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Abstract

We derive novel sufficient conditions for con-
vergence of Loopy Belief Propagation (also
known as the Sum-Product algorithm) to
a unique fixed point. Our results improve
upon previously known conditions. For bi-
nary variables with (anti-)ferromagnetic in-
teractions, our conditions seem to be sharp.

1 Introduction

Loopy Belief Propagation (LBP), also known as the
Sum-Product Algorithm or simply Belief Propagation,
is an important algorithm for approximate inference
on graphical models. Spectacular applications can be
found e.g. in coding theory (iterative decoding algo-
rithms for Turbo Codes and Low Density Parity Check
Codes) and in combinatorial optimization (the Sur-
vey Propagation algorithm used in satisfiability prob-
lems such as 3-SAT and graph colouring). LBP has
been generalized in many ways (e.g. double-loop algo-
rithms, GBP, EP/EC).

However, there are two major problems in applying
LBP to concrete problems: (i) if LBP converges, it is
not clear whether the results are a good approximation
of the exact marginals; (ii) LBP does not always con-
verge, and in these cases one gets no approximations
at all. For LBP, the two issues might be interrelated:
the “folklore” is that failure of LBP to converge indi-
cates low quality of the Bethe approximation on which
it is based. This would mean that if one has to “force”
LBP to converge (e.g. by using damping or double-
loop approaches), one can expect the results to be of
low quality.

Although LBP is an old algorithm that has been rein-
vented many times in different fields, a solid theoreti-
cal understanding of the two aforementioned issues is
still lacking, except for the special case of a network

containing a single loop [4]. Considerable progress has
been made recently regarding the question under what
conditions LBP converges [1, 2] and under what con-
ditions the fixed point is unique [3].

In this work, we study the question of convergence of
LBP and derive new sufficient conditions for LBP to
converge to a unique fixed point, which are directly
formulated in terms of arbitrary factor graphs. We
present our results in a sketchy way and refer to [5] for
the details.

2 Background

2.1 Graphical models and factor graphs

Consider N discrete random variables xi ∈ Xi, for
i ∈ V := {1, 2, . . . , N}; we write x = (x1, . . . , xN ) ∈
X :=

∏

i∈V Xi. We are interested in the following
probability measure on X :1

P (x1, . . . , xN ) :=
1

Z

∏

I∈I

ψI(xI) (1)

which factorizes in factors or potentials ψI . The fac-
tors are indexed by subsets of V , i.e. I ⊆ P(V ). If
I ∈ I is the subset I = {i1, . . . , im} ⊆ V , we write
xI := (xi1 , . . . , xim

) ∈
∏

i∈I Xi. Each factor ψI is
a positive function ψI :

∏

i∈I Xi → (0,∞). Z is a
normalizing constant ensuring that

∑

x∈X P (x) = 1.
We will use uppercase letters for indices of factors
(I, J,K, . . . ∈ I) and lowercase letters for indices of
variables (i, j, k, . . . ∈ V ). The factor graph that corre-
sponds to the probability distribution (1) is a bipartite
graph with vertex set V ∪I. In the factor graph, each
variable node i ∈ V is connected with all the factors
I ∈ I that contain the variable, i.e. the neighbours of
i are the factor nodes Ni := {I ∈ I : i ∈ I}. Similarly,
each factor node I ∈ I is connected with all the vari-

1The class of probability measures described by (1) con-
tains Markov Random Fields as well as Bayesian Networks.



able nodes i ∈ V that it contains and we will simply
denote the neighbours of I by I = {i ∈ V : i ∈ I}.

2.2 Loopy Belief Propagation

Loopy Belief Propagation is an algorithm that calcu-
lates approximations to the marginals {P (xI)}I∈I and
{P (xi)}i∈V of the probability measure (1). The calcu-
lation is done by message-passing on the factor graph:
each node passes messages to its neighbours. One usu-
ally discriminates between two types of messages: mes-
sages µI→i(xi) from factors to variables and messages
µi→I(xi) from variables to factors (where i ∈ I ∈ I).
Both messages are positive functions on Xi, or, equiva-
lently, vectors in R

Xi (with positive components). The
messages that are sent by a node depend on the incom-
ing messages; the new messages, designated by µ̃, are
given in terms of the incoming messages by the follow-
ing LBP update rules2

µ̃j→I(xj) ∝
∏

J∈Nj\I

µJ→j(xj) (2)

µ̃I→i(xi) ∝
∑

xI\i

ψI(xI)
∏

j∈I\i

µj→I(xj). (3)

Usually, one normalizes the messages in the `1-sense
(i.e. such that

∑

xi∈Xi
µ(xi) = 1). When all messages

have converged to some fixed point µ∞, one calculates
the approximate marginals or beliefs

bi(xi) = Ci
∏

I∈Ni

µI→i
∞ (xi) ≈ P (xi)

bI(xI) = CIψI(xI)
∏

i∈I

µi→I
∞ (xi) ≈ P (xI),

where the Ci’s and CI ’s are normalization constants
ensuring that the approximate marginals are normal-
ized in `1-sense. Note that the beliefs are invariant
under rescaling of the messages, which shows that the
precise way of normalization in (2) and (3) is irrele-
vant. For numerical stability however, some way of
normalization (not necessarily in `1-sense) is desired
to ensure that the messages stay in some compact do-
main.

In the following, we will formulate everything in terms
of the messages µI→i(xi) from factors to variables; the
update equations are then obtained by substituting (2)
in (3):

µ̃I→i(xi) = CI→i
∑

xI\i

ψI(xI)
∏

j∈I\i

∏

J∈Nj\I

µJ→j(xj).

(4)

2We abuse notation slightly by writing X \ x instead of
X \ {x} for sets X.

with CI→i such that
∑

xi∈Xi
µ̃I→i(xi) = 1. We con-

sider here LBP with a parallel update scheme, which
means that all message updates (4) are done in paral-
lel.

3 Special case: binary variables with

pairwise interactions

In this section we investigate the simple special case
of binary variables (i.e. |Xi| = 2 for all i ∈ V ), and
in addition we assume that all potentials consist of at
most two variables. Although this is a special case of
the more general theory to be presented later on, we
start with this simple case because it illustrates most
of the underlying ideas without getting involved with
the additional technicalities of the general case.

Without loss of generality we assume that Xi =
{−1,+1} for all i ∈ V . We take the factor index set
as I = I1 ∪I2 with I1 = V (the “local evidence”) and
I2 ⊆ {{i, j} : i, j ∈ V, i 6= j} (the “pair-potentials”).
The probability measure (1) can then be written as

P (x) =
1

Z
exp




∑

{i,j}∈I2

Jijxixj +
∑

i∈I1

θixi





for some choice of the parameters Jij and θi.

Note that the messages sent from single-node fac-
tors I1 to variables are constant. Thus the question
whether messages converge can be decided by only
studying the messages sent from pair-potentials I2 to
variables. In this special case, it is advantageous to use
the following “natural” parameterization of the mes-
sages

tanh νi→j := µ{i,j}→j(xj = 1) − µ{i,j}→j(xj = −1),
(5)

where νi→j ∈ R is now interpreted as a message sent
from variable i to variable j (instead of a message sent
from the factor {i, j} to variable j). The LBP up-
date equations (4) become particularly simple in this
parameterization:

tanh ν̃j→i = tanh(Jij) tanh



θj +
∑

k∈Nj\i

νk→j



 (6)

where we wrote Nj := {k ∈ V : {j, k} ∈ I2} for the
variables that interact with j via a pair-potential.

Defining the set of ordered pairs D := {i → j : {i, j} ∈
I2}, we see that the parallel LBP update is a mapping
f : R

D → R
D; the component j → i of f(ν) = ν̃ is

specified in terms of the components of ν in (6). Our
goal is now to derive sufficient conditions under which
the mapping f is a contraction. For this we need some
elementary but powerful mathematical theorems.



3.1 Normed spaces, contractions and bounds

Let d be a metric on a set X. A mapping f : X → X is
called a contraction (with respect to d) if there exists
0 ≤ K < 1 such that d(f(x), f(y)) ≤ Kd(x, y) for all
x, y ∈ X. If the metric space (X, d) is complete, we
can apply the

Theorem 3.1 (Contracting Mapping Principle)
Let f : X → X be a contraction of a complete metric
space (X, d). Then f has a unique fixed point x∞ ∈ X
and for any x0 ∈ X, the sequence n 7→ xn := f(xn−1)
converges to x∞. The rate of convergence is at least
linear: d(f(x), x∞) ≤ Kd(x, x∞) for x ∈ X. 2

This theorem is due to Banach; the proof can be found
in many advanced textbooks on analysis.

In the following, let V be a finite dimensional vec-
tor space and ‖·‖ a norm on V . The norm induces
a matrix norm (also called operator norm) on linear
mappings A : V → V , defined by

‖A‖ := sup
v∈V,
‖v‖ ≤1

‖Av‖.

Let f : V → V be a differentiable mapping. For x, y ∈
V , we define the segment joining x and y by [x, y] :=
{λx + (1 − λ)y : λ ∈ [0, 1]}. We have the following
consequence of the Mean Value Theorem:

Lemma 3.1 Let x, y ∈ V . Then:

‖f(y) − f(x)‖ ≤ ‖y − x‖ · sup
z∈[x,y]

‖f ′(z)‖

where ‖f ′(z)‖ is the induced matrix norm of the
derivative (“Jacobian”) of f at z.

Proof. See [6, Thm. 8.5.4]. 2

The norm ‖·‖ on V induces a metric d(x, y) :=
‖y − x‖ on V . The metric space (V, d) is complete,
since V is finite-dimensional. If f : V → V is a con-
traction with respect to the induced metric d, we say
that f is a ‖·‖ -contraction. Combining Theorem 3.1
and Lemma 3.1 yields our basic tool:

Lemma 3.2 If supv∈V ‖f ′(v)‖ < 1, then f is a ‖·‖ -
contraction and the consequences of Theorem 3.1 hold.

2

3.2 Sufficient conditions for LBP to be a
contraction

We apply Lemma 3.2 to the case at hand: the paral-
lel LBP update mapping f : R

D → R
D, written out

in components in (6). The derivative of f is easily

calculated from (6) and is given by3

(

f ′(ν)
)

j→i,k→l
=

∂ν̃j→i

∂νk→l
= Gj→i(ν)Aj→i,k→l

where

Gj→i(ν) :=
1 − tanh2(θj +

∑

t∈Nj\i νt→j)

1 − tanh2(ν̃j→i(ν))
sgn Jij

Aj→i,k→l := tanh |Jij | δj,l1Nj\i(k). (7)

Note that we have absorbed all ν-dependence in the
factor Gj→i; the factor Aj→i,k→l is independent of
ν and captures the structure of the graphical model.
Note further that supν∈V |Gj→i(ν)| = 1, implying that

∣
∣
∣
∣

∂ν̃j→i

∂νk→l

∣
∣
∣
∣
≤ Aj→i,k→l (8)

everywhere on V .

We still have the freedom to choose the norm. As an
example, we take the `1-norm, which is defined on R

n

by ‖x‖1 :=
∑n

i=1 |xi|. The corresponding matrix or
operator norm, for a linear A : R

n → R
m, is given by

‖A‖1 := maxj∈{1,...,n}

∑m
i=1 |Aij |. Using the `1-norm

on R
D, we obtain:

Corollary 3.1 If

max
l∈V

max
k∈Nl

∑

i∈Nl\k

tanh |Jil| < 1, (9)

LBP is a `1-contraction and converges to a unique fixed
point, irrespective of the initial messages.

Proof. Using (8) and (7):

‖f ′(ν)‖1 = max
k→l

∑

j→i

∣
∣
∣
∣

∂ν̃j→i

∂νk→l

∣
∣
∣
∣

≤ max
k→l

∑

j→i

tanh |Jij | δjl1Nj\i(k)

= max
l∈V

max
k∈Nl

∑

i∈Nl\k

tanh |Jil|

and now simply apply Lemma 3.2. 2

3.3 Beyond norms: the spectral radius

Another norm that gives an analytical result is e.g.
the `∞ norm; however, it turns out that this norm
gives a weaker sufficient condition than the `1 norm
does. Instead of pursuing a search for the optimal
norm, we can derive a criterion for convergence based
on the spectral radius of the matrix (7). The key idea

3For a set X, we define the indicator function 1X of X
by 1X(x) = 1 if x ∈ X and 1X(x) = 0 if x 6∈ X.



is to look at several iterations of LBP at once. This
will yield a significantly stronger condition for conver-
gence of LBP to a unique fixed point. However, this
comes at a computational cost: the condition involves
calculating (or bounding) the largest eigenvalue of a
(possibly quite large, but sparse) matrix.

For a square matrix A, we denote by σ(A) its spectrum,
i.e. the set of eigenvalues of A. By ρ(A) we denote its
spectral radius, which is defined as ρ(A) := sup |σ(A)|,
i.e. the largest magnitude of the eigenvalues of A.

Theorem 3.2 Let f : R
m → R

m be differentiable
and suppose that f ′(x) = G(x)A, where G is diago-
nal with bounded entries |Gii(x)| ≤ 1 and 0 ≤ Aij.
If ρ(A) < 1 then for any x0 ∈ R

m, the sequence
x0, f(x0), f

2(x0), . . . obtained by iterating f converges
to a fixed point x∞, which does not depend on x0.

Proof. For a matrix B, we will denote by |B| the
matrix with entries |B|ij = |Bij |. For two matrices
B,C we will write B ≤ C if Bij ≤ Cij for all entries
(i, j). Note that if |B| ≤ |C|, then ‖B‖1 ≤ ‖C‖1 .
Also note that |BC| ≤ |B| |C|. Finally, if 0 ≤ A and
B ≤ C, then AB ≤ AC and BA ≤ CA.

Using these observations and the chain rule, we have
for any n = 1, 2, . . . and any x ∈ R

m:

|(fn)′(x)| =

∣
∣
∣
∣
∣

n∏

i=1

f ′
(
f i−1(x)

)

∣
∣
∣
∣
∣

≤
n∏

i=1

( ∣
∣G

(
f i−1(x)

)∣
∣ A

)

≤ An.

Hence ‖(fn)′(x)‖1 ≤ ‖An‖1 for all n = 1, 2, . . .
and all x ∈ R

m. By the Gelfand Spectral Radius
Theorem (which holds in fact for any matrix norm),
limn→∞ ‖An‖1

1/n = ρ(A). Now if ρ(A) < 1, it
follows that for some N ,

∥
∥AN

∥
∥

1
1/N < 1. Hence

supx∈Rm

∥
∥(fN )′(x)

∥
∥

1
< 1. Applying Lemma 3.2, we

conclude that fN is a `1-contraction and thus has a
unique fixed point x∞.

Take any x0 ∈ R
m. Consider the N sequences ob-

tained by iterating fN , starting respectively in x0,
f(x0), . . . , fN−1(x0). Each sequence converges to x∞

since fN is a `1-contraction with fixed point x∞. But
then the sequence x0, f(x0), f

2(x0), . . . must converge
to x∞. 2

This immediately yields:

Corollary 3.2 For binary variables with pairwise in-
teractions, LBP converges to a unique fixed point, ir-
respective of the initial messages, if the spectral radius
of the |D| × |D|-matrix

Aj→i,k→l := tanh |Jij | δj,l1Nj\i(k)

is strictly smaller than 1. 2

One might think that there is a shorter route to this
result: it seems quite plausible intuitively that in
general, for a continuously differentiable f : R

m →
R

m, iterating f will converge to a unique fixed point
if supx∈Rm ρ(f ′(x)) < 1. However, this conjecture
(which has been open for a long time) has been shown
to be true in two dimensions but false in higher dimen-
sions [7].

Any matrix norm of A is actually an upper bound on
the spectral radius ρ(A), since for any eigenvalue λ
of A with eigenvector x we have |λ| ‖x‖ = ‖λx‖ =
‖Ax‖ ≤ ‖A‖ ‖x‖ , hence ρ(A) ≤ ‖A‖ . This implies
that no norm in Lemma 3.2 will result in a sharper
condition than Corollary 3.2.

4 General case

In the general case, when the domains Xi are arbi-
trarily large (but finite), we do not know of a natural
parameterization of the messages that automatically
takes care of the invariance of the messages µI→j un-
der scaling (like (5) does in the binary case).4 Instead
of handling the scale invariance by the parameteriza-
tion and using standard norms and metrics, it seems
easier to take a simple parameterization and to change
the norms and metrics in such a way that they are in-
sensitive to the (irrelevant) extra degrees of freedom
arising from the scale invariance. This is actually the
key insight in extending the previous results beyond
the binary case: once one sees how to do this, the rest
follows in a (more or less) straightforward way.

Another important point is to reparameterize the mes-
sages by switching to the logarithms of the messages
λI→i := log µI→i, which results in almost linear LBP
update equations, except for the “log” in front:

λ̃I→i(xi) = log
∑

xI\i

ψI(xI)h
I→i(xI\i), (10)

where we dropped the normalization and defined

hI→i(xI\i) := exp




∑

j∈I\i

∑

J∈Nj\I

λJ→j(xj)



 .

Each log-message λI→i is a vector in the vector space
VI→i = R

Xi ; we will use greek letters as indices for

4A possible generalization, suggested by one of the
reviewers, would be the parameterization in terms of
µI→i(xi)/µI→i(xi0) for some arbitrary i0; however, this
yields conditions that depend on the choice of i0 and seem
to be weaker in general than the results we present in this
work.



the components, e.g. λI→i
α with α ∈ Xi. We will call

everything that concerns individual vector spaces VI→i

local and define the global vector space V as the direct
sum of the local vector spaces:

V :=
⊕

i∈I∈I

VI→i

The parallel LBP update is the mapping f : V → V ,
written out in components in (10).

Note that the invariance of the messages µI→i under
scaling amounts to invariance of the log-messages λI→i

under translation. More formally, defining linear sub-
spaces

WI→i := {λ ∈ VI→i : λα = λα′ for all α, α′ ∈ Xi}

and their direct sum

W :=
⊕

i∈I∈I

WI→i ⊆ V,

the invariance amounts to the observation that

f(λ + w) − f(λ) ∈ W for all λ ∈ V , w ∈ W.

Since λ + w and λ are equivalent for our purposes,
we want our measures of distance in V to reflect this
equivalence. Therefore we will “divide out” the equiv-
alence relation and work in the quotient space V/W ,
which is the topic of the next subsection.

4.1 Quotient spaces

Let V be a finite-dimensional vector space. Let W be
a linear subspace of V . We can consider the quotient
space V/W := {v+W : v ∈ V }, which is again a vector
space. We will denote its elements as v := v + W .

Let ‖·‖ be any vector norm on V . It induces a quotient
norm on V/W , defined by ‖v‖ := infw∈W ‖v + w‖ ,
which is indeed a norm, as one easily checks. The
quotient norm in turn induces the quotient metric
d(v1, v2) := ‖v2 − v1‖ on V/W . The metric space
(V/W, d) is complete.

Let f : V → V be a (possibly non-linear) mapping
with the following symmetry:

f(v + w) − f(v) ∈ W for all v ∈ V , w ∈ W. (11)

We can then unambiguously define the quotient map-
ping

f : V/W → V/W : v 7→ f(v).

If f is differentiable in x ∈ V , then the symmetry
property (11) implies that f ′(x)·w ∈ W for all w ∈ W .

For linear mappings A : V → V that leave W invari-
ant, i.e. AW ⊆ W , we can define the quotient map-
pings A : V/W → V/W : v 7→ Av. An example is

the derivative f ′(x) of f at x, which induces a linear
mapping f ′(x) : V/W → V/W .

The operation of taking derivatives is compatible with
projecting onto the quotient space. Indeed, the deriva-
tive of the induced mapping f : V/W → V/W at x
equals the induced derivative of f at x:

f
′
(x) = f ′(x) for all x ∈ V . (12)

By Lemma 3.2, f is a contraction with respect to the

quotient norm if supx∈V/W

∥
∥
∥f

′
(x)

∥
∥
∥ < 1. We can for-

mulate this condition more explicitly using (12):

Lemma 4.1 Let (V, ‖·‖ ) be a finite-dimensional
normed vector space, W a linear subspace of V and
f : V → V a differentiable mapping satisfying (11). If

sup
x∈V

sup
v∈V,
‖v‖ ≤1

inf
w∈W

‖f ′(x) · v + w‖ < 1, (13)

the induced mapping f : V/W → V/W is a contraction
with respect to the quotient norm on V/W . 2

4.2 Constructing a suitable norm

Whereas in the binary case, the local vector spaces
were one-dimensional (each message νi→j was param-
eterized by a single real number), the individual mes-
sages are now vectors λI→i

α with components indexed
by α ∈ Xi. We would like a norm that behaves “glob-
ally” like the `1-norm (as in the binary case), but we
have to generalize its local part. We give a short de-
scription of the construction; for details, see [5].

The total message space V is the direct sum of linear
subspaces VI→i. Choose a local norm ‖·‖I→i on each
subspace VI→i. Then we can define a global norm on
V simply by taking the sum of all local norms:

‖λ‖ :=
∑

I→i

∥
∥λI→i

∥
∥

I→i
.

The corresponding matrix norm for a linear A : V → V
is given by

‖A‖ = max
J→j

∑

I→i

‖AI→i,J→j‖
J→j
I→i

where the norms of the matrix blocks AI→i,J→j are
defined as

‖AI→i,J→j‖
J→j
I→i := sup

x∈VJ→j ,
‖x‖

J→j
≤1

‖AI→i,J→jx‖I→i .

This construction is compatible with projecting onto
quotient spaces; we only need to add some overlines



to get the corresponding quotient norms on W and for
A : V/W → V/W :

∥
∥λ

∥
∥ =

∑

I→i

∥
∥
∥λI→i

∥
∥
∥

I→i
,

∥
∥A

∥
∥ = max

J→j

∑

I→i

∥
∥AI→i,J→j

∥
∥

J→j

I→i
(14)

and

∥
∥AI→i,J→j

∥
∥

J→j

I→i
= sup

x∈VJ→j ,
‖x‖

J→j
≤1

∥
∥AI→i,J→jx

∥
∥

I→i
.

(15)

4.3 Application to LBP updates

The global norm described in the previous section
leaves open the question of how to choose the local
norms. We will postpone this choice and first exploit
the global properties of the norm.

The derivative of the parallel LBP update (10) is easily
calculated:

∂λ̃I→i(xi)

∂λJ→j(yj)
= 1Nj\I(J)1I\i(j)

×

∑

xI\i
ψI(xi, xj , xI\{i,j})δxj ,yj

hI→i(xI\i)
∑

xI\i
ψI(xi, xI\i)hI→i(xI\i)

.

To shorten the notation, we will use greek subscripts
instead of arguments: let α correspond to xi, β to
xj , β′ to yj and γ to xI\{i,j}; for example, we write
hI→i(xI\i) as hI→i

βγ . Taking the global quotient norm
(14) of the previous expression yields:

∥
∥
∥f ′(λ)

∥
∥
∥ = max

J→j

∑

I→i

1Nj\I(J)1I\i(j)×

∥
∥
∥
∥
∥

∑

γ ψI
αβ′γhI→i

β′γ
∑

β

∑

γ ψI
αβγhI→i

βγ

∥
∥
∥
∥
∥

J→j

I→i

We concentrate on the local part: fix I → i and J → j
(such that j ∈ I \ i and J ∈ Nj \ I) and drop these
superscripts from the notation for the moment. Note
that the local part (i.e. the fraction) depends on λ via
h(λ). In order to get a uniform bound on

∥
∥f ′(λ)

∥
∥, we

take the supremum over h > 0, and using (15) for the
definition of the local quotient matrix norm, we arrive
at the following expression:

sup
h>0

sup
v∈J→j

‖v‖
J→j

≤1

inf
w∈WI→i

∥
∥
∥
∥
∥

∑

β′

∑

γ ψαβ′γhβ′γvβ′

∑

β

∑

γ ψαβγhβγ
− w

∥
∥
∥
∥
∥

I→i

.

(16)

Even though this expression looks rather frightening,
it turns out that we can calculate it analytically if take
the local norms to be `∞ norms. We have also tried
local `2 norms and local `1 norms. For the `2 norm
it is possible to make some progress analytically, but
we were unable to calculate the final supremum over
h analytically. The results of numerical calculations
lead us to believe that the `2 norm yields weaker con-
ditions in general than the `∞ norm. For the `1 norm
we were only able to calculate the above expression
numerically; due to the nested suprema the calcula-
tions were very time-consuming and the results were
inconclusive because of many local extrema. In the
next section, we present the results based on the local
`∞ norm.

4.3.1 Local `∞ norms

The local quotient spaces are spanned by the vector
1 := (1, 1, . . . , 1). Taking for all local norms ‖·‖I→i

the `∞ norm, it is easy to see that

‖v‖I→i =
1

2
sup

α,α′∈Xi

|vα − vα′ | .

for v ∈ VI→i.
5 It is also not difficult to see that

for a linear mapping A : VJ→j → VI→i that satisfies
AWJ→j ⊆ WI→i, the induced matrix quotient norm is
given by

∥
∥A

∥
∥

J→j

I→i
=

1

2
sup
α,α′

‖Aαβ − Aα′β‖1 .

Hence in this case (16) equals:

1

2
sup
h>0,

α,α′∈Xi

∥
∥
∥
∥
∥

∑

γ ψαβγhβγ
∑

β

∑

γ ψαβγhβγ
−

∑

γ ψα′βγhβγ
∑

β

∑

γ ψα′βγhβγ

∥
∥
∥
∥
∥

1

.

Fixing α and α′, defining ψ̃βγ := ψαβγ/ψα′βγ , noting
that we can (without loss of generality) assume that
h is normalized in `1 sense, the previous expression
simplifies to

1

2
sup
α,α′

sup
h>0,

‖h‖
1
=1

∑

β

∣
∣
∣
∣
∣

∑

γ

hβγ

(

ψ̃βγ
∑

β

∑

γ ψ̃βγhβγ

− 1

)∣
∣
∣
∣
∣
.

In [5] we show that taking the supremum over h yields
the following analytic expression for (16):

N(ψI , i, j) :=

sup
α6=α′

sup
β 6=β′

sup
γ,γ′

tanh

(

1

4
log

(

ψI
αβγ

ψI
α′βγ

ψI
α′β′γ′

ψI
αβ′γ′

))

(17)

5This expression is related to the well-known total vari-
ation norm in probability theory (used in [1]) and identical
to the dynamic range measure in engineering (used in [2]).
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xi = α

I

ψI

j
xj = β

J

︸ ︷︷ ︸

I \ {i, j}

xI\{i,j} = γ

Figure 1: Part of the factor graph relevant in expressions
(18) and (19). Here i, j ∈ I with i 6= j, and J ∈ Nj \ I.

for i, j ∈ I with i 6= j and where ψI
αβγ is shorthand for

ψI(xi = α, xj = β, xI\{i,j} = γ) (see also Figure 1).

Applying Lemma 4.1 yields:

Theorem 4.1 If

max
J→j

∑

I∈Nj\J

∑

i∈I\j

N(ψI , i, j) < 1, (18)

LBP converges to a unique fixed point irrespective of
the initial messages. 2

We can also generalize the spectral radius result Corol-
lary 3.2. We obtain:

Theorem 4.2 If the spectral radius of the matrix

AI→i,J→j = 1Nj\I(J)1I\i(j)N(ψI , i, j), (19)

is strictly smaller than 1, LBP converges to a unique
fixed point irrespective of the initial messages.

Proof. Similar to the binary pairwise case. For de-
tails, see [5]. 2

Note that Theorem 4.1 is a trivial consequence of The-
orem 4.2. However, to prove the latter, it seems that
we have to go through all the work (and some more)
needed to prove the former. Also note that in case the
factor graph is a tree, the spectral radius of (19) is eas-
ily shown to be zero, for any choice of the potentials,
which is yet another proof of the well-known fact that
LBP always converges on trees. Theorem 4.1 is not
strong enough to prove that result.

We formulate our results for the important special
case of pairwise interactions, which corresponds to γ
taking only one possible value. For a pair-potential
ψij(xi, xj) = ψij

αβ , expression (17) simplifies to

N(ψij) := sup
α6=α′

sup
β 6=β′

tanh

(

1

4
log

(

ψij
αβ

ψij
α′β

ψij
α′β′

ψij
αβ′

))

.

Note that this quantity has the desirable property that
it is invariant to “reallocation” of single-node poten-
tials ψi or ψj to the pair-potential ψij (i.e. N(ψij) =
N(ψijψiψj)) and that it is symmetric in i and j.

Condition (18) becomes for the pairwise case

max
l∈V

max
k∈Nl

∑

i∈Nl\k

N(ψil) < 1, (20)

and the matrix (19) reduces to

Aj→i,k→l := N(ψij)δj,l1Nj\i(k). (21)

For the binary case, we reobtain our earlier result
Corollary 3.1, since N

(
exp(Jijxixj)

)
= tanh |Jij |.

5 Discussion and conclusions

5.1 Comparison with other work

In [1], Tatikonda and Jordan link the convergence of
LBP to the structure of the Gibbs measure on the in-
finite computation tree. They show that uniform con-
vergence holds whenever the Gibbs measure is unique.
To decide whether there exists a unique Gibbs mea-
sure, a classical condition from physics is invoked. In
this way one obtains a practically testible sufficient
condition for convergence of LBP, also known as Si-
mon’s condition.

A different approach was used in the recent work by
Ihler et. al [2]. The authors derive bounds on the pro-
pagation of “message errors” in the network. When
all message errors converge to zero, one can conclude
from this that LBP converges to a unique fixed point.
The authors prove that their convergence condition is
stronger than Simon’s condition.

In the aforementioned works, the authors limit them-
selves to the case of pairwise interactions, referring to
a method in [4] for constructing a pairwise MRF from
a Bayesian network; the resulting MRF is equivalent to
the original graphical model in the sense that it has an
identical probability distribution and equivalent LBP
updates. However, the new MRF has deterministic
potentials (i.e. potential functions containing zeroes),
and applying their sufficient conditions to the pair-
wise MRF, it seems that one obtains conditions that
are never satisfied.

The condition in [2] for convergence of LBP is al-
most the same as (20), except for the quantity N(ψij),
which is replaced by:

D(ψij) := tanh

(

1

2

(

sup
α,β

log ψij
αβ − inf

α′,β′
log ψij

α′β′

))

.

It is not difficult to show that N(ψij) ≤ D(ψij) for any
pair-potential ψij , hence our condition (20) is sharper
than that in [2]. In general the difference of these



quantities can be quite large.6

Finally we would like to mention the work of Heskes
[3] in which sufficient conditions on the uniqueness of
the LBP fixed point are derived by a careful analysis
of the properties of the Bethe free energy. The conjec-
ture is made that uniqueness of the fixed point implies
convergence of LBP. It is not known how these condi-
tions exactly relate to the ones presented in this work
and this may be an interesting question for further
research.

5.2 Comparison with empirical LBP
convergence results

In Figure 2 we compare our sufficient conditions with
the empirical convergence behaviour of parallel, un-
damped LBP. The graphical model is a rectangular
2D grid of size 10 × 10 with periodic boundary condi-
tions, binary variables, random independent and nor-
mally distributed nearest-neighbour interactions Jij ∼
N (J0, J) and no local evidence (i.e. θi = 0). For sev-
eral different ratios of J0/J , the results have been av-
eraged over 40 instances of the network; the lines cor-
respond to the means, the gray areas are “error bars”
of one standard deviation. Note that the spectral ra-
dius condition appears to be sharp when most of the
weights Jij have similar sign.

5.3 Open questions

We have assumed from the outset that all potentials
are positive. However, one may observe that the spec-
tral radius condition also makes sense for deterministic
(non-negative) potentials (using that limx→∞ tanh x =
1). This suggests that the result also holds gener-
ally for non-negative potentials, although we currently
have no prove of this conjecture.

Other questions raised by this work are how the con-
ditions change for damped LBP or alternative (e.q. se-
quential) update schemes and how the analysis could
be extended to Generalized Belief Propagation or
other message passing algorithms.

6After submission of this work, we became aware of a
recent extension of the results of Ihler et al., given in [8]. By
exploiting the freedom in the choice of the single-node and
the pairwise potentials, they improved their bounds and in
this way obtained a result identical to (20), for the pairwise
case. Also, as observed by Ihler [personal communication],
the improved version of the non-uniform (“path-counting”)
distance bound [8, Thm. 5.5] is equivalent to our spectral
radius bound, again for the pairwise case. This can be
proved using Theorem 3.2.
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Figure 2: Comparison of the empirical convergence be-

haviour of LBP (dashed line), the spectral radius condi-

tion Corollary 3.2 (solid line), the `1-norm based condition

Corollary 3.1 (dotted line) and Simon’s condition (dash-

dotted line). The inner areas (i.e. around the origin) mean

“convergence” (either guaranteed or empirical). See the

main text for more explanation.
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