a measure on (W ,BW). Then we define the push-forward measure (aka image
measure) of µ via:

(X∗µ)(A) := µX(A) := µX(A) := µ(X)(A) := µ(X ∈ A) := µ(X−1(A))

for all A ∈ BX . If µ is a probability distribution then the push-forward measure µ(X) is
also called the (distributional) law of X.

Definition A.2.10 (Random variables). A measurable mapping:

X : (W ,BW , P )→ (X ,BX )

that starts from a probability space is also called random variable.
The main point is that the map X comes with its own distribution PX . We often just say:
“Let X be a random variable with distribution PX = · · · ”, where PX is then specified,
e.g. to be a Gaussian or a categorical distribution, etc.

Definition A.2.11 (Null sets). Let (W ,B, µ) be a measure space. A subset M ⊆ W is
called µ-null or µ-zero set if there exists a set N ∈ B with M ⊆ N and µ(N) = 0.

Definition A.2.12 (Almost surely/almost all). Let (X ,B, µ) be a measure space and
f, g : X → Z a measurable map. We write f =µ g or say f = g µ-almost-surely (a.s.)
or f(x) = g(x) for µ-almost-all x ∈ X if:

{x ∈ X | f(x) ̸= g(x)} is a µ-null set.

Similarly, for f ≤µ g, etc..
More generally, we say that a condition C about points x ∈ X holds µ-almost-surely or
for µ-almost-all x ∈ X if the set of points where the condition does not hold is µ-null,
i.e.:

{x ∈ X |¬C(x)} is a µ-null set.

A.3. Default Choices for Sigma-Algebras

In this subsection we want to highlight what kind of default σ-algebras we will assume
on different types of spaces and on spaces constructed from others.

Remark A.3.1 (Discrete spaces). If W is countable (i.e. either finite or countably
infinite, e.g. like Z, Q or N or {1, . . . , N}) then we will always implicitly assume that
W is endowed with the power set σ-algebra: BW = 2W (unless stated otherwise).

Definition A.3.2 (σ-algebra generated by a set of subsets). LetW be a set and A ⊆ 2W

be any non-empty set of subsets of W. Then we can define the σ-algebra generated by
A:

σ(A) :=
⋂
A⊆B

B σ-algebra on W

B,

as the intersection of all σ-algebras B onW that contain A. Note that the set σ(A) really
is a well-defined σ-algebra on W. σ(A) is thus - by definition - the smallest σ-algebra
on W that contains A.
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Definition A.3.3 (Borel σ-algebra on topological spaces). Let (W ,O) be a topological
space with set of open subsets O then the Borel σ-algebra of (W ,O) is defined as the
smallest σ-algebra that contains all open (and thus also all closed) subsets:

B(W,O) := σ(O).

We will always implicitly assume that every topological space is endowed with its Borel
σ-algebra (unless stated otherwise).

Remark A.3.4. Caution: Other choices of σ-algebras for topological spaces used in the
literature are the Baire σ-algebra, which is generated by the zero sets of all continuous
functions, or the σ-algebra generated only by its closed (countably) compact sets, or the
σ-algebra of all (Radon-)universally measurable subsets.

Lemma A.3.5 (Borel σ-algebra on RD). The Borel σ-algebra of RD is generated by the
cubes:

BRD = σ ({[a1, b1]× · · · × [aD, bD] | ad, bd ∈ Q, ad ≤ bd, d = 1, . . . , D}) .

Definition/Lemma A.3.6 (σ-algebras induced by mappings). Let f :W → Z be any
mapping.

1. Let BZ be a σ-algebra on Z. Then the pull-back σ-algebra defined via:

f ∗BZ :=
{
f−1(C) |C ∈ BZ

}
is the smallest σ-algebra BW that makes f BW-BZ-measurable.

2. Let BW be a σ-algebra on W. Then the push-forward σ-algebra defined via:

f∗BW :=
{
C ⊆ Z | f−1(C) ∈ BW

}
is the biggest σ-algebra BZ that makes f BW-BZ-measurable.

Definition A.3.7 (Product σ-algebra). Let (Xi,Bi) be measurable spaces, i ∈ I. Then
the product space

∏
i∈I Xi is endowed with the smallest σ-algebra such that for every

j ∈ I the projection map:

prj :
∏
i∈I

Xi → Xj, (xi)i∈I 7→ xj,

is measurable. We use the symbols
⊗

i∈I Bi for this product σ-algebra. In symbols:

⊗
i∈I

Bi := σ

(⋃
i∈I

pr∗iBi

)
.

We will always implicitly assume that every product space is endowed with this product
σ-algebra (unless stated otherwise).
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Definition A.3.8 (Subspace σ-algebra). Let (W ,B) be a measurable space and Z ⊆ W
be a subset. Then the subspace σ-algebra B|Z on Z is the smallest σ-algebra that makes
the inclusion map Z → W measurable. More concretely:

B|Z := {B ∩ Z | B ∈ B} .

We will always assume that subsets are endowed with the subspace σ-algebra (unless it
is ambiguous or stated otherwise).

Definition A.3.9 (Disjoint union σ-algebra). Let (Xi,Bi) be measurable spaces, i ∈ I,
considered to be pairwise disjoint. Then the disjoint union σ-algebra on the disjoint
union

∐
i∈I Xi is the biggest σ-algebra B⊔ such that all inclusion maps Xi →

∐
i∈I Xi are

measurable. In symbols:

B⊔ :=

{
E ⊆

∐
i∈I

Xi

∣∣∣∣ ∀i ∈ I : E ∩ Xi ∈ Bi

}
.

Definition A.3.10 (σ-algebra on the space of all probability measures). Let (W ,BW)
be a measurable space. We denote the space of all probability measures on (W ,BW) by:

P(W) := {P | P is probability measure on (W ,BW)} .

We endow P(W) with the smallest σ-algebra BP(W) such that all evaluation maps:

evD : P(W)→ [0, 1], P 7→ P (D)

are measurable for D ∈ BW . In symbols:

BP(W) := σ

( ⋃
D∈BW

ev∗DB[0,1]

)
.

We will always assume that the space of probability measures P(W) is endowed with this
σ-algebra (unless stated otherwise).

A.4. Standard Measurable Spaces

Definition A.4.1 (Standard measurable space). A measurable space (W ,B) is called
standard measurable space (aka standard Borel space) if it is measurably isomorphic to
either:

1. a finite measurable space {1, . . . ,M} for some M ∈ N endowed with the power set
σ-algebra 2{1,...,M}, or:

2. the countably infinite space N endowed with the power set σ-algebra 2N, or:

3. the unit interval [0, 1] endowed with its Borel σ-algebra:

B[0,1] = σ ({[a, b] | a, b ∈ [0, 1] ∩Q, a ≤ b}) .
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’Measurably isomorphic’ means that there is a measurable mapping that has a measurable
inverse.

Theorem A.4.2 (Kuratowski et al.). 1. Every Borel subset of any complete metric
space that has a countable dense subset is a standard measurable space in its Borel
σ-algebra (e.g. QD is countable and dense in RD).

2. Two standard measurable spaces X and Y are measurably isomorphic iff their
cardinalities |X |, |Y| are equal (e.g. RD ∼= [0, 1]).

3. Countable disjoint unions and countable direct products of standard measurable
spaces are standard measurable spaces.

4. If W is standard measurable space then the space of its probablity measures P(W)
is also a standard measurable space.

Example A.4.3. Examples of standard measurable spaces are: RD, Q, Z, N, {1, . . . ,M},
[0, 1], topological manifolds, countable CW-complexes, every Borel set of any separable
complete metric space.

A.5. Measure Integrals

The construction of the measure integral
∫
f dµ follows in several steps.

Construction A.5.1 (Measure integral). Let (X ,BX , µ) be a measure space.

1. Indicator functions: For A ∈ BX put:∫
1A dµ := µ(A).

2. Simple functions: For a simple function g : X → R given by:

g(x) =
N∑

n=1

an · 1An(x),

where An ∈ BX and an ∈ R, n = 1, . . . , N , we define:∫
g dµ :=

N∑
n=1

an · µ(An).

3. Non-negative measurable functions: Let h : X → [0,∞] be a non-negative measur-
able function then we define:∫

h dµ := sup
0≤g≤h

∫
g dµ ∈ [0,∞],

where the supremum is running over all non-negative simple functions g that are
smaller or equal to h.

325



4. Measurable functions with well-defined integral: Let f : X → R̄ = R ∪ {±∞} be a
measurable function. We then can write f = f+ − f− with:

f+ := max(f, 0) ≥ 0, f− := max(−f, 0) ≥ 0.

If at least one of
∫
f+ dµ,

∫
f− dµ is finite (i.e. <∞) we can then define:∫

f dµ :=

∫
f+ dµ−

∫
f− dµ ∈ [−∞,∞].

The only case where we cannot properly define the integral is for measurable functions
f : X → R̄ where both integrals:

∫
f+ dµ =∞ and

∫
f− dµ =∞ are infinite, because of

the “∞−∞ =?” problem.

Remark A.5.2 (Riemann integral vs. measure integral). The construction of the Rie-
mann integral (RI) and the measure integral (MI) differ only in a few points:

1. RI uses (infinitesimal) interval length on x-axis, while MI uses the measure content
(which is also the interval length in case of the Lebesgue measure).

2. RI decomposes the x-axis, while MI decomposes the y-axis.

3. RI uses limits for the integration boundaries to integrate to infinity (if convergent),
while MI takes difference of integrals (to infinity) of f+ and f− (if difference well-
defined).

4. RI integrates in direction a to b, while MI integrates interval [a, b] in an undirected
fashion.

5. If a function is Riemann integrable (RI) (e.g. continuous) on interval [a, b] then
it is also Lebesgue integrable (MI) with the same integral value.

Definition A.5.3 (Integrable functions). Let (X ,B, µ) be a measure space. A measur-
able function f : X → R is called µ-integrable if:∫

|f | dµ <∞.

Theorem A.5.4 (Properties of the integral). Let (X ,B, µ) be a measure space and
f, g : X → R µ-integrable measurable functions.

1. For A ∈ B we have:
∫
1A dµ = µ(A).

2. Linearity: If a, b ∈ R then a · f + b · g is also µ-integrable and we have:∫
(a · f + b · g) dµ = a ·

∫
f dµ+ b ·

∫
g dµ.
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3. Triangle inequality: ∣∣∣∣∫ f dµ

∣∣∣∣ ≤ ∫ |f | dµ <∞.
4. If f ≥µ 0 then:

∫
f dµ ≥ 0, with equality iff f =µ 0.

5. Monotonicity: If f ≥µ g then:
∫
f dµ ≥

∫
g dµ, with equality iff f =µ g.

6. If
∫
f dµ <∞ then f <µ ∞.

7. The measure integral satisfies monotone convergence, dominated convergence, Fu-
bini theorems, etc. (see literature).

Note, we use =µ and ≥µ to indicate that this property is (only) allowed to fail on a
µ-null set.

Definition A.5.5 (Expectation value). Let (W ,B, P ) be a probability space and X :
W → R be a measurable function with well-defined integral. Then its expectation value
(w.r.t. P ) is defined to be:

E[X] :=

∫
X dP.

Example A.5.6. Let X be a measurable space and f : X → R a measurable function
and W ⊆ X a countable subset.

1. Dirac measure. Let w ∈ X be a point. We define the Dirac measure δw centered
at w via:

δw(A) := 1A(w),

for all measurable A ⊆ X . Furthermore, we have:

E[f ] =
∫
f(x) δw(dx) = f(w).

This holds because: f(x) = f(w) for δw-almost-all x ∈ X . Let’s prove the right
equality more formally:

Proof. Consider:

B := f−1(f(w)) = {x ∈ X | f(x) = f(w)} ∋ w.

Since f is measurable and {f(w)} ∈ BR we also have B ∈ BX . We then have the
decomposition:

f(x) = f(x) · 1B(x) + f(x) · 1Bc(x)

= f(w) · 1B(x) + f(x) · 1Bc(x).
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Since w /∈ Bc we get δw(Bc) = 0 and thus
∫
f(x) · 1Bc(x) δw(dx) = 0. Together we

get: ∫
f(x) δw(dx) =

∫
(f(w) · 1B(x) + f(x) · 1Bc(x)) δw(dx)

= f(w) ·
∫
1B(x) δw(dx) +

∫
f(x) · 1Bc(x) δw(dx)︸ ︷︷ ︸

=0

= f(w) · δw(B)

= f(w).

2. Discrete distributions. Consider a discrete probability distribution P supported on
the countable subset W ⊆ X . Let p be its mass function. We then can write the
corresponding probability measure P on X as:

P =
∑
w∈W

p(w) · δw.

For measurable A ⊆ X we then have:

P (A) =
∑
w∈W

p(w) · δw(A) =
∑

w∈W∩A

p(w).

Furthermore, we get:

E[f ] =
∫
f(x)P (dx) =

∫
f(x)

∑
w∈W

p(w) · δw(dx) =
∑
w∈W

f(w) · p(w).

A.6. Densities/Derivatives

Definition A.6.1. Let (X ,B) be a measure space and µ, ν two measures on it. We
say that ν has a density w.r.t. µ if there exists a non-negative measurable function
f : X → [0,∞] such that for all A ∈ B:

ν(A) =

∫
1A · f dµ =:

∫
A

f dµ.

Such a density does not always exist. If a density exists then it is essentially unique,
in the sense that two such densities would only differ on a µ-null set. We often use the
notation: f = dν

dµ
and call it ‘the’ density or (Radon-Nikodým) derivative of ν w.r.t. µ.

Proposition A.6.2. Let (X ,B) be a measure space and µ, ν, κ three measures on it
and g : X → R̄ is either a ν-integrable or non-negative measurable function.

328



1. If ν has a density w.r.t. µ then we have:∫
g dν =

∫
g · dν

dµ
dµ.

2. (Conic) linearity: If κ has a density w.r.t. µ and ν has a density w.r.t. µ and
a, b ≥ 0 then a · κ+ b · ν has a density w.r.t. µ and we have:

d(a · κ+ b · ν)
dµ

(x) = a · dκ
dµ

(x) + b · dν
dµ

(x)

for µ-almost-all x ∈ X .

3. Chain rule: If ν has a density w.r.t. µ and µ has a density w.r.t. κ then also ν has
a density w.r.t. κ and we have:

dν

dκ
(x) =

dν

dµ
(x) · dµ

dκ
(x)

for κ-almost-all x ∈ X .

4. Inverse: If ν has a density w.r.t. µ and µ has a density w.r.t. ν then we have:

dν

dµ
(x) =

(
dµ

dν
(x)

)−1

for µ-almost-all x ∈ X . We can make in this context the (somewhat arbitrary)
choice to put: 0−1 :=∞.

Definition A.6.3 (Absolute continuity). Let µ, ν be two measures on a measurable
space (X ,B). We say that ν is absolute continuous w.r.t. µ, in symbols:

ν ≪ µ,

if for every A ∈ B with µ(A) = 0 also ν(A) = 0 holds, in short, if:

µ(A) = 0 =⇒ ν(A) = 0.

Theorem A.6.4 (Radon-Nikodým, see [Kle20] Cor. 7.34). Let (X ,B, µ) be a σ-finite
measure space and ν another measure on (X ,B). Then the following two statements are
equivalent:

1. ν has a density w.r.t. µ.

2. ν is absolute continuous w.r.t. µ.

Theorem A.6.5 (Besicovitch density theorem, [Fre15] 472D). Let µ be a Radon measure
on RD (e.g. any finite or probability measure or the Lebesgue measure, see A.8.1) and
f : RD → R̄ be any (locally) µ-integrable function. Then we have for µ-almost-all
x ∈ RD:

329



1. lim
ε→0

1

µ(Bε(x))

∫
Bε(x)

f(z)µ(dz) = f(x).

2. lim
ε→0

1

µ(Bε(x))

∫
Bε(x)

|f(z)− f(x)|µ(dz) = 0.

Here Bε(x) denote the closed balls of radius ε > 0 centered at x (in Euclidean norm).
The above, in particular, holds for the density f = dν

dµ
of another measure ν w.r.t. µ:

lim
ε→0

ν(Bε(x))

µ(Bε(x))
=
dν

dµ
(x),

for µ-almost-all x ∈ RD.

A.7. Conditional Expectation

You may be familiar with the conditional expectation for discrete random variablesX, Y :

E[X|Y = y] =
∑
x∈X

x · P (X = x|Y = y) =
∑
x∈X

x · P (X = x, Y = y)

P (Y = y)

=

∑
x∈X x · P (X = x, Y = y)

P (Y = y)
,

and for real-valued random variables X, Y with positive and continuous joint density
p(x, y):

E[X|Y = y] =

∫
X
x · p(x|Y = y) dx =

∫
X
x · p(x, y)

p(y)
dx =

∫
X x · p(x, y) dx

p(y)
.

The following construction generalizes this notion:

Definition A.7.1 (Conditional expectation). Let (W , P ) be a probability space and
X : W → R, Y : W → Y be two random variables with either E[|X|] < ∞ or X ≥ 0
a.s.

1. The conditional expectation of X given Y = y is defined via:

E[X|Y = y] := E[X+|Y = y]− E[X−|Y = y] ∈ R̄,

where X± := max(±X, 0) ≥ 0 and:

E[X±|Y = y] :=
dE±

dP Y
(y),

is the Radon-Nikodym derivative/density w.r.t. P Y of the following measure on Y:

E±(B) := E [X± · 1B(Y )] =

∫
x · 1B(y) dP

(X±,Y )(x, y).

One can easily see that E± ≪ P Y and that the densities exist by the Radon-
Nikodym theorem.
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2. The conditional expectation of X given Y is then the measurable map defined via:

E[X|Y ] : W → R̄, w 7→ E[X|Y ](w) := E[X|Y = Y (w)] = E[X|Y = y]|y=Y (w),

i.e. the composition of Y with the measurable map y 7→ E[X|Y = y].

Remark A.7.2. The construction from above also works with a measure µ such that
µY is σ-finite (instead of P ) since we only need to guarantee the existence of the Radon-
Nikodym derivative.

Notation A.7.3. Let W, Z, Y be measurable spaces and Z : W → Z and Y : W → Y
be measurable maps. We write:

Z ≾ Y

if there exists a measurable function F : Y → Z such that Z = F ◦ Y ; in other words if
Z is a deterministic (measurable) function of Y , i.e.: Z = F (Y ).
If µ is a measure on W we also write:

Z ≾µ Y

if there exists a measurable map F such that Z = F (Y ) µ-almost-surely.

Theorem A.7.4. Let (W , P ) be a probability space and X,T : W → R, Y : W → Y,
Z : W → Z be random variables with E[|X|] <∞ (or as long as we do not run into the
“∞−∞ =?” problem). Then we have the following properties:

1. E[X|Y ] is the unique real valued random variable Z (up to P -null set) such that:

a) Z ≾P Y and:

b) for all measurable B ⊆ Y:

E [Z · 1B(Y )] = E[X · 1B(Y )].

2. For all real valued random variables Z ≾P Y with E[|Z ·X|] <∞ we have:

E [Z ·X|Y ] = Z · E[X|Y ] P -a.s.

3. Linearity: For all a, b ∈ R we have:

E[a ·X + b · T |Y ] = a · E[X|Y ] + b · E[T |Y ] P -a.s.

4. Constants: E[1|Y ] = 1 P -a.s.

5. Constant maps: If Y is a constant map then: E[X|Y ] = E[X] P -a.s.

6. Independence (see 2.5.23): If X ⊥⊥Y then: E[X|Y ] = E[X] P -a.s.

7. Deterministic dependence: If X ≾P Y then: E[X|Y ] = X P -a.s.
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8. Monotonicity: If X ≥ T P -a.s. then we have:

E[X|Y ] ≥ E[T |Y ] P -a.s.

9. Jensen inequality: Let φ : R→ R be convex then we have:

φ (E[X|Y ]) ≤ E[φ(X)|Y ] P -a.s.

10. Triangle inequality: |E[X|Y ]| ≤ E[ |X| |Y ] P -a.s.

11. Tower rule: If Y ≾ Z then:

E [E[X|Y ]|Z] = E [E[X|Z]|Y ] = E[X|Y ] P -a.s.

12. Tower rule, special case:

E [E[X|Y ]|Y, Z] = E [E[X|Y, Z]|Y ] = E[X|Y ] P -a.s.

13. Monotone convergence, dominated convergence, etc. (see literature).

A.8. The Lebesgue Measure

Definition A.8.1 (The Lebesgue (outer) measure). The Lebesgue (outer) measure λD
on RD is given for subsets A ⊆ RD via:

λD(A) := inf

{∑
n∈N

volD
(
[a(n), b(n)]

) ∣∣∣∣∣A ⊆ ⋃
n∈N

[a(n), b(n)]

}
,

where the infimum is running over sequences of D-dimensional cubes:

[a(n), b(n)] = [a
(n)
1 , b

(n)
1 ]× · · · × [a

(n)
D , b

(n)
D ],

with a(n) = (a
(n)
1 , . . . , a

(n)
D ), b(n) = (b

(n)
1 , . . . , b

(n)
D ) ∈ RD, a(n)d ≤ b

(n)
d for d = 1, . . . , D,

n ∈ N, that jointly cover A, where the D-dimensional volume is given by:

volD
(
[a(n), b(n)]

)
:= (b

(n)
1 − a

(n)
1 ) · · · (b(n)D − a

(n)
D ), volD (∅) := 0.

Theorem A.8.2 (The Lebesgue measure). The Lebesgue measure λD, when restricted
to the Borel-σ-algebra of RD, is the unique measure on RD that satisfies:

λD ([a, b]) = volD ([a, b]) ,

for all D-dimensional cubes [a, b]. If the dimension is clear from the context we might
just write λ for λD.
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Theorem A.8.3. Let λ be the Lebesgue measure on the interval [a, b]. Let f : [a, b]→ R
be a Riemann integrable function (e.g. a continuous function) then f is also λ-integrable
and we have: ∫ b

a

f(x) dx =

∫
[a,b]

f(x)λ(dx).

Theorem A.8.4 (Fundamental theorem of calculus). Let f : R → R be a measurable
function such that

∫
[a,b]
|f | dλ < ∞ for a, b ∈ R. For fixed c ∈ R define F : [c,∞) → R

via:
F (x) :=

∫
(c,x]

f dλ.

Then F is differentiable in λ-almost-all x ∈ R and for those points we have:

F ′(x) = f(x).

A.9. Transformation Rules

Theorem A.9.1 (General integral transformation). Let (W , µ) be a measure space and
X : W → X and F : X → R be measurable. Then we have:∫

F (X) dµ =

∫
F d(X∗µ),

if either side is well-defined. Written in longer form this is:∫
F (X(w))µ(dw) =

∫
F (x) (X∗µ)(dx).

Theorem A.9.2 (Push-forward of densities). Let (W , µ) be a measure space and ν
another measure on W. Let φ : W → Y be a measurable mapping such that φ∗µ is
σ-finite. If ν has a density w.r.t. µ then the push-forward measure φ∗ν has a density
w.r.t. φ∗µ given as follows:

d(φ∗ν)

d(φ∗µ)
(y) = Eµ

[
dν

dµ

∣∣∣∣φ = y

]
= ”

∫
dν

dµ
(w)µ(dw|φ = y)”,

for φ∗µ-almost-all y ∈ Y, where the conditional integral Eµ is constructed the same way
as the conditional expectation but using the σ-finite measure φ∗µ.
If, furthermore, φ is a measurable isomorphism then we get:

d(φ∗ν)

d(φ∗µ)
(y) =

dν

dµ
(φ−1(y))

for φ∗µ-almost-all y ∈ Y.

Theorem A.9.3 (Transformation formula for the Lebesgues measure). Let φ : RD →
RD be a continously differentiable bijection of RD (or of open/closed subsets therein)
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with Jacobian φ′(x) at point x. Let λ be the Lebesgue measure on RD. Then φ∗λ is
absolute continuous w.r.t. λ with density given by:

d(φ∗λ)

dλ
(y) = | detφ′(φ−1(y))|−1

for all y ∈ RD (or in that open/closed subset, and = 0 outside).

Corollary A.9.4 (Transformation of (probability) densities w.r.t. the Lebesgue mea-
sure). Let the setting be like in A.9.3. Let ν be a (probability) measure on RD with
(probability) density p w.r.t. λ. Then φ∗ν also has a (probability) density w.r.t. λ, which
is then given by:

d(φ∗ν)

dλ
(y) =

d(φ∗ν)

d(φ∗λ)
(y) · d(φ∗λ)

dλ
(y) = p(φ−1(y)) · | detφ′(φ−1(y)|−1.

Theorem A.9.5 (A bit more general, [Fre15] Cor. 263F, 262F(b)). Let X ⊆ RD be a
measurable set and φ : X → RD an injective Lipschitz function. Let X ′ ⊆ X be the set
of points x at which φ has a derivative φ′(x) relative to X 89. Then we have:

1. X \ X ′ is a λ-null set.

2. | detφ′| : X ′ → [0,∞) is measurable.

3. φ(X ) ⊆ RD is a measurable set.

4. λ(φ(X )) =
∫
X | detφ

′(x)| dλ(x).

5. For every real-valued function g defined on a subset Y ⊆ φ(X ) we have:∫
φ(X )

g(y) dλ(y) =

∫
X
g(φ(x)) · | detφ′(x)| dλ(x),

if either integral is defined in [−∞,∞] and provided we interpret g(φ(x))·| detφ′(x)| :=
0 if φ(x) /∈ Y and | detφ′(x)| = 0.

Remark A.9.6 (Transformation rule for discrete measures). Let X be a measurable
space and µ be a discrete (probability) measure on X supported on the countable discrete
subset W ⊆ X with mass function given by:

m(x) =
dµ

d#W
(x),

where #W is the counting measure w.r.t. W given by: #W(A) := #(W ∩ A). Let
φ : X → Y be a measurable map. Then φ∗µ is a discrete measure supported on φ(W)
with mass function/density:

dφ∗µ

d#φ(W)

(y) =
∑

w∈φ−1(y)∩W

m(w).

89We say that φ is differentiable relative to X at x ∈ X if there exists φ′(x) ∈ RD×D such that
for every ϵ > 0 there exists a δ > 0 such that for all y ∈ X with ∥y − x∥ < δ we have that:
∥φ(y)−φ(x)−φ′(x) · (y−x)∥ ≤ ϵ · ∥y−x∥. Note that in this definition such a derivative φ′(x) does
not need to be unique.
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Example A.9.7 (Linear transformation of Gaussian distributions).

Example A.9.8 (Density of Chi-square distributions).

A.10. Measure Extension Theorems

Theorem A.10.1 (Measure extension theorem, see [Kle20] Thm. 1.53, Thm. 1.36). Let
A be a ring (e.g. an algebra) of subsets of a set X . Let µ : A → [0,∞) be a (finitely)
additive set function with µ(∅) = 0 that is also ∅-continuous:

inf
n∈N

µ(An) = 0, (74)

for all non-increasing sequences (An)n∈N with An ∈ A and An+1 ⊆ An for all n ∈ N and⋂
n∈NAn = ∅.
Then there exists a unique σ-finite measure ν : σ(A)→ [0,∞] such that ν(A) = µ(A)

for all A ∈ A.

Theorem A.10.2 (Ionescu-Tulcea extension theorem, see [IT49,Lam87]). Let I be an
arbitrary set (not necessarily countable) and (Xi,Bi), i ∈ I, measurable spaces. For
subsets J ⊆ I we put:

XJ :=
∏
j∈J

Xj, BJ :=
⊗
j∈J

Bj, (75)

the product space endowed with its product σ-algebra. Now assume that we have a prob-
ability measure µJ on (XJ ,BJ) for every finite subset J ⊆ I such that:

1. for every finite subsets L ⊆ J ⊆ I we have: prL,∗µJ = µL,

2. for every finite subset J ⊆ I and i ∈ I \ J there exists a Markov kernel: µi|J :
XJ 99K Xi such that:

µ{i} ∪̇ J = µi|J ⊗ µJ . (76)

Then there exists a probability measure µI on (XI ,BI) such that for every finite subset
J ⊆ I we have:

prJ,∗µI = µJ . (77)

Proof. We first put, with prJ : XI → XJ the canonical projections:

A :=
⋃
J⊆I

#J<∞

pr∗JBJ =
{
pr−1

J (B) ⊆ XI

∣∣ J ⊆ I,#J <∞, B ∈ BJ
}
. (78)

Then, per definition, BI = σ(A). Furthermore, A is an algebra of subsets of XI . Indeed,
let A1, A2 ∈ A then Al ∈ pr∗JlBJl for some finite subsets Jl ⊆ I, l = 1, 2. Then J := J1∪J2
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is also a finite subset of I and we have: A1, A2 ∈ pr∗JBJ . So, Al = pr−1
J (Bl) for some

Bl ∈ BJ , l = 1, 2. This then shows that:

Ac
l = pr−1

J (Bc
l ) ∈ pr∗JBJ ⊆ A, (79)

A1 ∪ A2 = pr−1
J (B1 ∪B2) ∈ pr∗JBJ ⊆ A, (80)

A1 ∩ A2 = pr−1
J (B1 ∩B2) ∈ pr∗JBJ ⊆ A. (81)

It is also clear that: XI , ∅ ∈ A. So, A is an algebra of subsets of XI .
We can now define the set function µ : A → [0, 1] via:

µ(A) := µJ(B), for A = pr−1
J (B), B ∈ BJ . (82)

This is well-defined because of the condition: prL,∗µJ = µL for finite subsets L ⊆ J ⊆ I.
It is also clear that µ is additive. Indeed, if A1, A2 ∈ A are disjoint then Al = pr−1

J (Bl)
for some finite subset J ⊆ I and some disjoint Bl ∈ BJ , l = 1, 2. The additivity of µJ

then shows the additivity of µ:

µ(A1 ∪̇A2) = µJ(B1 ∪̇B2) = µJ(B1) + µJ(B2) = µ(A1) + µ(A2). (83)

To apply the extension theorem A.10.1 it is left to check that µ is ∅-continuous on A. For
this, and, by way of contradiction, consider a non-increasing sequence An ∈ A, n ∈ N,
with

⋂
n∈NAn = ∅ and infn∈N µ(An) > ϵ > 0. We can assume that An = pr−1

Jn
(Bn) with

Bn ∈ BJn with the inclusion of finite subsets: Jn ⊆ Jn+1 ⊆ I for all n ∈ N. We totally
order the countable set

⋃
n∈N Jn such that k < l if k ∈ Jn and l ∈ Jn+1 \ Jn.

We introduce the following abbreviations for n ∈ N:

Yn := XJn\Jn−1 , Y≤n :=
n∏

l=1

Yn, Yc := XI\
⋃

n∈N Jn , (84)

µn|<n :=
⊗

k∈Jn\Jn−1

µk|{l∈Jn | l<k}∪Jn−1 , µ≤n := µJn . (85)

Then Y := Yc ×
∏

n∈N Yn = XI . We also put:

hn(y) := gn(y≤n) := 1Bn(y≤n) = 1An(y), h(y) := inf
n∈N

hn(y). (86)

By assumption,
⋂

n∈NAn = ∅, we have that h(y) = 0 for all y ∈ Y . Since An ⊆ An−1 we
have for all n ∈ N:

0 = h(y) ≤ hn(y) ≤ hn−1(y) ≤ 1. (87)

We define for k, n ∈ N:

f (k)
n (y≤k) :=

∫
gn(yk+1:n, y≤k)µk+1:n|≤k(dyk+1:n|y≤k), (88)

f (k)(y≤k) := inf
n∈N

f (k)
n (y≤k). (89)
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Note that we then also have for all k, n ∈ N and y ∈ N:

0 ≤ f (k)(y≤k) ≤ f (k)
n (y≤k) ≤ f

(k)
n−1(y≤k) ≤ 1. (90)

We also put for k ∈ N:

C≤k :=
{
y≤k ∈ Y≤k

∣∣ f (k)(y≤k) > ϵ
}
. (91)

By the above assumption we have for every n ∈ N:

0 < ϵ < inf
n∈N

µ(An) (92)

= inf
n∈N

µ≤n(Bn) (93)

= inf
n∈N

Eµ≤n
[gn] (94)

= inf
n∈N

∫ ∫
gn(y2:n, y1)µ2:n|1(dy2:n|y1)µ1(dy1) (95)

= inf
n∈N

∫
f (1)
n (y1)µ1(dy1) (96)

=

∫
inf
n∈N

f (1)
n (y1)µ1(dy1) (97)

=

∫
f (1)(y1)µ1(dy1). (98)

Where the integral and infimum can be interchanged because f (1) is B1-measurable
and the monotone convergence theorem, applied to 1 − f

(1)
n . We see that: µ1(C1) >

0. Otherwise,
∫
f (1)(y1)µ1(dy1) ≤ ϵ, which would contradict the above sequence of

inequalities.
Now inductively for k ∈ N and y≤k ∈ C≤k we have:

0 < ϵ < f (k)(y≤k) (99)

= inf
n∈N

f (k)
n (y≤k) (100)

= inf
n∈N

∫
f (k+1)
n (yk+1, y≤k)µk+1|≤k(dyk+1|y≤k) (101)

=

∫
inf
n∈N

f (k+1)
n (yk+1, y≤k)µk+1|≤k(dyk+1|y≤k) (102)

=

∫
f (k+1)(yk+1, y≤k)µk+1|≤k(dyk+1|y≤k). (103)

This shows that: µk+1|≤k(C
y≤k

≤k+1|y≤k) > 0 for y≤k ∈ C≤k. This means that we can
inductively construct a y ∈ Y with components: y1 ∈ C1 and yk+1 ∈ C

y≤k

≤k+1 for k ∈ N,
and an arbitrary yc ∈ Yc. This y then satisfies hn(y) > ϵ > 0 for all n ∈ N and thus
h(y) = infn∈N hn(y) ≥ ϵ > 0, which lies in contradiction to h(y) = 0 for all y ∈ Y .

This shows that µ is ∅-continuous. It follows by the extension theorem A.10.1 that µ
has a unique extension to a probability measure to σ(A) = BI . This shows the claim.
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Corollary A.10.3 (Ionescu-Tulcea extension theorem for Markov kernels). Let I be an
arbitrary set (not necessarily countable) and (Z,BZ) and (Xi,Bi), i ∈ I, measurable
spaces. For subsets J ⊆ I we put:

XJ :=
∏
j∈J

Xj, BJ :=
⊗
j∈J

Bj, (104)

the product space endowed with its product σ-algebra. Now assume that for every finite
subset J ⊆ I we are given a Markov kernel:

KJ(XJ |Z) : Z 99K XJ ,

such that:

1. for every finite subsets L ⊆ J ⊆ I we have:

KJ(XL|Z) = KL(XL|Z) : Z 99K XL,

2. for every finite subset J ⊆ I and i ∈ I \ J there exists a Markov kernel:

Ki|J(Xi|XJ , Z) : XJ ×Z 99K X{i} ∪̇ J ,

such that:

Ki|J(Xi|XJ , Z)⊗KJ(XJ |Z) = K{i} ∪̇ J(Xi, XJ |Z) : Z 99K X{i} ∪̇ J .

Then there exists a Markov kernel:

K(XI |Z) : Z 99K XI ,

such that for every finite subset J ⊆ I we have:

K(XJ |Z) = KJ(XJ |Z) : Z 99K XJ .

Proof. For every z ∈ Z we can apply the Ionescu-Tulcea extension theorem A.10.2
separately and get a probability measure K(XI |Z = z) on BI such that for every finite
subset J ⊆ I we have:

K(XJ |Z = z) = KJ(XJ |Z = z).

We are left to check that the map:

K(XI |Z) : Z → P(XI), z 7→ K(XI |Z = z),

is measurable. By Dynkin’s lemma and the definition of the product σ-algebra BI this
only needs to be checked on sets AJ ∈ BJ for finite subsets J ⊆ I. Since we have:

K(XI ∈ pr−1
J (A)|Z = z) = K(XJ ∈ A|Z = z) = KJ(XJ ∈ A|Z = z),

and z 7→ KJ(XJ ∈ A|Z = z) is measurable for finite J ⊆ I, the claim follows.
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Corollary A.10.4 (Kolmogorov extension theorem for Markov kernels). Let I be an
arbitrary set (not necessarily countable) (Z,BZ) a measurable space and (Xi,Bi), i ∈ I,
standard measurable spaces. For subsets J ⊆ I we put:

XJ :=
∏
j∈J

Xj, BJ :=
⊗
j∈J

Bj, (105)

the product space endowed with its product σ-algebra. Now assume that for every finite
subset J ⊆ I we are given a Markov kernel:

KJ(XJ |Z) : Z 99K XJ ,

such that for every finite subsets L ⊆ J ⊆ I we have:

KJ(XL|Z) = KL(XL|Z) : Z 99K XL.

Then there exists a Markov kernel:

K(XI |Z) : Z 99K XI ,

such that for every finite subset J ⊆ I we have:

K(XJ |Z) = KJ(XJ |Z) : Z 99K XJ .

Proof. This directly follows from Ionescu-Tulcea extension theorem for Markov kernels
A.10.3 and the fact that on standard measurable spaces we always have conditional
Markov kernels by the disintegration theorem 2.4.16.
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