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1 VB

1.1 Inequality

Suppose X is an observed variable and Z a latent variable. Then we can write

ln p(X) = L(q) +KL(q||pZ|X)

where

L(q) =

∫
q(Z) ln

p(X,Z)

q(Z)
dZ, KL(q||pZ|X) = −

∫
q(Z) ln

p(Z |X)

q(Z)
dZ

Then, because of the properties of the Kullback-Leibler divergence,

ln p(X) = L(q) +KL(q||pZ|X) ≥ L(q)

with equality if q = pZ|X .

1.2 Variational Bayes

The VB approximation thus approximates the posterior pZ|X by

q∗ = arg max
q∈Q

L(q) = arg max
q∈Q

∫
q(Z) ln

p(X,Z)

q(Z)
dZ

and the evidence ln p(X) ≈ L(q∗).
As a special case, we take the family of distributions to factorize, i.e., we

assume

q(Z) =

M∏
i=1

qi(Zi)

Then we get the VB update equation:

ln q∗i (Zi) =

∫
ln p(X,Z)q\i(Z) dZ\i + const.

= Eq\i ln p(X,Z) + const.

(1)
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where

q\i(Z) =

M∏
j=1
j 6=i

qj(Zj).

2 EM

In EM, we distinguish latent variables θ over which we optimize from latent
variables Z which we marginalize over. EM can be derived as a special case of
VB, taking q(Z,θ) = q(Z)δ(θ − θ0). However, this will lead to a lower bound
on the evidence of −∞ because of the delta function. So it pays off to treat the
θ variables in a slightly different way. We write

ln p(X,θ) = L(q,θ) +KL(q||pZ|X,θ)

where

L(q,θ) =

∫
q(Z) ln

p(X,Z,θ)

q(Z)
dZ, KL(q||pZ|X,θ) = −

∫
q(Z) ln

p(Z |X,θ)

q(Z)
dZ

2.1 E-step

This is the maximization over q(Z). The result depends on θ:

q∗θ(Z) = arg max
q∈Q

L(q,θ) = arg max
q∈Q

∫
q(Z) ln

p(X,Z,θ)

q(Z)
dZ

If we allow all possible distributions, then we simply obtain the posterior:

q∗θ(Z) = p(Z |X,θ).

2.2 M-step

This is the maximization over θ. The result depends on q:

θ∗q = arg max
θ

∫
q(Z) ln

p(X,Z,θ)

q(Z)
dZ

If we take for q = q∗θ (the result of the standard E-step), then we get the standard
formulation of the M-step:

θnew = arg max
θ

∫
p(Z |X,θold) ln

p(X,Z,θ)

p(Z |X,θold)
dZ

2.3 Hybrid EM/VB

It should be obvious now how to derive hybrid versions of EM and VB. Simply
take Q to be a strict subset of all possible distributions on Z. Then the standard
E-step will be replaced by the VB updates for Z, and the M-step does not use
the exact posterior p(Z |X,θold) but the current VB approximation q(Z).
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3 EP

Given again observed variables X and latents Z, with joint probability

p(X,Z) =
∏
i

fi(Z,X).

We want to approximate the posterior

p(Z |X) =
1

p(X)

∏
i

fi(Z,X) ≈ 1

Z

∏
i

qi(Z) =: q(Z)

and model evidence

p(X) =

∫ ∏
i

fi(Z,X)dZ ≈
∫ ∏

i

qi(Z)dZ

The EP update for factor qi(Z) is obtained by considering:

q(Z)new = arg min
q∈Q

KL

(
1

Zj
fj(Z,X)qold\j (Z)

∣∣∣∣∣∣ q(Z)

)
where

q\j(Z) :=
∏
i6=j

qi(Z).

Zj =

∫
fj(Z,X)q\j(Z)dZ.

This optimization is easily done if all qj are in an exponential family Qj , because
then Q is also an exponential family. The new approximate factor qj(Z) is then
given by:

qnewj (Z) = Zj
qnew(Z)

q\j(Z)

3.1 Moment matching

The solution is obtained by matching the moments of the sufficient statistics.
Suppose

Q = {h(Z)g(η) exp
(
ηTu(Z)

)
: η}

Then
q∗ = arg min

q∈Q
KL(p || q) ⇐⇒ Eq∗

(
u(Z)

)
= Ep

(
u(Z)

)
.
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