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Causality: ubiquitous in the sciences

Genetics:
how to infer gene regulatory networks from micro-array data?

Joris Mooij (UvA) Causal Modelling 2015-04-17 3 / 45



Causality: ubiquitous in the sciences

Social sciences:
does playing violent computer games cause aggressive behavior?
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Causality: ubiquitous in the sciences

Neuroscience:
how to infer functional connectivity networks from fMRI data?
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Causality: ubiquitous in the sciences

Economy:
Does austerity reduce national debt?
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Causality: what is it?

Causality is central notion in:

reasoning

science

policy decisions

. . .

What is the “logic” of cause and effect?
(We don’t learn this at school!)

Question: give a definition of cause and effect.
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Hume on Causality

The subject of causality has a long history in philosophy. For example, this
is what Hume had to say about it:

“Thus we remember to have seen that species
of object we call flame, and to have felt that
species of sensation we call heat. We like-
wise call to mind their constant conjunction
in all past instances. Without any farther cer-
emony, we call the one cause and the other
effect, and infer the existence of the one from
that of the other.”

David Hume, Treatise of Human Nature
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But: does the rooster’s crow really cause the sun to rise?
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Russell on Causality

Some philosophers even proposed to abandon the concept of causality
completely.

“All philosophers, of every school, imagine
that causation is one of the fundamental
axioms or postulates of science, yet, oddly
enough, in advanced sciences such as grav-
itational astronomy, the word ‘cause’ never
occurs. The law of causality, I believe, like
much that passes muster among philosophers,
is a relic of a bygone age, surviving, like the
monarchy, only because it is erroneously sup-
posed to do no harm.”

Bertrand Russell, On The Notion Of Cause
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Causality in Statistics

Karl Pearson (one of the founders of modern statistics, well-known from
his work on the correlation coefficient) writes:

“Beyond such discarded fundamentals as
‘matter’ and ‘force’ lies still another fetish
amidst the inscrutable arcana of even modern
science, namely, the category of cause and ef-
fect.”

Karl Pearson, The Grammar of Science

Since then, many statisticians tried to avoid causal reasoning:

“Considerations of causality should be treated as they have always
been in statistics: preferably not at all.” (Terry Speed, former
president of the Biometric Society).

“It would be very healthy if more researchers abandon thinking of and
using terms such as cause and effect.” (Prominent social scientist).
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A modern philosopher on Causality

Randall Munroe, www.xkcd.org
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A formal theory of causality?

Question

Can we formalize causal reasoning?
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Exercise 1

Please make Exercise 1. . .
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Problems in formalizing causal reasoning: probabilities

Example (Simpson’s paradox)

We collect data from a biobank (e.g., the EPD) to investigate the
effectiveness of a new drug against a certain disease. It can happen that:

1 The probability of recovery is higher for patients that took the drug:

p(recovery|drug) > p(recovery|no drug)

2 For both male and female patients, however, the relation is opposite:

p(recovery|drug,male) < p(recovery|no drug,male)

p(recovery|drug, female) < p(recovery|no drug, female)

Should we use this drug for treatment?

Note

Fancy classifiers, deep learning and big data do not help us here!
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An important step forwards

Judea Pearl

ACM Turing Award 2011: “For fundamental contributions to artificial
intelligence through the development of a calculus for probabilistic and
causal reasoning.”
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Pearl’s contribution: the do-operator

Probability theory has a semantics for dealing with observations:
conditioning.
Pearl extends probability calculus by introducing a new operator for
describing interventions, the do-operator.

Example (Do-operator)

p(lung cancer|smoke): the probability that somebody gets lung
cancer, given (the observation) that the person smokes.

p(lung cancer| do(smoke)): the probability that somebody gets lung
cancer, when we force the person to smoke.

Resolution:

Simpson’s paradox is only paradoxical if we misinterpret
p(recovery|drug) as p(recovery| do(drug)).
We should prescribe the drug if
p(recovery| do(drug)) > p(recovery| do(no drug)).
Joris Mooij (UvA) Causal Modelling 2015-04-17 17 / 45



Do-calculus

Pearl recognized that the rules of probability theory do not suffice for
causal reasoning. He formulated three additional rules (the
“do-calculus”):

1 Ignoring observations:

p(y | do(x),w , z) = p(y | do(x),w) if (Y ⊥⊥Z |X ,W )GX

2 Action/observation exchange:

p(y | do(x), do(z),w) = p(y | do(x), z ,w) if (Y ⊥⊥Z |X ,W )GX ,Z

3 Ignoring actions:

p(y | do(x), do(z),w) = p(y | do(x),w) if (Y ⊥⊥Z |X ,W )G
X ,Z(W )

The do-calculus allows us to reason with (probabilistic) causal statements,
given (partial) knowledge of the causal structure.
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Causal graphs

We can express the causal relationships between a set of variables
X1, . . . ,XN in terms of a directed graph, the causal graph.

A directed edge Xi → Xj means that Xi is a direct cause of Xj

(relative to X1, . . . ,XN), i.e., not mediated via other variables
X1, . . . ,XN . Xi is called a parent of Xj , Xj is called a child of Xi .

Example

X1 X2

X1 and X2 are unrelated

X1 X2

X1 causes X2

X1 X2

X2 causes X1

X1 X2

X1 and X2 cause
each other

X1 X2

X3

X1 and X2 have a
common cause

X1 X2

X3

X1 and X2 have a
common effect
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Causal graphs: ancestor relationships

If Xi1 → Xi2 → Xi3 → · · · → Xin then we say that Xi1 is an ancestor of
Xin and Xin is a descendant of Xi1 .

If Z is an unobserved common ancestor of Xi and Xj then we call Z a
confounder of Xi and Xj .

Example

X1

X2

X3

X1 is ancestor of
X3

Z1

Z2 Z3

X1 X2

Z1 confounds X1

and X2

X1 X2

X1 and X2 are
confounded
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Confounders

A correlation between X ,Y may be explained by direct causal relation
X → Y or Y → X , or a confounder, or a combination of these.

Another explanation of a correlation is selection bias.

Example

Significant correlation (p = 0.008) between human birth rate and
number of stork populations in European countries [Matthews, 2000]

Most people nowadays do not believe that storks deliver babies (nor
that babies deliver storks)

There must be some confounder explaining the correlation

S B S B

?

S B
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Causal feedback

Definition: causal feedback

A SCM incorporates causal feedback if its graph contains a directed cycle

Xi0 → Xi1 → · · · → Xin , Xi0 = Xin

If it does not contain such a directed cycle, the model is called acyclic.

Example

In economy, causal feedback is of-
ten present:

R: risks taken by bank;
B: imminent bankruptcy;
S : saved by the government.

S

R

B
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Structural Causal Models: Definition

Can be traced back to S. Wright’s path diagrams (1921) and Structural
Equation Models in the social sciences.

Definition (Pearl, 2000)

A Structural Causal Model (SCM) is defined by:

1 N observed random variables X1, . . . ,XN and N latent random
variables E1, . . . ,EN

2 N structural equations:

Xi = fi (Xpa(i),Ei ), i = 1, . . . ,N;

effect

causal mechanism

observed direct causes
noise

where the subsets pa(i) ⊆ {1, . . . ,N} define the observed direct
causes of Xi (the parents of Xi ),

3 a joint probability distribution p(E1, . . . ,EN) on latent variables.

Joris Mooij (UvA) Causal Modelling 2015-04-17 24 / 45



Structural Causal Models: Definition

Can be traced back to S. Wright’s path diagrams (1921) and Structural
Equation Models in the social sciences.

Definition (Pearl, 2000)

A Structural Causal Model (SCM) is defined by:

1 N observed random variables X1, . . . ,XN and N latent random
variables E1, . . . ,EN

2 N structural equations:

Xi = fi (Xpa(i),Ei ), i = 1, . . . ,N;

effect

causal mechanism

observed direct causes
noise

where the subsets pa(i) ⊆ {1, . . . ,N} define the observed direct
causes of Xi (the parents of Xi ),

3 a joint probability distribution p(E1, . . . ,EN) on latent variables.

Joris Mooij (UvA) Causal Modelling 2015-04-17 24 / 45



Structural Causal Models: Definition

Can be traced back to S. Wright’s path diagrams (1921) and Structural
Equation Models in the social sciences.

Definition (Pearl, 2000)

A Structural Causal Model (SCM) is defined by:

1 N observed random variables X1, . . . ,XN and N latent random
variables E1, . . . ,EN

2 N structural equations:

Xi = fi (Xpa(i),Ei ), i = 1, . . . ,N;

effect

causal mechanism

observed direct causes
noise

where the subsets pa(i) ⊆ {1, . . . ,N} define the observed direct
causes of Xi (the parents of Xi ),

3 a joint probability distribution p(E1, . . . ,EN) on latent variables.

Joris Mooij (UvA) Causal Modelling 2015-04-17 24 / 45



Structural Causal Models: Definition

Can be traced back to S. Wright’s path diagrams (1921) and Structural
Equation Models in the social sciences.

Definition (Pearl, 2000)

A Structural Causal Model (SCM) is defined by:

1 N observed random variables X1, . . . ,XN and N latent random
variables E1, . . . ,EN

2 N structural equations:

Xi = fi (Xpa(i),Ei ), i = 1, . . . ,N;

effect

causal mechanism

observed direct causes
noise

where the subsets pa(i) ⊆ {1, . . . ,N} define the observed direct
causes of Xi (the parents of Xi ),

3 a joint probability distribution p(E1, . . . ,EN) on latent variables.

Joris Mooij (UvA) Causal Modelling 2015-04-17 24 / 45



Structural Causal Models: Example

Example

i pa(i) Xi = fi (Xpa(i),Ei )

1 ∅ X1 = f1(E1)
2 ∅ X2 = f2(E2)
3 {1, 2} X3 = f3(X1,X2,E3)
4 {1} X4 = f4(X1,E4)
5 {3, 4} X5 = f5(X3,X4,E5)

p(E1, . . . ,E5) = p(E1,E2)p(E3,E5)p(E4)

X1X2

X3 X4

X5

Directed arrows (from Xj to Xi if j ∈ pa(i)) correspond with
functional dependences and are interpreted as direct causal relations.

Bidirected arrows between noise variables indicate statistical
dependences between noise variables.

Usually, noise variables are not depicted explicitly.
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Modeling interventions in a SCM

For a causal model, we need to specify how we model interventions.

Interventions in SCMs

An intervention do(XI = ξI ) on a set of variables XI with I ⊆ {1, . . . ,N},
forcing them to attain the value ξI , changes the structural equations as
follows:

Original SCM M: Intervened SCM MξI :

Xi = fi (Xpa(i),Ei ) ∀i ∈ I Xi = ξi ∀i ∈ I
Xj = fj(Xpa(j),Ej) ∀j 6∈ I Xj = fj(Xpa(j),Ej) ∀j 6∈ I

p(E ) = . . . p(E ) = . . .

Interpretation: overriding default causal mechanisms that normally
would determine the values of the intervened variables.

In the graph of M, the effect of the intervention is to remove all
incoming arrows of intervened variables {Xi}i∈I .
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Modeling Interventions: Example

Example

Observational (no intervention):

Causal graph GM :

X1X2

X3 X4

X5

Structural causal model M :

X1 = f1(E1)
X2 = f2(E2)
X3 = f3(X1,X2,E3)
X4 = f4(X1,E4)
X5 = f5(X3,X4,E5)

p(E1, . . . ,E5) = p(E1,E2)p(E3,E5)p(E4)
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Modeling Interventions: Example

Example

Intervention do(X1 = ξ1):

Causal graph GMξ1
:

X1X2

X3 X4

X5

Structural causal model Mξ1 :

X1 = ξ1
X2 = f2(E2)
X3 = f3(X1,X2,E3)
X4 = f4(X1,E4)
X5 = f5(X3,X4,E5)
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Modeling Interventions: Example

Example

Intervention do(X3 = ξ3):

Causal graph GMξ3
:

X1X2

X3 X4

X5

Structural causal model Mξ3 :

X1 = f1(E1)
X2 = f2(E2)
X3 = ξ3
X4 = f4(X1,E4)
X5 = f5(X3,X4,E5)

p(E1, . . . ,E5) = p(E1,E2)p(E3,E5)p(E4)
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Exercise 2

Please make Exercise 2. . .
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Causal sufficiency

Definition: Confounder

A confounder is an unobserved variable that is an ancestor of at least two
endogenous variables (a “hidden common cause”).

Absence of confounders implies causal sufficiency.

Definition: Causal Sufficiency

If all noise variables in an SCM are jointly independent, i.e., if the joint
probability distribution p(E ) of the noise variables factorizes:

p(E ) =
N∏
i=1

p(Ei )

then we say that the variables X are causally sufficient.
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Markovian SCMs

Definition

An SCM M is called Markovian if

1 it is acyclic (“no causal feedback”);

2 it is causally sufficient (“no hidden common causes”).

Its causal graph is a Directed Acyclic Graph (DAG).

Markovian SCMs are easier to handle than non-Markovian SCMs; this
is why we will focus on these for the rest of this talk.

Non-Markovian SCMs are an active research topic, and the theory for
these cases is far from complete.

Markovian SCMs are related to Causal Bayesian networks.
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Bayesian Networks

Definition: Bayesian Network

A Bayesian network is a pair (G, p) where:

G is a Directed Acyclic Graph

p is a probability distribution on the nodes X1, . . . ,XN of G such that

p(X1, . . . ,XN) =
N∏
i=1

p(Xi |Xpa(i))

where pa(i) are the parents of Xi in G.
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Causal Bayesian Networks

Definition: Causal Bayesian Network

A Bayesian Network is causal if:

Arrows correspond with direct causal relations

After an intervention do(XI = ξI ), the incoming arrows on XI are
removed and the probability distribution becomes:

p
(
X1, . . . ,XN | do(XI = ξI )

)
=

N∏
i=1
i /∈I

p(Xi |Xpa(i))
∏
i∈I

1[Xi=ξi ]
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The Causal Markov Condition

Theorem: Causal Markov Condition

Any probability distribution induced by a Markovian SCM M can be
factorized as:

p(X1, . . . ,XN) =
N∏
i=1

p(Xi |Xpa(i))

The proof proceeds by marginalization over the noise variables E :

p(X ) =

∫
p(X ,E ) dE =

∫ ( N∏
i=1

δ
(
Xi − fi (Xpa(i),Ei )

))( N∏
i=1

p(Ei )

)
dE

∗
=

N∏
i=1

∫
δ
(
Xi − fi (Xpa(i),Ei )

)
p(Ei ) dEi =

N∏
i=1

p(Xi |Xpa(i))

where we used the acyclicity in the step marked with a ∗.
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Truncated factorization

Theorem: Truncated factorization

Any probability distribution induced by a Markovian SCM M can be
factorized as:

p(X1, . . . ,XN) =
N∏
i=1

p(Xi |Xpa(i))

After an intervention do(XI = ξI ), the probability distribution becomes:

p
(
X1, . . . ,XN | do(XI = ξI )

)
=

N∏
i=1
i /∈I

p(Xi |Xpa(i))
∏
i∈I

1[Xi=ξi ]

Each Markovian SCM induces a Causal Bayesian network.
Conversely, for any given Causal Bayesian network, one can construct
an equivalent Markovian SCM.
SCMs are more general than Causal Bayesian Networks (can deal with
confounders, feedback, allow us to define counterfactuals).
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Identifiability

Suppose that we have i.i.d. data of the observational distribution
p(X ,Y , . . . ). From this, we can estimate p(Y |X ).

In general, however, p(Y | do(X )) 6= p(Y |X ).

How to estimate p(Y | do(X )) from data?

Sometimes (given enough assumptions), p(Y | do(X )) can be inferred
from purely observational data p(X ,Y , . . . ), without the need for
actually performing the experiment do(X ).

In that case, we say that p(Y | do(X )) is identifiable.
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Conditions for Identifiability

Given enough modeling assumptions, the effects of interventions can
sometimes be inferred from observational data alone!

In many cases, the uncertainty about the model is too large (the set A
of assumptions is too small) and experimentation becomes necessary.

Can we find a condition which tells us when a causal effect
p(Y | do(X )) is identifiable?

A sufficient condition is provided by Pearl’s Back-door criterion. To
state this, we first need some graph theoretical terminology.
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Some graph-theoretical notions

Definition: path, directed path, ancestor and collider

Let G be a graph with directed (←, →) and bidirected (↔) edges.

A path q is a sequence of consecutive edges (where the end node of
each edge equals the start node of the next edge).

A path in which each edge is of the form · · · → . . . is called directed.

If there is a directed path from X to Y , X is called a ancestor of Y .

A collider on a path q is a node X on q with precisely two
“incoming” arrow heads: → X ←, → X ↔, ↔ X ←, ↔ X ↔
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Definition: path, directed path, ancestor and collider

Let G be a graph with directed (←, →) and bidirected (↔) edges.

A path q is a sequence of consecutive edges (where the end node of
each edge equals the start node of the next edge).

A path in which each edge is of the form · · · → . . . is called directed.

If there is a directed path from X to Y , X is called a ancestor of Y .

A collider on a path q is a node X on q with precisely two
“incoming” arrow heads: → X ←, → X ↔, ↔ X ←, ↔ X ↔

Example

X1X2

X3 X4

X5

The sequence X1 → X3 ← X1 is not a path.
The sequence X1 ↔ X2 → X3 is a path.
X1, X2, X3 and X4 are ancestors of X5.
The path X3 → X5 ← X4 contains a collider X5.
The path X1 ↔ X2 → X3 contains no collider.
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More graph theory: blocking paths

Definition: blocking paths

Let G be a graph with directed and bidirected edges. Given a path p
between nodes X and Y in G, and a set of nodes S ⊆ G \ {X ,Y }, we say
that S blocks p if p contains

a non-collider which is in S , or

a collider which is not an ancestor of S .

Example

X1X2

X3 X4

X5

X3 → X5 ← X4 is blocked by ∅.
X3 → X5 ← X4 is blocked by {X1}.
X3 → X5 ← X4 is not blocked by {X5}.
X3 ← X2 ↔ X1 → X4 is blocked by {X1}.
X3 ← X2 ↔ X1 → X4 is not blocked by {X5}.
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Adjustment for covariates

In the Markovian case, by using truncated factorization, we can show:

p(Y | do(X ),Xpa(X )) = p(Y |X ,Xpa(X ))

and therefore:

p(Y | do(X )) =

∫
p(Y |X ,Xpa(X ))p(Xpa(X )) dXpa(X )

So p(Y | do(X )) is identifiable (in the Markovian case).

Which other sets (instead of the parents of X ) could we use to
express the causal effect on Y of intervening on X in terms of the
observed distribution p(X )?

A sufficient condition is given by Pearl’s Back-door criterion.
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The Back-door Criterion

Theorem: Back-door criterion

A set S of nodes is “admissible” or “sufficient” for adjustment if

1 no element of S is a descendant of X

2 the elements of S block all back-door paths X ← . . .Y and
X ↔ . . .Y (paths between X and Y with an arrow pointing to X ).

In that case,

p(Y | do(X )) =

∫
p(Y |X ,XS)p(XS) dXS

Example

X1X2

X3 X4

X5

{X1} is sufficient for adjustment to find the causal
effect of X4 on X5.
{X1} is sufficient for adjustment to find the causal
effect of X2 on X5.
No set is sufficient for adjustment to find the causal
effect of X3 on X5.
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Exercise 3

Please make Exercise 3. . .
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Causal reasoning vs. probabilistic reasoning

Statistics, (most of) Machine Learning

About associations (correlation between smoking and lung cancer)

Models the distribution of the data

Predicting by conditioning (if we know that somebody smokes, what
is the probability that he/she will get lung cancer?)

Causality

About causation (smoking causes lung cancer)

Models the mechanism that generates the data

Predicting results of interventions (if we force somebody to smoke,
what is the probability that he/she will get lung cancer?)

Observing 6= intervening: p
(
Y |X

)
6= p

(
Y | do(X )

)
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Further reading

Thank you for your attention!
Pearl, J. (1999).
Simpson’s paradox: An anatomy.
Technical Report R-264, UCLA Cognitive Systems Laboratory.

Pearl, J. (2000).
Causality: Models, Reasoning, and Inference.
Cambridge University Press.

Pearl, J. (2009).
Causal inference in statistics: An overview.
Statistics Surveys, 3:96–146.

Spirtes, P., Glymour, C., and Scheines, R. (2000).
Causation, Prediction, and Search.
The MIT Press.
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