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1. Simpson’s Paradox

You are investigating the effectiveness of a drug against a deadly disease. You are given access to data
collected by health insurance companies about their customers. You divide the diseased customers into two
groups: those that took the drug (“treatment group”), and those that didn’t take the drug (“control group”).
Some of the customers recovered, others unfortunately didn’t recover. The reasons why some patients were
treated and others were not, are unknown to you. You find the following numbers:

Recovery No recovery Total Recovery rate
Drug 20 20 40 . . . %
No drug 16 24 40 . . . %
Total 36 44 80

1a. Calculate the recovery rates (in %) for both treatment and control group.
1b. If you were diseased, would you take the drug, or not?

Upon closer inspection of the data, you notice something peculiar when you group patients according to
gender:

Males Recovery No recovery Total Recovery rate
Drug 18 12 30 . . . %
No drug 7 3 10 . . . %
Total 25 15 40

Females Recovery No recovery Total Recovery rate
Drug 2 8 10 . . . %
No drug 9 21 30 . . . %
Total 11 29 40

2a. Calculate the recovery rates (in %) for both the treatment and the control groups, for both subpopulations
(males and females).
2b. In light of these numbers, would you take the drug if you were diseased, or not?

3. What would be your advice to a diseased patient with unknown gender?

This phenomenon is known as Simpson’s paradox. A lot has been written about this paradox, but it dissolves
once you recognize that you should not make the mistake of interpreting correlations as causations, as we’ll
see later today.

2. Paths, colliders, blocked paths and d-separation

Definition 1 (Paths, Ancestors) Let G be a directed mixed graph.

• A path q in G is a sequence of adjacent edges in G in which no node occurs more than once.
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• A path consisting of directed edges Xi1 → Xi2 → Xi3 → · · · → Xik that all point in the same direction
is called a directed path.

• If there is a directed path from X to Y (or if X = Y ), X is called a ancestor of Y .
• The ancestors of Y are denoted anG(Y ), and include Y .

Definition 2 (Colliders, Blocked Paths, d-separation) Let G be a directed mixed graph, and q a path
on G.

• A collider on q is a (non-endpoint) node X on q with precisely two arrowheads pointing towards X
on the adjacent edges:

→ X ←, → X ↔, ↔ X ←, ↔ X ↔

• A non-collider on q is any node on the path which is not a collider.

A set of nodes S in G is said to block q if q contains a non-collider which is in S, or a collider which is not
an ancestor of S.

For three sets X,Y ,Z of nodes in G, we say that X and Y are d-separated by Z iff all paths between a
node in X and a node in Y are blocked by Z, and write X ⊥G Y |Z.

Consider the following directed mixed graph G:

X1X2

X3 X4

X5

1a. Is X3 → X5 ↔ X3 a path? Is it a directed path?
1b. Is X3 ↔ X5 a path? Is it a directed path?
1c. Is X5 ← X3 ← X1 a path? Is it a directed path?
1d. What are the ancestors of X4?

Consider the path X2 ↔ X1 → X3 ↔ X5 ← X4 on G.

2a. Which nodes on the path are colliders?
2b. Which nodes on the path are non-colliders?
2c. Does {X3} block this path? Does {X5} block this path? Does {X3, X5} block this path?
2d. Does X1 d-separate X2 from X4?
2e. Is X1⊥X5 | {X3, X4}?

3. The Back-Door Criterion

Theorem 1 (Back-Door Criterion (Pearl, 2000)) For an acyclic SCM M, variables X, Y and set of
variables H: if

1. X,Y /∈H;
2. X is not an ancestor of any variable in H in G(M);
3. H blocks all back-door paths X ← . . . Y and X ↔ . . . Y in G(M) (i.e., all paths between X and Y

that start with an arrowhead at X).
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then H is called admissible for adjustment to find the causal effect of X on Y , and this causal effect is given
by:

pM
(
y | do(X = x)

)
=

∫
pM(y |x,h)pM(h) dh

(
=
∑
h

pM(y |x,h)pM(h)

)
.

For the special case H = ∅, this should be read as:

pM
(
y | do(X = x)

)
= pM(y |x).

Consider an SCM M with the following functional graph G(M):

X1X2

X3 X4

X5

1a. Give a set that is admissible for adjustment to find the causal effect of X4 on X5.
1b. Provide an expression for this causal effect in terms of the observational distribution.

2a. Give a set that is admissible for adjustment to find the causal effect of X1 on X5.
2b. Provide an expression for this causal effect in terms of the observational distribution.

3. Is ∅ admissible for adjustment to find the causal effect of X1 on X4? If so, provide an expression for this
causal effect in terms of the observational distribution.

4a. Which sets are admissible for adjustment to find the causal effect of X3 on X5?
4b. Which sets are admissible for adjustment to find the causal effect of X5 on X4?

4. Simpson’s Paradox: resolution

This exercise continues where exercise 1 ended. We will make use of causal reasoning with SCMs to resolve
Simpson’s paradox.

M

D R

(i) M

D R

(ii) M

D R

L1 L2

(iii)

Figure 1: Different hypothetical functional graphs, where R stands for Recovery, D for taking the Drug, and
M has different interpretations in cases (i), (ii) and (iii).

Suppose you believe that an SCM with functional graph as in Figure 1(i) applies, where M denotes gender
of the patient (male/female).

1a. Apply the back-door criterion to obtain a formula that expresses p(r | do(D = d)) in terms of observable
quantities (i.e., in terms of marginal or conditional distributions where the do-operator does not appear).
1b. Is p(r | do(D = d)) = p(r | d) in this case?
1c. What would be your advice for a patient with unknown gender?
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Now suppose that instead, you believe that an SCM with functional graph as in Figure 1(ii) applies. Intu-
itively, this would be quite unlikely, as we know that most drugs don’t change gender, but we could have used
a slightly different story where the variable M has a different interpretation (for example, “blood pressure”),
and then this causal structure would also be a plausible one.

2a. Again, use the back-door criterion to express p(r | do(D = d)) in terms of observable quantities.
2b. Is p(r | do(D = d)) = p(r | d) in this case?
2c. What would be your advice for a patient with unknown M (say, blood pressure) in this case?

Finally, suppose that you believe that the SCM has the functional graph of Figure 1(iii).

3a. Invent an interpretation of M and the two latent variables L1, L2 yourself that could match the causal
model depicted in Figure 1(iii).
3b. Express p(r | do(D = d)) in terms of observable quantities.
3c. Is p(r | do(D = d)) = p(r | d) in this case?
3d. Again, what would be your advice for a patient with unknown M in this case?

Conclusion: whether or not you should prescribe the drug depends on which causal model you believe to
apply to this situation. The fact that different causal models will lead to different conclusions should not be
paradoxical, it is another illustration that “correlation does not imply causation”.

5. Y-structure

Theorem 2 (Global Markov Property) For an acyclic SCM, the following Global Markov Property
holds:

X,Y ⊥
G(M)

Z =⇒ X ⊥⊥
pM

Y |Z

for all subsets X,Y ,Z of nodes.

Given an SCM M with the following functional graph:

A B

C

D

Which (conditional) independences in pM are implied by the Global Markov Property?

6. LCD

Theorem 3 (Cooper, 1997) Given an acyclic SCM M with three endogenous variables I,X, Y . If:

1. X → I /∈ G(M),
2. Y → I /∈ G(M),
3. I 6⊥⊥ pM

X,
4. X 6⊥⊥ pM

Y ,
5. I ⊥⊥ pM Y |X,
6. Faithfulness holds, i.e., the Global Markov Property gives all (conditional) independences in pM.

Then X → Y ∈ G(M) and X ↔ Y /∈ G(M).

Prove this theorem by considering for each possible ADMGs G(M) whether it satisfies the assumptions.
(Hint: could there be an edge between I and Y ?)
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