
Machine Learning Principles and Methods

Lecturer: Joris Mooij Lecture #0
Scribe: Thomas Jongstra & Richard Rozeboom December 11, 2013
Updated: February 3, 2015

If you spot any error, please email to Joris Mooij (j.m.mooij@uva.nl)

The Big Picture

Probabilistic modeling: specify likelihood function: p(X|~Θ)

X: observed data (typically, X ∈ RN×D, with N number of samples/observations and D
the number of features)

~Θ: vector of model parameters (typically, ~Θ ∈ Rp, with p the number of parameters /
dimensionality of the model)

There are different approaches to learning:

(1) Maximum Likelihood Estimation (frequentist approach)

Θ̂ML = arg max
~Θ

p(X|~Θ)

(2a) Maximum a posteriori (MAP) estimation (”penalized ML”)

Specify prior p(~Θ) on parameters

Θ̂ = arg max
~Θ

p(X, ~Θ) = arg max
~Θ

Likelihood︷ ︸︸ ︷
p(X|~Θ)

Prior︷ ︸︸ ︷
p(~Θ)

= arg max
~Θ

p(X|~Θ)p(~Θ)
p(X) = arg max

~Θ

p(~Θ|X)︸ ︷︷ ︸
Posterior

(2b) Bayesian Approach

Specify prior p(~Θ) on parameters
Calculate p(~Θ|X)︸ ︷︷ ︸

Posterior

instead of maximizing with respect to ~Θ



Supervised Learning

Inputs: X ∈ RN×D

Outputs: Y ∈ RN (regression), Y ∈ {C1, . . . , CK}N (classification)

Conditional Likelihood

p(Y |X, ~Θ) =
N∏
i=1

p(Yn|Xn, ~Θ) (for iid data)

After learning, we can do prediction:

(1)Maximum likelihood

Θ̂ = arg max
~Θ

p(Y |X, ~Θ)

Then predictive distribution is p(y∗|x∗, Θ̂) where y∗ = new output and x∗ = new input
If asked for a single best prediction Ŷ : Ŷ = arg max

y∗
p(y∗|x∗, Θ̂)

If given a loss function L(y′,y∗) that quantifies the loss if the true output is y′ but we
predict y∗, we minimize expected loss: ŷ∗ = arg min

y∗

∑
y′ p(y

′|x∗, Θ̂)L(y′,y∗)

Look in 1.5 in Bishop for more info

(2a)Similarly for MAP estimation
(but include the prior)

(2b)Bayesian prediction (”Bayesian model averaging”)
Use complete posterior p(~Θ|X,Y )
Predictive distribution p(y∗|x∗,X,Y ) =∫
p(y∗|x∗, ~Θ)p(~Θ|X,Y )d~Θ

Then proceed as before when a single best prediction is needed.
If model contains latent variables Z, i.e. different latent variables (typically one for each
datapoint, but could also be shared parameters): Z = (Z1...Zn), the likelihood looks like
p(X|~Θ) =

∑
Z

p(X,Z|Θ) =
∑
Z1

...
∑
Zn

p(X,Z|Θ) or p(X|~Θ) =
∫
p(X,Z|Θ)dZ

for continuous latent variables. Similarly for the conditional likelihood in the supervised
learning case. In this case use EM algorithm for max-likelihood (or MAP) estimation or
Variational Bayes or sampling methods for approximate Bayesian learning.
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Machine Learning 2

Lecturer: Max Welling Lecture #1
Scribe: Steven Laan & Michael Cabot October 28, 2013
Updated: February 6, 2015; March 31, 2016

If you spot any error, please email to Joris Mooij (j.m.mooij@uva.nl)

1 Exponential Family Distributions

The probability density functions that belong to the exponential family are characterised
by the following formula:

p(x|η) = h(x)g(η)exp
{
ηTu(x)

}

Where η are called the natural parameters of the distribution, and u(x) is some function
of x. The function g(η) can be seen as a normalization term.

z(η) =
1

g(η)
=

∫
exp

{
ηTu(x)

}
h(x)dx

∂

∂η
log z(η) =

∫
exp

{
ηTu(x)

}
u(x)h(x)dx

z(η)
= E [u(x) |η]

Examples of the exponential family: Bernoulli, categorical (“multinomial” in Bishop), and
most distributions in chapter 2 (except for mixtures of Gaussians). Now we show that the
normal (Gaussian) distribution is a member of this family:

N (x|µ,Σ) = (2π)−
D
2 |Σ|− 1

2 exp

(
−1

2
(x− µ)TΣ−1(x− µ)

)
(1)

= (2π)−
D
2 |Σ|− 1

2 exp

(
−1

2
µTΣ−1µ

)

︸ ︷︷ ︸
g(η)

exp

(
−1

2
Tr(Σ−1xxT) + (µTΣ−1x)

)

where:
(
η1

η2

)
=

(
Σ−1µ
−1

2Σ−1

)

(
u1(x)
u2(x)

)
=

(
x

xxT

)

h(x) = 1

Note that in (1) we use the special notation |A| = |det(A)|.

Now it is shown that the expected value of the normal distribution is equal to µ:

if x ∼ N (µ,Σ) then E [x]
?
= µ



Note that, Gaussian distribution belongs to exponential distribution family, thus

E(x |η) = E(u1(x) |η) =
∂

∂η1

log z(η) =
∂

∂(Σ−1µ)

(
1

2
(Σ−1µ)TΣ(Σ−1µ)

)

=
∂

∂η1

(
1

2
ηT1 Ση1) = Ση1 = Σ(Σ−1µ) = µ

The following derivation is left as an exercise for the readers:

E[xxT] =
∂

∂η2

log z = · · · = Σ + µµT

2 Maximum Likelihood

Given a dataset D = {x1, . . . ,xN}, the log-likelihood is given by:

L(η,D) =
N∑

n=1

ln(p(xn|η))

Taking the gradient of the log-likelihood with respect to η, we have

∂L
∂η

=
∑

n

∂

∂η
ln
(
h((x)n)g(η)exp

{
ηTu(xn)

})

= N
∂

∂η
ln (g(η)) +

∑

n

u(xn)

Setting the gradient of L(η,D) with respect to η to zeros, we get

− ∂

∂η
ln (g(η)) =

1

N

∑

n

u(xn) = u(x)

Which yields that the Maximum Likelihood estimate η̂ is a function of only u(x):

η̂ = F (u)

The Maximum Likelihood Estimates for µ and Σ are:

µ̂ = E[x] = u(x) = x =
1

N

∑

n

xn (2)

Σ̂ = E[xxT] + µ̂µ̂T =
1

N

∑

n

xnx
T
n + µ̂µ̂T (3)

3 Gaussians

Some properties of Gaussian distributions. Given distribution N (x, µ,Σ), then

x = (xa,xb)

µ = (µa,µb)

Σ =

[
Σa,a Σa,b

Σb,a Σb,b

]





p(xa) = N (xa|µa,Σa,a) (marginal distribution)

p(xa|xb) = N (xa|µa|b,Σa|b) (conditional distribution)

Σa|b = Σa,a −Σa,bΣ
−1
b,bΣb,a

µa|b = µa + Σa,bΣ
−1
b,b (xb − µb)
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Figure 1: Left shows the contours of a Gaussian p(xa,xb). Right shows the marginal
distribution p(xa) (blue) and conditional distribution p(xa|xb = 0.7) (red).

This is visualised in figure 1. The figure shows the marginal distribution p(xa) and
conditional distribution p(xa|xb) of the Gaussian distribution p(xa,xb) over two variables.

Another nice identity (that is not in Bishop, but still useful) concerns products of Gaus-
sians. Certain products of Gaussians can be rewritten as a different product of Gaussians:

N (x |a,A)N (x |b,B) = N (a |b,A + B)N (x | c,C)

where

C = (A−1 + B−1)−1,

c = C(A−1a + B−1b).

This is e.g. also useful to derive that the convolution of two Gaussians is again a Gaussian.

4 Student-t distribution

The Student-t distribution is a heavy-tailed distribution:

x→ ±∞ N ∝ e−
1
σ2
x2

St(x) ∝ |x|−α

There is a powerlaw instead of an exponential one.

A Student-t distribution emerges if for example an Infinite Mixture of Gaussians is used:

1. Draw precision τ ∼ Gamma(a, b)

2. Draw x ∼ N (µ, τ−1)
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The resulting x will be distributed according to the Student-t distribution:

p(x) ∼ St(x |µ, λ = a/b, ν = 2a)

Where the Gamma distribution is defined as:

Gamma(τ | a, b) =
{
− ba

Γ(a)τ
a−1e−bτ τ > 00τ ≤ 0

where Γ is the gamma function, defined as follows where the gamma function is defined as
follows and has the given properties:

Γ(x) =

∞∫

0

ux−1e−u du

and with the properties:

Γ(x+ 1) = Γ(x)x ∀x ∈ R; Γ(n+ 1) = n! ∀n ∈ N

Therefore, x is proportional to:
x ∼ c · e− τ2 (x−µ)2

The Student-t distribution can now be calculated using this knowledge:

p(x|µ, a, b) =

∫ ∞

0
p(τ | a, b)p(x|τ |µ, τ)dτ

=

∫ ∞

0

ba

Γ(a)
e−bττa−1

( τ
2π

) 1
2

exp(−τ
2

(x− µ)2)dτ

=
ba

Γ(a)
√

2π

∫ ∞

0
τa−

1
2 exp(−(b+

1

2
(x− µ)2)τ)dτ

Now note that the integrand is proportional to:

Gamma(τ | a+
1

2
, b+

1

2
(x− µ)2)

We use the fact that the Gamma distribution is properly normalized:

Γ(a)

ba
=

∫ ∞

0
τa−1e−bτ dτ

to obtain

p(x|µ, a, b) =
ba

Γ(a)
√

2π

∫ ∞

0
τa−

1
2 exp(−(b+

1

2
(x− µ)2)τ)dτ

=
ba

Γ(a)
√

2π

(
b+

1

2
(x− µ)2

)−a− 1
2

Γ(a+
1

2
)

= St(x |µ, λ, ν)

with λ = a/b and ν = 2a.
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Figure 2: Histogram distribution fitted by a Student-t distribution (red) and a Gaussian
(Green).

The d-dimensional Student distribution is given by:

St(x|µ,Σ, v) =
Γ(d2 + v

2 )

Γ(v2 )

1

(πv)
d
2 |Σ| 12

(1 + ν−1 (x− µ)TΣ−1(x− µ)︸ ︷︷ ︸
Mahalanobis distance

)−
d
2
− v

2

The heavy tail of the student-t distribution makes it more robust against outliers as is
shown in figure 2. The figure shows a histogram distribution of 30 data points drawn from a
Gaussian distribution with three additional outlying data points to the right. The red and
green line are the maximum likelihood fit obtained from a t-distribution and a Gaussian
distribution, respectively.

5 Independent Component Analysis

Given is a signal S, consisting of two components:

S(t) =

[
S1(t)
S2(t)

]

You can view this as two sources of sound.

Next we have two microphones, that capture a mixture of the sounds.

X1(t) = α1S1(t) + β1S2(t)

X2(t) = α2S2(t) + β2S2(t)

}
X(t) =

[
X1(t) X2(t)

]

Where α and β are the parameters specifying the exact mixture. We can define the param-
eter matrix A:

A =

[
α1 β1

α2 β2

]
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And using that:
Xt = ASt

Now the joint probability can be expressed as:

p(S1, S2) = p1(S1)p2(S2) (independence assumption)

= St(S1|µ1 = 0, v1, λ1)St(S2|µ2 = 0, v2, λ2)
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We assume that A is invertible and denote A−1 = W. Using general transformation
rule for densities of random variables for the case when x is a deterministic function of S:

p(x) = p(S)

∣∣∣∣
∂S

∂x

∣∣∣∣
= p1(WT

1 x)p2(WT
2 x)|W|

Where we use:
X = AS

and
S = A−1X = WX

Note that W coincides with the Jacobian matrix:

W =

[
W1

W2

]
=

[
∂S1
∂x1

∂S1
∂x2

∂S2
∂x1

∂S2
∂x2

]

The likelihood is given by:

L(D,W) =
∑

n

(
log(p1(W>

1 xn)) + log(p2(W>
2 xn)) + log(|W|)

)

∂L
∂Wij

=
∑

n


 ∂

∂Wij
log(pi(W

>
i xn︸ ︷︷ ︸
Sin

)) +
∂

∂Wij
log(|W|)


 (4)

=

(∑

n

∂

∂Si
log(pi(Si))

∣∣∣
Si=Sin

xjn

)
+N(W−>)ij

Where in (4) this special rule is used:

∂

∂A
log(|A|) = A−>

In vector notation:

∇WL =
∑

n

(
∇S log p(S)

∣∣∣
S=Sn

xT
n + W−T

)

Update rule for an iterative algorithm:

Wt+1 = Wt +
1

N
(∇WL)WTW

(note that it has a fixed point at ∇WL = 0) Because XTWT = ST, this simplifies to:

Wt+1 = Wt +
1

N

∑

n

(
∇S log p(S)

∣∣∣
S=Sn

ST
n + I

)
W

After convergence, one can reconstruct the latent signals by:

Sn = WXn
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Iterative algorithm:

1. Pick data-case Xn.

2. Compute Sn = WTXn.

3. Update Wt+1 using the formula given above.
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Machine Learning 2

Lecturer: dr. Joris Mooij Lecture #2
Scribe: Norbert Heijne & Adam Sasiadek October 30, 2013
Updated: February 23, 2015; April 4, 2016

If you spot any error, please email to Joris Mooij (j.m.mooij@uva.nl)

2.1 Binary variables

Bernoulli Distribution

The Bernoulli distribution is a discrete probability distribution which takes the value 1 with
a success probability µ and value 0 with a failure probability (1− p). It is given by:

Bern(x|µ) = µx(1− µ)1−x =

{
µ x = 1

1− µ x = 0

Expectation, Variance and Max Likelihood

Mean Variance

E[x] = µ Var[x] := E[(x− E[x])2] = E[x2]− E[x]2 = µ− µ2

Max Likelihood

µML = 1/N(

N∑

n=1

xn) =
m

N︸︷︷︸
where m = # {xn = 1 }

The Bernoulli distribution is part of the exponential family:

p(x|η) = σ(−η) exp (η · x) where σ(η) =
1

1 + exp(−η)
, i.e., η = ln

µ

1− µ

Binomial Distribution

The binomial distribution is the discrete probability distribution of the number of successes
in a sequence of N independent Bernoulli experiments, each of which yields success with
probability µ.

m =

N∑

i=1

xi, xi
i.i.d∼ Bern(µ) Bin(m|N,µ) =

(
N

m

)
µm(1− µ)N−m

Here,
(
N
m

)
:= N !

(N−m)!m! , the “binomial coefficient”.



Expectation,Variance and Maximum Likelihood

Mean Variance

E[m] = µN E[(m− E[m])2] = Nµ(1− µ)

Max Likelihood

µML =
m

N

Bayesian approach

Maximum Likelihood leads to overfitting. Example: coin flip, observing twice heads and
zero tails. The Bayesian approach can avoid this phenomenon. In order to use the Bayesian
approach we need a prior.

Likelihood

p(X|µ) =
N∏

i=1

p(xi|µ) =
N∏

i=1

µxi(1− µ)1−xi = µ
∑

i xi(1− µ)
∑

i(1−xi) = µm(1− µ)N−m

Prior

A convenient choice for a prior is a conjugate prior, that is, it should have a similar func-
tional form as the likelihood in order to make it easier to handle analytically. In this case,
this means the prior should depend on µ as follows:

p(µ) ∝ µa−1(1− µ)b−1 for some a, b

Beta distribution

This is called the Beta distribution with parameters a > 0, b > 0:

p(µ) = Beta(µ|a, b) :=
Γ(a+ b)

Γ(a)Γ(b)
µa−1(1− µ)b−1 (1)

where the gamma function is defined as follows and has the given properties:

Γ(x) =

∞∫

0

ux−1e−u du

Γ(x+ 1) = Γ(x)x ∀x ∈ R; Γ(n+ 1) = n! ∀n ∈ N

The posterior can then be written as:

p(µ|X) ∝ p(X|µ)p(µ) = µa−1+
∑
xi(1− µ)b−1+

∑
(1−xi) = Beta(µ| a+

∑
xi

︸ ︷︷ ︸
positive cases

, b+N −
∑

xi
︸ ︷︷ ︸

negative cases

)
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Note that we do not explicitly need the normalization constant for the posterior, as it is
a Beta distribution (for which we know the normalization constant, see (1)). Note that
observing the data increases the hyperparameters a by m =

∑N
i=1 xi and b by N −m. So a

and b can be interpreted as “pseudo-counts” from virtual data that we can interpret to give
us our prior belief on µ. Also, if we observe more data, the posterior after the first batch
can act as the prior for the second batch of data.

Mean and Variance

If µ ∼ Beta(a, b) then:

Mean Variance

E[µ] =
a

a+ b
V ar[µ] =

ab

(a+ b)2(a+ b+ 1)

Predictive Distribution

p(x∗ = 1|X) =

1∫

0

p(x∗ = 1|µ)p(µ|X)dµ =

∫ 1

0
µp(µ|X)dµ = E[µ|X] =

m+ a

m+ a+ (N −m) + b

Note: if N →∞, then p(x∗ = 1|X)→ m
N , the maximum likelihood estimate of µ. Coin flip

example: Bayesian prediction gives more sensible predictions than maximum likelihood.

2.2 Discrete variables

We have K possible values. A value is represented as ~x ∈ RK e.g:




1
0
0


 = C1,




0
1
0


 = C2,




0
0
1


 = C3

This is in order to obtain a simple form for the categorical distribution with parameter ~µ:

p(~x|~µ) =
K∏

k=1

µxkk ~µ ∈ [0, 1]K and
∑

k

µk = 1

The likelihood for N i.i.d. data points is:

p(X|~µ) = p(~x1, . . . , ~xN |~µ) =
N∏

n=1

K∏

k=1

µxnk
k =

K∏

k=1

N∏

n=1

µxnk
k =

K∏

k=1

µ
∑

n xnk

k =
K∏

k=1

µmk
k

where mk =
∑N

n=1 xnk counts the number of values in each category/class. The maximum
likelihood estimate for ~µ is then:

~µML =
~m

N

where ~m is the number of observed values for each class.
The categorical distribution is part of the exponential family:

p(~x|~η) =
exp(~ηT~x)

1 +
∑K−1

k=1 exp(ηk)
where ηk = ln

µk

1−∑K−1
j=1 µj
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Multinomial distribution

The multinomial distribution is the probability distribution on the “counts” that results
from performing N independent draws from a categorical distribution with parameter ~µ:

Mult(m1, . . . ,mK |N, ~µ) =

(
N

m1, . . . ,mK

) K∏

k=1

µmk
k

Here, (
N

m1, . . . ,mK

)
:=

N !

m1! . . .mK !

Dirichlet distribution

The conjugate prior for the multinomial distribution is the Dirichlet distribution:

Dir(~µ|~α) =
Γ(
∑

k αk)

Γ(α1) . . .Γ(αk)

K∏

k=1

µ
(αk−1)
k

Like in the binary case we could calculate the posterior etc.

Binary Variables Discrete Variables

Bernoulli → Categorical Distribution
Binomial → Multinomial

Beta → Dirichlet

Be aware: the categorical distribution is often also called multinomial distribution (including
in Bishop’s book).

2.3 Gaussian distribution

See also lecture 1.

2.3.3 Bayes theorem for Gaussian Variables

If

~x ∈ RM , ~y ∈ RD

p(~x) = N (~x|~µ,Λ−1)

p(~y|~x) = N (~y|A~x+~b,L−1)

then the marginal distribution for ~y is again Gaussian:

p(~y) = N (~y|A~µ+~b,L−1 + AΛ−1AT)

and applying Bayes theorem shows that the conditional distribution for ~x given ~y is also
Gaussian:

p(~x|~y) = N (~x|Σ(ATL(~y −~b) + Λ~µ),Σ)

Σ = (Λ + ATLA)−1
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2.3.4 Maximum Likelihood for Gaussian ~xn ∈ RD

Data X = (~x1, . . . , ~xN )T

Log Likelihood= ln p(X|~µ,Σ) = −ND
2 ln(2π)− N

2 ln |Σ| − 1
2

∑N
n=1(~xn − ~µ)TΣ−1(~xn − ~µ)

The log-likelihood depends on X only via the sufficient statistics:
∑

n ~xn,
∑

n ~xn~x
T
n :

~µML =
1

N

N∑

n=1

~xn

ΣML =
1

N

N∑

n=1

(~xn − ~µML)(~xn − ~µML)T

Online learning ↔ Sequential Learning
Stochastic gradient Descent↔ Special case of Robbins-Monro Algorithm for ML estimation

max
~θ
p(~x1, . . . , ~xN |~θ)

~θ(N) = ~θ(N−1) + aN−1
∂

∂~θ(N−1)
ln p(~xn|~θ(N−1))

where:

lim
N→∞

(aN ) = 0

∞∑

n=1

an =∞

∞∑

n=1

a2n <∞

Example ~µML

~µ(N) = ~µ(N−1) + 1
N (~xn − ~µ(N−1))
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2.3.6 Bayesian Inference for Gaussian

dimensions = 1
Data = {x1, . . . , xN}

Variance known, mean estimated

σ2 known
µ estimated
conjugate prior for µ: p(µ) = N (µ|µ0, σ20)

p(µ|D) ∝ p(D|µ)p(µ) = N (µ|µN , σ2N )

where

µN =
σ2

Nσ20 + σ2
µ0 +

Nσ20
Nσ20 + σ2

µML

1

σ2N
=

1

σ20
+
N

σ2

This can be derived by using Bayes’ theorem for Gaussian variables on page 93.

Variance unknown, mean known

σ2 unknown
µ known
conjugate prior for λ = 1

σ2

likelihood: p(D|λ) =
∏

n

N (xn|µ, λ−1) ∝ λN/2 exp

[
−λ

2

∑

n

(xn − µ)2

]

∝ Gamma

(
λ
∣∣∣N

2
+ 1,

1

2

∑

n

(xn − µ)2

)

prior: p(λ) = Gamma(λ|a0, b0)
posterior: p(λ|D) = Gamma(λ|aN , bN )

where aN = a0 + N
2 and bN = b0 + 1

2

∑
n(xn − µ)2. Here, a0 and b0 can be interpreted as

if they were generated from virtual data points.

Variance unknown, mean unknown

σ2 unknown
µ unknown
“normal-Gamma” distribution
N (µ|µ0, (βλ)−1)Gamma(λ|a, b)

See Bishop for more details.
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2.3.7 Student’s t distribution

See lecture 1.

2.3.8 Periodic variables: Von Mises distribution

See Bishop.

2.3.9 Mixtures of Gaussians

Treated in Machine Learning: Pattern Recognition.

2.4.2 Conjugate priors for exponential family distributions

Read 2.4.2 in Bishop for the general theory on conjugate priors for the exponential family.
All exponential family distributions have corresponding conjugate priors.

1.6 Information theory

”Information of event A”:

h(A) = − log2 p(A), in bits

= − ln p(A) in naturals

Shannon Entropy:

H(x) := −
∑

x

p(x) · loga(p(x))

Example fair coin

1
2 vs 1

2 = 1 bit
K independent coins = K bits

Differential entropy:

H(~x) = −
∫
p(~x) ln p(~x)d~x

Kullback-Leibler divergence or Relative entropy or the “distance” between distributions:

KL(p||q) = −
∫
p(~x) ln

(
q(~x)

p(~x)

)
d~x

KL(p||q) ≥ 0

KL(p||q) = 0 ⇐⇒ p = q

Conditional entropy:

H(~y | ~x) = −
∫
p(~x)

∫
p(~y | ~x) ln p(~y | ~x) d~yd~x

7



H(~x, ~y) = H(~x) +H(~y | ~x) = H(~y +H(~x | ~y)

Mutual information:

I(~x : ~y) = KL
(
p(~x, ~y) || p(~x)p(~y)

)
= H(~x)−H(~x | ~y) = H(~y −H(~y | ~x)

Information-theoretic interpretation of Maximum likelihood:

min
~θ
KL

(
p(X)||q(X | ~θ)

)

where p is the empirical distribution and q the model distribution (parameterized by ~θ)
results in the ML estimation of ~θ.
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(Probabilistic) Graphical Models

GMs:

• Capture noise

• Are useful for reasoning

• Are useful when you have many variables, enormous data sets

• Are useful for causality

In the latter case you can not just make a table:

KM states︷ ︸︸ ︷
M sensors, K states

Imagine for every state having a separate parameter. This leads to KM − 1 parameters
(the −1 is added because they have to sum to 1,

∑
Z p(Z) = 1). We will be overfitting this

way. We want to build structure in these models: reduce number of parameters or degrees
of freedom.

Earth-

quakes

Bikes

fall

over

Car

alarms

go off

Figure 1: Example. Variables can have values from {0, 1}

In Figure 1, for example, if Earthquakes is 1, then Bikes fall over can be 0 and Car

alarms go off is 0.001. We can model conditional independence: Bikes fall over and
Car alarms go off are likely to not be independent. But if an earthquake occurs, i.e.
Earthquakes is 1, they will likely be independent.

An example GM that is a BN is given in Figure 2. You can see it as nature generating
node 1 first, then nodes 2 . . . 6, etc. It is a generative process, that captures causality.

GMs are good for:

• Designing models

• Communicating models (you don’t need (long) equations to summarize your model)



1

2 3 4 5 6

7

8

Figure 2: Random example of a graphical model (Bayesian network)

• Conditional independence relations are encoded in the graph

• Inference: from effects to causes – use message passing algorithms, belief propagation,
to infer what is the state of variables when e.g. node D is observed in the GM of a
BN below

A B C

D

Sidemark: GMs are not like Neural Networks (NNs). A few reasons are: NNs are models
for supervised problems; a NN doesn’t define a probabilistic model; transitions are not
stochastic in a NN; a NN does not model conditional independence.

Modeling: Directed Graphical Models

Concrete example

Let’s start with something that is generally true: the chain rule:

P (Xa, Xb, Xc) = P (Xa|Xb, Xc)P (Xb|Xc)P (Xc) (1)

Let’s graphically represent this:
P (Xa|Xb, Xc) equals:

Xc Xb Xa

P (Xa|Xb, Xc)P (Xb|Xc) equals:

Xc Xb Xa

For P (Xc) we do not need to add something because it does not depend on anything.
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General

The general steps are thus:

1. Determine ordering of variables

2. In this ordering, call the parents of Xi: Pa(Xi) = Pai. These are all variables lower
in ordering.

P (Xi . . . XM ) =

M∏

i=1

P (Xi|Pai) (2)

Assumption: P (Xi|∅) = P (Xi)

In the above example Xc and Xb are the parent set of Xa, Paa. Equation 2 applied
to the left side of Equation 1, P (Xa, Xb, Xc), indeed yields the right side of Equation 1,
P (Xa|Xb, Xc)P (Xb|Xc)P (Xc) . Every equation of that form corresponds with a directed
graphical model and vice versa.

To impose structure on a graph is to delete one of the edges. If we stay with the previous
example, we can, for example, delete the line from Xc to Xa. Equation 1 has become:

Xc Xb Xa

P (Xa, Xb, Xc) = P (Xa|Xb)P (Xb|Xc)P (Xc) (3)

So the parent set of Xa has changed.

Background remarks

DAGs
This particular BN structure ensures that there are no directed loops. Therefore we
also call this a Directed Acyclic Graph.

BNs
A BN is normalized:

∫
M∏

i=1

P (Xi|Pai) dX1 . . . XM = 1

you can see it if you write out the product.

Markov chains
A chain graph, also called a Markov chain, is graphically modeled below:

X1 X2 X3 . . . XM

It is useful for temporal modeling.

3



Recall that when everything is fully connected in a model we need KM−1 parameters,
so the parameter complexity is of order O(KM ). You will never have enough data to
fit a model of this size. For the Markov chain, however, we need far less:

P (XM |XM−1)︸ ︷︷ ︸
K · (K − 1)

· · · · · P (X2|X1)︸ ︷︷ ︸
K · (K − 1)

·

︸ ︷︷ ︸
M − 1 of these

P (X1)︸ ︷︷ ︸
(K − 1)

So the total number of parameters needed in a MC model is (M−1)(K(K−1))+(K−1)
which is of order O(K2 ·M).

Example Bayesian Networks

Discriminative

We draw N data points {t1, . . . , tN} (data cases), plus some underlying parameter W . We
can do this as in Figure 3a or use a shorter notation using “plates” as shown in Figure 3b.

W

T1 T2 · · · TN

(a) GM

=⇒

W

Ti

i = 1, . . . , N

(b) Shorthand GM

Figure 3: Two ways of modeling the same BN.

This plate means we draw N i.d.d. instances/values from the model. You can see a plate
as a 3-dimensional box, stacking plates of all N instances.

So we have that

P (T,W ) = p(W )
N∏

i=1

P (Ti|W )

Now we add some parameters X,α, σ2.

P (T,W |X,α, σ2) = P (W |α)
N∏

i=1

P (Ti|Xi,W, σ
2)

We want to learn W from T , conditioning on X. This is a regression model (also see
previous class). It is also a discriminative model (as opposed to a generative one). The
corresponding GM is:

4



α W

TiXi

σ2

i = 1, . . . , N

The nodes for X,α, σ2 are denoted with a small dot. This means that these parameters are
fixed – we don’t put a distribution over them.

Predictive distribution

Now consider a model for the predictive distribution. It still corresponds to a regression
model. But now we want to make predictions from new input domain variables X∗

i to new
output domain variables T ∗

i . We assume we know T and we want to know T ∗.

P (T ∗,W, T |X∗, X, σ2, α)

=

[
N∏

i=1

P (Ti|Xi,W, σ
2)

]
P (W |α)P (T ∗|X∗,W, σ2)

The predictive distribution is obtained by integrating over W and substituting T :

P (T ∗, T |X∗, X, σ2, α)

=

∫ [ N∏

i=1

P (Ti|Xi,W, σ
2)

]
P (W |α)P (T ∗|X∗,W, σ2) dW

In the new GM shown below, the shaded circle of Ti denotes that we have observed the
variable.

α W

TiXi

σ2

T ∗ X∗

i = 1, . . . , N

From the GM we can directly see that T ∗ does not directly depend on Ti. From Ti we can
learn W and σ2. So we can throw the rest away after having learned these.

This is a not a generative model, because we have not specified a distribution over inputs
Xi. If we would do so, it would become a generative model.

Conditional independence relationships in a DAG

Definition

We call two random variables X,Y independent iff

p(X,Y ) = p(X)p(Y )

5



Intuitively, when told the value of X we do not learn anything about the value of Y (and
vice versa).

We call two random variables X,Y independent given a (set of) random variables Z iff

p(X,Y |Z = z) = p(X |Z = z)p(Y |Z = z)

for all possible values z of Z; this definition works for discrete variables Z but for continuous
variables one has to be more careful and introduce some measure theory. Intuitively, when
told the value of X in addition to the value of Z we do not learn anything new about the
value of Y .

Type 1

First case

Xc

Xa Xb

Xa ⊥⊥ Xb|Xc

P (Xa, Xb|Xc) =
P (Xa, Xb, Xc)

P (Xc)
Bayes rule

=
P (Xa|Xc)P (Xb|Xc)P (Xc)

P (Xc)

= P (Xa|Xc)P (Xb|Xc)

Second case

Xc

Xa Xb

Xa 6⊥⊥ Xb|∅

P (Xa, Xb)
?
= P (Xa)P (Xb)

=
∑

Xc

P (Xa, Xb, Xc) marginalizing out Xc

=
∑

Xc

P (Xa|Xc)P (Xb|Xc)P (Xc) indepedence does not hold, counter-example

6



Type 2

First case

Xa Xc Xb

Xa ⊥⊥ Xb|Xc

P (Xa, Xb|Xc) =
P (Xa, Xb, Xc)

P (Xc)
Bayes rule

=
P (Xb|Xc)P (Xc|Xa)P (Xa)

P (Xc)
B.N.

= P (Xb|Xc)P (Xa|Xc) Bayes rule

Second case

Xa Xc Xb

Xa 6⊥⊥ Xb|∅

P (Xa, Xb) =
∑

Xc

P (Xb|Xc)P (Xc|Xa)P (Xa)

= P (Xb|Xa)P (Xa)

6= P (Xb)P (Xa)

Type 3

First case

Xa

Xc

Xb

Xa ⊥⊥ Xb|∅
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P (Xa, Xb) =
∑

Xc

P (Xa, Xb, Xc)

=
∑

Xc

P (Xc|Xa, Xb)P (Xa)P (Xb) normalized distribution inside summation

= P (Xa)P (Xb)

Second case

Xa

Xc

Xb

Xa 6⊥⊥ Xb|Xc

P (Xa, Xb|Xc) =
P (Xa, Xb, Xc)

P (Xc)
Bayes rule

=
P (Xc|Xa, Xb)P (Xa)P (Xb)

P (Xc)

6= P (Xa|Xc)P (Xb|Xa) prove with counter-example

Second case - generalization

Xa

Xc

Xb

Xd

Xa 6⊥⊥ Xb|Xd

P (Xa, Xb|Xd) =
∑

Xc

P (Xa, Xb, Xc, Xd)

P (Xd)
Bayes rule

=
∑

Xc

P (Xd|Xc)P (Xc|Xa, Xb)P (Xa)P (Xb)

P (Xd)

=
P (Xd|Xa, Xb)P (Xa)P (Xb)

P (Xd)

8



In general, if any descendant node is observed, the independence will be broken:

Xa

Xc

Xb

Xz

Xa 6⊥⊥ Xb|Xz

d-separation

Is XA ⊥⊥ XB|XC for sets of nodes/variables XA, XB and XC?

XA XC XB

1. Consider all paths from some node in XA to some node in XB

2. A path is blocked by XC iff it contains a node such that:

(a)
(the arrows meet tail-to-tail at a node in XC), or:

(b)

(the arrows meet head-to-tail the a in XC), or:

(c)

(the arrows meet head-to-head at the node, and neither the node nor
its descendants are in XC).

3. If all paths between XA and XB are blocked by XC , we say that XA and XB are
d-separated by XC .

If XA and XB are d-separated by XC , this implies that XA ⊥⊥ XB|XC .
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Examples of CIRs in BNs

Ex. 1

We can go from Xa to Xb.

Xa

Xz

Xd

Xb

Xc

Xa 6⊥⊥ Xb|Xc

Ex. 2

The path is blocked at Xz.

Xa

Xz

Xd

Xb

Xc

Xa ⊥⊥ Xb|∅

Ex. 3

The path is blocked at Xd.

Xa

Xz

Xd

Xb

Xc

Xa ⊥⊥ Xb|Xd, Xc
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Ex. 4

The path is unblocked at θ. We can think of it as when θ hasn’t been fixed (e.g. by learning
it from data), Xi and X∗ are dependent through θ

θ

Xi
X∗

X∗ 6⊥⊥ Xi|∅

Ex. 5

The parth is blocked given θ. We can think of it as once we have learnt parameter θ, we
can thrown away Xi, and use only θ to make predictions about unseen data X∗

θ

Xi
X∗

X∗ ⊥⊥ Xi|θ

11
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Recap

Given a DAG (Directed Acyclic Graph), the family of all p =
∏
x p(xi|xpaxi ) that factorizes

according to that DAG is the family for which all Conditional Independence Relations
(CIRs) hold defined by a d-separation (the Bayes ball algorithm). This definition applies
to a distribution over a set of variables. Note: a distribution p that satisfies more CIRs
does belong to this family as well.

The Markov Blanket (MB)

p(xi|xMBi , xrest) = p(xi|xMBi) The MB represents the smallest set of nodes needed to
make xi independent of all the other nodes. The MB of xi consists of: the parents of xi,
the children of xi and the co-parents of the children of xi.

xi

The Markov Blanket

Example:

xi

In order to determine the MB, we use the following Blocking Rules:



Markov Random Field (Undirected)

Try to find a path from A to B without being blocked (passing through an observed node).
xA ⊥⊥ xB|xC iff every path from A to B is blocked.

The MB of xi is the set of nodes that are directly connected to xi.

xA
xC

xB

xi

Markov Blanket of xi
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If xi, xj are not connected in a graph G, ⇒ ∃ CIR p(xi, xj |xC) = p(xi|xC)p(xj |xC) ⇒
xi ⊥⊥ xj |xC , where xC is not one node but a set of nodes (see example below).

i xC

jxC

Example where no CIR can exist in a graph:

There can be no CIR because each node is linked to all the remaining nodes. A set of
nodes that is fully connected is called a clique. A maximal clique is a clique that cannot
be made bigger (adding any node to the set does not result to a bigger clique).

The distribution represented by such graphs is the following:

p(x) =
1

Z

∏

A

ψA(xA)

where A ranges over all maximal cliques in the graph, where the poetntials ψA ≥ 0 and
Z :=

∑
x

∏
A ψA(xA) (called partition function).

Hammersley-Clifford

Given a joint distribution p(X) > 0 with a strictly positive density, one can use the
Hammersley-Clifford theorem to represent this as an MRF. The undirected graph G of the
MRF is constructed using the conditional independences that hold in p(X). The potentials
ψA can be expressed in terms of p(X) using the graph G.

D-Map

G is a D-Map of a distribution p if every CIR satisfied by p is reflected in G.

If p(x1, . . . , x5) is a distribution over 5 variables, then the above graph is a D-Map of p,
because all of the graph’s nodes are independent. Trivial case, empty graph Kn is a D-Map
for any distribution p over n variables.
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I-Map

G is an I-Map of p if every CIR in G is true in p.

The graph above is an I-Map of
∏
i p(xi)

The graph above has no CIRs so it can trivially be an I-Map of any distribution p.

Perfect Map

Perfect Maps of p are both D-Maps of p and I-Maps of p.
Venn diagram:

∀p-perfect maps

MRF BN

4



More examples

Case 1 - BN & MRF

x1 x2 x3 x4

x1 x2 x3 x4

The BN and MRF above are perfect Maps of the same distribution p.

Case 2 - BN and not MRF

A

C

B

The above BN cannot be described by an MRF.

xA ⊥⊥ xB|∅
p(xC |xA, xB)p(xA)p(xB)→ distribution

Case 3 - MRF but not BN

A

CB

D

xA ⊥⊥ xD|xB, xC (if I block B and C all paths from A to D are blocked). xB ⊥⊥ xC |xA, xD
There’s no BN that can represent this MRF.
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Factor Graphs

Consider the following BN:

A

C

B

The corresponding factor graph is the following:

xA xB xC

p(xC |xA, xB) p(xA) p(xB)

Consider the following MRF:

xA

xCxB

There are two possible ways of designing the corresponding factor graph:

xA

ψ(xA, xB, xC)

xCxB

OR
xA

ψ(xC , xA)ψ(xB, xA)

xCxB ψ(xC , xB)

1
zψ(xA, xB, xC) and 1

zψ(xA, xB)ψ(xB, xC)ψ(xC , xA) both correspond with the same MRF.

6



yn xni

i = 1 . . . D

n = 1 . . . N

η θi

Figure 1: A graphical model representation of the Naive Bayes approach to classification.

1 Application of Graphical Models

In this section we present two examples of how Graphical Models can be used in practice.

1.1 Naive Bayes

In this subsection we describe how a Naive Bayes approach to classification can be modeled
using DAGs. Consider the problem of finding a label y∗ for some previously unobserved
vector of features x∗, while having previously observed the data set {xn, yn}n=1:N .

We could build a generative model, where a label is chosen from some set Y , and data is
generated based on each label. We say that each datapoint xn contains D features i = 1 : D,
xni thus denotes feature i of datapoint n. This then implies the graphical model presented
in figure 1.

This model implies an important and rather strong assumption: given a label all features
are completely independent of each other.

For a single data case x we now have that p(x1, . . . , xD, y|η,θi) = p(y|η)
∏D
i=1 p(xi|y,θi).

The probability of the full dataset D is now given by
∏N
n=1 p(yn|η)

∏D
i=1 p(xni|yn,θi).

Note that this generative form is chosen for the model as the other option – data
points generating labels – would imply a very highly parameterized model, as we would be
considering p(y|x1, . . . , xD).

Finding a label y∗ for a new data point x∗ now implies finding

y∗ = arg max
y

[
ln p(y|η) +

D∑

i=1

ln p(x∗i |y,θi)
]

where ln is used for numerical stability.

1.2 Learning in Graphical Models

1.3 Learning in a Bayes Net

The probability of a set of variables x in a Bayes Net is defined as p(x) =
∏
i p(xi|xpai). If we

define a function θi(xi, xpai) and use it instead of p(xi|xpai), we have p(x) =
∏
i θi(xi, xpai),

if we constrain θi such that
∑

xi
θi(xi, xpai) = 1,∀i.

We now have that the probability of the full data set

7



p({x̃in}) =
∏

n

∏

i

θi(x̃in, x̃pain)

=
∏

n

∏

i

∏

xi

∏

xpai

θi(xi, xpai)
I[xi=x̃in∧xpai=x̃pain]

where I(x) is the indicator function that returns 1 if x is true and 0 otherwise. It is
important to know that xi and xpai indicate the values of variables. The expression inside
the indicator function in the equation above compares the value of a variable xi and the
values of the variables that form its parents to the values of those variables in a datapoint.

The log-likelihood including Lagrange multipliers is now:

L(θ, x̃) =
∑

n

∑

i

∑

xi

∑

xpai

I[xi = x̃in∧xpai = x̃pain] ln θi(xi, xpai)−
∑

i

∑

xpai

λi,xpai

[∑

xi

θi(xi, xpai)− 1

]

where the λi,xpai is the Lagrange multiplier (we will see later λi,xpai ensures that the distri-
bution θi(xi, xpai) is normalized). We can define a function N(xi, xpai) to be the function
that counts how often the combination of values for xi and xpai co-occur. If we move the
sum over n in the expression above inside the sum over i we get:

L(θi, x) =
∑

i

∑

n

∑

xi

∑

xpai

I[xi = x̃in ∧ xpai = x̃pain] ln θi(xi, xpai)−
∑

i

∑

xpai

λi,xpai

[∑

xi

θi(xi, xpai)− 1

]

=
∑

i

∑

xi

∑

xpai

N(xi, xpai) ln θi(xi, xpai)−
∑

i

∑

xpai

λi,xpai

[∑

xi

θi(xi, xpai)− 1

]

If we now take the derivative of the log-likelihood and set it to 0 we get:

∂L
∂θi(xi, xpai)

=
N(xi, xpai)

θi(xi, xpai)
− λi,xpai

N(xi, xpai)

θi(xi, xpai)
− λi,xpai = 0

θi(xi, xpai) =
N(xi, xpai)∑

xi

(xi, xpai)

︸ ︷︷ ︸
λi,xpai

=
N(xi, xpai)

N(xpai)

Thus, the maximum likelihood estimation for θi(xi, xpai) for values xi and xpai is the
number of times the value xi co-occurred with the value xpai , divided by the number of
times the value xpai occurred.

Maximum Likelihood Learning in a Bayes net is fast because the log-likelihood decom-
poses into a sum over all variables Xi. This means that learning all parameters reduces
into a collection of independent learning tasks, where each task corresponds with learning
p(xi|xpai) for some i.
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1.4 Learning in an MRF

From the definition of an MRF we have that the joint probability of a configuration x of
all variables p(x) = 1

Z

∏
A ψA(xA), where xA is the set of variables associated with ψA.

The likelihood of a set of N observed configurations over these variables (i.e. datapoints)
x̃1, . . . , x̃N ) is

p(x̃i, . . . , x̃N ) =
N∏

n=1

1

Z

∏

A

∏

xA

ψA(xA)I[xA=x̃An]

where the indicator function is used as before. The log-likelihood of the data is thus:

L(ψ, x) =

N∑

n=1

∑

A

∑

xA

I[xA = x̃An] lnψA(xA)−N lnZ

=
∑

A

∑

xA

N(xA) lnψA(xA)−N lnZ

where we have used the same trick involving the indicator function as above. The derivative
of the log-likelihood is then

∂L
∂ψA(xA)

=
N(xA)

ψA(xA)
− N

ψA(xA)
Eψ [I[xA = ·]]

=
N

ψA(xA)

[
N(xA)

N
− Eψ [I[xA = ·]]

]

Note that this is an exponential family function:

p(x̃) ∝ exp

(∑

A

∑

xA

I[xA = x̃A] lnψA(xA)

)

and thus ∂
∂ lnψA

lnZ = Eψ [I[xA = ·]], where Eψ [I[xA = ·]] is the expected fraction of obser-
vations of xA under model pψ.

Note that, in order to set the derivative of the log-likelihood to 0, the expression inside
the brackets must evaluate to 0. This occurs only when, for all xA, the expected ratio of
observations of xA equals the observed ratio of observations of xA. We can use a sampling
procedure to estimate the expected value

Eψ [I[xA = ·]] ≈ Nψ(xA)

Nψ
,

where Nψ indicates the count under a model:

∂L
∂ψA(xA)

≈ N

ψA(xA)

[
N(xA)

N
− Nψ(xA)

Nψ

]

9



Machine Learning 2

Lecturer: dr. Joris Mooij Lecture #5
Scribe: Ela Gati & Markus Nagel November 11, 2013
Updated: April 19, 2016

If you spot any error, please email to Joris Mooij (j.m.mooij@uva.nl)

Inference in Graphical Models (8.4)

Inference in this context means calculating probabilities (joint, marginal or conditional).
Example 1:

� 

x p(x) = N (x|µ, σ2) (1)

p(y|x) = N (y|ax+ b, τ2) (2)

By marginalizing out x we get p(y) (equation 2.115 in Bishop)
Using Bayes rule we get p(x|y) (equation 2.116 in Bishop)
⇒ by doing the inference, we can reverse the arrow of the
BN.

Example 2: Markov chain

��−ଵ �� �ଷ �ଶ �ଵ . . .  �ଵ,ଶ �ଵ, �ଶ  ��−ଵ,�ሺ��−ଵ, ��ሻ 
p(~x) = p(x1, x2, ..., xN ) =

1

Z
ψ1,2(x1, x2) · ψ2,3(x2, x3) · ... · ψN−1,N (xN−1, xN ) (3)

p(xn) =
∑

x1

∑

x2

· · ·
∑

xn−1

∑

xn+1

· · ·
∑

xN−1

∑

xN

p(~x) (4)

=
∑

x1

∑

x2

· · ·
∑

xn−1

∑

xn+1

· · ·
∑

xN−1

∑

xN

1

Z
ψ1,2(x1, x2) · ψ2,3(x2, x3) · ... · ψN−1,N (xN−1, xN )

(5)

If each xn takes K possible values, a naive computation will take O(KN ).
In order to make it more efficient we can use the distributive law: a(b+ c) = ab+ ac.
The idea is to use this to exchange the order of the sums and products. We can rewrite the
above equation as:

=
1

Z

∑

x1

· · ·
∑

xN−1

ψ1,2(x1, x2) · · · · · ψN−2,N−1(xN−2, xN−1)
∑

xN

ψN−1,N (xN−1, xN ) (6)



Repeating the same trick on all sums to the right of xn, we get:

=
1

Z

∑

x1

· · ·
∑

xn−1

ψ1,2(x1, x2) . . . ψn−1,n(xn−1, xn)

·
∑

xn+1

ψn,n+1(xn, xn+1)
∑

xn+2

ψn+1,n+2(xn+1, xn+2) · · ·
∑

xN

ψN−1,N (xN−1, xN )

︸ ︷︷ ︸
We call this part the beta message, µβ(xn) which depends only on xn

(7)

We can do the same trick to the left of xn, and get:

=
1

Z

∑

xn−1

ψn−1,n(xn−1, xn)
∑

xn−2

ψn−2,n−1(xn−2, xn−1) · · ·
∑

x1

ψ1,2(x1, x2)

︸ ︷︷ ︸
The alpha message, µα(xn) also depends only on xn

·µβ(xn) (8)

Putting both together, we get:

p(xn) =
1

Z
µα(xn) · µβ(xn) (9)

In each sum
∑

xi
ψi−1,i(xi−1, xi), we sum over K values of xi and we need to compute it K

times, for each value of xi−1, and we have a total of N − 1 summations, so the computation
will take O(NK2).
If we want the marginal distributions, we can naively repeat the whole process, with com-
plexity of O(N2K2), but actually many computations are redundant. By saving interme-
diate results, we can compute all marginal distributions in O(2NK2) = O(NK2).

��−ଵ �� �ଶ �ଵ . . .  

�ఈሺ�ଶሻ �ఉሺ��−ଵሻ �� ��−ଵ 

�ఈሺ��ሻ ��+ଵ 

�ఉሺ��ሻ 
. . .  

Recursive message passing equation:

µα(xn)︸ ︷︷ ︸
outgoing message

=
∑

xn−1

ψn−1,n(xn−1, xn)︸ ︷︷ ︸
local potential

· µα(xn−1)︸ ︷︷ ︸
incoming message

(10)

In a similar fashion:
µβ(xn) =

∑

xn+1

ψn,n+1(xn, xn+1)µβ(xn+1) (11)

p(xn) =
1

Z
µα(xn)µβ(xn) (12)

We can compute Z locally in order O(K):

Z =
∑

xn

µα(xn)µβ(xn) (13)

This holds for any n = 1, ..., N in the chain.

2



Figure 1: Three representations of the same graph. From left to right: directed graph,
undirected graph and a factor graph.

Inference on Trees: the Sum-Product Algorithm (8.4.4)

(Also known as “Belief Propagation”)
A tree is a graph with no loops. Both directed and undirected trees can be converted to

a factor graph tree, but a directed tree could result in a non-tree structure when converted
to an undirected representation. An example is given in figure 1, were the leftmost is a
directed graph, with no loops. It is called a poly-tree (and not simply a tree) since its
undirected representation (middle graph) includes a loop. The factor graph representation
is again a tree.
Factor graphs are the most general representation, and since any other tree representation
can be easily converted to a factor tree, the sum-product algorithm is defined for factor
trees.

Given a factor graph with a tree structure

As an example we use the following (part of a) factor graph:

�௜  �௝ 
�௞ 

 ߙ

 ߚ

The probability in a factor graph can be expressed as

p(~x)︸︷︷︸
=p(x1,x2,...,xN )

=
1

Z

∏

α

fα(~xα) (14)

where ~xα is a vector containing all nodes dependent on α (in our example ~xα = (xi, xj , xk)).
The Sum-Product Algorithm works by passing messages along the edges of the factor graph.
Factor → variable messages:

µα→i(xi) =
∑

xα\i

fα(~xα)
∏

j∈α\i
µj→α(xj) (15)

3



where α \ i are the indexes of the variables depending of α excluding i.
Variable → factor messages:

µj→α(xj) =
∏

β∈ne(j)\α
µβ→j(xj) (16)

where ne(j) \ α are all neighboring factors of j except α.
Leaf nodes:

xl is a leaf node: µl→δ(xl) = 1 (17)

ε is a leaf node: µε→k(xk) = fε(xk) (18)

Note, fε(xk) =
∑

~xε\k
fε(xk). Since ε is a leaf node xε\k is the empty set. By definition the

sum over a empty set equals the term inside the sum.
After all messages have been computed, the Sum-Product Algorithm calculates “beliefs”
for all nodes on the factor graph, which for tree-structured factor graphs are equal to the
marginal probabilities of variables and factors.
“variable beliefs”

p(xi) =
∑

~x−i

p(~x) =
1

Z

∏

α∈ne(i)
µα→i(xi) (19)

Note, Z is the normalization constant. This is the same for all xi. It can easily be calculated
by summing over all possible xi, thus

Z =
∑

xi

∏

α∈ne(i)
µα→i(xi) (20)

“factor beliefs”

p(~xα) =
1

Z
fα(~xα)

∏

i∈ne(α)
µi→α(xi) (21)

By caching intermediate computations, and calculating two messages for each edge on a
tree-structured factor graph, the Sum-Product Algorithm efficiently calculates all variable
marginals p(xi) in O(2EKM ) (where E is the number of edges in the factor graph, and each
variable xi is assumed to have K possible values, and we assume that each factor depends
on no more than M variables).

Example 3: In this example we consider the following factor graph an calculate the
corresponding messages for it.

p(x1, x2, x3, x4) =
1

Z
fα(x1, x2)fβ(x2, x3)fγ(x2, x4) (22)

µ1→α(x1) = 1 (23)

µα→2(x2) =
∑

x1

fα(x1, x2)µ1→α(x1) =
∑

x1

fα(x1, x2) (24)

µ4→γ(x4) = 1 (25)

µγ→2(x2) =
∑

x4

fγ(x2, x4)µ4→γ(x4) =
∑

x4

fγ(x2, x4) (26)

µ2→β(x2) = µα→2(x2)µγ→2(x2) (27)

µβ→3(x3) =
∑

x2

fβ(x2, x3)µ2→β(x2) (28)

4
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The same example can also be found in Bishop. The six massages in the other direction
are similar. Now we can calculate the marginal probability according to equation 19.

p(x2) =
1

Z
µα→2(x2)µβ→2(x2)µγ→2(x2) (29)

=
1

Z

(∑

x1

fα(x1, x2)

)(∑

x3

fβ(x2, x3)

)(∑

x4

fγ(x2, x4)

)
(30)

=
∑

x1

∑

x3

∑

x4

1

Z
fα(x1, x2)fβ(x2, x3)fγ(x2, x4)

︸ ︷︷ ︸
=p(x1,x2,x3,x4)

(31)

This is exactly the equation for marginalizing out all other variables other then x2 from
the joint distribution, hence the marginal distribution of x2. This example is not a proof,
however we can see that we get from the defined messages exactly the expected outcome.

The algorithm is defined for trees, but can actually be used even if there are loops in
the graph. In this case, the convergence guarantees are very weak, but in practice it often
converges, and if the convergence is rapid we can get a very good approximation for the
variable beliefs.

Introducing evidence factors

What happens if some of the nodes are observed, i.e. we want to know the conditional
probability p(xi|xj) =? Then we can introduce an “hard evidence” factor with the indicator
function

fξj (xj) = I[xj = ξj ] (32)

Thus the probability of p(~x) with observing xj = ξj gets

p(x1, . . . , xj = ξj , . . . , xN ) =
∑

xj

p(x1, . . . , xN )fξj (xj) (33)

And the conditional probability of xi given xj = ξj is

p(xi|xj = ξj) =
p(xi, xj = ξj)∑
xi
p(xi, xj = ξj)

∝ p(xi, xj = ξj) =
∑

xj

p(xi, xj)fξj (xj) (34)

5



This means that we can use the Sum-Product Algorithm on an extended factor graph that
contains one evidence factor (indicator function) for each variable with evidence. Instead
of multiplying with fξj we could redefine the existing factors according to the evidence. If
fγ is a factor dependent on xj , we can rewrite it as:

f̃γ = fγ · fξj (35)

6



Machine Learning 2

Lecturer: Joris Mooij Lecture #6
Scribes: Sander Nugteren & Chiel Kooijman 13 November, 2013
Updated: February 23, 2015

If you spot any error, please email to Joris Mooij (j.m.mooij@uva.nl)

8.4.5 The Max-sum algorithm

x∗ = arg max
x

∏

α

fα(xα)

p(x∗) = max
x

1

Z

∏

α

fα(xα)

log p(x∗) = log

[
max
x

1

Z

∏

α

fα(xα)

]

= max
x
− logZ +

∑

α

log fα(xα)

The Max-Sum Algorithm is analogous to the Sum-Product Algorithm, but sums are
replaced with max-operators, products with sums and factors with log-factors.
Factor → variable messages:

να→i(xi) = max
xα\i


(ln fα(xα)) +

∑

j∈α\i
νj→α(xj)




Variable → factor messages:

νj→α(xj) =
∑

β∈ne(j)\α
νβ→j(xj)

where ne(j) \ α are all neighboring factors of j except α.
max-beliefs/max-marginals

q(xi) = max
x\i

log p(x\i, xi)

= − logZ +
∑

α∈ne(i)
να→i(xi) ne(i) denotes the neighbours of xi

Given max-marginals you have to perform a decoding step (the Viterbi algorithm) in
order to find the global optimum. If q(xi) has a unique maximum, we can use x∗i =
arg maxxi q(xi).

8.4.6 Exact inference on general graphs

See also chapter 20 of Murphy (BB).

Variable Elimination: Example



Coherence

Difficulty

Grade

Intelligence

SAT

Letter Job

Happy

(a) Directed graph

Coherence

Difficulty

Grade

Intelligence

SAT

Letter Job

Happy

(b) Markov random field

Figure 1: The example network

Difficulty

Grade

Intelligence

SAT

Letter Job

Happy

(a) Eliminated C

Grade

Intelligence

SAT

Letter Job

Happy

(b) Eliminated D

Grade SAT

Letter Job

Happy

(c) Eliminated I. Note the fill-edge be-
tween Grade and SAT

Figure 2: Variable elimination
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Step Eliminated Factors used Valiables involved New factor
1 C φC , φD C, D τ1(D)
2 D φG, τ1 G, I, D τ2(G, I)
3 I φS , φI , τ2 S, G, I τ3(S,G) Add fill-edge between G and S
4 H φH H, G, J τ4(G, J)
5 G φL, τ3, τ4 G, L, S, J τ5(J, L, S)
6 S φJ , τ5 J, L, S τ6(J, L)
7 L τ6 J, L τ7(J)

p(J) =
∑

L

∑

S

∑

G

∑

H

∑

I

∑

D

∑

C

p(C,D, I,H,G, S, L, J)

=
∑

L

∑

S

∑

G

∑

H

∑

I

∑

D

∑

C

φC(C)φD(C,D)φI(I)φG(G, I,D)φS(S, I)φL(L,G)φJ(J, L, S), φH(H,G, J)

=
∑

L

∑

S

φJ(J, L, S)
∑

G

φL(L,G)
∑

H

φH(H,G, J)
∑

I

φI(S, I)φI(I)
∑

D

φG(G, I,D)
∑

C

φC(C)φD(C,D)

τ1(D) =
∑

C

φC(C)φD(C,D)

τ2(G, I) =
∑

D

φG(G, I,D)
∑

C

φC(C)φD(C,D)

τ3(S,G) =
∑

I

φI(S, I)φI(I)
∑

D

φG(G, I,D)
∑

C

φC(C)φD(C,D)

τ4(G, J) =
∑

H

φH(H,G, J)

τ5(J, L, S) =
∑

G

φL(L,G)
∑

H

φH(H,G, J)
∑

I

φI(S, I)φI(I)
∑

D

φG(G, I,D)
∑

C

φC(C)φD(C,D)

τ6(J, L) =
∑

S

φJ(J, L, S)
∑

G

φL(L,G)
∑

H

φH(H,G, J)
∑

I

φI(S, I)φI(I)
∑

D

φG(G, I,D)
∑

C

φC(C)φD(C,D)

τ7(J) =
∑

L

∑

S

φJ(J, L, S)
∑

G

φL(L,G)
∑

H

φH(H,G, J)
∑

I

φI(S, I)φI(I)
∑

D

φG(G, I,D)
∑

C

φC(C)φD(C,D)
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Variational Expectation Maximization (VEM)

Assuming we have a distribution p(X,Z|θ), in which:

• xn: N observed random variables

• zn: N hidden random variables

• θ, parameters

zn

xn

θ

n = 1, . . . , N

Figure 1: Model described above.

Suppose we want to learn θ using Maximum Likelihood. The Log-Likelihood of the data is:

L(θ) = log p(X|θ) (1)

=
∑

n

log p(xn|θ) (2)

=
∑

n

log

(∑

zn

p(xn, zn|θ)

)
(3)

Due to the sum over zn inside the logarithm, this can be difficult to optimize with respect
to θ. The Expectation-Maximization (EM) algorithm comes to the rescue. It is derived by
using the following trick. We want to approximate the posterior distributions p(zn|xn,θ)
by distributions qn(zn) (for n = 1, . . . , N). For arbitrary distributions qn(zn):

log p(xn|θ) = log
p(xn, zn|θ)

qn(zn)

qn(zn)

p(zn|xn,θ)
∀zn (4)



Therefore the log-likelihood becomes:

L(θ) =
∑

n

log p(xn|θ) =
∑

n

∑

zn

qn(zn) log p(xn|θ) =
∑

n

∑

zn

qn(zn) log
p(xn, zn|θ)

qn(zn)

qn(zn)

p(zn|xn,θ)

(5)
Entropy and Kullback-Leibler Divergence:

H(q) = −
∑

z

q(z) log q(z) (6)

KL[q||p] =
∑

z

q(z) log
q(z)

p(z)
≥ 0, (= 0 if q = p) (7)

So eq.(1) becomes:

L(θ) =
∑

n

(Eqn [log p(xn, zn|θ)] +H[qn] +KL[qn(zn)||p(zn|xn,θ)]) . (8)

Because KL is non-negative:

L(θ) ≥
∑

n

(Eqn [log p(xn, zn|θ)] +H[qn]) (9)

= L(θ, q) (10)

L(θ) = L(θ, q) if and only if qn(zn) = p(zn|xn,θ). At the moment, we have arbitrary
distributions but the idea is to make them close to the posterior probabilities.

Variational EM Algorithm

Variational EM (Expectation-Maximization) algorithm has two steps: one optimizes L(θ, q)
over θ, the other over q.

• E-Step:
Given θt, evaluate

qtn(zn) = p(zn|xn,θt) (11)

(or increase L(θt, q) over q). This is not easy to solve, but sometimes it can be done
(for example in Mixture of Gaussians).

It could be a situation where:

q(zn) p(zn|xn,θt)

The green dot upon the circle will be the best qn that approximates p(zn|xn,θt) as
it is the shortest point from p.

• M-Step:
Given qt, solve

θt+1 = arg max
θt

∑

n

Eqtn [log p(xn, zn|θt)] (12)

(or increase L(θ, qt) over θ).

2



We maximize the lower bounds until we find the maximum. The convergence is rather slow.
In terms of speed is not the best algorithm.

This Variational EM algorithm is a slight generalization of the EM algorithm discussed
by Bishop. The E-step of the EM algorithm is to calculate the expectation:

∑

n

Eqtn [log p(xn, zn|θt)]

The M-step of the EM algorithm is to maximize that expectation over θ:

θt+1 = arg max
θt

∑

n

Eqtn [log p(xn, zn|θt)]

Example: mixture of Bernoulli’s

Consider a multivariate Bernoulli distribution

p(x|µ) =
D∏

i=1

µxii (1− µi)1−xi , µi ∈ [0, 1], xi ∈ {0, 1} (13)

where x = (x1, . . . , xD) and µ = (µ1, . . . , µD). Consider a mixture of these distributions

p(x|µ,π) =
K∑

k=1

πkp(x|µk) (14)

where
∑K

k=1 πk = 1.
We introduce a hidden variable: z ∈ {1, 2, . . . ,K}. Assuming each datapoint is assigned

to one cluster, the hidden variable z tells us to which cluster each datapoint is assigned.

p(z|π) =

K∏

k=1

π
δz,k
k

p(x|z,µ) =
K∏

k=1

p(x|µk)δz,k

It is easy to see that

∑

z

p(x|z,µ)p(z|π) =
K∑

k=1

πkp(x|µk) = p(x|µ,π)

Rewrite log-likelihood as

L(µ,π) =
∑

n

log

K∑

k=1

πkp(xn|µk) (15)

=
∑

n

log
∑

zn

p(xn|zn,µ)p(zn|π) (16)

3



The EM functional is:

L(q,µ,π) =
∑

n

∑

zn

qn(zn) log p(xn, zn|µ,π)−
∑

n

∑

zn

qn(zn) log qn(zn) (17)

=
∑

n

∑

zn

qn(zn)

[
log πzn +

(
D∑

i=1

xni logµzn,i + (1− xni) log(1− µzn,i)
)
− log qn(zn)

]

(18)

Including Lagrange multipliers for the constraints:

L̃(q,µ,π, λ, λn) = L(q,µ,π) + λ

(∑

k

πk − 1

)
+
∑

n

λn

(∑

zn

qn(zn)− 1

)
(19)

E-Step:

∂L̃
∂qn(zn)

= log πzn +

[
D∑

i=1

xni logµzn,i + (1− xni) log(1− µzn,i)
]
− log qn(zn)− 1 + λn = 0

(20)

qn(zn) = exp (λn − 1)πzn
∏

i

µxnizn,i
(1− µzn,i)1−xni (21)

M-Step:

∂L̃
∂πk

=
∑

n

∑

zn

δzn,k
qn(zn)

πk
+ λ = 0⇒

πk = − 1

λ

∑

n

qn(k)⇒ Nk

N
= πk

Finally:

∂L̃
∂µki

=
∑

n

qn(k)

(
xni

µki
− (1− xni)

(1− µki)

)
= 0⇒ (22)

µki =

∑
n qn(k)xni
Nk

(23)

which is the average over all datapoints assigned to each cluster.

Variational Inference

Instead of treating θ as parameter, let us treat it as a hidden random variable and calculate
its posterior.

We are interested in the evidence p(X) and the posterior p(θ|X):

L = log p(X) ≥ L(q) (24)

(in which the equality holds when q(θ) = p(θ|X)), with:

L(q) =

∫
q(θ) log(p(X|θ)p(θ)) dθ −

∫
q(θ) log q(θ) dθ (25)

4



Let’s now assume distribution q factorizes over parameters θi:

q(θ) =
D∏

i=1

qi(θi) (26)

Together with Lagrange multipliers ensuring normalization of qi(θi):

L̃(q) =

∫ ( D∏

i=1

qi(θi)

)
log p(X|θ)p(θ)dθ−

∑

i

∫
qi(θi) log qi(θi)dθi+

∑

i

λi

(∫
qi(θi)dθi − 1

)

Maximizing the bounds separately for each term (note: this is a functional derivative, see
App. D in Bishop):

∂L̃
∂qi(θi)

=

∫ 
∏

j 6=i
qj(θj)


 log(p(X|θ)p(θ)) dθ\i − log qi(θi)− 1 + λi (27)

The update becomes:

qi(θi) = exp (λi − 1) exp

∫ 
∏

j 6=i
qj(θj)


 log(p(X|θ)p(θ)) dθ\i (28)

∝ exp
(
Eq\i [log p(X,θ)]

)
(29)

where: exp (λi − 1) =
1

Z
, ensures qi(θi) is correctly normalized.

This is called variational Bayes: p(θ|X) ≈∏i qi(θi)

Example of Variational Bayes

Consider the following Bayesian model for a Gaussian distribution:

p(X|µ, τ) =
∏

n

N (xn|µ, τ−1) =

(
τ

2π

)N
2

exp

(
−τ
2

∑

n

(xn − µ)2

)
(30)

p(τ) = Gam(τ |a0, b0) = cτa0−1e−b0τ (31)

p(µ|τ) = N (µ|µ0, (λ0τ)−1) (32)

Let’s assume now that q(τ, µ) = q(τ)q(µ), θ = (τ, µ)

L(qµ, qτ ) =

∫
qµ(µ)qτ (τ) log(p(X|µ, τ)p(µ|τ)p(τ))dµdτ

−
∫
qµ(µ) log qµ(µ)dµ−

∫
qτ (τ) log qτ (τ)dτ

Adding Lagrange multipliers:

L̃(qµ, qτ ) = L(qµ, qτ ) + λµ

(∫
qµ(µ)dµ− 1

)
+ λτ

(∫
qτ (τ)dτ − 1

)

5



Hence,
∂L̃

∂qµ(µ)
=

∫
dτ q(τ) log p(X,µ, τ)− log q(µ)− 1 + λµ (33)

Set
∂L̃

∂qµ(µ)
= 0, we find

qµ(µ) =
1

Z
exp

(∫
q(τ) log p(X,µ, τ) dτ

)

= N
(
λ0µ0 +Nx̄

λ0 +N
, (λ0 +N)Eqτ [τ ]

)

Similarly:

qτ (τ) = Gam

(
τ |a0 +

N

2
, b0 +

1

2
Eqµ

[∑

n

(xn − µ)2 + λ0(µ− µ0)2
])

(34)

and, after solving these fixed point equations, one obtains the approximation

p(θ|X) ≈ q(µ)q(τ)

log p(X) ≈ L(qµ, qτ )

6



Machine Learning 2

Lecturer: Max Welling Lecture #8
Scribe: Sammie Katt November 20, 2013
Updated: May 2, 2016

If you spot any error, please email to Joris Mooij (j.m.mooij@uva.nl)

1 Variational EM (recap)

We have seen that variational EM consists of a two-step algorithm for maximizing log-
likelihood function ln p(X|θ), which is rewritten as in equation.

ln p(X|θ) = −Eq[ln p(X,Z|θ)] +H[q] +KL[q||p(Z|X, θ)] (1)

These steps involve maximizing L:

1. E-step: maximize over q(Z) while holding θ fixed

2. M-step: maximize over θ while holding q(Z) fixed

2 Variational Bayes (recap)

Variational Bayes approach considers θ parameters as latent variables (Z). We are interested
in evidence p(X) and the posterior p(θ|X) (eq 2).

ln p(X) = −Eq[ln p(X, θ)] +H[q] +KL[q||p(θ|X)] (2)

Assuming q factorizes q(θ) =
∏
i
qi(θi) we get to the following update rules

qi(θi) ∝ exp
(
Eq\qi [ln p(X, θ)]

)

3 Hybrid

Although not further discussed in college a hybrid form exists, combining both parameters θ
and hidden variables Z. We still try to calculate our evidence p(X) (as we did in variational
bayes) but we introduce hidden variables (eq 3).

ln p(X) = Eq [ln p(X,Z, θ)] +H[qZ ] +H[qθ]︸ ︷︷ ︸
L(qz ,qθ)

+KL[qZqθ||p(Z, θ|X)] (3)

where

q = q(Z|X)× q(θ)

The EM steps are a combination of variational EM and variational Bayes:

1. Ez-step: max
qz
L(qz, qθ)

2. Eθ-step: max
qθ
L(qz, qθ)



4 Types of maximizing

4.1 Maximizing with EM

A direct consequence the way (variational) EM maximizes is the underestimation of the
variance of the approximated distribution. EM maximizes the lower bound by minimizing
KL[q(θ)|||p(θ|X)]. As we see in equation 4, taking an outlier would lead to a small p(θ)
(taken 0 as an extreme example). If q(θ) > p(θ) this could easily lead to a high number
and thus is penalized. Thus minimizing leads directly to penalizing high variance and
underestimates the variance.

KL[q(θ)||p(θ)] =

∫
q(θ) ln p(θ)− q(θ) ln q(θ)dθ

=

∫
q(θ) ln 0− q(θ) ln q(θ)dθ

=

∫
q(θ)×−∞− q(θ) ln q(θ)dθ (4)

4.2 Maximizing with EP (expectation propagation)

Though to be described later, EP minimizes KL[p(θ|X)||q(θ)] and, as expected, overesti-
mates the variance. This is shown in derivation 5, which assumes q(θ) ∈ exponential family
( 1
Z(η) exp(

∑
k ηkφk(θ)).

KL[p(θ)||q(θ)] = −
∫
p(θ)

(
− lnZ(η) +

∑

k

ηkφk(θ)

)
dθ −H[p]

= lnZ(η)−
∑

k

ηkEp[φk(θ)]−H[p]

minimize by setting derivative to 0

δKL

δηj
= Eq(φj(θ))− Ep[φj(θ)]

Eq(φj(θ)) = Ep[φj(θ)] (5)

The result 5 tells us that by moment matching (match the parameters of two distributions)
we find our desired q(θ). As we are dealing with an exponential family, the µ and Σ are
found as follows:

µ =

∫
θp(θ)

Σ =

∫
θθT p(θ)

If p(θ) is irregular in shape (which is often is in real data), q(θ) will try to match its variance
and ends up becoming larger in order to catch the irregular shape of p(θ).
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5 Expectation propagation

We are, again, interested in p(θ|X) (posterior for prediction) and p(X) (for model evalua-
tion). We assume these distributions factorize in some mixture of independent factors (for
example nodes in a graph or data points)

In BN:
p(X, θ) =

∏

j

fj(θ) =
∏

k

p(xk|xpak , θ)

In MRF:

p(X, θ) =
∏

j

fj(θ) =
1

Zj

∏

k

ψk(θ)

The posterior is given by

p(θ|X) =
1

p(X)

∏

j

fj(θ)

and the model evidence is given by

p(X) =

∫ ∏

j

fj(θ)dθ

We approximate the posterior by a product of factors

q(θ) =
1

Z

∏

j

f̃j(θ)

6 EP method (Skipped in 2016)

Ideally we would like to minimize equation 6 (remember KL of EP is different from that of
EM), but for that we require the moments of p(X) (which we are trying to approximate as
we do not know these!).

min
θ
KL

[
1

p(D)

∏

i

fi(θ)||
1

Z

∏

i

f̃i(θ)

]
(6)

Instead, we iterate over each f̃j(θ) and minimize the difference between this one with respect

to the original fj(θ) while fixing all other f̃i 6=j (derivation 7).

qnew(θ) ∝ 1

Zj
f̃j(θ)q

\j(θ)

≈ fj(θ)q\j(θ)

→ KL

[
fj(θ)

∏
i 6=j f̃i(θ)

Zj
||qnew(θ)

]
(7)

where

q\j =
q(θ)

f̃j(θ)

Zj =

∫
fj(θ)q

\j(θ)δθ

3



6.1 Algorithm

These steps conclude in the following steps for doing EP (do this iteratively over all j):

1. Choose a factor f̃j(θ) to refine

2. Remove f̃j(θ) from the posterior by division

q\j(θ) =
q(θ)

f̃j(θ)

3. Match the moments of qnew(θ) to those of q\j(θ)fj(θ), including evaluation of the
normalizing constant Zj

4. Evaluate and store the new factor

f̃j(θ) = Zj
qnew(θ)

q\j(θ)

Lastly p(θ|X) = 1
Z

∏
j f̃j(θ). If applied on MRF this becomes the loopy believe algorithm.

Additionally, EP is not guaranted to converge.

7 EP on evidence

The same trick is applied for calculating evidence:

p(X) =

∫ ∏

j

fj(θ)δθ ≈
∫ ∏

j

f̃j(θ)δθ

which leads to the same calculations as in the section above, (see 10.202-10.208 Bishop)

4







Machine Learning 2

Lecturer: Max Welling Lecture # 9
Scribe: Lydia Mennes & Auke Wiggers November 25, 2013
Updated: May 2, 2016

If you spot any error, please email to Joris Mooij (j.m.mooij@uva.nl)

Recap of what we’ve done so far

Inference in GMs (frequentist approach) We estimate parameters from the data.

pθ(z|x) = p(z|x, θ)
p(X|θ) =

∑

z

p(x, z|θ)

Inference in GMs (Bayesian approach) Parameter is another hidden variable, use p(z, θ|x).

p(x) =
∑

z

∫
p(x, z, θ)dθ

Variational EM (frequentist approach) (See lecture nr. 7)

Variational Bayes (Bayesian approach) Performs inference over parameters. (See lec-
ture nr. 7)

Expectation Propagation (See lecture nr. 8)

Belief propagation As well as loopy belief propagation and variable elimination algorithm

All of the above methods are deterministic! Of course, they may contain stochastic
methods (e.g., random initialisation for loopy belief prop.) but in general the outcome will
always be the same. All methods also compute the full distribution q(zk|x): they optimize
to find q.

Monte Carlo methods

The goal is to compute Ep[f ] =
∫
p(z)f(z)dz. This can be used for prediction:

p(y∗|x∗) =

∫
p(y∗|x∗, θ)p(θ|X,Y )dθ

Or for the estimation of evidence:

p(Y |X) =
∑

Z

∫
p(Y,Z|X, θ)p(θ)dθ

What would we do if p(θ|X,Y ) or p(θ) is difficult to compute? An alternative to the
methods mentioned above is sampling.



Regular sampling

For regular sampling you draw N samples from the distribution p:

zi ∼ p(z) i = 1, ..., N

Then:

E[f ] ' 1

N

N∑

i=1

f(zi)

The idea is that you draw the function values proportional to p, therefore the average
approximates

∫
p(z)f(z)dz. Such an estimate is called a Monte Carlo estimate and the

used notation is 〈f〉. If ∞ Monte Carlo estimates are made, the average equals E[f ].
The expected value of 〈f〉 is:

E[〈f〉] =
1

N

N∑

i=1

E[f ] = E[f ]

Since E[〈f〉] is the same as E[f ], 〈f〉 is an unbiased estimate. The expected error of 〈f〉 is:

E
[
(〈f〉 − Ef)2

]
= E

[
(〈f〉 − E〈f〉)2

]

= V(〈f〉)

= V

(
1

N

∑

i

f(zi)

)

=
1

N2

∑

i

V
(
f(zi)

)

=
1

N
V(f)

It can be seen that large N reduces the expected error of 〈f〉, the magnitude of the error is
order O( 1√

N
).

Regular sampling for discrete random variables

For regular sampling for discrete random variables a cumulative probability distribution
(CDF) is needed for the distribution p that you wish to sample from. An example can be
seen in Figure 2. The procedure for regular sampling in this case is:

• Draw a value from a uniform distribution: u ∼ U(0, 1).

• See where the value is located on the y-axis and note state k that is associated with
the value as your sample.
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Figure 1: Cumulative probability distribution of a discrete random variable with K = 7
states

Regular sampling for continuous random variables

For regular sampling for continuous variables the CDF is defined as:

F (x) =

∫ x

−∞
p(z)dz

= p(z ≤ x)

The procedure for regular sampling is than as follows:

• Draw a value from a uniform distribution: u ∼ U(0, 1).

• Get your sample: xi ∼ F−1(ui)

p(y)

h(y)

y0

1

Figure 2: Cdf of continuous random variable
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Rejection sampling

If the exact CDF is not available a different approach is needed and Rejection sampling is
one option. The procedure for rejection sampling is as follows:

• Use a (unnormalized) distribution p̃ ∝ p, such that there is no need to use the actual
distribution p. Since we are only interested in the sample and the ratios stay intact
it is valid to use p̃.

• Use some (unnormalized) distribution q̃ that upperbounds p̃ as tight as possible (oth-
erwise you reject too many samples) but that has finite normalization constant, i.e.,∫
q̃(z)dz <∞. See Figure 3.

• Sample zi ∼ q

• Sample ui ∼ U(0, q̃(zi))

• If ui > p̃(zi) the sample is trashed, otherwise the sample is kept.

z0 z

u0

kq(z0) kq(z)

p̃(z)

Figure 3: Distributions p̃ and q̃

Since the probability density of a sample is q(z) and the probability of accepting the

sample is p̃(z)
q̃(z) it can easily be seen that this results in a correct sample. The density of

accepted samples is ∝ q(z) p̃(z)q̃(z) ∝ p(z).
With a large number of dimensions a large amount of volume is present between p̃ and

q̃, even if the fit is as tight as possible. Because of this most samples are rejected: the curse
of dimensionality.

Adaptive rejection sampling

Read Section 11.1.3 in Bishop for this topic. Skip the equations in the book as they only
complicate things, but understand the concept.

Importance sampling

Used when it is not easy to find a function that forms an upper bound. Note that q does
not necessarily has to be a bound on p, as we weigh by the quotient of the two distributions.

Assume that

p =
p̃

Zp
, q =

q̃

Zq

4



where p̃ and q̃ can be evaluated easily, whereas the normalizing constants Zp and Zq are
unknown. Samples are drawn from (unnormalized) distribution q̃ and weighed correspond-
ingly:

zi ∼ q

wi =
p̃(zi)

q̃(zi)

Then

Ef =

∫
p(z)f(z)dz =

∫
dz q(z)p(z)q(z)f(z)
∫
dz q(z)

p(z)

q(z)︸ ︷︷ ︸
1

=

∫
dz q(z)

p(z)Zp

q(z)Zq
f(z)

∫
dz q(z)

p(z)Zp

q(z)Zq

=

∫
dz q(z) p̃(z)q̃(z)f(z)
∫
dz q(z) p̃(z)q̃(z)

≈
∑

iwif(zi)∑
j wj

Works bad in high dimensions as it is hard to find an z where both q̃(z) and p̃(z) are
high in the high-dimensional space. If p̃ and q̃ overlap just a little, this will give a bad
estimate.

Ancestral sampling (AKA Likelihood Weighted sampling)

Given a Bayesian network, we can write down the joint probability as p(z1)p(z2|z1) . . .. That
means there is always a node in the DAG that is not dependent on any other variable. We
sample this node, and use the sample to draw samples for subsequent nodes:

z̃1 ∼ p(z1)
z̃2 ∼ p(z2|z̃1)
z̃3 ∼ p(z3|z̃1)
z̃4 ∼ p(z5|z̃2, z̃3)

...

z1

z2

z3

z4

z5

z6

. . .

. . .

. . .

Works bad in high dimensions as well.

Markov Chain Monte-Carlo (MCMC) sampling

MCMC runs ancestral sampling on a chain. Samples can no longer be drawn independently!

xt
t→∞∼ q∞ Equilibrium or invariant distribution.

x1 x2 x3 . . . x∞

5



xt xt+1

(a) Figure showing a case of detailed balance

xt

xt+1

xt+2

xt+3

(b) Figure showing a case of invariance where
there is no detailed balance

We transition from q1 to q2 according to transition probability T (x2|x1):

q(x1, x2) = T (x2|x1)q(x1)

q(x2) =

∫
T (x2|x1)q(x1)dx1

Generalization of this rule:

q( xt+1, xt)︸ ︷︷ ︸
May be correlated!

= T (xt+1|xt)q(xt) (1)

Invariance

We want to find T for a given p, such that p = Tp holds:

p(xt+1) =

∫
dxtT (xt+1|xt)p(xt)

︸ ︷︷ ︸
Eigenvalue equation for λ = 1

(2)

Proof of invariance of the current method: if T (xt+1|xt)p(xt) = T (xt|xt+1)p(xt+1) for
all xt, xt+1, then:

∫
dxtT (xt+1|xt)p(xt) =

∫
dxtT (xt|xt+1)

︸ ︷︷ ︸
1

p(xt+1) = p(xt+1).

Detailed balance (or reversibility)

We want to find T so that transition from one state to another has probability mass equal
to the transition from that next state to the current:

T (xt+1|xt)p(xt) = T (xt|xt+1)p(xt+1) (3)

6



Ergodicity

This algorithm needs ergodicity : A positive probability for every state (so all will be
reached).

Let’s say we have two transition functions, T1 and T2, that satisfy detailed balance and
are ergodic. We can then construct a new one by taken a weighted average, or by combining
the operations:

T3 = αT1 + (1− α)T2

T4 = T1 ◦ T2

Metropolis-Hastings algorithm

Algorithm 1 Metropolis-Hastings algorithm

1: xt+1 ∼ q(xt+1|xt)
2: α = min

(
1, p(xt+1)q(xt|xt+1)

p(xt)q(xt+1|xt)

)

3: u ∼ U(0, 1)
4: if u ≤ α, accept, otherwise, keep copy of the old sample instead.

Proof of detailed balance: if the new sample is accepted, then:

p(xt)q(xt+1|xt)min

(
1,
p(xt+1)q(xt|xt+1)

p(xt)q(xt+1|xt)

)
= min (p(xt)q(xt+1|xt), p(xt+1)q(xt|xt+1))

= min (p(xt+1)q(xt|xt+1), p(xt)q(xt+1|xt))

= p(xt+1)q(xt|xt+1)min

(
1,

p(xt)q(xt+1|xt)
p(xt+1)q(xt|xt+1)

)

So, if the algorithm satisfies ergodicity and detailed balance, it will eventually sample
from the desired distribution p(z). The first (“burn-in”) samples should be discarded as
they are not yet sampling from the equilibrium distribution. It is hard to say in general
how many burn-in samples there are.

Will work better in high dimensions than previous methods, but is quite slow (as we
perform a random walk).

Quasi-MC sampling

Fun fact: If we sample in a smart way (e.g. not sample the same point twice, ensure that
areas there hasn’t been sampled from have higher probability of being chosen) instead of
random, these methods may converge faster.
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MCMC Review

Being given a distribution p̃(x), the goal is to design an algorithm with transition kernel
T (xt+1|xt) that maps sampled point xt to xt+1.

This transition kernel must satisfy either the invariant distribution or detailed balance
properties (described below), in addition to ergodizity (each state must have a non-zero
chance to be explored).

Furthermore, if T1 and T2 are valid transition kernels, then also a linear combination
T3 = πT1 + (1− π)T2 and a composition T4 = T2 ◦ T1 are valid transition kernels.

Invariant Distribution

p(xt+1) =

∫
T (xt+1|xt)p(xt)dxt

The above relation can be seen as a marginalization over xt, with T (xt+1|xt)p(xt) =
p(xt+1,xt)

Detailed Balance (reversibility)

p(xt)T (xt+1|xt) = p(xt+1)T (xt|xt + 1)

Detailed balance implies the invariant distribution property, but the other way around
is not necesarly true. However, in general it is easier to design a transition kernel that
satisfies detailed balance.

Metropolis Hastings Algorithm

1. Sample xt+1 ∼ Q(xt+1|xt) (proposal distribution)

2. Compute ”acceptance probability”

α(xt → xt+1) = min

(
1,
p(xt+1)Q(xt|xt+1)

p(xt)Q(xt+1|xt)

)

Thus, the transition kernel is T = Q ◦ α

3. u ∼ U(0, 1) (random uniform)

• if u ≤ α : accept ⇒ St+1 = {St,xt+1}
• if u > α : reject ⇒ St+1 = {St,xt}

where St denotes the sample set at time t.



Gibbs sampling

Let a sample at a given moment t be a D-dimensional vector (xt1, x
t
2, . . . x

t
D). Gibbs sampling

involves sampling on a single dimension at a time:

xt+1
1 ∼ p(x1|xt2, xt3, . . . xtD)

xt+1
2 ∼ p(x2|xt+1

1 , xt3, . . . x
t
D)

. . .

xt+1
D ∼ p(xD|xt+1

1 , xt+1
2 , . . . xt+1

D−1)

The order in which the dimensions are chosen can either be random or fixed. If the
order is fixed, detailed balance is not guaranteed, but the transition kernel is still valid (i.e.,
leads to invariant p).

The underlying principle for the Gibbs sampling is the fact that sampling a variable
from an unidimensional distribution is easier than drawing from a multi-dimensional one.
In particular for graphical models, this involves only fixing the values for the nodes in the
Markov blanket of the desired variable.

Hamiltonian Monte Carlo (HMC) (Skipped in 2016)

This algorithm is the preferred sampling method for working with continuous variables.
Consider the following model that generates joint samples {(xt, rt)} :

p(x) =
1

Zx
e−E(x) (1)

p(r) = N (r|0, 1) =
1

r
e−

1
2
‖−→r ‖2 (2)

p(x, r) = p(x)p(r) ∝ e−E(x)− 1
2
‖−→r ‖2 (3)

p(x) =

∫
p(x, r)dr (4)

In equation 3 an analogy with a physical process is made, with E(x) denoting potential
energy and 1

2‖
−→r ‖2 denoting kinetic energy. Under Newtonian physics, mechanic energy is

conserved, i.e. H = E +K. Thus, the following conditions must hold:

∂xi
∂t

=
∂H

∂ri
= ri

∂ri
∂t

= −∂H
∂xi

= −∂E
∂xi

We have the following properties:

1. H(x(t), r(t)) = H(x(0), r(0)) (Total energy does not change)

∂H

∂t
=
∂H

∂x

∂x

∂t
+
∂H

∂r

∂r

∂t

=
∂H

∂x

∂H

∂r
+
∂H

∂r

(
− ∂H

∂x

)
= 0
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2. Volume does not change.

p(x0, r0)dV0 = p(xt, rt)dVt

p(xt, rt) = p(x0, r0)
dVt
dV0︸︷︷︸
=1

3. Procedure is reversible (detailed balance holds)

Algorithm HMC

1. x0

2. draw r0 ∼ N (0, 1)

3. ”Leapfrog stepping”

• ri(t+ ε
2) = ri(t)− ε

2
∂E
∂xi

∣∣∣∣
x(t)

• xi(t+ ε) = xi(t) + εri(t+ ε
2)

• ri(t+ ε) = ri(t+ ε
2)− ε

2
∂E
∂xi

∣∣∣∣
xi(t+ε)

• Iterate for T rounds

4. Accept (x(t), r(t)) with probability α = min(1, eH0−Ht)

5. Repeat

Regarding step 4, it must be noted that the acceptance probability would always be
1 if the Hamiltonian dynamics would be modelled perfectly (i.e. Ht = H0). However, in
practice this is not the case due to numerical errors.
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(13) Sequential Data

So far, we have studied models for which:

• The likelihood of a single data point is expressed as p(x|θ)

• Multiple data points are assumed to be i.i.d.:
∏N
n=1 p(xn|θ)

We might want to drop the i.i.d. assumption, since this is too restrictive for time-
dependent data points: weather, stock prices...

(13.1) Markov models

If we have a graphical model with nodes x1 to xN (all observed), we might connect them
in a chain as follows (Markov model):

And thus, it follows that:

p(x1, . . . ,xN ) = p(x1)
N∏

n=2

p(xn|xn−1)

Note that the arrows in the previous graph do not necessarily represent time (e.g.: words
in sentences, space...).

Markov property/assumption:

p(xn|x1, . . . ,xn−1) = p(xn|xn−1) (1)

Homogeneous M.M. ⇒ p(xn+1|xn)“ = ”p(xn|xn−1), where by “ = ” an equality
between, for instance, the probability tables is meant, not between particular probability
values. This assumption allows to reduce the number of parameters needed to specify the
Markov chain.

So far, we hava only considered first order Markov chains, but we may write higher order
Markov chains by adding dependences on more previous nodes. For example, a second order
Markov chain would be:

p(x1, . . . ,xN ) = p(x1,x2)
N∏

n=3

p(xn|xn−1,xn−2)



Note that in such cases the Markov property needs to be adapted accordingly.
The number of parameters of a Markov chain increases exponentially with its order

(where K is the number of states of the variables):

• 1) K − 1 +K(K − 1)

• 2) K2 − 1 +K2(K − 1)

• ...

• M) KM − 1 +KM (K − 1)

By grouping variables (i.e.: yn = (xn,xn−1)) we can define higher order Markov chains
as a first order Markov chain.

Also known as AR model (Auto-Regressive model) for linear-Gaussian case (i.e. p(xn|xn−1) =
N (xn|B xn−1,Σ)).

(13.2) Hidden Markov Models (HMMs)

Useful in speech recognition, natural language processing, online character recognition...
Comes in two flavours:

• Discrete latent variables: HMM

• Continuous latent variables, linear-Gaussian interactions: LDS (Linear Dynamical
System)

For the homogeneous case:

p(x, . . . ,xN |π,A,φ) =
∑

z1

· · ·
∑

zN

p(z1|π)




N∏

n=2

p(zn|zn−1,A)︸ ︷︷ ︸
Transition probabilities




N∏

n=1

p(xn|zn,φ)︸ ︷︷ ︸
Emission probabilities

(2)
We will use 1-of-K coding for zn (e.g.: zn = (0, 1, 0, 0) corresponds with the 2nd state)
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p(z1|π) =

K∏

k=1

πz1kk

p(zn|zn−1,A) =
K∏

k=1

K∏

j=1

A
zn−1,jznk

jk

p(xn|zn,φ) =
K∏

k=1

p(xn|φk)znk

Where A, φ and π are the parameters of the model. p(xn|zn,φ) is model-dependent
(e.g.: mixture of Gaussians, multinomial if discrete, etc). The next figure shows an example
with a mixture of Gaussians for the emission probabilities:

The model parameter A can be interpreted as the state transition probabilities: Ajk is
the probability to go from state j to state k. We can picture the HMM as a state transition
diagram:

3



The HMM is most useful when A is sparse. If homogeneity is assumed, then all param-
eters can be estimated from a single, long observation of data. The following lattice trellis
diagram shows the unfolding state transitions of the latent variables over time:

(13.2.1) Maximum Likelihood for HMMs

We have:

• Data X = (x1, . . . ,xN )

• Latent state Z = (z1, . . . ,zN )

• Parameters θ = (π,A,φ)

And thus:

p(X|θ) =
∑

Z

p(X,Z|θ)

This represents a sum of KN terms, which quickly becomes intractable, so we can use
for instance the EM algorithm.

E-step:

Q(θ,θold) =
∑

Z

p(Z|X,θold) ln p(X,Z|θ) (3)

M-step:
θnew = argmaxθQ(θ,θold) (4)

We will first introduce a new notation:

γ(zn)← p(zn|X,θold)

ξ(zn−1, zn)← p(zn−1, zn|X,θold)
(5)

We can now write Q more explicitly:

Q(θ,θold) =
K∑

k=1

γ(z1k) lnπk +
N∑

n=2

K∑

j=1

K∑

k=1

ξ(zn−1,j , znk) lnAjk +
N∑

n=1

K∑

k=1

γ(znk) ln p(xn|φk)

(6)
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M-step

We can finally solve for the model parameters for the M-step, taking care of adding Lagrange
multipliers where needed in order to enforce the probabilities contraints:

πnewk ← argmaxπkQ(θ,θold) =
γ(z1k)∑K
j=1 γ(z1j)

Anew
jk ←

∑N
n=2 ξ(zn−1,j , znk)∑K

l=1

∑N
n=2 ξ(zn−1,j , znl)

(7)

For a Gaussian measurement model, i.e.,

p(xn|φ, zn) =

K∑

k=1

N (xn|µk,Σk)znk

with φk = (µk,Σk), we get update equations (13.20) and (13.21) for φ.
For a multinomial measurement model, i.e.,

p(xn|zn,φ) =
D∏

i=1

K∏

k=1

µxniznk
ik

with µ ∈ RD×K we get update equations (13.23) for φ.

E-step

For the E-step, we need to calculate marginal probabilities in the graphical model. We can
use the sum-product algorithm for this purpose. Bishop starts with treating the “forward-
backward (Baum-Welch) algorithm” in 13.2.2 from scratch. In 13.2.3 he then shows that
this is actually a special case of the sum-product algorithm. Instead, we will directly write
down the sum-product algorithm for the case at hand.

We start by representing the graphical model as a factor graph. Since the data X are
observed and the parameters are fixed at θ = θold, we are only interested in the depen-
dence on Z. In other words, we will represent the (unnormalized) probability distribution
p(Z,X|θold) as a factor graph. The normalization output by the sum-product algorithm
will then be

∑
Z p(Z,X|θold). The (normalized) beliefs output by the sum-product algo-

rithm are marginal probabilities of the conditional distribution p(Z|X,θold).
If we define the factors as follows:

h(z1) = p(z1|πold)p(x1|z1,φold)

fn(zn−1, zn) = p(zn|zn−1,Aold)p(xn|zn,φold)

then the factor graph of

p(Z,X|θold) = p(z1|πold)

(
N∏

n=2

p(zn|zn−1,Aold)

)
N∏

n=1

p(xn|zn,φold)

looks like:
h fn

z1 zn−1 zn

5



The message update equations of the sum-product algorithm flowing from left to right in
the factor graph become:

µzn−1→fn(zn−1) = µfn−1→zn−1(zn−1)

αn(zn) := µfn→zn(zn) =
∑

zn−1

fn(zn−1, zn)µzn−1→fn(zn−1)

Substituting the first equation into the second, we get a more compact representation (also
known as “alpha recursions” in the context of the Baum-Welch algorithm):

αn(zn) =
∑

zn−1

fn(zn−1, zn)αn−1(zn−1)

Similarly, we get the following message update equations for the messages flowing from right
to left:

µzn→fn(zn) = µfn+1→zn(zn)

βn(zn) := µfn+1→zn(zn) =
∑

zn+1

fn+1(zn, zn+1)µzn+1→fn+1(zn+1)

and by substitution we obtain the “beta recursions”:

βn(zn) =
∑

zn+1

fn+1(zn, zn+1)βn+1(zn+1)

After one forward and one backward pass, the variable beliefs are given by:

p(zn,X|θold) = µfn→zn(zn)µfn+1→zn(zn) = αn(zn)βn(zn)

and the factor beliefs by:

p(zn−1, zn,X|θold) = µfn−1→zn−1(zn−1)µfn+1→zn(zn)fn(zn−1, zn)

and the normalization constant by:

p(X|θold) =
∑

zn

αn(zn)βn(zn)

(for any n).
Therefore, the quantities we need in the E-step in in the EM algorithm are given by

γ(zn) =
p(zn,X|θold)

p(X|θold)
=
αn(zn)βn(zn)

p(X|θold)

and

ξ(zn−1, zn) =
p(zn−1, zn,X|θold)

p(X|θold)
=
αn−1(zn−1)βn(zn)p(zn|zn−1,Aold)p(xn|zn,φold)

p(X|θold)

Now that the E-step has been solved, the M-step can be performed.
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EM for HMM

Overall, the EM algorithm for HMM becomes:

1. Choose initial parameters θold where θ = (π,A,φ).

2. Iterate until convergence:

E-step “Calculate Q(θ,θold)”:

(a) Run forward α recursion to calculate α(z1), . . . , α(zN );

(b) Run backward β recursion to calculate β(zN ), . . . , β(zN );

(c) Calculate sufficient statistics {γ(zn)}, {ξ(zn−1, zn)}, p(X|θold);

M-step “Calculate θnew = arg maxθ Q(θ,θold)”:
Use M-step equations (13.18) to update π, (13.19) to update A, and (13.20-21)
or (13.23) or other model-dependent equations to update φ.

Predictive distribution

Add xN+1 and zN+1 at the end of the chain and use the calculated parameters to predict
the new values (assuming the chain is homogeneous).
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13.2.5 Viterbi Algorithm

The Viterbi algorithm answers the question: calculate the most probable sequence of latent
states, given the observations. This is a special case of the max-sum algorithm, it follows
the principle of dynamic programming. The factors include both emission and transition
probabilities, except h. We define: ω(zn) = νfn→zn(zn), where νfn→zn is the message in the
max-sum algorithm, for 2 ≤ n ≤ N .

h z1 f2 z2 f3 . . . zN

ω(z1) ω(z2) ω(z3) ω(zN )

Bishop is not clear on this, thus following pseudo algorithm:

//first message;
ω(z1) = ln p(z1) + ln p(x1|z1);
//message passing from left to right;
for n = 1 : N − 1 do

ω(zn+1) = ln p(xn+1|zn+1) + max
zn

[ln p(zn+1|zn) + ω(zn)];

//keep track of value that maximizes;
ψn(zn+1) = arg max

zn
[ln p(zn+1|zn) + ω(zn)];

end
Algorithm 1: forward pass

//start from the rightmost side and reason backwards;
zmaxN = arg max

zN
ω(zN )

for n = N − 1 : 1 do
zmaxn = ψn(zmaxn+1 )

end
Algorithm 2: backward pass

The sequence (zmax1 , . . . ,zmaxN ) then contains the most probable sequence of latent
states, given the observations.



13.3 Linear Dynamic Systems

z1

x1

. . . zn zn+1

xn xn+1

. . .

where the xn are observed and the zn are latent.

Note that: zn is now continuous. Linear Gaussian Model: conditional distributions are
Gaussian with means that depend linearly on their parents.
→ All conditional / marginal distributions are Gaussian.
→ mode = mean (no need for Viterbi)

Forward message passing equation: Kalman filter equations.
Backward message passing equation: Kalman smoother equations.

Notation transitions:
p(zn|zn−1) = N (zn|Azn−1,Γ)

where Γ is transition noise
Emissions:

p(xn|zn) = N (xn|Czn,Σ)

where Σ is observation noise.
Initial state:

p(z1) = N (z1|µ0, V0)

six parameters: A,Γ,C,Σ,µ0,V0, to be learned form the data using EM.

13.3.1 Inference in Linear dynamical systems (for E-Step)

Forward equations

α̂(zn) = N (zn|µn, Vn)

Recursion equations (similar to the discrete case):

cnα̂(zn) = p(xn|zn)

∫
α̂(zn−1)p(zn|zn−1)dzn−1

cnN (zn|µn, Vn) = N (xn|Czn,Σ)

∫
N (zn−1|µn−1, Vn−1)N (zn|Azn−1,Γ)dzn−1

2



where cn is a scaling factor to ensure proper normalization. Using the equations from Bishop
(2.115) and (2.116)1 we can first calculate the integral term as:

∫
N (zn−1|µn−1, Vn−1)N (zn|Azn−1,Γ)dzn−1 = N (zn|Aµn−1,Γ +AVn−1AT )

we define:Pn−1 = Γ +AVn−1AT and we are left with:

cnN (zn|µn, Vn) = N (xn|Czn,Σ)N (zn|Aµn−1, Pn−1)

where we can use the footnote equations again seeing that: cn ↔ p(y), N (zn|µn, Vn) ↔
p(x|y), N (xn|Czn,Σ) ↔ p(y|x), N (zn|Aµn−1, Pn−1) ↔ p(x). To make things clear we
make the following matrix relating the quantities in Bishop with our variables:

x, y µ Λ−1 A b L−1 Σ

zn,xn Aµn−1 Pn−1 C 0 Σ
(
P−1n−1 + CTΣ−1C

)−1

We get the following results:

cn = N (xn|CAµn−1,Σ + CPn−1CT )

µn =
(
P−1n−1 + CTΣ−1C

)−1 (
CTΣ−1xn + P−1n−1Aµn−1

)

Vn =
(
P−1n−1 + CTΣ−1C

)−1

Alternatively, one could use the formula for a product of two Gaussians (see lecture notes
of lecture # 1) to derive these results.

Finally we can use the following identities to simplify the results and reduce the com-
putation time by doing less inverse matrix calculations.

We apply Bishop C.7 (Woodbury identity)

(
A+BD−1C

)−1
= A−1 −A−1B

(
D + CA−1B

)−1
CA−1

to the equation for Vn. By defining the Kalman Gain Matrix as:

Kn = Pn−1CT
(
CPn−1CT + Σ

)−1

we get:

Vn =
(
P−1n−1 + CTΣ−1C

)−1
= Pn−1 − Pn−1CT (Σ + CPn−1CT )−1CPn−1 = (I −KnC)Pn−1

1

p(x) = N (x|µ,Λ−1)

p(y|x) = N (y|Ax+ b, L−1)

(see Bishop 2.115)
p(y) = N (y|Aµ+ b, L−1 + AΛ−1AT )

(also see Bishop 2.116)
p(x|y) = N (x|Σ(ATL(y − b) + Λµ),Σ)

where Σ = (Λ + ATLA)−1.
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Applying Bishop C.5
(
P−1 +BTR−1B

)−1
BTR−1 = PBT

(
BPBT +R

)−1

to the first part of the expression for µn leads to:

µn = Knxn + (I −KnC)Aµn−1 = Aµn−1 +Kn(xn − CAµn−1)
The term xn − CAµn−1 represents the error between the predicted observation and the
actual observation. Similarly we can derive α̂(z1) and obtain Bishop equations 13.94 to
13.97 (exercise!).

Backward equations

In the LDS literature backward recursion is formulated in terms of γ(zn) = α̂(zn)β̂(zn)

γ(zn) = N (zn|µ̂n, V̂n)

exercise: Derive 13.99-13.104 in Bishop

For the EM algorithm we also need:

ξ(zn−1, zn) = N
((

zn−1
zn

) ∣∣∣∣∣

(
µ̂n−1
µ̂n

)
,

(
V̂n−1 Jn−1V̂n
V̂nJ

T
n−1 V̂n

))

13.3.2 Learning in LDS using EM

Complete data log-likelihood:

ln p(X,Z|θ) = ln p(z1|µ0,V0) +
N∑

n=2

ln p(zn|zn−1, A,Γ) +
N∑

n=1

ln p(xn|zn, C,Σ)

Q(θ,θold) = EZ|θold [ln p(X,Z|θ)]

Use results from inference (note: Bishop (13.105-13.107) are sloppy!)

E(zn|θold) = µ̂n

E(znz
T
n−1|θold) = Jn−1V̂n + µ̂nµ̂

T
n−1

E(znz
T
n |θold) = V̂n + µ̂nµ̂

T
n

M-step:

θnew = arg max
θ

Q(θ,θold)

e.g.

µ0, V0 : Q(θ,θold) = −1

2
ln |V0| −

1

2
Ez1|θold [(z1 − µ0)

TV −10 (z1 − µ0)] + const

Now use calculation similar to that for finding maximum likelihood estimation for Gaussians
(section 2.3.4):

µnew0 = E(z1|θold)
V new
0 = E(z1z

T
1 |θold)− E(z1|θold)E(z1|θold)T

Similarly for A,Γ, C,Σ. (Exercise 13.33, 13.34).
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Causality: ubiquitous in the sciences

Genetics:
how to infer gene regulatory networks from micro-array data?
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Causality: ubiquitous in the sciences

Social sciences:
does playing violent computer games cause aggressive behavior?
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Causality: ubiquitous in the sciences

Neuroscience:
how to infer functional connectivity networks from fMRI data?
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Causality: ubiquitous in the sciences

Economy:
Does austerity reduce national debt?
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Causality: what is it?

Causality is central notion in science, decision-taking and daily life.

How to reason formally about cause and effect?

Question: give a definition of cause and effect.
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Hume on Causality

The subject of causality has a long history in philosophy. For example, this
is what Hume had to say about it:

“Thus we remember to have seen that species
of object we call flame, and to have felt that
species of sensation we call heat. We like-
wise call to mind their constant conjunction
in all past instances. Without any farther cer-
emony, we call the one cause and the other
effect, and infer the existence of the one from
that of the other.”

David Hume, Treatise of Human Nature
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But: does the rooster’s crow really cause the sun to rise?
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Russell on Causality

Some philosophers even proposed to abandon the concept of causality
completely.

“All philosophers, of every school, imagine
that causation is one of the fundamental
axioms or postulates of science, yet, oddly
enough, in advanced sciences such as grav-
itational astronomy, the word ‘cause’ never
occurs. The law of causality, I believe, like
much that passes muster among philosophers,
is a relic of a bygone age, surviving, like the
monarchy, only because it is erroneously sup-
posed to do no harm.”

Bertrand Russell, On The Notion Of Cause
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Causality in Statistics

Karl Pearson (one of the founders of modern statistics, well-known from
his work on the correlation coefficient) writes:

“Beyond such discarded fundamentals as
‘matter’ and ‘force’ lies still another fetish
amidst the inscrutable arcana of even modern
science, namely, the category of cause and ef-
fect.”

Karl Pearson, The Grammar of Science

Since then, many statisticians tried to avoid causal reasoning:

“Considerations of causality should be treated as they have always
been in statistics: preferably not at all.” (Terry Speed, former
president of the Biometric Society).

“It would be very healthy if more researchers abandon thinking of and
using terms such as cause and effect.” (Prominent social scientist).
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Causality in engineering (1)
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Causality in engineering (2)

Causality is a very useful concept in engineering.

Using causal reasoning, engineers can not only predict what happens when
a system operators normally, but also when an external intervention
changes part of the system.

Being able to predict what happens under interventions allows to exert
control.
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Correlation vs. Causation (1)

Source: http://tylervigen.com/spurious-correlations
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Correlation vs. Causation (2)

Source: http://tylervigen.com/spurious-correlations
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A formal theory of causality?

Question

Can we formalize causal reasoning?
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Exercise 1

Please make Exercise 1. . .
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Problems in formalizing causal reasoning: probabilities

Example (Simpson’s paradox)

We collect electronic patient records to investigate the effectiveness of a
new drug against a certain disease. It can happen that:

1 The probability of recovery is higher for patients that took the drug:

p(recovery | drug) > p(recovery | no drug)

2 For both male and female patients, the relation is opposite:

p(recovery | drug,male) < p(recovery | no drug,male)

p(recovery | drug, female) < p(recovery | no drug, female)

Would you use this drug for treatment?

Note

Fancy classifiers, deep learning and big data do not help us here!
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An important step forwards

Judea Pearl

ACM Turing Award 2011: “For fundamental contributions to artificial
intelligence through the development of a calculus for probabilistic and
causal reasoning.”
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Pearl’s contribution: the do-operator

Probability theory has a semantics for updating probabilities given
observations: conditioning.
Pearl extends probability calculus by introducing a new operator for
describing interventions, the do-operator.

Example (Do-operator)

p(recovery | drug): the probability that somebody recovers, given (the
observation) that the person took the drug.

p(recovery | do(drug)): the probability that somebody recovers, if we
force the person to take the drug.

Resolution of Simpson’s paradox:

Simpson’s paradox is only paradoxical if we misinterpret
p(recovery | drug) as p(recovery | do(drug)).
We should prescribe the drug if
p(recovery | do(drug)) > p(recovery | do(no drug)).
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Do-calculus

Pearl recognized that the rules of probability theory do not suffice for
causal reasoning. He formulated three additional rules (the
“do-calculus”):

1 Ignoring observations:

p(y | do(x),w , z) = p(y | do(x),w) if (Y ⊥⊥Z |X ,W )GX

2 Action/observation exchange:

p(y | do(x), do(z),w) = p(y | do(x), z ,w) if (Y ⊥⊥Z |X ,W )GX ,Z

3 Ignoring actions:

p(y | do(x), do(z),w) = p(y | do(x),w) if (Y ⊥⊥Z |X ,W )GX ,Z(W )

where Z (W ) = Z \ AnGX
(W ).

The do-calculus allows us to reason with (probabilistic) causal statements,
given (partial) knowledge of the causal structure.
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Causal relations

Definition

A causes B if changing A leads to a change of B.

Causal graph represents the causal relationships between variables (nodes
are variables, edges encode causal relations between variables).

Example

X1 X2

X1 and X2 are
causally unrelated

X1 X2

X1 causes X2

X1 X2

X2 causes X1

X1 X2

X1 and X2 cause
each other

X1 X2

X3

X1 and X2 have a
common cause X3

X1 X2

X3

X1 and X2 have a
common effect X3
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A causes B if changing A leads to a change of B.

Causal graph represents the causal relationships between variables (nodes
are variables, edges encode causal relations between variables).
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Direct causation

Let V = {X1, . . . ,XN} be a set of variables.

Definition

If Xi causes Xj even if all other variables V \ {Xi ,Xj} are hold fixed at
arbitrary values, then

we say that Xi causes Xj directly with respect to V
we indicate this in the causal graph on V by a directed edge Xi → Xj

Example

X1 X2

X3

X1 causes X2;

X1 causes X2 directly
w.r.t. {X1,X2,X3}

X1 X2

X3

X1 causes X2;

X1 does not cause X2 directly
w.r.t. {X1,X2,X3}

X1 X2

X3

X1 causes X2;

X1 causes X2 directly
w.r.t. {X1,X2,X3}
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Terminology of directed graphs

Let G be a directed graph with nodes V = {X1, . . . ,XN}.

Definition

If Xi → Xj we call Xi parent of Xj and
Xj a child of Xi .

If Xi → Xj or Xj → Xi then we call Xi

and Xj adjacent.

If Xi1 → Xi2 → Xi3 → · · · → Xik we say
that there is a directed path from Xi1 to
Xik .

If there is a directed path from Xi to Xj

(or if Xi = Xj), Xi is called a ancestor of
Xj , and Xj is called a descendant of Xi .

AnG(X ) denotes the set of all ancestors
of nodes in subset X ⊆ V .

Example

X1X2

X3 X4

X5

Causal interpretation

parent = direct cause
child = direct effect
ancestor = cause
descendant = effect
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Feedback loops: Example

Example
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Cycles, Feedback loops: Definitions

Let G be a directed graph with nodes V = {X1, . . . ,XN}.

Definition

G is cyclic if it contains a directed cycle

Xi1 → Xi2 → · · · → Xik , Xi1 = Xik

If it does not contain such a directed cycle, the graph is called acyclic.
This is also known as a DAG (Directed Acyclic Graph).

Definition

If A causes B and B causes A, then we say that A and B are involved in a
causal feedback loop.
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Mutilated graphs

Definition

Given a directed graph G = (V ,E ) and a subset X ⊆ V , we define

GX to be G without the incoming edges on nodes in X ;

GX to be G without the outgoing edges from nodes in X .

Example

X1X2

X3 X4

X5

G:

X1X2

X3 X4

X5

GX3
:

X1X2

X3 X4

X5

GX3 :
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Perfect interventions

Definition

A perfect intervention do(X = ξ) on a set of variables X ⊆ V is an
externally enforced change of the system that ensures that X = ξ but
leaves the rest of the system untouched.

The concept of perfect intervention assumes “modularity”: the causal
system can be divided into two parts, X and V \ X , and we can make
changes to one part while keeping the other part intact.

Note

The causal graph G changes into GX after a perfect intervention
do(X = ξ) (because none of the other variables can now cause X ).
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Confounders: Example
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Confounders: Definition

Definition

Let X ,Y be observed variables and H an latent (unobserved) variable.
H confounds X and Y if:

1 there exists a directed path from H to X that does not contain Y

2 there exists a directed path from H to Y that does not contain X

Example

X Y

H

X Y

H
H2 H3

X Y

H

X Y

H

X Y

H

X Y

H
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(Conditional) independences

Definition: independence

Given two random variables X ,Y , we write X ⊥⊥Y and say that X is
independent of Y if

p(X ,Y ) = p(X )p(Y ).

Intuitively, X is independent of Y if we do not learn anything about X
when told the value of Y (or vice versa).

Definition: conditional independence

Given a third random variable Z , we write X ⊥⊥Y |Z and say that X is
(conditionally) independent from Y , given Z , if

p(X ,Y |Z ) = p(X |Z )p(Y |Z ).

Intuitively, X is independent of Y if, given the value of Z , we do not learn
anything new about X when told the value of Y .
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Reichenbach’s Principle

Reichenbach’s Principle of Common Cause

A dependence between X ,Y implies that X → Y , Y → X , or there exists
a confounder of X and Y (or any combination of these three).

Example

Significant correlation (p = 0.008) between human birth rate and
number of stork populations in European countries [Matthews, 2000]

Most people nowadays do not believe that storks deliver babies (nor
that babies deliver storks)

There must be some confounder explaining the correlation

S B S B

?

S B
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Selection Bias

Reichenbach’s Principle may fail in case of selection bias.
If a data set is obtained by only including samples conditional on some
event, selection bias may be introduced.

Example

X Y

S

X : the battery is empty
Y : the start engine is broken
S : the car does not start

In general, X and Y are independent events: X ⊥⊥Y .

A car mechanic (who only observes cars for which S = 1) will observe
a dependence between X and Y : X 6⊥⊥Y |S .

When the car mechanic invokes Reichenbach’s Principle without
realizing that he is selecting on the value of S (maybe S is a latent
variable), a wrong conclusion will be drawn.
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Assumptions

For simplicity, in this lecture we restrict our attention to a subclass of
causal models.

Causal Bayesian Networks: Assumptions

Causal Bayesian Networks are a class of causal models that incorporate the
following assumptions:

1 No confounding

2 No feedback

3 No selection bias

4 No measurement error

5 No time dependence

Extensions of the theory that drop one or more of these assumptions exist
(see e.g. the literature on Acyclic Directed Mixed Graphs, Semi-Markov
Causal Models, Maximal Ancestral Graphs, Structural Equation Models,
d-connection graphs). This is an active area of research.
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Bayesian Networks

Definition

A Bayesian Network is a pair (G, p) where:

G is a Directed Acyclic Graph

p is a joint probability density on the nodes X1, . . . ,XN of G s.t.

p(x1, . . . , xN) =
N∏

i=1

p(xi | xpa(i))

where pa(i) are the parents of Xi in G.
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Causal Bayesian Networks

Definition

A Bayesian Network is causal if:

Directed edges correspond with direct causal relations

After a perfect intervention do(XI = xI ), the incoming arrows on XI

are removed and the probability density becomes:

p
(
xV \I | do(XI = xI )

)
=
∏

i∈V \I
p(xi | xpa(i))

(also known as the Truncated Factorization Theorem).

In other words, a perfect intervention do(XI = xI ) on a subset of variables
XI simply “divides out” the conditional densities p(xi | xpa(i)) from the
joint density for all i ∈ I , and substitutes the variables XI by their values
xI .
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Local Markov Condition

Theorem

For any (Causal) Bayesian Network with variables {X1, . . . ,XN}, the
following “Local Markov Condition” holds:

Xi ⊥⊥Xnd(i) |Xpa(i)

for all i = 1, . . . ,N. Here, nd(i) are the non-descendants of Xi .

Remember: the descendants of Xi are all variables Xj such that there is a
directed path Xi → · · · → Xj .
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Paths and colliders

Definition

Let G be a DAG with nodes V = {X1, . . . ,XN}.
A path Xi1 . . .Xi2 . . .Xik is a sequence of distinct nodes such that Xij

and Xij+1
are adjacent (for j = 1, . . . , k − 1).

A collider on a path is a (non-endpoint) node Xij (j = 2, . . . , k − 1)
on the path with precisely two “incoming” arrow heads:
Xij−1

→ Xij ← Xij+1
.

A non-collider on a path is any node Xij (j = 1, . . . , k) on the path
which is not a collider.
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Paths and colliders

Definition

Let G be a DAG with nodes V = {X1, . . . ,XN}.
A path Xi1 . . .Xi2 . . .Xik is a sequence of distinct nodes such that Xij

and Xij+1
are adjacent (for j = 1, . . . , k − 1).

A collider on a path is a (non-endpoint) node Xij (j = 2, . . . , k − 1)
on the path with precisely two “incoming” arrow heads:
Xij−1

→ Xij ← Xij+1
.

A non-collider on a path is any node Xij (j = 1, . . . , k) on the path
which is not a collider.

Example

X1X2

X3 X4

X5

X1 → X3 ← X1 is not a path.
X2 → X3 ← X1 is a path.
X1 → X3 → X5 ← X4 ← X1 is not a path.
The path X3 → X5 ← X4 contains a collider X5.
The path X4 ← X1 → X3 contains no collider.
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Blocked paths

Definition

Let G be a directed graph with nodes V . Given a path p between nodes X
and Y in V , and a set of nodes Z ⊆ V \ {X ,Y }, we say that Z blocks p
if p contains

a non-collider which is in Z , or

a collider which is not an ancestor of Z .

Example

X1X2

X3 X4

X5

X3 → X5 ← X4 is blocked by ∅.
X3 → X5 ← X4 is blocked by {X1}.
X3 → X5 ← X4 is not blocked by {X5}.
X3 ← X1 → X4 is not blocked by ∅.
X2 → X3 ← X1 → X4 is blocked by {X1}.
X2 → X3 ← X1 → X4 is not blocked by {X5}.
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d-separation

Let G be a directed graph with nodes V .

Definition

Given two distinct nodes X ,Y ∈ V and a set of nodes Z ⊆ V \ {X ,Y },
we say that X and Y are d-separated by Z iff all paths between X and Y
are blocked by Z .
For three disjoint subsets X ,Y ,Z ⊆ V of nodes, we say that X and Y
are d-separated by Z iff all paths between any node in X and any node in
Y are blocked by Z .

Example

X1X2

X3 X4

X5

X2 and X1 are d-separated by ∅.
X2 and X1 are d-separated by X4.
X2 and X1 are not d-separated by X5.
X3 and X4 are not d-separated by ∅.
X3 and X4 are d-separated by X1.
X3 and X4 are not d-separated by {X1,X5}.
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Global Markov Condition

Theorem

In any (Causal) Bayesian Network, the following “Global Markov
Condition” holds:

X ,Y d-separated by Z =⇒ X ⊥⊥Y |Z

for all subsets X ,Y ,Z of nodes.

In other words, we can read off conditional independences from the graph
of a Bayesian Network by using the Global Markov Condition.
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Identifiability

Given i.i.d. data of the observational distribution p(x , y , . . . ).
From this we can estimate p(y |X = x).

Question

Can we also estimate p(y | do(X = x)) from the observational data?

Given enough assumptions, the answer is yes. In that case, we do not have
to actually perform the intervention experiment!

Definition

If a quantity like p(y | do(X = x)) can be expressed in terms of the
observational distribution p(x , y , . . . ), we say that it is identifiable (from
the observational distribution).
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Identifiability: Example

Example

Is p(y | do(X = x)) identifiable?

X Y

p(y | do(X = x)) = p(y |X = x)

identifiable:

X Y

H

p(y | do(X = x)) 6= p(y |X = x)

not identifiable:

Indeed, for the graph with the latent variable H:

p(y | do(X = x)) =

∫
p(h)p(y | x , h) dh

which is generally different from

p(y |X = x) =

∫
p(h | x)p(y | x , h) dh.
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Adjustment for covariates

We have seen that for the following causal Bayesian network,

X Y

H

adjusting for the confounder H, i.e.,

p(y | do(X = x)) =

∫
p(h)p(y | x , h) dh

yields the causal effect of X on Y .

More generally, given a causal Bayes network: which covariates S
could we adjust for, in order to express the causal effect on Y of
intervening on X in terms of the observed distribution?

A sufficient condition is given by Pearl’s Back-door criterion.
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The Back-door Criterion

The following result is known as the “Back-door Criterion”:

Theorem

A set S of nodes is “admissible” for adjustment to find the causal effect of
X on Y , if :

1 X ,Y /∈ S ;

2 no element of S is a descendant of X ;

3 S blocks all back-door paths X ← . . .Y (all paths between X and Y
that start with an incoming edge on X).

In that case,

p(y | do(X = x)) =

∫
p(y | x , s)p(s) ds.

For the special case S = ∅, this simply should be read as:

p(y | do(X = x)) = p(y | x).
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The Back-door Criterion: Example

Example

X1X2

X3 X4

X5

{X1} is admissible for adjustment to find
the causal effect of X4 on X5.

∅ is admissible for adjustment to find the
causal effect of X2 on X5.

{X1} is admissible for adjustment to find
the causal effect of X2 on X5.

{X1,X4} is admissible for adjustment to
find the causal effect of X2 on X5.

{X3} is not admissible for adjustment to
find the causal effect of X2 on X5.

{X1,X3} is admissible for adjustment to
find the causal effect of X5 on X2.
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Exercise 2

Please make Exercise 2. . .
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Simpson’s paradox resolved

R stands for Recovery, D for taking the Drug, Z for Gender.
Two possible causal models:

Z

D R

(1) Z

D R

(2)

Using the back-door criterion (or do-calculus) one can derive:

1 p(R | do(D)) =
∑

Z p(R |D,Z )p(Z )
We should not prescribe the drug (for both males and females,
probability of recovery is lower for those who took the drug).

2 p(R | do(D)) = p(R |D)
We should prescribe the drug (in the general population, probability
of recovery is higher for those who took the drug).

Note that (2) seems unlikely, but if we would replace gender by e.g. blood
pressure it is no longer obvious which model is more likely a priori.
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Randomized controlled trials

If possible, the best way to find causal relationships and effect sizes is to
use a randomized controlled trial.

Z

D R

G: Z

D R

CGRCT :

R: Recovery, D: Drug, Z : latent confounders (e.g., genetics), C : coin flip.

Divide patients into two groups: treatment and control.

Which patient is assigned to which group is completely random.

Patients in the treatment group are forced to take a drug, and
patients in the control group are forced to not take the drug (but
rather a placebo).

Estimating the causal effect of the drug now becomes a standard
statistical exercise, as p(R |C ) = p(R | do(C )).

The RCT intervention breaks any back-door paths.
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Conclusion: Causal vs. probabilistic reasoning

Traditional statistics, machine learning

About associations (stork population and human birth rate are
correlated)

Model the distribution of the data

Predict given observations (if we observe a certain number of
storks, what is our best estimate of human birth rate?)

Causality

About causation (storks do not causally affect human birth rate)

Model the mechanism that generates the data

Predict results of interventions (if we change the number of storks,
what will happen with the human birth rate?)

Joris Mooij (UvA) Causality 2018-05-09 53 / 55



Conclusion: Causal vs. probabilistic reasoning

Traditional statistics, machine learning

About associations (stork population and human birth rate are
correlated)

Model the distribution of the data

Predict given observations (if we observe a certain number of
storks, what is our best estimate of human birth rate?)

Causality

About causation (storks do not causally affect human birth rate)

Model the mechanism that generates the data

Predict results of interventions (if we change the number of storks,
what will happen with the human birth rate?)

Joris Mooij (UvA) Causality 2018-05-09 53 / 55



Conclusion: Causal vs. probabilistic reasoning

Traditional statistics, machine learning

About associations (stork population and human birth rate are
correlated)

Model the distribution of the data

Predict given observations (if we observe a certain number of
storks, what is our best estimate of human birth rate?)

Causality

About causation (storks do not causally affect human birth rate)

Model the mechanism that generates the data

Predict results of interventions (if we change the number of storks,
what will happen with the human birth rate?)

Joris Mooij (UvA) Causality 2018-05-09 53 / 55



Further reading

Pearl, J. (1999).
Simpson’s paradox: An anatomy.
Technical Report R-264, UCLA Cognitive Systems Laboratory.

Pearl, J. (2000).
Causality: Models, Reasoning, and Inference.
Cambridge University Press.

Pearl, J. (2009).
Causal inference in statistics: An overview.
Statistics Surveys, 3:96–146.

Spirtes, P., Glymour, C., and Scheines, R. (2000).
Causation, Prediction, and Search.
The MIT Press.

Joris Mooij (UvA) Causality 2018-05-09 54 / 55



Thank you for your attention!

Randall Munroe, www.xkcd.org
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