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Preface

We are pleased to present the Proceedings of the UAI 2014 Workshop on Causal Inference: Learning and Prediction, held
in Quebec City, Canada, on July 27, 2014, as a workshop of the 30th Conference on Uncertainty in Artificial Intelligence
(UAI 2014). This workshop is the third in a series of UAI workshops on the topic of causality, following up on two
successful predecessors, the UAI Workshop on Causal Structure Learning 2012 and the Approaches to Causal Structure
Learning Workshop, UAI 2013.

The aim of this workshop was to bring together researchers interested in the challenges of causal inference from observa-
tional and interventional data, especially when confounding variables, feedback loops or selection bias may be present. For
this workshop, we decided to extend the scope from causal structure learning to include methods for making causal predic-
tions, i.e., for predicting what happens under interventions. We especially encouraged contributions describing practical
applications of causal methods.

There were 8 submissions, all full-length papers, each of which was peer-reviewed by two or three program committee
members. We accepted five of these for oral presentation and for inclusion in these proceedings. The proceedings also
include abstracts for three invited talks, including the two key-note talks by Robert Spekkens and Elias Bareinboim. Slides
of most of the oral presentations are available on the workshop website:

https://staff.fnwi.uva.nl/j.m.mooij/uai2014-causality-workshop/index.html

We would like to thank the paper authors and presenters for their contributions and the program committee members for
their reviewing service. We also appreciate the organizational support of the main UAI 2014 conference, in particular we
would like to thank John Mark Agosta, Jin Tian and Ann Nicholson for their help. Further, we would like to thank Robin
Evans, chair of the Approaches to Causal Structure Learning Workshop, UAI 2013, for his assistance. Finally, many thanks
to the CEUR-WS team for hosting these proceedings.
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How Occam’s Razor Provides a Neat Definition of Direct Causation

Alexander Gebharter & Gerhard Schurz
Duesseldorf Center for Logic and Philosophy of Science

University of Duesseldorf
Universitaetsstrasse 1

40225 Duesseldorf, Germany

Abstract

In this paper we show that the application of Oc-
cam’s razor to the theory of causal Bayes nets
gives us a neat definition of direct causation. In
particular we show that Occam’s razor implies
Woodward’s (2003) definition of direct causa-
tion, provided suitable intervention variables ex-
ist and the causal Markov condition (CMC) is
satisfied. We also show how Occam’s razor can
account for direct causal relationships Woodward
style when only stochastic intervention variables
are available.

1 INTRODUCTION

Occam’s razor is typically seen as a methodological prin-
ciple. There are many possible ways to apply the razor to
the theory of causal Bayes nets. It could, for example, sim-
ply be interpreted to suggest preferring the simplest causal
structure compatible with the given data among all compat-
ible causal structures. The simplest causal structure could,
for instance, be the one (or one of the ones) featuring the
fewest causal arrows.

In this paper, however, we are interested in a slightly dif-
ferent application of Occam’s razor: Our interpretation of
Occam’s razor asserts that given a causal structure is com-
patible with the data, it should only be chosen if it satis-
fies the causal minimality condition (Min) in the sense of
Spirtes et al. (2000, p. 31), which requires that no causal
arrow in the structure can be omitted in such a way that the
resulting substructure would still be compatible with the
data. When speaking of a causal structure being compat-
ible with the data, we have a causal structure and a prob-
ability distribution satisfying the causal Markov condition
(CMC) in mind. (For details, see sec. 5.) In the following,
applying Occam’s razor always means to assume that the
causal minimality condition is satisfied.

In this paper we give a motivation for Occam’s razor that

goes beyond its merits as a methodological principle dic-
tating that one should always decide in favor of minimal
causal models. In particular, we show that Occam’s ra-
zor provides a neat definition of direct causal relatedness
in the sense of Woodward (2003), provided suitable in-
tervention variables exist and CMC is satisfied. Note the
connection of this enterprise to Zhang and Spirtes’ (2011)
project. Zhang and Spirtes prove that CMC and an in-
terventionist definition of direct causation a la Woodward
(2003) together imply minimality. So Occam’s razor is
well-motivated within a manipulationist framework such as
Woodward’s. We show, vice versa, that CMC and minimal-
ity together imply Woodward’s definition of direct causa-
tion. So if one wants a neat definition of direct causation,
it is reasonable to apply Occam’s razor in the sense of as-
suming minimality.

The paper is structured as follows: In sec. 2 we introduce
the notation we use in subsequent sections. In sec. 3 we
present Woodward’s (2003) definition of direct causation
and his definition of an intervention variable. In sec. 4 we
give precise reconstructions of both definitions in terms of
causal Bayes nets. We also provide a definition of the no-
tion of an intervention expansion, which is needed to ac-
count for direct causal relations in terms of the existence of
certain intervention variables. In sec. 5 we show that Oc-
cam’s razor gives us Woodward’s definition of direct cau-
sation if CMC is assumed and the existence of suitable in-
tervention variables is granted (theorem 2). In sec. 6 we
go a step further and show how Occam’s razor allows us
to account for direct causation Woodward style when only
stochastic intervention variables (cf. Korb et al., 2004, sec.
5) are available (theorem 3). We conclude in sec. 7.

Note that though the main results of the present paper
(i.e., theorems 2 and 3) can be used for causal discov-
ery, the goal of this paper is not to provide a method for
uncovering direct causal connections among variables in
a set of variables V of interest. The goal of this paper
is to establish a connection between Woodward’s (2003)
intervention-based notion of direct causation and the pres-
ence of a causal arrow in a minimal causal Bayes net, which
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can be interpreted as support for Occam’s razor. Because of
this, the present paper does not discuss the relation of theo-
rems 2 and 3 to results about causal discovery by means of
interventions such as, e.g., (Eberhardt and Scheines, 2007)
or (Nyberg and Korb, 2007).

2 NOTATION

We represent causal structures by graphs, i.e., by ordered
pairs 〈V, E〉, where V is a set of variables andE is a binary
relation on V (E ⊆ V ×V). V’s elements are called the
graph’s “vertices” and E’s elements are called its “edges”.
“X → Y ” stands short for “〈X,Y 〉 ∈ E” and is interpreted
as “X is a direct cause of Y in 〈V, E〉” or as “Y is a direct
effect of X in 〈V, E〉”. Par(Y ) is the set of all X ∈ V
with X → Y in 〈V, E〉. The elements of Par(Y ) are
called Y ’s parents. We write “X – Y ” for “X → Y or
X ← Y ”. A path π : X – ... – Y is called a (causal)
path connecting X and Y in 〈V, E〉. A causal path π is
called a directed causal path from X to Y if and only if
(“iff” for short) it has the form X → ... → Y . X is called
a cause of Y and Y an effect of X in that case. A causal
path π is called a common cause path iff it has the form
X ← ... ← Z → ... → Y and no variable appears more
often than once on π. Z is called a common cause of X
and Y lying on path π in that case. A variable Z lying on a
path π : X – ... → Z ← ... – Y is called a collider lying
on this path. A variable X is called exogenous iff no arrow
is pointing at X; it is called endogenous otherwise.

A graph 〈V, E〉 is called a directed graph in case all edges
in E are one-headed arrows “→”. It is called cyclic iff
it features a causal path of the form X → ... → X and
acyclic otherwise. A causal structure 〈V, E〉 together with
a probability distribution P over V is called a causal model
〈V, E, P 〉. P is intended to provide information about the
strengths of causal influences represented by the arrows in
〈V, E〉. A causal model 〈V, E, P 〉 is called cyclic iff its
graph 〈V, E〉 is cyclic; it is called acyclic otherwise. In
the following, we will only be interested in acyclic causal
models.

We use the standard notions of (conditional) probabilistic
dependence and independence:

Definition 1 (conditional probabilistic (in)dependence)
X and Y are probabilistically dependent conditional on Z
iff there are X-, Y -, and Z-values x, y, and z, respectively,
such that P (x|y, z) 6= P (x|z) ∧ P (y, z) > 0.

X and Y are probabilistically independent conditional on
Z iff X and Y are not probabilistically dependent condi-
tional on Z.

Probabilistic independence between X and Y conditional
on Z is abbreviated as “Indep(X,Y |Z)”, probabilistic
dependence is abbreviated as “Dep(X,Y |Z)”. Uncon-

ditional probabilistic (in)dependence between X and Y
(In)Dep(X,Y ) is defined as (In)Dep(X,Y |∅). X , Y ,
and Z in definition 1 can be variables or sequences of
variables. When X,Y, Z, ... are sequences of variables,
we write them in bold letters. We write also the values
x,y, z, ... of sequences X,Y,Z, ... in bold letters. The
set of values x of a sequence X of variables X1, ..., Xn

is val(X1) × ... × val(Xn), where val(Xi) is the set of
Xi’s possible values.

3 WOODWARD’S DEFINITION OF
DIRECT CAUSATION

Woodward’s (2003) interventionist theory of causation
aims to explicate direct causation w.r.t. a set of variables
V in terms of possible interventions. Woodward (2003,
p. 98) provides the following definition of an intervention
variable:

Definition 2 (IVW ) I is an intervention variable for X
with respect to Y if and only if I meets the following con-
ditions:
I1. I causes X .
I2. I acts as a switch for all the other variables that cause
X . That is, certain values of I are such that when I attains
those values, X ceases to depend on the values of other
variables that cause X and instead depends only on the
value taken by I .
I3. Any directed path from I to Y [if there exists one] goes
through X [...].
I4. I is (statistically) independent of any variable Z that
causes Y and that is on a directed path that does not go
through X .

(IVW ) is intended to single out those variables as interven-
tion variables for X w.r.t. Y that allow for correct causal
inference according to Woodward’s (2003) definition of di-
rect causation. For I to be an intervention variable for X
w.r.t. Y it is required that I is causally relevant to X (con-
dition I1), that X is only under I’s influence when I = on
(condition I2), and that a correlation between I and Y can
only be due to a directed causal path from I to Y going
throughX (conditions I3 and I4). For a detailed motivation
of I1-I4, see (Woodward, 2003, sec. 3.1.4). For problems
with Woodward’s definitions, see (Gebharter and Schurz,
ms).

An intervention on X w.r.t. Y (from now on we refer to X
as the intervention’s “target variable” and to Y as the “test
variable”) is then straightforwardly defined as an interven-
tion variable I for X w.r.t. Y taking one of its on-values,
which forces X to take a certain value x. We will call in-
terventions whose on-values force X to take certain values
x “deterministic interventions” (cf. Korb et al., 2004, sec.
5).

How Occam’s Razor Provides a Neat Definition of Direct Causation
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Note that Woodward’s (2003) notion of an intervention is,
on the one hand, strong because it requires interventions
to be deterministic interventions. It is, on the other hand,
weak in another respect: In contrast to structural or surgi-
cal interventions (cf. Eberhardt and Scheines, 2007, p. 984;
Pearl, 2009) Woodward’s interventions are allowed to be
direct causes of more than one variable as long as the in-
tervention’s direct effects which are non-target variables do
not cause the test variable over a path not going through the
intervention’s target variable (intervention condition I3).

Based on his notion of an intervention, Woodward (2003, p.
59) gives the following definition of direct causation w.r.t.
a variable set V:

Definition 3 (DCW ) A necessary and sufficient condition
for X to be a (type-level) direct cause of Y with respect to
a variable set V is that there be a possible intervention on
X that will change Y or the probability distribution of Y
when one holds fixed at some value all other variables Zi

in V.

(DCW ) neatly explicates direct causation w.r.t. a variable
set V in terms of possible interventions: X is a direct cause
of Y w.r.t. V if Y can be wiggled by wiggling X; and if
X is a direct cause of Y w.r.t. V, then there are possible
interventions by whose means one can influence Y by ma-
nipulating X .1

Note that (DCW ) may be too strong because many domains
involve variables one cannot control by deterministic inter-
ventions. Scenarios of this kind include, for example, the
decay of uranium or states of entangled systems in quantum
mechanics. The decay of uranium can only be probabilis-
tically influenced, and any attempt to manipulate the state
of one of two entangled photons, for example, would de-
stroy the entangled system. Glymour (2004) also considers
variables for sex and race as not manipulable by means of
intervention variables in the sense of (IVW ).

To avoid all problems that might arise for Woodward’s
(2003) account due to variables that are not manipulable
by deterministic interventions, we will reconstruct Wood-
ward’s (DCW ) as a partial definition in sec. 4. In particular,
we will define direct causation only for sets of variables V
for which suitable intervention variables exist.

4 RECONSTRUCTING WOODWARD’S
DEFINITION

In this section we reconstruct Woodward’s (2003) defini-
tion of direct causation in terms of causal Bayes nets. The
reconstruction of (IVW ) is straightforward:

1Note that Woodward (2003) does not require the intervention
variables I to be elements of the set of variables V containing the
target variable X and the test variable Y .

Definition 4 (IV) IX ∈ V is an intervention variable for
X ∈ V w.r.t. Y ∈ V in a causal model 〈V, E, P 〉 iff
(a) IX is exogenous and there is a path π : IX → X in
〈V, E〉,
(b) for every on-value of IX there is an X-value x such
that P (x|IX = on) = 1 and Dep(x, IX = on|z) holds for
every instantiation z of every Z ⊆ V\{IX , X},
(c) all paths IX → ...→ Y in 〈V, E〉 have the form IX →
...→ X → ...→ Y ,
(d) IX is independent from every variable C (in V or not
in V) which causes Y over a path not going through X .

Note that (IV) still allows for intervention variables IX that
are common causes of their target variable X and other
variables in V. Condition (a) requires IX to be exogenous.
This is, though it is a typical assumption made for interven-
tion variables, not explicit in Woodward’s (2003) original
definition (IVW ). One problem that might arise for Wood-
ward’s account when not making this assumption is that IX
in a causal structure Y → IX → X may turn out to be an
intervention variable for X w.r.t. Y . If Y then depends on
IX = on, (DCW ) would falsely determine X to be a cause
of Y (cf. Gebharter and Schurz, ms). IX → X in condi-
tion (a) is a harmless simplification of I1. Condition (b)
captures Woodward’s requirement that interventions have
to be deterministic, from which I2 follows. X is assumed
to be under full control of IX when IX is on. This does
not only require that for every on-value of IX there is an
X-value x such that P (x|IX = on) = 1, but also that
IX = on actually has an influence on x in every possible
context, i.e., under conditionalization on arbitrary instanti-
ations z of all kinds of subsets Z of V\{IX , X}. Condition
(c) directly mirrors I3. Condition (d) mirrors Woodward’s
I4. Note that condition (d) requires reference to variablesC
possibly not contained in V (cf. Woodward, 2008, p. 202).

If we want to account for direct causal connection in a
causal model 〈V, E, P 〉 by means of interventions, we
have to add intervention variables to V. In other words:
We have to expand 〈V, E, P 〉 in a certain way. But how
do we have to expand 〈V, E, P 〉? To answer this question,
let us assume that we want to know whether X is a direct
cause of Y in the unmanipulated model 〈V, E, P 〉. Then
the manipulated model 〈V′, E′, P ′〉 will have to contain an
intervention variable IX for X w.r.t. Y and also interven-
tion variables IZ for all Z ∈ V different from X and Y by
whose means these Z can be controlled. X is a direct cause
of Y if IX has some on-values such that we can influence Y
by manipulating X with IX = on when all IZ have taken
certain on-values. On the other hand, to guarantee that X
is not a direct cause of Y , we have to demonstrate that no
one of Y ’s values can be influenced by manipulating some
X-value by some intervention. For establishing such a neg-
ative causal claim, we require an intervention variable IX
by whose means we can control every X-value x. (Oth-
erwise it could be that Y depends only on X-values that

How Occam’s Razor Provides a Neat Definition of Direct Causation

3



are not correlated with IX -values; then IX = on would
have no probabilistic influence on Y , though X may be
a causal parent of Y .) In addition, we require for every
Z 6= X,Y an intervention variable IZ by whose means Z
can be forced to take every value z. (Otherwise it could
be that we can bring about only such Z-value instantia-
tions which screen X and Y off each other; then IX = on
would have no probabilistic influence on Y when Z’s value
is fixed by interventions, though X may be a causal parent
of Y .)

In the unmanipulated model 〈V, E, P 〉, all interven-
tion variables I are off . In the manipulated model
〈V′, E′, P ′〉, all intervention variables’ values are realized
for some but not for all individuals in the domain. This
move allows us to compute probabilities for variables in V
when I = off as well as probabilities for variables in V
for all combinations of on-value realizations of interven-
tion variables I , while the causal structure of the unmanip-
ulated model will be preserved in the manipulated model.
(Note that we deviate here from the typical “arrow break-
ing” representation of interventions in the literature which
assumes that in the manipulated model all individuals get
manipulated.) This amounts to the following notion of an
intervention expansion (“i-expansion” for short):

Definition 5 (intervention expansion) 〈V′, E′, P ′〉 is an
intervention expansion of 〈V, E, P 〉 w.r.t. Y ∈ V iff
(a) V′ = V∪̇VI, where VI contains for every X ∈ V
different from Y an intervention variable IX w.r.t. Y (and
nothing else),
(b) for all Zi, Zj ∈ V : Zi → Zj in E′ iff Zi → Zj in E,
(c) for every X-value x of every X ∈ V different from
Y there is an on-value of the corresponding interven-
tion variable IX such that P ′(x|IX = on) = 1 and
Dep(x, IX = on|z) holds for every instantiation z of every
Z ⊆ V\{IX , X},
(d) P ′I=off ↑ V = P ,
(e) P ′(I = on), P ′(I = off) > 0.

I in conditions (d) and (e) is the set of all newly added in-
tervention variables I . P ′I=off ↑ V in (d) is P ′I=off :=
P ′(−|I = off) restricted to V. Hence, “P ′I=off ↑ V = P ”
means that P ′I=off coincides with P on the value space
of variables in V. Condition (a) guarantees that the i-
expansion contains all the intervention variables required
for testing for direct causal relationships in the sense of
Woodward’s (2003) definition of direct causation. The as-
sumption that VI contains only intervention variables for
X w.r.t. Y is a harmless simplification. Thanks to condi-
tion (b), the manipulated model’s causal structure fits to the
unmanipulated model’s causal structure. In particular, the
i-expansion is only allowed to introduce new causal arrows
going from intervention variables to variables in V. Due
to condition (c), every X ∈ V different from Y can be
fully controlled by means of an intervention variable IX

for X w.r.t. Y . Condition (d) explains how the manipu-
lated model’s associated probability distribution P ′ fits to
the unmanipulated model’s distribution P . Condition (e)
says that all values of intervention variables have to be re-
alized by some individuals in the domain.

With help of this notion of an i-expansion we can now re-
construct Woodward’s (2003) definition of direct causation.
As already mentioned, Woodward’s definition requires the
existence of suitable intervention variables. Thus, we re-
construct (DCW ) as a partial definition whose if-condition
presupposes the required intervention variables:

Definition 6 (DC) If there exist i-expansions 〈V′, E′, P ′〉
of 〈V, E, P 〉 w.r.t. Y ∈ V, then: X ∈ V is a direct
cause of Y w.r.t. V iff Dep(Y, IX = on|IZ = on) holds
in some i-expansions 〈V′, E′, P ′〉 of 〈V, E, P 〉 w.r.t. Y ,
where IX is an intervention variable for X w.r.t. Y in
〈V′, E′, P ′〉 and IZ is the set of all intervention variables
in 〈V′, E′, P ′〉 different from IX .

(DC) mirrors Woodward’s definition restricted to cases in
which the required intervention variables (more precisely:
the required i-expansions) exist: In case Y can be proba-
bilistically influenced by manipulating X by means of an
intervention variable IX for X w.r.t. Y in one of these i-
expansions, X is a direct cause of Y in the unmanipulated
model. And vice versa: In case X is a direct cause of Y
in the unmanipulated model, there will be an intervention
variable IX forX w.r.t. Y in one of these i-expansions such
that Y is probabilistically sensitive to IX = on.

In the next section we show that (DC) can account for all
direct causal dependencies in a causal model if suitable i-
expansions exist and CMC and Min are assumed to be sat-
isfied.

5 OCCAM’S RAZOR, DETERMINISTIC
INTERVENTIONS, AND DIRECT
CAUSATION

The theory of causal Bayes nets’ core axiom is the causal
Markov condition (CMC) (cf. Spirtes et al., 2000, p. 29):

Definition 7 (causal Markov condition) A causal model
〈V, E, P 〉 satisfies the causal Markov condition iff every
X ∈ V is probabilistically independent of all its non-
effects conditional on its causal parents.

CMC is assumed to hold for causal models whose variable
sets are causally sufficient. A variable set V is causally suf-
ficient iff every common cause C of variables X and Y in
V is also in V or takes the same value c for all individuals
in the domain (cf. Spirtes et al., 2000, p. 22). From now on
we implicitly assume causal sufficiency, i.e., we only con-
sider causal models whose variable sets are causally suffi-
cient.

How Occam’s Razor Provides a Neat Definition of Direct Causation
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A finite causal model 〈V, E, P 〉 satisfies the Markov con-
dition iff P admits the following Markov factorization rel-
ative to 〈V, E〉 (cf. Pearl, 2009, p. 16):

P (X1, ..., Xn) =
∏

i

P (Xi|Par(Xi)) (1)

The conditional probabilities P (Xi|Par(Xi)) are called
Xi’s parameters.

For acyclic causal models, CMC is equivalent to the d-
separation criterion (Verma, 1986; Pearl, 1988, pp. 119f):

Definition 8 (d-separation criterion) 〈V, E, P 〉 satisfies
the d-separation criterion iff the following holds for all
X,Y ∈ V and Z ⊆ V\{X,Y }: If X and Y are d-
separated by Z in 〈V, E〉, then Indep(X,Y |Z).

Definition 9 (d-separation, d-connection) X ∈ V and
Y ∈ V are d-separated by Z ⊆ V\{X,Y } in 〈V, E〉 iff
X and Y are not d-connected given Z in 〈V, E〉.
X ∈ V and Y ∈ V are d-connected given Z ⊆ V\{X,Y }
in 〈V, E〉 iffX and Y are connected by a path π in 〈V, E〉
such that no non-collider on π is in Z, while all colliders
on π are in Z or have an effect in Z.

The equivalence between CMC and the d-separation cri-
terion reveals the full content of CMC: If a causal model
satisfies CMC, then every (conditional) probabilistic inde-
pendence can be explained by missing (conditional) causal
connections, and every (conditional) probabilistic depen-
dence can be explained by some existing (conditional)
causal connection.

In case there is a path π between X and Y in 〈V, E〉 such
that no non-collider on π is in Z ⊆ V\{X,Y } and all col-
liders on π are in Z or have an effect in Z, π is said to be
activated by Z. We also say that X and Y are d-connected
given Z over path π in that case. If π is not activated by Z,
π is said to be blocked by Z. We also say that X and Y are
d-separated by Z over path π in that case.

Occam’s razor (as we understand it in this paper) dictates
to prefer from all those causal structures 〈V, E〉, which to-
gether with a given probability distribution P over V sat-
isfy CMC, the ones which also satisfy the causal minimal-
ity condition (Min):

Definition 10 (causal minimality condition) A causal
model 〈V, E, P 〉 satisfying CMC satisfies the causal
minimality condition iff no model 〈V, E′, P 〉 with E′ ⊂ E
also satisfies CMC (cf. Spirtes et al., 2000, p. 31).

For acyclic causal models satisfying CMC, the following
causal productivity condition (Prod) (cf. Schurz and Geb-
harter, forthcoming) can be seen as a reformulation of the
causal minimality condition:

Definition 11 (causal productivity condition) A causal
model 〈V, E, P 〉 satisfies the causal productivity condition
iff Dep(X,Y |Par(Y )\{X}) holds for all X,Y ∈ V with
X → Y in 〈V, E〉.

Theorem 1 For every acyclic causal model 〈V, E, P 〉 sat-
isfying CMC, the causal minimality condition and the
causal productivity condition are equivalent.

The equivalence of Min and Prod reveals the full content of
Min: In minimal causal models, no causal arrow is super-
fluous, i.e., every causal arrow from X to Y is productive,
meaning that it is responsible for some probabilistic depen-
dence between X and Y (when the values of all other par-
ents of Y are fixed).

We can now prove the following theorem:

Theorem 2 If 〈V, E, P 〉 is an acyclic causal model and
for every Y ∈ V there is an i-expansion 〈V′, E′, P ′〉 of
〈V, E, P 〉 w.r.t. Y satisfying CMC and Min, then for all
X,Y ∈ V (with X 6= Y ) the following two statements are
equivalent:
(i) X → Y in 〈V, E〉.
(ii)Dep(Y, IX = on|IZ = on) holds in some i-expansions
〈V′, E′, P ′〉 of 〈V, E, P 〉w.r.t. Y , where IX is an interven-
tion variable forX w.r.t. Y in 〈V′, E′, P ′〉 and IZ is the set
of all intervention variables in 〈V′, E′, P ′〉 different from
IX .

Theorem 2 shows that direct causation a la Woodward
(2003) coincides with the graph theoretical notion of direct
causation in systems 〈V, E, P 〉 with i-expansions w.r.t. ev-
ery variable Y ∈ V satisfying CMC and Min. In particular,
theorem 2 says the following: Assume we are interested in
a causal model 〈V, E, P 〉. Assume further that for every
Y in V there is an i-expansion 〈V′, E′, P ′〉 of 〈V, E, P 〉
w.r.t. Y satisfying CMC and Min. This means (among
other things) that for every pair of variables 〈X,Y 〉 there is
at least one i-expansion with an intervention variable IX for
X w.r.t. Y and intervention variables IZ for every Z ∈ V
(different from X and Y ) w.r.t. Y by whose means one can
force the variables in V\{Y } to take any combination of
value realizations. Given this setup, theorem 2 tells us for
every X and Y (with X 6= Y ) in V that X is a causal par-
ent of Y in 〈V, E〉 iff Dep(Y, IX = on|IZ = on) holds in
one of the presupposed i-expansions w.r.t. Y .

6 OCCAM’S RAZOR, STOCHASTIC
INTERVENTIONS, AND DIRECT
CAUSATION

In this section we generalize the main finding of sec. 5 to
cases in which only stochastic interventions are available.
To account for direct causal relations X → Y by means
of stochastic intervention variables, two intervention vari-
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ables are needed, one for X and one for Y . (For details,
see below.) We define a stochastic intervention variable as
follows:

Definition 12 (IVS) IX ∈ V is a stochastic intervention
variable for X ∈ V w.r.t. Y ∈ V in 〈V, E, P 〉 iff
(a) IX is exogenous and there is a path π : IX → X in
〈V, E〉,
(b) for every on-value of IX there is an X-value x such
that Dep(x, IX = on|z) holds for every instantiation z of
every Z ⊆ V\{IX , X},
(c) all paths IX → ...→ Y in 〈V, E〉 have the form IX →
...→ X → ...→ Y ,
(d) IX is independent from every variable C (in V or not
in V) which causes Y over a path not going through X .

The only difference between (IVS) and (IV) is condition
(b). For stochastic interventions it is not required that
IX = on determines X’s value to be x with probability
1. It suffices that IX = on and x are correlated conditional
on every value z of every Z ⊆ V\{IX , X}. This specific
constraint guarantees thatX can be influenced by IX = on
under all circumstances, i.e., under all kinds of condition-
alization on instantiations of remainder variables in V.

We do also have to modify our notion of an intervention ex-
pansion in case we allow for stochastic interventions. We
define the following notion of a stochastic intervention ex-
pansion:

Definition 13 (stochastic intervention expansion)
〈V′, E′, P ′〉 is a stochastic intervention expansion of
〈V, E, P 〉 for X ∈ V w.r.t. Y ∈ V iff
(a) V′ = V∪̇VI, where VI contains one stochastic
intervention variable IX for X w.r.t. Y and one stochastic
intervention variable IY for Y w.r.t. Y which is a parent
only of Y (and nothing else),
(b) for all Zi, Zj ∈ V : Zi → Zj in E′ iff Zi → Zj in E,
(c.1) for every X-value x there is an on-value of IX such
that Dep(x, IX = on|z) holds for every instantiation z of
every Z ⊆ V′\{IX , X},
(c.2) for every Y -value y, every instantiation r of Par(Y ),
and every on-value of IY there is an on-value on∗ of
IY such that P ′(y|IY = on∗, r) 6= P ′(y|IY = on, r),
P ′(y|IY = on∗, r) > 0, and P ′(y|IY = on∗, r∗) =
P ′(y|IY = on, r∗) holds for all r∗ ∈ val(Par(Y ))
different from r,
(d) P ′I=off ↑ V = P ,
(e) P ′(I = on), P ′(I = off) > 0.

This definition differs from the definition of a (non-
stochastic) i-expansion with respect to conditions (a) and
(c): A stochastic i-expansion for X w.r.t. Y contains ex-
actly two intervention variables, viz. one stochastic inter-
vention variable IX for X w.r.t. Y and one stochastic inter-
vention variable IY for Y w.r.t. Y (which trivially satisfies
conditions (c) and (d) in (IVS)). While IX may have more

than one direct effect, the second intervention variable IY
is assumed to be a causal parent only of Y . (This is required
for accounting for direct causal connections; for details see
(i)⇒ (ii) in the proof of theorem 3 in the appendix.)

The second intervention variable IY is required to exclude
independence between IX and Y due to a fine-tuning of
Y ’s parameters. Such an independence can arise even if
CMC and Min are satisfied, X is a causal parent of Y ,
and IX and Y are each correlated with the same X-values
x. For examples of this kind of non-faithfulness, see, e.g.,
(Neapolitan, 2004, p. 96) or (Naeger, forthcoming). In con-
dition (c.2) we assume that every one of Y ’s parameters can
be changed independently of all other Y -parameters (to a
value r ∈ ]0, 1]) by changing IY ’s on-value. This suffices
to exclude non-faithful independencies between IX and Y
of the kind described above.

When not presupposing deterministic interventions, it can-
not be guaranteed anymore that the value of every vari-
able in our model of interest different from the test variable
Y can be fixed by interventions. The values of a causal
model’s variables can, however, also be fixed by condition-
alization. To account for direct causation between X and
Y when only stochastic interventions are available, one has
to conditionalize on a suitably chosen set Z ⊆ V\{X,Y }
that (i) blocks all indirect causal paths between X and Y ,
and that (ii) fixes all X-alternative parents of Y . That Z
blocks all indirect paths between X and Y is required to
assure that dependence between IX = on and Y cannot be
due to an indirect path, and fixing the values of all parents
of Y different from X is required to exclude independence
of IX = on and Y due to a fine-tuning of Y ’sX-alternative
parents that may cancel the influence of IX = on on Y over
a path IX → X → Y .2 Fortunately, every directed acyclic
graph 〈V, E〉 features a set Z satisfying requirement (i),
viz. Par(Y )\{X} (cf. Schurz and Gebharter, forthcom-
ing). Trivially, Par(Y )\{X} also satisfies requirement
(ii).

With the help of (IVS) and definition 13, we can now de-
fine direct causation in terms of stochastic interventions for
models for which suitable stochastic i-expansions exist:

Definition 14 (DCS) If there exist stochastic i-expansions
〈V′, E′, P ′〉 of 〈V, E, P 〉 for X w.r.t. Y , then: X
is a direct cause of Y w.r.t. V iff Dep(Y, IX =
on|Par(Y )\{X}, IY = on) holds in some i-expansions
〈V′, E′, P ′〉 of 〈V, E, P 〉 for X w.r.t. Y , where IX
is a stochastic intervention variable for X w.r.t. Y in
〈V′, E′, P ′〉 and IY is a stochastic intervention variable
for Y w.r.t. Y in 〈V′, E′, P ′〉.

Now the following theorem can be proven:

2For details on such cases of non-faithfulness due to com-
pensating parents see (Schurz and Gebharter, forthcoming; Pearl,
1988, p. 256).
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Theorem 3 If 〈V, E, P 〉 is an acyclic causal model and
for every X,Y ∈ V (with X 6= Y ) there is a stochastic
i-expansion 〈V′, E′, P ′〉 of 〈V, E, P 〉 for X w.r.t. Y satis-
fying CMC and Min, then for all X,Y ∈ V (with X 6= Y )
the following two statements are equivalent:
(i) X → Y in 〈V, E〉.
(ii) Dep(Y, IX = on|Par(Y )\{X}, IY = on) holds in
some i-expansions 〈V′, E′, P ′〉 of 〈V, E, P 〉 for X w.r.t.
Y , where IX is a stochastic intervention variable for X
w.r.t. Y in 〈V′, E′, P ′〉 and IY is a stochastic intervention
variable for Y w.r.t. Y in 〈V′, E′, P ′〉.

Theorem 3 shows that direct causation a la Woodward
(2003) coincides with the graph theoretical notion of di-
rect causation in systems 〈V, E, P 〉 with stochastic i-
expansions for every X ∈ V w.r.t. every Y ∈ V (with
X 6= Y ) satisfying CMC and Min. In particular, theo-
rem 3 says the following: Assume we are interested in
a causal model 〈V, E, P 〉. Assume further that for every
X,Y in V (with X 6= Y ) there is a stochastic i-expansion
〈V′, E′, P ′〉 of 〈V, E, P 〉 for X w.r.t. Y satisfying CMC
and Min. This means (among other things) that for every
pair of variables 〈X,Y 〉 there is at least one stochastic i-
expansion featuring a stochastic intervention variable IX
for X w.r.t. Y and a stochastic intervention variable IY for
Y w.r.t. Y . Given this setup, theorem 3 can account for ev-
ery causal arrow between every X and Y (with X 6= Y )
in V: It says that X is a causal parent of Y in 〈V, E〉 iff
Dep(Y, IX = on|Par(Y )\{X}, IY = on) holds in some
of the presupposed stochastic i-expansions for X w.r.t. Y .

7 CONCLUSION

In this paper we investigated the consequences of assuming
a certain version of Occam’s razor. If one applies the razor
in such a way to the theory of causal Bayes nets that it dic-
tates to prefer only minimal causal models, one can show
that Occam’s razor provides a neat definition of direct cau-
sation. In particular, we demonstrated that one gets Wood-
ward’s (2003) definition of direct causation translated into
causal Bayes nets terminology and restricted to contexts in
which suitable i-expansions satisfying the causal Markov
condition (CMC) exist. In the last section we showed how
Occam’s razor can be used to account for direct causal
connections Woodward style even if no deterministic in-
terventions are available. These results can be seen as a
motivation of Occam’s razor going beyond its merits as a
methodological principle: If one wants a nice and simple
interventionist definition of direct causation in the sense of
Woodward (or its stochastic counterpart developed in sec.
6), then it is reasonable to apply a version of Occam’s razor
that suggests to eliminate non-minimal causal models.
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Appendix

The following proof of theorem 1 rests on the equivalence
of CMC and the Markov factorization (1). It is, thus, re-
stricted to finite causal structures.

Proof of theorem 1 Suppose 〈V, E, P 〉 with V =
{X1, ..., Xn} to be a finite acyclic causal model satisfying
CMC.

Prod⇒Min: Assume that 〈V, E, P 〉 does not satisfy Min,
meaning that there are X,Y ∈ V with X → Y in 〈V, E〉
such that 〈V, E′, P 〉, which results from deleting X → Y
from 〈V, E〉, still satisfies CMC. But then Par(Y )\{X}
d-separates X and Y in 〈V, E′〉, and thus, the d-separation
criterion implies Indep(X,Y |Par(Y )\{X}), which vio-
lates Prod.

Min⇒ Prod: Assume that 〈V, E, P 〉 satisfies Min, mean-
ing that there are no X,Y ∈ V with X → Y in 〈V, E〉
such that 〈V, E′, P 〉, which results from deleting X → Y
from 〈V, E〉, still satisfies CMC. The latter is the case
iff (*) the parent set Par(Y ) of every Y ∈ V (with
Par(Y ) 6= ∅) is minimal in the sense that removing one
of Y ’s parents X from Par(Y ) would make a differ-
ence for Y , meaning that P (y|x, Par(Y )\{X} = r) 6=
P (y|Par(Y )\{X} = r) holds for some X-values x, some
Y -values y, and some instantiations r of Par(Y )\{X}.
Otherwise P would admit the Markov factorization rela-
tive to 〈V, E〉 and relative to 〈V, E′〉, meaning that also
〈V, E′, P 〉, which results from deleting X → Y from
〈V, E〉, would satisfy CMC. But then 〈V, E, P 〉 would
not be minimal, which would contradict the assumption.
Now (*) entails that Dep(X,Y |Par(Y )\{X}) holds for
all X,Y ∈ V with X → Y , i.e., that 〈V, E, P 〉 satisfies
Prod. �

Proof of theorem 2 Assume 〈V, E, P 〉 is an acyclic
causal model and for every Y ∈ V there is an i-expansion
〈V′, E′, P ′〉 of 〈V, E, P 〉 w.r.t. Y satisfying CMC and
Min. Let X and Y be arbitrarily chosen elements of V
such that X 6= Y .

(i)⇒ (ii): Suppose X → Y in 〈V, E〉. We assumed that
there exists an i-expansion 〈V′, E′, P ′〉 of 〈V, E, P 〉 w.r.t.
Y satisfying CMC and Min. From condition (b) of defi-
nition 5 it follows that X → Y in 〈V′, E′〉. Since Min
is equivalent to Prod, X and Y are dependent when the
values of all parents of Y different from X are fixed to
certain values, meaning that there will be an X-value x
and a Y -value y such that Dep(x, y|Par(Y )\{X} = r)
holds for an instantiation r of Par(Y )\{X}. Now there
will also be a value of IZ that fixes the set of all parents of
Y different from X to r. Let on be this IZ-value. Thus,
also Dep(x, y|IZ = on) and also Dep(x, y|IZ = on, r)
will hold. Now let us assume that on is one of the IX -
values which are correlated with x and which force X to
take value x. (The existence of such an IX -value is guar-

anteed by condition (c) in definition 5.) Then we have
Dep(IX = on, x|IZ = on, r) ∧ Dep(x, y|IZ = on, r).
From the axiom of weak union (2) (cf. Pearl, 2009, p. 11),
which is probabilistically valid, we get (3) and (4) (in which
s = 〈x, r〉 is a value realization of Par(Y )):

Indep(X,YW |Z)⇒ Indep(X,Y |ZW ) (2)

Indep(IX = on, s = 〈x, r〉|IZ = on)⇒
Indep(IX = on, x|IZ = on, r)

(3)

Indep(s = 〈x, r〉, y|IZ = on)⇒
Indep(x, y|IZ = on, r)

(4)

With the contrapositions of (3) and (4) it now follows
that Dep(IX = on, s = 〈x, r〉|IZ = on) ∧ Dep(s =
〈x, r〉, y|IZ = on).

We now show that Dep(IX = on, s|IZ = on) ∧
Dep(s, y|IZ = on) and the d-separation criterion imply
Dep(IX = on, y|IZ = on). We define P ∗(−) as
P ′(−|IZ = on) and proceed as follows:

P ∗(y|IX = on) =
∑

i

P ∗(y|si, IX = on) · P ∗(si|IX = on) (5)

Equation (5) is probabilistically valid. Because Par(Y )
blocks all paths between IX and Y , we get (6) from (5):

P ∗(y|IX = on) =
∑

i

P ∗(y|si) · P ∗(si|IX = on) (6)

Since IX = on forces Par(Y ) to take value s when
IZ = on, P ∗(si|IX = on) = 1 in case si = s, and
P ∗(si|IX = on) = 0 otherwise. Thus, we get (7) from
(6):

P ∗(y|IX = on) = P ∗(y|s) · 1 (7)

For reductio, let us assume that Indep(IX =
on, y|IZ = on), meaning that P ∗(y|IX = on) = P ∗(y).
But then we get (8) from (7):

P ∗(y) = P ∗(y|s) · 1 (8)

Equation (8) contradicts Dep(s, y|IZ = on) above.
Hence, Dep(IX = on, y|IZ = on) has to hold when
Dep(IX = on, s|IZ = on) ∧ Dep(s, y|IZ = on) holds.
Therefore, Dep(Y, IX = on|IZ = on).

(ii)⇒ (i): Suppose 〈V′, E′, P ′〉 is one of the presupposed
i-expansions such that Dep(Y, IX = on|IZ = on) holds,
where IX is an intervention variable for X w.r.t. Y in
〈V′, E′, P ′〉 and IZ is the set of all intervention variables
in 〈V′, E′, P ′〉 different from IX . Then the d-separation
criterion implies that there must be a causal path π d-
connecting IX and Y . π cannot be a path featuring col-
liders, because IX and Y would be d-separated over such
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a path. π also cannot have the form IX ← ... – Y . This
is excluded by condition (a) in (IV). So π must have the
form IX → ... – Y . Since π cannot feature colliders,
π must be a directed path IX → ... → Y . Now either
(A) π goes through X , or (B) π does not go through X .
(B) is excluded by condition (c) in (IV). Hence, (A) must
be the case. If (A) is the case, then π is a directed path
IX → ... → X → ... → Y going through X . Now there
are two possible cases: Either (i) at least one of the paths π
d-connecting IX and Y has the form IX → ...→ X → Y ,
or (ii) all paths π d-connecting IX and Y have the form
IX → ...→ X → ...→ C → ...→ Y .

Assume (ii) is the case, i.e., all paths π d-connecting IX
and Y have the form IX → ... → X → ... → C →
... → Y . Let ri be an individual variable ranging over
val(Par(Y )). We define P ∗(−) as P ′(−|IZ = on) and
proceed as follows:

P ∗(y|IX = on) =
∑

i

P ∗(y|ri, IX = on) · P ∗(ri|IX = on) (9)

P ∗(y) =
∑

i

P ∗(y|ri) · P ∗(ri) (10)

Equations (9) and (10) are probabilistically valid. Since
IZ = on forces every non-intervention variable in V′ dif-
ferent from X and Y to take a certain value, IZ = on will
also force Par(Y ) to take a certain value r, meaning that
P ∗(ri) = 1 in case ri = r, and that P ∗(ri) = 0 otherwise.
Since probabilities of 1 do not change after conditionaliza-
tion, we get P ∗(ri|IX = on) = 1 in case ri = r, and
P ∗(ri|IX = on) = 0 otherwise. Thus, we get (11) from
(9) and (12) from (10):

P ∗(y|IX = on) = P ∗(y|r, IX = on) · 1 (11)

P ∗(y) = P ∗(y|r) · 1 (12)

Since Par(Y ) blocks all paths between IX and Y , we get
P ∗(y|r, IX = on) = P ∗(y|r) with the d-separation cri-
terion, and thus, we get P ∗(y|IX = on) = P ∗(y) with
(11) and (12). Thus, Indep(Y, IX = on|IZ = on) holds,
which contradicts the initial assumption that Dep(Y, IX =
on|IZ = on) holds. Therefore, (i) must be the case, i.e.,
there must be a path π d-connecting IX and Y that has the
form IX → ... → X → Y . From 〈V′, E′, P ′〉 being an
i-expansion of 〈V, E, P 〉 it now follows that X → Y in
〈V, E〉. �

Proof of theorem 3 Assume 〈V, E, P 〉 is an acyclic
causal model and for every X,Y ∈ V (with X 6= Y ) there
is a stochastic i-expansion 〈V′, E′, P ′〉 of 〈V, E, P 〉 forX
w.r.t. Y satisfying CMC and Min. Let X and Y be arbitrar-
ily chosen elements of V such that X 6= Y .

(i) ⇒ (ii): Suppose X → Y in 〈V, E〉. We assumed
that there exists a stochastic i-expansion 〈V′, E′, P ′〉

of 〈V, E, P 〉 for X w.r.t. Y satisfying CMC and Min.
From condition (b) of definition 13 it follows that X →
Y in 〈V′, E′〉. Since Min is equivalent to Prod,
Dep(x, y|Par(Y )\{X} = r, IY = on) holds for someX-
values x, for some Y -values y, for some of IY ’s on-values
on, and for some instantiations r of Par(Y )\{X}. Now let
us assume that on is one of the IX -values which are corre-
lated with x conditional on Par(Y )\{X} = r, IY = on.
(The existence of such an IX -value on is guaranteed by
condition (c.1) in definition 13.) Then we have Dep(IX =
on, x|r, IY = on) ∧Dep(x, y|r, IY = on).

We now show that Dep(IX = on, x|r, IY = on) ∧
Dep(x, y|r, IY = on) together with IX → X → Y and
the d-separation criterion impliesDep(IX = on, y|r, IY =
on). We define P ∗(−) as P ′(−|r) and proceed as follows:

P ∗(y|IX = on, IY = on) =
∑

i

P ∗(y|xi, IX = on, IY = on) · P ∗(xi|IX = on, IY = on)

(13)

P ∗(y|IY = on) =
∑

i

P ∗(y|xi, IY = on) · P ∗(xi|IY = on) (14)

Equations (13) and (14) are probabilistically valid. From
IX → X → Y and (13) we get with the d-separation crite-
rion:

P ∗(y|IX = on, IY = on) =
∑

i

P ∗(y|xi, IY = on) · P ∗(xi|IX = on, IY = on)

(15)

Since IY is exogenous and a causal parent only of Y , X
and IY are d-separated by IX , and thus, we get (16) from
(15) with the d-separation criterion. Since IY and X are
d-separated (by the empty set), we get (17) from (14) with
the d-separation criterion:

P ∗(y|IX = on, IY = on) =
∑

i

P ∗(y|xi, IY = on) · P ∗(xi|IX = on) (16)

P ∗(y|IY = on) =
∑

i

P ∗(y|xi, IY = on) · P ∗(xi) (17)

Now either (A) P ∗(y|IX = on, IY = on) 6=
P ∗(y|IY = on), or (B) P ∗(y|IX = on, IY = on) =
P ∗(y|IY = on). If (A) is the case, then Dep(Y, IX =
on|Par(Y )\{X}, IY = on).

If (B) is the case, then P ∗(y|IX = on, IY = on)
can only equal P ∗(y|IY = on) due to a fine-tuning of
P ∗(xi|IY = on) and P ∗(xi) in equations (16) and (17),
respectively. We already know that X’s value x and
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IX = on are dependent conditional on Par(Y )\{X} =
r, IY = on, meaning that P ∗(x|IX = on, IY = on) 6=
P ∗(x|IY = on) holds. Since X and IY are d-separated
by IX , P ∗(x|IX = on, IY = on) = P ∗(x|IX = on)
holds. Since X and IY are d-separeted (by the empty
set), P ∗(x|IY = on) = P ∗(x) holds. It follows that
P ∗(x|IX = on) 6= P ∗(x) holds. So (i) P ∗(x|IX =
on) > 0 or (ii) P ∗(x) > 0. Thanks to condition (c.2)
in definition 13, every one of the conditional probabili-
ties P ∗(y|xi, IY = on) can be changed independently
by replacing “on” in “P ∗(y|xi, IY = on)” by some IY -
value “on∗” (with on∗ 6= on) such that P ∗(y|xi, IY =
on∗) > 0. Thus, in both cases ((i) and (ii)) it holds that
P ∗(y|x, IY = on∗) · P ∗(x|IX = on∗) 6= P ∗(y|x, IY =
on∗) · P ∗(x), while P ∗(y|xi, IY = on∗) · P ∗(xi|IX =
on∗) = P ∗(y|xi, IY = on∗) · P ∗(xi) holds for all xi 6= x.
It follows that P ∗(y|IX = on, IY = on∗) 6= P ∗(y|IY =
on∗).

(ii) ⇒ (i): Suppose 〈V′, E′, P ′〉 is one of the above as-
sumed stochastic i-expansions for X w.r.t. Y and that
Dep(Y, IX = on|Par(Y )\{X}, IY = on) holds in
this stochastic i-expansion. The d-separation criterion and
Dep(Y, IX = on|Par(Y )\{X}, IY = on) imply that IX
and Y are d-connected given (Par(Y )\{X}) ∪ {IY } by
a causal path π : IX – ... – Y . π cannot have the form
IX ← ... – Y . This is excluded by condition (a) in (IVS).
Thus, π must have the form IX → ... – Y . Now either (A)
π goes through X , or (B) π does not go through X .

Suppose (B) is the case. Then, because of condition (c) in
(IVS), π cannot be a directed path IX → ... → Y . Thus,
π must either (i) have the form IX → ... – C → Y (with a
collider on π), or it (ii) must have the form IX → ... – C ←
Y . If (i) is the case, then C must be in (Par(Y )\{X}) ∪
{IY } (since C cannot be X). Hence, π would be blocked
by (Par(Y )\{X})∪ {IY } and, thus, would not d-connect
IX and Y given (Par(Y )\{X}) ∪ {IY }. Thus, (ii) must
be the case. If (ii) is the case, then there has to be a col-
lider C∗ on π that either is C or that is an effect of C,
and thus, also an effect of Y . But then IX and Y can
only be d-connected given (Par(Y )\{X}) ∪ {IY } over
π if C∗ is in (Par(Y )\{X}) ∪ {IY } or has an effect in
(Par(Y )\{X}) ∪ {IY }. But this would mean that Y is a
cause of Y , what is excluded by the initial assumption of
acyclicity. Thus, (A) has to be the case.

If (A) is the case, then π must have the form IX →
... – X – ... – Y . If π would have the form IX →
... – X – ... – C ← Y (where C and X are possi-
bly identical), then there is at least one collider C∗ ly-
ing on π that is an effect of Y . For IX and Y to be
d-connected given (Par(Y )\{X}) ∪ {IY } over path π,
(Par(Y )\{X}) ∪ {IY } must activate π, meaning that C∗

has to be in (Par(Y )\{X}) ∪ {IY } or has to have an ef-
fect in (Par(Y )\{X})∪ {IY }. But then we would end up
with a causal cycle Y → ... → Y , which would contra-

dict the assumption of acyclicity. Hence, π must have the
form IX → ... – X – ... – C → Y (where C and X are
possibly identical). Now either (i) C = X or (ii) C 6= X .
If (ii) is the case, then C ∈ (Par(Y )\{X}) ∪ {IY }, and
thus, (Par(Y )\{X}) ∪ {IY } blocks π. But then IX and
Y cannot be d-connected given (Par(Y )\{X}) ∪ {IY }
over path π. Hence, (i) must be the case. Then π has the
form IX → ... – X → Y and from 〈V′, E′, P ′〉 being a
stochastic i-expansion of 〈V, E, P 〉 it follows that X → Y
in 〈V, E〉. �
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Abstract

Ancestral graphs (AGs) are graphical causal
models that can represent uncertainty about the
presence of latent confounders, and can be in-
ferred from data. Here, we present an algo-
rithmic framework for efficiently testing, con-
structing, and enumerating m-separators in AGs.
Moreover, we present a new constructive crite-
rion for covariate adjustment in directed acyclic
graphs (DAGs) and maximal ancestral graphs
(MAGs) that characterizes adjustment sets as m-
separators in a subgraph. Jointly, these results
allow to find all adjustment sets that can iden-
tify a desired causal effect with multivariate ex-
posures and outcomes in the presence of latent
confounding. Our results generalize and improve
upon several existing solutions for special cases
of these problems.

1 INTRODUCTION

Graphical causal models endow researchers with a lan-
guage to codify assumptions about a data generating pro-
cess (Pearl, 2009; Elwert, 2013). Using graphical criteria,
one can asses whether the assumptions encoded in such a
model allow estimation of a causal effect from observa-
tional data, which is a key issue in Epidemiology (Roth-
man et al., 2008), the Social Sciences (Elwert, 2013) and
other fields where controlled experimentation is typically
impossible. Specifically, the famous back-door criterion by
Pearl (2009) can identify cases where causal effect identi-
fication is possible by standard covariate adjustment, and
other methods like the front-door criterion or do-calculus
can even permit identification even if the back-door crite-
rion fails (Pearl, 2009). In current practice, however, co-
variate adjustment is highly preferred to such alternatives
because its statistical properties are well understood, giv-
ing access to useful methodology like robust estimators and
confidence intervals. In contrast, knowledge about the sta-

tistical properties of e.g. front-door estimation is still con-
siderably lacking (VanderWeele, 2009; Glynn and Kashin,
2013)1. Unfortunately, the back-door criterion is not com-
plete, i.e., it does not find all possible options for covari-
ate adjustment that are allowed by a given graphical causal
model.

In this paper, we aim to efficiently find a definitive an-
swer for the following question: Given a causal graph G,
which covariates Z do we need to adjust for to estimate the
causal effect of the exposures X on the outcomes Y? To our
knowledge, no efficient algorithm has been shown to an-
swer this question, not even when G is a directed acyclic
graph (DAG), though constructive solutions do exist for
special cases like singleton X = {X} (Pearl, 2009), and a
subclass of DAGs (Textor and Liśkiewicz, 2011). Here, we
provide algorithms for adjustment sets in DAGs as well as
in maximal ancestral graphs (MAGs), which extend DAGs
allowing to account for unspecified latent variables. Our
algorithms are guaranteed to find all valid adjustment sets
for a given DAG or MAG with polynomial delay, and we
also provide variants to list only those sets that minimize a
user-supplied cost function or to quickly construct a sim-
ple adjustment set if one exists. Modelling multiple, pos-
sibly interrelated exposures X is important e.g. in case-
control studies that screen several putative causes of a dis-
ease (Greenland, 1994). Likewise, the presence of unspeci-
fied latent variables often cannot be excluded in real-world
settings, and the causal structure between the observed
variables may not be completely known. We hope that
the ability to quickly deduce from a given DAG or MAG
whether and how covariate adjustment can render a causal
effect identifiable will benefit researchers in such areas.

We have two main contributions. First, in Section 3, we
present algorithms for verifying, constructing, and listing
m-separating sets in AGs. This subsumes a number of
earlier solutions for special cases of these problems, e.g.

1Quoting VanderWeele (2009), “Time will perhaps tell
whether results like Pearl’s front-door path adjustment theorem
and its generalizations are actually useful for epidemiologic re-
search or whether the results are simply of theoretical interest.”
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the Bayes-Ball algorithm for verification of d-separating
sets (Shachter, 1998), the use of network flow calculations
to find minimal d-separating sets in DAGs (Tian et al.,
1998; Acid and de Campos, 2003), and an algorithm to
list minimal adjustment sets for a certain subclass of DAGs
(Textor and Liśkiewicz, 2011). Our verification and con-
struction algorithms for single separators are asymptoti-
cally runtime-optimal. Although we apply our algorithms
only to adjustment set construction, they are likely useful in
other settings as separating sets are involved in most graph-
ical criteria for causal effect identification. Moreover, the
separators themselves constitute statistically testable impli-
cations of the causal assumptions encoded in the graph.

Second, we give a graphical criterion that characterizes
adjustment sets in terms of separating sets, and is sound
and complete for DAGs and MAGs without selection vari-
ables. This generalizes the sound and complete criterion
for DAGs by Shpitser et al. (2010), and the sound but in-
complete adjustment criterion for MAGs without selection
variables by Maathuis and Colombo (2013). Our criterion
exhaustively addresses adjustment set construction in the
presence of latent covariates and with incomplete knowl-
edge of causal structure if at least a MAG can be specified.
We give the criterion separately for DAGs (Section 4) and
MAGs (Section 5) because the same graph usually admits
more adjustment options if viewed as a DAG than if viewed
as a MAG.

2 PRELIMINARIES

We denote sets by bold upper case letters (S), and some-
times abbreviate singleton sets as {S} = S. Graphs are writ-
ten calligraphically (G), and variables in upper-case (X).

Mixed graphs and paths. We consider mixed graphs
G = (V,E) with nodes (vertices, variables) V and directed
(A→ B), undirected (A−B), and bidirected (A↔ B) edges
E. Nodes linked by an edge are adjacent. A walk of length
n is a node sequence V1, . . . ,Vn+1 such that there exists an
edge sequence E1,E2, . . . ,En for which every edge Ei con-
nects Vi,Vi+1. Then V1 is called the start node and Vn+1
the end node of the walk. A path is a walk in which no node
occurs more than once. Given a node set X and a node set
Y, a walk from X ∈ X to Y ∈ Y is called proper if only its
start node is in X. Given a graph G = (V,E) and a node
set V′, the induced subgraph GV′ = (V′,E′) contains the
edges E′ from G that are adjacent only to nodes in V′.

Ancestry. A walk of the form V1 → . . . → Vn is di-
rected, or causal. If there is a directed walk from U to V,
then U is called an ancestor of V and V a descendant of U.
A graph is acyclic if no directed walk from a node to itself
is longer than 0. All directed walks in an acyclic graph are
paths. A walk is anterior if it were directed after replacing
all edges U − V by U → V. If there is an anterior path

from U to V, then U is called an anterior of V. All ances-
tors of V are anteriors of V. Every node is its own ancestor,
descendant, and anterior. For a node set X, the set of all of
its ancestors is written as An(X). The descendant and ante-
rior sets De(X),Ant(X) are analogously defined. Also, we
denote by Pa(X), (Ch(X)), the set of parents (children) of
X.

m-Separation. A node V on a walk w is called a collider
if two arrowheads of w meet at V, e.g. if w contains U ↔
V ← Q. There can be no collider if w is shorter than
2. Two nodes U,V are called collider connected if there
is a path between them on which all nodes except U and
V are colliders. Adjacent vertices are collider connected.
Two nodes U,V are called m-connected by a set Z if there
is a path π between them on which every node that is a
collider is in An(Z) and every node that is not a collider
is not in Z. Then π is called an m-connecting path. The
same definition can be stated simpler using walks: U,V are
called m-connected by Z if there is a walk between them
on which all colliders and only colliders are in Z. If U,V
are m-connected by the empty set, we simply say they are
m-connected. If U,V are not m-connected by Z, we say
that Z m-separates them or blocks all paths between them.
Two node sets X,Y are m-separated by Z if all their nodes
are pairwise m-separated by Z. In DAGs, m-separation is
equivalent to the well-known d-separation criterion (Pearl,
2009).

Ancestral graphs and DAGs. A mixed graphG = (V,E)
is called an ancestral graph (AG) if the following two con-
ditions hold: (1) For each edge A ← B or A ↔ B, A is
not an ancestor of B. (2) For each edge A − B, there are no
edges A ← C, A ↔ C, B ← C or B ↔ C. There can be
at most one edge between two nodes in an AG (Richard-
son and Spirtes, 2002). Syntactically, all DAGs are AGs
and all AGs containing only directed edges are DAGs. An
AG G = (V,E) is a maximal ancestral graph (MAG) if
every non-adjacent pair of nodes U,V can be m-separated
by some Z ⊆ V \ {U,V}. Every AG G can be turned into
a MAGM by adding bidirected edges between node pairs
that cannot be m-separated (Richardson and Spirtes, 2002).

3 ALGORITHMS FOR M-SEPARATION

In this section, we compile an algorithmic framework for
solving a host of problems related to verification, con-
struction, and enumeration of m-separating sets in AGs.
The problems are defined in Fig. 1, which also shows
the asymptotic runtime of their solutions. Throughout, n
stands for the number of nodes and m for the number of
edges in a graph. All of these problems except LISTSEP
can be solved by rather straightforward modifications of
existing algorithms (Acid and de Campos, 1996; Shachter,
1998; Tian et al., 1998; Textor and Liśkiewicz, 2011).
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Pseudocodes of these algorithms are shown for reference
and implementation in the Appendix of this paper, as are
proof details omitted from the main text.

An important tool for solving similar problems for d-
separation is moralization, by which d-separation can be
reduced to a vertex cut in an undirected graph. This re-
duction allows to solve problems like FINDMINSEP using
standard network flow algorithms (Acid and de Campos,
1996). Moralization can be generalized to AGs in the fol-
lowing manner.

Definition 3.1 (Moralization of AGs (Richardson and
Spirtes, 2002)). Given an AGG, the augmented graph (G)a

is an undirected graph with the same node set as G such
that X − Y is an edge in (G)a if and only if X and Y are
collider connected in G.

Theorem 3.2 (Reduction of m-Separation to vertex cuts
(Richardson and Spirtes, 2002)). Given an AG G and three
node sets X,Y and Z, Z m-separates X and Y if and only if
Z is an X-Y node cut in (GAnt(X∪Y∪Z)a.

A direct implementation of Definition 3.1 would lead to a
suboptimal algorithm. Therefore, we first give an asymp-
totically optimal (linear time in output size) moralization
algorithm for AGs. We then solve TESTMINSEP, FIND-
MINSEP, FINDMINCOSTSEP and LISTMINSEP by gener-
alizing existing correctness proofs of the moralization ap-
proach for d-separation (Tian et al., 1998).

Not all our solutions are based on moralization, however.
Moralization takes time O(n2), and TESTSEP and FIND-
SEP can be solved faster, i.e. in asymptotically optimal
time O(n +m).

Lemma 3.3 (Efficient AG moralization). Given an AG G,
the augmented graph (G)a can be computed in time O(n2).

Proof. The algorithm proceeds in four steps. (1) Start by
setting (G)a to G replacing all edges by undirected ones.
(2) Identify all connected components in G with respect
to bidirected edges (two nodes are in the same such com-
ponent if they are connected by a path consisting only of
bidirected edges). Nodes without adjacent bidirected edges
form singleton components. (3) For each pair U,V of nodes
from the same component, add the edge U −V to (G)a if it
did not exist already. (4) For each component, identify all
its parents (nodes U with an edge U→ V where U is in the
component) and link them all by undirected edges in (G)a.
Now two nodes are adjacent in (G)a if and only if they are
collider connected in G. All four steps can be performed in
time O(n2). �

Lemma 3.4. Let X,Y, I,R be sets of nodes with I ⊆ R,
R ∩ (X ∪ Y) = ∅. If there exists an m-separator Z0, with
I ⊆ Z0 ⊆ R then Z = Ant(X∪Y∪I)∩R is an m-separator.

Corollary 3.5 (Ancestry of minimal separators). Given an
AG G, and three sets X,Y, I, every minimal set Z over all

m-separators containing I is a subset of Ant(X ∪ Y ∪ I).

Proof. Assume there is a minimal separator Z with Z *
Ant(X ∪ Y ∪ I). According to Lemma 3.4 we have that
Z′ = Ant(X ∪ Y ∪ I) ∩ Z is a separator with I ⊆ Z′. But
Z′ ⊆ Ant(X ∪ Y ∪ I) and Z′ ⊆ Z, so Z , Z′ and Z is not a
minimal separator. �

Corollary 3.5 applies to minimum-cost separators as well
because every minimum-cost separator must be minimal.
Now we can solve FINDMINCOSTSEP and FINDMIN-
SIZESEP by using weighted min-cut, which takes time
O(n3) using practical algorithms, and LISTMINSEP by us-
ing Takata’s algorithm to enumerate minimal vertex cuts
with delay O(n3) (Takata, 2010).

However, for FINDMINSEP and TESTMINSEP, we can do
better than using standard vertex cuts.

Proposition 3.6. The task FINDMINSEP can be solved in
time O(n2).

Proof. Two algorithms are given in the appendix, one with
runtime O(nm) (Algorithm 8) and one with runtime O(n2)
(Algorithm 9). �

Corollary 3.7. The task TESTMINSEP can be solved in
time O(n2).

Proof. First verify whether Z is an m-separator using mor-
alization. If not, return “no”. Otherwise, set S = Z and
solve FINDMINSEP. Return “yes” if the output is Z and
“no”, otherwise. �

Moralization can in the worst case quadratically increase
the size of a graph. Therefore, in some cases, it may be
preferable to avoid moralization if the task at hand is rather
simple, as are the two tasks considered below.

Proposition 3.8. The task FINDSEP can be solved in time
O(n +m).

Proof. This follows directly from Lemma 3.4, and the fact
that the set Ant(X ∪ Y ∪ I) ∩ R can be found in linear
time from the MAG without moralization. Note that un-
like in DAGs, two non-adjacent nodes cannot always be
m-separated in ancestral graphs. �

By modifying the Bayes-Ball algorithm (Shachter, 1998)
appropriately, we get the following.

Proposition 3.9. The task TESTSEP can be solved in time
O(n +m).

Lastly, we consider the problem of listing all m-separators.
Here is an algorithm to solve that problem with polynomial
delay.
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Verification: For given X,Y and Z decide if . . .
TESTSEP Z m-separates X,Y O(n +m)
TESTMINSEP Z m-separates X,Y but no Z′ ( Z does O(n2)

Construction: For given X,Y and auxiliary I,R, output . . .
FINDSEP an m-separator Z with I ⊆ Z ⊆ R O(n +m)
FINDMINSEP a minimal m-separator Z with I ⊆ Z ⊆ R O(n2)
FINDMINCOSTSEP a minimum-cost m-separator Z with I ⊆ Z ⊆ R O(n3)

Enumeration: For given X,Y, I,R enumerate all . . .
LISTSEP m-separators Z with I ⊆ Z ⊆ R O(n(n +m)) delay
LISTMINSEP minimal m-separators Z with I ⊆ Z ⊆ R O(n3) delay

Table 1: Definitions of algorithmic tasks related to m-separation. Throughout, X,Y,R are pairwise disjoint node sets, Z is
disjoint with X,Y which are nonempty, and I,R,Z can be empty. By a minimal m-separator Z, with I ⊆ Z ⊆ R, we mean a
set such that no proper subset Z′ of Z, with I ⊆ Z′, m-separates the pair X and Y. Analogously, we define a minimal and a
minimum-cost m-separator. The construction algorithms will output ⊥ if no set fulfilling the listed condition exists. Delay
complexity for e.g. LISTMINSEP refers to the time needed to output one solution when there can be exponentially many
solutions (see Takata (2010)).

function LISTSEP(G,X,Y, I,R)
if FINDSEP(G,X,Y, I,R) , ⊥ then

if I = R then Output I
else

V ← an arbitrary node of R \ I
LISTSEP(G,X,Y, I ∪ {V},R)
LISTSEP(G,X,Y, I,R \ {V})

Figure 1: ListSep

Proposition 3.10. The task LISTSEP can be solved with
polynomial delay O(n(n +m)).

Proof. Algorithm LISTSEP performs backtracking to enu-
merate all Z with I ⊆ Z ⊆ R aborting branches that will not
find a valid separator. Since every leaf will output a sepa-
rator, the tree height is at most n and the existence check
needs O(n + m), the delay time is O(n(n + m)). The al-
gorithm generates every separator exactly once: if initially
I ( R, with V ∈ R \ I, then the first recursive call returns
all separators Z with V ∈ Z and the second call returns all
Z′ with V < Z′. Thus the generated separators are pairwise
disjoint. This is a modification of the enumeration algo-
rithm for minimal vertex separators (Takata, 2010). �

4 ADJUSTMENT IN DAGS

In this section, we leverage the algorithmic framework of
the last section together with a new constructive, sound
and complete criterion for covariate adjustment in DAGs
to solve all problems listed in Table 1 for adjustment sets
instead of m-separators in the same asymptotic time. First,
however, we need to introduce some more notation pertain-
ing to the causal interpretation DAGs.

Do-operator and adjustment sets. A DAG G encodes
the factorization of joint distribution p for the set of vari-

ables V = {X1, . . . ,Xn} as p(v) =
∏n

j=1 p(x j|pa j), where
pa j denotes a particular realization of the parent variables
of X j in G. When interpreted causally, an edge Xi → X j
is taken to represent a direct causal effect of Xi on X j. For
disjoint X,Y ⊆ V, the (total) causal effect of X on Y is
p(y|do(x)) where do(x) represents an intervention that sets
X = x. In a DAG, this intervention corresponds to remov-
ing all edges into X, disconnecting X from its parents. We
denote the resulting graph as GX. Given DAG G and a joint
probability density p for V the post-intervention distribu-
tion can be expressed in a truncated factorization formula:

p(v|do(x)) =



∏

X j∈V\X
p(x j|pa j) for V consistent with x

0 otherwise.

Definition 4.1 (Adjustment (Pearl, 2009)). Given a DAG
G = (V,E) and pairwise disjoint X,Y,Z ⊆ V, Z is called
covariate adjustment for estimating the causal effect of X
on Y, or simply adjustment, if for every distribution p con-
sistent with G we have p(y | do(x)) =

∑
z p(y | x, z)p(z).

Definition 4.2 (Adjustment criterion (Shpitser et al., 2010;
Shpitser, 2012)). Let G = (V,E) be a DAG, and X,Y,Z ⊆
V be pairwise disjoint subsets of variables. The set Z sat-
isfies the adjustment criterion relative to (X,Y) in G if

(a) no element in Z is a descendant inG of any W ∈ V\X
which lies on a proper causal path from X to Y and

(b) all proper non-causal paths in G from X to Y are
blocked by Z.

Remark 4.3. In (Shpitser et al., 2010; Shpitser, 2012) the
criterion is stated in a slightly different way, namely using
in the condition (a) GX instead of G. However, the two
statements are equivalent.

Proof. First note that if Z satisfies the condition (a) then
Z satisfies (a) with GX instead of G, too. Since condi-
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tions (b) in Definition 4.2 and in (Shpitser et al., 2010; Sh-
pitser, 2012) are identical, the adjustment criterion above
implies the criterion of Shpitser et al.

Now assume Z satisfies the condition (a) withGX instead of
G and the condition (b). We show that Z then satisfies the
condition (a), or there must exist some W ∈ V \ X, which
lies on a proper causal path from X to Y, and a causal path
from W to Z which intersects X.

Let W → . . . → Y denote the suffix of the path from X to
Y starting in W. Note that this path can consist only of the
vertex W. Additionally, for the causal path from W to Z,
let W → . . . → X be its shortest prefix which intersects
X. Then, from the condition (a), with GX instead of G,
we know that no vertex of W → . . . → X belongs to Z.
This leads to a contradiction with the condition (b) since
X ← . . . ← W → . . . → Y is a proper non-causal path in
G from X to Y that is not blocked by Z. �

Analogously toGX, byGX we denote a DAG obtained from
G by removing all edges leaving X.

4.1 CONSTRUCTIVE BACK-DOOR CRITERION

Definition 4.4 (Proper back-door graph). Let G = (V,E)
be a DAG, and X,Y ⊆ V be pairwise disjoint subsets of
variables. The proper back-door graph, denoted as Gpbd

XY , is
obtained from G by removing the first edge of every proper
causal path form X to Y.

Note the difference between the back-door graph GX and

the proper back-door graph Gpbd
XY : in GX all edges leaving

X are removed while in Gpbd
XY only those that lie on a proper

causal path. However, to construct Gpbd
XY still only elemen-

tary operations are sufficient. Indeed, we remove all edges
X→ D in E such that X ∈ X and D is in the subset, which
we call PCP(X,Y), obtained as follows:

PCP(X,Y) = (DeX(X) \ X) ∩ AnX(Y) (1)

where DeX(W) denotes descendants of W in GX. AnX(W)
is defined analogously forGX. Hence, the proper back-door
graph can be constructed from G in linear time O(m + n).

Now we propose the following adjustment criterion. For
short, we will denote the set De(PCP(X,Y)) as Dpcp(X,Y).

Definition 4.5 (Constructive back-door criterion (CBC)).
Let G = (V,E) be a DAG, and let X,Y,Z ⊆ V be pair-
wise disjoint subsets of variables. The set Z satisfies the
constructive back-door criterion relative to (X,Y) in G if

(a) Z ⊆ V \ Dpcp(X,Y) and

(b) Z d-separates X and Y in the proper back-door graph
Gpbd

XY .

Theorem 4.6. The constructive back-door criterion is
equivalent to the adjustment criterion.

Proof. First observe that the conditions (a) of both criteria
are identical. Assume conditions (a) and (b) of the adjust-
ment criterion hold. We show that (b) of the constructive
back-door criterion follows. Let π be any proper path from
X to Y in Gpbd

XY . Because Gpbd
XY does not contain causal paths

from X to Y, π is not causal and has to be blocked by Z in
G by the assumption. Since removing edges cannot open
paths, π is blocked by Z in Gpbd

XY as well.

Now we show that (a) and (b) of the constructive back-door
criterion together imply (b) of the adjustment criterion. If
that were not the case, then there could exist a proper non-
causal path π from X to Y that is blocked in Gpbd

XY but open

in G. There can be two reasons why π is blocked in Gpbd
XY :

(1) The path starts with an edge X→ D that does not exist
in Gpbd

XY . Then we have D ∈ PCP(X,Y). For π to be non-
causal, it would have to contain a collider C ∈ An(Z) ∩
De(D) ⊆ An(Z)∩Dpcp(X,Y). But because of (a), An(Z)∩
Dpcp(X,Y) is empty. (2) A collider C on π is an ancestor
of Z in G, but not in Gpbd

XY . Then there must be a directed
path from C to Z via an edge X → D with D ∈ An(Z) ∩
PCP(X,Y), contradicting (a). �

4.2 ADJUSTING FOR MULTIPLE EXPOSURES

For a singleton set X = {X} of exposures we know that if
a set of variables Y is disjoint from {X} ∪ Pa(X) then one
obtains easily an adjustment set with respect to X and Y
as Z = Pa(X) (Pearl, 2009, Theorem 3.2.2). The situation
changes drastically if the effect of multiple exposures is es-
timated. Theorem 3.2.5 in Pearl (2009) claims that the ex-
pression for P(y | do(x)) is obtained by adjusting for Pa(X)
if Y is disjoint from X ∪ Pa(X), but, as the DAG in Fig. 2
shows, this is not true: the set Z = Pa(X1,X2) = {Z2}
is not an adjustment set according to {X1,X2} and Y. In
this case one can identify the causal effect by adjusting for
Z = {Z1,Z2} only. Indeed, for more than one exposure, no
adjustment set may exist at all even without latent covari-
ates and even though Y∩ (X∪Pa(X)) = ∅, e.g. in the DAG

X1 X2 Z Y.

Using our criterion, we can construct a simple adjustment
set explicitly if one exists. For a DAGG = (V,E) we define
the set

Adj(X,Y) = An(X ∪ Y) \ (X ∪ Y ∪ Dpcp(X,Y)).

Theorem 4.7. Let G = (V,E) be a DAG and let X,Y ⊆ V
be distinct node sets. Then the following statements are
equivalent:

1. There exists an adjustment in G w.r.t. X and Y.
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G GX Gpbd
XY

X1

Z1

Z2

X2

Y1

Y2

X1

Z1

Z2

X2

Y1

Y2

X1

Z1

Z2

X2

Y1

Y2

Figure 2: A DAG where for X = {X1,X2} and Y = {Y1,Y2},
Z = {Z1,Z2} is a valid and minimal adjustment, but no
set fulfills the back-door criterion (Pearl, 2009), and the
parents of X are not a valid adjustment set either.

2. Adj(X,Y) is an adjustment w.r.t. X and Y.

3. Adj(X,Y) d-separates X and Y in the proper back-
door graph Gpbd

XY .

Proof. The implication (3) ⇒ (2) follows directly from
the criterion Def. 4.5 and the definition of Adj(X,Y). Since
the implication (2) ⇒ (1) is obvious, it remains to prove
(1)⇒ (3).

Assume there exists an adjustment set Z0 w.r.t. X and Y.
From Theorem 4.6 we know that Z0 ∩Dpcp(X,Y) = ∅ and
that Z0 d-separates X and Y in Gpbd

XY . Our task is to show

that Adj(X,Y) d-separates X and Y in Gpbd
XY . This follows

from Lemma 3.4 used for the proper back-door graph Gpbd
XY

if we take I = ∅, R = V \ (X ∪ Y ∪ Dpcp(X,Y)). �

From Equation 1 and the definition Dpcp(X,Y) =
De(PCP(X,Y)) we then obtain immediately:

Corollary 4.8. Given two distinct sets X,Y ⊆ V, Adj(X,Y)
can be found in O(n +m) time.

4.3 TESTING, COMPUTING, AND
ENUMERATING ADJUSTMENT SETS

Using our criterion, every algorithm for m-separating sets
Z between X and Y can be used for adjustment sets with
respect to X and Y, by requiring that Z not contain any
node in Dpcp(X,Y). This allows solving all problems
listed in Table 1 for adjustment sets in DAGs instead of m-
separators. Below, we name those problems analogously as
for m-separation, e.g. the problem to decide whether Z is
an adjustment set w.r.t. X,Y is named TESTADJ in analogy
to TESTSEP.

TESTADJ can be solved by testing if Z ∩ Dpcp(X,Y) = ∅
and Z is a d-separator in the proper back-door graph Gpbd

XY .

Since Gpbd
XY can be constructed from G in linear time, the

total time complexity of this algorithm is O(n +m).

TESTMINADJ can be solved with an algorithm that itera-
tively removes nodes from Z and tests if the resulting set
remains an adjustment set w.r.t. X and Y. This can be done
in time O(n(n + m)). Alternatively, one can construct the
proper back-door graph Gpbd

XY from G and test if Z is a min-
imal d-separator, with Z ⊆ V \ Dpcp(X,Y) between X and
Y. This can be computed in time O(n2). The correctness of
these algorithms follows from the proposition below, which
is a generalization of the result in Tian et al. (1998).

Proposition 4.9. If no single node Z can be removed from
an adjustment set Z such that the resulting set Z′ = Z \ Z
is no longer an adjustment set, then Z is minimal.

The remaining problems like FINDADJ, FINDMINADJ etc.
can be solved using corresponding algorithms for finding,
resp. listing m-separations applied for proper back-door
graphs. Since the proper back-door graph can be con-
structed in linear time the time complexities to solve the
problems above are as listed in Table 1.

5 ADJUSTMENT IN MAGS

We now generalize the results from the previous section
to MAGs. Two examples may illustrate why this gener-
alization is not trivial. First, take G = X → Y. If G is
interpreted as a DAG, then the empty set is valid for adjust-
ment. If G is however taken as a MAG, then there exists
no adjustment set as G represents among others the DAG
U X Y where U is an unobserved confounder. Sec-

ond, take G = A → X → Y. In that case, the empty set
is an adjustment set regardless of whether G is interpreted
as a DAG or a MAG. The reasons will become clear as we
move on. First, let us recall the semantics of a MAG. The
following definition can easily be given for AGs in general,
but we do not need this generality for our purpose.

Definition 5.1 (DAG representation by MAGs (Richardson
and Spirtes, 2002)). Let G = (V,E) be a DAG, and let
S,L ⊆ V. The MAG M = G[L

S is a graph with nodes
V \ (S∪L) and defined as follows. (1) Two nodes U and V
are adjacent in G[L

S if they cannot be m-separated by any
Z with S ⊆ Z ⊆ V \ L in G. (2) The edge between U and
V is

U − V if U ∈ An(S ∪ V) and V ∈ An(S ∪U);

U→ V if U ∈ An(S ∪ V) and V < An(S ∪U);

U↔ V if U < An(S ∪ V) and V < An(S ∪U).

We call L latent variables and S selection variables. We
say there is selection bias if S , ∅.
Hence, every MAG represents an infinite set of underlying
DAGs that all share the same ancestral relationships. For a
given MAGM, we can construct a represented DAG G by
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replacing every edge X − Y by a path X → S ← Y, and
every edge X↔ Y by X← L→ Y, where S and L are new
nodes; thenM = G[L

S where S and L are all new nodes. G
is called the canonical DAG ofM (Richardson and Spirtes,
2002), which we write as C(M).

Lemma 5.2 (Preservation of separating sets (Richardson
and Spirtes, 2002)). Z m-separates X,Y in G[L

S if and only
if Z ∪ S m-separates X,Y in G.

We now extend the concept of adjustment to MAGs in the
usual way (Maathuis and Colombo, 2013).

Definition 5.3 (Adjustment in MAGs). Given a MAGM =
(V,E) and two variable sets X,Y ⊆ V, Z ⊆ V is an adjust-
ment set for X,Y in M if for every probability distribu-
tion p(v′) consistent with a DAG G = (V′,E′) for which
G[L

S=M for some S,L ⊆ V′ \V, we have

p(y | do(x)) =
∑

z

p(y | x, z, s)p(z | s) . (2)

Selection bias (i.e., S , ∅) substantially complicates ad-
justment, and in fact nonparametric causal inference in gen-
eral (Zhang, 2008)2. Due to these limitations, we restrict
ourselves to the case S = ∅ in the rest of this section.
Note however that recovery from selection bias is some-
times possible with additional population data, and graphi-
cal conditions exist to identify such cases (Barenboim et al.,
2014).

5.1 ADJUSTMENT AMENABILITY

In this section we first identify a class of MAGs in which
adjustment is impossible because of causal ambiguities –
e.g., the simple MAG X → Y falls into this class, but the
larger MAG A→ X→ Y does not.

Definition 5.4 (Visible edge (Zhang, 2008)). Given a MAG
M = (V,E), an edge X → Y ∈ E is called visible if in all
DAGs G = (V′,E′) with G[L

S=M for some S,L ⊆ V′, all
d-connected walks between X and Y in G that contain only
nodes of S ∪ L ∪ X ∪ Y are directed paths.

Intuitively, an invisible directed edge X → Y means that
there may still hidden confounding factors between X and
Y, which is guaranteed not to be the case if the edge is
visible.

Lemma 5.5 (Graphical conditions for edge visibility
(Zhang, 2008)). In a MAGM = (V,E), an edge X → D
is visible if and only if there is a node A not adjacent
to D where (1) A → X ∈ E or A ↔ X ∈ E, or (2)

2A counterexample is the graph A ← X → Y, where we can
safely assume that A is the ancestor of a selection variable. A
sufficient and necessary condition for adjustment under selection
bias is Y y S | X (Barenboim et al., 2014), which is so restrictive
that most statisticians would probably not even speak of “selec-
tion bias” anymore in such a case.

there is a collider path A ↔ V1 ↔ . . . ↔ Vn ↔ X or
A→ V1 ↔ . . .↔ Vn ↔ X where all Vi are parents of D.

Definition 5.6. We call a MAG M = (V,E) adjustment
amenable w.r.t. X,Y ⊆ V if all proper causal paths from X
to Y start with a visible directed edge.

Lemma 5.7. If a MAG M = (V,E) is not adjustment
amenable w.r.t. X,Y ⊆ V then there exists no adjustment
set W for X,Y inM.

Proof. If the first edge X → D on some causal path to
Y in M is not visible, then there exists a consistent DAG
G where there is a non-causal path between X and Y via
V that could only be blocked inM by conditioning on D
or some of its descendants. But such conditioning would
violate the adjustment criterion in G. �

5.2 ADJUSTMENT CRITERION FOR MAGS

We now show that DAG adjustment criterion generalizes to
adjustment amenable MAGs. The adjustment criterion and
the constructive back-door criterion are defined like their
DAG counterparts (Definitions 4.2 and 4.4), replacing d-
with m-separation for the latter.

Theorem 5.8. Given an adjustment amenable MAGM =
(V,E) and three disjoint node sets X,Y,Z ⊆ V, the follow-
ing statements are equivalent:

(i) Z is an adjustment relative to X,Y inM.

(ii) Z fulfills the adjustment criterion (AC) w.r.t. (X,Y) in
M.

(iii) Z fulfills the constructive backdoor criterion (CBC)
w.r.t. (X,Y) inM.

Proof. The equivalence of (ii) and (iii) is established by
observing that the proof of Theorem 4.6 generalizes to m-
separation. Below we establish equivalence of (i) and (ii).

¬(ii) ⇒ ¬(i): If Z violates the adjustment criterion inM,
it does so in the canonical DAG C(M), and thus is not an
adjustment inM.

¬(i) ⇒ ¬(ii): Let G be a DAG with G[L
∅= M in which Z

violates the AC. We show that (a) if Z∩Dpcp(X,Y) , ∅ in
G then Z ∩ Dpcp(X,Y) , ∅ inM as well, or there exists
a proper non-causal path inM that cannot be m-separated;
and (b) if Z ∩ Dpcp(X,Y) = ∅ in G and Z d-connects a
proper non-causal path in G, then it m-connects a proper
non-causal path inM.

(a) Suppose that in G, Z contains a node Z in Dpcp(X,Y),
and let W = PCP(X,Y)∩An(Z). IfM still contains at least
one node W1 ∈ W, then W1 lies on a proper causal path
in M and Z is a descendant of W1 in M. Otherwise, M
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DAG G MAGM = G[W1
∅

X

W1 W2

Y

Z

X

W2

Y

Z

Figure 3: Illustration of the case in the proof of Theorem
5.8 where Z descends from W1 which in a DAG G is on a
proper causal path from X to Y, but is not a descendant of
a node on a proper causal path from X to Y in the MAGM
after marginalizing W1. In such cases, conditioning on Z
will m-connect X and Y inM via a proper non-causal path.

must contain a node W2 ∈ PCPG(X,Y) \ An(Z) (possibly
W2 ∈ Y) such that W2 ↔ A, X → W2, and X → A are
edges inM, where A ∈ An(Z) (possibly A = Z; see Fig. 3).
ThenM contains an m-connected proper non-causal path
X→ A↔W →W2 → . . .→ Y.

(b) Suppose that in G, Z∩Dpcp(X,Y) = ∅, and there exists
an open proper non-causal path from X to Y. Then there
must then also be a proper non-causal walk wG from some
X ∈ X to some Y ∈ Y (Lemma A.1), which is d-connected
by Z in G. Let wM denote the subsequence of wG formed
by nodes in M, which includes all colliders on wG. The
sequence wM is a path in M, but is not necessarily m-
connected by Z; all colliders on wM are in Z because every
non-Z must be a parent of at least one of its neighbours, but
there can subsequences U,Z1, . . . ,Zk,V on wM where all
Zi ∈ Z but some of the Zi are not colliders on wM. How-
ever, then we can form from wM an m-connected walk by
bypassing some sequences of Z-nodes (Lemma A.9). Let
w′M be the resulting walk.

If w′M is a proper non-causal walk, then there must also ex-
ist a proper non-causal path inM (Lemma A.1), violating
the AC. It therefore remains to show that w′M is not a proper
causal path. This must be the case if wG does not contain
colliders, because then the first edge of wM = w′M cannot
be a visible directed edge out of X. Otherwise, the only
way for w′M to be proper causal is if all Z-nodes in wM
have been bypassed in w′M by edges pointing away from
X. In that case, one can show by several case distinctions
that the first edge X → D of w′M, where D < Z, cannot be
visible (see Figure 4 for an example of such a case).

For simplicity, assume that M contains a subpath A →
X → D where A is not adjacent to D; the other cases
of edge visibility like A ↔ X → D (Lemma 5.5). are
treated analogously. In G, there are inducing paths (pos-
sibly several) πAX from A to X and πXD from X to D
w.r.t ∅,L; πAX must have an arrowhead at X. We dis-
tinguish several cases on the shape of πXD. (1) A path
πXD has an arrowhead at X as well. Then A,D are adja-
cent (Lemma A.13), a contradiction. (2) No inducing path
πXD has an arrowhead at X. Then wG must start with an

DAG G MAGM = G[{L1,L2}
∅

L1 Z

Y

L2

X

A

Z

YX

A

Figure 4: Case (b) in the proof of Theorem 5.8: A proper
non-causal path wG = X ← L1 → Z ← Ls → Y in a
DAG is d-connected by Z, but the corresponding proper
non-casual path wM = X← Z→ Y is not m-connected in
the MAG, and its m-connected subpath w′M = X → Y is
proper causal. However, this also renders the edge X → Y
invisible, because otherwise A could be m-separated from
Y by U = {X,Z} inM but not in G.

arrow out of X, and must contain a collider Z ∈ De(X)
because wG is not causal. (a) Z ∈ De(D). This contra-
dicts Z ∩ Dpcp(X,Y) = ∅. So (b) Z < De(D). Then
by construction of w′M (Lemma A.9), wM must start with
an inducing Z-trail X → Z,Z1, . . . ,Zn,D, which is also
an inducing path from X to D in G w.r.t. ∅,L. Then
Z,Z1, . . . ,Zn,D must also be an inducing path in G w.r.t.
∅,L because An(X) ⊆ An(Z). Hence Z and D are adjacent.
We distinguish cases on the path X → Z,D in M. (i) If
X → Z → D, then Z lies on a proper causal path, con-
tradicting Z ∩ Dpcp(X,Y) = ∅. (ii) If X → Z ↔ D, or
X → Z ← D, then we get an m-connected proper non-
causal walk along Z and D. �

5.3 ADJUSTMENT SET CONSTRUCTION

In the previous section, we have already shown that the
CBC is equivalent to the AC for MAGs as well; hence, ad-
justment sets for a given MAGM can be found by forming
the proper back-door graphMpbd

XY and then applying the al-
gorithms from the previous section. In principle, care must
be taken when removing edges from MAGs as the result
might not be a MAG; however, this is not the case when
removing only directed edges.

Lemma 5.9 (Closure of maximality under removal of di-
rected edges). Given a MAGM, every graphM′ formed
by removing only directed edges fromM is also a MAG.

Proof. Suppose the converse, i.e. M is no longer a MAG
after removal of some edge X→ D. Then X and D cannot
be m-separated even after the edge is removed because X
and D are collider connected via a path whose nodes are all
ancestors of X or D (Richardson and Spirtes, 2002). The
last edge on this path must be C↔ D or C← D, hence C <
An(D), and thus we must have C ∈ An(X). But then we get
C ∈ An(D) inM via the edge X→ V, a contradiction. �
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Corollary 5.10. For every MAGM, the proper back-door
graphMpbd

XY is also a MAG.

For MAGs that are not adjustment amenable, the CBC
might falsely indicate that an adjustment set exists even
though that set may not be valid for some represented
graph. Fortunately, adjustment amenability is easily tested
using the graphical criteria of Lemma 5.5. For each child
D of X in PCP(X,Y), we can test the visibility of all edges
X → D simultaneously using depth first search. This
means that we can check all potentially problematic edges
in time O(n +m). If all tests pass, we are licensed to apply
the CBC, as shown above. Hence, we can solve all algo-
rithmic tasks in Table 1 for MAGs in the same way as for
DAGs after an O(k(n +m)) check of adjustment amenabil-
ity, where k ≤ |Ch(X)|.

6 DISCUSSION

We have compiled efficient algorithms for solving several
tasks related to m-separators in ancestral graphs, and ap-
plied those together with a new, constructive adjustment
criterion to provide a complete and informative answer to
the question when, and how, a desired causal effect can be
estimated by covariate adjustment. Our results fully gener-
alize to MAGs in the absence of selection bias. One may ar-
gue that the MAG result is more useful for exploratory ap-
plications (inferring a graph from data) than confirmatory
ones (drawing a graph based on theory), as researchers will
prefer drawing DAGs instead of MAGs due to the easier
causal interpretation of the former. Nevertheless, in such
settings the results can provide a means to construct more
“robust” adjustment sets: If there are several options for co-
variate adjustment in a DAG, then one can by interpreting
the same graph as a MAG possibly generate an adjustment
set that is provably valid for a much larger class of DAGs.
This might partially address the typical criticism that com-
plete knowledge of the causal structure is unrealistic.

Our adjustment criterion generalizes the work of Shpitser
et al. (2010) to MAGs and therefore now completely char-
acterizes when causal effects are estimable by covariate ad-
justment in the presence of unmeasured confounders with
multivariate exposures and outcomes. This also general-
izes recent work by Maathuis and Colombo (2013) who
provide a criterion which, for DAGs and MAGs without
selection bias, is stronger than the back-door criterion but
weaker than ours. They moreover show their criterion to
hold also for CPDAGs and PAGs, which represent equiva-
lence classes of DAGs and MAGs as they are constructed
by causal discovery algorithms. It is possible that the con-
structive back-door criterion could be generalized further
to those cases, which we leave for future work.
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A APPENDIX

A.1 AUXILIARY LEMMAS AND PROOFS

In this section, we prove Lemma 3.4 and several auxiliary
Lemmas that are necessary for the proof of Theorem 5.8.

Proof of Lemma 3.4. Let us consider a proper walk w =
X,V1, . . . ,Vn,Y with X ∈ X,Y ∈ Y. If w does not con-
tain a collider, all nodes Vi are in Ant(X ∪ Y) and the walk
is blocked by Z, unless {V1, . . . ,Vn} ∩ R = ∅ in which
case the walk is not blocked by Z0 either. If the walk
contains colliders C, it is blocked, unless C ⊆ Z ⊆ R.
Then all nodes Vi are in Ant(X ∪ Y ∪ I) and the walk is
blocked, unless {V1, . . . ,Vn} ∩ R = C. Since C ⊆ Z is a
set of anteriors, there exists a shortest (possible containing
0 edges) path π j = V j → . . . → W j for each V j ∈ C with
W j ∈ X∪Y∪ I (it cannot contain an undirected edge, since
there is an arrow pointing to V j). Let π′j = V j → . . .→W′

j
be the shortest subpath of π j that is not blocked by Z0.
Let w′ be the walk w after replacing each V j by the walk
V j → . . . → W′

j ← . . . ← V j. If any of the W j is in
X ∪ Y we truncate the walk, such that we get the shortest
walk between nodes of X and Y. Since π′j is not blocked,
w′ contains no colliders except w′j and all other nodes of w′

are not in R, w′ is not blocked and Z0 is not a separator. �

Lemma A.1. Given a DAGG and sets X,Y,Z ⊆ V satisfy-
ing Z∩Dpcp(X,Y) = ∅, Z m-connects a proper non-causal
path between X and Y if and only if it m-connects a proper
non-causal walk between X and Y.

Proof. ⇐: Let w be the m-connected proper non-causal
walk. It can be transformed to an m-connected path π by
removing loops of nodes that are visited multiple times.
Since no nodes have been added, π remains proper, and
the first edges of π and w are the same. So if w does not
start with a → edge, π is non-causal. If w starts with an
edge X→ D, there exists a collider with a descendant in Z
which is in De(D). So π has to be non-causal, or it would
contradict Z ∩ Dpcp(X,Y) = ∅.
⇒: Let π be an m-connected proper non-causal path. It can
be changed to an m-connected walk w by inserting Ci →

. . . → Zi ← . . . ← Ci for every collider Ci on π and a
corresponding Zi ∈ Z. Since no edges are removed from
π, w is non-causal, but not necessarily proper, since the
inserted walks might contain nodes of X. However, in that
case, w can be truncated to a proper walk w′ starting at
the last node of X on w. Then w′ is non-causal, since it
contains the subpath X← . . .← Ci. �

In all of the below, G = (V,E) is a DAG, Z,L ⊆ V are
disjoint, andM = G[L

∅ .
Definition A.2 (Inducing path (Richardson and Spirtes,
2002)). A path π = V1, . . . ,Vn+1 is called inducing with
respect to Z,L if all non-colliders on π except V1 and Vn+1
are in L, and all colliders on π are in An({V1,Vn+1} ∪ Z).

Every inducing path w.r.t. Z,L is m-connected by Z.

Lemma A.3 (Richardson and Spirtes (2002)). If there is
an inducing path w from U ∈ V to V ∈ V with respect to
Z,L, then there exists no set Z′ with Z ⊆ Z′ ⊆ (V \L) such
that Z′ d-separates U and V in G or m-separates U and V
in G[L

∅ .

Proof. This is Theorem 4.2, cases (v) and (vi), in Richard-
son and Spirtes (2002). �

Lemma A.4. Two nodes U,V are adjacent in G[L
∅ if and

only if G contains an inducing path π between U and V
with respect to ∅,L. Moreover, the edge between U,V in
G[L
∅ can only have an arrowhead at U (V) if all such π

have an arrowhead at U (V) in G.

Proof. The first part on adjacency is proved in (Richardson
and Spirtes, 2002). For the second part on arrowheads, sup-
pose π does not have an arrowhead at U, then π starts with
an edge U → D. Hence D < An(U), so D ∈ An(V) be-
cause π is an inducing path and therefore also U ∈ An(V).
Hence, the edge between U and V in G[L

∅ must be U→ V.
The argument for V is identical. �

Lemma A.5. Suppose Z0,Z1,Z2 is a path in G[L
∅ on which

Z1 is a non-collider. Suppose an inducing path π01 from Z0
to Z1 w.r.t. ∅,L in G has an arrowhead at Z1, and an in-
ducing path π12 from Z1 to Z2 w.r.t. ∅,L has an arrowhead
at Z1. Then the walk w012 = π01π12 can be truncated to an
inducing path from Z0 to Z2 w.r.t. ∅,L in G.

Proof. The walk w012 does not contain more non-colliders
than those on π01 or π12, so they must all be in L. It re-
mains to show that the colliders on w012 are in An(Z0∪Z2).
Because Z1 is not a collider on Z0,Z1,Z2, at least one of
the edges Z0,Z1 and Z1,Z2 must be a directed edge point-
ing away from Z1. Assume without loss of generality that
Z0 ← Z1 is that edge. Then all colliders on π01 are in
An(Z0 ∪ Z1) = An(Z0) ⊆ An(Z0 ∪ Z2), and all colliders on
π12 are in An(Z1 ∪ Z2) ⊆ An(Z0 ∪ Z2). Z1 itself is a col-
lider on w012 and is also in An(Z0). Hence, the walk w012
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is d-connected, and can be truncated to an inducing path
that starts with the first arrow of π01 and ends with the last
arrow of π12. �

Definition A.6 (Inducing Z-trail). Let π = V1, . . . ,Vn+1
be a path in G[L

∅ such that V2, . . . ,Vn ∈ Z, V1,Vn+1 < Z,
and for each i ∈ {1, . . . ,n}, there is an inducing path w.r.t.
∅,L linking Vi,Vi+1 that has an arrowhead at Vi (Vi+1) if
Vi ∈ Z (Vi+1 ∈ Z). Then π is called an inducing Z-trail.

Lemma A.7. Let π = V1, . . . ,Vn+1 be an inducing Z-trail,
and let π′ be a subsequence of π formed by removing one
node Vi of π such that Vi ∈ Z is a non-collider on π. Then
π′ is an inducing Z-trail.

Proof. According to Lemma A.5, if Vi is a non-collider on
π, then Vi−1 and Vi+1 are linked by an inducing path π that
contains an arrowhead at Vi−1 (Vi+1) if Vi−1 ∈ Z (Vi+1 ∈
Z). Therefore, Vi−1 and Vi+1 are themselves adjacent, π′ is
a path, and is a Z-trail. �

Corollary A.8. Every inducing Z-trail π = V1, . . . ,Vn+1
has a subpath π′ that is m-connected by Z.

Proof. Transform π into π′ by replacing non-collider
nodes in Z by the direct edge linking their neighbours un-
til no such node exists anymore. By inductively applying
Lemma A.7, we see that π′ is also an inducing Z-trail, and
every node in Z is a collider because otherwise we would
have continued transforming. So π′ must be m-connected
by Z. �

Lemma A.9. Let wG be a walk from X to Y inG, X,Y < L,
that is d-connected by Z. Let wM = V1, . . . ,Vn+1 be the
subsequence of wG consisting only of the nodes in M =
G[L
∅ . Then Z m-connects X and Y inM via a path along a

subsequence w′M formed from wM by removing some nodes
in Z (possibly w′M = wM).

Proof. First, truncate from wM all subwalks between
nodes in Z that occur more than once. Now consider
all subsequences V1, . . . ,Vn+1, n > 1, of wM where
V2, . . . ,Vn ∈ Z, V1,Vn+1 < Z, which now are all paths
in wM. On those subsequences, every Vi must be adjacent
in G to Vi+1 via a path containing no colliders, and all non-
endpoints on that path must be in L. So there are inducing
paths w.r.t. ∅,L between all Vi,Vi+1, which have arrow-
heads at Vi (Vi+1) if Vi ∈ Z (Vi+1 ∈ Z). So V1, . . . ,Vn+1
is an inducing Z-trail, and has a subpath which m-connects
V1, Vn+1 given Z. Transform wM to w′M by replacing all
inducing Z-trails by their m-connected subpaths. Accord-
ing to Lemma A.4, non-colliders on wM cannot be collid-
ers on w′M, as bypassing inducing paths can remove but
not create arrowheads. Moreover, all nodes in Z on w′M are
colliders. Hence w′M is m-connected by Z. �

Corollary A.10. Each edge on w′M as defined above cor-
responds to an inducing path w.r.t ∅,L in G along nodes on
wG.

Lemma A.11. Suppose there exists an inducing path π01
from Z0 to Z1 w.r.t. S,L with an arrowhead at Z1 and an
inducing path from Z1 to Z2 w.r.t. S′,L with an arrowhead
at Z1. Then the walk w012 = π01π12 can be truncated to an
inducing path from Z0 to Z2 w.r.t. S ∪ S′ ∪ {Z1},L in G.

Proof. The walk w012 does not contain more non-colliders
than those on π01 or π12, so they must all be in L.
All colliders on π0,1 and π1,2 as well as Z1 are in
An(Z0,Z1,Z2,S,S′), and therefore also all colliders of
w012.

Hence, the walk w012 is d-connected, and can be truncated
to an inducing path that starts with the first arrow of π01
and ends with the last arrow of π12. �

Lemma A.12. Suppose Z0,Z1, . . . ,Zk+1 is a path in G[L
∅

with an arrowhead at Zk+1 on which all Z1, . . . ,Zk are col-
liders. Then there exists an inducing path from Z0 to Zk+1
w.r.t. {Z1, . . . ,Zk},L with an arrowhead at Zk+1.

Proof. Because all Zi,Zi+1 are adjacent and all Z1, . . . ,Zk
are colliders there exist inducing pathsπi,i+1 w.r.t. ∅,L from
Zi to Zi+1 that have arrowheads at Z1, . . . ,Zk (Lemma A.4).
The claim follows by repeatedly applying Lemma A.11 to
the πi,i+1’s. �

Lemma A.13. Suppose A → V1 ↔ . . . ↔ Vk ↔ X →
D or A ↔ V1 ↔ . . . ↔ Vk ↔ X → D is a path in
G[L
∅ (possibly k = 0), each Vi is a parent of D and there

exists an inducing path πXD from X to D w.r.t ∅,L that has
arrowheads on both ends. Then A and D cannot be m-
separated in G[L

∅ .

Proof. Assume the path is A → V1 ↔ . . . ↔ Vk ↔ X →
D. The case where the path starts with A ↔ V1 can be
handled identically, since the first arrowhead does not af-
fect m-separation.

Assume A and D can be m-separated in G[L
∅ , and let Z

be such a separator. If V1 is not in Z then the path A →
V1 → D is not blocked, so V1 ∈ Z. Inductively it follows,
if Vi is not in Z, but all ∀ j < i : V j ∈ Z then the path
A → V1 ↔ . . . ↔ Vi−1 ↔ Vi → D is not blocked, so
Vi ∈ Z for all i.

There exist an inducing path πAX from A to X with an ar-
rowhead at X w.r.t. to {V1, . . . ,Vk},L (Lemma A.12) which
can be combined with πXD to an inducing path from A to
D w.r.t. to {V1, . . . ,Vk,X},L (Lemma A.11).

Hence no m-separator of A,D can contain {X,V1, . . . ,Vk}
(Lemma A.3). Then there cannot exist an m-separator, be-
cause every separator must include V1, . . . ,Vk and the path
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A → V1 ↔ V2 ↔ . . . ↔ Vk ↔ X → D is open without
X ∈ Z. �

A.2 ALGORITHMS

This section contains algorithm pseudocodes and parts of
their correctness proofs that were omitted from the main
text for space reasons.

A.2.1 TESTING

For a given ancestral graph G the problem TESTSEP can
be solved with a modified Bayes-Ball algorithm in time
O(n+m). In the algorithm every bi-directed edge A↔ B is
considered as a pair of edges A← · → B and an undirected
edge A− B as a directed edge pointing to the currently vis-
ited node.

function TESTSEP(G,X,Y,Z)
Run Bayes-Ball from X
return (Y not reachable)

Figure 5: TestSep

The problem TESTMINSEP can be solved using Algorithm
6 TESTMINSEP in O(|Em

An|) = O(n2) time. Alternatively,
the problem can be solved with an algorithm that iteratively
removes from Z nodes and tests if the resulting set remains
an m-separator. This can be done in time O(n(n + m)).
The correctness of the algorithms for TESTMINSEP can
be shown by generalizing the results presented in (Tian
et al., 1998) for m-separation. 6 TESTMINSEP, runs in
O(|Em

An|) because Rx and Ry can be computed with an ordi-
nary search that aborts when a node in Z is reached.

function TESTMINSEP(G,X,Y,Z)
if Z \ Ant(X ∪ Y) , ∅ then return false
if not TESTSEP(G,X,Y,Z) then

return false
G′a ← Ga

Ant(X∪Y)
Rx ← {Z ∈ Z | ∃ path X − Z in G′a

not intersecting Z \ {Z}}
if Z * Rx then return false
Ry ← {Z ∈ Z | ∃ path Y − Z in G′a

not intersecting Z \ {Z}}
if Z * Ry then return false

return true

Figure 6: TestMinSep

A.2.2 FINDING AN M-SEPARATOR

The problem can be solved using Algorithm 7 FINDSEP
in O(n + m) time. The correctness follows directly from
Lemma 3.4.

function FINDSEP(G,X,Y, I,R)
R′ ← R \ (X ∪ Y)
Z← Ant(X,Y, I) ∩ R′
if TESTSEP(G,X,Y,Z) then

return Z
else

return ⊥
Figure 7: FindSep

A.2.3 FINDING A MINIMAL M-SEPARATOR

For a given AG G the problem FINDMINSEP can
be solved with algorithm 8 FINDMINSEPNAIVE in
O(|Ant(X ∪ Y)||EAn|) = O(n(n + m)) or algorithm 9
FINDMINSEPMORAL in O(|Em

An|) = O(n2) time.

function FINDMINSEPNAIVE(G,X,Y, I,R)
G′ ← GAnt(X∪Y∪I)
Z← R ∩ Ant(X ∪ Y ∪ I)
if not TESTSEP(G′,X,Y,Z) then

return ⊥
for all U in Z \ I do

if TESTSEP(G′,X,Y,Z \ {U}) then
Z← Z \ {U}

return Z

Figure 8: FindMinSepNaive

Algorithm 8 FINDMINSEPNAIVE depends on an implicit
moral graph and the fact that in an undirected graph every
node that cannot be removed from a separating set has to
be in separating subsets, and runs in O(|Ant(X ∪ Y)||EAn|).

function FINDMINSEPMORAL(G,X,Y, I,R)
G′ ← GAnt(X∪Y∪I)
G′a ← Ga

Ant(X∪Y∪I)
Z′ ← R ∩ Ant(X ∪ Y)
Remove from G′a all nodes of I
if not TESTSEP(G′,X,Y,Z) then

return ⊥
Run BFS from X. Whenever a node in Z′ is met,

mark it, if it is not already marked and do not continue
along the path. When BFS stops, let Z′′ be the set of all
marked nodes. Remove all markings

Run BFS from Y. Whenever a node in Z′′ is met,
mark it, if it is not already marked and do not continue
along the path. When BFS stops, let Z be the set of all
marked nodes.

return Z ∪ I

Figure 9: FindMinSepMoral

Algorithm 9 FINDMINSEPMORAL begins with the sep-
arating set R ∩ Ant(X ∪ Y) and finds a subset satisfy-
ing the conditions tested by algorithm 6 TESTMINSEP, in
O(|Em

An|).
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A.2.4 FINDING A MINIMUM COST
M-SEPARATOR

The problem MINCOSTSEP can be solved with algorithm
10 FINDMINCOSTSEP in O(n3).

function FINDMINCOSTSEP(G,X,Y, I,R,w)
G′ ← GAnt(X∪Y∪I)
G′a ← Ga

Ant(X∪Y∪I)
Add a node Xm connected to all nodes in
X, and a node Ym connected to all nodes
in Y.
Assign infinite cost to all nodes in
X ∪ Y ∪ (V \ R) and cost w(Z) to every
other node Z.
Remove all nodes of I from G′a.
Change the graph to a flow network as
described in Cormen et al. (2001) and return a
minimum cutset Z.

Figure 10: FindMinCostSep

The correctness without I follows from the fact that a min-
imum set is a minimal set and the minimal cut found in the
ancestor moral graph is therefore the minimal separating
set. The handling of I is shown in Acid and de Campos
(1996).

A.2.5 ENUMERATING ALL MINIMAL
M-SEPARATORS

The problem LISTMINSEP can be solved with algorithm
11 LISTMINSEP with O(n3) delay between every out-
putted Z.

function LISTMINSEP(G,X,Y, I,R)
G′ ← GAnt(X∪Y∪I)
G′a ← Ga

Ant(X∪Y∪I)
Add a node Xm connected to all X nodes.
Add a node Ym connected to all Y nodes.
Remove all nodes of I.
Remove all nodes of V \ R, but insert
additional edges connecting the neighbours.
of all removed nodes.
Use the algorithm in Takata (2010) to list all sets
separating Xm and Ym.

Figure 11: ListMinSep

The correctness is shown by Textor and Liśkiewicz
(2011) for adjustment sets and generalizes directly to m-
separators, because after moralization, both problems are
equivalent to enumerating vertex cuts of an undirected
graph. The handling of I is shown by Acid and de Cam-
pos (1996).

A.2.6 TESTING FOR ADJUSTMENT
AMENABILITY

Let N(V) denote all nodes adjacent to V, and Sp(V) denote
all spouses of V, i.e., nodes W such that W ↔ V ∈ E. The
adjustment amenability of a graph G w.r.t sets X,Y can be
tested with the following algorithm:

function TESTADJUSTMENTAMENABILITY(G,X,Y)
for all D in Ch(X) ∩ PCP(X,Y) do

C← ∅
A← ∅
function CHECK(V)

if C[V] then return A[V]
C[V]← true
A[V]← ((Pa(V) ∪ Sp(V)) \N(D) , ∅)
for all W ∈ Sp(V) ∩ Pa(D) do

if CHECK(W) then A[V]← true
return A[V]

for all X in X ∩ Pa(D) do
if ¬CHECK(X) then

return false

Figure 12: TestAdjustmentAmenability

The algorithm checks for every edge X → D on a proper
causal path to Y whether it satisfies the amenability condi-
tions of Lemma 5.5 by searching a collider path through the
parents of D to a node Z not connected to D; note that con-
dition (1) of Lemma 5.5 is identical to condition (2) with an
empty collider path. Since CHECK performs a depth-first-
search by checking every node only once and then contin-
uing to its neighbors, each iteration of the outer for-loop in
the algorithm runs in linear time O(n + m). Therefore, the
entire algorithm runs in O(k(n +m)) where k ≤ |Ch(X)|.
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Abstract

Propensity score matching (PSM) is a widely
used method for performing causal inference
with observational data. PSM requires fully
specifying the set of confounding variables
of treatment and outcome. In the case of
relational data, this set may include non-
intuitive relational variables, i.e., variables
derived from the relational structure of the
data. In this work, we provide an automated
method to derive these relational variables
based on the relational structure and a set of
naive confounders. This automatic construc-
tion includes two unusual classes of variables:
relational degree and entity identifiers. We
provide experimental evidence that demon-
strates the utility of these variables in ac-
counting for certain latent confounders. Fi-
nally, through a set of synthetic experiments,
we show that our method improves the per-
formance of PSM for causal inference with
relational data.

1 INTRODUCTION

Propensity score matching (PSM) [Rosenbaum and
Rubin, 1983] is a widely used tool for determining
causal effects from observational data. Propensity
scores summarize the effects of a potentially large num-
ber of confounding variables by creating a predictive
model of treatment. The computation of a propensity
score requires specifying a set of potentially confound-
ing variables. This task is relatively straightforward
for propositional (i.i.d.) data. However, many causal
analyses consider data in which treatment, outcome,
and potential confounders can arise from the inter-
actions among multiple types of interrelated entities.
Propensity score matching becomes substantially more
challenging in such relational data.

Hometown

Friends
User

Places

Checks-In Has

From

Figure 1: Example of relational data: users are friends
with other users, each user comes from a hometown,
and users check-in at places.

To illustrate this, consider the example domain shown
in Figure 1, depicting a plausible relational domain.
Foursquare is an example of a real system that could
produce this sort of data. Suppose a researcher is inter-
ested in using data from this domain to assess whether
smoking causes a user to gain weight. One approach
would be to construct a propensity score model with
user attributes that the researcher believes could be
causes of whether a user smokes and the user’s weight,
such as alcohol consumption and ethnicity:

[User ].Smokes ∼ [User ].Drinks + [User ].Ethnicity .

While this accounts for attributes associated with the
user, it fails to account for possible confounders de-
rived from relational variables. For example, it is plau-
sible that the alcohol consumption of a user’s friends is
a common cause of [User ].Weight and [User ].Smokes.
To account for these effects, the corresponding rela-
tional variables should be included in the propensity
score model.

It is not difficult to envision more complicated rela-
tional variables having an effect. In fact, as previous
work has shown [Maier et al., 2013b], the number of
relational variables can be arbitrarily large depending
on how many entity and relationship types exist in the
network, the size of the network, and the length of the
longest path (the largest degree of separation) in the
network where direct dependence exists.

An additional level of complexity introduced by rela-

25



tional data is that relational structures may result in
multiple instances of a given variable. For example, a
user with multiple friends could be influenced by the
drinking behaviour of each of those friends. Typically,
an aggregation function, such as mean, is used to com-
bine this set of values into a single value. Properly
conditioning on a relational variable entails choosing
the correct set of aggregation functions to represent
the distribution of values contained in the set. For ex-
ample, in order to condition on a relational variable, it
may be necessary to condition on multiple aspects of
the distribution of those values, such as the mean and
the standard deviation (stdev).

To address these issues, we introduce relational
propensity score matching (RPSM), a method that
applies propensity score matching to relational do-
mains. RPSM leverages the framework of relational
models [Getoor and Taskar, 2007, Maier et al., 2013b]
to automatically construct the set of possible relational
confounders given a simpler specification of the as-
sumed dependency structure. RPSM also identifies op-
portunities to use relational degree variables and entity
identifiers, which, as we show empirically, can reduce
the bias arising from latent relational confounders. We
evaluate RPSM via a set of synthetic experiments us-
ing the relational structure of a real-world relational
domain, Foursquare.

2 BACKGROUND

In this section we provide a brief overview of matching
methods and propensity scores. We then introduce the
relational concepts necessary to formalize RPSM.

2.1 MATCHING

In the framework of potential outcomes [Rubin, 1974],
estimating the causal effect of treatment T on variable
Y is formalized as a comparison of potential outcomes.
More formally, let Ti be a binary treatment variable
for unit i and let Yi be the outcome variable for unit i,
where i ∈ {1, . . . , n}. Yi(Ti = 0) denotes the value of
Yi that would be observed if no treatment was applied
to unit i. Similarly, Yi(Ti = 1) is the value of Yi that
would be observed if unit i had received treatment.
The causal effect of T on Y is estimated by comparing
the difference Yi(Ti= 1)−Yi(Ti=0) across all units i.

In practice, a specific unit either receives treatment or
not. Therefore, for a given value of i we never know
both Yi(T = 1) and Yi(T = 0). Experimental studies
often randomly assign units to treatment and control
groups, so that the expected distribution of the co-
variates in these groups is identical. In observational
studies, where randomization is not possible, matching

can be used to pair similar samples from the treated
and the control groups. Matching can be generally de-
fined as a method that aims to approximate random
assignment by equating the distribution of covariates
in the treated and control group [Stuart, 2010].

Matching requires a measure quantifying how similar
two individuals are. This is achieved by (1) selecting
a set of features to be used in the computation of sim-
ilarity, and (2) choosing a similarity function to apply
on those features (for example Mahalanobis distance,
propensity score, etc.). Once a similarity measure has
been chosen, individuals are matched based on this
measure. There are multiple methods for performing
matching (see Stuart [2010] and Ho et al. [2007] for a
survey of matching methods). In this paper, we em-
ploy full matching [Hansen and Klopfer, 2006], which
creates a collection of matched sets (the size of the
collection is chosen automatically). Each matched set
contains at least one treated and one control unit. Full
matching has been shown to be optimal with respect
to similarity within matched sets [Rosenbaum, 1991].

Matching methods make the assumption of ignorable
treatment assignment, i.e., treatment assignment is in-
dependent of the outcome given the observed covari-
ates. This assumption guides the selection of appro-
priate covariates for the computation of similarity.

2.2 PROPENSITY SCORE

The propensity score [Rosenbaum and Rubin, 1983] is
the probability of receiving treatment, given the ob-
served covariates Xi

ei(Xi) = P (Ti = 1|Xi).

Propensity scores are a form of dimensionality re-
duction that projects the original covariates down to
a single value which preserves distance with respect
to the likelihood of treatment. Matching can then
be performed on the propensity score, as opposed to
the covariates directly. The prevailing explanation
for why propensity scores are appropriate for match-
ing is that they are balancing scores (given the value
of the propensity score, the treatment and control
groups have the same distribution of covariates), and
they preserve ignorability of treatment assignment (if
treatment assignment is ignorable given the covariates,
then treatment assignment is also ignorable given the
propensity score) [Stuart, 2010].

Any method that models the conditional probability
of a binary variable given a set of predictors can be
used to estimate a propensity score. In this work, we
employ logistic regression, a widely used method for
obtaining a propensity score. However, other mod-
els (such as boosted trees, support vector machines,
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FROM

HOMETOWN

School Quality

PLACE

Price Range

USER

Drinks

Smokes Weight

FRIENDS

CHECKS-IN

[User ,Friends ,User ].Drinks ! [User ].Weight

Figure 2: Relational model for the Foursquare do-
main. The underlying relational schema (ER diagram)
is shown in black. The attributes on the entities are
fictional. The relational dependency is shown in gray.

and neural networks) have been explored in the liter-
ature [Westreich et al., 2010, McCaffrey et al., 2004,
Lee et al., 2010].

A key advantage of propensity scores is their robust-
ness to model misspecification [Drake, 1993], i.e., in-
cluding irrelevant variables1 in the calculation of the
propensity score. Because the propensity score model
is built upon a predictive rather than causal model of
treatment, many of the issues that arise with tradi-
tional regression modeling, such as multicollinearity,
are no longer a threat to validity. Further, in con-
trast to matching directly on the covariates, propen-
sity scores can down-weight or disregard variables that
are not associated with treatment and have been er-
roneously included in the propensity model. How-
ever, as Pearl [2009] has observed, common effects of
the treatment and outcome must not be included in
the propensity score model. In general, the set of
d-connecting paths between treatment and outcome
needs to be considered. The propensity score model
must include a (not necessarily minimal) separating
set of treatment and outcome. One approach to elim-
inating variables that are potential common effects of
treatment and outcome is the injunction of Rosenbaum
and Rubin [1983] to restrict the set of covariates to pre-
treatment variables (variables whose values are mea-
sured prior to treatment).

2.3 RELATIONAL CONCEPTS

Propositional representations, such as Bayesian net-
works, describe domains with a single entity type.
However, many real-world systems involve multiple
types of entities that interact with each other. Data
produced by such systems are called relational or net-
work data. In this section, we introduce the basic rela-
tional concepts, following the notation and terminol-
ogy of Maier et al. [2013b].

A relational schema S = (E ,R,A, card) specifies the
set of entity, relationship, and attribute classes of a

1Variables that are marginally independent of treat-
ment or outcome.

CHECKS-IN
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Price Range

Price Range

Hillside Diner

Corner Cafe

Bob

Drinks

Smokes Weight

Alice
Drinks

Smokes Weight

Springfield

School Quality

Figure 3: Example relational skeleton for the
Foursquare domain. This could be a small fragment
of a (potentially) larger skeleton.

domain. It includes a cardinality function that im-
poses constraints on the number of times an entity
instance can participate in a relationship. A rela-
tional schema can be graphically represented with an
Entity-Relationship (ER) diagram. Figure 2 shows
the ER diagram for the Foursquare domain. In this
example, there are three entity classes (User , Place,
Hometown), and three relationship classes, (Friends ,
ChecksIn, From). The entity class User has three at-
tributes: Smokes, Weight , and Drinks. The cardinal-
ity constraints are depicted using crow’s feet notation.
For example, the cardinality of the From relationship
is one-to-many, indicating that one user has one home-
town, but many users can be from the same hometown.

A relational skeleton is a partial instantiation of a re-
lational schema that specifies the set of entity and re-
lationship instances that exist in the domain. Fig-
ure 3 depicts an example relational skeleton for the
Foursquare domain. The network consists of two User
instances, Alice and Bob, who are friends with each
other and come from the same hometown. There are
two Place instances, Hillside Diner and Corner Cafe.

Given a relational schema, one can specify rela-
tional paths, which intuitively correspond to pos-
sible ways of traversing the schema (see Maier
et al. [2013b] for a formal definition). For the
schema shown in Figure 2, possible paths in-
clude [User ,Friends ,User ] (a person’s friends), and
[User ,Friends ,User ,From,Hometown] (the home-
towns of a person’s friends). Relational variables con-
sist of a relational path and an attribute that can be
reached through that path. For example, the relational
variable [User ,Friends ,User ].Drinks corresponds to
the alcohol consumption of a person’s friends. Prob-
abilistic dependencies can be defined between rela-
tional variables. In this work, we consider dependen-
cies where the path of the outcome relational variable
is a single item. In this case, the path of the treat-
ment relational variable describes how dependence is
induced. For example, the relational dependency

[User ,Friends ,User ].Drinks ! [User ].Weight
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states that the alcohol consumption of a user’s friends
affects that user’s weight.

A relational model M = (S,D,Θ) is a collection of
relational dependencies D defined over a relational
schema along with their parameterizations Θ (a condi-
tional probability distribution for each attribute given
its parents). The structure of a relational model can
be depicted by superimposing the dependencies on
the ER diagram of the relational schema, as shown
in Figure 2, and labeling each arrow with the depen-
dency it corresponds to. If labels are omitted, the
resulting graphical representation is known as a class-
dependency graph.

Recent work by Maier et al. [2013b] provides a frame-
work that enables reasoning about d-separation in re-
lational models. Toward that end, they introduce ab-
stract ground graphs (AGGs), a graphical structure
that captures relational dependencies and can be used
to answer relational d-separation queries. Abstract
ground graphs are defined from a given perspective,
the base item of the analysis, and include nodes that
correspond to relational variables. For practical appli-
cations, the size of abstract ground graphs is limited
by a (domain dependent) hop-threshold, which con-
strains the length of relational paths that will be con-
sidered. Intuitively, the hop-threshold corresponds to
the relational “distance” of a cause from its effect.

2.4 NEW TYPES OF VARIABLES

In this section we present the new types of variables
that are enabled by relational domains: (1) Relational
variables (a way of defining a larger number of poten-
tial confounders) and aggregation; (2) Degree variables
(a type of confounder not available without relational
data); (3) Entity identifiers (which enable blocking, a
way to account for latent confounders only available
within relational data). Those types of variables are
used in the calculation of relational propensity scores
and are referred to as relational covariates.

2.4.1 Aggregation Functions

A fundamental characteristic of relational data is the
heterogeneity of the underlying relational structure.
For example, a person can have many friends, differ-
ent people have different sets of friends, and those sets
can overlap to varying degrees. This implies that when
constructing relational variables for a specific individ-
ual, the construction process will often return a set of
values rather than a single value. For instance, the re-
lational variable “friends’ age” for a person consists of
a set of values containing the age of each one of that
person’s friends. In the field of statistical relational
learning, aggregation functions are commonly used to

FROM

PERSON TOWN STATE

IN

Figure 4: Relational schema that depicts a hierarchy.
A state has many towns, but each town is in one state,
and many people are from the same town, but each
person is from one town.

summarize the values of related instances into a single
value, representative of the distribution. Common ag-
gregation functions include mean, stdev, mode, count,
sum, min, max, and median. Researchers have also de-
fined more complex aggregation methods [Perlich and
Provost, 2006].

2.4.2 Degree Variables

Other work has pointed out that variation in the size of
the set of values for a relational variable can strongly
affect the distribution of the observed values of many
aggregation functions [Jensen et al., 2003]. Jensen et
al. call the size of this set the “degree” and it is equiv-
alent, in the terminology of Maier et al. [2013b], to
the size of the terminal set of a relational path. To
account for the effects of degree on aggregated values,
RPSM includes degree variables in the calculation of
propensity scores.

2.4.3 Entity Identifiers

Blocking designs are widely used in experimental stud-
ies to account for latent confounders [Fisher, 1935].
Rattigan et al. [2011] formalized relational blocking as
an operator that can be used to infer causal depen-
dence in observational data expressed in a relational
representation. By blocking on the identifier of an en-
tity, relational blocking accounts for the effect of la-
tent variables associated with that entity. Blocking
is uniquely available for relational data. Moreover,
since blocking on an entity appears to avoid inducing
dependence due to colliders on that entity, blocking
may partially alleviate a key threat to validity noted
by Pearl [2009].

In this work, we incorporate relational blocking with
propensity scores by including entity identifiers as co-
variates in the calculation of propensity scores. We
restrict the use of blocking to hierarchies, i.e., parts
of the relational schema that are connected through a
series of many-to-one relationships. An example hier-
archy is shown in Figure 4. In this case, blocking on
the identifier for towns (i.e., grouping users based on
their hometown) accounts for the effect of latent vari-
ables associated with Hometown, and for the effect of
latent variables associated with the State within which
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each town is located. More generally, blocking on the
identifier of an entity in a hierarchy accounts for the
effect of latent confounders that reside in that entity
and in entities that appear higher up in the hierarchy.

3 RELATIONAL PROPENSITY
SCORE MATCHING

We consider the following problem: given an entity E
and two attributes on that entity, treatment [E].T and
outcome [E].O, we seek to decide between [E].T !
[E].O and [E].T 6! [E].O. For notational convenience,
we restrict our attention to cases where the treatment
and outcome are on the same entity. In practice,
RPSM can be applied to any treatment and outcome
lying on entities that are connected through one-to-one
relationships. We assume that the relational skeleton
has been given a priori, i.e., all entity and relationship
instances have been fully and correctly specified. Ad-
ditionally, we assume that the effects of all latent vari-
ables can be accounted for by using relational blocking
(in other words, latent variables exists only on paths
that can be blocked on).

Relational propensity score matching (RPSM) pro-
vides an automatic method for constructing the set
of aggregated relational variables, degree variables
and entity identifiers (i.e., the relational covariates)
to perform propensity score matching on relational
data. The procedure for RPSM is described in Al-
gorithm 1. RPSM takes as input a data-set X , a rela-
tional schema, the treatment and outcome attributes,
a set of possible confounding attributes, a set of ag-
gregation functions, and a hop-threshold h. The algo-
rithm constructs the set of relational covariates based
on the confounding attributes, the aggregation func-
tions, and hop-threshold (line 2, discussed below in
detail). The propensity score of the treatment given
the covariates is then computed (line 3) and matching
is performed based on the propensity score (line 4).

The construction of relational covariates is presented
in Algorithm 2. The algorithm first constructs all
potential relational variables for the confounding at-
tributes from the given perspective, up to the speci-
fied hop-threshold (line 1).2 This is the set of relational
confounders. Then, for each relational confounder, it
creates the appropriate relational covariates by apply-
ing the given aggregation functions (lines 7-8). A de-
gree variable is then added for the paths of the re-
lational confounders (line 9). Finally, the algorithm
identifies parts of the schema that form a hierarchy and
adds identifier variables for the schema item lowest in
the hierarchy to perform blocking (lines 10-14). Rela-
tional covariates that were constructed from relational
variables that are now determined by the blocking path

Algorithm 1: RPSM (X , schema, treatment , outcome,

confoundingAttrs, aggrFunctions, h)

1 perspective ← item class of treatment , outcome
2 covariates ← GetRelationalCovariates (schema,

perspective, confoundingAttrs, aggrFunctions, h)
3 propensityScore ← Calculate propensity score for

treatment ∼ covariates using X
4 matches ← Match (propensityScore, treatment , X )
5 return matches

Algorithm 2: GetRelationalCovariates (schema,

perspective, confoundingAttrs, aggrFunctions, h)

1 relationalConfounders ← relational variables with
attributes in confoundingAttrs from perspective
perspective up to hop-threshold h

2 relCovariates ← ∅
3 for P.X in relationalConfounders do
4 if P == [perspective] then
5 relCovariates ← relCovariates ∪ P .X
6 else
7 for agg in aggrFunctions do
8 relCovariates ← relCovariates∪agg(P .X )
9 relCovariates ← relCovariates ∪ degree(P)

10 for P.X in relationalConfounders do
11 if P is valid blocking choice for perspective then
12 controlled ← relational variables that P

controls for
13 relCovariates ← relCovariates \ controlled
14 relCovariates ← relCovariates ∪ P .id
15 return relCovariates

are removed from the list of covariates (line 13).

Example 3.1. Consider our earlier scenario of assess-
ing the effect of smoking on a user’s weight. The treat-
ment is User .Smokes and the outcome is User .Weight
(the perspective of the analysis is the User entity
class). If Drinks is given as a possible confounding
attribute and the hop-threshold is 4, the algorithm
will add the following relational variables to the set of
relational confounders:

[User ].Drinks

[User ,Friends ,User ].Drinks

[User ,Friends ,User ,Friends ,User ].Drinks

[User ,ChecksIn,Place,ChecksIn,User ].Drinks

[User ,From,Hometown,From,User ].Drinks

The next step is to create relational covariates based
on the above relational variables. First, relational vari-
ables that only involve the User entity, in this case
[User ].Drinks, are added to the set of relational co-

2The algorithm can be trivially extended to exclude cer-
tain relational paths. For example, if the user has domain
knowledge that would exclude specific relational paths or
relational variables from the list of potential confounders.
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variates. Because these covariates are propositional,
aggregation functions are not applied.

The aggregation functions are then applied to rela-
tional variables that cross the boundaries of the User
entity. If the set of aggregation functions is {mean},
the algorithm will add the following to the set of rela-
tional covariates:

mean
(
[User ,Friends ,User ].Drinks

)
,

mean
(
[User ,Friends ,User ,Friends ,User ].Drinks

)
,

mean
(
[User ,ChecksIn,Place,ChecksIn,User ].Drinks

)
,

mean
(
[User ,From,Hometown,From,User ].Drinks

)

The set of relational covariates is augmented by in-
cluding the degree of the relational paths that involve
more than one entity classes:

degree
(
[User ,Friends ,User ]

)
,

degree
(
[User ,Friends ,User ,Friends ,User ]

)
,

degree
(
[User ,ChecksIn,Place,ChecksIn,User ]

)
,

degree
(
[User ,From,Hometown,From,User ]

)

Finally, id variables are added to the relational paths.
In this case, there exists a hierarchy expressed by the
relational path [User ,From,Hometown]. Therefore,
the algorithm adds the following relational covariate:

[User ,From,Hometown].id

In practice, the hop-threshold should be chosen on
a case by case basis, using expert knowledge of the
application domain. The choice of aggregation func-
tions can be guided by an analysis of each variable’s
marginal distribution from the perspective of the treat-
ment and outcome.

4 SYNTHETIC EXPERIMENTS

To evaluate the performance of RPSM we examine the
following hypotheses:

1. Propensity score matching models that are lim-
ited to simplistic relational attributes (h = 2) fail
to fully account for confounding network effects
(h = 4) (Section 4.1).

2. Traditional aggregates for relational data, such as
mean, when used in isolation do not sufficiently
condition on the distribution of confounding rela-
tional variables (Section 4.2).

3. The inclusion of identifiers for entities that lie
along valid blocking paths accounts for latent con-
founders on those entities as well on entities con-
nected to them. That is, including entity identi-
fiers in the propensity model performs an implicit
causal blocking design (Section 4.3).

For all experiments we used the structure derived from
a sample of a real-world network, Foursquare [Gao

Table 1: Descriptive statistics for the Foursquare rela-
tional skeleton used in the synthetic experiments.

Aggregate Friends Check-Ins
mean 9.45 120.09
median 5 73
min 1 1
max 3674 2477

et al., 2012], augmented with synthetic attributes on
the entities. This allows for controlling the dependen-
cies between attributes as well as the marginal and
conditional distributions, while leveraging relation-
ships from a real-network. The relational schema for
the Foursquare network is shown in Figure 2. The re-
lational skeleton consists of 9,599 users, 47,164 friend-
ships, 182,968 locations where users “checked-in” via
the mobile application, 1,360,123 check-ins, and the
users’ hometowns. Aggregate statistics for the net-
work are shown in Table 1.

For our experiments we generated data from multi-
ple models to test each hypothesis individually. In all
experiments, the treatment is [User ].Smokes and the
outcome [User ].Weight . Each model was parameter-
ized as follows: The value of the treatment was drawn
from a logistic model parametrized using coefficients
drawn from U(−2, 2) and interaction terms increasing
in degree from 1 (no interaction) to 10 (up to 10 inter-
acting covariates, not necessarily distinct, per term).
We refer to this varying degree as “covariate complex-
ity”. The value of outcome was drawn from a linear
model with coefficients drawn from U(−2, 2) and an
error distribution drawn from N (0, 1). Marginal dis-
tributions for each variable were drawn from N (µ, σ),
with µ and σ sampled for each variable individually
from U(0, 5) and U(1, 3), respectively.
We used logistic regression to calculate the propen-
sity score and then performed full matching using the
optmatch package [Hansen and Klopfer, 2006]. A lin-
ear model was applied using treatment and matching
assignment as covariates and outcome as the response
variable to assess statistical significance, with an α
value of 0.01 for determining dependence. In this set-
ting, we would expect a low error rate for linear log-
odds functions (covariate complexity is 1), given the
perfect correspondence between the generating mod-
els and the estimation methods when the set of co-
variates is correctly specified (no interaction terms).
Adding interaction terms renders the models progres-
sively less appropriate. We report Type I and Type
II errors. Type I error corresponds to cases where a
valid causal dependence exists between treatment and
outcome and RPSM incorrectly concludes that there
exists no such dependence. Type II error corresponds
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Figure 5: Class-dependency graph for the models used
to evaluate the effect of using relational variables with
longer hop-thresholds as covariates.

to cases where RPSM incorrectly concludes that there
exists a dependency between treatment and outcome.

4.1 SIMPLE NETWORK DEPENDENCIES

We examine the first hypothesis, whether propensity
score models limited to simplistic relational attributes
fail to fully account for confounding network effects, by
generating data from two models. Both models have
the same class-dependency graph, shown in Figure 5,
but differ in the length of the longest true dependency.

In the first model (World2), the true relational con-
founders are at most two hops away from the treat-
ment and outcome entity. This corresponds to depen-
dencies that can be read directly from the class depen-
dency graph, e.g., the places a user checks in to. The
set of true relational confounders for the model is:

[User ].Drinks

[User ,From,Hometown].SchoolQuality

[User ,ChecksIn,Place].PriceRange

In the second model (World4), the set of true con-
founders is extended to include relational variables up
to four hops away, e.g., other users that check in to the
same places as a user. The set of confounders includes
all of the confounders of the first model as well as:

[User ,Friends ,User ].Drinks

[User ,ChecksIn,Place,ChecksIn,User ].Drinks

[User ,From,Hometown,From,User ].Drinks

[User ,Friends ,User ,Friends ,User ].Drinks

[User ,Friends ,User ,ChecksIn,Place].PriceRange

[User ,Friends ,User ,From,Hometown].SchoolQuality

Using the above procedure we ran 100 trials. For each
trial we considered two cases, one in which treatment
and outcome are conditionally independent and one
in which there is a direct effect between them. We
then compared two methods for creating the relational
covariates for propensity score matching:

1. RPSM using mean, stdev, max, min as aggregation
functions and h = 2 without blocking or degree
variables (RPSM2)

RPSM2: all aggregations, h=2 RPSM4: all aggregations, h=4
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Figure 6: Percentage of Type I and II error when
RPSM2 and RPSM4 are applied to data generated by
World2 and World4 models with increasing covariate
complexity, averaged over 100 trials.

2. RPSM using mean, stdev, max, min as aggregation
functions and h = 4 without blocking or degree
variables (RPSM4)

The results are shown in Figure 6. Along the diagonal
the RPSM model is consistent with the world config-
uration. When models are over-specified, for instance
RPSM4 in the World2 configuration, RPSM4 achieves
comparable performance to RPSM2. However, when
models are underspecified, for instance RPSM2 in the
World 4 configuration, a spurious effect is inferred be-
tween treatment and outcome in the conditionally in-
dependent case. These results also demonstrate a case
in which RPSM can successfully tolerate large num-
bers of irrelevant covariates.

4.2 COMPLEX NETWORK
DEPENDENCIES

In this section, we examine the second hypothesis re-
garding the effect of using complex aggregation func-
tion in the construction of relational covariates. We
generated data from models with the same class-
dependency graph as in Section 4.1. We used World2
and World4, as before, and two simplified models
which consider only mean as an aggregate, with hop-
thresholds of 2 (World2-) and 4 (World4-). We then
used the RPSM2 and RPSM4 methods for construct-
ing relational covariates and two simpler propensity
score models that only include mean as an aggregate
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RPSM2−: mean only, h=2 RPSM2: all aggregations, h=2 RPSM4−: mean only, h=4 RPSM4: all aggregations, h=4
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Figure 7: Type I and Type II error when RPSM2-, RPSM2, RPSM4-, and RPSM4 are applied to data generated
by World2-, World2, World4-, and World4 models with increasing covariate complexity, averaged over 100 trials.

(RPSM2- with h=2 and RPSM4- with h=4).

The results are shown in Figure 7. Along the main
diagonal, the assumptions of the RPSM model are
consistent with the true world configuration. In cases
where the employed model uses mean as the sole ag-
gregation function but distributional dependencies are
more complex, RPSM commits a large number of Type
I errors. However, the over-specified models (e.g.,
RPSM4 in World2) maintain accuracy levels that are
consistent with the most efficient RPSM configuration.

4.3 ENTITY IDENTIFIERS

The final experiment examines the third hypothesis re-
garding the effect of including entity identifiers in the
relational propensity score model. We generated data
from a model similar to that of Figure 5, with an addi-
tional latent confounder on the Hometown entity. We
then created relational covariates using four strategies:

1. Use all observed variables and hop-threshold of 2
(RPSM2) and 4 (RPSM4).

2. Use degree variables and entity-identifiers for all
eligible blocking paths with either h = 2 or h = 4
(RPSM2+ and RPSM4+ respectively).

The results are shown in Figure 8. RPSM2 and
RPSM4 perform poorly, because of the bias induced
by unconditioned confounders. RPSM2+ performs

well when true relational dependencies are limited to
h = 2. RPSM4+ performs well in all cases. This
is an indication that including the entity identifiers
in the propensity model performs blocking, producing
effects similar to the explicit conditioning performed
by Rattigan et al. [2011]. This also strengthens the
connection between relational blocking and a conjec-
ture made by Perlich and Provost [2006] that the in-
clusion of identifier variables in a non-causal setting
can be used to create a relational fixed or random ef-
fects model. Given these results, the ability to auto-
matically identify and utilize entity identifiers provides
a strong argument for using RPSM as opposed to a
propositional approach. While blocking accounts for
a relatively small subset of all possible confounders, it
provides a substantial improvement over the alterna-
tive of assuming no latent confounders.

5 RELATED WORK

Multi-level propensity score models [Hong and Rau-
denbush, 2006, Li et al., 2013] provide a method for
accounting for group or cluster level effects. This
corresponds to a one-to-many relationship in a rela-
tional schema. RPSM can be seen as an extension
of the multi-level setting, capturing not only one-to-
many group level effects, but also many-to-many ef-
fects. There has also been significant progress in un-
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Figure 8: Type I and Type II error when RPSM2, RPSM2+, RPSM4, and RPSM4+ are applied to data generated
by World2, World2+, World4, and World4+ with increasing covariate complexity, averaged over 100 trials.

derstanding the consequences of the stable unit treat-
ment value assumption (SUTVA)3 for matching and
propensity models in the fields of statistics, epidemi-
ology and econometrics [Hudgens and Halloran, 2008,
Tchetgen and VanderWeele, 2012, Manski, 2013]. This
work does not address SUTVA violations, but exten-
sions to that setting are a focus of future work.

Perlich and Provost [2006] introduced relational fixed
and random effects models using identifier attributes
as features in the ACORA framework. RPSM differs
in two important aspects. First, the aim of the afore-
mentioned work is predictive, rather than causal. Sec-
ond, RPSM incorporates degree variables and provides
an algorithm for deciding which relational variables
should be included, rather than assuming the correct
set of relational variables and aggregating.

In the area of relational causal discovery, Maier et al.
[2013a] introduced a constraint-based algorithm, RCD,
that leverages relational d-separation [Maier et al.,
2013b] to learn causal models from relational data.
RCD learns a joint causal model of a relational domain
and abstracts away the mechanics of performing indi-
vidual tests of conditional independence, while RPSM
focuses on evaluating a single causal dependence and
the conditioning mechanism.

3SUTVA states that the outcome of an individual is
independent of the treatment status of other individuals.

6 FUTURE WORK

We plan on examining RPSM further, using more com-
plex synthetic data and real-world data. An interest-
ing avenue for future research is extending RPSM to
the case where the treatment or outcome lies along a
one-to-many relational path (e.g., the effect of a treat-
ment performed on an individual on an aggregate at-
tribute of the individual’s friends). There are also a
number of methods for performing matching without a
propensity score, such as matching on the full set of co-
variates [Stuart, 2010], coarsened exact matching [Ia-
cus et al., 2012], and entropy balancing [Hainmueller,
2012]. Extending these methods to the relational set-
ting would allow practitioners flexibility in terms of the
set of assumptions required for a given causal analysis.

7 CONCLUSIONS

Propensity score matching provides a powerful and ro-
bust method for causal inference on propositional data.
However, naively applying PSM to relational data ig-
nores both new challenges and opportunities presented
by this richer type of data. RPSM automatically con-
structs the set of relational covariates to be used in
the propensity score model given a set of confounding
attributes, a set of aggregation functions, and a hop
threshold. Further, it exploits the relational structure
by identifying degree variables and entity identifiers,
which can account for latent relational confounders.
We evaluate its efficacy via synthetic experiments that
leverage a real-world relational skeleton.
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Abstract

Estimating the strength of causal effects from
observational data is a common problem in
scientific research. A popular approach is
based on exploiting observed conditional in-
dependences between variables. It is well-
known that this approach relies on the as-
sumption of faithfulness. In our opinion, a
more important practical limitation of this
approach is that it relies on the ability to
distinguish independences from (arbitrarily
weak) dependences. We present a simple
analysis, based on purely algebraic and ge-
ometrical arguments, of how the estimation
of the causal effect strength, based on con-
ditional independence tests and background
knowledge, can have an arbitrarily large er-
ror due to the uncontrollable type II error of
a single conditional independence test. The
scenario we are studying here is related to
the LCD algorithm by Cooper [1] and to the
instrumental variable setting that is popular
in epidemiology and econometry. It is one
of the simplest settings in which causal dis-
covery and prediction methods based on con-
ditional independences arrive at non-trivial
conclusions, yet for which the lack of uniform
consistency can result in arbitrarily large pre-
diction errors.

Introduction

Inferring causation from observational data is a com-
mon problem in several fields, such as biology and eco-
nomics. To deal with the presence of unmeasured con-
founders of observed random variables the so-called
instrumental variable technique [2] has found applica-
tions in genetics [3], epidemiology [4, 5] and economics
[6]. Given two observable random variables possibly

influenced by a hidden confounder, an instrumental
variable is a third observed variable which is assumed
to be independent of the confounder. In practice it
is difficult to decide whether the instrumental vari-
able definition is satisfied, and the method has aroused
some skepticism [7]. In this paper, we study a set-
ting that is similar in spirit to the instrumental vari-
able model, but where all conditional independence as-
sumptions are directly testable on the observed data.
A similar scenario was first studied by Cooper [1] and
independently rediscovered in the context of genome
biology by Chen et al. [8].

An important assumption in causal discovery meth-
ods based on conditional independences is faithful-
ness, which means that the observed joint distribution
does not contain any additional (conditional) indepen-
dences beyond those induced by the causal structure.
Usually, faithfulness is justified by the assumption that
unfaithful distributions are a set of Lebesgue measure
zero in the set of the model parameters. By showing
that one can create a sequence of faithful distributions
which converges to an unfaithful one, Robins et al.
proved the lack of uniform consistency of causal discov-
ery algorithms [9]. Zhang and Spirtes [10] then intro-
duced the “Strong Faithfulness” assumption to recover
the uniform consistency of causal discovery. Using geo-
metric and combinatorial arguments, Uhler et al. [11]
addressed the question of how restrictive the Strong
Faithfulness assumption is in terms of the volume of
distributions that do not satisfy this assumption. Even
for a modest number of nodes and for sparse graphs,
the “not strongly faithful” regions can be surprisingly
large, and Uhler et al. argue that this result should dis-
courage the use of large scale causal algorithms based
on conditional independence tests, such as the PC and
FCI algorithms [12].

In this work, we analyse in the context of the LCD
setting how an error in a single conditional indepen-
dence test may already lead to arbitrarily large er-
rors in predicted causal effect strengths, even when
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the faithfulness assumption is not violated. Our re-
sults may not be surprising for those familiar with the
work of [9], but we believe that the analysis we present
here may be easier to understand to those without a
background in statistics, as we separate statistical is-
sues (the possibility of type II errors in the conditional
independence test from a finite sample) from a rather
straightforward analysis of the problem in the popu-
lation setting. We use an algebraic approach, showing
how causal prediction may lead to wrong predictions
already in the simple context of linear structural equa-
tion models with a multivariate Gaussian distribution.

In Section 1, we begin with a brief description of the
problem setting in a formal way, giving the definitions
of the causal effect, instrumental variable, LCD al-
gorithm and the toy model we present. We consider
three observed random variables (X1, X2, X3), which
is the minimal number such that a non-trivial condi-
tional independence test can be obtained. In Section 2,
we show how an (arbitrarily weak) conditional depen-
dence that goes undetected can influence our estima-
tion of the causal effect of X2 on X3 from the observed
covariance matrix, when a confounder between X2 and
X3 is almost off-set by a direct effect from X1 to X3.
In fact, we show that this phenomenon can lead to an
arbitrarily large error in the estimated causal effect as
the noise variance of X2 approaches zero. We finish
with conclusions in Section 3.

1 Problem setting

1.1 LCD algorithm

The model we are interested in arises from the work
of Cooper [1], who proposed the “LCD” algorithm for
causal discovery in observational databases and the
more recent paper of Chen et al.[8], who proposed the
“Trigger” algorithm to infer transcriptional regulatory
networks among genes. Throughout this section we
will assume:

• Acyclicity;
• No Selection Bias.

Definition 1.1. (LCD setting) Given three ran-
dom variables X1, X2, X3 such that the following sta-
tistical properties and prior assumptions are satisfied:
Statistical dependences:

• X1 6⊥⊥ X2

• X2 6⊥⊥ X3

• X1 ⊥⊥ X3|X2

Prior assumptions:

• An(X1) ∩ {X2, X3} = ∅
• Faithfulness

where An(X) is the set of the causal ancestors of X
(which includes X itself), so this condition means that
we assume that X1 is not caused by the other observed
variables X2, X3.

Cooper [1] proved that:

Theorem 1.1. Under the assumptions in Definition
1.1, the causal structure must be a subgraph of:

X1 X2 X3

Here, the directed arrows indicate a direct causal rela-
tionship and the bidirected edge denotes an unobserved
confounder.

Our primary interest is to predict p(X3|do(X2)), the
distribution of X3 after an intervention on X2. In
general, this quantity may differ from p(X3|X2), the
conditional distribution of X3 given X2 [13]. In the
linear-Gaussian case, the quantity

∂E(X3|do(X2))

∂X2

measures the causal effect of X2 on X3.

It is easy to show that in the LCD setting, these quan-
tities are equal:

Corollary 1.1. Under the LCD assumptions in Def-
inition 1.1,

p(X3|do(X2)) = p(X3|X2).

Therefore, in the linear-Gaussian case, the quantity

∂E(X3|do(X2))

∂X2
=
∂E(X3|X2)

∂X2
=

Cov(X3, X2)

Var(X2)
(1)

is a valid estimator for the causal effect of X2 on X3.

1.2 Relationship with instrumental variables

The other model relevant for our discussion is the so
called instrumental variable model. Following Pearl
[13], we define:

Definition 1.2. (Instrumental Variable setting)
Given three random variables X1, X2, X3, we call X1

an instrumental variable if the following conditions are
satisfied:
Statistical dependences:

• X1 6⊥⊥ X2

Prior assumptions:

• X1 ⊥⊥ X3|do(X2)
• Faithfulness

Type-II Errors of Independence Tests Can Lead to Arbitrarily Large Errors in Estimated Causal Effects
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The second assumption says that X1 and X3 are inde-
pendent after an intervention on the variable X2. In
terms of the causal graph, this means that all the un-
blocked paths between X1 and X3 contain an arrow
that points to X2.

Unfortunately the instrumental variable property can-
not be directly tested from observed data. The causal
graph for the IV setting is a subgraph of:

X1 X2 X3

So, a possible confounder between X2 and X3 is al-
lowed, in contrast with the LCD setting. Note that
the LCD setting is a special case of the IV model.

Lemma 1.1. Under the IV assumptions in Definition
1.2 and for the linear-Gaussian case, the quantity

Cov(X1, X3)

Cov(X1, X2)

is a valid estimator for the causal effect of X2 on X3.

1.3 Type II errors in LCD

In practice, the confidence on the result of the con-
ditional independence test X1 ⊥⊥ X3|X2 in the LCD
setting depends on the sample size. Indeed, it could
be hard to distinguish a weak conditional dependence

X1 6⊥⊥ X3|X2

from a conditional independence using a sample of fi-
nite size. Here we study the question of what happens
to our prediction of the causal effect of X2 on X3 if
the conditional independence test encounters a type II
error (i.e., erroneously accepts the null hypothesis of
independence).

Note that a type I error (i.e., erroneously rejecting the
null hypothesis of independence) in the tests X1 6⊥⊥ X2

and X2 6⊥⊥ X3 will not be as dangerous as a type II
error in the conditional independence test. Indeed, the
probability of a type I error can be made arbitrarily
small by tuning the significance level appropriately. In
addition, a type I error would let the LCD algorithm
reject a valid triple, i.e., lower the recall instead of
leading to wrong predictions.

For these reasons we study the model described in the
following definition, which allows the presence of a hid-
den confounder X4, and a direct effect from X1 on X3

(not mediated via X2). We assume that these addi-
tional features result in a possible weak conditional
dependence between X1 and X3 given X2. For sim-
plicity we consider only the linear-Gaussian case. We
also assume no confounders between X1 and X2, or

between X1 and X3, or between X1, X2, X3. This sim-
plification will not influence the final result of the pa-
per, because we will prove how unboundedness of the
causal effect estimation error is already achieved for
this special case.

Definition 1.3. We assume that the “true” causal
model has the following causal graph:

X1 X2 X3

X4

which is one of the possible causal structures that is
compatible with the following conditions:
Statistical dependences:

• X1 6⊥⊥ X2

• X2 6⊥⊥ X3

• A weak conditional dependence

X1 6⊥⊥ X3|X2

Prior assumptions:

• Faithfulness
• An(X1) ∩ {X2, X3} = ∅

The observed random variables are X1, X2, X3 while
X4 is a hidden confounder, assumed to be independent
from X1.

The joint distribution of the observed variables is as-
sumed to be a multivariate Gaussian distribution with
covariance matrix Σ and zero mean vector. We also
assume that the structural equations of the model are
linear. Then

X = AX + E, (2)

where
X =

(
X1, . . . , X4

)T

is the vector of the extended system,

E =
(
E1, . . . , E4

)T

is the vector of the independent noise terms, such that

E ∼ N
(
0,∆

)
∆ = diag

(
δ2
i

)
,

and A = (αij) ∈ M4

(
R
)

is (up to a permutation of
indices) a real upper triangular matrix in the space
M4(R) of real 4 × 4 matrices that defines the causal
strengths between the random variables of the system.

Remark 1.1. In [14], an implicit representation for
the confounder X4 is used, by using non-zero covari-
ance between the noise variables E2, E3. It can be
shown that for our purposes, the two representations
are equivalent and yield the same conclusions.

Type-II Errors of Independence Tests Can Lead to Arbitrarily Large Errors in Estimated Causal Effects
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In the Gaussian case, a conditional independence is
equivalent to a vanishing partial correlation:

Lemma 1.2. Given a set of three random variables
(X1, X2, X3) with a multivariate Gaussian distribution
the conditional independence

X1 ⊥⊥ X3 | X2

is equivalent to a vanishing partial correlation

ρ13·2 =
ρ13 − ρ12ρ23√(

1− ρ2
12

)(
1− ρ2

23

) = 0 (3)

where ρij is the correlation coefficient of Xi and Xj.

In the model described in Definition 1.3,

∂E(X3|do(X2))

∂X2
= α23. (4)

In contrast with the LCD model in Definition 1.1, the
equality (1) no longer holds. We are interested in the
error in the estimation of the effect of X2 on X3 that
would be due to a type II error of the conditional inde-
pendence test in the LCD algorithm. The next section
is dedicated to the analysis of the difference between
the true value (4) and the estimated one in (1):

|E
(
X3|X2

)
− E

(
X3|do(X2)

)
| = |g

(
A,Σ

)
||X2|,

where the “causal effect estimation error” is given by:

g
(
A,Σ

)
=

Σ32

Σ22
− α23. (5)

2 Estimation of the causal effect error
from the observed covariance matrix

The following proposition gives a set of equations for
the observed covariance matrix Σ, given the model
parameters

(
A,∆

)
and the linear structural equation

model (2).

Proposition 2.1. The mapping Φ : (A,∆) 7→ Σ that
maps model parameters (A,∆) to the observed covari-
ance matrix Σ according to the model in Definition 1.3
is given by:

Σ11 = δ2
1 (6)

Σ12 = α12δ
2
1 (7)

Σ13 =
(
α13 + α23α12

)
δ2
1 (8)

Σ11Σ23 = Σ12Σ13

+ Σ11

(
δ2
2α23 + δ2

4α42

(
α43 + α23α42

)) (9)

Σ11Σ22 = Σ2
12 + Σ11

(
δ2
2 + δ2

4α
2
42

)
(10)

Σ11Σ33 = Σ2
13

+ Σ11

(
δ2
2α

2
23 + δ2

3 + δ2
4

(
α43 + α23α42

)2)
.

(11)

Proof. It is possible to express the covariance matrix
Σ̄ of the joint distribution of X1, . . . , X4 in terms of
the model parameters as follows:

Σ̄ =
(
I −A

)−T
∆
(
I −A

)−1
.

The individual components in (6)–(11) can now be ob-
tained by straightforward algebraic calculations.

Remark 2.1. (Instrumental variable estimator)
From equation (8) it follows immediately that for
α13 = 0, we have

α23 =
Σ13

Σ12
,

which corresponds to the usual causal effect estimator
in the instrumental variable setting [3].

The lemma we present now reflects the fact that we
are always free to choose the scale for the unobserved
confounder X4:

Lemma 2.1. The equations of proposition 2.1 are in-
variant under the following transformation

ᾱ4j =
√
δ2
4α4j , δ̄2

4 = 1

for j ∈ {2, 3}.

Proof. This invariance follows from the fact that α42

and α43 always appear in a homogeneous polynomial
of degree 2, and they are always coupled with a δ2

4

term.

Without loss of generality we can assume from now on
that δ2

4 = 1.

Remark 2.2. (Geometrical Interpretation) From
a geometrical point of view the joint system of equa-
tions for the observed covariance matrix defines a
manifold MΣ in the space of the model parameters
M4(R)×Dδ2 , whereM4(R) is the space of the possi-
ble causal strengths αij and

Dδ2 =

3∏

i=1

[0,Σii]

is the compact hypercube of the noise variances. Note
that we have used the symmetry Σ̄44 = δ2

4 = 1 and
that

δ2
i ≤ Σii

from equations (6), (10) and (11). Note that the map
Φ : (A,∆) 7→ Σ is not injective. This means that
given an observed covariance matrix Σ, it is not possi-
ble to identify the model parameters in a unique way.

Type-II Errors of Independence Tests Can Lead to Arbitrarily Large Errors in Estimated Causal Effects
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Indeed, the number of equations is six, while the num-
ber of model parameters is eight. Geometrically, this
means that the manifold MΣ does not reduce to a
single point in the space of model parameters. Nev-
ertheless it is still an interesting question whether the
function g is a bounded function on MΣ or not, i.e.,
whether we can give any guarantees on the estimated
causal effect. Indeed, for the instrumental variable
case with binary variables, such bounds can be derived
(see, e.g., [13]).

∆

A

MΣ

Σ

.

Φ

Φ−1 =?

The following Theorem and its Corollary are the main
results of this paper. We will prove that there still re-
main degrees of freedom in the noise variances δ2

2 , δ
2
3

and the signs s1, s2, given the observed covariance ma-
trix Σ, that will lead to an unbouded causal effect es-
timation error g(A,Σ).

Theorem 2.1. Given the causal model in Definition
1.3, there exists a map

Ψ : M3(R)×D(Σ)× {−1,+1}2 → M4(R) (12)

such that for all (A,∆):

Ψ(Φ(A,∆), δ2
2 , δ

2
3 , s1, s2) = A. (13)

Here D(Σ) = [0,m/Σ11] × [0,det Σ/m] ⊂ R2 is the
rectangle where the noise variances of X2 and X3 live,
with m defined below in (19). The map Ψ gives explicit
solutions for the causal strengths αij, given the ob-
served covariance matrix Σ, the noise variances δ2

2 , δ
2
3

and signs si = ±1. The components of Ψ are given by:

α12 =
Σ12

Σ11
(14)

α42 = s1

√
m

Σ11
− δ2

2 (15)

α43 = s2

√
det Σ−mδ2

3√
δ2
2Σ11

(16)

α13 = s1s2
Σ12

√
det Σ−mδ2

3

√
m− Σ11δ2

2

m
√
δ2
2Σ11

+
ϑ

m
,

(17)

and the most important one for our purpose:

α23 =
γ

m
− s1s2

√
det Σ−mδ2

3

√
m− Σ11δ2

2

m
√
δ2
2

. (18)

Here,
m = Σ11Σ22 − Σ2

12 > 0 (19)

η = Σ11Σ33 − Σ2
13 > 0

ω = Σ22Σ33 − Σ2
23 > 0

ϑ = Σ13Σ22 − Σ12Σ23

γ = Σ11Σ23 − Σ12Σ13.

Proof. The proof proceeds by explicitly solving the
system of equations (6)–(11). Some useful identities
are:

α13 =
Σ12α42α43

m
+
ϑ

m
,

α42α43 =
γ − α23m

Σ11
,

ρ13·2 =
ϑ√
ωm

,

ηm− γ2 = Σ11 det Σ.

The signs in the equations are a consequence of the
second degree polynomial equations.

Corollary 2.1. It is possible to express the error in
the estimated causal effect as

g
(
Ψ(Σ, δ2

2 , δ
2
3 , s1, s2),Σ

)
=

ϑΣ12

mΣ22
+

s1s2

√
det Σ−mδ2

3

√
m− Σ11δ2

2

m
√
δ2
2

.

(20)

By optimizing over δ2
3 we get:

α23 ∈ [b−, b+] ⊂ R,

with

b±(δ2
2) =

γ

m
±
√

det Σ
√
m− Σ11δ2

2

m
√
δ2
2

. (21)

The length of the interval [b−, b+] is a function of
(Σ, δ2

2) and satisfies

∂|b+ − b−|
∂δ2

2

< 0.

Proof. Equation (20) follows from (18) and:

Σ23

Σ22
=

γ

m
+
ϑΣ12

mΣ22
.

From equation (11), combined with the results of The-
orem 2.1, we can obtain the following inequality, using
also the fact that δ2

3Σ11 > 0:

mα2
23 − 2γα23 + η − Σ11α

2
43 ≥ 0.

The two solutions of the inequality define the interval
[b−, b+]. Its length is a decreasing function of δ2

2 .
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Unfortunately, the causal effect strength α23 in equa-
tion (18) is unbounded. This means that for all the
choices of the observed covariance matrix Σ that are
in accordance with the model assumptions in Defini-
tion 1.3, the set of model parameters (A,∆) ∈ MΣ

that would explain Σ leads to an unbounded error g.

Indeed, a singularity is reached in the hyperplane
δ2
2 = 0, which corresponds to making the random

variable X2 deterministic with respect to its parents
X1, X4. Figure 1 shows the singularity of the function
|g(Σ, δ2

2 , δ
2
3)| in the limit δ2

2 → 0. The rate of growth is
proportional to the inverse of the standard deviation
of the noise variable E2:

|g| ∝ 1

δ2
as δ2 → 0. (22)

Figure 1: Causal effect estimation error |g| as a func-
tion of δ2

2 , for fixed δ2
3 ,Σ and s1s2 = 1.

Remark 2.3. (Lower bound for δ2
2) Corollary 2.1

is the main result of our analysis. The right hand term
in (20) consists of two terms: the first one, through ϑ,
represents the contribution of the partial correlation,
and is small if ρ13·2 is small. The second term is a
fundamental, intrinsic quantity not controllable from
the conditional independence test and the sample size.
However, in situations where one is willing to assume
a lower bound on δ2

2 :

δ2
2 ≥ δ̂2

2 ,

it is possible to give a confidence interval [b+, b−] for
the function g, depending on the choice of the lower
bound δ̂2

2 .

Remark 2.4. (IV estimation error)
In the instrumental variable literature the IV estima-
tor is used, presented in Lemma 1.1. Unfortunately,
this estimator and its error function

h(Σ, A) =
Σ13

Σ12
− α23 (23)

is proportional to α13 and from (17) one can deduce a
similar growing rate of the function h in terms of the
variance of the noise term E2:

|h| ∝ 1

δ2
as δ2 → 0. (24)

Remark 2.5. (Singularity analysis)
Figure 2 shows a contour plot of |g| on the rectangle
D(Σ) 3 (δ2

2 , δ
2
3). The singularity in the causal effect

Figure 2: The function |g| has a singularity in the
hyperplane δ2

2 = 0.

function g is reached in the degenerate case, when the
conditional distribution of X2 given X1 and X4 ap-
proaches a Dirac delta function. This cannot be de-
tected empirically, as we can still have well-defined co-
variance matrices Σ of the observed system even if the
covariance matrix Σ̄ of the extended one is degenerate.

Let us investigate in detail the limit for δ2
2 → 0 from

the point of view of the causal model. This propo-
sition will show a simple example of how the causal
strengths can be arbitrarily large, keeping the entries
of the observed covariance matrix Σij finite.

Proposition 2.2. Assume that the observed covari-
ance matrix Σ is positive-definite. Then, for the limit
δ2
2 → 0 we have the following scenario for the causal

strength parameters:





α23 ≈ ± δ−1
2

α43 ≈ ∓ sgn(α42) δ−1
2

α13 ≈ ∓ sgn(α12) δ−1
2 .

This limit, in which our error in the estimated causal
effect strength of X2 on X3 diverges, is illustrated in
Figure 3.
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X1 X2 X3

X4

α12

∓∞

±∞

∓∞α42

Figure 3: Scenarios in which the error in the causal ef-
fect strength of X2 on X3 based on the LCD algorithm
may become infinitely large.

3 Conclusions and future work

Corollary 2.1 shows how the causal effect estimation
error can be extremely sensitive to small perturbations
of our model assumptions. Equation (20) holds for any
value of ϑ (which is proportional to the partial corre-
lation ρ13·2) and the second term vanishes when the
confounder is not present. This shows that with a
finite sample, a type II error in the conditional inde-
pendence test may lead to an arbitrarily large error in
the estimated causal effect. Even in the infinite sample
limit, this error could be arbitrarily large if faithfulness
is violated. The result is in agreement with the results
in [9], and it shows in a clear algebraic way how type
II errors of conditional independence tests can lead to
wrong conclusions.

We believe that this conclusion holds more generally:
even when we increase the complexity and the number
of observed variables, the influence of confounders will
still remain hidden, mixing their contribution with the
visible parameters, thereby potentially leading to ar-
bitrarily large errors. This means that for individual
cases, we cannot give any guarantees on the error in
the estimation without making further assumptions.
An interesting question for future research is whether
this negative worst-case analysis can be supplemented
with more positive average-case analysis of the esti-
mation error. Indeed, this is what one would hope if
Occam’s razor can be of any use for causal inference
problems.

Other possible directions for future work are:

• Study more complex models, in terms of
the number of nodes, edges and cycles.

• Bayesian model selection: We hope that the
Bayesian approach will automatically prefer a
simpler model that excludes a possible weak con-
ditional dependence even though the partial cor-
relation from the data is not exactly zero.

• Bayesian Information Criterion: We could
directly assign a score based on the likelihood
function of the data given the model parameters
(A,∆) and the model complexity, without assum-
ing any prior distribution for the model parame-
ters.

• Nonlinear structural causal equations: To
deal with nonlinearity it is possible to consider
Spearman’s correlation instead of the usual one,
using the following relationships:

m = Σ11Σ22(1− ρ2
12)

η = Σ11Σ33(1− ρ2
13)

ω = Σ22Σ33(1− ρ2
23)

γ = Σ11

√
Σ22Σ33(ρ23 − ρ12ρ13)

ϑ = Σ22

√
Σ11Σ33(ρ13 − ρ12ρ23)

• “Environment” variable: In many applica-
tions in biology, for example where X1 is geno-
type, X2 gene expression and X3 phenotype,
the observed random variables X2 and X3 are
strongly dependent on the environmental condi-
tions of the experiment. It might be reasonable
to assume that most of the external variability
is carried by the covariance between the environ-
ment variable W and the other measured ones,
including possible confounders. This leads to the
following graphical model, which could be useful
in deriving some type of guarantees for this sce-
nario:

X1 X2 X3

X4

W
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Abstract

We describe an approach to learning causal
models that leverages temporal information.
We posit the existence of a graphical de-
scription of a causal process that generates
observations through time. We explore as-
sumptions connecting the graphical descrip-
tion with the statistical process and what one
can infer about the causal structure of the
process under these assumptions.

1 Introduction

Data that measure the temporal dynamics of systems
is pervasive. The goal of this paper is to describe an
approach to the development of a sound approach to
causal inference for dynamic systems. One of the pop-
ular extant approaches is Granger causality (Granger
1969) which fails to be sound in the presence of la-
tent variables. Granger causality is typically applied in
discrete-time continuous valued time-series. Roughly
speaking, in a multivariate time series X a set of vari-
ables are the Granger-causes of Xj if the historical val-
ues of this set of variables (including Xj) are necessary
and sufficient for optimal prediction. Unfortunately a
variable deemed a Granger-cause can arise due to ei-
ther a latent common cause or as a result of a direct
causal relationship and thus the approach cannot be
used to determine causal relationships if one does not
exclude the possibility of latent variables.

In this paper, we explore how one can leverage the
assumption that causes must precede effects to in-
form causal conclusions drawn from observations of
a temporal statistical process. The approach taken
here is similar to the approach developed by Verma
and Pearl (1990) and Spirtes, Glymour, and Scheines
(2001) for atemporal causal discovery. One key in-
gredient in our approach is a new asymmetric graph-
ical separation criterion for directed (possibly cyclic)

graphs called δ*separation which plays an analogous
role as d-separation in the work of Verma and Pearl
(1990) and Spirtes, Glymour, and Scheines (2001).
Another key ingredient is the process independence
statement that plays an analogous role to the inde-
pendence statement. Conceptually, we assume that
we can test whether a process independence state-
ments about observable quantities holds by observing
the process and that these observation provide insight
into the causal structure governing the process. In
particular, we posit the existence of a graphical de-
scription of a causal process and make assumptions
that connect δ*separation with observable process in-
dependence statements. We explore what can be in-
ferred about the causal structure of the process un-
der various observability assumptions. While the ulti-
mate goal is to create a sound and complete method
for causal inference for observations from a stochas-
tic dynamic system, this paper represents some initial
steps towards this ultimate goal. In particular, the re-
sults in Section 3.2 can be viewed sufficient conditions
for Granger causality and, in Section 3.3, we present
sufficient conditions under which we can make sound
inferences about causal relationships including the ex-
istence of causal relationships and the existence and
non-existence of latent common causal relationships.

As presented in Section 3, our causal discovery algo-
rithm assumes the existence of an oracle for process in-
dependence statements. Our approach of abstracting
away the details of how one connects process indepen-
dence statements with particular statistical processes
allows us to simultaneously make progress on the
causal discovery problem for multiple distinct statis-
tical processes such as marked point processes, Gaus-
sian processes and dynamic Bayesian networks. In Sec-
tion 4, we discuss two particular statistical processes
and their associated process independence statements.
In Section 5, we discuss some related work and open
research questions.
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2 Graphical Separation

We use G = 〈L, E〉 to denote a directed graph where
L is a set of vertices and E ⊆ 〈L × L〉 is a set of edges
represented as ordered pairs. We write a→ b if 〈a, b〉 ∈
E and say that a is a parent of b and b is the child of
a. Note that, in addition to allowing cycles, we also
allow that a vertex can be its own parent and child
(i.e., a self-edge a→ a). We use the shorthand a↔ b
to indicate that a→ b and b→ a.

A path in G is a sequence 〈l1, . . . , ln〉 where there is
an edge between successive pairs of vertices in G. The
length of a path p = 〈l1, . . . , ln〉 is |p| = n and a path
p is termed a trivial path if |p| = 1. A vertex li on
path p = 〈l1, . . . , ln〉 is a collider on p if li−1 → li and
li ← li+1 and a non-collider otherwise. A directed path
in graph G = 〈L, E〉 is a sequence of vertices 〈l1, . . . , ln〉
such that 〈li, li+1〉 ∈ E . The source of a directed path
is the first vertex in the path. We denote the set of
ancestors for a set A by An(A). The ancestor relation
is reflexive and thus A ⊆ An(A).

We define a graph separation criterion called
d*separation for directed graphs which is an exten-
sion of d-separation (Pearl 1988). An extension of d-
separation is required as a pure vertex separation cri-
terion like d-separation cannot separate a vertex from
itself which is required to appropriately handle self-
edges in directed graphs. A path p d*connects ver-
tices a and b given the set of vertices C in graph G if
every collider on p is in An(C) and every non-collider
on p is not in C. For sets of vertices A,B,C ⊆ L
where A ∩ C = ∅ we say that B is d*separated from
A by C in graph G if and only if there does not exist
a non-trivial d*connecting path between some a ∈ A
and some b ∈ B given C in G.

There are two key differences from Pearl’s d-separation
that allow us to appropriately handle cyclic directed
graphs. First, we restrict d*separation statements to
sets in which A ∩ C is the empty set but allow the
sets A and B to overlap. Second, d*connecting paths
must be non-trivial. These modifications enable us
to use d*separation statements to distinguish between
graphs in which there is a self-edge (a → a) and one
in which there is not.

We use directed graphs to represent temporal statis-
tical processes. We associate the vertices L with a
set of possible observation types (i.e., things that can
happen). The edges denote potential dependencies
between observations and the absence of a directed
edge from observation type a to observation type b
indicates that the process that generates observations
of type b does not directly depend on the history of
observations of type a. Analogous to the use of d-

separation for directed acyclic graphs, we would like
a graphical separation criterion for directed graphs to
answer questions about how past observations influ-
ence future observations. Due in part to the fact that
a directed graph does not explicitly encode temporal
information we cannot simply apply d*separation on
the directed graph. Instead, we define δ*separation
which extends the graphical δ-separation of Didelez
(2008) to handle self-edges. For sets A,B,C ⊂ L
where A ∩ C = ∅ we say that that B is δ*separated
from A given C (or simply δ(A,C,B)) in G if an
only if B is d-separated from A given C in the B-
historical dependency graph GB where GB =

〈
L, EB

〉

and EB = E\{〈b, a〉 ∈ E|b ∈ B, a 6= b}. Note that
δ*separation is not symmetric in the first and third
arguments due to the use of the graph GB .

3 Learning the Structure of a Causal
Process

Our aim is to connect statistical processes with causal
graphs and to learn the causal graph governing a sys-
tem of observed events. We assume that there is a
statistical process governing what and when events
happen. We denote a statistical process for a set
of observation types L by PL. We also assume that
we can observe the process to determine the whether
process independence statements hold. We will write
PI(A,C,B) to indicate that the process associated
with observations of type B does not depend on the
history of observations of type A given the history of
observations of type C in a given process PL (where
A ∩ C = ∅). We write ¬PI(A,C,B) if this is not the
case. We call such statements process independence
statements. We note that process independence state-
ments need not correspond to statistical independence
statements and, as with δ*separation, there is no ex-
pectation that such process independence statements
ought to be symmetric. In this section, we assume the
existence of a process independence oracle for the rel-
evant statistical process. In Section 4, we discuss par-
ticular statistical processes and the problem of testing
process independence statements for those processes.

A process PL satisfies the Causal Factorization As-
sumption with respect to a causal process graph G =
〈L, E〉 if and only if for all A,B,C ⊂ L where A∩B = ∅
it is the case that δ(A,B,C)⇒ PI(A,B,C)

A process PL satisfies the Causal Dependence Assump-
tion with respect to a causal process graph G = 〈L, E〉
if and only if for all A,B,C ⊂ L where A ∩ B = ∅ it
is the case that PI(A,B,C)⇒ δ(A,B,C)

The Causal Analysis (CA) Algorithm (Algorithm 1)
uses a process independence oracle to construct a di-

Toward Learning Graphical and Causal Process Models

44



rected graph. We use πGl to denote the parents of l
in graph G and |B| to denote the cardinality of the
set B. The basic idea is to use process independence
statements to remove edges from an initially complete
graph. This algorithm is analogous to the PC Algo-
rithm of Spirtes, Glymour and Scheines (2001) but
does not have an orientation phase.

Note that the output of the CA algorithm is a directed
graph and that any edges presented do not necessarily
indicate a causal relationship. In the remainder of this
section we explore the interpretation of the output of
the CA algorithm under various assumptions. Recall
that a↔ b simply indicates that a→ b and b→ a and
not the existence of a latent common cause.

Input: A set of events L and a process PL
Output: A directed graph G
Let G = 〈L, E〉 be a complete directed graph.;
foreach l ∈ L do

Let n = 0;

foreach l′ ∈ πGl do

foreach B ⊆ πGl \ {l′} where |B| = n do
if PI(l′, B, l) holds in PL then
E = E \ 〈l′, l〉

end

end
Let n = n+ 1;

end

end
Return G = 〈L, E〉;
Algorithm 1: The Causal Analysis (CA) Algorithm

Theorem 1 (Complete Observations). If PL satisfies
both the causal dependence and factorization assump-
tions with respect to G then algorithm CA(L,PL) re-
turns G′ = G.

Lemma 1. If PL satisfies the causal dependence as-
sumption for G = 〈L, E〉 and algorithm CA(L,PL) re-
turns G′ = 〈L, E ′〉 then if l′ → l ∈ E then l′ → l ∈ E ′.

Lemma 2. If PL satisfies both the causal depen-
dence and factorization assumptions for G = 〈L, E〉
and algorithm CA(L,PL) returns G′ = 〈L, E ′〉 then if
l′ → l 6∈ E then l′ → l 6∈ E ′.

Proof of Theorem 1: The theorem follows from
Lemmas 1 and 2.

3.1 Absence of a direct causal relationship

Next we consider the case in which some of the event
types in the system are not observed. We let O ⊆ L
be the set of observed event types. In this case we will
assume that the causal factorization and dependence
assumptions hold for a process PL and some causal

process graph G. Our causal factorization and depen-
dence assumptions allow us to focus on δ*separation
in G by assuming that the observed process indepen-
dence statements accurately reflect the δ*separation
statements about G for the observed observation types.
In order to understand and interpret the output of the
CA algorithm we need to understand the conditions
that lead to edges in the final output. We begin by
defining the concept of vertex blockability relative to
a set of observed event types.

We say that a vertex a is b-unblockable relative to O in
G if and only if for all C ⊆ O\{a, b} ¬δ(a,C, b) is true
of G. Otherwise the vertex is said to be b-blockable
relative to O. Note that if b → b then if b ∈ O b is
b-unblockable relative to O.

We say that l is a direct cause of l′ relative to O for
causal process graph G if and only if there exists a
directed path 〈l1, . . . , ln〉 where l1 = l and ln = l′ and
li 6∈ O for (1 < i < n). We call the path in the
definition of direct cause a witnessing path that l is a
direct cause of l′. We let Db denote the set of observed
direct causes of the variable b relative to O, that is,
members of O that are direct causes of b relative to O.

Example 1. Let E = {a → c, c → b}, L = {a, b, c}
and O = {a, b}. The vertex a is b-unblockable relative
to O for G = 〈L, E〉 but the vertex b is a-blockable
relative to O. In this example, a is a direct cause of b
relative to O in graph G and a→ c→ b is a witnessing
path for this fact.

Lemma 3. If l′ is a direct cause of l relative to O in
G then l′ is l-unblockable relative to O in G.

The following lemma allows us to make causal infer-
ences using the causal analysis algorithm about the
absence of a direct causal relationship.

Lemma 4. If PL satisfies the causal dependence as-
sumption with respect to G then, in the graph G′ output
by CA(O,PL), the set of parents for each event type
include all of its direct causes relative to O.

In particular, if the algorithm finds that an event type
a is not a parent of event type b then a is not a direct
cause of b.

3.2 Causal sufficiency

In the section, we restrict the type of unobserved event
types which enables us to make strong inferences about
the causal structure of a process. In particular we as-
sume causal sufficiency which is essentially an assump-
tion that there are no latent confounding processes.

A set of event types O ⊂ L is causally sufficient with
respect to a graph G = 〈L, E〉 if and only if every
common cause of l, l′ ∈ O is in the set of event types
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O.

A directed graph G′ = 〈O, E ′〉 is causally correct with
respect to a graph G = 〈L, E〉 if for every edge 〈a, b〉 ∈
E ′ a is a direct cause of b with respect to O in G.

Theorem 2 (Causal Sufficiency). If PL satisfies both
the causal dependence and factorization assumptions
for G = 〈L, E〉 and O ⊆ L is causally sufficient with
respect to G then the graph G′ returned by algorithm
CA(O,PL) is causally correct with respect to G and
O.

Lemma 5. If PL satisfies the causal dependence and
factorization assumptions with respect to G and O is
causally sufficient for G then the output of the CA al-
gorithm removes the edge a → b if a is not a direct
cause of b relative to O.

3.3 Causal insufficiency

We have shown that the CA algorithm can provide
causally accurate information under the assumptions
of causal sufficiency, causal factorization and causal
dependence. In this section we consider removing the
assumption of causal sufficiency.

Example 2. Let E = {a ← c, c → b}, L = {a, b, c}
and O = {a, b}. The observed event types O are not
causally sufficient for the graph G = 〈L, E〉. In ad-
dition, the CA algorithm fails to provide output that
is causally correct. In particular, the CA algorithm
yields the graph in which a→ b and b→ a despite the
fact that neither is a a cause of b in G nor is b a cause
of a.

Our aim is to graphically characterize vertex separa-
bility. We do so using the idea of an inducing path in a
directed graph that was introduced for directed acyclic
graphs by Verma and Pearl (1990). For a pair of ver-
tices a, b, we define Aab = An({a}) ∪An({b}) \ {a, b}.
A path p between 〈a, b〉 is an inducing path relative to
O if and only if (1) every vertex on p ∈ O is a collider
on p and (2) Every collider on p is in Aab. An induc-
ing path p = 〈l1 = a, . . . , ln = b〉 from a to b is into b if
ln−1 → ln. An inducing path p = 〈l1 = a, . . . , ln = b〉
from a to b is out of a if l1 → l2.

Lemma 6. For a directed graph G the following three
statements are equivalent:

(a) A vertex a is b-unblockable relative to O in graph
G

(b) There is an inducing path between a and b relative
to O in graph Gb. Note this inducing path must
be into b.

(c) ¬δ(a,O ∩Aab, b) in G.

We say that a is a cause of b in G and if there is a
directed path from a to b in G.

We aim to find common features of all graphs that are
consistent with the observed pattern of process inde-
pendence statements. Latent processes, however, can
mask the causal nature of the observed pattern of de-
pendencies.

For a pair of vertices a, b and graph G we say that there
is a potential indirect inducing path into b relative to O
if and only if (1) there is a vertex c1 ∈ O \ {a, b} such
that a→ b in G and (2) there is a sequence of vertices
c1, . . . , cn ⊆ O \ {a, c} such that ci ↔ ci+1 and cn ↔ b
in G.

Lemma 7. For any set of observed variable O, if a
graph has an inducing path between observed variables
a, b into b containing another observed variable then
the output of the CA algorithm will contain a potential
indirect inducing path into b.

Theorem 3 (Sufficient Cause). If PL satisfies both
the causal dependence and factorization assumptions
for G = 〈L, E〉 then if CA produces G′ with vertices
O ⊆ L for which the subgraph over {a, b} is a→ b and
G′ contains no potential inducing path between a, b into
b then a is a cause of b in G.

Lemma 8. If PL satisfies both the causal dependence
and factorization assumptions for G = 〈L, E〉 and CA
produces G′ with vertices O ⊆ L for which the subgraph
over {a, b, c} is a↔ b↔ c then

• if PI(a, ∅, c) and PI(c, ∅, a) then there is a latent
common causes of a, b and a (possibly distinct)
latent cause of b, c and b is not a direct cause of c
and b is not a direct cause of a.

• if PI(a, b, c) then there is no latent common
causes of b, c, b is a cause of c in G.

4 Statistical Processes and Process
Independence

Our approach to causal discovery through the obser-
vation of a dynamic process is applicable to different
temporal statistical processes. The key connection re-
quired is a connection between process independence
statements and the observations from a particular sta-
tistical process. In this section we consider two distinct
statistical processes and discuss process independence
for these processes.

4.1 Dynamic Bayesian Networks

Dynamic Bayesian networks (DBNs) are a popular
discrete-time model that can capture temporal dy-
namics of a statistical process. A DBN is a statis-
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tical model of an infinite set of variables indexed by
time. A variable Xt

i denotes the ith variable at time
t. We use X = X1, . . . , Xn to denote the set of vari-
able types in the DBN, that is, a variable with an un-
specified time component and Xt to denote the set of
variables at time t. The DBN specifies the evolution
of Xt as a stochastic function of the value of previous
variables Xt−i (i > 0). In particular, the variable Xt

i

is a stochastic function of the value of its parents in
a graph. The causal process graph associated with a
causal DBN is a graph over the variable types of the
DBN X where there is an edge Xi → Xj if there ex-
ists a t, i such that there is an edge Xt−i

i → Xj in the
DBN. Thus, the parent relationship of the causal pro-
cess graph captures the dependence of a variable type
on the history of other variable types. Furthermore,
process independence statements PI(Xi, C,Xj) corre-
spond to a set of independence statements of the form
I(X1

i , . . . , X
t−1
i , X1

C , . . . , X
t−1
C , Xt

j). Without further
assumptions, testing process independence would be
unfeasible but if we focus on stationary processes with
finite temporal dependency we can potentially test
process independence statements.

4.2 Graphical Event Models

In this section, we define Conditional Intensity Mod-
els and Graphical Event Models (GEMs) and con-
nect these models with previous work on the class of
Piecewise-Constant Conditional Intensity Models and
Poisson Networks. We assume that events of differ-
ent types are distinguished by labels l drawn from
a finite alphabet L. An event is then composed of
a non-negative time-stamp t and a label l. A his-
tory is an event sequence h = {(ti, li)}ni=1 where
0 < t1 < · · · < tn, and our data is a specific history
denoted by D. Given data D, we define the history
at time t as h(t,D) = {(ti, li) | (ti, li) ∈ D, ti ≤ t}. We
suppress D from h(t,D) when clear from context and
write hi = h(ti−1). By convention t0 = 0. We define
the ending time t(h) of a history h as the time of the
last event in h: t(h) = max(t,l)∈h t so that t(hi) = ti−1.

A Conditional Intensity Model (CIM) is a set of non-
negative conditional intensity functions indexed by la-
bel {λl(t|h; θ)}l∈L. The data likelihood for this model
is

p(D|θ) =
∏

l∈L

n∏

i=1

λl(ti|hi, θ)1l(li)e−Λl(ti|hi;θ) (1)

where Λl(t|h; θ) =
∫ t
−∞ λl(τ |h; θ)dτ and the function

1l(l
′) is one if l′ = l and zero otherwise. The condi-

tional intensities are assumed to satisfy λl(t|h; θ) = 0
for t ≤ t(h) to ensure that ti > ti−1 = t(hi). These
modeling assumptions are quite weak. In fact, any

distribution for D in which the timestamps are con-
tinuous random variables can be written in this form.
For more details see [1, 2]. Despite the fact that the
modeling assumptions are weak, these models offer a
powerful approach for decomposing the dependencies
of different event types on the past. In particular, this
per label conditional specification allows one to model
detailed label-specific dependence on past events.

Next we define a graphical conditional intensity model
that we call a graphical event model (GEM). A fil-
tered history for A ⊆ L as [h]A = {(ti, li)|(ti, li) ∈
h ∧ li ∈ A}. A GEM is a pair < G, θ >, where
G =< L, E > is a directed graph over a set of event
types and edges in E represent potential dependencies
among event types. The parameters θ = {θl}l∈L pa-
rameterize the intensity functions for each event type.
In particular, λl(t|ht, θl) = λl(t|[ht]πl

, θl) where πl is
the set of parents for l in G. As in the case of the
DBN, a process independence statement correspond to
testing a dependence of an event type on set of event
histories. One potential approach to testing a process
independence PI(a,C, b) is to estimate/learn an inten-
sity function for b using the event histories for {a}∪C
and see if the intensity model depends on the event
history for a. The work by Gunawardana et al (2011)
on learning piecewise continuous intensity models is a
good starting point for this approach.

5 Discussion

One of the goals for the research direction described
in this paper is the development a sound approach
to causal inference for dynamic systems. One of the
popular extant approaches is that of Granger causal-
ity which fails on this account. This approach is typi-
cally applied in a discrete-time continuous valued time-
series and, thus, can be viewed as a dynamic Bayesian
network. Roughly speaking, in a multivariate time se-
ries X a set of variables are the Granger-causes of Xj if
the historical values of this set of variables (including
Xj) are necessary and sufficient for optimal predic-
tion. Unfortunately this approach does not appropri-
ately handle latent common causes. In particular, for
both of the scenarios described in Lemma 8 it is the
case that each of the variables is a Granger cause of its
neighbors while this relationships need not be causal
as the lemma demonstrates. In fact, it is easy to con-
struct stochastic processes with latent factors which
demonstrate that the inferential approach to Granger
causality is not sound with respect to causal relations.

There has been much work related to causal discov-
ery and the estimation of causal effects in time-series.
As discussed above, the work on Granger causality
(Granger 1969) is the most well known. The short-
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comings of this approach are also well known (e.g.,
Eichler 2007) and there has been some work in trying
to address these known short comings. For instance,
Eichler (2007) proposes a similar approach to the ap-
proach described here but differs in that it allows for
the possibility of “simultaneous correlation” which re-
quires the use of an alternative definition of separa-
tion. In addition, while providing definitions of cause
and spurious cause, sufficient conditions for the identi-
fication of causal relationships are not presented. The
work of Entner and Hoyer (2010) considers the prob-
lem of causal discovery from time series data using
limited dependence vector autoregressive models and
the FCI algorithm that uses conditional independence
tests to identify the structure. Our approach of using
δ*separation is inspired by the work of Didelez (2008)
who defined δ-separation and shows the connection be-
tween that graphical separation criterion and local in-
dependence of marked point processes. Our extension
to δ*separation allows for the appropriate treatment of
self-edges which are essential in any self-excitatory or
self-inhibitory dynamic process. Another more loosely
connected work is that of Eichler and Didelez (2007)
that considers the estimation of causal effects based
on an intervention in a time-series.

While the results described in this paper offer hope
for developing a methodologically sound approach to
causal inference for dynamic systems, there is much
work that needs to be done. Here are some of the
open research questions.

• Non-parametric tests for process independence for
various type of temporal statistical processes

• Soundness and completeness results for
δ*separation analogous to those provided by
Pearl (1988), Meek (1995) and Spirtes et al
(2001) for d-separation. Note that Didelez (2008)
has shown the soundness of δ-separation for
a family of marked point processes related to
GEMs.

• A representation for equivalence classes of causal
graphs with respect to δ*separation in the case of
causal insufficiency (O ⊂ L) analogous to those
developed by Verma and Pearl (1990) and Spirtes
et al (2001) that captures the common casual as-
pects of the set of graphs in the equivalence class.
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Abstract

The framework of causal models is ideally suited to formalizing certain conceptual problems in quantum the-
ory, and conversely, a variety of tools developed by physicists studying the foundations of quantum theory have
applications for causal inference. This talk reviews some of the connections between the two fields. In partic-
ular, it is shown that certain correlations predicted by quantum theory and observed experimentally cannot be
explained by any causal model while respecting the core principles of causal discovery algorithms. Nonetheless,
it is argued that by understanding quantum theory as an innovation to the theory of Bayesian inference, one can
introduce a quantum generalization of the notion of a causal model and salvage a causal explanation of these cor-
relations without fine-tuning. Furthermore, experiments exhibiting certain quantum features, namely, coherence
and entanglement, enable solutions to causal inference problems that are intractable classically. In particular,
while passive observation of a pair of variables cannot determine the causal relation that holds between them
according to classical physics, this is not the case in quantum physics. In other words, according to quantum
theory, certain kinds of correlation do imply causation. The results of a quantum-optical experiment confirming
these predictions will be presented.
This talk is based on the work described in Refs. [1] and [2].
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Abstract

The problem of generalizability of empirical findings (experimental and observational) to new environments,
settings, and populations is one of the central problems in causal inference. Experiments in the sciences are
invariably conducted with the intent of being used elsewhere (e.g., outside the laboratory), where conditions are
likely to be different. This practice is based on the premise that, due to certain commonalities between the source
and target environments, causal claims would be valid even where experiments have never been performed.
Despite the extensive amount of empirical work relying on this premise, practically no formal treatments have
been able to determine the conditions under which generalizations are valid, in some formal sense.

Our work develops a theoretical framework for understanding, representing, and algorithmizing the general-
ization problem as encountered in many practical settings in data-intensive fields. Our framework puts many
apparently disparate generalization problems under the same theoretical umbrella. In this talk, I will start with a
brief review of the basic concepts, principles, and mathematical tools necessary for reasoning about causal and
counterfactual relations [1, 2, 3]. I will then introduce two special problems under the generalization umbrella.

First, I will discuss “transportability” [4, 5, 6], that is, how information acquired by experiments in one setting
can be reused to answer queries in another, possibly different setting where only limited information can be
collected. This question embraces several sub-problems treated informally in the literature under rubrics such as
“external validity” [7, 8], “meta-analysis” [9], “heterogeneity” [10], “quasi-experiments” [11, Ch. 3]. Further, I
will discuss selection bias [12, 13, 14], that is, how knowledge from a sampled subpopulation can be generalized
to the entire population when sampling selection is not random, but determined by variables in the analysis,
which means units are preferentially excluded from the sample.

In both problems, we provide complete conditions and algorithms to support the inductive step required in
the corresponding task. This characterization distinguishes between estimable and non-estimable queries, and
identifies which pieces of scientific knowledge need to be collected in each study to construct a bias-free estimate
of the target query. The problems discussed in this work have applications in several empirical sciences such as
Bioinformatics, Medicine, Economics, Social Sciences as well as in data-driven fields such as Machine Learning,
Artificial Intelligence and Statistics.
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[10] M. Höfler, A.T. Gloster, and J. Hoyer. Causal effects in psychotherapy: Counterfactuals counteract overgeneraliza-
tion. Psychotherapy Research, 2010.

[11] W.R. Shadish, T.D. Cook, and D.T. Campbell. Experimental and Quasi-Experimental Designs for Generalized Causal
Inference. Houghton-Mifflin, Boston, second edition, 2002.

[12] V. Didelez, S. Kreiner, and N. Keiding. Graphical models for inference under outcome-dependent sampling. Statisti-
cal Science, 25(3):368–387, 2010.

[13] E. Bareinboim and J. Pearl. Controlling selection bias in causal inference. In Proceedings of the 15th International
Conference on Artificial Intelligence and Statistics (AISTATS), pages 100–108. JMLR, April 21-23 2012.

[14] E. Bareinboim, J. Tian, and J. Pearl. Recovering from selection bias in causal and statistical inference. In Proceedings
of the Twenty-Eight National Conference on Artificial Intelligence (AAAI 2014), Menlo Park, CA, 2014. AAAI Press.

Generalizability of Causal and Statistical Relations

52
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Abstract

Assessing the causal effect of a treatment variable X on an outcome variable Y is usually difficult due to the
existence of unobserved common causes. Without further assumptions, observed dependences do not even prove
the existence of a causal effect from X to Y . It is intuitively clear that strong statistical dependences between
X and Y do provide evidence for X influencing Y if the influence of common causes is known to be weak. We
propose a framework that formalizes effect versus confounding in various ways and derive upper/lower bounds
on the effect in terms of a priori given bounds on confounding. The formalization includes information theoretic
quantities like information flow and causal strength, as well as other common notions like effect of treatment
on the treated (ETT). We discuss several scenarios where upper bounds on the strength of confounding can be
derived. This justifies to some extent human intuition which assumes the presence of causal effect when strong
(e.g., close to deterministic) statistical relations are observed.
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