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Many questions in science are causal
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Contents of this tutorial

Causality is clearly an important notion in daily life and in science.

But how should we formalize the notion of causality?

How to reason about causality?

°
°
@ How can we discover causal relations from data?
@ How to obtain causal predictions?

°

How do they differ from ordinary predictions in ML?

That is what you will learn in this tutorial!
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Probabilistic Inference vs. Causal Inference

Probabilistic Inference (traditional statistics / machine learning)
@ Models the distribution of the data
@ Focuses on predicting consequences of observations

o Useful e.g. in medical diagnosis: given the symptoms of the patient,
what is the most likely disease?

Causal Inference
@ Models the mechanism that generates the data
@ Also allows to predict results of interventions

o Useful e.g. in medical treatment: if we treat the patient with a drug,
will it cure the disease?

Causal reasoning is essential to answer questions of the type: given the
circumstances, what action should we take to achieve a certain goal?
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© Informal Causal Modeling: Causal Graphs
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Causation # Correlation
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Figure 1. Correlation between Countries’ Annual Per Capita Chocolate Consumption and the Number of Nobel
Laureates per 10 Million Population.
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Causal relations

Definition (Informal)

Let X and Y be two distinct variables of system. X causes Y if changing
X (intervening on X) leads to a change of Y.

Causal graph represents causal relationships between variables graphically.

Example

X1 and X5 are X1 causes Xo Xo causes Xi
causally unrelated . @ @
X1 and X5 cause X1 and X, have a X1 and X5 have a
each other common cause X3 common effect X3
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Direct causation

Let V = {Xi,...,Xn} be a set of variables.

Definition (Informal)

If X; causes X; even if all other variables V \ {Xj, X;} are hold fixed at
some values, then

@ we say that X; causes X directly with respect to V
@ we indicate this in the causal graph on V by a directed edge X; — X

Example

® © o
H—m & ®

X1 causes Xo; X1 causes Xo; X1 causes Xo;

Xy causes X; directly  Xj does not cause X; directly ~ Xj causes X; directly
w.r.t. {Xl, X, X3} w.r.t. {Xl, X, X3} w.r.t. {Xl, X, X3}
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Direct vs. indirect causation: Example

|‘\\\<~:’

b E———

@ Each stone causes all subsequent stones to topple.

@ Each stone only directly causes the next neighboring stone to topple.

o Causal graph:
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Perfect interventions: Example

Suppose we intervene by keeping the second stone fixed in an “upright”
position (e.g. by glueing it to the floor), an operation that we denote by
do(Xy = upright).

Before the intervention, the causal graph is:

After the intervention do(X, = upright), the causal graph is:

If we keep the second stone fixed, it is no longer affected by the other
stones.
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Perfect interventions

Definition (Informal)

A perfect (“surgical”) intervention on a set of variables X C V, denoted
do(X = &), is an externally enforced change of the system that ensures
that X takes on value £ and leaves the rest of the system untouched.

The concept of perfect intervention assumes modularity: the causal
system can be divided into two parts, X and V \ X, and we can make
changes to one part while keeping the other part invariant.

The intervention changes the causal graph by removing all edges that point
towards variables in X (because none of the variables can now cause X).
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Confounders: Definition

Informally: a confounder is a latent common cause.

Definition

Consider three variables X, Y, H. H confounds X and Y if:
Q H causes X directly w.r.t. {X,Y,H}
@ H causes Y directly w.r.t. {X,Y,H}
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Confounders: Definition

Informally: a confounder is a latent common cause.

Definition
Consider three variables X, Y, H. H confounds X and Y if:

Q H causes X directly w.r.t. {X,Y,H}
@ H causes Y directly w.r.t. {X,Y,H}

Example
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Confounders: Example

Wealth might confound chocolate consumption and Nobel prize winners.
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Confounders: Graphical notation

We denote latent confounders by bidirected edges in the causal graph:

o= 0" "o
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Causal Cycles: Definition and Example

Let X, Y be two variables in a system.

Definition
If X causes Y and X causes Y, then X and Y form a causal cycle.
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Causal Cycles: Definition and Example

Let X, Y be two variables in a system.

Definition
If X causes Y and X causes Y, then X and Y form a causal cycle.

Example (Damped Coupled Harmonic Oscillators)

@ Two masses, connected by a spring, suspended from
the ceiling by another spring. T
@ Variables: vertical equilibrium positions Q1 and Q. Q

@ Q1 causes Q.
@ () causes Q.

o Causal graph:

@)

@ Cannot be modeled with acyclic causal model!

\
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Cycles: Relevance in Climatology
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“Part of the uncertainty around future climates relates to important feedbacks
between different parts of the climate system: air temperatures, ice and snow
albedo (reflection of the sun's rays), and clouds.” [Ahlenius, 2007]
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Cycles: Relevance in Biology
proteins
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“Feedback mechanisms may be critical to allow cells to achieve the fine balance
between dysregulated signaling and uncontrolled cell proliferation (a hallmark of
cancer) as well as the capacity to switch pathways on or off when needed for
physiologic purposes.” [McArthur, 2014]
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Graph Terminology

@ A graph G that consists of directed and bidirected edges is called
Directed Mixed Graph (DMG).

@ Ifii > ip = -+ — ik in G then i is ancestor of ix: i1 € ang(ik).

@ G is called cyclic if it contains a directed cycle:

@ The strongly-connected component of a node i € G is the set of
nodes j € G such that / and j are each other's ancestors.

e If G does not contain such a directed cycle, it is called acyclic, and
known as an Acyclic Directed Mixed Graph (ADMG).

o If, in addition, G does not contain any bidirected edges, it is called a
Directed Acyclic Graph (DAG).
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© Causal Modeling: Structural Causal Models
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Defining Causality in terms of Probabilities?

When looking for a more quantitative treatment of causality, it is a natural
idea to try to define causality in terms of probabilities.

A naive example of such an attempt could be:

Attempt at a definition

Given two binary random variables A, B. If
@ A precedes B in time, and
e p(B=1|A=1)>p(B=1|A=0)
then A causes B.
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Defining Causality in terms of Probabilities?

When looking for a more quantitative treatment of causality, it is a natural
idea to try to define causality in terms of probabilities.

A naive example of such an attempt could be:

Attempt at a definition

Given two binary random variables A, B. If
@ A precedes B in time, and
e p(B=1|A=1)>p(B=1|A=0)
then A causes B.

This does not work, as exemplified by Simpson’s paradox.

Please make Exercise 1.1. \
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Simpson's Paradox

Example (Simpson's paradox)

We collect electronic patient records to investigate the effectiveness of a
new drug against a certain disease. We find that:

@ The probability of recovery is higher for patients that took the drug:
p(recovery | drug) > p(recovery | no drug)
@ For both male and female patients, the relation is opposite:
p(recovery | drug, male) < p(recovery | no drug, male)

p(recovery | drug, female) < p(recovery | no drug, female)

Does the drug cause recovery? l.e., would you use this drug if you are ill?

v
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Simpson's Paradox

Example (Simpson's paradox)

We collect electronic patient records to investigate the effectiveness of a
new drug against a certain disease. We find that:

@ The probability of recovery is higher for patients that took the drug:
p(recovery | drug) > p(recovery | no drug)
@ For both male and female patients, the relation is opposite:
p(recovery | drug, male) < p(recovery | no drug, male)

p(recovery | drug, female) < p(recovery | no drug, female)

Does the drug cause recovery? l.e., would you use this drug if you are ill?

v

Note: Big data and deep learning do not help us here!
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Quantitative Models of Causality

Problems like these have historically prevented statisticians from
considering causality.

Nonetheless, different approaches have been proposed to model causality
in a quantitative way:

@ Potential outcome framework

@ Causal Bayesian Networks

e Structural Causal Models (SCMs)

We will use SCMs, as they are arguably the most general of the three:

@ SCMs can model cycles naturally (close connections to ODE models
from physics, chemistry, biology, engineering, .. .)

@ Acyclic SCMs are closed under marginalization (can efficiently handle
latent variables)

@ SCMs can model counterfactuals (provides alternative to potential
outcome framework)

@ SCMs generalize Causal Bayesian Networks
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Structural Causal Models: Concepts

SCMs turn things upside down: rather than defining causality in terms of
probabilities, probability distributions are defined by a causal model,
thereby avoiding traps like Simpson’s paradox.

@ The system we are modeling is described by endogenous variables;
endogenous variables are:
e observed,
e modeled by structural equations.
@ The environment of the system is described by exogenous variables;
exogenous variables are:
latent (unobserved),
e modeled by probability distributions,
e not caused by endogenous variables,
e provide the “source” of randomness.

o Each endogenous variable has its own structural equation, which
describes how this variable depends on its direct causes.

@ SCMs are equipped with a notion of perfect intervention, which gives

them a causal semantics.
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Structural Causal Models: Example

Endogenous variables (binary): Causal graph:

X: the battery is charged
Y: the start engine is operational
S:  the car starts

Exogenous variables (latent, independent, binary):

Ex ~ Ber(0.95) Augmented graph:
Ey ~ Ber(0.99)
Es ~ Ber(0.999) iEx; 1By

Structural equations (one per endogenous variable):

X = fx(Ex) = Ex
Y = fy(Ey) = Ey .
L S"f
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Structural Causal Models: Formal Definition

Definition ([Wright, 1921, Pearl, 2000, Bongers et al., 2018])

A Structural Causal Model (SCM), also known as Structural Equation
Model (SEM), is a tuple M = (X, &, f,Pg) with:

@ a product of standard measurable spaces X = [];.; A;
(domains of the endogenous variables)

@ a product of standard measurable spaces £ = Hjej &
(domains of the exogenous variables)

© a measurable mapping f : X x & - X
(the causal mechanism)

@ a product probability measure Pg = Hjej Pg on €
(the exogenous distribution)

Definition
A pair of random variables (X, E) is a solution of SCM M if
PE = P¢ and the structural equations X = (X, E) hold a.s..

| A\
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Structural Causal Models: Example

Example

Structural Causal Model M: Augmented graph G?(M):
Formally: E2

(Xa£7f7]P5) =
( ?:1 R’Hle R?(flv"' ) f:ri)vHJE'):l ng)

Informally:
X1 = f(Er) E; ~ Pg
Xo = h(Ey, E) Ey ~ Pg,
X3 = f3(X1, X2, X5, E3)  Ez ~ Pg,
Xy = 1a(X1, Xa, E3) Ey ~ Pg,
Xs = f5(X3, Xy, Es) Es ~ Pg,
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(Augmented) Graphs

The components of the causal mechanism usually do not depend on all
variables: for i € Z,

X,' = ﬁ(XpaIZ, epa;j)

where f; only depends on pal C T (the endogenous parents of /) and
pay C J (the exogenous parents of /).

Definition
The augmented graph G?(M) of SCM M is a directed graph with nodes
ZUJ and an edge k — i iff k € pafUpay is a parent of i € Z.

| N\

\

Definition

The graph G(M) of SCM M is a DMG with nodes Z, directed edges
k—iiff k € pa,-I, and bidirected edges k < i iff pa;7 N pa‘Z # 0.
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Unique Solvability

Definition

An SCM M is said to be uniquely solvable w.r.t. @ C 7 if there exists a
measurable mapping go : X (pa,, (0)\0)T X Epay,(0)ng — X o such that
for Pg-almost every e for all x € X:

X0 = 80(X(pay, (ON\O)NT) €pay (O)ng) =  Xo = fo(x,e).

(Loosely speaking: if the structural equations for O provide a unique
solution for xo in terms of the other variables).

Example

| A

An SCM with structural equations:

X1 =X1
Xo=X1+ X3
X3=X3+1

is uniquely solvable w.r.t. {Xa} but not w.r.t. any other subset.
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Simple SCMs

For simplicity we will here assume only a special subclass of SCMs:

Definition

We call an SCM M simple if it is uniquely solvable with respect to any
subset O C 7.

If G(M) is acyclic, M is simple. \

@ The class of simple SCMs extends the class of acyclic SCMs by
allowing for (weak) cyclic causal relations, while preserving most of
the simplicity and convenience of acyclic SCMs.

@ The theory for non-simple SCMs is considerably more involved
[Bongers et al., 2018].

e Simple SCMs induce modular SCMs (mSCMs)
[Forré and Mooij, 2017].
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Perfect Interventions

To interpret an SCM as a causal model, we also need to define its
semantics under interventions.

Definition (Perfect Interventions, [Pearl, 2000])
@ The perfect intervention do(X; = &) enforces X, to attain value &;.

@ This changes the SCM M = (X, €, f,P¢) into the intervened SCM
MdO(X/:&) = (X, &, f,Pg) where

F(x, ) = {5" e

f,-(xIe J) ié/.

pa;”’ pa;
@ Interpretation: overrides default causal mechanisms that normally
would determine the values of the intervened variables.

o In the (augmented) graph, the intervention removes all incoming
edges with an arrowhead at any intervened variable i € /.
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Interventions: Example

Endogenous variables (binary): Causal graph:

X: the battery is charged
Y: the start engine is operational
S:  the car starts

Exogenous variables (latent, independent, binary):

Ex ~ Ber(0.95)
Ey ~ Ber(0.99)
Ez ~ Ber(0.999) Ex EY

Augmented graph:

Structural equations (one per endogenous variable):

X = Ex
Y = Ey

S=XAYANEs ES
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Interventions: Example

Endogenous variables (binary): Causal graph:

X: the battery is charged
Y: the start engine is operational
S:  the car starts

Exogenous variables (latent, independent, binary):

Ex ~ Ber(0.95) Augmented graph:
Ey ~ Ber(0.99)
Ez ~ Ber(0.999) Ex EY

Structural equations (one per endogenous variable):
after charging the battery do(X = 1):

X=1
Y = Ey .
S=XANYAEs Es
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Interventions: Example

Endogenous variables (binary): Causal graph:
X: the battery is charged @ @
Y: the start engine is operational
S:  the car starts @

Exogenous variables (latent, independent, binary):

Ex ~ Ber(0.95) Augmented graph:
Ey ~ Ber(0.99)
Ez ~ Ber(0.999) Ex EY

Structural equations (one per endogenous variable):
after loosing the key do(S = 0): @ @

®

Y =Ey
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Interventions: Example

Example

Observational (no intervention):

SCM M: Graph G(M):

e, sn o @R

Xz = fh(E1, B) Ey ~ Pg,

X3 = f3(X1, X0, X5, E3)  Ez ~ P,

X, = agxl,x4, E) Es ~ P, @' @'

X5 = f5(X3, Xa, Es) Es ~ Pg,

Intervention do(X3 = &3):

Intervened SCM M yo(x3=¢5): Intervened Graph g(./\/ldo(X3:§3)):
X = fi(EL) Ey ~ P, @ @
Xo = h(E, B) Ey ~ Pg,
X3=§&3 E3 ~ sz
Xy = f(X1, Xa, Ex) E4 ~ Py, @ @'
Xs = f5(X3, Xa, Es) Es ~ Pg,
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Observational Distribution(s)

Definition (Reminder)

A pair of random variables (X, E) is a solution of SCM M if
PE = P¢ and the structural equations X = (X, E) hold a.s..

Definition

| \

For (X, E) a solution of SCM M, we call PX an observational distribution
of M.

v

An important special case:

Proposition

If M is simple, then its observational distribution exists and is unique.

Definition

Given a simple SCM M and a fixed background measure on X, we denote
the density of the observational distribution as py(x).
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Interventional Distribution(s)

A perfect intervention on M may change the distributions.

Definition

We call the family of sets of observational distributions of Mg,(x,—¢,) (for
I CZ, & C X)) the interventional distributions of M.

Proposition

| A

If M is simple, then all intervened SCMs Mgq(x,—¢,) are simple, and
hence all interventional distributions of a simple SCM exist and are unique.

Definition ([Pearl, 2000])

Given a simple SCM M and a fixed background measure on X, we denote
the density of the interventional distributions as puq(x | do(X; = &/))

Crucial difference with traditional probabilistic models: SCMs
simultaneously model all distributions that are obtained under all perfect
interventions on a system.
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Self-cycles

We say M has a self-cycle at i € T if i € paf,(i).

v

Example (Price-supply-demand)

Consider an SCM with three endogenous variables (Price, Supply and
Demand) modeling a free market:

S=aP+Es ()

D =pP+ Ep (ST X X0)

P=P+(S—-D)

The structural equation for P has a self-cycle that cannot be removed
without changing the observational and interventional distributions.

Self-cycles complicate matters considerably [Bongers et al., 2018].

Proposition

Simple SCMs are equivalent to SCMs without self-cycles.
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Causal Interpretation of Direct Edges

Definition

Let M be a simple SCM. If i — j € G(M) we call i a direct cause of j
according to M.

We can now formalize our earlier informal definition of direct cause as a
sufficient condition:

Proposition
Let M be a simple SCM. If there exist interventions do(Xz\(j; = §) and
do(Xp\(jy = &') such that &7y jy = E’I\{u} and &; # & such that

Ppt(X; | do(Xz\(j3 = §)) # Pm(Xj | do(Xz\(jy =€)

then i is a direct cause of j according to M, i.e., i — j € G(M).

(Interestingly, a necessary condition is not known)
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Causal Interpretation of Directed Paths

Definition

Let M be a simple SCM. If there exists a directed path
i— = jeGM), ie., if i €angag)(j), then we call i a cause of j
according to M.

We can now formalize our earlier informal definition of cause as a sufficient
condition:

Proposition
Let M be a simple SCM. If there exist interventions do(X; = &) and
do(X; = &') with £ # &' such that

Pat(X; | do(X; = €)) # Paq(Xj | do(X; = £'))

then i is a cause of j according to M, i.e., i € ang(aq)())-

(Interestingly, a necessary condition is not known)
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Causal Interpretation of Bidirected Edges

Definition

Let M be a simple SCM. If there exists a bidirected edge i ++ j € G(M),
then we call j and j confounded according to M.

We can formulate a sufficient condition for confoundedness:

Proposition

Let M be a simple SCM. If j — i ¢ G(M) and there exist an intervention
do(Xz\yijy = &) such that

Pa(Xj | do(i, xi), do(Z\ {i,j}, §)) # Pa(X; | Xi = xi,do(Z \ {7/}, £))

then i and j are confounded according to M.

(Again, a necessary condition is not known)
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Marginalization: “Integrating out” a subsystem (Example)

Example

SCM for complete system:

Structural Causal Model M: Graph G(M):

X1 = fi(E) E; ~ Pg, @ @

X = f(E1, E) E; ~ Pg,

X3 = (X1, X2, X5, E3) B3 ~Pg,

Xy = fo(X1, X, Es) Eq ~ Pg, @ @'

X5 = f5(Xs, Xa., Es) Es ~ Pe, '

Marginalizing out { Xy, X4 }:
Marginalization M\{2:4}: Graph G(M\{24}):

E2 ~ ]sz ,

X3 = (X1, &(E1, B2), X5, E3)  Ez ~ P,
£y~ P, (%)

Xs = f5(X3, 84(X1, E4), Es) Es ~ Pg, 'n
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Marginalization: Substituting equations

Given a simple SCM M and a subset of its endogenous variables £ C 7,
with complement O := 7\ L, we can always “substitute out” the
structural equations for L:

X = f(X,E)

X =f (X, Xp. E
)X (X, Xo, E)

Xo = fo(Xc, Xo,E)

Xo =fo(gr(Xo,E),Xo,E)

all hold a.s., where g, : X x &€ — X is the explicit solution of the
structural equations for X, i.e.,

X = gc(Xo, E) <~ X =f:(Xe,Xo,E) as..
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Marginalization of an SCM

Definition ([Bongers et al., 2018])
Let M = (X7,E,f,Pg) be a simple SCM, £ C 7 a subset of endogenous
variables and O = Z \ L. Then the marginalization of M on Z\ L is
defined as the SCM M \£ = (X7\c, &, f\£ Pg), where the marginal
causal mechanism f\£ is obtained by substitution:

f\L(X@, e) = f@ (gﬁ(x(% e), X0, e).

| A

Definition
For a DMG G and a subset £ C 7 of nodes, the latent projection G\£ is
defined as the DMG with nodes Z \ £ and edges
o | — j iff there is a directed path i — ¢; — -+ — £ — j in G with
lby,.... bk €L
@ /i« jiff thereisa path i <01 < --- by, < ljgp1 — - = L, = J
in G with El,...,ﬁkl,...,sz el

V.
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Marginalization of an SCM: Properties

The marginalization preserves the causal semantics (restricted to the
remaining part of the system, Z \ £):
Theorem ([Bongers et al., 2018])

Let M = (X1,E,f,Pg) be a simple SCM and L C T a subset of
endogenous variables.

o The marginalization M\* is interventionally equivalent to M w.r.t.
I\ L. l.e., the observational distribution and all interventional
distributions of M, marginalized onto X 1\, coincide with the
corresponding ones of M\£.

o The graph G(M\F) of the marginalization of M on T \ L is always a

subgraph of the latent projection of G(M) on Z \ L (some edges may
cancel out).

o The marginal SCM M\F is simple.
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Modeling ODE fixed points with an SCM

Strong motivation for (cyclic) SCMs:

Theorem ([Mooij et al., 2013, Bongers and Mooij, 2018])

An ODE describing a dynamical system induces an SCM that models its
equilibrium states, and how these change under perfect interventions.

. D: fixed points Mbp:
intervention 1 do(X; = &) intervention 1 do(X; = &)
Dyo(x,=¢): MDyyix,—¢ )’
{ 2%6)) - Zl e fixed points X ¢ e
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From ODE to SCM: Example 1

Example (Damped coupled harmonic oscillators)

Lk ki :
Xi = —=(Xis1 — Xi = b)) = —=2(Xi = Xi—1 — i) — biX;
mj m;j

1

@ Structural Equations of induced SCM Mp:

ki(Xiy1 — 1) + ki1 (Xiz1 + li-1)

X; =
I ki + ki1

@ Graph of induced SCM G(Mp):
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From ODE to SCM: Example 2

kg
. > ke
Enzyme reaction: S+FE C—P+FE
—
ki T kr l"'c
Random differential equations: Structural causal model: e\,e

48 = ki — kyES + k,C S=kik; BT —kek'ETIC

t
LE = —k;ES + (kr + ke)C e E =k (kr +ko)S™'C
LC =ksES — (ky + ko)C C =ky(ky + ko) 'ES
P =keC—koP P =kek,'C °

ldo(E =) ldo(E =)
Intervened RDE: Intervened SCM: e',ﬂe

&S =ki—k;ES+k,C S=kik;'ET! —kokp ' ETIC

d t > 2 e
ﬁE:f/ —_— E=n

LC =ksBES — (ky + keo)C C = kys(kr + ko) 'ES

P =keC = koP P=kek;'C @

More generally, any chemical reaction can be modeled as an SCM at
equilibrium. (Note: the SCM is in general underspecified, i.e., it does not

retain all information about the equilibrium states of the dynamical system
[Blom & Mooij, 2018]).
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SCMs and other Causal Modeling Frameworks

We can connect SCMs to the potential outcome framework (popular in
the statistical literature):

Definition

Given a simple SCM M and let E ~ P¢. For any subset | C 7 and value
&/, define the potential outcome X, := gMdo(x,:g,)(E)-

Also, we can connect SCMs to causal Bayesian networks:

Proposition
Given a simple SCM M with a graph G(M) that is

e acyclic (i.e., has no directed cycles), and

o causally sufficient (i.e., it has no bidirected edges).

Then M induces a Causal Bayesian Network (G(M), par). Vice versa, for
every Causal Bayesian Network there exists an SCM that induces it.
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Seeing is not doing; but is doing necessary?

We can now express “correlation does not imply causation” (or, as Pearl
says, “seeing is not doing”) more precisely:

p(y | do(X =x)) # p(y | X = x) in general
Do we really need to introduce this additional interventional semantics

(“the do-operator”) on top of the notion of conditioning that we already
are so familiar with in probability theory?

Not necessarily: we can introduce additional variables to get a purely
probabilistic model that can mimic the SCM.
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Extending an SCM with Intervention Variables

Given a simple SCM M with discrete endogenous domains X;. Define an
extended SCM M by (i) for each endogenous variable X; with i € /, add
an endogenous intervention variable C;, taking values in the space

X; U {0}; (ii) replace the causal mechanism f by f with:

A G ¢ € X (“set by perfect intervention™)
filx,e) ¢ =10 (“observational default™)

and fc,(¢;) = €; where ¢; ~ P, with strictly positive density.

For any intervention target | C Z and intervention value & € Xj:

pm(x | do(X; = &)) = pyo (x| C =&, Cp\y = 0)

All interventional distributions of M can be obtained by conditioning p .
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Simple SCMs: Overview
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© Markov Properties: From Graph to Conditional Independences
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(Conditional) independences

Definition (Independence)
Given two random variables X, Y, we write X L Y and say that X is
independent of Y if

p(x,y) = p(x)p(y).

Intuitively, X is independent of Y if we do not learn anything about X
when told the value of Y (or vice versa).
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(Conditional) independences

Definition (Independence)
Given two random variables X, Y, we write X L Y and say that X is
independent of Y if

p(x,y) = p(x)p(y).
Intuitively, X is independent of Y if we do not learn anything about X
when told the value of Y (or vice versa).

Definition (Conditional Independence)

Given a third random variable Z, we write X L Y | Z and say that X is
(conditionally) independent from Y, given Z, if

p(x,y|Z=2z)=p(x|Z =2)p(y| Z = 2).

Intuitively, X is independent of Y if, given the value of Z, we do not learn
anything new about X when told the value of Y.

v
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(Directed) Paths

Definition (Paths, Ancestors)

Let G be a directed mixed graph.

@ A path g is a sequence of adjacent edges in which no node occurs
more than once.

@ A directed path is of the form iy — ib — - -+ — Ip.
@ If there is a directed path from X to Y, X is called an ancestor of Y.

@ The ancestors of Y are denoted ang(Y'), and include Y.
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(Directed) Paths

Definition (Paths, Ancestors)

Let G be a directed mixed graph.

@ A path g is a sequence of adjacent edges in which no node occurs
more than once.

@ A directed path is of the form iy — ib — - -+ — Ip.
@ If there is a directed path from X to Y, X is called an ancestor of Y.

@ The ancestors of Y are denoted ang(Y'), and include Y.

Example

@ X1 — X3 < Xi is not a path.

@' Xi < Xo — X3 is a path.
@'@ X1 — X4 — Xz is a directed path.
@ Xy — Xs < Xz is not a directed path.
The ancestors of X3 are {X1, Xo, X3}.
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Colliders and non-colliders

Definition (Colliders)
Let G be a directed mixed graph, and g a path on G.

@ A collider on q is a (non-endpoint) node X on g with precisely two
arrowheads pointing towards X on the adjacent edges:

=X =X, o X o Xe

@ A non-collider on g is any node on the path which is not a collider.
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Colliders and non-colliders

Definition (Colliders)
Let G be a directed mixed graph, and g a path on G.

@ A collider on q is a (non-endpoint) node X on g with precisely two
arrowheads pointing towards X on the adjacent edges:

=X =X, o X o Xe

@ A non-collider on g is any node on the path which is not a collider.

Example

@ The path X3 — X5 <+ Xj contains a collider Xs.
The path X <+ Xo — X3 contains no collider.

@ @ Xs is a non-collider on X5 <+ X3 < Xi.
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d-Blocked paths

Definition

Let G be a directed mixed graph. Given a path g on G, and a set of nodes
S, we say that S d-blocks g if g contains

@ a non-collider which is in S, or

@ a collider which is not an ancestor of S.
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d-Blocked paths

Definition

Let G be a directed mixed graph. Given a path g on G, and a set of nodes
S, we say that S d-blocks g if g contains

@ a non-collider which is in S, or

@ a collider which is not an ancestor of S.

Example

@ X3 — X5 + Xy is d-blocked by 0.

@' X3 — Xs + Xy is d-blocked by {X1}.
'

X3 — X5 < Xy is not d-blocked by {Xs}.

) X3 < Xp ¢ Xo — Xa is d-blocked by {Xi}.
@ X3 < Xo <> X1 — Xy is not d-blocked by {X5}

v
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Definition (d-separation)

Let G be a directed mixed graph. For three sets X, Y, Z of nodes in G, we
say that X and Y are d-separated by Z iff all paths between a node in X
and a node in Y are d-blocked by Z, and write X 15 Y |Z.
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Definition (d-separation)

Let G be a directed mixed graph. For three sets X, Y, Z of nodes in G, we
say that X and Y are d-separated by Z iff all paths between a node in X
and a node in Y are d-blocked by Z, and write X g Y |Z.

Example

@ X3 and X4 are d-separated by {X}.

X3 and Xy are d-separated by {Xi, X>}.
@ X3 and Xy are not d-separated by ().

X3 and Xy are not d-separated by {Xi, Xs}.
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Exercise

Please make Exercise 1.2
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Acyclic Global Markov Property

For an acyclic SCM, the Global Markov Property holds:

X L Y]Z — XJI_Y\Z
G(M) PM

for all subsets X, Y ,Z of nodes.

In words: every d-separation in the graph G(M) of M implies a
(conditional) independence in the (unique) observational distribution
associated to M.

For cyclic SCMs, the notion of d-separation is too strong in general. A
weaker notion called o-separation has to be used instead

[Forré and Mooij, 2017]. For simple SCMs, a global Markov condition
using o-separation can then be shown to hold.
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Reichenbach’s Principle
Reichenbach’s Principle of Common Cause

The dependence X X Y implies that X — Y, Y — X, or X <> Y (or any
combination of these three).

| \

Example

o Significant correlation (p = 0.008) between human birth rate and
number of stork populations in European countries [Matthews, 2000]

@ Most people nowadays do not believe that storks deliver babies (nor
that babies deliver storks)

@ There must be some confounder explaining the correlation
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Proof of Reichenbach’s Principle

Assuming that p(X, Y) is generated by an acyclic SCM, we can easily
prove Reichenbach’s Principle by applying the Global Markov property:

Proof

= O—0 ©_ O =

X1lY

WM@C@@%@

XLy XLy

(The proof can be extended to include the cyclic case)
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Selection Bias

Reichenbach’s Principle may fail in case of selection bias.

Definition

If a data set is obtained by only including samples conditional on some
event, selection bias may be introduced.

Example

X: the battery is charged
Y: the start engine is operational
S: the car starts

@ A car mechanic (who only observes cars for which S = 0) will observe
a dependence between X and Y: X [ Y|S.

@ When the car mechanic invokes Reichenbach’s Principle without
realizing that he is selecting on the value of S (maybe S is a latent
variable), a wrong conclusion will be drawn.
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Faithfulness Assumption

Let M be an acyclic SCM.
We have seen that the Global Markov Property holds:

XY | Z — X1lyY|z
G(M) PM

for all subsets X, Y, Z of nodes.

Definition (Faithfulness Assumption)
For all subsets X, Y, Z of nodes,

XY | Z — X1lyYy|zZ
G(M) PM

Note: Faithfulness holds generically, i.e., up to measure-zero sets of
parameters [Meek, 1995]. In other words, SCM parameters need to be

carefully tuned in order to violate the faithfulness assumption.
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Faithfulness Violations

Faithfulness violations may occur e.g. in case of parameter cancellations or

deterministic relations.

Example (Parameter cancellation)
Consider an SCM M:

X = Ex
YZX—}—EY
7=X-Y+E

Then:
4 JLPMX but Z,J/_Q(M) X.

Example (Deterministic relation)
Consider an SCM M:

X = Ex

Y =X
Z=Y +E;
Then:

Z 1, Y|XbutZ Lo YIX.
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@ Causal Inference: Predicting Causal Effects
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Causal Inference: Predicting Causal Effects

One important task ( “causal inference") is the prediction of causal effects.

Definition
The causal effect of X on Y is defined as p(y | do(X = x)).

Special cases:
e X binary: E(Y | do(X =1)) —E(Y | do(X = 0))
e X, Y linearly related: a%IE(Y| do(X = x))
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Causal Inference: Predicting Causal Effects

One important task ( “causal inference") is the prediction of causal effects.

Definition
The causal effect of X on Y is defined as p(y | do(X = x)).

Special cases:
e X binary: E(Y | do(X =1)) —E(Y | do(X = 0))
e X, Y linearly related: a%IE(Y| do(X = x))

Note: In general, since p(y | do(X = x)) # p(y | X = x), we cannot use
standard supervised learning (regression, classification) for this task.

Two approaches can be used:
@ Experimentation (Randomized Controlled Trials, A/B-testing)
@ Apply the Back-door Criterion (if causal graph is known)
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Causal discovery by experimentation

Experimentation (e.g., Randomized Controlled Trials, A/B-testing, ...)
provides the gold standard for causal effect estimation. J

INTERVENTION

Population is splitinto 2
groups by random lot

Outcomes for both
groups are measured

CONTROL

' = looking for work ' = found work
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Identifiability: Example

If we cannot do experiments. .. Can we express p(y| do(X = x)) in terms
of the observational distribution?
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Identifiability: Example

If we cannot do experiments. .. Can we express p(y| do(X = x)) in terms
of the observational distribution?

H
p(y | do(X = x)) p(y | do(X =x)) = [ p(h)p(y | x, h) dh
- -
p(y [ X =x) ply| X =x) = [ p(h|x)p(y|x, h) dh
Yes! No!
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Adjustment for covariates

We have seen that for the following causal graph,

adjusting for the confounder H, yields the causal effect of X on Y-

[ P0)pty Lx,h)dh = p(y | do(x =)

More generally, given a causal graph: which variables H could we adjust
for in order to express the causal effect of X on Y in terms of the
observational distribution?

A sufficient condition is given by the Back-door Criterion.
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The Back-door Criterion

Theorem (Back-door Criterion (Pearl, 2000))

Let M be an acyclic SCM M with disjoint subsets of endogenous
variables {X}, {Y}, H. Let G be G(M) extended with an intervention
node Ix — X. If

Q@ Hlglx,
@ Ylsix[{X}UH,

then H is called admissible for adjustment to find the causal effect of X
onY, i.e., this causal effect is given by:

paaly | do(X =x)) = [ paa(y | x B)pua() .
For the special case H = (), this should be read as:

pm(y | do(X = x)) = pa(y | x).
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The Back-door Criterion: Example

Example

o (Rl (—()
@%@ @%@

The sets of variables that are admissible for adjustment to get the causal
effect of X; on X5 are: {X1}, {X1,Xa}. Therefore:

P
o

ol | el = ) = / A
:/P(X5\X17X2,X4)P(X1,X4)dX1 dx

Some sets of variables that are not admissible for adjustment to get the
causal effect of X on X5 are: {Xz}, {X1, X3}.
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Exercise

Please make Exercise 2.2
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Simpson's Paradox

Remember Simpson's paradox:

Example (Simpson's paradox)
We collect electronic patient records to investigate the effectiveness of a
new drug against a certain disease. We find that:

© The probability of recovery is higher for patients that took the drug:
p(recovery | drug) > p(recovery | no drug)
© For both male and female patients, the relation is opposite:
p(recovery | drug, male) < p(recovery | no drug, male)

p(recovery | drug, female) < p(recovery | no drug, female)

Does the drug cause recovery? l.e., would you use this drug if you are ill?

v

The answer depends on the causal relationships between the variables!
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Resolving Simpson's paradox

The crux to resolving Simpson's paradox is to realize:

Seeing # doing

@ p(R=1|D =1): the probability that somebody recovers, given the
observation that the person took the drug.

° p(R =1|do(D = 1)): the probability that somebody recovers, if we
force the person to take the drug.

Simpson’s paradox only manifests itself if we misinterpret correlation as
causation by identifying p(r| D = d) with p(r| do(D = d)).

We should prescribe the drug if
p(R=1|do(D=1)) > p(R=1] do(D=0)).

How to find the causal effect of the drug on recovery?
© Randomized Controlled Trials
@ Back-door Criterion (requires knowledge of causal graph)
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Exercise

Please make Exercise 2.3
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Back-door Criterion for Simpson's paradox

Example (Scenario 1)

Ip

(*] IDLH;
o Ip LR|D,H;

@ Therefore, adjust for {H} to obtain causal effect of drug on recovery:

R: Recove
D: Took d
H: Gender

ry
rug

p(r| do(D =d)) => p(r|D=d,H=h)p(h)

@ So in scenario 1, you should not take the drug: for both males and

h

females, taking the drug lowers the probability of recovery.
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Back-door Criterion for Simpson's paradox

Example (Scenario 2)

G R: Recovery
‘ D: Took drug
@ @ H: Gender
Ip X H (H is not admissible for adjustment);

Ip LR|D;

Do not adjust for {H} to obtain causal effect of drug on recovery:

Ip

p(r| do(D = d)) = p(r| D = d)

@ So in scenario 2, you should take the drug: in the general population,
taking the drug increases the probability of recovery.

v

(If you think gender-changing drugs are unlikely, replace “gender” by
“high/low blood pressure”, for example).
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Causal Reasoning: Do-calculus [Pearl, 2000]

Pearl formulated three rules (the “do-calculus”) that can be used in
addition to the usual rules for probabilistic reasoning. For acyclic SCMs:

O Inserting/deleting observations:

p(y|x,z,do(w)) = p(y|z, do(w)) fy 1L X|Z
Gdo(w)

@ Inserting/deleting actions:

p(y | do(x),z,do(w)) = p(y |z, do(w)) if YGJ_ Ix|Z.
do(W)

© Action/observation exchange:

p(y | do(x),z,do(w)) = p(y | x,z,do(w)) ify L Ix|X,Z

Gdo(W)

The do-calculus allows us to reason with (probabilistic) causal statements,
given (partial) knowledge of the causal structure. These rules are more

powerful than the Back-door Criterion for causal prediction purposes.
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e Causal Discovery: From Data to Causal Graph
@ Causal Discovery by Experimentation
@ Causal Discovery from Observational Data
@ Causal Discovery from Multiple Contexts
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Causal Discovery

We have seen how to perform causal reasoning, given the causal model.
But how do we get the causal model in the first place?

Establishing causal relations from data (“causal discovery”) is one of the
fundamental tasks in science.
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Causal Discovery

We have seen how to perform causal reasoning, given the causal model.
But how do we get the causal model in the first place?

Establishing causal relations from data (“causal discovery”) is one of the
fundamental tasks in science.

Since the pioneering work by Peirce and Fisher, the
gold standard for causal discovery is a randomized,
controlled experiment.
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We have seen how to perform causal reasoning, given the causal model.
But how do we get the causal model in the first place?

Establishing causal relations from data (“causal discovery”) is one of the
fundamental tasks in science.

Since the pioneering work by Peirce and Fisher, the
gold standard for causal discovery is a randomized,
controlled experiment.

More recently, causal discovery methods from purely
observational data have been developed, starting with
the work of Spirtes, Gleimour, Scheines, Pearl and
others.
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Causal Discovery

We have seen how to perform causal reasoning, given the causal model.
But how do we get the causal model in the first place?

Establishing causal relations from data (“causal discovery”) is one of the
fundamental tasks in science.

Since the pioneering work by Peirce and Fisher, the
gold standard for causal discovery is a randomized,
controlled experiment.

More recently, causal discovery methods from purely
observational data have been developed, starting with
the work of Spirtes, Gleimour, Scheines, Pearl and
others.

These ideas have inspired causal discovery methods that combine
observational and interventional data in various ways.
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© Informal Causal Modeling: Causal Graphs

© Causal Modeling: Structural Causal Models

© Markov Properties: From Graph to Conditional Independences
@ Causal Inference: Predicting Causal Effects

e Causal Discovery: From Data to Causal Graph
@ Causal Discovery by Experimentation

@ Extensions to o-separation

e Large-Scale Validation of Causal Discovery
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Randomized Controlled Trials [Fisher, 1935]

G: ¥4 Grer: | C 'z

S .

R: Recovery, D: Drug, Z: latent confounders (e.g., genetics), C: coin flip.

@ Divide patients into two groups: treatment and control randomly
(e.g., by a coin flip).

@ Patients in the treatment group are forced to take a drug, and
patients in the control group are forced to not take the drug (but to
take a placebo instead): D = C.

o Estimating the causal effect of the drug now becomes a standard
statistical exercise, as p(R|D = C) = p(R| do(D = ()).

@ Gold standard for causal discovery.

All evidence-based medicine is based on this idea.
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© Informal Causal Modeling: Causal Graphs

© Causal Modeling: Structural Causal Models

© Markov Properties: From Graph to Conditional Independences
@ Causal Inference: Predicting Causal Effects

e Causal Discovery: From Data to Causal Graph

@ Causal Discovery from Observational Data

@ Extensions to o-separation

e Large-Scale Validation of Causal Discovery

Joris Mooij (UvA) MLSS 2019: Causality 2019-08-29 82 /131



Causal Discovery from Observational Data

Controlled experiments can be expensive, time-consuming, unethical,
impractical or even infeasible.

Intriguing alternative: causal discovery from purely observational data
[Spirtes et al., 2000, Pearl, 2000]!

SCM

/

Observational Distribution Graph

Observational Data Discovery

Disclaimer: Works only under strong assumptions and with (possibly
very) large sample sizes.
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Approaches to Causal Discovery from Observational Data |
Conditional-independence constraint-based

Independence patterns in the data constrain the possible causal graphs.
e LCD (Cooper, 1997)
@ Y-Structures (Mani & Cooper, 2004)
o PC (Spirtes & Gleimour & Scheines, 2000), IC (Pearl, 2000)
o FCI (Spirtes & Meek & Richardson, 1995; Zhang, 2008)

General constraint-based
Similar, but exploiting more general types of constraints in the data.

@ Verma constraints (Robins (1986), Verma & Pearl (1990), Tian &
Pearl (2002))

@ Nested Markov Models (Richardson, Evans, Robins, Shpitser (2017))
@ Algebraic Constraints (Van Ommen & Mooij (2017))
° ...
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Approaches to Causal Discovery from Observational Data Il
Likelihood-based approaches

Score penalized likelihoods of possible causal graphs and select the best
one(s).

@ Bayesian Network Learning (Heckerman, Geiger, Chickering, 1995)
o Greedy Equivalence Search (Chickering, 2002)

Restrictions on functional causal relations and noise distributions

Minimize the “complexity” of causal models.
e LINGAM (Kano, Shimizu, 2003; Shimizu et al., 2006)
e Additive Noise Models (Hoyer et al., 2006)
@ Post-Nonlinear Model (Zhang & Hyvarinen, 2009)
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Constraint-based Causal Discovery

From the pattern of conditional independences in the data we can
reconstruct a set of possible underlying causal graphs, even when allowing
for latent confounders [Spirtes et al., 2000].

Possible Causal Graphs

Data
XL X X3 X Cls ) D & X
2 01 02 05 D) D)
2 013 021 049 Xo L Xy
2 023 021 051 Xo L X, | X
5 05 019 052 2 4% © ©
5 06 018 051 | [—)= X1 L X p— ®) ®
2 02 022 092 X1 L X | X3 QA O O
2 023 021 099 ) 5 &
5 053 12 095 @
5 055 1.19 0.97 () \: gY
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Causal Discovery from Observational Data: V-Structure

4
3
2
1

>
0
i XLY XLY|Z,
B XLZ X)LZzZ|Y,
3, 2 0 2 4 YXZY)Z|X

X

blue: Z=0,red: Z=1

Question: What is the causal relation between X, Y and Z?
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Causal Discovery from Observational Data: V-Structure

4
3
2
1

>
0
i XLY XLY|Z,
B T XLZ X)LZzZ|Y,
3, 2 0 2 4 YXZY)Z|X

blue: Z=0,red: Z=1

Question: What is the causal relation between X, Y and Z7?
Hint: Assume an acyclic, faithful SCM without latent confounders
generated the data, and assume no selection bias or measurement error
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Causal Discovery from Observational Data: V-Structure

4
3
2
1

>
0
i XLY XLY|Z,
B T XLZ X)LZzZ|Y,
3, 2 0 2 4 YLZ Y LZ|IX.

blue: Z=0,red: Z=1

Question: What is the causal relation between X, Y and Z7?
Hint: Assume an acyclic, faithful SCM without latent confounders
generated the data, and assume no selection bias or measurement error

Answer: X causes Z; Y causes Z; X and Y causally unrelated

Note: Strong assumptions, but no experiments needed!
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Markov equivalence classes for three variables

Shbdbhebdd |00

1LY, X1LY|Z

Y LZvYLZzX
(%) (%) gi %3 gi Z1X Z1X|Y
YLXYLX|Z

YLZYLZIX ZLlx|y

dodol [Shobob| [ &,

ZLX ZLX|Y
ZLY ZLY[X XLv|z

X 1Ly

O ® —
2000 |dbdbdb | db
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Exercise

Please make Exercise 2.4
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Causal Discovery from Observational Data: Y-Structure

X1 L Xp X1 1 Xy Xo Xy
XL X Xs  Xi L Xa|Xs X L Xe|Xs

black: X3 =0, red: X3=1
Question: What is the causal relation between X3 and X;?

Hint: Assume an acyclic, faithful SCM generated the data, and assume no
selection bias or measurement error.
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Causal Discovery from Observational Data: Y-Structure

X1 L Xp X1 1 Xy Xo Xy
XL X Xs  Xi L Xa|Xs X L Xe|Xs

black: X3 =0, red: X3=1
Question: What is the causal relation between X3 and X;?

Hint: Assume an acyclic, faithful SCM generated the data, and assume no
selection bias or measurement error.

Answer: X3 causes X4 and they are not confounded. The causal effect of
X3 on Xy satisfies p(xa | do(X3 = x3)) = p(x4 | x3).
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Hardness of Causal Discovery

d || Number of DAGs with d nodes
1 1

2 3

3 25

4 || 543

5 || 29281

6 || 3781503

7 1138779265

8 || 783702329343

9 1213442454842881

10 || 4175098976430598143

11 || 31603459396418917607425

12 || 521939651343829405020504063

13 || 18676600744432035186664816926721

14 || 1439428141044398334941790719839535103

15 || 237725265553410354992180218286376719253505

16 || 83756670773733320287699303047996412235223138303

17 || 62707921196923889899446452602494921906963551482675201

18 || 99421195322159515895228914592354524516555026878588305014783
19 || 332771901227107591736177573311261125883583076258421902583546773505

Table B.1: The number of DAGs depending on the number d of nodes, taken from http:
//oeis.org/A003024 [OEIS Foundation Inc., 2017]. The length of the numbers grows
faster than any linear term.

Source: [Peters et al., 2017]
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State-of-the-art Causal Discovery: (Augmented) FCI

[Spirtes et al., 2000, Spirtes et al., 1999, Ali et al., 2005, Zhang, 2008]

R0Oa If X 1LY |Z, then X XY, Sep(X,Y) + Z. Input : independence oracle for V
ROb If X#—#Zo—+Y and XY, then if Output : complete PAG P over V
Z ¢ Sep(X,Y), then X = Z Y. 1: P « fully o—o connected graph over V
R1  If X#sZo—+Y, and X XY, then Z—Y. 2: for all {X,Y} €V do
R2a If Z— X =Y and Z*—oY, then Z+—Y. 3: search in some clever way for a X 1LY |Z
R2b If Z+—»X—Y and Z*—oY, then Z+—Y. 4 P < R0a (eliminate X 3<Y)
R3 U Xsx=ZxY, Xx—oWo—xY, XY, 5 record Sep(X,Y) + Z
and W x—o Z, then W x— Z. 6: end for
Rda Ifu=(X,.,Z, Z,Y) is a discriminating path 7: P 4 ROb (unshielded colliders)
between X and Y for Z, and Z o—xY', then if 8: repeat P < R1 — R4b until finished
Z € Sep(X,Y), then Z—Y. 9: P+ R5 (uncovered circle paths)
R4b  Idem, if Z ¢ Sep(X,Y) then Z,«— Z<—Y. 10: repeat P < R6 — R7 until finished
R5 Ifu=(ZX,.,W,Y,Z, X) is an uncov. circle 11: repeat P < R8a—R10 until finished

path, then Z—Y (idem for all edges on u).

R6  If X — Zo—x«Y, then orient as Z —« Y.

RT If X—o0Zo—xY,and X <Y, then Z—«Y.

R8a If Z—X—Y and Zo—Y, then Z—Y.

R8b If Z—oX—Y and Zo—Y, then Z—Y.

R9 IfZo—=Y,u=(Z,X,W,.,Y) is an uncov.
p.d. path, and X <Y, then Z—Y.

RI0 If Zo—=Y, X =Y+ W, u = (Z,5,..X)
and uy = (Z,V,..,W) are uncov. p.d. paths,
(possibly with S=X and/or V =W), then if
SV, then Z—Y.

Algorithm 1: Augmented FCI algorithm

Source: [Claassen & Heskes, 2011]
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FCI: Example ( “Extended Y-structure™)

[ Independences: Z 1L U, Z L Y|X J
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FCI: Example ( “Extended Y-structure™)

[ Independences: Z 1L U, Z L Y|X J




Local Causal Discovery (LCD)

Local Causal Discovery: simple causal discovery algorithm (Cooper, 1997).
Definition
If for three variables X, Y, Z:

YZan(X) AN Z&an(X) AN X LY ANY LZAXLZ|Y,
then (X, Y, Z) is an LCD triplet.

Theorem

| A\

If an acyclic, faithful SCM generated the data without selection bias or
measurement error, the only causal graphs that yield an LCD triplet are:

-~ > -

Therefore, Y € an(Z) and p(Z | do(Y =y))=p(Z|Y =y).

\
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Exercise

Please make Exercise 2.5
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© Informal Causal Modeling: Causal Graphs

© Causal Modeling: Structural Causal Models

© Markov Properties: From Graph to Conditional Independences
@ Causal Inference: Predicting Causal Effects

e Causal Discovery: From Data to Causal Graph

@ Causal Discovery from Multiple Contexts
@ Extensions to o-separation

e Large-Scale Validation of Causal Discovery
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Causal Discovery: Example Application

. N e
Protein Abundance Data: Causal Graph:
(Sachs et al, 2005) (“Signalling network” )

3 2 1

4

7 6

8

5

Raf Mek PLCg PIP2 PIP3 Erk Akt PKA PKC p38 JNK

Condition Reagent Intervention

1 - observational
2 Akt-inhibitor inhibits AKT activity
3 G0076 inhibits PKC activity
4 Psitectorigenin inhibits PIP2 abundance
5 U0126 inhibits MEK activity
6 LY294002 inhibits PIP2/PIP3 activity
7 PMA activates PKC + global
8 B2CAMP activates PKA + global (depicted here: “consensus” network)

- J = J
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Causal Discovery by Experimentation: Example

@ Each dot is a measurement in a single
human immune system cell

@ Raf: abundance of phosphorylized Raf

In Mek

@ Mek: abundance of phosphorylized Mek

@ blue = baseline,
red = reagent U0126 added

In Raf

Question: What is the causal relation between Raf and Mek?
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@ Each dot is a measurement in a single
human immune system cell

@ Raf: abundance of phosphorylized Raf

In Mek

@ Mek: abundance of phosphorylized Mek

@ blue = baseline,
red = reagent U0126 added

In Raf

Question: What is the causal relation between Raf and Mek?
Hint: U0126 inhibits Mek.
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Causal Discovery by Experimentation: Example

@ Each dot is a measurement in a single
human immune system cell

@ Raf: abundance of phosphorylized Raf

In Mek

@ Mek: abundance of phosphorylized Mek

@ blue = baseline,
red = reagent U0126 added

In Raf

Question: What is the causal relation between Raf and Mek?
Hint: U0126 inhibits Mek.

Answer: Mek causes Raf
(Changing activity of Mek changes abundance of Raf.)
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Causal Discovery by Experimentation: Example

@ Each dot is a measurement in a single
human immune system cell

@ Raf: abundance of phosphorylized Raf

In Mek

@ Mek: abundance of phosphorylized Mek

@ blue = baseline,
red = reagent U0126 added

In Raf

Question: What is the causal relation between Raf and Mek?
Hint: U0126 inhibits Mek.

Answer: Mek causes Raf
(Changing activity of Mek changes abundance of Raf.)

Note: How did we know that “U0126 inhibits Mek” in the first place?
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LCD: Example

@ pErk: abundance of phosphorylized Erk in each cell
@ pS6: abundance of phosphorylized S6 in cell
@ [: green = baseline, red = PMA-IONO activator added

Streptonigrin: 1.0e-01, 0.0e+00

(X,Y,2Z)is
LCD triplet iff:

Y & an(X)
Z ¢ an(X)
XKLy
Y YLZ
X1LZ|Y

pS6
w

pErk

What is the causal relation?
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LCD: Example

o pErk: abundance of phosphorylized Erk in each cell
@ pS6: abundance of phosphorylized S6 in cell
@ [: green = baseline, red = PMA-IONO activator added

Streptonigrin: 1.0e-01, 0.0e+00

(X,Y,2)is
LCD triplet iff:

Y & an(X)
Z ¢ an(X)
XLY
Y LZ
X1Lzy

pS6
o 2 N @ & o © N ©

1
2 . . . .
-2 0 2 4 6 8
pErk

What is the causal relation? LCD triplet (/, pS6, pErk), so pS6 — pErk.

Note: no prior knowledge on the effects of PMA-IONO needed!
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ultiple Contexts

‘u"‘g
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I
5 5
s B EE
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£ E 5z & 28 E 5 %2 § 8
sy E£EEE:cfEc:g
] Z E » & 8§ &g “~° 2 g ¢
= £ 2 S 3 E 15} 15 % s 9 g8
5§ 2 2 &5 z v 8 5 E = & &g
=85 2 58 3 2£ £ § =2 g §
- zZ2Jd a2 < B30 b A =2 A0
(Fisher, 1935) + 4+ o+ + o+ o+ o+ o+ o+ o+ - b
(Cooper and Yoo, 1999) + - 4+ - - - - - + - b
(Tian and Pearl, 2001) + - - + - - + - - + - b
(Sachs et al., 2005) -+ + - - - - - - 4+ - b
(Eaton and Murphy, 2007) - 4+ - + + 4+ + + 4+ + + - b
(Chen et al., 2007) + + 4+ + + + + + + + + - b
(Claassen and Heskes, 2010) + + - -+ 4+ 4+ + 4+ -+ +
(Tillman and Spirtes, 2011) + 4+ - -+ + 4+ + + - + + a
(Hauser and Biihlmann, 2012) -+ - + - - - - - - 4+ - b
(Hyttinen et al., 2012) + - 4+ + - - - - - - 4+ - a
(Mooij and Heskes, 2013) -+ 4+ o+ o+ o+ -+ - -+ - b
(Hyttinen et al., 2014) + + £ + - - - - - - 4+ 4+ a
(Triantafillou and Tsamardinos, 2015) + + - + - - - - - - + 4+ a
(Rothenhiusler et al., 2015) + -+ - - - - 4+ + 4+ + - a
(Peters et al., 2016) + + 4+ + + + 4+ + + - + - b
(Oates et al., 2016a) - - - - - - - 4+ - - 4+ - b
(Zhang et al., 2017) -+ - + + + + + + + + - b
JCI + + + + + + + 4+ 4+ 4+ 4+ £ Db
JCI-LCD (Cooper, 1997) + + + + 4+ 4+ 4+ 4+ 4+ 4+ 4+ - Db
JCI-HEJ + + £ + + + + 4+ + + + - b
JCI-FCI + 4+ - 4+ 4+ + + + + + + - b
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JCI: Combining the best of two worlds

Question
Can we combine the ideas of the “classical” approach to causal discovery
based on experimentation with the “modern” approach based on
conditional independences in observational data in observational dataa?

We hope to:
@ obtain reliability of “classical” approach

@ exploit conditional independences in the data to reduce the number of
experiments necessary

v

We propose Joint Causal Inference [Mooij et al., 2019], a framework for
causal discovery, that achieves this.
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Randomized Controlled Trials, or A/B-testing

O
x

Outcomes for both
groups are measured

Population is splitinto 2
groups by random lot

CONTROL

HHI—IHI—\HHH‘OOOOOOOO
I—IOHOD—\I—‘OO‘OOOOOI—‘OH

' = looking for work ' = found work

Two variables: context variable Cy, system variable Xj

Ci: O=control, 1=intervention
Xi1: 0=looking for work, 1=found work
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Two equivalent points of view

(a) Separate data sets (b) Pooled data

o=
HICCRP

c X
Placebo (C = 0): Drug (C =1): 0 -02
X X 0 06
-0.2 -0.3 0 -17
0.6 1.8 0o ...
.17 -0.1 1 -03
1
1
1

Independence test:
Is X L C?

Two-sample test:
Is p(x| do(C =0)) = p(x| do(C =1))?
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Causal Inference for Randomized Controlled Trial

Suppose C (treatment) and X (outcome) can be modeled with a
Structural Causal Model. The Randomized Controlled Trial assumptions

@ X does not cause C (because X happens after C)
e X and C are unconfounded (because of the randomization)

@ no selection bias (measure and analyze all samples)

imply that if C £ X, then C causes X (correlation implies causation).
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Causal Inference for Randomized Controlled Trial

Suppose C (treatment) and X (outcome) can be modeled with a
Structural Causal Model. The Randomized Controlled Trial assumptions

@ X does not cause C (because X happens after C)
e X and C are unconfounded (because of the randomization)
@ no selection bias (measure and analyze all samples)
imply that if C £ X, then C causes X (correlation implies causation).

| \

Proof

© O O—0 = U=
@/\@@‘:@@C@@@@

CrX CxX
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JCI: Two types of variables

JCI generalizes the idea of RCTs to multiple context and system variables.
Distinguish:
o Context variables {C;};c7 that model the context of the system,

o System variables {X;};cs that model the system of interest.

| \

Example

Data for 3 observed system variables in 4 experimental conditions:

System variables: no interventions: only back-to-work program:
Xi: salary X1 Xo X3 X1 Xo X3
Xp: drug abuse 0.1 0.2 0.5 0.2 0.22 | 0.92
Xz: depression 0.13 | 0.21 | 0.49 0.23 | 0.21 | 0.99
0.23 | 0.21 | 0.51
Context variables: both interventions:

only psychotherapy:

Ci: back-to-work program X1 Xa X3

C,: psychotherapy X1 | X2 X3 053 | 1.2 | 0.95
0.5 | 0.19 | 0.52 0.61 | 1.21 | 0.90
0.6 | 0.18 | 0.51 0.55 | 1.19 | 0.97
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JCI: Pooling the data

After explicitly adding the context variables, we pool the data:

Example
no interventions:
X1 Xo X3
0.1 0.2 0.5
0.13 | 0.21 | 0.49
0.23 | 0.21 | 051
G| G| X Xo X3
0 0 0.1 0.2 0.5
only psychotherapy: 0 0 0.13 0.21 0.49
X | X% | X \ 0 0 023 021 0.51
8-2 g-}g g-gf 0 1 0.5 0.19 0.52
: : : 0 1 0.6 0.18 0.51
. s | 110 [02 022 092
only b;ck—to)—(work f(rogram. 1 0 023 021 099
A sy e 1 |1 | 053 12 0095
023 | 0.21 | 0.99 1 1 0.61 1.21 0.90
1 1 055 1.19 0.97
both interventions: . .
X X X3 System variables: Context variables:
053 | 1.2 0.95 Xi: salary Cy: back-to-work program
0.61 | 1.21 | 0.90 0 :
o | 110 | oo Xp: drug ab.use Cy: psychotherapy
X3: depression
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JCI: Assumptions

JCI Assumptions (Intuitive formulation)

We are modelling a generic setting in which the experimenter decides on
the performed interventions before the measurements are performed, and
this decision does not depend on anything else that might affect the
system of interest.

| A

Formal JCI Assumptions

The causal graph G that includes both system variables {Xi,...,X,} and
context variables {Cy, ..., Cq}, which jointly models the experimental
design and the system in all experimental conditions, satisfies:

@ no variable directly causes any context variable C;, and

@ none of the pairs { Xy, C;} of system and context variables is
confounded, and

@ each pair of context variables {C;, C;} is confounded.

Furthermore, we assume the absence of selection bias.
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Joint Causal Inference

Question: How can we now reconstruct the causal graph from the data?

pooled data Cls

g | Xi L G

(A K X1 L GG

0 2 023 021 051

L — 0 L X

L ;e o s GYrG causal graphs
1 5 061 121 090

1 5 055 119 097

_|_

Tl

© G ®

JCI Assumptions

Answer: Simply apply a standard constraint-based causal discovery
method (designed for purely observational data) on the pooled data, and
incorporate the JCI assumptions as background knowledge.
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Evaluation on simulated data |

Ancestral causal relations

1.0
0.8 A
2
<
o 0.6
=
S
)
g
p 0.4
2
'_
0.2 A
, —— 0 Context Variables (AUC=0.71)
0.0 1 —— 1 Context Variables (AUC=0.80)
0.0 0.2 0.4 0.6 0.8 1.0 2 Context Variables (AUC=0.86)

—— 3 Context Variables (AUC=0.91)

False Positive Rate 4 Context Variables (AUC=0.94)

(4 system variables, 500 samples in each data set)
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Evaluation on simulated data Il

Direct causal relations

1.0
0.8 A
2
<
o 0.6
=
o}
)
g
o 0.4
2
'_
0.2 A
] <
':," —— 0 Context Variables (AUC=0.71)
0.0 1 —— 1 Context Variables (AUC=0.80)
0.0 0.2 0.4 0.6 0.8 1.0 2 Context Variables (AUC=0.86)

—— 3 Context Variables (AUC=0.91)

False Positive Rate 4 Context Variables (AUC=0.94)

(4 system variables, 500 samples in each data set)
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Evaluation on simulated data Il

Confounders

1.0 1

o o o
IN o ©
L ! A

True Positive Rate

o
[N
)

—— 0 Context Variables (AUC=0.71)
—— 1 Context Variables (AUC=0.80)

! ! ! ! ! ! 2 Context Variables (AUC=0.86)
0.0 0.2 0.4 0.6 0.8 1.0 —— 3 Context Variables (AUC=0.91)
4 Context Variables (AUC=0.94)

0.0 1

False Positive Rate

(4 system variables, 500 samples in each data set)
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Evaluation on real-world flow cytometry data

Only observational data:

All (observational+interventional) data:
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@ Extensions to o-separation
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The generalized directed global Markov property

Given the importance of the Markov property, the first thing we need is a
Markov property for cyclic SCMs. We introduced a notion o-separation
that generalizes d-separation [Forré and Mooij, 2017]:

@ o-separation implies d-separation.
@ For acyclic graph, o-separation is equivalent to d-separation.

Inspired by ideas by [Spirtes, 1996], we showed:

Theorem ([Forré and Mooij, 2017])

For a simple SCM M, the generalized directed global Markov property
holds for its observational distribution Py (X):

Al B|Z — Xal Xg|Xs AB,ZCT.
G(M) Pt
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Markov properties: o-separation

Definition (o-separation, [Forré and Mooij, 2017])
In a DMG g, a path

is called o-blocked by a set of nodes Z iff

@ one or both end nodes i1, i, are in Z, or
@ it contains a collider i,_1 2 ik g ik+1 With ik & ang(Z), or

@ it contains a non-collider with i, € Z:

. — . . . A
Ik—1 $= Ik = Ik4+1,  Ik—1 < Ik = Ik+1,
<> <>

where the child i ;1 (resp. ix_1) is not in scg(ix).

We say that A is o-separated from B by Z, denoted A_LZ B| Z, if every
path with one end node in A and one end node in B is o-blocked by Z.
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Markov properties: Example

Example

SCM M: Graph G(M):
X1 =h(Xe, B1) =X+ E; @ @ X1 L9X; | X2, X4
Xo = hH(X1,B) =X1-E b
X3 = f(X2, B3) = Xo + E; ut
Xy = (X3, E4) = X3- B4 @ @ X1 L7 X3 | Xa, X4
Indeed, as one can check explicitly, X1 J o X3 | Xo, Xa.

In general: No o-separations between nodes within the same strongly
connected component.
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Directed global Markov property

Stronger statements can be derived for special cases:

Theorem ([Forré and Mooij, 2017])

If a simple SCM M satisfies at least one of the following three conditions:

Q@ M is linear and its exogenous variables have a density with respect to
Lebesgue measure, or

© all endogenous variables are discrete-valued, or
@ M is acyclic;

then the directed global Markov property holds for any solution X of M
with respect to the graph G(M):

d
A L B|Z = Xa L Xg|Xz A B, ZCT.
G(M) P
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Extensions: Acyclic SCMs to Simple SCMs by s/d/a/

By simply replacing d-separation with o-separation, it turns out that one
can directly extend the applicability from acyclic SCMs to (possibly cyclic)
simple SCMs of:

@ The Back-door Criterion [Forré and Mooij, 2019];

@ The do-Calculus [Forré and Mooij, 2019];

Causal Discovery algorithms can be adapted, or turn out to need no
modification:

o [Forré and Mooij, 2018]: the first causal discovery algorithm that can
handle cycles, nonlinear relationships, latent confounding variables
and data from different (interventional) contexts.

o LCD, Y-structures, FCl and JCI all work out-of-the-box on simple
SCMs [Mooij et al., 2019]
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e Large-Scale Validation of Causal Discovery
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Causal Discovery of Gene Regulatory Networks

observational:
(wild-type vs. wild-type):  Large-scale Single Gene Knockout Micro-Array
E— Data [Kemmeren et al., 2014]:

@ ~260 observational samples (wild-type
vs. wild-type)

~6,500 variables (gene expression)

samples «——

@ ~1,500 interventional samples

interventional: (single-gene knockouts/knockdowns)
(mutant vs. wild-type):

———5 genes

knockouts ¢——
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Causal Discovery of Gene Regulatory Networks

observational:
(wild-type vs. wild-type):  Large-scale Single Gene Knockout Micro-Array

——— genes Data [Kemmeren et al., 2014]:

@ ~6,500 variables (gene expression)

@ ~260 observational samples (wild-type
vs. wild-type)

samples «——

@ ~1,500 interventional samples

interventional: (single-gene knockouts/knockdowns)
(mutant vs. wild-type):

———5 genes

Challenge

Can we, in a purely data-driven way (without
using biological knowledge), predict which
genes strongly change their expression when
we knock-out a given gene (without using any
data corresponding to that particular
2]2]2]2]?]?] knock-out experiment)?

knockouts ¢——
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k-fold Cross-validation

Using 5-fold cross-validation, we split the data into a training set used to
make predictions, and a test set used to define a ground truth for

validating the predictions.

Observational: Interventional:
~6,000 genes ~6,000 genes
Em—

Em—

Train:

~250 samples

~1,500 knockouts

2019-08-29 122 /131

Joris Mooij (UvA) MLSS 2019: Causality



First successful validation of causal discovery

—@— ICP vs SIE
304 —® LCD vs SIE
Random (99% Cl)

True positives

T T T T
0 100 200 300 400 500
False positives

ICP: [Meinshausen et al., 2016]; LCD: high-dimensional version of LCD
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Correlation: Causation or Confounding?

True positive: False positive:

YMR321C
|
o
L
YDR032C

004 %

—0.51

—1.01

T T
—4 -3 -2 -1 0 —4 -3 -2 -1 0 1 2
YPL273W YPL154C

(Training data: Observational and Interventional. Test data: single intervention.)
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Conclusion

Causality is clearly an important notion in daily life and in science, and yet
underexplored in statistics and machine learning.

In this tutorial, you have learned how to:

formalize the notion of causality;
reason about causality;

discover causal relations from data;
make causal predictions;

that seeing is not the same as doing.

This was just a sample of topics in an exciting research field. There is still
much more to learn and to discover!
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Further reading |

[@ Bongers, S. and Mooij, J. M. (2018).

From random differential equations to structural causal models: the
stochastic case.

arXiv.org preprint, arXiv:1803.08784v2 [cs.Al].

[@ Bongers, S., Peters, J., Schélkopf, B., and Mooij, J. M. (2018).
Theoretical aspects of cyclic structural causal models.
arXiv.org preprint, arXiv:1611.06221v2 [stat.ME].

[ Forré, P. and Mooij, J. M. (2017).
Markov properties for graphical models with cycles and latent variables.
arXiv.org preprint, arXiv:1710.08775 [math.ST].
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Further reading Il

ﬁ Forré, P. and Mooij, J. M. (2018).

Constraint-based causal discovery for non-linear structural causal models
with cycles and latent confounders.

In Proceedings of the 34th Annual Conference on Uncertainty in Artificial
Intelligence (UAI-18).

[E Forré, P. and Mooij, J. M. (2019).

Causal calculus in the presence of cycles, latent confounders and selection
bias.

In Proceedings of the 35th Annual Conference on Uncertainty in Artificial
Intelligence (UAI-19).
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Further reading Il

ﬁ Kemmeren, P., Sameith, K., van de Pasch, L., Benschop, J., Lenstra, T.,
Margaritis, T., O'Duibhir, E., Apweiler, E., van Wageningen, S., Ko, C., van
Heesch, S., Kashani, M., Ampatziadis-Michailidis, G., Brok, M., Brabers, N.,
Miles, A., Bouwmeester, D., van Hooff, S., van Bakel, H., Sluiters, E.,
Bakker, L., Snel, B., Lijnzaad, P., van Leenen, D., Groot Koerkamp, M., and
Holstege, F. (2014).

Large-scale genetic perturbations reveal regulatory networks and an
abundance of gene-specific repressors.

Cell, 157:740-752.

ﬁ Meinshausen, N., Hauser, A., Mooij, J. M., Peters, J., Versteeg, P., and
Biihlmann, P. (2016).
Methods for causal inference from gene perturbation experiments and
validation.

Proceedings of the National Academy of Sciences of the United States of
America, 113(27):7361-7368.
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Further reading IV

ﬁ Mooij, J. M., Janzing, D., and Schélkopf, B. (2013).

From ordinary differential equations to structural causal models: the
deterministic case.

In Nicholson, A. and Smyth, P., editors, Proceedings of the 29th Annual
Conference on Uncertainty in Artificial Intelligence (UAI-13), pages 440-448.
AUAI Press.

[@ Mooij, J. M., Magliacane, S., and Claassen, T. (2019).
Joint causal inference from multiple contexts.
arXiv.org preprint, https://arxiv.org/abs/1611.10351v4 [cs.LG].

[ Pearl, J. (2000).
Causality: Models, Reasoning, and Inference.

Cambridge University Press.

Joris Mooij (UvA) MLSS 2019: Causality 2019-08-29 129 / 131



Further reading V

[{ Peters, J., Janzing, D., and Schélkopf, B. (2017).
Elements of Causal Inference: Foundations and Learning Algorithms.
The MIT Press.

ﬁ Spirtes, P., Glymour, C., and Scheines, R. (2000).
Causation, Prediction, and Search.
The MIT Press.
[ Wright, S. (1921).
Correlation and causation.
Journal of Agricultural Research, 20:557-585.
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Thank you for your attention!

T USED T© THINK, THEN I TooK A | | SOUNDS LKE THE
CORRELATION mpuso STATISTICS CLASS. cwss HELPED.
CAUSATION. Now I DON'T, WEL, HHYBE

0% 19959

Randall Munroe, www.xkcd.org
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