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Abstract
This paper describes the software package libDAI, a free & open source C++ library that provides
implementations of various exact and approximate inference methods for graphical models with
discrete-valued variables. libDAI supports directed graphical models (Bayesian networks) as well
as undirected ones (Markov random fields and factor graphs).It offers various approximations of
the partition sum, marginal probability distributions andmaximum probability states. Parameter
learning is also supported. A feature comparison with otheropen source software packages for
approximate inference is given. libDAI is licensed under the GPL v2+ license and is available at
http://www.libdai.org.
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1. Introduction

Probabilistic graphical models (Koller and Friedman, 2009) are at the coreof many applications in
machine learning nowadays. Because exact inference in graphical models is often infeasible, an
extensive literature has evolved in recent years describing various approximation methods for this
task. Unfortunately, there exist only few free software implementations formany of these methods.
The software package libDAI presented in this paper is the result of an ongoing attempt to improve
this situation.

libDAI is a free and open source C++ library (licensed under the GNU General Public License
version 2, or higher) that provides implementations of various exact and approximate inference
methods for graphical models. libDAI supports factor graphs with discretevariables. This paper
describes the most recent libDAI release, version 0.2.7.

The modular design of libDAI makes it easy to implement novel inference algorithms. The
large number of inference algorithms already implemented in libDAI allows for easy comparison of
accuracy and performance of various algorithms.

2. Inference in Factor Graphs

Although Bayesian networks and Markov random fields are the most commonly used graphical
models, libDAI uses a slightly more general type of graphical model: factor graphs (Kschischang
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et al., 2001). Afactor graphis a bipartite graph consisting ofvariablenodesi ∈V andfactornodes
I ∈ F , a family of random variables(Xi)i∈V , a family of factors( fI )I∈F (which are nonnegative
functions depending on subsetsNI ⊆ V of the variables), and a set of edgesE ⊆ V ×F , where
variable nodei and factor nodeI are connected by an undirected edge if and only if the factorfI
depends on variableXi , that is, if i ∈ NI . The probability distribution encoded by the factor graph is
given by:

P(XV ) =
1
Z ∏

I∈F

fI (XNI ), Z := ∑
XV

∏
I∈F

fI (XNI ).

A Bayesian network can easily be represented as a factor graph by introducing a factor for each
variable, namely the (conditional) probability table of the variable given its parents in the Bayesian
network. A Markov random field can be represented as a factor graphby taking the clique potentials
as factors. Factor graphs naturally express the factorization structureof probability distributions.
Therefore, they form a convenient representation for approximate inference algorithms that exploit
this factorization. This is the reason that libDAI uses factor graphs as the basic representation for
graphical models.

Given a factor graph, the following important inference tasks can be distinguished: calculating
the partition sum Z; calculatingmarginal probability distributionsP(XA) =

1
Z ∑XV \A

∏I∈F fI (XI )

over subsets of variablesXA, A⊆V ; calculating theMaximum A Posteriori(MAP) state, that is, the
joint configuration argmaxXV ∏I∈F fI (XI ) which has the maximum probability mass. libDAI offers
several inference algorithms which solve these tasks either approximately or exactly, for factor
graphs with discrete variables.

2.1 Inference Methods Implemented in libDAI

Apart from exact inference by brute force enumeration and the junction-tree method, libDAI cur-
rently offers the following approximate inference methods for calculating partition sums, marginals
and MAP states:1 mean field, (loopy) belief propagation (Kschischang et al., 2001), fractional belief
propagation (Wiegerinck and Heskes, 2003), tree-reweighted belief propagation (Wainwright et al.,
2003), tree expectation propagation (Minka and Qi, 2004), generalizedbelief propagation (Yedidia
et al., 2005), double-loop generalized belief propagation (Heskes et al., 2003), loop-corrected belief
propagation (Mooij and Kappen, 2007; Montanari and Rizzo, 2005),conditioned belief propagation
(Eaton and Ghahramani, 2009), a Gibbs sampler and a decimation method.

In addition, libDAI supports parameter learning of conditional probability tables by maximum
likelihood or expectation maximization (in case of missing data).

3. Technical Details

libDAI is targeted at researchers that have a good understanding of graphical models. The best
way to use libDAI is by writing C++ code that directly invokes the library functions and classes. In
addition, part of the functionality is accessible by using various interfaces: a command line interface,
a limited MatLab interface, and experimental Python and Octave interfaces (powered by SWIG, see
http://www.swig.org). Because libDAI is implemented in C++, it is very fast compared with
implementations in pure MatLab or Python; the difference in computation time can beup to a few
orders of magnitude.

1. Not all inference tasks are implemented by each method.
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libDAI BNT PNL FastInf GRMM Factorie JProGraM
Language C++ MatLab, C C++ C++ Java Scala Java
License GPL2+ LGPL2 BSD GPL3 CPL 1.0 CC-by 3.0 GPL3
Junction tree + + + + + - +
Belief propagation (BP) + + + + + + -
Fractional BP + - - - - - -
Tree-reweighted BP + - - + - - -
Generalized BP (GBP) + - - + + - -
Double-loop GBP + - - - - - -
Loop-corrected BP + - - - - - -
Conditioned BP + - - - - - -
Tree expectation propagation + - - - - - -
Mean field + - - + - - -
Gibbs sampling + + + + + + +
Other sampling methods - + + + + + -
Decimation + - - - - - -
Continuous variables - + + - - + +
Dynamic Bayes nets - + + - - + -
Conditional random fields - - - - + + -
Relational models - - - + - + -
Influence diagrams - + - - - - -
Parameter learning + + + + + + +
Structure learning - + + - - - +

Table 1: Feature comparison of various open source software packages for approximate inference
on graphical models.

libDAI is designed to be cross-platform and is known to compile on GNU/Linux distributions
and on Mac OS X using theGCC compiler suite, and also under Windows using eitherCygWin or MS
Visual Studio 2008.

The libDAI sources and documentation can be downloaded or browsed from the libDAI web-
site athttp://www.libdai.org. The Google group libDAI (seehttp://groups.google.com/
group/libdai) can be used for getting support and discussing development issues. Extensive doc-
umentation generated by Doxygen (seehttp://www.doxygen.org) is available, both as part of
the source code and online. Unit tests and various example programs are provided, including the
full source code of the solver which won in two categories of the2010 UAI Approximate Infer-
ence Challenge(see alsohttp://www.cs.huji.ac.il/project/UAI10/) and uses several of the
algorithms implemented in libDAI.

4. Related Work

Other prominent open source software packages supporting both directed and undirected graphical
models are the Bayes Net Toolbox (BNT, seehttp://bnt.googlecode.com), the Probabilistic
Networks Library (PNL, seehttp://sourceforge.net/projects/openpnl), FastInf (Jaimovich
et al., 2010), GRMM (http://mallet.cs.umass.edu/grmm), Factorie (http://code.google.
com/p/factorie), and JProGraM (http://jprogram.sourceforge.net). A feature comparison
of libDAI with these other packages is provided in Table 1.
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