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Part I

Introduction
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Motivation

Why Markov properties?

Key concept in graphical approaches to causality.

Allow to read off (conditional) independences/invariances from the
(causal) graph.

For example: d-separation criterion [Pearl, 1986] for (acyclic,
causally sufficient, unconditioned, static) causal Bayesian networks
and structural causal models.

Powerful consequences:

causal interpretation: graphical definitions of indirect/direct causal
relations and confounders,
causal reasoning: Pearl’s do-calculus for causal domain adaptation,
causal identification: Tian’s ID algorithm for identification of causal
effects,
causal discovery: constraint-based approaches like PC and FCI
algorithms,

are all “corollaries” of the Markov property (and its completeness).
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Extensions

This motivates the search for more general, powerful Markov properties.

Various notions of independence:

purely probabilistic [Dawid, 1979]
purely deterministic (variation independence [Dawid, 2001])
mixed (e.g., transition independence [Forré, 2021]).

The latter in particular allows to rigorously setup a decision-theoretic
approach to causality [Dawid, 2002] where we distinguish action
(context/regime/intervention) variables from observation variables
and represent both graphically.

Various graphical representations: DAGs, ADMGs, DGs, DMGs,
AGs, CGs, BGs, . . . .

Additional structure can be exploited (deterministic relations,
context-specific independences, . . . ).

For cyclic causal systems, the d-separation criterion is not valid in
general [Spirtes, 1995]. The (weaker) σ-separation criterion is more
generally valid [Forré and Mooij, 2017, Bongers et al., 2021].
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Causal modeling

Causal Bayesian networks and structural causal models have
fundamental limitations.

More general alternative: Simon’s causal ordering approach to
causality [Simon, 1953].

Given a system of equations, it provides possible causal
interpretations of the equations (each causal interpretation
corresponds with a possible partitioning of the variables into
exogenous and endogenous variables).

This matches with how engineers and applied scientists usually deal
with causality.

Combining causal ordering with the σ-separation criterion provides a
general Markov property for static causal systems represented as
systems of equations [Blom et al., 2021].

But what about dynamics?
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Continuous-time dynamical systems

Goal

Derive Markov properties for continuous-time dynamical systems
represented as systems of differential-algebraic equations with (possibly
random) initial conditions and (possibly random) exogenous processes.

Definition

Differential-algebraic equations (DAEs) are systems of equations involving
processes and their time derivatives.

Example

Algebraic Equations: Ordinary Differential Equations: Differential-Algebraic Equations:

X = f (Y ) Ẋ = f (Y ) X = f (Y )

Y = g(X ) Ẏ = g(X ) Ẏ = g(X )

DAEs generalize ODEs and AEs;
often encountered in engineering for modeling electrical circuits,
constrained mechanical systems, chemical reactions, . . . ;
inherently more complicated than ODEs.
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Related work

Some sources of inspiration:

Extensions of the causal ordering algorithm [Iwasaki and Simon, 1994]
for DAEs.

Application of causal ordering approach to perfectly adaptive systems
[Blom and Mooij, 2022].

Markov property for Structural Dynamical Causal Models
[Bongers et al., 2022] (an extension of structural causal models to
continuous-time dynamics).

Other rich sources of ideas:

Mathematical literature on existence and uniqueness of solutions of
DAEs;
Applied mathematics literature on automated solution of DAEs;
Engineering literature on DAEs.

Task: combine all these ideas to derive Markov properties for DAEs.
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Part II

Causal Ordering for Static Systems
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Markov property for recursive equations

For a system of algebraic equations of the form

X1 = f1(E1)

X2 = f2(X1,E2)

X3 = f3(X1,X2,E3)

X4 = f4(X1,X2,X3,E4)

. . .

Xp = fp(X1,X1, . . . ,Xp−1,Ep)

with E1, . . . ,Ep independent, the d-separation criterion (global directed
Markov property) holds.

Idea

For any system of equations that can be rewritten in this canonical form,
we obtain a Markov property.
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Example: Bathtub (Static)

Endogenous variables:

XO water outflow through drain
XD water depth
XP pressure at drain

Exogenous variables:

XI water inflow from faucet
XK drain size
Xg gravitational acceleration

 

Independent/modular/autonomous mechanisms:

f1 : 0 = XI − XO at equilibrium, outflow equals inflow

f2 : 0 = XKXP − XO outflow is proportional to pressure and drain diameter

f3 : 0 = XgXD − XP pressure at drain proportional to depth and gravitational acceleration

Assumption: endogenous variables do not cause exogenous variables.
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Bipartite Graphical Representation

The structure of the equations:

f1 : 0 = XI − XO

f2 : 0 = XKXP − XO

f3 : 0 = XgXD − XP

can be represented with a bipartite graph:

XO XDXP

f1 f2 f3

XI XK Xg

Endogenous variables

Equations

Exogenous variables
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Solving systems of equations

The bipartite graph is helpful when solving a system of equations!

f1 : 0 = XI − XO

f2 : 0 = XKXP − XO

f3 : 0 = XgXD − XP

XO XDXP

f1 f2 f3

XI XK Xg

Solve in the following ordering:

1 Solve f1 for XO in terms of XI : XO = XI

2 Solve f2 for XP in terms of XO and XK : XP =
XO

XK

3 Solve f3 for XD in terms of XP and Xg : XD =
XP

Xg

This establishes existence and uniqueness of the solution (∀XI ,XK ,Xg>0).
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Markov property from causal ordering

It also establishes a Markov property, as we have rewritten the equations
in canonical form.

Assuming that exogenous variables (XI ,XK ,Xg ) are independent, we may
apply the d-separation criterion to the graph:

XO XDXP

XI XK Xg

to read off (for example):

XD ⊥⊥XO |XP ;

XK does not cause XO ;

Xg does not cause XO ,XP .

(function nodes f1, f2, f3 marginalized out for clarity)
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Modeling interventions beyond SCMs/CBNs

Causality is about change.

How does the system react to interventions (externally imposed changes)?

How does a

1 change of (distributions of) exogenous variables, or

2 change of equations

affect the solution?

Caveat [Blom et al., 2021]

While it is common to consider perfect/surgical/hard interventions that
set a certain endogenous variable to a certain value (“do(X = x)”), we
note that this notion is not well-defined in general, because there can be
different ways of changing the equations to achieve this!
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Modeling Interventions: do(f3 : XD = d)

Consider a “hard” intervention that enforces XD = d by replacing f3.

The mechanisms become:

f1 : 0 = XI − XO at equilibrium, outflow equals inflow

f2 : 0 = XKXP − XO outflow is proportional to pressure and drain diameter

f3 : 0 = XgXD − XP pressure at drain proportional to depth and gravitational acceleration

f̃3 : 0 = XD − d water level equals bathtub height
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Modeling Interventions: do(f1 : XD = d)

Consider a “hard” intervention that enforces XD = d by replacing f1.

The mechanisms become:

f1 : 0 = XI − XO at equilibrium, outflow equals inflow

f̃1 : 0 = XD − d water level equals bathtub height

f2 : 0 = XKXP − XO outflow is proportional to pressure and drain diameter

f3 : 0 = XgXD − XP pressure at drain proportional to depth and gravitational acceleration
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What changes due to the intervention?

No intervention:
 

f1 : 0 = XI − XO

f2 : 0 = XKXP − XO

f3 : 0 = XgXD − XP

XO XDXP

f1 f2 f3

XI XK Xg

do(f3 : XD = d):

f1 : 0 = XI − XO

f2 : 0 = XKXP − XO

f̃3 : 0 = XD − d

XO XDXP

f1 f2 f̃3

XI XK Xg

do(f1 : XD = d):

f̃1 : 0 = XD − d

f2 : 0 = XKXP − XO

f3 : 0 = XgXD − XP

XO XDXP

f̃1 f2 f3

XI XK Xg

For intervention do(f1 : XD = xd), the causal ordering reverses!
The causal relations between the variables change drastically!
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Loops in the bipartite graph

Often we can only find an acyclic causal ordering after clustering
some variables and equations.

We then end up with subsets of equations that have to be solved
simultaneously for subsets of variables.

X1 X2 X3 X4 X5

f1 f2 f3 f4 f5

We can solve as follows:

Solve f1 for X1;

Solve {f2, f3, f4} for {X2,X3,X4} in terms of X1;

Solve f5 for X5 in terms of X4.
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Several formulations of the Markov property

Local existence and uniqueness of the solutions for each cluster ({f1,X1},
{f2, f3, f4,X2,X3,X4}, and {f5,X5}) again implies a Markov property.

There are several equivalent formulations of the σ-separation criterion
[Spirtes, 1995, Forré and Mooij, 2017, Bongers et al., 2021]:

X1

X2 X3

X4

X5

s-separation:

X1

X2 X3

X4

X5

X1

X2 X3

X4

X5

σ-separation:

X1

X2 X3

X4

X5

d-separation:
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Necessity of solvability assumptions

Local existence and uniqueness for each cluster are necessary:

without local existence, no global existence;

without local uniqueness, multiple solutions are possible, which allows
for dependence with any variable in the model (the model is
incomplete).

A useful generalization:

In case of overcomplete subsystems (more equations than
variables) or undercomplete subsystems (more variables than
equations), one can use the Dulmage-Mendelsohn decomposition
[Dulmage and Mendelsohn, 1958] to get a Markov property
[Blom et al., 2021].
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Part III

Extension to Dynamical Systems
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Replacing variables by processes

Main idea

Replace (static) variables with (dynamic) processes.

Fix a finite time interval T = [t0, t1] ⊆ R and a probability space (Ω,Σ,P).

Static Dynamic

Variable Xi ∈ Xi Trajectory Xi : T→ Xi

Value space Xi Trajectory space X T
i

Random variable Xi : Ω→ Xi Stochastic process Xi : T× Ω→ Xi

or random trajectory Xi : Ω→ X T
i

Intuition

By replacing the spaces Xi by X T
i we reduce the dynamic case to the

static case.
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Mathematical details

We will typically assume that processes satisfy certain continuity or
differentiability assumptions.

Denote by Cm(T,Rn) the m-times continuously differentiable functions
T→ Rn. Equipping this with the Cm-norm

‖X‖(m) :=
m∑
i=1

sup
t∈T
‖X (i)(t)‖

(with X (i) the i ’th derivative of X , and ‖·‖ the Euclidean norm in Rn)
gives a Polish space, and with its Borel σ-algebra forms a standard
measurable space.

Common operations (integration, differentiation, and evaluation) are
continuous (and hence measurable).

Upshot

By restricting to sufficiently smooth trajectories we don’t need to worry
about measure theory.
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Example: Bathtub (Dynamic)

Endogenous processes:

XO water outflow through drain
XO′ its time-derivative
XD water depth
XD′ its time-derivative
XP pressure at drain
XP′ its time-derivative

 

Exogenous processes:

XI water inflow from faucet
XK drain size
Xg gravitational acceleration

Exogenous variables:

XO(t0) initial value for XO

XD(t0) initial value for XD

XP(t0) initial value for XP

Mechanisms:

f ′1 : XD′(t) = α1

(
XI (t)− XO(t)

)
h1 : XD(t) = XD(t0) +

∫ t

t0
XD′(τ) dτ

f ′2 : XO′(t) = α2

(
α4XK (t)XP(t)− XO(t)

)
h2 : XO(t) = XO(t0) +

∫ t

t0
XO′(τ) dτ

f ′3 : XP′(t) = α3

(
Xg (t)XD(t)− XP(t)

)
h3 : XP(t) = XP(t0) +

∫ t

t0
XP′(τ) dτ
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Result of causal ordering for dynamical bathtub

Causal ordering gives:

XO′

h2

XO(t0)

XO

f ′1

XI

XP′

h3

XP(t0)

XP

f ′2

XK

XD′

h1

XD(t0)

XD

f ′3

Xg

The Picard-Lindelöf theorem tells us that the initial value problem

f ′1 : d
dtXD(t) = α1

(
XI (t)− XO(t)

)
f ′2 : d

dtXO(t) = α2

(
α4XK (t)XP(t)− XO(t)

)
f ′3 : d

dtXP(t) = α3

(
Xg (t)XD(t)− XP(t)

)
have a unique global solution for any value of the initial condition
(XD(t0),XO(t0),XP(t0)).
So we get a Markov property! But no new (conditional) independences. . .
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Markov property for dynamical bathtub I

But we can do more.
Let us add “evaluation” variables XO(t1),XD(t1),XP(t1) that evaluate the
processes XO ,XD ,XP at time t1. We get:

XO′

h2

XO(t0)

XO(t1)

XO

f ′1

XI

XP′

h3

XP(t0)

XP(t1)

XP

f ′2

XK

XD′

h1

XD(t0)

XD(t1)

XD

f ′3

Xg
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Markov property for dynamical bathtub II

After marginalizing out the middle layers:

XO(t0) XI [t0, t1]XP(t0) XK [t0, t1]XD(t0) Xg [t0, t1]

XO(t1) XP(t1)XD(t1)

XO(t2) XP(t2)XD(t2)

XI [t1, t2] XK [t1, t2] Xg [t1, t2]

We can add variables and processes for the time interval [t1, t2].

With d-separation, we get XD,O,P(t2)⊥⊥XD,O,P(t0) |XD,O,P(t1).

We may repeat this for additional time intervals [t2, t3], [t3, t4], etc.

Joris Mooij (KdVI, UvA) Markov Properties for Dynamical Systems 2022-12-03 27 / 35



Markov property for dynamical bathtub II

After marginalizing out the middle layers:

XO(t0) XI [t0, t1]XP(t0) XK [t0, t1]XD(t0) Xg [t0, t1]

XO(t1) XP(t1)XD(t1)

XO(t2) XP(t2)XD(t2)

XI [t1, t2] XK [t1, t2] Xg [t1, t2]

We can add variables and processes for the time interval [t1, t2].

With d-separation, we get XD,O,P(t2)⊥⊥XD,O,P(t0) |XD,O,P(t1).

We may repeat this for additional time intervals [t2, t3], [t3, t4], etc.

Joris Mooij (KdVI, UvA) Markov Properties for Dynamical Systems 2022-12-03 27 / 35



Markov property for dynamical bathtub II

After marginalizing out the middle layers:

XO(t0) XI [t0, t1]XP(t0) XK [t0, t1]XD(t0) Xg [t0, t1]

XO(t1) XP(t1)XD(t1)

XO(t2) XP(t2)XD(t2)

XI [t1, t2] XK [t1, t2] Xg [t1, t2]

We can add variables and processes for the time interval [t1, t2].

With d-separation, we get XD,O,P(t2)⊥⊥XD,O,P(t0) |XD,O,P(t1).

We may repeat this for additional time intervals [t2, t3], [t3, t4], etc.

Joris Mooij (KdVI, UvA) Markov Properties for Dynamical Systems 2022-12-03 27 / 35



Markov property for dynamical bathtub II

After marginalizing out the middle layers:

XO(t0) XI [t0, t1]XP(t0) XK [t0, t1]XD(t0) Xg [t0, t1]

XO(t1) XP(t1)XD(t1)

XO(t2) XP(t2)XD(t2)

XI [t1, t2] XK [t1, t2] Xg [t1, t2]

We can add variables and processes for the time interval [t1, t2].

With d-separation, we get XD,O,P(t2)⊥⊥XD,O,P(t0) |XD,O,P(t1).

We may repeat this for additional time intervals [t2, t3], [t3, t4], etc.

Joris Mooij (KdVI, UvA) Markov Properties for Dynamical Systems 2022-12-03 27 / 35



Example: RC Electric Circuit

V

R

C

The voltage source VV is considered exogenous; the resistance R and
capacitance C are considered exogenous and static; the initial condition
VC (t0) is considered exogenous.

f1 : IV (t) = IR(t) Kirchoff’s current law

f2 : IR(t) = IC (t) Kirchoff’s current law

f3 : VV (t) = VR(t) + VC (t) Kirchoff’s voltage law

f4 : RIR(t) = VR(t) Ohm’s law

f5 : CVC ′(t) = IC (t) Ideal capacitor

h1 : VC (t) = VC (t0) +

∫ t

t0

VC ′(τ) dτ
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Example: RC Electric Circuit

Causal ordering yields:

IVVR IRVC VC ′ IC

VVR CVC (t0)

f1f2f3f4 f5h1

Solve clusters:

VC (t) = VC (t0) +

∫ t

t0

1

RC

(
VV (τ)− VC (τ)

)
dτ

IV (t) = R−1
(
VV (t)− VC (t)

)
Unique solutions exist (again by Picard-Lindelöf).

Conclusion: IV ⊥⊥{R,VR ,VV ,VC ,VC (t0),C , IC} | IR .
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Example: RL Electric Circuit

I

R

L

The current source II is considered exogenous; the resistance R and
inductance L are considered exogenous and static.

f1 : II (t) = IR(t) Kirchoff’s current law

f2 : IR(t) = IL(t) Kirchoff’s current law

f3 : VI (t) = VR(t) + VL(t) Kirchoff’s voltage law

f4 : RIR(t) = VR(t) Ohm’s law

f5 : LIL′(t) = VL(t) Ideal inductor

h1 : IL′(t) =
d

dt
IL(t)
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Example: RL Electric Circuit

VI VR IRVL IL′IL

IIR L

f1 f2f3 f4 f5h1

VI

VR

IR

VL

IL

IIR L

Surprise: We get an acyclic causal ordering yielding a non-trivial Markov
property! For example, we read off that:

L does not cause VR ,

R does not cause VL,

VI ⊥⊥ L |VL,

. . .

Note: IL(t0) is not an exogenous degree of freedom! Hence, [Iwasaki and Simon, 1994]’s

dynamical causal ordering algorithm does not handle this case correctly.
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Conclusion and Discussion

By replacing variables by processes we generalized existing Markov
properties to apply to continuous-time dynamical systems modeled by
differential-algebraic equations.

This yields more explicit (sometimes surprising) causal interpretations of
such systems.

Our framework also allows one to reason graphically about (partial)
equilibration, interventions and domain adaptation.

Two disadvantages of dynamical systems compared to static (equilibrium)
systems:

Typical systems entail more (conditional) independences at equilibrium
(because all time derivatives vanish at equilibrium);
Any conditional independence for processes requires one to condition
on the entire trajectory (for example, VI ⊥⊥ L |VL means we condition
on VL(t) for t ∈ [t0, t1]). Challenging to test with finite samples!

We could proceed and formulate a do-calculus, an ID algorithm, and causal
discovery algorithms, but is it worth doing this. . . ?
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