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o Causal Bayesian Networks (CBNs) and Structural Causal Models
(SCMs) are popular causal modeling frameworks.

@ But: systems may have “pathological” causal semantics.

e Example: bathtub or sink at equilibrium [Iwasaki and Simon, 1994].

@ We propose to use bipartite causal graphs that contain variable
nodes and equation nodes.
@ Offers richer causal semantics;
@ Reduces ambiguity surrounding the notion of perfect intervention;
© Comes with Markov property and do-calculus;
© Models various systems that exhibit “pathological’ causal semantics.
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Part |

Context: Causal Modeling
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Cyclic causal relations

e Feedback in dynamical systems may (but need not!) induce cyclic
causality at equilibrium.

@ Fast dynamical interactions can lead to “instantaneous” causal cycles
in dynamical systems.
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In many applications, modeling causal cycles is essential.
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Relations between (static) causal modeling frameworks

® bathtub

simple SCMs
acyclic SCMs
CBNs
Acronym Model class Cycles?  Reference
CBN causal Bayesian network — [Pearl, 2009]

acyclic SCM  acyclic structural causal model [Pearl, 2009]

simple SCM  simple structural causal model + [Bongers et al., 2021]
SCM structural causal model + [Bongers et al., 2021]
BGCM bipartite graphical causal model + extends [Blom et al., 2021]
CCM causal constraint models + [Blom et al., 2020]

BGCMs optimally balance model flexibility and causal reasoning power.
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Context & Contribution

e Simon's causal ordering approach to causality [Simon, 1953]
provides a fundamentally different perspective.

o Given a system of equations, one deduces possible causal
interpretations of the equations.

e Each causal interpretation corresponds with a partitioning of the
variables into exogenous and endogenous variables (“inputs” and
“outputs”) and a partial causal ordering of the variables.

@ This matches notions of causality used by engineers and applied
scientists (e.g. in Medelica),

@ Combining causal ordering with the o-separation criterion for SCMs
[Forré and Mooij, 2017] provides a Markov property for causal
systems represented as systems of equations [Blom et al., 2021].

Contributions of this presentation

o Formulate Markov property in terms of bipartite graph;
e Formulate causal reasoning (domain invariances/ “do-calculus”);

@ Case study: Complete analysis of causal semantics of bathtub system.
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Part |l

Causal Ordering Algorithm [Simon, 1953]
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Example: Bathtub [lwasaki and Simon, 1994]

Endogenous variables: [ i ol
Xo  water outflow through drain |
Xp water depth g
Xp  pressure at drain s

Exogenous variables: i

X, water inflow from faucet : >

. . | /|—> ouTFLOW (O) ¥
Xk drain size L s 4 W |
Xg grawtatlonal acceleration All bathtub drawings created by Google Gemini

Independent/modular/autonomous mechanisms:

fi . 0= X[ - XO at equilibrium, outflow equals inflow
f2 . O = XK vV XP - XO Bernoulli's law: outflow is proportional to drain area and square root of pressure
f:ﬁ, . 0 - XgXD - XP Stevin’s law: pressure is proportional to depth and gravitational acceleration
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Bipartite Graphical Representation

The structure of the equations:

f13 OZX[—XO

f: 0= XxvVXp—Xo
f32 OIXgXD—XP

can be represented with an undirected bipartite graph:

Xi Xk Xg Exogenous variables

Endogenous variables

Equations
OO
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Solving systems of equations

The bipartite graph is helpful when solving a system of equations.

X[ XK Xg
fi: 0=X —Xo

B 0= XK Xo
B 0=XXp—Xp
& & ®

Solve in the following ordering:
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Solving systems of equations

The bipartite graph is helpful when solving a system of equations.

X[ XK Xg
fi: 0=X —Xo

B 0= XK Xo
B 0=XXp—Xp
& & ®

Solve in the following ordering:
@ Solve f; for Xp in terms of X;: Xo =X
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Solving systems of equations

The bipartite graph is helpful when solving a system of equations.

X[ XK Xg
fi: 0=X —Xo

B 0= XK Xo
B 0=XXp—Xp
& & ®

Solve in the following ordering:
@ Solve f; for Xp in terms of X;: Xo =X
X5

@ Solve f for Xp in terms of Xp and Xk: Xp = X2
K
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Solving systems of equations

The bipartite graph is helpful when solving a system of equations.
Xi Xk Xg

fi: 0=X —Xo

f:  0=Xx\/Xp— Xo
i 0=XgXp—Xp
OO

Solve in the following ordering:

@ Solve f; for Xp in terms of X;: Xo =X
X2
@ Solve f for Xp in terms of Xp and Xk: Xp = X—g
K
. Xp
@ Solve f5 for Xp in terms of Xp and Xz: Xp = X
g

2026-01-24 10 / 47
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Solving systems of equations

The bipartite graph is helpful when solving a system of equations.
Xi Xk Xg

fi: 0=X —Xo

f:  0=Xx\/Xp— Xo
i 0=XgXp—Xp
OO

Solve in the following ordering:

@ Solve f; for Xp in terms of X;: Xo =X
X2 X2
@ Solve f for Xp in terms of Xp and Xk: Xp = X—g = X—’2
K K
Xp X?

@ Solve f5 for Xp in terms of Xp and Xz: Xp = X—g = X}%Xg

This establishes existence and uniqueness of the solution (Vx, x,,x,>0)-

2026-01-24 10 / 47
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Solutions, distributions, Markov kernels

o By solving the equations we obtain solution functions that express
all variables in terms of the exogenous variables:

XX
F:(X/aXKaxg)'_)(XI>XK7Xg7XO)XP7XD): X1y XKy Xgs Xy —57s 5
Xi ' XjeX
K *kXg
o If we assume that all exogenous variables are random variables that
are independently distributed:

X/ ~ ]P)(X[) XK ~ ]P(XK) Xg ~ P(Xg),

the joint distribution P(X;, Xk, Xg, X0, Xp, Xp) of all variables is
obtained as the push-forward through the solution function F of the
exogenous distribution P(X;, Xk, Xg) = P(X) ® P(Xk) @ P(Xg).

@ We can also treat some exogenous variables as random, and others as

non-random. This yields a Markov kernel, e.g.,
P(Xk, Xg, X0, Xp, Xp || Xi) if only X is treated as non-random.
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Loops in the bipartite graph

@ Often we can only find an acyclic causal ordering after clustering
some variables and equations.

@ We then end up with subsets of equations that have to be solved
simultaneously for subsets of variables.

We can try to solve as follows:
@ Solve f; for Xy;
e Solve {f, f3,fa} for { Xz, X3, Xa} in terms of Xi;
@ Solve f5 for X5 in terms of Xj.

If each cluster can be solved uniquely, we get a unique global solution

function (and hence joint distribution and Markov kernels).
2026-01-24 12 / 47
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Causal Ordering Algorithm [Simon, 1953, Nayak, 1995]

Input: bipartite graph G = (V, F, E), exogenous variable nodes U C V.
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Causal Ordering Algorithm [Simon, 1953, Nayak, 1995]

Input: bipartite graph G = (V, F, E), exogenous variable nodes U C V.
@ Pick perfect matching M of Gy (Hopcroft-Carp algorithm)
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Causal Ordering Algorithm [Simon, 1953, Nayak, 1995]

Input: bipartite graph G = (V, F, E), exogenous variable nodes U C V.
@ Pick perfect matching M of Gy (Hopcroft-Carp algorithm)
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Causal Ordering Algorithm [Simon, 1953, Nayak, 1995]

Input: bipartite graph G = (V, F, E), exogenous variable nodes U C V.
@ Pick perfect matching M of Gy (Hopcroft-Carp algorithm)
@ Orient edges of Gas f — vifin M, f < v if notin M
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Causal Ordering Algorithm [Simon, 1953, Nayak, 1995]

Input: bipartite graph G = (V, F, E), exogenous variable nodes U C V.
@ Pick perfect matching M of Gy (Hopcroft-Carp algorithm)
@ Orient edges of Gas f — vifin M, f < v if notin M

@ For v € V\ U, define cluster [v] as the strongly-connected
component of v together with its F-parents

2026-01-24
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Causal Ordering Algorithm [Simon, 1953, Nayak, 1995]

Input: bipartite graph G = (V, F, E), exogenous variable nodes U C V.
@ Pick perfect matching M of Gy (Hopcroft-Carp algorithm)
@ Orient edges of Gas f — vifin M, f < v if notin M

@ For v € V\ U, define cluster [v] as the strongly-connected
component of v together with its F-parents

© Replace directed edges within clusters by = edges

Output: partially oriented bipartite graph G.
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Part Il

Causal Semantics of the Bathtub
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Modeling interventions beyond SCMs/CBNs

Causality is about change.
How does the system react to interventions (externally imposed changes)?

How does a
@ change of (distributions of ) exogenous variables, or
@ change of equations

affect the solution?

Caveat [Blom et al., 2021]

do(X = &) may be ambiguous in general!

Joris Mooij (University of Amsterdam) Bipartite Graphical Causal Models 2026-01-24 15 / 47



Modeling Interventions: do

...we move the bathtubs to Mars?

We can add one mechanism:

fi:
fr:
f3:
fa:

0 — X[ - XO at equilibrium, outflow equals inflow

0 — XK \ XP - XO Bernoulli's law: outflow is proportional to drain area and square root of pressure
0 - XgXD - XP Stevin's law: pressure is proportional to depth and gravitational acceleration

0= Xg — BMars gravitational acceleration set to Mars
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We replace mechanism f3:

fi:

Joris Mooij (University of Amsterdam)

0=X - Xo

at equilibrium, outflow equals inflow

0 — XK \/ XP - XO Bernoulli's law: outflow is proportional to drain area and square root of pressure

water level equals bathtub height
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We replace mechanism fi:

fi:

fi:
fr:
f3:

0=>X—Xo

0 — XD - §D water level equals bathtub height
0 == XK V4 X — XO Bernoulli's law: outflow is proportional to drain area and square root of pressure
0 - XgXD — XP Stevin's law: pressure is proportional to depth and gravitational acceleration
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What changes due to the intervention?

No intervention: do(f3 : Xp = &p):

fi: 0=X —Xo fi: 0=X —Xo fi: 0=Xp—¢&p
fr: 0= Xx\v/Xp —Xo fr: 0= Xgk\/Xp — Xo fr: 0= Xx\/Xp—Xo
fy: 0=XgXp—Xp B 0=Xp—¢p f3: 0= XgXp— Xp

For intervention do(f; : Xp = £p), the causal ordering reverses!
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Solutions and intervention effects

Solving the intervened systems of equations yields solution functions:

Xo Xp  Xp
observational X )):—g X?i(g
do(Xg = &) X )’% %,;
do(fs : Xp = £p) | X j% o
do(fi : Xp =&p) | X/ Xeép  Xelp &b

@ This implies corresponding changes in the endogenous distribution
P(Xp, X0, Xp) or Markov kernel (e.g. P(Xp, X0, Xp || Xi)).

@ Note: the two interventions that set Xp to £p have different effects:
do(Xp = £p) is ambiguous.

o Solution: specify hard interventions as do(f; : X; = ¢;)
[Blom et al., 2021].
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All hard interventions for the bathtub

The following hard interventions can be implemented:

do(X, = &) | do(f: X =6)|fi £ f
X =¢ v Xo =¢o v ¢ f
Xk =&k v Xp=¢&p v v ¢
Xg = & v Xp = £p v vV

Note:
@ The interventions marked with # have no solutions.
e What would do(Xp = £p), do(Xp = &p) refer to?
@ The bathtub cannot be modeled as a CBN or an SCM.
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Implementing hard intervention

A: 0=Xo—¢&o

f: 0= Xx\/Xp— Xo
fé: OIXgXD—XP

Physical implementation:
o Divert away the inflow
@ Add faucet with inflow Xj, = £o.
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Implementing hard intervention do(f; : Xp = &p)

h: 0=Xp—¢&p

fr: 0= Xux/Xp— Xo
fé: OIXgXD—XP

Physical implementation:
o Divert away the inflow
o Add faucet with inflow X, (sufficiently large)

@ Connect a pressure relieve valve to the bottom of the tub that
activates if Xp > &p.
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Implementing hard intervention

f13 OZX/—XO
h: 0=Xp—¢&p
fi: 0=X.Xp— Xp

f

Physical implementation:
o Clogg the drain

@ Reroute inflow directly to outflow through pipe, bypassing the tub
and the drain

Add another inflow (sufficiently large)

Connect a pressure relieve valve to the bottom of the tub that
activates if Xp > £p.
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Implementing hard intervention

f13 OZX/—XO
h: 0=Xp—¢p
f: 0=X.Xp— Xp

i [2l [¢]

O~
X

Physical implementation:
o Clogg the drain

@ Reroute inflow directly to outflow through pipe, bypassing the tub
and the drain

@ Add another inflow (sufficiently large)
o Cut off the bathtub at height £p.
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All Hard Intervention Effects

Xo Xp  Xp
. X2 X2
observational X ﬁ X,%lxg
- Xt XP
Aol =) % X; X
X2
do(fz : Xp =&p) | Xi ﬁ 135
do(Xk = k) X i X7
€k EiXe
dO(fQ . XD = ED) X/ ngD gD
do(fz : Xp = &p) | Xi &p &
2 2
do(X; = &) & )%2( xglxg
2 2
do(f : Xo =¢&o) | o )%’2( ng(g
do(fi: Xp =&p) | VEpék &p &
do(fi : Xp = £&p) | Xx/Xelp  Xebp o
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Part IV

Markov Property for BGCMs
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Extension of d-separation, |

Let G = (V, F, E) be a partially oriented bipartite graph, a, b nodes in 6 C a set of nodes in G.

Definition (Ancestor*)

a is called ancestor® of b if there is a path in G starting at a ending at b
consisting only of {—, =} edges. Example:
X1—>f2=X3=fEJ,=X4—>f5—>X5.

Definition ((Non)collider* patterns)

We extend the notions of (non)collider to the following subpaths:

collider* — k<, > ki = ... =k, +
blockable noncollider* — k —, + k <, < k —, start/end node, = k —, < k =
unblockable noncollider*  all remaining patterns

Definition (d*-blocking)

A path (walk) in G is d*-blocked by C if it contains a blockable
noncollider* in C, or a collider* that is not ancestor® of C.
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Extension of d-separation, Il

Let G = (V, F, E) be a partially oriented bipartite graph and A, B, C sets of nodes in G.

Definition (d*-separation)

A is d*-separated from B given C in 6 in symbols:

d*
AlB|C,
G

if every path from a node in A to a node in B is d*-blocked by C in G.

We will usually only consider A, B, C C V.
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Local existence and uniqueness conditions

Definition (Clusterwise unique solvability)

A cluster [c] is uniquely solvable if the equations in F N [c] can be solved
for the endogenous variables (V' \ U) N [c] in terms of pagz([c]), and this
solution is unique.

Assumption (Local existence and uniqueness)

o Exogenous variables are variation independent: their joint value
space is a Cartesian product [],c Xu-

@ The equations are clusterwise uniquely solvable: each cluster [c] is
uniquely solvable.

A,

Proposition

The assumption implies the existence and uniqueness of a global solution
function, and hence of the joint distribution/Markov kernels.
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Global Markov Property

Theorem (Corollary of [Blom et al., 2021])

If a system of equations is clusterwise uniquely solvable, and we put
independent distributions on the exogenous variables, then we obtain a
unique joint distribution P(Xy) that satisfies:

d*
VAB,CCV: ALB|C = XalXs|Xc.
G

v

The Markov property “propagates” conditional independences through the
equations along the partial ordering.
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Example: Markov Property for the Bathtub

Xk ~ P(Xk)

X ~ P(X))

Xg ~ P(Xg)
fl . 0= X[ - XO
b 0= XkvVXp—Xo
i 0=XgXp— Xp

The Markov property applied to the bathtub states e.g.:
d*
DJ__)O|P — XD%X0|XP
G

which means

P(XD, Xo, Xp) = P(XD | XP) X P(Xo, Xp)
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Extended Global Markov Property

A more general Markov property allows treating some of the exogenous
variables as non-random, using an extended notion of conditional
independence [Constantinou and Dawid, 2017, Forré, 2021].

If a system of equations is clusterwise uniquely solvable, and we treat
exogenous variables J C U as non-random and only put independent
distributions on exogenous variables U\ J, we obtain a unique Markov
kernel P(Xy || X,) that satisfies:

VA B,CC Vst ANJ=0,JC(BUC):

d*
AJ__)B|C — XAJ]PLXB|XC-
G

i

Here, (conditional) independence of a non-random variable means that the
(conditional) Markov kernel is constant in that variable.
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Example: Extended Markov Property for the Bathtub

Xk ~ P(Xk)
X is exogenous non-random
Xg ~ P(Xg)

fl . 0= X[ - XO

fr: 0=XxkvXp—Xo

h: 0=XgXp—Xp

The extended Markov property applied to the bathtub states e.g.:
d*
DJ__)I|P — XD%X[‘XP
G

which means there exists a Markov kernel P(Xp || Xp) such that

P(Xp, Xp || Xi) = P(Xp || Xp) @ P(Xp || Xi)
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Caveat: Hard interventions change things

Hard interventions change the bipartite graph and the partial orientation,
and hence the conditional independences.

. -
Observational G:

X Xk Xe

Joris Mooij (University of Amsterdam)

Observational G

X; Xk Xg
OO

Intervened Gyo(f:xp=¢p)

X Xk Xe
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Part V

Domain invariance ( “do-calculus”)
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Domain invariances

@ Goal: Relate the solutions in domain A with those in domain B.
Which solution properties are invariant across domains?

@ For causal Bayesian networks, Pearl’s “do-calculus” formulates three
rules for invariances of Markov kernels across domains:

Domain A Domain B
Rule 1 (adding/removing observation) observational observational
Rule 2 (action/observation exchange)  observational do(X, = &,)
Rule 3 (adding/removing action) observational  do(X, = ¢&,)

@ | provide examples of similar causal reasoning for bipartite causal
graphs, for the equilibrated bathtub:

Domain A Domain B
observational do(X =&)
observational : Xp =¢&p)

do(fy
observational do(fs : Xp = &p)
dO(fl : XD = fD) dO(fl . XD = fD)
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Domain invariances in bipartite graphical causal models

By jointly modeling domains A and B, and adding a domain indicator
R, we can relate the distributions via the Markov property. This provides a
generalization of Pearl's do-calculus.

The general recipe is:

Domain invariances: the recipe
@ Construct the joint model with an exogenous domain indicator R;
@ Construct a bipartite graph G* representation of the joint model;
© Run causal ordering to construct its partial orientation E;;
@ Check for clusterwise unique solvability;

© Apply the Markov property to G*.

Note: Apart from the check of the clusterwise unique solvability, this is a
purely graphical procedure.
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Bathtub Example I: observational vs. do(X; = &,)

Xk ~ P(Xk), Xi ~P(X)), Ug ~ P(Uj)
fi: 0=X—Xo

o 0=XkvXp—Xo

fé: 0= XgXD - Xp

o ox,—lUs R=A
¢ R=B

Applying the Markov property (using transition independence):
d*
P, 0 J_.}R = Xp,Xo 1L Xgp = PA(XP,Xo) = PB(XP,Xo).
G*

In Pearl’s notation, the invariance under this intervention could be written:

P(Xp, Xo) = P(Xp, Xo | do(Xg = &g)).

An answer to what-if question

The equilibrium distribution of pressure and outflow does not change if we
move the bathtubs to Mars.
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Bathtub Example |l: observational vs. do(f; : Xp = &p)

Xk ~ P(Xk), Xi ~P(X), Xg ~ P(Xg)
fi: 0=X;—Xo

f: 0= XkvXp— Xo
_JXeXo—Xp R=x

fz: 0=
Xp—¢&p R=¢p

d*
OJ__}R’D,P - XoiLXR‘XD,XP -
G*

Pa(Xo | Xp = €p, Xp) =Pag(Xo | Xp = €p, Xp || R = x)
=Pas(Xo | Xp =&p, Xp || R =¢D)
= Pg(Xo|do(fs: Xp = &p), Xp)

An answer to what-if question

If we seal off the bathtub at height £p and ensure it is completely filled,
the conditional equilibrium distribution of outflow given pressure is the
same as if we would just have observed a depth &p.
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Bathtub Example llla: observational vs. do(f : Xp = &p)

Xk ~ P(Xk), Xi ~P(X), Xg ~ P(Xg)
. Xi—Xo R=x
XD - fD R = §D

fz: 0= XK\/X - Xo
fé: 0= XgXD - Xp

fi: 0

In this case, the Markov property does not yield non-trivial independences.
Thus we cannot use it to relate the distributions in these two domains.

An answer to what-if question

If we let a bathtub that is cut off at height £p overflow, the entire
equilibrium distribution may change.
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Bathtub Example Illb: do(f : Xp = ¢p) vs. do(f, : Xp = &))

Xk ~P(Xk), Xi ~P(X), Xg ~ P(Xg)
_JXo—=¢&& R=A

|\ Xo—-¢, R=B

f2: 0= XK\/)T - Xo

fé: 0= XgXD - Xp

fi: 0

d*
O£R|P - XoiLXR‘XP -
G*

]P)A(Xo | dO(fl . XD = fD),XP) = PAB(XO |Xp || R = A)
=Pas(Xo [ Xp || R = B)
= ]P)B(XO ‘ dO(fl . XD = le),Xp)

An answer to what-if question

Overflowing bathtubs will yield the same conditional distribution of
outflow given pressure, independent of their height.
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Conclusion & Discussion

We proposed a causal modeling framework using bipartite graphs that
have equation nodes in addition to variable nodes.

@ Reduce ambiguity when specifying interventions;

@ Simon'’s causal ordering algorithm defines partial orientation;

o Formulated Markov property that propagates conditional
independences along the partial ordering;

@ Markov property facilitates causal reasoning about domain
invariances (extended “do-calculus”);

o BGCMs extend CBNs, acylic SCMs, simple SCMs, SCMs;

o BGCMs naturally model equilibrium systems like the bathtub, and
many more

e BGCMs may also naturally model dynamical systems (e.g.,
price-supply-demand, electronic circuits, enzyme reaction, chemical
reactions) [Blom and Mooij, 2022];

@ Future work: dynamical extensions to incorporate (stochastic)
differential equations.
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Dulmage-Mendelsohn decomposition

Clusterwise unique solvability is necessary for a global Markov property in
the sense that:
@ without local existence, no global existence;
@ without local uniqueness, multiple solutions are possible, which allows
for dependence with any variable in the model (the model is
incomplete).

A useful generalization:

@ If the bipartite graph has no perfect matching, one can choose a
maximum matching and perform the Dulmage-Mendelsohn
decomposition [Dulmage and Mendelsohn, 1958].

@ This can be used to represent overcomplete subsystems (more
equations than variables) and undercomplete subsystems (more
variables than equations).

e A marginal Markov property for the (over)complete subsystems can
be derived [Blom et al., 2021].
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