BibTeX entries

Published journal articles and conference proceedings

@proceedings{UAI2024,
  title =     {Proceedings of the Fortieth Conference on Uncertainty in Artificial Intelligence},
  booktitle = {Proceedings of the Fortieth Conference on Uncertainty in Artificial Intelligence},
  editor =    {Negar Kiyavash and Joris M. Mooij},
  publisher = {PMLR},
  series =    {Proceedings of Machine Learning Research},
  volume =    244,
  url =       {https://proceedings.mlr.press/v244/}
}
@inproceedings{BoekenZoeterMooij_CLEAR_24,
  title = {Evaluating and Correcting Performative Effects of Decision Support Systems via Causal Domain Shift},
  author = {Philip Boeken and Onno Zoeter and Joris M. Mooij},
  booktitle = {Proceedings of the Third Conference on Causal Learning and Reasoning ({CLEAR}-24)},
  year = {2024},
  editor = {Francesco Locatello and Vanessa Didelez},
  volume = {236},
  pages = {551--569},
  series = {Proceedings of Machine Learning Research},
  publisher = {PMLR},
  url = {https://proceedings.mlr.press/v236/boeken24a.html},
}
@inproceedings{Boeken++_UAI_23,
  title = {Correcting for selection bias and missing response in regression using privileged information},
  author = {Philip Boeken and Noud de Kroon and Mathijs de Jong and Joris M. Mooij and Onno Zoeter},
  booktitle = {Proceedings of the Thirty-Ninth Conference on Uncertainty in Artificial Intelligence ({UAI}-23)},
  year = {2023},
  editor = {Evans, Robin J. and Shpitser, Ilya},
  volume = {216},
  pages = {195--205},
  series = {Proceedings of Machine Learning Research},
  month = 08,
  publisher = {PMLR},
  url = {https://proceedings.mlr.press/v216/boeken23a.html},
}
@inproceedings{ClaassenMooij_UAI_23,
  title = {Establishing Markov equivalence in cyclic directed graphs},
  author = {Tom Claassen and Joris M. Mooij},
  booktitle = {Proceedings of the Thirty-Ninth Conference on Uncertainty in Artificial Intelligence ({UAI}-23)},
  year = {2023},
  editor = {Evans, Robin J. and Shpitser, Ilya},
  volume = {216},
  pages = {433--442},
  series = {Proceedings of Machine Learning Research},
  month = 08,
  publisher = {PMLR},
  url = {https://proceedings.mlr.press/v216/boeken23a.html},
}
@article{Claassen_Mooij_2309.03092,
  title = {Establishing Markov equivalence in cyclic directed graphs},
  author = {Tom Claassen and Joris M. Mooij},
  journal = {arXiv.org preprint},
  volume = {arXiv:2309.03092 [cs.AI]},
  url = {https://arxiv.org/abs/2309.03092},
  month = 9,
  year = 2023,
}
@article{BlomMooij_JCI_23,
  author = {Tineke Blom and Joris M. Mooij},
  journal = {Journal of Causal Inference},
  title = {Causality and Independence in Perfectly Adapted Dynamical Systems},
  volume = 11,
  issue = 1,
  pages = {20210005},
  year = 2023,
  url = {https://www.degruyter.com/document/doi/10.1515/jci-2021-0005/html},
}
@inproceedings{BlomMooij_UAI_22,
  title = {Robustness of Model Predictions under Extension},
  author = {Blom, Tineke and Mooij, Joris M.},
  booktitle = {Proceedings of the Thirty-Eighth Conference on Uncertainty in Artificial Intelligence ({UAI}-22)},
  pages = {213--222},
  year = {2022},
  editor = {Cussens, James and Zhang, Kun},
  volume = {180},
  series = {Proceedings of Machine Learning Research},
  month = 08,
  publisher = {PMLR},
  url = {https://proceedings.mlr.press/v180/blom22a.html},
}
@inproceedings{DeKroonBelgraveMooij_CLEAR_22,
  title = {Causal Bandits without Prior Knowledge using Separating Sets},
  author = {De Kroon, Arnoud A. W. M. and Belgrave, Danielle and Mooij, Joris M.},
  booktitle = {Proceedings of the First Conference on Causal Learning and Reasoning ({CLEAR}-22)},
  pages = {407--427},
  year = {2022},
  editor = {Sch{\"o}lkopf, Bernhard and Uhler, Caroline and Zhang, Kun},
  volume = {177},
  series = {Proceedings of Machine Learning Research},
  publisher = {PMLR},
  url = {https://proceedings.mlr.press/v177/kroon22a.html},
}
@inproceedings{VersteegZhangMooij_CLEAR_22,
  title = {Local Constraint-Based Causal Discovery under Selection Bias},
  author = {Versteeg, Philip and Zhang, Cheng and Mooij, Joris M.},
  booktitle = {Proceedings of the First Conference on Causal Learning and Reasoning ({CLEAR}-22)},
  pages = {840--860},
  year = {2022},
  editor = {Sch{\"o}lkopf, Bernhard and Uhler, Caroline and Zhang, Kun},
  volume = {177},
  series = {Proceedings of Machine Learning Research},
  publisher = {PMLR},
  url = {https://proceedings.mlr.press/v177/versteeg22a.html},
}
@article{Bongers++_AOS_21,
  author = {Stephan Bongers and Patrick Forr{\'e} and Jonas Peters and Joris M. Mooij},
  title = {Foundations of Structural Causal Models with Cycles and Latent Variables},
  journal = {Annals of Statistics},
  year = {2021},
  volume = {49},
  number = {5},
  pages = {2885-2915},
  doi = {10.1214/21-AOS2064},
}
@article{BlomVanDiepenMooij_JMLR_21,
  author  = {Tineke Blom and Mirthe M. van Diepen and Joris M. Mooij},
  title   = {Conditional Independences and Causal Relations implied by Sets of Equations},
  journal = {Journal of Machine Learning Research},
  year    = {2021},
  volume  = {22},
  number  = {178},
  pages   = {1-62},
  url     = {http://jmlr.org/papers/v22/20-863.html}
}
@inproceedings{BoekenMooij_UAI_21,
  title = {A {B}ayesian Nonparametric Conditional Two-sample Test with an Application to Local Causal Discovery},
  author = {Boeken, Philip A. and Mooij, Joris M.},
  booktitle = {Proceedings of the Thirty-Seventh Conference on Uncertainty in Artificial Intelligence ({UAI}-21)},
  pages = {1565--1575},
  year = 2021,
  editor = {de Campos, Cassio and Maathuis, Marloes H.},
  volume = 161,
  series = {Proceedings of Machine Learning Research},
  month = 7,
  publisher = {PMLR},
  url = {https://proceedings.mlr.press/v161/boeken21a.html},
}
@inproceedings{MarxGrettonMooij_UAI_21,
  title = {A Weaker Faithfulness Assumption based on Triple Interactions},
  author = {Alexander Marx and Arthur Gretton and Joris M. Mooij},
  booktitle = {Proceedings of the Thirty-Seventh Conference on Uncertainty in Artificial Intelligence ({UAI}-21)},
  pages = {451--460},
  year = 2021,
  editor = {de Campos, Cassio and Maathuis, Marloes H.},
  volume = 161,
  series = {Proceedings of Machine Learning Research},
  month = 7,
  publisher = {PMLR},
  url = {https://proceedings.mlr.press/v161/marx21a.html},
}
@inproceedings{MooijClaassen_UAI_20,
  title = {Constraint-Based Causal Discovery using Partial Ancestral Graphs in the presence of Cycles},
  author = {Joris M. Mooij and Tom Claassen},
  booktitle = {Proceedings of the 36th Conference on {U}ncertainty in {A}rtificial {I}ntelligence ({UAI}-20)},
  editor = {Jonas Peters and David Sontag},
  publisher = {PMLR},
  volume = 124,
  pages = {1159--1168},
  year = 2020,
  month = 8,
  url = {http://proceedings.mlr.press/v124/m-mooij20a/m-mooij20a-supp.pdf}
}
@article{Mooij++_JMLR_20,
  author  = {Joris M. Mooij and Sara Magliacane and Tom Claassen},
  title   = {Joint Causal Inference from Multiple Contexts},
  journal = {Journal of Machine Learning Research},
  year    = {2020},
  volume  = {21},
  number  = {99},
  pages   = {1-108},
  url     = {http://jmlr.org/papers/v21/17-123.html}
}
@inproceedings{VersteegMooij_BIBM_19,
  author    = {Philip Versteeg and Joris M. Mooij},
  booktitle = {2019 IEEE International Conference on Bioinformatics and Biomedicine ({BIBM})},
  title     = {Boosting Local Causal Discovery in High-Dimensional Expression Data},
  year      = {2019},
  pages     = {2599-2604},
  doi       = {10.1109/BIBM47256.2019.8983232},
  url       = {https://doi.ieeecomputersociety.org/10.1109/BIBM47256.2019.8983232},
  publisher = {IEEE Computer Society},
  address   = {Los Alamitos, CA, USA},
  month     = 11
}
@inproceedings{BlomBongersMooij_UAI_19,
  title     = {Beyond Structural Causal Models: Causal Constraints Models},
  author    = {Tineke Blom and Stephan Bongers and Joris M. Mooij},
  pages     = {585-594},
  url       = {https://proceedings.mlr.press/v115/blom20a.html},
  booktitle = {Proceedings of the 35th Uncertainty in Artificial Intelligence Conference ({UAI}-19)},
  editor    = {Adams, Ryan P. and Gogate, Vibhav},
  year      = 2020,
  publisher = {PMLR},
  series    = {Proceedings of Machine Learning Research},
  month     = 7,
  volume    = 115,
}
@inproceedings{ForreMooij_UAI_19,
  title     = {Causal Calculus in the Presence of Cycles, Latent Confounders and Selection Bias},
  author    = {Patrick Forr{\'e} and Joris M. Mooij},
  pages     = {71--80},
  url       = {https://proceedings.mlr.press/v115/forre20a.html},
  booktitle = {Proceedings of the 35th Uncertainty in Artificial Intelligence Conference ({UAI}-19)},
  editor    = {Adams, Ryan P. and Gogate, Vibhav},
  year      = 2020,
  publisher = {PMLR},
  series    = {Proceedings of Machine Learning Research},
  month     = 7,
  volume    = 115,
}
@incollection{Magliacane++_NeurIPS_18,
  title = {Domain Adaptation by Using Causal Inference to Predict Invariant Conditional Distributions},
  author = {Magliacane, Sara and van Ommen, Thijs and Claassen, Tom and Bongers, Stephan and Versteeg, Philip and Mooij, Joris M},
  booktitle = {Advances in Neural Information Processing Systems 31 ({N}eur{IPS}2018)},
  editor = {S. Bengio and H. Wallach and H. Larochelle and K. Grauman and N. Cesa-Bianchi and R. Garnett},
  pages = {10869--10879},
  year = {2018},
  publisher = {Curran Associates, Inc.},
  url = {http://papers.nips.cc/paper/8282-domain-adaptation-by-using-causal-inference-to-predict-invariant-conditional-distributions.pdf}
}
@inproceedings{Blom++_UAI_18,
  title     = {An Upper Bound for Random Measurement Error in Causal Discovery},
  author    = {Tineke Blom and Anna Klimovskaia and Sara Magliacane and Joris M. Mooij},
  booktitle = {Proceedings of the 34th Annual Conference on {U}ncertainty in {A}rtificial {I}ntelligence ({UAI}-18)},
  pages     = {570-579},
  year      = 2018,
}
@inproceedings{ForreMooij_UAI_18,
  title     = {Constraint-based Causal Discovery for Non-Linear Structural Causal Models with Cycles and Latent Confounders},
  author    = {Patrick Forr{\'e} and Joris M. Mooij},
  booktitle = {Proceedings of the 34th Annual Conference on {U}ncertainty in {A}rtificial {I}ntelligence ({UAI}-18)},
  pages     = {269-278},
  year      = 2018,
}
@inproceedings{Rubenstein++_UAI_18,
  title     = {From Deterministic {ODE}s to Dynamic Structural Causal Models},
  author    = {Paul K. Rubenstein and Stephan Bongers and Bernhard Sch{\"o}lkopf and Joris M. Mooij},
  booktitle = {Proceedings of the 34th Annual Conference on {U}ncertainty in {A}rtificial {I}ntelligence ({UAI}-18)},
  pages     = {114-123},
  year      = 2018,
}
@inproceedings{VanOmmenMooij_UAI_17,
  title     = {Algebraic Equivalence of Linear Structural Equation Models},
  author    = {Thijs van Ommen and Joris M. Mooij},
  booktitle = {Proceedings of the 33rd Annual Conference on {U}ncertainty in {A}rtificial {I}ntelligence ({UAI}-17)},
  year      = 2017,
}
@incollection{Louizos++_NIPS_17,
  author = {Christos Louizos and Uri Shalit and Joris M. Mooij and David Sontag and Richard Zemel and Max Welling},
  title = {Causal Effect Inference with Deep Latent-Variable Models},
  booktitle = {Advances in Neural Information Processing Systems 30},
  editor = {I. Guyon and U. V. Luxburg and S. Bengio and H. Wallach and R. Fergus and S. Vishwanathan and R. Garnett},
  pages = {6449--6459},
  year = 2017,
  publisher = {Curran Associates, Inc.},
  url = {http://papers.nips.cc/paper/7223-causal-effect-inference-with-deep-latent-variable-models.pdf}
}
@inproceedings{Rubenstein++_UAI_17,
  title     = {Causal Consistency of Structural Equation Models},
  author    = {Paul K. Rubenstein and Sebastian Weichwald and Stephan Bongers and Joris M. Mooij and Dominik Janzing and Moritz Grosse-Wentrup and Bernhard Sch{\"o}lkopf},
  booktitle = {Proceedings of the 33rd Annual Conference on {U}ncertainty in {A}rtificial {I}ntelligence ({UAI}-17)},
  year      = 2017,
}
@incollection{MagliacaneClaassenMooij_NIPS_16,
  title = {Ancestral Causal Inference},
  author = {Magliacane, Sara and Claassen, Tom and Mooij, Joris M},
  booktitle = {Advances in Neural Information Processing Systems 29},
  editor = {D. D. Lee and M. Sugiyama and U. V. Luxburg and I. Guyon and R. Garnett},
  pages = {4466--4474},
  year = {2016},
  publisher = {Curran Associates, Inc.},
  url = {http://papers.nips.cc/paper/6266-ancestral-causal-inference.pdf}
}
@article{Meinshausen++_PNAS_16,
  author  = {Nicolai Meinshausen and Alain Hauser and Joris M. Mooij and Jonas Peters and Philip Versteeg and Peter B{\"u}hlmann},
  title   = {Methods for causal inference from gene perturbation experiments and validation},
  journal = {Proceedings of the National Academy of Sciences of the {U}nited {S}tates of {A}merica},
  year    = {2016},
  volume  = {113},
  number  = {27},
  pages   = {7361-7368},
  url     = {http://www.pnas.org/content/113/27/7361.abstract?sid=0ce8e45d-586d-4272-b50e-5a326f9495ef}
}
@article{Mooij++_JMLR_16,
  author  = {Joris M. Mooij and Jonas Peters and Dominik Janzing and Jakob Zscheischler and Bernhard Sch{\"o}lkopf},
  title   = {Distinguishing Cause from Effect Using Observational Data: Methods and Benchmarks},
  journal = {Journal of Machine Learning Research},
  year    = {2016},
  volume  = {17},
  number  = {32},
  pages   = {1-102},
  url     = {http://jmlr.org/papers/v17/14-518.html}
}
@inproceedings{MooijCremers_UAI2015CI,
  title = {An Empirical Study of one of the Simplest Causal Prediction Algorithms},
  author = {Joris M. Mooij and Jerome Cremers},
  pages = {30--39},
  url = {http://ceur-ws.org/Vol-1504/uai2015aci_paper2.pdf},
  crossref = {UAI2015CI},
}

@proceedings{UAI2015CI,
  booktitle = {{UAI} 2015 Workshop on Advances in Causal Inference},
  year = 2015,
  editor = {Ricardo Silva and Ilya Shpitser and Robin J. Evans and Jonas Peters and Tom Claassen},
  number = 1504,
  series = {{CEUR} Workshop Proceedings},
  address = {Aachen},
  issn = {1613-0073},
  url = {http://ceur-ws.org/Vol-1504},
  venue = {Amsterdam, The Netherlands},
  eventdate = {2016-07-16},
  title = {Proceedings of the {UAI} 2015 Workshop on Advances in Causal Inference},
}
@article{DeLeeuwMooijHeskesPosthuma_15,
  author = {de Leeuw, Christiaan A. AND Mooij, Joris M. AND Heskes, Tom AND Posthuma, Danielle},
  journal = {PLoS Computational Biology},
  publisher = {Public Library of Science},
  title = {{MAGMA}: Generalized Gene-Set Analysis of {GWAS} Data},
  year = {2015},
  month = {04},
  volume = {11},
  url = {http://dx.doi.org/10.1371%2Fjournal.pcbi.1004219},
  pages = {e1004219},
  number = {4},
  doi = {10.1371/journal.pcbi.1004219}
}        
@inproceedings{CorniaMooij_UAI2014CI,
  title = {Type-{II} Errors of Independence Tests Can Lead to Arbitrarily Large Errors in Estimated Causal Effects: An Illustrative Example},
  author = {Nicholas Cornia and Joris M. Mooij},
  pages = {35--42},
  url = {http://ceur-ws.org/Vol-1274/uai2014ci_paper7.pdf},
  crossref = {UAI2014CI},
}
@proceedings{UAI2014CI,
  booktitle = {{UAI} 2014 Workshop Causal Inference: Learning and Prediction},
  year = 2014,
  editor = {Joris M. Mooij and Dominik Janzing and Jonas Peters and Tom Claassen and Antti Hyttinen},
  number = 1274,
  series = {{CEUR} Workshop Proceedings},
  address = {Aachen},
  issn = {1613-0073},
  url = {http://ceur-ws.org/Vol-1274},
  venue = {Quebec City, Quebec, Canada},
  eventdate = {2014-07-27},
  title = {Proceedings of the {UAI} 2014 Workshop Causal Inference: Learning and Prediction},
}
@article{PetersMooijJanzingSchoelkopf_JMLR_14,
  author  = {Jonas Peters and Joris M. Mooij and Dominik Janzing and Bernhard Sch{\"o}lkopf},
  title   = {Causal Discovery with Continuous Additive Noise Models},
  journal = {Journal of Machine Learning Research},
  year    = {2014},
  volume  = {15},
  pages   = {2009-2053},
  url     = {http://jmlr.org/papers/v15/peters14a.html}
}
@inproceedings{MooijHeskes_UAI_13,
  title     = {Cyclic Causal Discovery from Continuous Equilibrium Data},
  author    = {Joris M. Mooij and Tom Heskes},
  booktitle = {Proceedings of the 29th Annual Conference on {U}ncertainty in {A}rtificial {I}ntelligence ({UAI}-13)},
  year      = 2013,
  location  = {Corvallis, Oregon},
  publisher = {AUAI Press},
  editor    = {Ann Nicholson and Padhraic Smyth},
  pages     = {431--439},
  url       = {http://auai.org/uai2013/prints/papers/23.pdf}
}
@inproceedings{MooijJanzingSchoelkopf_UAI_13,
  title     = {From Ordinary Differential Equations to Structural Causal Models: the deterministic case},
  author    = {Joris M. Mooij and Dominik Janzing and Bernhard Sch{\"o}lkopf},
  booktitle = {Proceedings of the 29th Annual Conference on {U}ncertainty in {A}rtificial {I}ntelligence ({UAI}-13)},
  year      = 2013,
  location  = {Corvallis, Oregon},
  publisher = {AUAI Press},
  editor    = {Ann Nicholson and Padhraic Smyth},
  pages     = {440--448},
  url       = {http://auai.org/uai2013/prints/papers/24.pdf}
}
@inproceedings{ClaassenMooijHeskes_UAI_13,
  title     = {Learning Sparse Causal Models is not {NP}-hard},
  author    = {Tom Claassen and Joris M. Mooij and Tom Heskes},
  booktitle = {Proceedings of the 29th Annual Conference on {U}ncertainty in {A}rtificial {I}ntelligence ({UAI}-13)},
  year      = 2013,
  location  = {Corvallis, Oregon},
  publisher = {AUAI Press},
  editor    = {Ann Nicholson and Padhraic Smyth},
  pages     = {172--181},
  url       = {http://auai.org/uai2013/prints/papers/121.pdf}
}
@inproceedings{Schoelkopf_et_al_ICML_12,
  title     = {On causal and anticausal learning},
  author    = {Bernhard Sch{\"o}lkopf and Dominik Janzing and Jonas Peters and Eleni Sgouritsa and Kun Zhang and Joris M. Mooij},
  url       = {http://icml.cc/2012/papers/625.pdf},
  booktitle = {Proceedings of the 29th {I}nternational {C}onference on {M}achine {L}earning ({ICML} 2012)},
  year      = 2012,
  series =    {ICML '12},
  editor =    {John Langford and Joelle Pineau},
  location =  {Edinburgh, Scotland, GB},
  isbn =      {978-1-4503-1285-1},
  month =     {July},
  publisher = {Omnipress},
  address =   {New York, NY, USA},
  pages=      {1255--1262}
}
@article{Janzing_et_al_AI_12,
  title     = {Information-geometric approach to inferring causal directions},
  author    = {Dominik Janzing and Joris M. Mooij and Kun Zhang and Jan Lemeire and Jacob Zscheischler and Povilas Daniu{\v s}is and Bastian Steudel and Bernhard Sch{\"o}lkopf},
  journal   = {Artificial Intelligence},
  volume    = {182-183},
  pages     = {1-31},
  year      = 2012,
  issn      = {0004-3702},
  doi       = {10.1016/j.artint.2012.01.002},
  url       = {http://www.sciencedirect.com/science/article/pii/S0004370212000045}
}
@inproceedings{Mooij_et_al_NIPS_11,
  author    = {Joris M. Mooij and Dominik Janzing and Tom Heskes and Bernhard Sch{\"o}lkopf},
  title     = {On Causal Discovery with Cyclic Additive Noise Models},
  booktitle = {{A}dvances in {N}eural {I}nformation {P}rocessing {S}ystems 24 ({NIPS}*2011)},
  editor    = {J. Shawe-Taylor and R.S. Zemel and P. Bartlett and F.C.N. Pereira and K.Q. Weinberger},
  pages     = {639--647},
  year      = {2011},
  url       = {http://books.nips.cc/papers/files/nips24/NIPS2011_0449.pdf}
}
@inproceedings{Stegle_et_al_NIPS_11,
  author    = {Oliver Stegle and Christoph Lippert and Joris M. Mooij and Neil D. Lawrence and Karsten Borgwardt},
  title     = {Efficient inference in matrix-variate Gaussian models with iid observation noise},
  booktitle = {{A}dvances in {N}eural {I}nformation {P}rocessing {S}ystems 24 ({NIPS}*2011)},
  editor    = {J. Shawe-Taylor and R.S. Zemel and P. Bartlett and F.C.N. Pereira and K.Q. Weinberger},
  pages     = {630--638},
  year      = {2011},
  url       = {http://books.nips.cc/papers/files/nips24/NIPS2011_0443.pdf}
}
@inproceedings{Quinn_et_al_ESANN_11,
  title     = {Learning of causal relations},
  author    = {John Quinn and Joris M. Mooij and Tom Heskes and Michael Biehl},
  booktitle = {Proceedings of the 19th European Symposium on Artificial Neural Networks (ESANN 2011)},
  year      = 2011,
  url       = {http://www.dice.ucl.ac.be/esann/proceedings/papers.php?ann=2011#9}
}
@inproceedings{Peters_et_al_UAI_11,
  title     = {Identifiability of Causal Graphs using Functional Models},
  author    = {Jonas Peters and Joris M. Mooij and Dominik Janzing and Bernhard Sch{\"o}lkopf},
  booktitle = {Proceedings of the 27th Annual Conference on {U}ncertainty in {A}rtificial {I}ntelligence ({UAI}-11)},
  year      = 2011,
  location  = {Corvallis, Oregon},
  publisher = {AUAI Press},
  editor    = {Fabio G. Cozman and Avi Pfeffer},
  pages     = {589--598},
  url       = {http://uai.sis.pitt.edu/papers/11/p589-peters.pdf}
}
@article{Martens_et_al_NeurComp_11,
  author    = {Suzanne M. M. Martens and Joris M. Mooij and N. J. Hill and Jason Farquhar and Bernhard Sch{\"o}lkopf},
  title     = {A Graphical Model Framework for Decoding in the Visual {ERP}-Based {BCI} Speller},
  journal   = {Neural Computation},
  year      = 2011,
  month     = Jan,
  volume    = 23,
  number    = 1,
  pages     = {160-182},
  url       = {http://www.mitpressjournals.org/doi/abs/10.1162/NECO_a_00066}
}
@inproceedings{Mooij_et_al_NIPS_10,
  author    = {Joris M. Mooij and Oliver Stegle and Dominik Janzing and Kun Zhang and Bernhard Sch{\"o}lkopf},
  title     = {Probabilistic latent variable models for distinguishing between cause and effect},
  booktitle = {{A}dvances in {N}eural {I}nformation {P}rocessing {S}ystems 23 ({NIPS}*2010)},
  editor    = {J. Lafferty and C. K. I. Williams and J. Shawe-Taylor and R.S. Zemel and A. Culotta},
  pages     = {1687--1695},
  year      = {2010},
  url       = {http://books.nips.cc/papers/files/nips23/NIPS2010_1270.pdf}
}
@article{Mooij_JMLR_MLOSS_10,
  author    = {Joris M. Mooij},
  title     = {lib{DAI}: A Free and Open Source {CEtAl} Library for Discrete Approximate Inference in Graphical Models},
  journal   = {Journal of Machine Learning Research},
  year      = 2010,
  month     = Aug,
  volume    = 11,
  pages     = {2169-2173},
  url       = {http://www.jmlr.org/papers/volume11/mooij10a/mooij10a.pdf}
}
@inproceedings{Daniusis_et_al_UAI_10,
  title     = {Inferring deterministic causal relations},
  author    = {Povilas Daniu{\v s}is and Dominik Janzing and Joris M. Mooij and Jakob Zscheischler and Bastian Steudel and Kun Zhang and Bernhard Sch{\"o}lkopf},
  booktitle = {Proceedings of the 26th Annual Conference on {U}ncertainty in {A}rtificial {I}ntelligence ({UAI}-10)},
  year      = 2010,
  location  = {},
  publisher = {},
  editor    = {},
  pages     = {},
  url       = {http://event.cwi.nl/uai2010/papers/UAI2010_0121.pdf}
}
@article{CampsVallsMooijSchoelkopf_10,
  title     = {Remote Sensing Feature Selection by Kernel Dependence Measures},
  author    = {Gustavo Camps-Valls and Joris M. Mooij and Bernhard Sch\"{o}lkopf},
  journal   = {{IEEE} Geoscience and Remote Sensing Letters},
  volume    = 7,
  number    = 3,
  month     = Jul,
  year      = 2010,
  pages     = {587-591}
}
@inproceedings{MooijJanzing_JMLR_10,
  title     = {Distinguishing between cause and effect},
  author    = {Joris M. Mooij and Dominik Janzing},
  booktitle = {Journal of Machine Learning Research Workshop and Conference Proceedings},
  volume    = {6},
  year      = 2010,
  pages     = {147-156}
}
@inproceedings{JanzingPetersMooijSchoelkopf_UAI_09,
  title     = {Identifying confounders using additive noise models},
  author    = {Dominik Janzing and Jonas Peters and Joris M. Mooij and Bernhard Sch\"{o}lkopf},
  booktitle = {Proceedings of the 25th Annual Conference on {U}ncertainty in {A}rtificial {I}ntelligence ({UAI}-09)},
  year      = 2009,
  location  = {},
  publisher = {},
  editor    = {},
  pages     = {},
  url       = {http://www.cs.mcgill.ca/~uai2009/papers/UAI2009_0118_d5787036a879b5fb06ab513f53eb06a7.pdf}
}
@inproceedings{MooijJanzingPetersSchoelkopf_ICML_09,
  title     = {Regression by Dependence Minimization and its Application to Causal Inference},
  author    = {Joris M. Mooij and Dominik Janzing and Jonas Peters and Bernhard Sch\"{o}lkopf},
  booktitle = {Proceedings of the 26th {I}nternational {C}onference on {M}achine {L}earning ({ICML} 2009)},
  pages     = {745--752},
  year      = 2009,
  editor    = {L\'{e}on Bottou and Michael Littman},
  address   = {Montreal},
  month     = {June},
  publisher = {Omnipress}
}
@inproceedings{HoyerJanzingMooijPetersSchoelkopf_NIPS_08,
  title     = {Nonlinear causal discovery with additive noise models},
  author    = {Patrik O. Hoyer and Dominik Janzing and Joris M. Mooij and Jonas Peters and Bernhard Sch\"{o}lkopf},
  booktitle = {{A}dvances in {N}eural {I}nformation {P}rocessing {S}ystems 21 ({NIPS}*2008)},
  editor    = {D. Koller and D. Schuurmans and Y. Bengio and L. Bottou},
  pages     = {689--696},
  year      = {2009}
}
@incollection{MooijKappen_NIPS_08,
  title     = {Bounds on marginal probability distributions},
  author    = {Joris M. Mooij and Hilbert J. Kappen},
  booktitle = {{A}dvances in {N}eural {I}nformation {P}rocessing {S}ystems 21 ({NIPS}*2008)},
  editor    = {D. Koller and D. Schuurmans and Y. Bengio and L. Bottou},
  pages     = {1105--1112},
  year      = {2009}
}
@article{MooijKappen_IEEETIT_07,
  author    = "Joris M. Mooij and Hilbert J. Kappen",
  journal   = "IEEE Transactions on Information Theory",
  title     = "Sufficient Conditions for Convergence of the Sum-Product Algorithm",
  volume    = 53,
  number    = 12,
  month     = Dec,
  year      = 2007,
  pages     = "4422-4437",
  doi       = "10.1109/TIT.2007.909166"
}
@article{GomezMooijKappen_JMLR_07,
  author    = "Vicen\c{c} G{\'o}mez and Joris M. Mooij and Hilbert J. Kappen",
  title     = "Truncating the Loop Series Expansion for Belief Propagation",
  journal   = "Journal of Machine Learning Research",
  year      = 2007,
  volume    = 8,
  month     = Sep,
  pages     = "1987-2016",
  url       = "http://www.jmlr.org/papers/volume8/gomez07a/gomez07a.pdf",
}
@article{MooijKappen_JMLR_07,
  author    = "Joris M. Mooij and Hilbert J. Kappen",
  title     = "Loop Corrections for Approximate Inference on Factor Graphs",
  journal   = "Journal of Machine Learning Research",
  year      = 2007,
  month     = May,
  volume    = 8,
  pages     = "1113-1143",
  url       = "http://www.jmlr.org/papers/volume8/mooij07a/mooij07a.pdf"
}
@inproceedings{WemmenhoveMooijWiegerinckLeisinkKappenNeijt_AIME_07,
  author    = "Bastian Wemmenhove and Joris M. Mooij and Wim Wiegerinck and Martijn Leisink and Hilbert J. Kappen and Jan P. Neijt",
  title     = "Inference in the {P}romedas medical expert system",
  booktitle = "Proceedings of the 11th Conference on Artificial Intelligence in Medicine (AIME 2007)",
  year      = 2007,
  editors   = "R. Bellazzi and A. Abu-Hanna and J. Hunter",
  series    = "Lecture Notes in Computer Science",
  volume    = 4594,
  isbn      = "978-3-540-73598-4",
  publisher = "Springer",
  pages     = {456--460},
  doi       = {10.1007/978-3-540-73599-1_61}
}
@inproceedings{MooijWemmenhoveKappenRizzo_AISTATS_07,
  author    = "Joris M. Mooij and Bastian Wemmenhove and Hilbert J. Kappen and Tommaso Rizzo",
  title     = "Loop Corrected Belief Propagation",
  booktitle = "Proceedings of the Eleventh International Conference on Artificial Intelligence and Statistics (AISTATS-07)",
  editors   = "Marina Meila and Xiaotong Shen",
  url       = "http://www.stat.umn.edu/~aistat/proceedings/start.htm",
  year      = 2007,
  volume    = 11
}
@inproceedings{MooijKappen_UAI_05,
  author    = "Joris M. Mooij and Hilbert J. Kappen",
  title     = "Sufficient conditions for convergence of Loopy Belief Propagation",
  booktitle = "Proceedings of the 21st Annual Conference on Uncertainty in Artificial Intelligence (UAI-05)",
  year      = 2005,
  pages     = {396-403},
  publisher = "AUAI Press", 
  address   = "Corvallis, Oregon",
  editor    = "F. Bacchus and T. Jaakkola"
}
@article{MooijKappen_JSTAT_05,
  author    = "Joris M. Mooij and Hilbert J. Kappen",
  title     = "On the properties of the {B}ethe approximation and Loopy Belief Propagation on binary networks",
  journal   = "Journal of Statistical Mechanics: Theory and Experiment",
  volume    = 2005,
  number    = 11,
  pages     = "P11012",
  year      = 2005,
  url       = "http://stacks.iop.org/1742-5468/2005/P11012"
}
@inproceedings{MooijKappen_NIPS_04,
  author    = "Joris M. Mooij and Hilbert J. Kappen", 
  title     = "Validity estimates for Loopy Belief Propagation on binary real-world networks",
  booktitle = "Advances in Neural Information Processing Systems 17 (NIPS*2004)",
  year      = 2005,
  editor    = "L. K. Saul and Y. Weiss and L. Bottou",
  publisher = "MIT Press",
  address   = "Cambridge, MA",
  pages     = "945--952"
}
@article{TolboomDamTerMeulenMooijMaassen_ApplOpts_04,
  author    = "Ren{\'e} Tolboom and Nico Dam and Hans ter Meulen and Joris M. Mooij and Hans Maassen",
  journal   = "Applied Optics",
  title     = "Quantitative Imaging through a Spectrograph. 1. {P}rinciples and Theory",
  volume    = 43,
  year      = 2004,
  pages     = "5669-5681",
  url       = "http://www.opticsinfobase.org/abstract.cfm?URI=ao-43-30-5669"
}

Miscellaneous

@article{Mooij_NAW_23,
  author = "Joris M. Mooij",
  title = "Causality: from data to science",
  year = 2023,
  volume = 24,
  issue = 2,
  month = 6,
  pages = {76-87},
  journal = {Nieuw Archief voor Wiskunde},
}
@misc{Mooij_Inaugural_Lecture_22,
  author = "Joris M. Mooij",
  title = "Causality: from data to science",
  url = "https://hdl.handle.net/11245.1/c6ad8128-00aa-4de4-8e51-f099fec54262",
  howpublished = "\url{https://hdl.handle.net/11245.1/c6ad8128-00aa-4de4-8e51-f099fec54262}",
  year = 2022,
  note = "Inaugural speech, delivered on October 13, 2022"
}
@inproceedings{JanzingLauritzenSchoelkopf_Dagstuhl_09,
  author =    {Dominik Janzing and Steffen Lauritzen and Bernhard Sch{\"o}lkopf},
  title =     {09401 Abstracts Collection -- Machine learning approaches to statistical dependences and causality},
  booktitle = {Machine learning approaches to statistical dependences and causality},
  year =      {2010},
  editor =    {Dominik Janzing and Steffen Lauritzen and Bernhard Sch{\"o}lkopf},
  number =    {09401},
  series =    {Dagstuhl Seminar Proceedings},
  ISSN =      {1862-4405},
  publisher = {Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, Germany},
  address =   {Dagstuhl, Germany},
  URL =	      {http://drops.dagstuhl.de/opus/volltexte/2010/2363},
  annote =    {Keywords: Machine learning, statistical dependences, causality}
}
@misc{MooijJanzingSchoelkopf_CWR_08,
  author = "Joris M. Mooij and Dominik Janzing and Bernhard Schoelkopf",
  title = "Distinguishing between cause and effect",
  year = "2008",
  month = "10",
  url = "http://www.kyb.tuebingen.mpg.de/bs/people/jorism/causality-data/",
  institution = "Causality workbench repository"
}
@misc{Mooij_libDAI,
  author    = "Joris M. Mooij",
  title     = "{libDAI}: A free/open source {C}++ library for {D}iscrete {A}pproximate {I}nference", 
  year      = 2006,
  howpublished = "\url{http://www.libdai.org/}"
}
@phdthesis{Mooij_PhD_08,
  author    = "Joris M. Mooij",
  title     = "Understanding and Improving Belief Propagation",
  school    = "Radboud University Nijmegen",
  year      = 2008,
  month     = May,
  url       = "http://webdoc.ubn.ru.nl/mono/m/mooij_j/undeanimb.pdf"
}

Preprints and technical reports

@article{BoekenForreMooij_2410.16004,
  title = {Nonparametric {B}ayesian networks are typically faithful in the total variation metric},
  author = {Philip Boeken and Patrick Forr\'e and Joris M. Mooij},
  journal = {arXiv.org preprint},
  volume = {arXiv:2410.16004 [math.ST]},
  url = {https://arxiv.org/abs/2410.16004},
  month = 10,
  year = 2024,
@article{Pandeva++_2409.19991,
  title = {Robust Multi-view Co-expression Network Inference},
  author = {Teodora Pandeva and Martijs Jonker and Leendert Hamoen and Joris M. Mooij and Patrick Forré},
  journal = {arXiv.org preprint},
  volume = {arXiv:2409.19991 [stat.ML]},
  url = {https://arxiv.org/abs/2409.19991},
  month = 9,
  year = 2024,
}
@article{ChenZoeterMooij_2401.06925,
  title = {Modeling Latent Selection with Structural Causal Models},
  author = {Leihao Chen and Onno Zoeter and Joris M. Mooij},
  journal = {arXiv.org preprint},
  volume = {arXiv:2401.06925 [cs.AI]},
  url = {https://arxiv.org/abs/2401.06925},
  month = 1,
  year = 2024,
}
@article{Ilse++_2103.04786v3,
  title = {Combining Interventional and Observational Data using Causal Reductions},
  author = {Maximilian Ilse and Patrick Forr{\'e} and Max Welling and Joris M. Mooij},
  journal = {arXiv.org preprint},
  volume = {arXiv:2103.04786v3 [stat.ML]},
  url = {https://arxiv.org/abs/2103.04786v3},
  month = 2,
  year = 2023,
}
@article{Ilse++_2103.04786,
  title = {Efficient Causal Inference from Combined Observational and Interventional Data through Causal Reductions},
  author = {Maximilian Ilse and Patrick Forr{\'e} and Max Welling and Joris M. Mooij},
  journal = {arXiv.org preprint},
  volume = {arXiv:2103.04786 [stat.ML]},
  url = {https://arxiv.org/abs/2103.04786},
  month = 3,
  year = 2021,
}
@article{BongersBlomMooij_1803.08784v4,
  author = "Stephan Bongers and Tineke Blom and Joris M. Mooij",
  journal = "arXiv.org preprint",
  title = "Causal Modeling of Dynamical Systems",
  volume = "arXiv:1803.08784v4 [cs.AI]",
  year = 2022,
  month = Mar,
  url = "https://arxiv.org/abs/1803.08784v4",
}
@article{ForreMooij_1710.08775,
  author = "Patrick Forr{\'e} and Joris M. Mooij",
  journal = "arXiv.org preprint",
  title = "Markov Properties for Graphical Models with Cycles and Latent Variables",
  volume = "arXiv:1710.08775 [math.ST]",
  year = 2017,
  month = Oct,
  url = "https://arxiv.org/abs/1710.08775",
}
@article{ClaassenMooijHeskes_1411.1557,
  author    = "Tom Claassen and Joris M. Mooij and Tom Heskes",
  journal   = "ar{X}iv.org preprint",
  title     = "Proof Supplement - Learning Sparse Causal Models is not {NP}-hard ({UAI2013})",
  volume    = "ar{X}iv:1411.1577 [stat.{ML}]",
  year      = 2014,
  month     = Nov,
  url       = "http://arxiv.org/abs/1411.1557",
  note      = "Supplement to ``{L}earning Sparse Causal Models is not {NP}-hard'' ({UAI2013})"
}
@article{MooijKappen_0801.3797,
  author    = "Joris M. Mooij and Hilbert J. Kappen",
  journal   = "arXiv.org preprint",
  title     = "Novel Bounds on Marginal Probabilities",
  volume    = "arXiv:0801.3797 [math.PR]",
  year      = 2008,
  month     = Jan,
  url       = "http://arxiv.org/abs/0801.3797",
  note      = "Submitted to Journal of Machine Learning Research"
}
@article{MooijKappen_cs_0612030,
  author    = "Joris M. Mooij and Hilbert J. Kappen",
  journal   = "arXiv.org preprint",
  title     = "Loop corrections for approximate inference",
  volume    = "arXiv:cs/0612030v1 [cs.AI]",
  year      = 2006,
  month     = Dec,
  url       = "http://arxiv.org/abs/cs/0612030v1"
}
@article{MooijKappen_cond-mat_0408378v2,
  author    = "Joris M. Mooij and Hilbert J. Kappen",
  journal   = "arXiv.org preprint",
  title     = "Spin-glass phase transitions on real-world graphs",
  volume    = "arXiv:cond-mat/0408378v2 [cond-mat.stat-mech]",
  year      = 2004,
  month     = Sep,
  url       = "http://arxiv.org/abs/cond-mat/0408378v2"
}

Lecture notes

@misc{BoutenMooij_04,
  author       = "Luc Bouten and Joris M. Mooij",
  title        = "Toepassingen Groepentheorie",
  year         = 2004,
  note         = "Lecture notes",
  howpublished = "Radboud University Nijmegen"
}