
i
i

“supplement-methods-causal-inference” — 2016/5/2 — 22:49 — page 1 — #1 i
i

i
i

i
i

SI Appendix (for “Methods for causal inference from gene perturbation

experiments and validation”)

Nicolai Meinshausen ∗, Alain Hauser †, Joris M. Mooij ‡, Jonas Peters §, Philip Versteeg ‡ , and Peter Bühlmann ∗
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Details on the method of invariant causal prediction (ICP).
We outline here the main idea of the ICP method which es-
timates a set of variables Ŝ(E) satisfying formula [5]. Before
doing so, we emphasize the underlying main assumptions:

(A1) the Invariance Assumption as in the section on “Causal
inference based on invariance across experiments”;

(A2) construction of a statistical test for the null-hypothesis
[S.3] below which controls the type I error for any set
S ⊆ {1, . . . , p}.

The Invariance Assumption in (A1) is a requirement regard-
ing the space of experimental settings E . It holds under the
following condition.

(B) The space of experimental settings E is such that the ex-
perimental conditions e ∈ E do not affect the structural
equation for Y in formula [4]. For example, E consists of
do-interventions at variables Xj for some j ∈ {1, . . . , p}
(but there is no do-intervention at variable Y ).

The ICP method. We describe here the method in 3 steps.

Identifiability for population version. As a starting point to
explain the ICP method, we note that there is an identifia-
bility issue: there might be many sets S∗ and corresponding
parameters and error distributions which fulfill the Invariance
Assumption (and such other sets, say S, fulfill the hypothesis
H0,S(E) in [S.3] below). Therefore, as quantity which is iden-
tifiable from the probability distribution generating the data,
we consider

S(E) =
⋂
{S; H0,S(E) holds}, [S.1]

where H0,S(E) is defined in [S.3] below. Under assumption
(A1) we then have that

S∗ = pa(Y ) ⊇ S(E), [S.2]

because (A1) says that S∗ = pa(Y ) fulfills the Invariance
assumption and hence H0,S∗(E) holds.

The hypothesis for the statistical test mentioned in (A2) is
as follows:

H0,S,γ(E) : γk = 0 if k /∈ S and ∃Fε such that ∀ e ∈ E ,
Y e = Xeγ + εe, εe ⊥ Xe

S , ε
e ∼ Fε,

where Fε is the same for all e and “⊥” denotes independence.
That is, the null-hypothesis H0,S,γ(E) is a scenario where a
particular set of variables indexed by S ⊆ {1, . . . , p} and a
particular regression vector γ satisfy the Invariance Assump-
tion above. For that reason, we say that S, γ are “plausible
causal variables/predictors and coefficients”. We relax the pa-
rameter γ in H0,S,γ(E) by considering

H0,S(E) : there exists γ such that H0,S,γ(E) holds. [S.3]

Statistical testing for finite sample data. The null-hypothesis
in [S.3] can be statistically tested by using a test which incor-
porates constancy of the regression parameter of Y e against

Xe
S across all e ∈ E , and of constancy of the corresponding

residual variances across e ∈ E , see [7].1

The ICP method then proceeds by using the empirical ver-
sion of [S.1]. It considers the intersection of all sets of plau-
sible variables:

Ŝ(E) =
⋂
{S; H0,S(E) is not rejected by the

statistical test at significance level α}[S.4]

Computational short-cut. The construction in [S.4] shows
that in principle, we would have to go through all possible
subsets S ⊆ {1, . . . , p}. This would become very quickly com-
putationally infeasible.

The strategy is to start testing H0,S(E) with small subsets
S and subsequently move to larger subsets if all previous small
subsets lead to rejection of the corresponding H0,S(E). If two
disjoint subsets are not rejected, we can stop the search since

then the estimate Ŝ(E) would be empty. The same holds if the
empty set is not rejected.2 Such a strategy often markedly im-
proves the computational speed.

Furthermore, an additional effective way to improve compu-
tational speed is given by estimating first the set of variables
with non-zero regression parameters in a linear model of Y
versus X in the pooled data among all environments, denoted
by Sregr. Assuming faithfulness we obtain a screening prop-
erty: the variables corresponding to Sregr ⊇ S∗ = pa(Y ) must
be a superset of the causal variables in S∗ = pa(Y ) [9]. In

practice with finite sample data, we use an estimator Ŝregr

containing the non-zero estimated regression coefficients from
the Lasso [10], see e.g. [1] for sufficient conditions ensuring
that the Lasso estimator satisfies the variable screening prop-

erty.3 Based on the set of variables Ŝregr, we compute Ŝ(E) in

[S.4] as an intersection of subsets of Ŝregr only. This, com-
bined with the strategy mentioned above leads to substantial
gains in computational efficiency.

We summarize the ICP method as follows.

0. (optional pre-screening if p is large) Consider the pooled
data (Y,X) = {(Y e, Xe); e ∈ E}. Compute a Lasso re-
gression of Y versus X and denote the set of selected vari-
ables with non-zero Lasso-estimated regression coefficients

as Ŝregr.
For the following steps, work with the reduced set of predic-

tor variables from Ŝregr only (and denote it as the original
data as Xe (e ∈ E)).

1Non-constancy of the error variances implies that H0,S(E) must be false, and we only need
to control the probability of a false rejection. This doesn’t imply that the error distributions are
characterized by the error variances only.
2For a detailed description, see the summary of the ICP method below.
3The estimator Ŝregr based on the Lasso satisfies the asymptotic variable screening property if

P[Ŝregr ⊇ Sregr] converges to 1 as sample size and possibly the dimension increases.
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1. Perform statistical tests for H0,S(E) in [S.3] at significance
level α (e.g. α = 0.05) (by testing constancy of the regres-
sion parameters and of the residual variances; see [7] for
details).

Compute Ŝ(E) in [S.4]: start by testing small sets S and
subsequently move to larger sets S as follows:

(i) If H0,∅ is not rejected: set Ŝ(E) = ∅ and stop; otherwise
go to step (ii).

(ii) Consider sets S of cardinality 1 and consider consecu-
tively the corresponding intersections of the sets where
H0,S(E) is not rejected; as soon as the intersection be-

comes ∅, output Ŝ(E) = ∅ and stop; otherwise, denote

by Ŝ1(E) the current intersection, set m = 1 and go to
the next step.

(iii) Discard all supersets of Ŝm(E) and consider among the
remaining sets the ones with cardinality m + 1. Con-
struct consecutively the corresponding intersections of

Ŝm(E) with the sets where H0,S(E) is not rejected; as

soon as the intersection becomes ∅, output Ŝ(E) = ∅
and stop; otherwise, denote by Ŝm+1(E) the current in-
tersection and increase m by one (m← m+ 1).

(iv) Repeat step (iii) until there are no further sets to con-
sider anymore.

Theorem 1. [7] Consider a linear model for each experi-
mental setting and assume (A1)-(A2). Then, the estimated

set Ŝ(E) from the ICP method (as described in step 1 above)
satisfies

P[Ŝ(E) ⊆ S∗ = pa(Y )] ≥ 1− α.

Proof: We have that

P[Ŝ(E) ⊆ S∗] = P[∩S{H0,S(E) not rejected} ⊆ S∗]
≥ P[H0,S∗(E) not rejected] ≥ 1− α,

where the first inequality is due to the fact that an intersection
of sets is smaller than each set alone, and the last inequality
follows by the fact that H0,S∗ holds (by (A1)) and that the
test controls the type I error (by (A2)) and applying this fact
to the complement of a type I error. �

The statement of the theorem also holds for the ICP method
with pre-screening (step 0 above) if it satisfies Ŝregr ⊇ S∗.
Such a property holds with high probability, as discussed
above in the paragraph “Computational short-cut”. In gen-

eral, we do not have that P[Ŝ(E) = S∗ = pa(Y )] is large, saying
that we can identify the causal variables with high probability.
On the other hand, and important in practice, the procedure
does not require to specify which of the causal variables are
identifiable from the data generating distributions from the
experimental settings E .

Violation of linearity. If the data generating probability
distribution would violate the linearity assumption in formula
[3] (i.e., the model would be misspecified), the ICP method
(based on the linearity assumption in formula [3]) is expected
to yield less findings rather than producing false positives and
thus, it will be conservative [7, Sec.6]. In order to have bet-
ter power, one would need to extend the ICP procedure using
nonlinear regression models.

Inferring a strong intervention effect (SIE) by predicted direct
intervention effects. We argue here that a strong intervention
effect (SIE), which is a total causal effect, can be inferred from

predicted direct intervention effects as e.g. from the output of
the invariant causal prediction (ICP) method.

Consider for simplicity a structural equation for Y which
is linear as in formula [4], Y ←

∑
j∈pa(Y ) γ

∗
jXj + εY . Leav-

ing identifiability issues aside, we expect that with increasing
sample size, those variables with a large coefficient |γ∗j | will
be selected first by ICP. If the direct effect of variable Xj
is strong, meaning that |γ∗j | is large, we should see a fairly

strong total average effect | d
dx

E[Y |do(Xj = x)]|; unless in the
“unlikely case” (i.e., with a nearly non-faithful distribution)
where the direct effect would be (nearly) canceled by indirect
effects corresponding to directed paths from Xj to Y other
than Xj → Y in the causal directed acyclic graph.

Therefore, the indices j (corresponding to variable Xj) with
large estimates (from a method or algorithm) for |γ∗j | typi-
cally correspond to the indices (or variables) with large values
of | d

dx
E[Y |do(Xj = x)]|. Finally, variables Xj with a strong

total causal effect are more likely to result in SIEs.

Adaptation of the ICP-method to Sachs et al. data [8]. The
estimation of the causal graph works node-wise, that is we take
each variable in turn as a target variable Y and treat all other
variables as potentially causal predictors for Y . When apply-
ing the ICP method [S.4] to a given target variable Y , one
needs to exclude interventions on the target itself. A straight-
forward adaption of the ICP-method in [S.4] is as follows. We
have eight different environments which we denote for simplic-
ity by E = {1, . . . , 8}. Let Eij = {i, j} be the subset of two

environments {i, j} ∈ E . Let Ŝα(Eij) be the estimated causal
parent set when using [S.4] for these two environments when
controlling the error at level α. Let P be the set of all pairs
of environments Eij with i < j where no intervention on the
target Y occurs in environments Eij . A straightforward gen-
eralization of [S.4] is to estimate the causal parent set as

S̃(E) =
⋃
Eij∈P

Ŝα/|P|(Eij), [S.5]

where Ŝ is defined in [S.4]. Taking the union over the results
from pairs of environments as in [S.5] allows to exclude pairs
of environments where an intervention on Y occurred. For
some interventions the location of the intervention is precisely
known (so-called abundance interventions). We can thus re-
move pairs of environments from the union in [S.5] for which
an abundance intervention on the target Y occurs. However,
excluding these pairs of environments has in general no effect
on the estimated graph. The reason is that if interventions
occur on Y in environments Eij , no set of variables is invari-

ant any longer and Ŝ(Eij) = ∅, unless the intervention are
(perhaps accidentally) fine-tuned to lead to invariance in a set
other than the parental set pa(Y ). For the data in [8] the
graph remains indeed unchanged whether we remove pairs of
environments where an abundance intervention occurred or
not.

There are also interventions of “activity-type” [6] in the data
for which the target of the intervention is unknown. The pre-
cise location of these interventions are in general not known
a-priori, see [6] for details. Leaving pairs of environments Eij
with abundance interventions on Y out of the union in [S.5]
made no difference to the estimated graph, as expected. By
the same reasoning, we do not reduce the set of pairs of en-
vironments in [S.5] based on the activity interventions, as
interventions on Y in a given pair of environments Eij will

just yield an empty set Ŝ(Eij) for the estimated set of causal
parents of Y and leave the union in [S.5] unchanged.

It is still essential, however, to split the environments into
pairs (as in [S.5]) in the presence of (unknown) interventions

2



i
i

“supplement-methods-causal-inference” — 2016/5/2 — 22:49 — page 3 — #3 i
i

i
i

i
i

Table S1: Direct causal relationships between the biochemical agents in the flow cytometry data of [8],
according to different causal discovery methods. The consensus network according to [8] is denoted here by

“[8]a” and their reconstructed network by “[8]b”.

Edge [8]a [8]b [6] [2] ICP hiddenICP
RAF→MEK X X X
MEK→RAF X X X
MEK→ERK X X X
PLCg→PIP2 X X X X X
PLCg→PIP3 X X
PLCg→PKC X X
PIP2→PLCg X X
PIP2→PIP3 X
PIP2→PKC X
PIP3→PLCg X
PIP3→PIP2 X X X X X
PIP3→AKT X
AKT→ERK X X X
ERK→AKT X X X X
ERK→PKA X
PKA→RAF X X
PKA→MEK X X X X
PKA→ERK X X X
PKA→AKT X X X X X
PKA→PKC X
PKA→P38 X X X
PKA→JNK X X X X
PKC→RAF X X X
PKC→MEK X X X X
PKC→PLCg X
PKC→PIP2 X
PKC→AKT X
PKC→PKA X X
PKC→P38 X X X X X
PKC→JNK X X X X X X
P38→JNK X
P38→PKC X
JNK→PKC X
JNK→P38 X X

3
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on Y in some environments, as the parental set is then not in-
variant across all environments simultaneously. We would thus
have no power to detect causal effects when applying [S.4]
over all environments simultaneously without splitting it into
a union over pairs as in [S.5].

Results on Sachs et al. data [8]. Table S1 shows the direct
causal relations reported in the literature and the ones found
by our invariant causal prediction methods. Note that the ac-
tual ground truth for these data is not known. Nevertheless,
there is quite some overlap the different results. In particular,
only 34 out of 110 possible edges have been reported.

Using several datasets. We add here a remark that it is some-
times feasible to have access to different datasets of the same
kind of gene perturbations. For example, the datasets in [5]
and [4] have an overlap of 5225 genes (6170 and 5361 in [5] and
[4], respectively) whose expressions were measured. Due to the
fact that the invariant causal prediction method provides con-
fidence statement for causal variables, we can aggregate the
results from different datasets with the methods from meta
analysis [3]. To be more precise, denote by P

(1)
j , . . . , P

(k)
j the

p-values that variable Xj is causal for a response Y in the

datasets r = 1, . . . , k, i.e., P
(r)
j is the smallest level α such

that j ∈ Ŝ(E) in dataset r (see also formula [5]). Assuming
independence among the k different datasets, we can then use

Stouffer’s method [11]: the aggregated p-value is

P aggr
j = Φ

∑k
r=1 wrΦ

−1(P
(r)
j )√∑k

r=1 w
2
r

 ,

with large positive weight wr if the dataset r has large sam-
ple size nr or is of high quality. Typically we would choose
wr = nr/σ

2
r where σ2

r denotes the variance of the noise level
in the rth dataset: it is often hard though to have knowl-
edge about σ2

r and one might then simply use σ2
r ≡ 1 for all

r. We note that this aggregation method, for any choice of
non-negative weights, controls the probability for a type I er-

ror of claiming a false positive whenever the p-values P
(r)
j are

valid or conservative as in formula [5]. In cases where differ-
ent datasets would describe different environments or inter-
ventions, we could in principle combine them into our frame-
work from the Invariance Assumption without meta analysis
aggregation, leading to potentially improved identifiability as
indicated in formula [6]. But then, the issue of standardization
to the same scale of the error variance across datasets needs
to be addressed.

Data and software.An R-script to compute the causal
effects with invariant causal prediction can be found
at http://stat.ethz.ch/∼nicolai/experimentKemmeren.R. The
raw and processed gene knockout experimental data [5] can be
found on the webpage http://deleteome.holstegelab.nl/ under
‘Downloads/Causal Inference’.
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