

Bipartite Graphical Causal Models

Joris Mooij

(collaborators: Tineke Blom, Mirthe van Diepen, Patrick Forré)

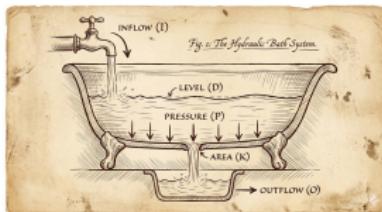
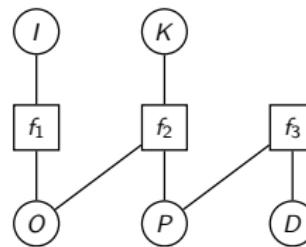
j.m.mooij@uva.nl

UNIVERSITY OF AMSTERDAM

January 24th, 2026

This version has been updated slightly after the presentation (fixed Bernoulli's law by replacing " X_P " by " $\sqrt{X_P}$ ", renamed "non-collider*" into "blockable non-collider*" to avoid confusion, fixed typo in definition of " d^* -blocked")

- Causal Bayesian Networks (CBNs) and Structural Causal Models (SCMs) are popular causal modeling frameworks.
- But: systems may have “pathological” causal semantics.
- Example: bathtub or sink at equilibrium [Iwasaki and Simon, 1994].



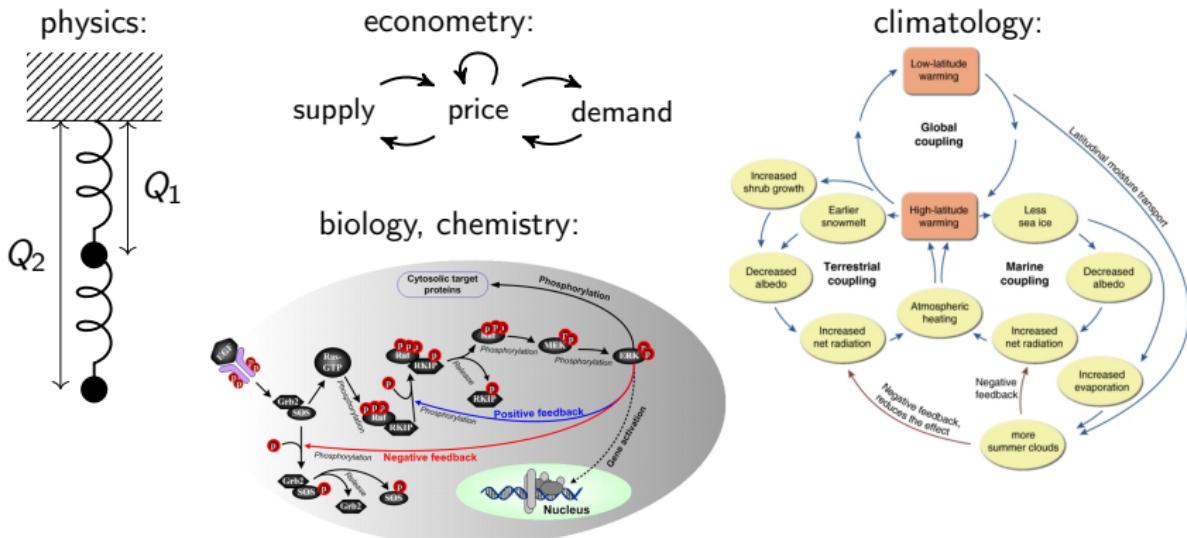
- We propose to use **bipartite** causal graphs that contain variable nodes **and equation nodes**.
 - ① Offers richer causal semantics;
 - ② Reduces ambiguity surrounding the notion of perfect intervention;
 - ③ Comes with Markov property and do-calculus;
 - ④ Models various systems that exhibit “pathological” causal semantics.

Part I

Context: Causal Modeling

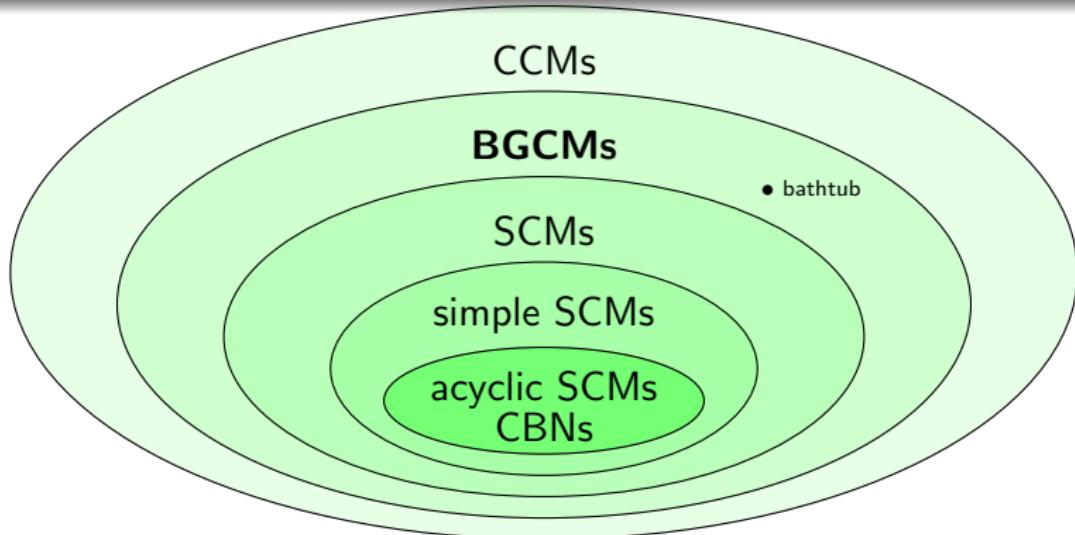
Cyclic causal relations

- Feedback in dynamical systems may (but need not!) induce cyclic causality at equilibrium.
- Fast dynamical interactions can lead to “instantaneous” causal cycles in dynamical systems.



In many applications, modeling causal cycles is essential.

Relations between (static) causal modeling frameworks



Acronym	Model class	Cycles?	Reference
CBN	causal Bayesian network	—	[Pearl, 2009]
acyclic SCM	acyclic structural causal model	—	[Pearl, 2009]
simple SCM	simple structural causal model	+	[Bongers et al., 2021]
SCM	structural causal model	+	[Bongers et al., 2021]
BGCM	bipartite graphical causal model	+	extends [Blom et al., 2021]
CCM	causal constraint models	+	[Blom et al., 2020]

BGCMs optimally balance model flexibility and causal reasoning power.

- Simon's **causal ordering** approach to causality [Simon, 1953] provides a fundamentally different perspective.
 - Given a **system of equations**, one deduces possible **causal interpretations** of the equations.
 - Each causal interpretation corresponds with a partitioning of the variables into **exogenous** and **endogenous** variables ("inputs" and "outputs") and a **partial causal ordering** of the variables.
- This matches notions of causality used by engineers and applied scientists (e.g. in).
- Combining causal ordering with the σ -separation criterion for SCMs [Forré and Mooij, 2017] provides a Markov property for causal systems represented as systems of equations [Blom et al., 2021].

Contributions of this presentation

- Formulate Markov property in terms of bipartite graph;
- Formulate causal reasoning (domain invariances/ "do-calculus");
- Case study: Complete analysis of causal semantics of bathtub system.

Part II

Causal Ordering Algorithm [Simon, 1953]

Example: Bathtub [Iwasaki and Simon, 1994]

Endogenous variables:

X_O water outflow through drain

X_D water depth

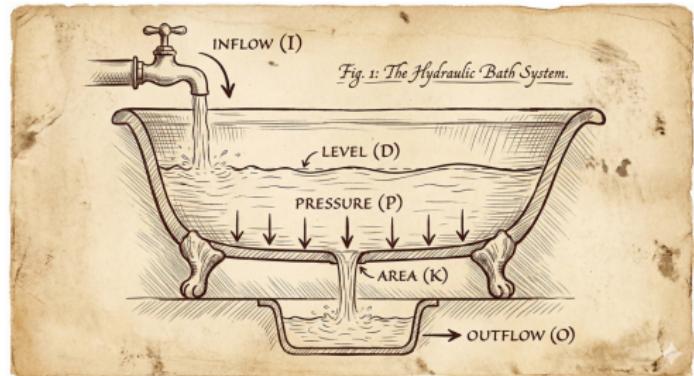
X_P pressure at drain

Exogenous variables:

X_I water inflow from faucet

X_K drain size

X_g gravitational acceleration



All bathtub drawings created by Google Gemini

Independent/modular/autonomous mechanisms:

$$f_1 : 0 = X_I - X_O \quad \text{at equilibrium, outflow equals inflow}$$

$$f_2 : 0 = X_K \sqrt{X_P} - X_O \quad \text{Bernoulli's law: outflow is proportional to drain area and square root of pressure}$$

$$f_3 : 0 = X_g X_D - X_P \quad \text{Stevin's law: pressure is proportional to depth and gravitational acceleration}$$

Bipartite Graphical Representation

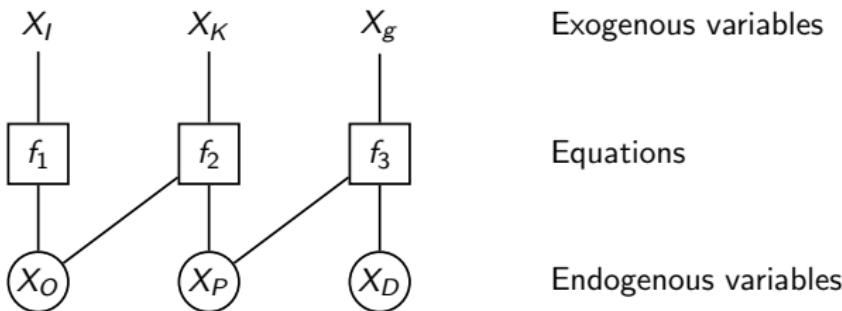
The structure of the equations:

$$f_1 : 0 = X_I - X_O$$

$$f_2 : 0 = X_K \sqrt{X_P} - X_O$$

$$f_3 : 0 = X_g X_D - X_P$$

can be represented with an undirected bipartite graph:



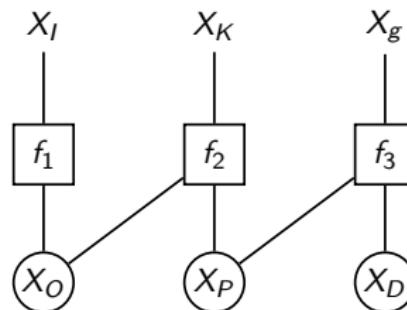
Solving systems of equations

The bipartite graph is helpful when solving a system of equations.

$$f_1 : 0 = X_I - X_O$$

$$f_2 : 0 = X_K \sqrt{X_P} - X_O$$

$$f_3 : 0 = X_g X_D - X_P$$



Solve in the following **ordering**:

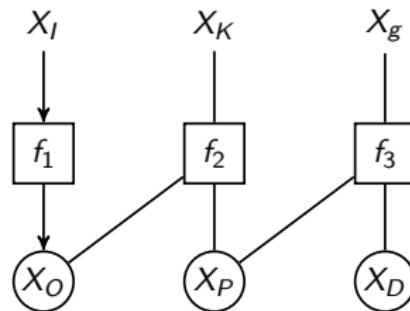
Solving systems of equations

The bipartite graph is helpful when solving a system of equations.

$$f_1 : 0 = X_I - X_O$$

$$f_2 : 0 = X_K \sqrt{X_P} - X_O$$

$$f_3 : 0 = X_g X_D - X_P$$



Solve in the following **ordering**:

- 1 Solve f_1 for X_O in terms of X_I : $X_O = X_I$

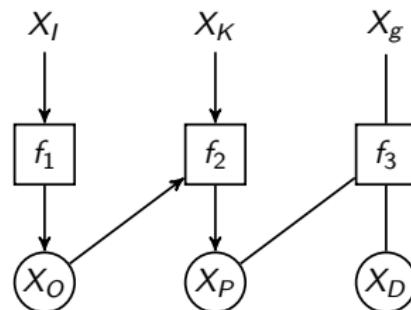
Solving systems of equations

The bipartite graph is helpful when solving a system of equations.

$$f_1 : 0 = X_I - X_O$$

$$f_2 : 0 = X_K \sqrt{X_P} - X_O$$

$$f_3 : 0 = X_g X_D - X_P$$



Solve in the following **ordering**:

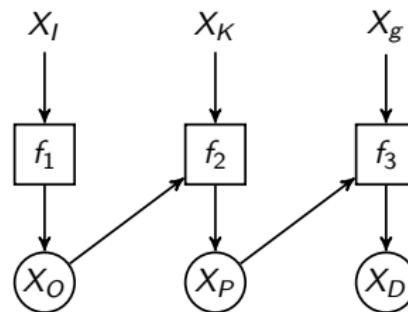
① Solve f_1 for X_O in terms of X_I : $X_O = X_I$

② Solve f_2 for X_P in terms of X_O and X_K : $X_P = \frac{X_O^2}{X_K^2}$

Solving systems of equations

The bipartite graph is helpful when solving a system of equations.

$$\begin{aligned}f_1 : \quad 0 &= X_I - X_O \\f_2 : \quad 0 &= X_K \sqrt{X_P} - X_O \\f_3 : \quad 0 &= X_g X_D - X_P\end{aligned}$$



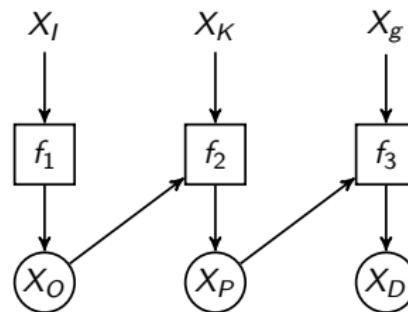
Solve in the following **ordering**:

- ① Solve f_1 for X_O in terms of X_I : $X_O = X_I$
- ② Solve f_2 for X_P in terms of X_O and X_K : $X_P = \frac{X_O^2}{X_K^2}$
- ③ Solve f_3 for X_D in terms of X_P and X_g : $X_D = \frac{X_P}{X_g}$

Solving systems of equations

The bipartite graph is helpful when solving a system of equations.

$$\begin{aligned}f_1 : \quad 0 &= X_I - X_O \\f_2 : \quad 0 &= X_K \sqrt{X_P} - X_O \\f_3 : \quad 0 &= X_g X_D - X_P\end{aligned}$$



Solve in the following **ordering**:

- ① Solve f_1 for X_O in terms of X_I : $X_O = X_I$
- ② Solve f_2 for X_P in terms of X_O and X_K : $X_P = \frac{X_O^2}{X_K^2} = \frac{X_I^2}{X_K^2}$
- ③ Solve f_3 for X_D in terms of X_P and X_g : $X_D = \frac{X_P}{X_g} = \frac{X_I^2}{X_K^2 X_g}$

This establishes **existence and uniqueness** of the solution ($\forall X_I, X_K, X_g > 0$).

- By solving the equations we obtain **solution functions** that express all variables in terms of the exogenous variables:

$$F : (x_I, x_K, x_g) \mapsto (x_I, x_K, x_g, x_O, x_P, x_D) = \left(x_I, x_K, x_g, x_I, \frac{x_I^2}{x_K^2}, \frac{x_I^2}{x_K^2 x_g} \right)$$

- If we assume that all exogenous variables are random variables that are independently distributed:

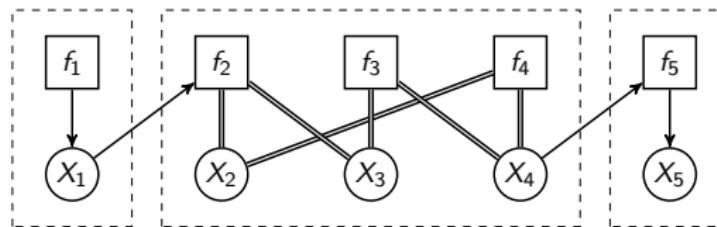
$$X_I \sim \mathbb{P}(X_I) \quad X_K \sim \mathbb{P}(X_K) \quad X_g \sim \mathbb{P}(X_g);$$

the **joint distribution** $\mathbb{P}(X_I, X_K, X_g, X_O, X_P, X_D)$ of all variables is obtained as the **push-forward** through the solution function F of the **exogenous distribution** $\mathbb{P}(X_I, X_K, X_g) = \mathbb{P}(X_I) \otimes \mathbb{P}(X_K) \otimes \mathbb{P}(X_g)$.

- We can also treat some exogenous variables as random, and others as non-random. This yields a **Markov kernel**, e.g., $\mathbb{P}(X_K, X_g, X_O, X_P, X_D \mid X_I)$ if only X_I is treated as non-random.

Loops in the bipartite graph

- Often we can only find an acyclic causal ordering after **clustering** some variables and equations.
- We then end up with subsets of equations that have to be solved simultaneously for subsets of variables.



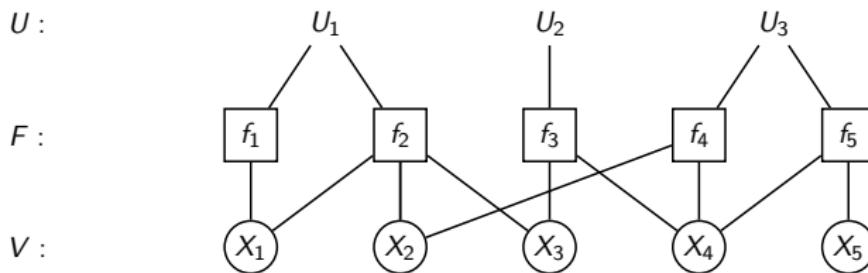
We can try to solve as follows:

- Solve f_1 for X_1 ;
- Solve $\{f_2, f_3, f_4\}$ for $\{X_2, X_3, X_4\}$ in terms of X_1 ;
- Solve f_5 for X_5 in terms of X_4 .

If each cluster can be solved uniquely, we get a unique global solution function (and hence joint distribution and Markov kernels).

Causal Ordering Algorithm [Simon, 1953, Nayak, 1995]

Input: bipartite graph $G = (V, F, E)$, exogenous variable nodes $U \subseteq V$.



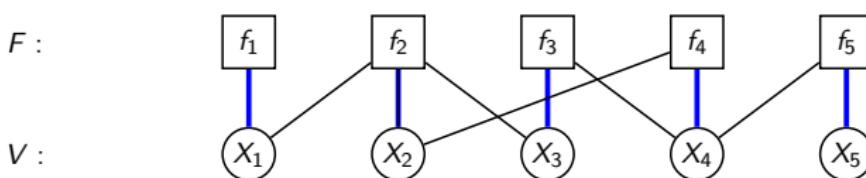
Causal Ordering Algorithm [Simon, 1953, Nayak, 1995]

Input: bipartite graph $G = (V, F, E)$, exogenous variable nodes $U \subseteq V$.

- ① Pick perfect matching M of $G \setminus U$ (Hopcroft-Carp algorithm)

$U :$

$F :$



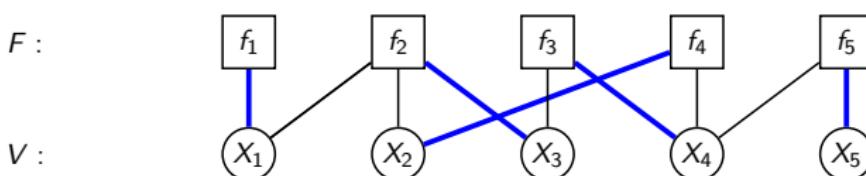
Causal Ordering Algorithm [Simon, 1953, Nayak, 1995]

Input: bipartite graph $G = (V, F, E)$, exogenous variable nodes $U \subseteq V$.

- ① Pick perfect matching M of $G \setminus U$ (Hopcroft-Carp algorithm)

$U :$

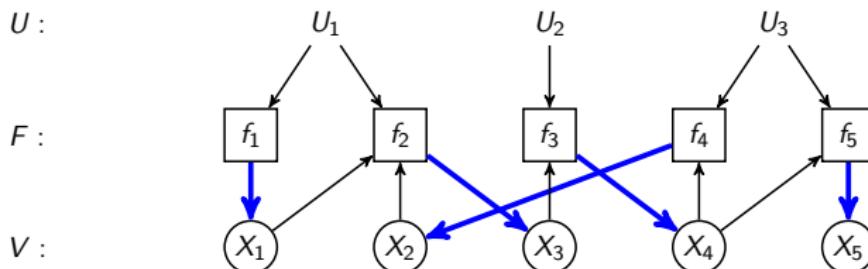
$F :$



Causal Ordering Algorithm [Simon, 1953, Nayak, 1995]

Input: bipartite graph $G = (V, F, E)$, exogenous variable nodes $U \subseteq V$.

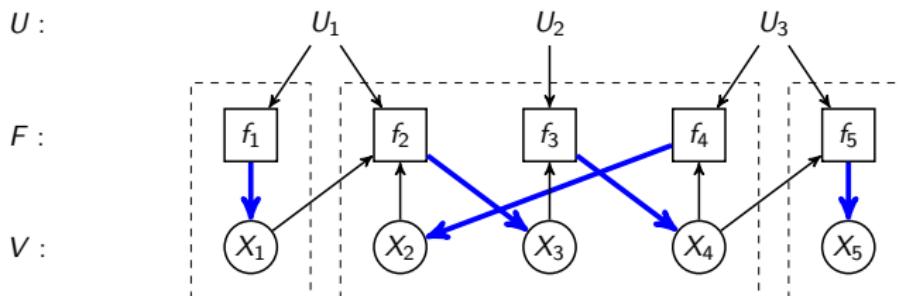
- ① Pick perfect matching M of $G \setminus U$ (Hopcroft-Carp algorithm)
- ② Orient edges of G as $f \rightarrow v$ if in M , $f \leftarrow v$ if not in M



Causal Ordering Algorithm [Simon, 1953, Nayak, 1995]

Input: bipartite graph $G = (V, F, E)$, exogenous variable nodes $U \subseteq V$.

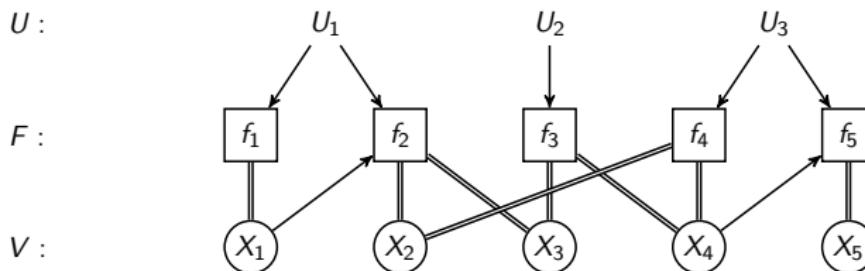
- ① Pick perfect matching M of $G \setminus U$ (Hopcroft-Carp algorithm)
- ② Orient edges of G as $f \rightarrow v$ if in M , $f \leftarrow v$ if not in M
- ③ For $v \in V \setminus U$, define cluster $[v]$ as the strongly-connected component of v together with its F -parents



Causal Ordering Algorithm [Simon, 1953, Nayak, 1995]

Input: bipartite graph $G = (V, F, E)$, exogenous variable nodes $U \subseteq V$.

- ① Pick perfect matching M of $G \setminus U$ (Hopcroft-Carp algorithm)
- ② Orient edges of G as $f \rightarrow v$ if in M , $f \leftarrow v$ if not in M
- ③ For $v \in V \setminus U$, define cluster $[v]$ as the strongly-connected component of v together with its F -parents
- ④ Replace directed edges within clusters by $=$ edges



Output: partially oriented bipartite graph \vec{G} .

Part III

Causal Semantics of the Bathtub

Causality is about **change**.

How does the system react to interventions (externally imposed changes)?

How does a

- ① change of (distributions of) exogenous variables, or
- ② change of equations

affect the solution?

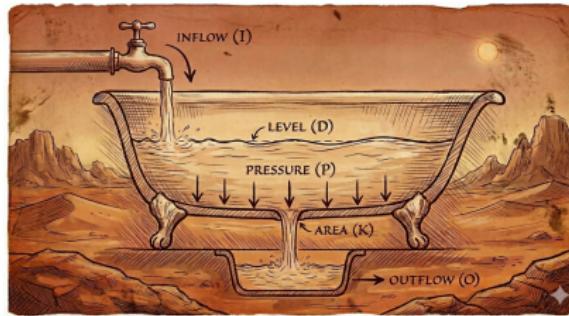
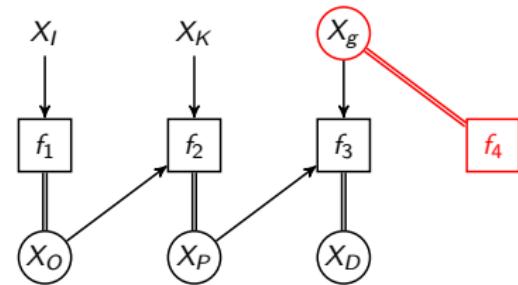
Caveat [Blom et al., 2021]

$\text{do}(X = \xi)$ may be ambiguous in general!

Modeling Interventions: $\text{do}(X_g = g_{\text{Mars}})$

What-if...?

...we move the bathtubs to Mars?



We can add one mechanism:

$$f_1 : 0 = X_I - X_O \quad \text{at equilibrium, outflow equals inflow}$$

$$f_2 : 0 = X_K \sqrt{X_P} - X_O \quad \text{Bernoulli's law: outflow is proportional to drain area and square root of pressure}$$

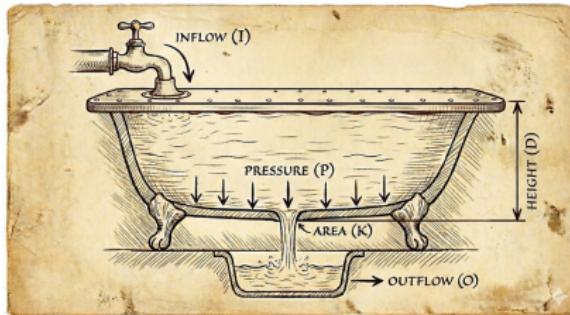
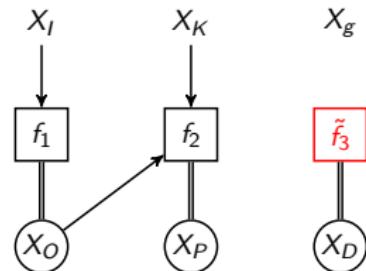
$$f_3 : 0 = X_g X_D - X_P \quad \text{Stevin's law: pressure is proportional to depth and gravitational acceleration}$$

$$f_4 : 0 = X_g - g_{\text{Mars}} \quad \text{gravitational acceleration set to Mars}$$

Modeling Interventions: $\text{do}(f_3 : X_D = \xi_D)$

What-if...?

...we seal off the bathtub at height ξ_D and ensure it is completely filled?



We replace mechanism f_3 :

$$f_1 : 0 = X_I - X_O \quad \text{at equilibrium, outflow equals inflow}$$

$$f_2 : 0 = X_K \sqrt{X_P} - X_O \quad \text{Bernoulli's law: outflow is proportional to drain area and square root of pressure}$$

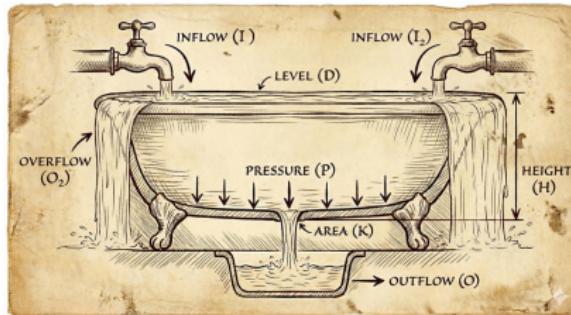
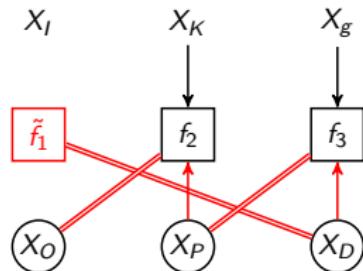
$$f_3 : 0 = X_g X_D - X_P \quad \text{Stevin's law: pressure is proportional to depth and gravitational acceleration}$$

$$\tilde{f}_3 : 0 = X_D - \xi_D \quad \text{water level equals bathtub height}$$

Modeling Interventions: $\text{do}(f_1 : X_D = \xi_D)$

What-if...?

...we cut off a bathtub at height ξ_D and ensure it overflows?



We replace mechanism f_1 :

$$f_1 : 0 = X_I - X_O$$

at equilibrium, outflow equals inflow

$$\tilde{f}_1 : 0 = X_D - \xi_D$$

water level equals bathtub height

$$f_2 : 0 = X_K \sqrt{X_P} - X_O$$

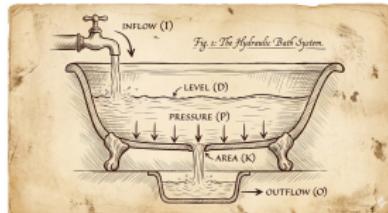
Bernoulli's law: outflow is proportional to drain area and square root of pressure

$$f_3 : 0 = X_g X_D - X_P$$

Stevin's law: pressure is proportional to depth and gravitational acceleration

What changes due to the intervention?

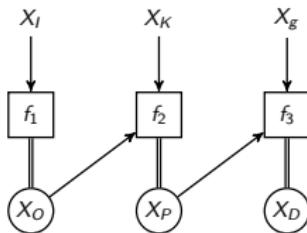
No intervention:



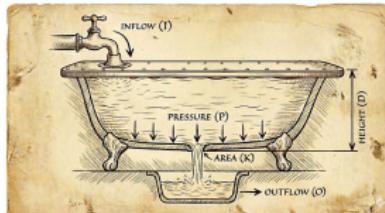
$$f_1 : 0 = X_I - X_O$$

$$f_2 : 0 = X_K \sqrt{X_P} - X_O$$

$$f_3 : 0 = X_g X_D - X_P$$



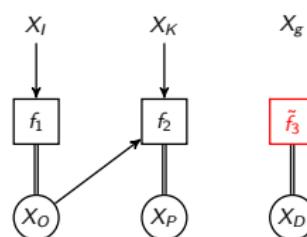
$\text{do}(f_3 : X_D = \xi_D)$:



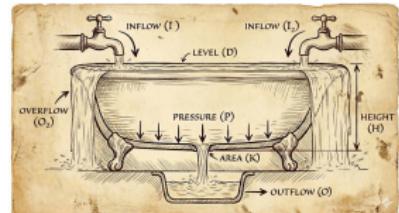
$$f_1 : 0 = X_I - X_O$$

$$f_2 : 0 = X_K \sqrt{X_P} - X_O$$

$$\tilde{f}_3 : 0 = X_D - \xi_D$$



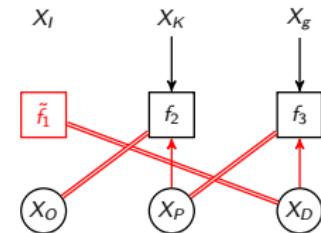
$\text{do}(f_1 : X_D = \xi_D)$:



$$\tilde{f}_1 : 0 = X_D - \xi_D$$

$$f_2 : 0 = X_K \sqrt{X_P} - X_O$$

$$f_3 : 0 = X_g X_D - X_P$$



For intervention $\text{do}(f_1 : X_D = \xi_D)$, the causal ordering reverses!

Solutions and intervention effects

Solving the intervened systems of equations yields solution functions:

	X_O	X_P	X_D
observational	X_I	$\frac{X_I^2}{X_K^2}$	$\frac{X_I^2}{X_K^2 X_g}$
$\text{do}(X_g = \xi_g)$	X_I	$\frac{X_I^2}{X_K^2}$	$\frac{X_I^2}{X_K^2 \xi_g}$
$\text{do}(f_3 : X_D = \xi_D)$	X_I	$\frac{X_I^2}{X_K^2}$	ξ_D
$\text{do}(f_1 : X_D = \xi_D)$	$X_K \sqrt{X_g \xi_D}$	$X_g \xi_D$	ξ_D

- This implies corresponding changes in the endogenous distribution $\mathbb{P}(X_P, X_O, X_D)$ or Markov kernel (e.g. $\mathbb{P}(X_P, X_O, X_D \mid X_I)$).
- Note: the two interventions that set X_D to ξ_D have different effects: $\text{do}(X_D = \xi_D)$ is **ambiguous**.
- Solution: specify hard interventions as $\text{do}(f_i : X_j = \xi_j)$ [Blom et al., 2021].

All hard interventions for the bathtub

The following hard interventions can be implemented:

$\text{do}(X_u = \xi_u)$	$\text{do}(f_j : X_v = \xi_v)$	f_1	f_2	f_3
$X_I = \xi_I$	✓	✓	✗	✗
$X_K = \xi_K$	✓	✓	✓	✗
$X_g = \xi_g$	✓	✓	✓	✓

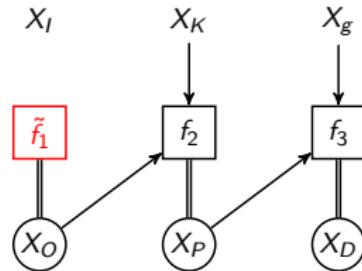
Note:

- The interventions marked with ✗ have no solutions.
- What would $\text{do}(X_P = \xi_P)$, $\text{do}(X_D = \xi_D)$ refer to?
- The bathtub **cannot** be modeled as a CBN or an SCM.

$$\tilde{f}_1 : 0 = X_O - \xi_O$$

$$f_2 : 0 = X_K \sqrt{X_P} - X_O$$

$$f_3 : 0 = X_g X_D - X_P$$



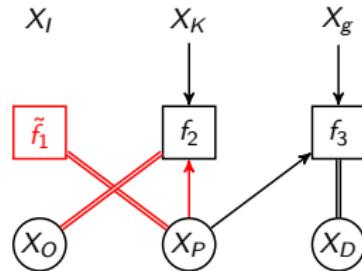
Physical implementation:

- Divert away the inflow
- Add faucet with inflow $X_{I_2} = \xi_O$.

$$\tilde{f}_1 : 0 = X_P - \xi_P$$

$$f_2 : 0 = X_K \sqrt{X_P} - X_O$$

$$f_3 : 0 = X_g X_D - X_P$$



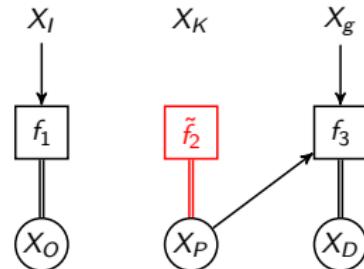
Physical implementation:

- Divert away the inflow
- Add faucet with inflow X_{I_2} (sufficiently large)
- Connect a pressure relieve valve to the bottom of the tub that activates if $X_P > \xi_P$.

$$f_1 : 0 = X_I - X_O$$

$$\tilde{f}_2 : 0 = X_P - \xi_P$$

$$f_3 : 0 = X_g X_D - X_P$$



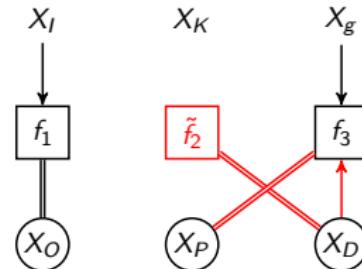
Physical implementation:

- Clog the drain
- Reroute inflow directly to outflow through pipe, bypassing the tub and the drain
- Add another inflow (sufficiently large)
- Connect a pressure relieve valve to the bottom of the tub that activates if $X_P > \xi_P$.

$$f_1 : 0 = X_I - X_O$$

$$\tilde{f}_2 : 0 = X_D - \xi_D$$

$$f_3 : \quad 0 = X_g X_D - X_P$$



Physical implementation:

- Clog the drain
 - Reroute inflow directly to outflow through pipe, bypassing the tub and the drain
 - Add another inflow (sufficiently large)
 - Cut off the bathtub at height ξ_D .

All Hard Intervention Effects

	X_O	X_P	X_D
observational	X_I	$\frac{X_I^2}{X_K^2}$	$\frac{X_I^2}{X_K^2 X_g}$
$\text{do}(X_g = \xi_g)$	X_I	$\frac{X_I^2}{X_K^2}$	$\frac{X_I^2}{X_K^2 \xi_g}$
$\text{do}(f_3 : X_D = \xi_D)$	X_I	$\frac{X_I^2}{X_K^2}$	ξ_D
$\text{do}(X_K = \xi_K)$	X_I	$\frac{X_I^2}{\xi_K^2}$	$\frac{X_I^2}{\xi_K^2 X_g}$
$\text{do}(f_2 : X_D = \xi_D)$	X_I	$X_g \xi_D$	ξ_D
$\text{do}(f_2 : X_P = \xi_P)$	X_I	ξ_P	$\frac{\xi_P}{X_g}$
$\text{do}(X_I = \xi_I)$	ξ_I	$\frac{\xi_I^2}{X_K^2}$	$\frac{\xi_I^2}{X_K^2 X_g}$
$\text{do}(f_1 : X_O = \xi_O)$	ξ_O	$\frac{\xi_O^2}{X_K^2}$	$\frac{\xi_O^2}{X_K^2 X_g}$
$\text{do}(f_1 : X_P = \xi_P)$	$\sqrt{\xi_P \xi_K}$	ξ_P	$\frac{\xi_P}{X_g}$
$\text{do}(f_1 : X_D = \xi_D)$	$X_K \sqrt{X_g \xi_D}$	$X_g \xi_D$	ξ_D

Part IV

Markov Property for BGCMs

Extension of d-separation, I

Let $\vec{G} = (V, F, E)$ be a partially oriented bipartite graph, a, b nodes in \vec{G} , C a set of nodes in \vec{G} .

Definition (Ancestor*)

a is called **ancestor*** of b if there is a path in \vec{G} starting at a ending at b consisting only of $\{\rightarrow, =\}$ edges. Example:

$$x_1 \rightarrow f_2 = x_3 = f_3 = x_4 \rightarrow f_5 \rightarrow x_5.$$

Definition ((Non)collider* patterns)

We extend the notions of (non)collider to the following subpaths:

collider*

$\rightarrow k \leftarrow, \rightarrow k_1 = \dots = k_n \leftarrow$

blockable noncollider*

$\rightarrow k \rightarrow, \leftarrow k \leftarrow, \leftarrow k \rightarrow, \text{start/end node}, = k \rightarrow, \leftarrow k =$

unblockable noncollider*

all remaining patterns

Definition (d*-blocking)

A path (walk) in \vec{G} is **d*-blocked by C** if it contains a **blockable noncollider*** in C , or a **collider*** that is not **ancestor*** of C .

Let $\vec{G} = (V, F, E)$ be a partially oriented bipartite graph and A, B, C sets of nodes in \vec{G} .

Definition (d*-separation)

A is d*-separated from B given C in \vec{G} , in symbols:

$$A \perp_{\vec{G}}^{d^*} B \mid C,$$

if every path from a node in A to a node in B is d*-blocked by C in \vec{G} .

We will usually only consider $A, B, C \subseteq V$.

Definition (Clusterwise unique solvability)

A cluster $[c]$ is **uniquely solvable** if the equations in $F \cap [c]$ can be solved for the endogenous variables $(V \setminus U) \cap [c]$ in terms of $\text{pa}_G([c])$, and this solution is unique.

Assumption (Local existence and uniqueness)

- *Exogenous variables are variation independent: their joint value space is a Cartesian product $\prod_{u \in U} \mathcal{X}_u$.*
- *The equations are clusterwise uniquely solvable: each cluster $[c]$ is uniquely solvable.*

Proposition

The assumption implies the existence and uniqueness of a global solution function, and hence of the joint distribution/Markov kernels.

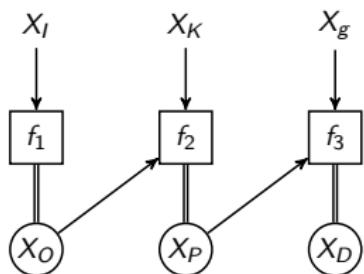
Theorem (Corollary of [Blom et al., 2021])

If a system of equations is clusterwise uniquely solvable, and we put independent distributions on the exogenous variables, then we obtain a unique joint distribution $\mathbb{P}(X_V)$ that satisfies:

$$\forall A, B, C \subseteq V : \quad A \xrightarrow[G]{d^*} B \mid C \implies X_A \perp\!\!\!\perp X_B \mid X_C.$$

The Markov property “propagates” conditional independences through the equations along the partial ordering.

Example: Markov Property for the Bathtub



$$\begin{aligned} X_K &\sim \mathbb{P}(X_K) \\ X_I &\sim \mathbb{P}(X_I) \\ X_g &\sim \mathbb{P}(X_g) \\ f_1 : \quad 0 &= X_I - X_O \\ f_2 : \quad 0 &= X_K \sqrt{X_P} - X_O \\ f_3 : \quad 0 &= X_g X_D - X_P \end{aligned}$$

The Markov property applied to the bathtub states e.g.:

$$D \xrightarrow[G]{d^*} O \mid P \implies X_D \perp\!\!\!\perp X_O \mid X_P$$

which means

$$\mathbb{P}(X_D, X_O, X_P) = \mathbb{P}(X_D \mid X_P) \otimes \mathbb{P}(X_O, X_P)$$

A more general Markov property allows treating some of the exogenous variables as non-random, using an **extended notion of conditional independence** [Constantinou and Dawid, 2017, Forré, 2021].

Theorem

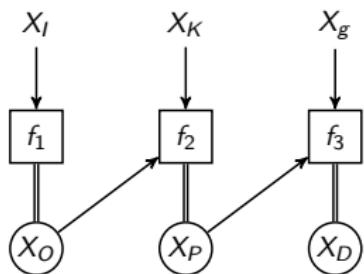
If a system of equations is clusterwise uniquely solvable, and we treat exogenous variables $J \subseteq U$ as non-random and only put independent distributions on exogenous variables $U \setminus J$, we obtain a unique Markov kernel $\mathbb{P}(X_V \mid X_J)$ that satisfies:

$$\forall A, B, C \subseteq V \text{ s.t. } A \cap J = \emptyset, J \subseteq (B \cup C) :$$

$$A \xrightarrow[G]{d^*} B \mid C \implies X_A \perp\!\!\!\perp X_B \mid X_C \text{.}$$

Here, (conditional) independence of a non-random variable means that the (conditional) Markov kernel is constant in that variable.

Example: Extended Markov Property for the Bathtub



$$X_K \sim \mathbb{P}(X_K)$$

X_I is exogenous non-random

$$X_g \sim \mathbb{P}(X_g)$$

$$f_1 : 0 = X_I - X_O$$

$$f_2 : 0 = X_K \sqrt{X_P} - X_O$$

$$f_3 : 0 = X_g X_D - X_P$$

The extended Markov property applied to the bathtub states e.g.:

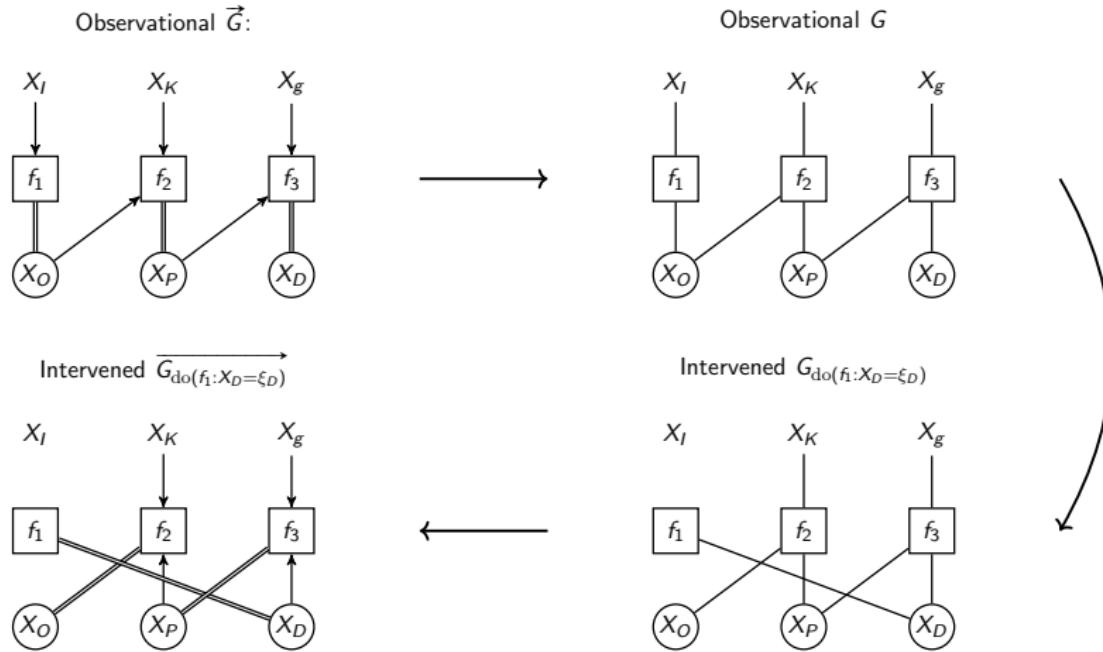
$$D \xrightarrow[G]{d^*} I \mid P \implies X_D \perp\!\!\!\perp X_I \mid X_P$$

which means there exists a Markov kernel $\mathbb{P}(X_D \mid X_P)$ such that

$$\mathbb{P}(X_D, X_P \mid X_I) = \mathbb{P}(X_D \mid X_P) \otimes \mathbb{P}(X_P \mid X_I)$$

Caveat: Hard interventions change things

Hard interventions change the bipartite graph and the partial orientation, and hence the conditional independences.



Part V

Domain invariance (“do-calculus”)

- Goal: Relate the solutions in domain A with those in domain B.
Which solution properties are **invariant** across domains?
- For causal Bayesian networks, Pearl's "do-calculus" formulates three rules for invariances of Markov kernels across domains:

	Domain A	Domain B
Rule 1 (adding/removing observation)	observational	observational
Rule 2 (action/observation exchange)	observational	$\text{do}(X_v = \xi_v)$
Rule 3 (adding/removing action)	observational	$\text{do}(X_v = \xi_v)$

- I provide examples of similar causal reasoning for bipartite causal graphs, for the equilibrated bathtub:

Domain A	Domain B
observational	$\text{do}(X_g = \xi_g)$
observational	$\text{do}(f_1 : X_D = \xi_D)$
observational	$\text{do}(f_3 : X_D = \xi_D)$
$\text{do}(f_1 : X_D = \xi_D)$	$\text{do}(f_1 : X_D = \xi'_D)$

By **jointly** modeling domains A and B, and **adding a domain indicator** R , we can relate the distributions via the Markov property. This provides a generalization of Pearl's do-calculus.

The general recipe is:

Domain invariances: the recipe

- ① Construct the joint model with an exogenous domain indicator R ;
- ② Construct a bipartite graph G^* representation of the joint model;
- ③ Run causal ordering to construct its partial orientation $\overrightarrow{G^*}$;
- ④ Check for clusterwise unique solvability;
- ⑤ Apply the Markov property to $\overrightarrow{G^*}$.

Note: Apart from the check of the clusterwise unique solvability, this is a purely graphical procedure.

Bathtub Example I: observational vs. $\text{do}(X_g = \xi_g)$

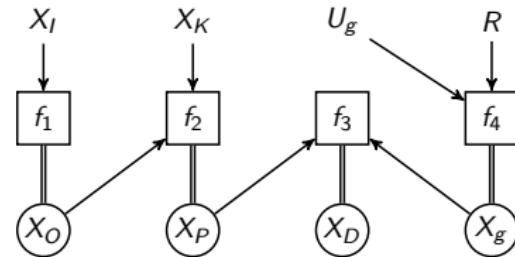
$$X_K \sim \mathbb{P}(X_K), X_I \sim \mathbb{P}(X_I), U_g \sim \mathbb{P}(U_g)$$

$$f_1: 0 = X_I - X_O$$

$$f_2: 0 = X_K \sqrt{X_P} - X_O$$

$$f_3: 0 = X_g X_D - X_P$$

$$f_4: X_g = \begin{cases} U_g & R = A \\ \xi_g & R = B \end{cases}$$



Applying the Markov property (using transition independence):

$$P, O \xrightarrow[G^*]{d^*} R \implies X_P, X_O \perp\!\!\!\perp X_R \implies \mathbb{P}_A(X_P, X_O) = \mathbb{P}_B(X_P, X_O).$$

In Pearl's notation, the invariance under this intervention could be written:

$$\mathbb{P}(X_P, X_O) = \mathbb{P}(X_P, X_O \mid \text{do}(X_g = \xi_g)).$$

An answer to what-if question

The equilibrium distribution of pressure and outflow does not change if we move the bathtubs to Mars.

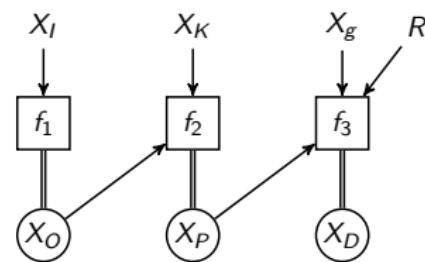
Bathtub Example II: observational vs. do($f_3 : X_D = \xi_D$)

$$X_K \sim \mathbb{P}(X_K), X_I \sim \mathbb{P}(X_I), X_g \sim \mathbb{P}(X_g)$$

$$f_1: 0 = X_I - X_O$$

$$f_2: 0 = X_K \sqrt{X_P} - X_O$$

$$f_3: 0 = \begin{cases} X_g X_D - X_P & R = * \\ X_D - \xi_D & R = \xi_D \end{cases}$$



$$O \xrightarrow[G^*]{d^*} R \mid D, P \implies X_O \perp\!\!\!\perp X_R \mid X_D, X_P \implies$$

$$\begin{aligned} \mathbb{P}_A(X_O \mid X_D = \xi_D, X_P) &= \mathbb{P}_{AB}(X_O \mid X_D = \xi_D, X_P \parallel R = *) \\ &= \mathbb{P}_{AB}(X_O \mid X_D = \xi_D, X_P \parallel R = \xi_D) \\ &= \mathbb{P}_B(X_O \mid \text{do}(f_3 : X_D = \xi_D), X_P) \end{aligned}$$

An answer to what-if question

If we seal off the bathtub at height ξ_D and ensure it is completely filled, the conditional equilibrium distribution of outflow given pressure is the same as if we would just have observed a depth ξ_D .

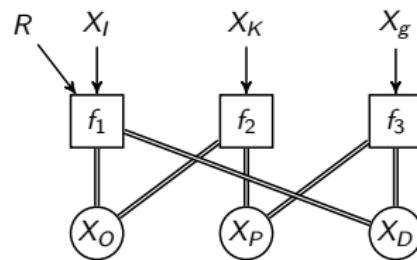
Bathtub Example IIIa: observational vs. do($f_1 : X_D = \xi_D$)

$$X_K \sim \mathbb{P}(X_K), X_I \sim \mathbb{P}(X_I), X_g \sim \mathbb{P}(X_g)$$

$$f_1: 0 = \begin{cases} X_I - X_O & R = * \\ X_D - \xi_D & R = \xi_D \end{cases}$$

$$f_2: 0 = X_K \sqrt{X_P} - X_O$$

$$f_3: 0 = X_g X_D - X_P$$



In this case, the Markov property does not yield non-trivial independences. Thus we cannot use it to relate the distributions in these two domains.

An answer to what-if question

If we let a bathtub that is cut off at height ξ_D overflow, the entire equilibrium distribution may change.

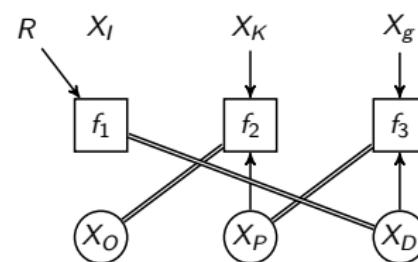
Bathtub Example IIIb: $\text{do}(f_1 : X_D = \xi_D)$ vs. $\text{do}(f_1 : X_D = \xi'_D)$

$$X_K \sim \mathbb{P}(X_K), X_I \sim \mathbb{P}(X_I), X_g \sim \mathbb{P}(X_g)$$

$$f_1: 0 = \begin{cases} X_D - \xi_D & R = A \\ X_D - \xi'_D & R = B \end{cases}$$

$$f_2: 0 = X_K \sqrt{X_P} - X_O$$

$$f_3: 0 = X_g X_D - X_P$$



$$O \xrightarrow[G^*]{d^*} R \mid P \implies X_O \perp\!\!\!\perp X_R \mid X_P \implies$$

$$\begin{aligned} \mathbb{P}_A(X_O \mid \text{do}(f_1 : X_D = \xi_D), X_P) &= \mathbb{P}_{AB}(X_O \mid X_P \parallel R = A) \\ &= \mathbb{P}_{AB}(X_O \mid X_P \parallel R = B) \\ &= \mathbb{P}_B(X_O \mid \text{do}(f_1 : X_D = \xi'_D), X_P) \end{aligned}$$

An answer to what-if question

Overflowing bathtubs will yield the same conditional distribution of outflow given pressure, independent of their height.

Conclusion & Discussion

We proposed a causal modeling framework using bipartite graphs that have **equation nodes** in addition to variable nodes.

- Reduce **ambiguity** when specifying **interventions**;
- Simon's causal ordering algorithm defines **partial orientation**;
- Formulated **Markov property** that propagates conditional independences along the partial ordering;
- Markov property facilitates causal reasoning about **domain invariances** (extended “do-calculus”);
- BGCMs **extend** CBNs, acyclic SCMs, simple SCMs, SCMs;
- BGCMs naturally model **equilibrium systems** like the bathtub, and many more
- BGCMs may also naturally model dynamical systems (e.g., price-supply-demand, electronic circuits, enzyme reaction, chemical reactions) [Blom and Mooij, 2022];
- Future work: dynamical extensions to incorporate (stochastic) differential equations.

References I

- Blom, T., Bongers, S., and Mooij, J. M. (2020).
Beyond structural causal models: Causal constraints models.
In Adams, R. P. and Gogate, V., editors, *Proceedings of the 35th Uncertainty in Artificial Intelligence Conference (UAI-19)*, volume 115 of *Proceedings of Machine Learning Research*, pages 585–594. PMLR.
- Blom, T. and Mooij, J. M. (2022).
Causality and independence in perfectly adapted dynamical systems.
arXiv.org preprint, arXiv:2101.11885v2 [stat.ML].
- Blom, T., van Diepen, M. M., and Mooij, J. M. (2021).
Conditional independences and causal relations implied by sets of equations.
Journal of Machine Learning Research, 22(178):1–62.
- Bongers, S., Forré, P., Peters, J., and Mooij, J. M. (2021).
Foundations of structural causal models with cycles and latent variables.
Annals of Statistics, 49(5):2885–2915.

References II

- Constantinou, P. and Dawid, A. P. (2017).
Extended conditional independence and applications in causal inference.
Annals of Statistics, 45(6):2618–2653.
- Dulmage, A. L. and Mendelsohn, N. S. (1958).
Coverings of bipartite graphs.
Canadian Journal of Mathematics, 10:517–534.
- Forré, P. (2021).
Transitional conditional independence.
arXiv.org preprint, arXiv:2104.11547 [math.ST].
- Forré, P. and Mooij, J. M. (2017).
Markov properties for graphical models with cycles and latent variables.
arXiv.org preprint, arXiv:1710.08775 [math.ST].
- Iwasaki, Y. and Simon, H. A. (1994).
Causality and model abstraction.
Artificial intelligence, 67:143–194.

Nayak, P. (1995).

Automated modeling of physical systems.

Springer-Verlag, Berlin.

Pearl, J. (2009).

Causality: Models, Reasoning and Inference.

Cambridge University Press.

Simon, H. A. (1953).

Causal ordering and identifiability.

In *Studies in Econometric Methods*, pages 49–74. John Wiley & Sons.

Dulmage-Mendelsohn decomposition

Clusterwise unique solvability is **necessary** for a global Markov property in the sense that:

- without local existence, no global existence;
- without local uniqueness, multiple solutions are possible, which allows for dependence with any variable in the model (the model is incomplete).

A useful generalization:

- If the bipartite graph has no perfect matching, one can choose a maximum matching and perform the Dulmage-Mendelsohn decomposition [Dulmage and Mendelsohn, 1958].
- This can be used to represent **overcomplete subsystems** (more equations than variables) and **undercomplete subsystems** (more variables than equations).
- A marginal Markov property for the (over)complete subsystems can be derived [Blom et al., 2021].