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Abstract

In both domain adaptation and causal inference, an important goal
is to make accurate predictions in an unseen target domain, where
the distribution is different from the source domain(s). We consider
causal domain adaptation problems, where the domains correspond
to different interventions of a single system. The approach we propose
exploits causal inference and does not rely on prior knowledge of the
causal graph, or of intervention types/targets.

Problem setting: Causal domain adaptation

Unsupervised multi-source domain adaptation with an underly-
ing causal graph, potentially with latent confounders (ADMG).

Domain 1
(observational:
wildtype mice)

Domain 2
(interventional:

gene A knocked out)

Domain 3
(interventional:

gene B knocked out)

X1 X2 X3

0.1 0.2 0.5
0.13 0.21 0.49
0.23 0.21 0.51

X1 X2 X3

0.2 0.22 0.92
0.23 0.21 0.99

X1 X2 X3

0.5 0.19 ?
0.61 0.18 ?

Measurements of mouse phenotypes:
X1: red blood cell volume
X2: platelet count
X3: white blood cell concentration

X3 always missing
in domain 3:
to be predicted

Task: Predict the missing values (all values of X3 in domain 3).

Example: Standard prediction methods fail

Example: observational source domain (C1 = 0) and interventional
target domain (C1 = 1), predict X2 in the target domain.
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X1 X2 X3

True causal ADMG G
(P(X1) and P(X3 |X2) change
from source to target domain,

but P(X2 |X1) does not)
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P(X2 |X1, C1 = 0)

= P(X2 |X1, C1 = 1)
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P(X2 |X3, C1 = 0)

6= P(X2 |X3, C1 = 1)

target: source:
X2 ⊥G C1 |X1 ({X1} is separating) =⇒ P(X2 |X1, C1 = 1)=P(X2 |X1, C1 = 0)
X2 6⊥G C1 |X3 ({X3} is not) =⇒ P(X2 |X3, C1 = 1) 6=P(X2 |X3, C1 = 0)

+ Predictions of X2 using feature set {X1} (with any regression
method) would transfer from source to target domain, because {X1}
is a separating set of features.

+ Standard feature selection (applied on the source domain, C1 = 0)
would select {X3} or {X1, X3} as good sets of features for predicting
X2, leading to arbitrarily large generalization error (for C1 = 1).

Example of our approach

C1 C2

X1

Y

X3

Unknown true ADMG G

C1 C2 X1 Y X3

0 0 data data data
0 1 data data data
1 0 data ? data

Data with Y missing
in target domain

C2 6⊥⊥Y | ∅ [C1 = 0]
C2⊥⊥Y |X1 [C1 = 0]
C2⊥⊥X3 |Y [C1 = 0]
JCI assumptions
C1 6→G Y

Input to causal
inference method

C1 C2

X1

Y

X3

Sufficiently reconstructed G

C1⊥⊥Y |X1

Conclusion: {X1}
is separating

C1 C2 X1 Y X3

0 0 data data data
0 1 data data data
1 0 data ! data

Predict Y
using feature set {X1}

Overview of our approach

Use conditional independences that can be tested on the available data,
to infer enough about the unknown causal graph G to find separating
sets A of features (C1 ⊥G Y |A). Predictions using such feature
sets will transfer across domains, while other predictions may suffer
arbitrarily large loss when transferred.
Challenges:

•Types and targets of interventions are also unknown

•Data for Y are consistently missing when C1 = 1, so we cannot test
for certain independences, including C1⊥⊥Y |A

Joint Causal Inference (JCI)

JCI [Mooij, Magliacane and Claassen, 2018] is a meta-algorithm for
systematically pooling data from multiple domains, even when in-
tervention types and targets are possibly unknown, reducing causal
discovery from different distributions to causal discovery of a single
joint causal graph with auxilliary context variables.
We distinguish:

•System variables X , representing the system in each distribution

•Context variables C, describing the changes between distributions

context system
C1 C2 X1 X2 X3
0 0 0.1 0.2 0.5
0 0 0.13 0.21 0.49
0 0 0.23 0.21 0.51
0 1 0.2 0.22 0.92
0 1 0.23 0.21 0.99
1 0 0.5 0.19 ?
1 0 0.61 0.18 ?

joint ADMG:

C1 C2

X1

X2 X3

context
variables

system
variables

JCI assumptions:

1. no system variable directly causes any context variable, and

2. no system variable is confounded with a context variable, and

3. each pair of context variables is purely confounded (i.e. Ci ↔ Ci′ ∈ G ∧ Ci →
Ci′ /∈ G).

Intuition: We are modelling a generic setting in which the experimenter decides
on the performed interventions before the measurements are performed (or without
having access to the measurements).

Transfer assumptions

The following assumptions enable us to transfer information from the
source domains to the target domain:
(Y denotes the system variable to be predicted)

1. The mixture of all (training and test) distributions is Markov and faithful w.r.t.
an ADMG G;

2. Any conditional independence involving Y in the source domains also holds in
the target domains, i.e. if A ∪B ∪ S contains Y but not C1,

A⊥⊥B |S [C1 = 0] =⇒ A⊥⊥B |S [C1 = 1];

3.C1 has no direct effect on Y .

Note that assumption 2 holds if both P(V |C1 = 0) and P(V |C1 = 1)

are Markov and faithful to the subgraph of G which excludes C1.

Dealing with missing data

Due to the missing data, some independences cannot be tested. Some
of those can be inferred based on our transfer assumptions.
For an independence A⊥⊥B |S,

• If Y 6∈ A ∪B ∪ S: independence is testable in data

• If Y ∈ A∪B∪S and C1 ∈ S: follows from the transfer assumptions,

A⊥⊥B |S ⇔ A⊥⊥B | (S \ {C1}) [C1 = 0]

• If Y ∈ A ∪B ∪ S and C1 6∈ S: is untestable and does not follow
from the assumptions, e.g. Y ⊥⊥C1 |S

Implementation with logic-based causal method

Task: “Is Y ⊥⊥C1 |A?” given all available conditional independences

We modify the method by [Hyttinen, Eberhardt and Järvisalo, 2014]
combined with the scores from [Magliacane, Claassen, Mooij, 2016]:

• Input: list of weighted conditional (in)dependence statements (in our
case: some are missing)

• Input statement: Y ⊥⊥C1 |A is true (or false)

•Output: a measure of confidence that the statement is true (or false)

Causal domain adaptation algorithm

A brute-force strategy to select the feature set A with the best asymp-
totic guarantee on the prediction error:

for all A ⊆ (X ∪ C) \ {Y,C1} do
LA ← estimate of generalization error when using A to pre-
dict Y in source domain

end for
for all A ⊆ (X ∪ C) \ {Y,C1}, in increasing order of LA do
if we can infer that Y ⊥⊥C1 |A then
return predict Y in the target domain using feature set A

end if
end for
return abstain from making a prediction

Experimental results

We evaluated our method on simulated and real-world data.

•Simulated data: from randomly generated causal graphs

•Real-world data: hematology data from CRM Causal Inference Chal-
lenge (phenotype data for wild-type and single-gene knockout mice)

• In both cases, 2 context and 3 system variables

•Baseline method: Feature selection + regression (random forests);
does not try to detect separating sets
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Conclusions and future work

•We proposed a method for a class of causal domain adaptation prob-
lems, under quite general assumptions and not requiring prior knowl-
edge of causal graph or intervention targets

•Promising results on simulated data, but improvement needed on real-
world data

•Scaling up to more variables would also improve prediction quality

•More future work: Study the interplay between bias, variance and
causality from a statistical learning theory perspective
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