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Overview

Causal Bayesian Networks (CBNs) and Structural Causal Models
(SCMs) are popular causal modeling frameworks.

But: systems may have “pathological” causal semantics.

Example: bathtub or sink at equilibrium [Iwasaki and Simon, 1994].

O DP

f1 f2 f3

I K

We propose to use bipartite causal graphs that contain variable
nodes and equation nodes.

1 Offers richer causal semantics;
2 Reduces ambiguity surrounding the notion of perfect intervention;
3 Comes with Markov property and do-calculus;
4 Models various systems that exhibit “pathological” causal semantics.
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Part I

Context: Causal Modeling
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Cyclic causal relations

Feedback in dynamical systems may (but need not!) induce cyclic
causality at equilibrium.

Fast dynamical interactions can lead to “instantaneous” causal cycles
in dynamical systems.

physics:

Q1

Q2

climatology:

biology, chemistry:

econometry:

supply price demand

In many applications, modeling causal cycles is essential.
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Relations between (static) causal modeling frameworks

CBNs
acyclic SCMs

simple SCMs

SCMs

BGCMs

CCMs

• bathtub

Acronym Model class Cycles? Reference
CBN causal Bayesian network − [Pearl, 2009]
acyclic SCM acyclic structural causal model − [Pearl, 2009]
simple SCM simple structural causal model + [Bongers et al., 2021]
SCM structural causal model + [Bongers et al., 2021]
BGCM bipartite graphical causal model + extends [Blom et al., 2021]
CCM causal constraint models + [Blom et al., 2020]

BGCMs optimally balance model flexibility and causal reasoning power.
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Context & Contribution

Simon’s causal ordering approach to causality [Simon, 1953]
provides a fundamentally different perspective.

Given a system of equations, one deduces possible causal
interpretations of the equations.
Each causal interpretation corresponds with a partitioning of the
variables into exogenous and endogenous variables (“inputs” and
“outputs”) and a partial causal ordering of the variables.

This matches notions of causality used by engineers and applied

scientists (e.g. in ).
Combining causal ordering with the σ-separation criterion for SCMs
[Forré and Mooij, 2017] provides a Markov property for causal
systems represented as systems of equations [Blom et al., 2021].

Contributions of this presentation

Formulate Markov property in terms of bipartite graph;

Formulate causal reasoning (domain invariances/“do-calculus”);

Case study: Complete analysis of causal semantics of bathtub system.
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Part II

Causal Ordering Algorithm [Simon, 1953]
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Example: Bathtub [Iwasaki and Simon, 1994]

Endogenous variables:

XO water outflow through drain
XD water depth
XP pressure at drain

Exogenous variables:

XI water inflow from faucet
XK drain size
Xg gravitational acceleration All bathtub drawings created by Google Gemini

Independent/modular/autonomous mechanisms:

f1 : 0 = XI − XO at equilibrium, outflow equals inflow

f2 : 0 = XK

√
XP − XO Bernoulli’s law: outflow is proportional to drain area and square root of pressure

f3 : 0 = XgXD − XP Stevin’s law: pressure is proportional to depth and gravitational acceleration
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Bipartite Graphical Representation

The structure of the equations:

f1 : 0 = XI − XO

f2 : 0 = XK

√
XP − XO

f3 : 0 = XgXD − XP

can be represented with an undirected bipartite graph:

XO XDXP

f1 f2 f3

XI XK Xg

Endogenous variables

Equations

Exogenous variables
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Solving systems of equations

The bipartite graph is helpful when solving a system of equations.

f1 : 0 = XI − XO

f2 : 0 = XK

√
XP − XO

f3 : 0 = XgXD − XP

XO XDXP

f1 f2 f3

XI XK Xg

Solve in the following ordering:

1 Solve f1 for XO in terms of XI : XO = XI

2 Solve f2 for XP in terms of XO and XK : XP =
X 2
O

X 2
K

=
X 2
I

X 2
K

3 Solve f3 for XD in terms of XP and Xg : XD =
XP

Xg

=
X 2
I

X 2
KXg

This establishes existence and uniqueness of the solution (∀XI ,XK ,Xg>0).
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Solutions, distributions, Markov kernels

By solving the equations we obtain solution functions that express
all variables in terms of the exogenous variables:

F : (xI , xK , xg ) 7→ (xI , xK , xg , xO , xP , xD) =

(
xI , xK , xg , xI ,

x2I
x2K

,
x2I

x2Kxg

)
If we assume that all exogenous variables are random variables that
are independently distributed:

XI ∼ P(XI ) XK ∼ P(XK ) Xg ∼ P(Xg );

the joint distribution P(XI ,XK ,Xg ,XO ,XP ,XD) of all variables is
obtained as the push-forward through the solution function F of the
exogenous distribution P(XI ,XK ,Xg ) = P(XI )⊗ P(XK )⊗ P(Xg ).

We can also treat some exogenous variables as random, and others as
non-random. This yields a Markov kernel, e.g.,
P(XK ,Xg ,XO ,XP ,XD ∥XI ) if only XI is treated as non-random.
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Loops in the bipartite graph

Often we can only find an acyclic causal ordering after clustering
some variables and equations.

We then end up with subsets of equations that have to be solved
simultaneously for subsets of variables.

X1 X2 X3 X4 X5

f1 f2 f3 f4 f5

We can try to solve as follows:

Solve f1 for X1;

Solve {f2, f3, f4} for {X2,X3,X4} in terms of X1;

Solve f5 for X5 in terms of X4.

If each cluster can be solved uniquely, we get a unique global solution
function (and hence joint distribution and Markov kernels).
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Causal Ordering Algorithm [Simon, 1953, Nayak, 1995]

Input: bipartite graph G = (V ,F ,E ), exogenous variable nodes U ⊆ V .

1 Pick perfect matching M of G\U (Hopcroft-Carp algorithm)

2 Orient edges of G as f → v if in M, f ← v if not in M

3 For v ∈ V \ U, define cluster [v ] as the strongly-connected
component of v together with its F -parents

4 Replace directed edges within clusters by == edges

U :

F :

V : X1 X2 X3 X4 X5

f1 f2 f3 f4 f5

U1 U2 U3

Output: partially oriented bipartite graph
#»

G .
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Part III

Causal Semantics of the Bathtub
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Modeling interventions beyond SCMs/CBNs

Causality is about change.

How does the system react to interventions (externally imposed changes)?

How does a

1 change of (distributions of) exogenous variables, or

2 change of equations

affect the solution?

Caveat [Blom et al., 2021]

do(X = ξ) may be ambiguous in general!
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Modeling Interventions: do(Xg = gMars)

What-if. . . ?

. . . we move the bathtubs to Mars?

XO XDXP

f1 f2 f3 f4

XI XK Xg

We can add one mechanism:

f1 : 0 = XI − XO at equilibrium, outflow equals inflow

f2 : 0 = XK

√
XP − XO Bernoulli’s law: outflow is proportional to drain area and square root of pressure

f3 : 0 = XgXD − XP Stevin’s law: pressure is proportional to depth and gravitational acceleration

f4 : 0 = Xg − gMars gravitational acceleration set to Mars
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Modeling Interventions: do(f3 : XD = ξD)

What-if. . . ?

. . . we seal off the bathtub at height ξD and ensure it is completely filled?

XO XDXP

f1 f2 f̃3

XI XK Xg

We replace mechanism f3:

f1 : 0 = XI − XO at equilibrium, outflow equals inflow

f2 : 0 = XK

√
XP − XO Bernoulli’s law: outflow is proportional to drain area and square root of pressure

f3 : 0 = XgXD − XP Stevin’s law: pressure is proportional to depth and gravitational acceleration

f̃3 : 0 = XD − ξD water level equals bathtub height
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Modeling Interventions: do(f1 : XD = ξD)

What-if. . . ?

. . . we cut off a bathtub at height ξD and ensure it overflows?

XO XDXP

f̃1 f2 f3

XI XK Xg

We replace mechanism f1:

f1 : 0 = XI − XO at equilibrium, outflow equals inflow

f̃1 : 0 = XD − ξD water level equals bathtub height

f2 : 0 = XK

√
XP − XO Bernoulli’s law: outflow is proportional to drain area and square root of pressure

f3 : 0 = XgXD − XP Stevin’s law: pressure is proportional to depth and gravitational acceleration
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What changes due to the intervention?

No intervention:

f1 : 0 = XI − XO

f2 : 0 = XK

√
XP − XO

f3 : 0 = XgXD − XP

XO XDXP

f1 f2 f3

XI XK Xg

do(f3 : XD = ξD):

f1 : 0 = XI − XO

f2 : 0 = XK

√
XP − XO

f̃3 : 0 = XD − ξD

XO XDXP

f1 f2 f̃3

XI XK Xg

do(f1 : XD = ξD):

f̃1 : 0 = XD − ξD

f2 : 0 = XK

√
XP − XO

f3 : 0 = XgXD − XP

XO XDXP

f̃1 f2 f3

XI XK Xg

For intervention do(f1 : XD = ξD), the causal ordering reverses!
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Solutions and intervention effects

Solving the intervened systems of equations yields solution functions:

XO XP XD

observational XI
X 2
I

X 2
K

X 2
I

X 2
KXg

do(Xg = ξg ) XI
X 2
I

X 2
K

X 2
I

X 2
K ξg

do(f3 : XD = ξD) XI
X 2
I

X 2
K

ξD

do(f1 : XD = ξD) XK

√
XgξD XgξD ξD

This implies corresponding changes in the endogenous distribution
P(XP ,XO ,XD) or Markov kernel (e.g. P(XP ,XO ,XD ∥XI )).

Note: the two interventions that set XD to ξD have different effects:
do(XD = ξD) is ambiguous.

Solution: specify hard interventions as do(fi : Xj = ξj)
[Blom et al., 2021].
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All hard interventions for the bathtub

The following hard interventions can be implemented:

do(Xu = ξu)

XI = ξI ✓
XK = ξK ✓
Xg = ξg ✓

do(fj : Xv = ξv ) f1 f2 f3
XO = ξO ✓ E E
XP = ξP ✓ ✓ E
XD = ξD ✓ ✓ ✓

Note:

The interventions marked with E have no solutions.

What would do(XP = ξP), do(XD = ξD) refer to?

The bathtub cannot be modeled as a CBN or an SCM.
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Implementing hard intervention do(f1 : XO = ξO)

f̃1 : 0 = XO − ξO

f2 : 0 = XK

√
XP − XO

f3 : 0 = XgXD − XP
XO XDXP

f̃1 f2 f3

XI XK Xg

Physical implementation:

Divert away the inflow

Add faucet with inflow XI2 = ξO .
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Implementing hard intervention do(f1 : XP = ξP)

f̃1 : 0 = XP − ξP

f2 : 0 = XK

√
XP − XO

f3 : 0 = XgXD − XP
XO XDXP

f̃1 f2 f3

XI XK Xg

Physical implementation:

Divert away the inflow

Add faucet with inflow XI2 (sufficiently large)

Connect a pressure relieve valve to the bottom of the tub that
activates if XP > ξP .
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Implementing hard intervention do(f2 : XP = ξP)

f1 : 0 = XI − XO

f̃2 : 0 = XP − ξP

f3 : 0 = XgXD − XP
XO XDXP

f1 f̃2 f3

XI XK Xg

Physical implementation:

Clogg the drain

Reroute inflow directly to outflow through pipe, bypassing the tub
and the drain

Add another inflow (sufficiently large)

Connect a pressure relieve valve to the bottom of the tub that
activates if XP > ξP .

Joris Mooij (University of Amsterdam) Bipartite Graphical Causal Models 2026-01-24 24 / 47



Implementing hard intervention do(f2 : XD = ξD)

f1 : 0 = XI − XO

f̃2 : 0 = XD − ξD

f3 : 0 = XgXD − XP
XO XDXP

f1 f̃2 f3

XI XK Xg

Physical implementation:

Clogg the drain

Reroute inflow directly to outflow through pipe, bypassing the tub
and the drain

Add another inflow (sufficiently large)

Cut off the bathtub at height ξD .
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All Hard Intervention Effects

XO XP XD

observational XI
X 2
I

X 2
K

X 2
I

X 2
KXg

do(Xg = ξg ) XI
X 2
I

X 2
K

X 2
I

X 2
K ξg

do(f3 : XD = ξD) XI
X 2
I

X 2
K

ξD

do(XK = ξK ) XI
X 2
I

ξ2K

X 2
I

ξ2KXg

do(f2 : XD = ξD) XI XgξD ξD

do(f2 : XP = ξP) XI ξP
ξP
Xg

do(XI = ξI ) ξI
ξ2I
X 2
K

ξ2I
X 2
KXg

do(f1 : XO = ξO) ξO
ξ2O
X 2
K

ξ2O
X 2
KXg

do(f1 : XP = ξP)
√
ξPξK ξP

ξP
Xg

do(f1 : XD = ξD) XK

√
XgξD XgξD ξD
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Part IV

Markov Property for BGCMs

Joris Mooij (University of Amsterdam) Bipartite Graphical Causal Models 2026-01-24 27 / 47



Extension of d-separation, I

Let
#»
G = (V ,F ,E) be a partially oriented bipartite graph, a, b nodes in

#»
G , C a set of nodes in

#»
G .

Definition (Ancestor∗)

a is called ancestor∗ of b if there is a path in
#»

G starting at a ending at b
consisting only of {→,==} edges. Example:

x1 → f2 == x3 == f3 == x4 → f5 → x5.

Definition ((Non)collider∗ patterns)

We extend the notions of (non)collider to the following subpaths:

collider∗ → k ←, → k1 == . . . == kn ←
blockable noncollider∗ → k →, ← k ←, ← k →, start/end node, == k →, ← k ==
unblockable noncollider∗ all remaining patterns

Definition (d∗-blocking)

A path (walk) in
#»

G is d∗-blocked by C if it contains a blockable
noncollider∗ in C , or a collider∗ that is not ancestor∗ of C .
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Extension of d-separation, II

Let
#»
G = (V ,F ,E) be a partially oriented bipartite graph and A,B,C sets of nodes in

#»
G .

Definition (d∗-separation)

A is d∗-separated from B given C in
#»

G , in symbols:

A
d∗

⊥
#»
G
B |C ,

if every path from a node in A to a node in B is d∗-blocked by C in
#»

G .

We will usually only consider A,B,C ⊆ V .
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Local existence and uniqueness conditions

Definition (Clusterwise unique solvability)

A cluster [c] is uniquely solvable if the equations in F ∩ [c] can be solved
for the endogenous variables (V \ U) ∩ [c] in terms of pa #»

G ([c]), and this
solution is unique.

Assumption (Local existence and uniqueness)

Exogenous variables are variation independent: their joint value
space is a Cartesian product

∏
u∈U Xu.

The equations are clusterwise uniquely solvable: each cluster [c] is
uniquely solvable.

Proposition

The assumption implies the existence and uniqueness of a global solution
function, and hence of the joint distribution/Markov kernels.

Joris Mooij (University of Amsterdam) Bipartite Graphical Causal Models 2026-01-24 30 / 47



Global Markov Property

Theorem (Corollary of [Blom et al., 2021])

If a system of equations is clusterwise uniquely solvable, and we put
independent distributions on the exogenous variables, then we obtain a
unique joint distribution P(XV ) that satisfies:

∀A,B,C ⊆ V : A
d∗

⊥
#»
G
B |C =⇒ XA⊥⊥

P
XB |XC .

The Markov property “propagates” conditional independences through the
equations along the partial ordering.
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Example: Markov Property for the Bathtub

XO XDXP

f1 f2 f3

XI XK Xg XK ∼ P(XK )
XI ∼ P(XI )
Xg ∼ P(Xg )

f1 : 0 = XI − XO

f2 : 0 = XK

√
XP − XO

f3 : 0 = XgXD − XP

The Markov property applied to the bathtub states e.g.:

D
d∗

⊥
#»
G
O |P =⇒ XD ⊥⊥

P
XO |XP

which means

P(XD ,XO ,XP) = P(XD |XP)⊗ P(XO ,XP)
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Extended Global Markov Property

A more general Markov property allows treating some of the exogenous
variables as non-random, using an extended notion of conditional
independence [Constantinou and Dawid, 2017, Forré, 2021].

Theorem

If a system of equations is clusterwise uniquely solvable, and we treat
exogenous variables J ⊆ U as non-random and only put independent
distributions on exogenous variables U \ J, we obtain a unique Markov
kernel P(XV ∥XJ) that satisfies:

∀A,B,C ⊆ V s.t. A ∩ J = ∅, J ⊆ (B ∪ C ) :

A
d∗

⊥
#»
G
B |C =⇒ XA⊥⊥

P
XB |XC .

Here, (conditional) independence of a non-random variable means that the
(conditional) Markov kernel is constant in that variable.
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Example: Extended Markov Property for the Bathtub

XO XDXP

f1 f2 f3

XI XK Xg XK ∼ P(XK )
XI is exogenous non-random
Xg ∼ P(Xg )

f1 : 0 = XI − XO

f2 : 0 = XK

√
XP − XO

f3 : 0 = XgXD − XP

The extended Markov property applied to the bathtub states e.g.:

D
d∗

⊥
#»
G
I |P =⇒ XD ⊥⊥

P
XI |XP

which means there exists a Markov kernel P(XD ∥XP) such that

P(XD ,XP ∥XI ) = P(XD ∥XP)⊗ P(XP ∥XI )
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Caveat: Hard interventions change things

Hard interventions change the bipartite graph and the partial orientation,
and hence the conditional independences.

Observational
#»

G :

XO XDXP

f1 f2 f3

XI XK Xg

Observational G

XO XDXP

f1 f2 f3

XI XK Xg

Intervened Gdo(f1:XD=ξD)

XO XDXP

f1 f2 f3

XI XK Xg

Intervened
#                           »

Gdo(f1:XD=ξD)

XO XDXP

f1 f2 f3

XI XK Xg
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Part V

Domain invariance (“do-calculus”)
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Domain invariances

Goal: Relate the solutions in domain A with those in domain B.
Which solution properties are invariant across domains?

For causal Bayesian networks, Pearl’s “do-calculus” formulates three
rules for invariances of Markov kernels across domains:

Domain A Domain B
Rule 1 (adding/removing observation) observational observational
Rule 2 (action/observation exchange) observational do(Xv = ξv )
Rule 3 (adding/removing action) observational do(Xv = ξv )

I provide examples of similar causal reasoning for bipartite causal
graphs, for the equilibrated bathtub:

Domain A Domain B
observational do(Xg = ξg )
observational do(f1 : XD = ξD)
observational do(f3 : XD = ξD)
do(f1 : XD = ξD) do(f1 : XD = ξ′D)
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Domain invariances in bipartite graphical causal models

By jointly modeling domains A and B, and adding a domain indicator
R, we can relate the distributions via the Markov property. This provides a
generalization of Pearl’s do-calculus.

The general recipe is:

Domain invariances: the recipe

1 Construct the joint model with an exogenous domain indicator R;

2 Construct a bipartite graph G ∗ representation of the joint model;

3 Run causal ordering to construct its partial orientation
#  »

G ∗;

4 Check for clusterwise unique solvability;

5 Apply the Markov property to
#  »

G ∗.

Note: Apart from the check of the clusterwise unique solvability, this is a
purely graphical procedure.
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Bathtub Example I: observational vs. do(Xg = ξg )

XK ∼ P(XK ), XI ∼ P(XI ), Ug ∼ P(Ug )

f1: 0 = XI − XO

f2: 0 = XK

√
XP − XO

f3: 0 = XgXD − XP

f4: Xg =

{
Ug R = A

ξg R = B
XO XDXP Xg

f1 f2 f3 f4

XI XK Ug R

Applying the Markov property (using transition independence):

P,O
d∗

⊥
#  »

G∗
R =⇒ XP ,XO ⊥⊥XR =⇒ PA(XP ,XO) = PB(XP ,XO).

In Pearl’s notation, the invariance under this intervention could be written:

P(XP ,XO) = P(XP ,XO |do(Xg = ξg )).

An answer to what-if question

The equilibrium distribution of pressure and outflow does not change if we
move the bathtubs to Mars.
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Bathtub Example II: observational vs. do(f3 : XD = ξD)

XK ∼ P(XK ), XI ∼ P(XI ), Xg ∼ P(Xg )

f1: 0 = XI − XO

f2: 0 = XK

√
XP − XO

f3: 0 =

{
XgXD − XP R = ∗
XD − ξD R = ξD XO XDXP

f1 f2 f3

XI XK Xg R

O
d∗

⊥
#  »

G∗
R |D,P =⇒ XO ⊥⊥XR |XD ,XP =⇒

PA(XO |XD = ξD ,XP) = PAB(XO |XD = ξD ,XP ∥R = ∗)
= PAB(XO |XD = ξD ,XP ∥R = ξD)

= PB(XO |do(f3 : XD = ξD),XP)

An answer to what-if question

If we seal off the bathtub at height ξD and ensure it is completely filled,
the conditional equilibrium distribution of outflow given pressure is the
same as if we would just have observed a depth ξD .
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Bathtub Example IIIa: observational vs. do(f1 : XD = ξD)

XK ∼ P(XK ), XI ∼ P(XI ), Xg ∼ P(Xg )

f1: 0 =

{
XI − XO R = ∗
XD − ξD R = ξD

f2: 0 = XK

√
XP − XO

f3: 0 = XgXD − XP XO XDXP

f1 f2 f3

XI XK XgR

In this case, the Markov property does not yield non-trivial independences.
Thus we cannot use it to relate the distributions in these two domains.

An answer to what-if question

If we let a bathtub that is cut off at height ξD overflow, the entire
equilibrium distribution may change.
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Bathtub Example IIIb: do(f1 : XD = ξD) vs. do(f1 : XD = ξ′D)

XK ∼ P(XK ), XI ∼ P(XI ), Xg ∼ P(Xg )

f1: 0 =

{
XD − ξD R = A

XD − ξ′D R = B

f2: 0 = XK

√
XP − XO

f3: 0 = XgXD − XP XO XDXP

f1 f2 f3

XI XK XgR

O
d∗

⊥
#  »

G∗
R |P =⇒ XO ⊥⊥XR |XP =⇒

PA(XO | do(f1 : XD = ξD),XP) = PAB(XO |XP ∥R = A)

= PAB(XO |XP ∥R = B)

= PB(XO | do(f1 : XD = ξ′D),XP)

An answer to what-if question

Overflowing bathtubs will yield the same conditional distribution of
outflow given pressure, independent of their height.
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Conclusion & Discussion

We proposed a causal modeling framework using bipartite graphs that
have equation nodes in addition to variable nodes.

Reduce ambiguity when specifying interventions;

Simon’s causal ordering algorithm defines partial orientation;

Formulated Markov property that propagates conditional
independences along the partial ordering;

Markov property facilitates causal reasoning about domain
invariances (extended “do-calculus”);

BGCMs extend CBNs, acylic SCMs, simple SCMs, SCMs;

BGCMs naturally model equilibrium systems like the bathtub, and
many more

BGCMs may also naturally model dynamical systems (e.g.,
price-supply-demand, electronic circuits, enzyme reaction, chemical
reactions) [Blom and Mooij, 2022];

Future work: dynamical extensions to incorporate (stochastic)
differential equations.
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Dulmage-Mendelsohn decomposition

Clusterwise unique solvability is necessary for a global Markov property in
the sense that:

without local existence, no global existence;

without local uniqueness, multiple solutions are possible, which allows
for dependence with any variable in the model (the model is
incomplete).

A useful generalization:

If the bipartite graph has no perfect matching, one can choose a
maximum matching and perform the Dulmage-Mendelsohn
decomposition [Dulmage and Mendelsohn, 1958].

This can be used to represent overcomplete subsystems (more
equations than variables) and undercomplete subsystems (more
variables than equations).

A marginal Markov property for the (over)complete subsystems can
be derived [Blom et al., 2021].
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