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Abstract

Estimating the strength of causal effects from
observational data is a common problem in
scientific research. A popular approach is
based on exploiting observed conditional in-
dependences between variables. It is well-
known that this approach relies on the as-
sumption of faithfulness. In our opinion, a
more important practical limitation of this
approach is that it relies on the ability to
distinguish independences from (arbitrarily
weak) dependences. We present a simple
analysis, based on purely algebraic and ge-
ometrical arguments, of how the estimation
of the causal effect strength, based on con-
ditional independence tests and background
knowledge, can have an arbitrarily large er-
ror due to the uncontrollable type II error of
a single conditional independence test. The
scenario we are studying here is related to
the LCD algorithm by Cooper [1] and to the
instrumental variable setting that is popular
in epidemiology and econometry. It is one
of the simplest settings in which causal dis-
covery and prediction methods based on con-
ditional independences arrive at non-trivial
conclusions, yet for which the lack of uniform
consistency can result in arbitrarily large pre-
diction errors.

Introduction

Inferring causation from observational data is a com-
mon problem in several fields, such as biology and eco-
nomics. To deal with the presence of unmeasured con-
founders of observed random variables the so-called
instrumental variable technique [2] has found applica-
tions in genetics [3], epidemiology [4, 5] and economics
[6]. Given two observable random variables possibly

influenced by a hidden confounder, an instrumental
variable is a third observed variable which is assumed
to be independent of the confounder. In practice it
is difficult to decide whether the instrumental vari-
able definition is satisfied, and the method has aroused
some skepticism [7]. In this paper, we study a set-
ting that is similar in spirit to the instrumental vari-
able model, but where all conditional independence as-
sumptions are directly testable on the observed data.
A similar scenario was first studied by Cooper [1] and
independently rediscovered in the context of genome
biology by Chen et al. [8].

An important assumption in causal discovery meth-
ods based on conditional independences is faithful-
ness, which means that the observed joint distribution
does not contain any additional (conditional) indepen-
dences beyond those induced by the causal structure.
Usually, faithfulness is justified by the assumption that
unfaithful distributions are a set of Lebesgue measure
zero in the set of the model parameters. By showing
that one can create a sequence of faithful distributions
which converges to an unfaithful one, Robins et al.
proved the lack of uniform consistency of causal discov-
ery algorithms [9]. Zhang and Spirtes [10] then intro-
duced the “Strong Faithfulness” assumption to recover
the uniform consistency of causal discovery. Using geo-
metric and combinatorial arguments, Uhler et al. [11]
addressed the question of how restrictive the Strong
Faithfulness assumption is in terms of the volume of
distributions that do not satisfy this assumption. Even
for a modest number of nodes and for sparse graphs,
the “not strongly faithful” regions can be surprisingly
large, and Uhler et al. argue that this result should dis-
courage the use of large scale causal algorithms based
on conditional independence tests, such as the PC and
FCI algorithms [12].

In this work, we analyse in the context of the LCD
setting how an error in a single conditional indepen-
dence test may already lead to arbitrarily large er-
rors in predicted causal effect strengths, even when



the faithfulness assumption is not violated. Our re-
sults may not be surprising for those familiar with the
work of [9], but we believe that the analysis we present
here may be easier to understand to those without a
background in statistics, as we separate statistical is-
sues (the possibility of type II errors in the conditional
independence test from a finite sample) from a rather
straightforward analysis of the problem in the popu-
lation setting. We use an algebraic approach, showing
how causal prediction may lead to wrong predictions
already in the simple context of linear structural equa-
tion models with a multivariate Gaussian distribution.

In Section 1, we begin with a brief description of the
problem setting in a formal way, giving the definitions
of the causal effect, instrumental variable, LCD al-
gorithm and the toy model we present. We consider
three observed random variables (X1, X2, X3), which
is the minimal number such that a non-trivial condi-
tional independence test can be obtained. In Section 2,
we show how an (arbitrarily weak) conditional depen-
dence that goes undetected can influence our estima-
tion of the causal effect of X2 on X3 from the observed
covariance matrix, when a confounder between X2 and
X3 is almost off-set by a direct effect from X1 to X3.
In fact, we show that this phenomenon can lead to an
arbitrarily large error in the estimated causal effect as
the noise variance of X2 approaches zero. We finish
with conclusions in Section 3.

1 Problem setting

1.1 LCD algorithm

The model we are interested in arises from the work
of Cooper [1], who proposed the “LCD” algorithm for
causal discovery in observational databases and the
more recent paper of Chen et al.[8], who proposed the
“Trigger” algorithm to infer transcriptional regulatory
networks among genes. Throughout this section we
will assume:

• Acyclicity;
• No Selection Bias.

Definition 1.1. (LCD setting) Given three ran-
dom variables X1, X2, X3 such that the following sta-
tistical properties and prior assumptions are satisfied:
Statistical dependences:

• X1 6⊥⊥ X2

• X2 6⊥⊥ X3

• X1 ⊥⊥ X3|X2

Prior assumptions:

• An(X1) ∩ {X2, X3} = ∅
• Faithfulness

where An(X) is the set of the causal ancestors of X
(which includes X itself), so this condition means that
we assume that X1 is not caused by the other observed
variables X2, X3.

Cooper [1] proved that:

Theorem 1.1. Under the assumptions in Definition
1.1, the causal structure must be a subgraph of:

X1 X2 X3

Here, the directed arrows indicate a direct causal rela-
tionship and the bidirected edge denotes an unobserved
confounder.

Our primary interest is to predict p(X3|do(X2)), the
distribution of X3 after an intervention on X2. In
general, this quantity may differ from p(X3|X2), the
conditional distribution of X3 given X2 [13]. In the
linear-Gaussian case, the quantity

∂E(X3|do(X2))

∂X2

measures the causal effect of X2 on X3.

It is easy to show that in the LCD setting, these quan-
tities are equal:

Corollary 1.1. Under the LCD assumptions in Def-
inition 1.1,

p(X3|do(X2)) = p(X3|X2).

Therefore, in the linear-Gaussian case, the quantity

∂E(X3|do(X2))

∂X2
=
∂E(X3|X2)

∂X2
=

Cov(X3, X2)

Var(X2)
(1)

is a valid estimator for the causal effect of X2 on X3.

1.2 Relationship with instrumental variables

The other model relevant for our discussion is the so
called instrumental variable model. Following Pearl
[13], we define:

Definition 1.2. (Instrumental Variable setting)
Given three random variables X1, X2, X3, we call X1

an instrumental variable if the following conditions are
satisfied:
Statistical dependences:

• X1 6⊥⊥ X2

Prior assumptions:

• X1 ⊥⊥ X3|do(X2)
• Faithfulness



The second assumption says that X1 and X3 are inde-
pendent after an intervention on the variable X2. In
terms of the causal graph, this means that all the un-
blocked paths between X1 and X3 contain an arrow
that points to X2.

Unfortunately the instrumental variable property can-
not be directly tested from observed data. The causal
graph for the IV setting is a subgraph of:

X1 X2 X3

So, a possible confounder between X2 and X3 is al-
lowed, in contrast with the LCD setting. Note that
the LCD setting is a special case of the IV model.

Lemma 1.1. Under the IV assumptions in Definition
1.2 and for the linear-Gaussian case, the quantity

Cov(X1, X3)

Cov(X1, X2)

is a valid estimator for the causal effect of X2 on X3.

1.3 Type II errors in LCD

In practice, the confidence on the result of the con-
ditional independence test X1 ⊥⊥ X3|X2 in the LCD
setting depends on the sample size. Indeed, it could
be hard to distinguish a weak conditional dependence

X1 6⊥⊥ X3|X2

from a conditional independence using a sample of fi-
nite size. Here we study the question of what happens
to our prediction of the causal effect of X2 on X3 if
the conditional independence test encounters a type II
error (i.e., erroneously accepts the null hypothesis of
independence).

Note that a type I error (i.e., erroneously rejecting the
null hypothesis of independence) in the tests X1 6⊥⊥ X2

and X2 6⊥⊥ X3 will not be as dangerous as a type II
error in the conditional independence test. Indeed, the
probability of a type I error can be made arbitrarily
small by tuning the significance level appropriately. In
addition, a type I error would let the LCD algorithm
reject a valid triple, i.e., lower the recall instead of
leading to wrong predictions.

For these reasons we study the model described in the
following definition, which allows the presence of a hid-
den confounder X4, and a direct effect from X1 on X3

(not mediated via X2). We assume that these addi-
tional features result in a possible weak conditional
dependence between X1 and X3 given X2. For sim-
plicity we consider only the linear-Gaussian case. We
also assume no confounders between X1 and X2, or

between X1 and X3, or between X1, X2, X3. This sim-
plification will not influence the final result of the pa-
per, because we will prove how unboundedness of the
causal effect estimation error is already achieved for
this special case.

Definition 1.3. We assume that the “true” causal
model has the following causal graph:

X1 X2 X3

X4

which is one of the possible causal structures that is
compatible with the following conditions:
Statistical dependences:

• X1 6⊥⊥ X2

• X2 6⊥⊥ X3

• A weak conditional dependence

X1 6⊥⊥ X3|X2

Prior assumptions:

• Faithfulness
• An(X1) ∩ {X2, X3} = ∅

The observed random variables are X1, X2, X3 while
X4 is a hidden confounder, assumed to be independent
from X1.

The joint distribution of the observed variables is as-
sumed to be a multivariate Gaussian distribution with
covariance matrix Σ and zero mean vector. We also
assume that the structural equations of the model are
linear. Then

X = AX + E, (2)

where
X =

(
X1, . . . , X4

)T
is the vector of the extended system,

E =
(
E1, . . . , E4

)T
is the vector of the independent noise terms, such that

E ∼ N
(
0,∆

)
∆ = diag

(
δ2
i

)
,

and A = (αij) ∈ M4

(
R
)

is (up to a permutation of
indices) a real upper triangular matrix in the space
M4(R) of real 4 × 4 matrices that defines the causal
strengths between the random variables of the system.

Remark 1.1. In [14], an implicit representation for
the confounder X4 is used, by using non-zero covari-
ance between the noise variables E2, E3. It can be
shown that for our purposes, the two representations
are equivalent and yield the same conclusions.



In the Gaussian case, a conditional independence is
equivalent to a vanishing partial correlation:

Lemma 1.2. Given a set of three random variables
(X1, X2, X3) with a multivariate Gaussian distribution
the conditional independence

X1 ⊥⊥ X3 | X2

is equivalent to a vanishing partial correlation

ρ13·2 =
ρ13 − ρ12ρ23√(

1− ρ2
12

)(
1− ρ2

23

) = 0 (3)

where ρij is the correlation coefficient of Xi and Xj.

In the model described in Definition 1.3,

∂E(X3|do(X2))

∂X2
= α23. (4)

In contrast with the LCD model in Definition 1.1, the
equality (1) no longer holds. We are interested in the
error in the estimation of the effect of X2 on X3 that
would be due to a type II error of the conditional inde-
pendence test in the LCD algorithm. The next section
is dedicated to the analysis of the difference between
the true value (4) and the estimated one in (1):

|E
(
X3|X2

)
− E

(
X3|do(X2)

)
| = |g

(
A,Σ

)
||X2|,

where the “causal effect estimation error” is given by:

g
(
A,Σ

)
=

Σ32

Σ22
− α23. (5)

2 Estimation of the causal effect error
from the observed covariance matrix

The following proposition gives a set of equations for
the observed covariance matrix Σ, given the model
parameters

(
A,∆

)
and the linear structural equation

model (2).

Proposition 2.1. The mapping Φ : (A,∆) 7→ Σ that
maps model parameters (A,∆) to the observed covari-
ance matrix Σ according to the model in Definition 1.3
is given by:

Σ11 = δ2
1 (6)

Σ12 = α12δ
2
1 (7)

Σ13 =
(
α13 + α23α12

)
δ2
1 (8)

Σ11Σ23 = Σ12Σ13

+ Σ11

(
δ2
2α23 + δ2

4α42

(
α43 + α23α42

)) (9)

Σ11Σ22 = Σ2
12 + Σ11

(
δ2
2 + δ2

4α
2
42

)
(10)

Σ11Σ33 = Σ2
13

+ Σ11

(
δ2
2α

2
23 + δ2

3 + δ2
4

(
α43 + α23α42

)2)
.

(11)

Proof. It is possible to express the covariance matrix
Σ̄ of the joint distribution of X1, . . . , X4 in terms of
the model parameters as follows:

Σ̄ =
(
I −A

)−T
∆
(
I −A

)−1
.

The individual components in (6)–(11) can now be ob-
tained by straightforward algebraic calculations.

Remark 2.1. (Instrumental variable estimator)
From equation (8) it follows immediately that for
α13 = 0, we have

α23 =
Σ13

Σ12
,

which corresponds to the usual causal effect estimator
in the instrumental variable setting [3].

The lemma we present now reflects the fact that we
are always free to choose the scale for the unobserved
confounder X4:

Lemma 2.1. The equations of proposition 2.1 are in-
variant under the following transformation

ᾱ4j =
√
δ2
4α4j , δ̄2

4 = 1

for j ∈ {2, 3}.

Proof. This invariance follows from the fact that α42

and α43 always appear in a homogeneous polynomial
of degree 2, and they are always coupled with a δ2

4

term.

Without loss of generality we can assume from now on
that δ2

4 = 1.

Remark 2.2. (Geometrical Interpretation) From
a geometrical point of view the joint system of equa-
tions for the observed covariance matrix defines a
manifold MΣ in the space of the model parameters
M4(R)×Dδ2 , whereM4(R) is the space of the possi-
ble causal strengths αij and

Dδ2 =

3∏
i=1

[0,Σii]

is the compact hypercube of the noise variances. Note
that we have used the symmetry Σ̄44 = δ2

4 = 1 and
that

δ2
i ≤ Σii

from equations (6), (10) and (11). Note that the map
Φ : (A,∆) 7→ Σ is not injective. This means that
given an observed covariance matrix Σ, it is not possi-
ble to identify the model parameters in a unique way.



Indeed, the number of equations is six, while the num-
ber of model parameters is eight. Geometrically, this
means that the manifold MΣ does not reduce to a
single point in the space of model parameters. Nev-
ertheless it is still an interesting question whether the
function g is a bounded function on MΣ or not, i.e.,
whether we can give any guarantees on the estimated
causal effect. Indeed, for the instrumental variable
case with binary variables, such bounds can be derived
(see, e.g., [13]).

∆

A

MΣ

Σ

.

Φ

Φ−1 =?

The following Theorem and its Corollary are the main
results of this paper. We will prove that there still re-
main degrees of freedom in the noise variances δ2

2 , δ
2
3

and the signs s1, s2, given the observed covariance ma-
trix Σ, that will lead to an unbouded causal effect es-
timation error g(A,Σ).

Theorem 2.1. Given the causal model in Definition
1.3, there exists a map

Ψ : M3(R)×D(Σ)× {−1,+1}2 → M4(R) (12)

such that for all (A,∆):

Ψ(Φ(A,∆), δ2
2 , δ

2
3 , s1, s2) = A. (13)

Here D(Σ) = [0,m/Σ11] × [0,det Σ/m] ⊂ R2 is the
rectangle where the noise variances of X2 and X3 live,
with m defined below in (19). The map Ψ gives explicit
solutions for the causal strengths αij, given the ob-
served covariance matrix Σ, the noise variances δ2

2 , δ
2
3

and signs si = ±1. The components of Ψ are given by:

α12 =
Σ12

Σ11
(14)

α42 = s1

√
m

Σ11
− δ2

2 (15)

α43 = s2

√
det Σ−mδ2

3√
δ2
2Σ11

(16)

α13 = s1s2
Σ12

√
det Σ−mδ2

3

√
m− Σ11δ2

2

m
√
δ2
2Σ11

+
ϑ

m
,

(17)

and the most important one for our purpose:

α23 =
γ

m
− s1s2

√
det Σ−mδ2

3

√
m− Σ11δ2

2

m
√
δ2
2

. (18)

Here,
m = Σ11Σ22 − Σ2

12 > 0 (19)

η = Σ11Σ33 − Σ2
13 > 0

ω = Σ22Σ33 − Σ2
23 > 0

ϑ = Σ13Σ22 − Σ12Σ23

γ = Σ11Σ23 − Σ12Σ13.

Proof. The proof proceeds by explicitly solving the
system of equations (6)–(11). Some useful identities
are:

α13 =
Σ12α42α43

m
+
ϑ

m
,

α42α43 =
γ − α23m

Σ11
,

ρ13·2 =
ϑ√
ωm

,

ηm− γ2 = Σ11 det Σ.

The signs in the equations are a consequence of the
second degree polynomial equations.

Corollary 2.1. It is possible to express the error in
the estimated causal effect as

g
(
Ψ(Σ, δ2

2 , δ
2
3 , s1, s2),Σ

)
=

ϑΣ12

mΣ22
+

s1s2

√
det Σ−mδ2

3

√
m− Σ11δ2

2

m
√
δ2
2

.

(20)

By optimizing over δ2
3 we get:

α23 ∈ [b−, b+] ⊂ R,

with

b±(δ2
2) =

γ

m
±
√

det Σ
√
m− Σ11δ2

2

m
√
δ2
2

. (21)

The length of the interval [b−, b+] is a function of
(Σ, δ2

2) and satisfies

∂|b+ − b−|
∂δ2

2

< 0.

Proof. Equation (20) follows from (18) and:

Σ23

Σ22
=

γ

m
+
ϑΣ12

mΣ22
.

From equation (11), combined with the results of The-
orem 2.1, we can obtain the following inequality, using
also the fact that δ2

3Σ11 > 0:

mα2
23 − 2γα23 + η − Σ11α

2
43 ≥ 0.

The two solutions of the inequality define the interval
[b−, b+]. Its length is a decreasing function of δ2

2 .



Unfortunately, the causal effect strength α23 in equa-
tion (18) is unbounded. This means that for all the
choices of the observed covariance matrix Σ that are
in accordance with the model assumptions in Defini-
tion 1.3, the set of model parameters (A,∆) ∈ MΣ

that would explain Σ leads to an unbounded error g.

Indeed, a singularity is reached in the hyperplane
δ2
2 = 0, which corresponds to making the random

variable X2 deterministic with respect to its parents
X1, X4. Figure 1 shows the singularity of the function
|g(Σ, δ2

2 , δ
2
3)| in the limit δ2

2 → 0. The rate of growth is
proportional to the inverse of the standard deviation
of the noise variable E2:

|g| ∝ 1

δ2
as δ2 → 0. (22)

Figure 1: Causal effect estimation error |g| as a func-
tion of δ2

2 , for fixed δ2
3 ,Σ and s1s2 = 1.

Remark 2.3. (Lower bound for δ2
2) Corollary 2.1

is the main result of our analysis. The right hand term
in (20) consists of two terms: the first one, through ϑ,
represents the contribution of the partial correlation,
and is small if ρ13·2 is small. The second term is a
fundamental, intrinsic quantity not controllable from
the conditional independence test and the sample size.
However, in situations where one is willing to assume
a lower bound on δ2

2 :

δ2
2 ≥ δ̂2

2 ,

it is possible to give a confidence interval [b+, b−] for
the function g, depending on the choice of the lower
bound δ̂2

2 .

Remark 2.4. (IV estimation error)
In the instrumental variable literature the IV estima-
tor is used, presented in Lemma 1.1. Unfortunately,
this estimator and its error function

h(Σ, A) =
Σ13

Σ12
− α23 (23)

is proportional to α13 and from (17) one can deduce a
similar growing rate of the function h in terms of the
variance of the noise term E2:

|h| ∝ 1

δ2
as δ2 → 0. (24)

Remark 2.5. (Singularity analysis)
Figure 2 shows a contour plot of |g| on the rectangle
D(Σ) 3 (δ2

2 , δ
2
3). The singularity in the causal effect

Figure 2: The function |g| has a singularity in the
hyperplane δ2

2 = 0.

function g is reached in the degenerate case, when the
conditional distribution of X2 given X1 and X4 ap-
proaches a Dirac delta function. This cannot be de-
tected empirically, as we can still have well-defined co-
variance matrices Σ of the observed system even if the
covariance matrix Σ̄ of the extended one is degenerate.

Let us investigate in detail the limit for δ2
2 → 0 from

the point of view of the causal model. This propo-
sition will show a simple example of how the causal
strengths can be arbitrarily large, keeping the entries
of the observed covariance matrix Σij finite.

Proposition 2.2. Assume that the observed covari-
ance matrix Σ is positive-definite. Then, for the limit
δ2
2 → 0 we have the following scenario for the causal

strength parameters:
α23 ≈ ± δ−1

2

α43 ≈ ∓ sgn(α42) δ−1
2

α13 ≈ ∓ sgn(α12) δ−1
2 .

This limit, in which our error in the estimated causal
effect strength of X2 on X3 diverges, is illustrated in
Figure 3.



X1 X2 X3

X4

α12

∓∞

±∞

∓∞α42

Figure 3: Scenarios in which the error in the causal ef-
fect strength of X2 on X3 based on the LCD algorithm
may become infinitely large.

3 Conclusions and future work

Corollary 2.1 shows how the causal effect estimation
error can be extremely sensitive to small perturbations
of our model assumptions. Equation (20) holds for any
value of ϑ (which is proportional to the partial corre-
lation ρ13·2) and the second term vanishes when the
confounder is not present. This shows that with a
finite sample, a type II error in the conditional inde-
pendence test may lead to an arbitrarily large error in
the estimated causal effect. Even in the infinite sample
limit, this error could be arbitrarily large if faithfulness
is violated. The result is in agreement with the results
in [9], and it shows in a clear algebraic way how type
II errors of conditional independence tests can lead to
wrong conclusions.

We believe that this conclusion holds more generally:
even when we increase the complexity and the number
of observed variables, the influence of confounders will
still remain hidden, mixing their contribution with the
visible parameters, thereby potentially leading to ar-
bitrarily large errors. This means that for individual
cases, we cannot give any guarantees on the error in
the estimation without making further assumptions.
An interesting question for future research is whether
this negative worst-case analysis can be supplemented
with more positive average-case analysis of the esti-
mation error. Indeed, this is what one would hope if
Occam’s razor can be of any use for causal inference
problems.

Other possible directions for future work are:

• Study more complex models, in terms of
the number of nodes, edges and cycles.

• Bayesian model selection: We hope that the
Bayesian approach will automatically prefer a
simpler model that excludes a possible weak con-
ditional dependence even though the partial cor-
relation from the data is not exactly zero.

• Bayesian Information Criterion: We could
directly assign a score based on the likelihood
function of the data given the model parameters
(A,∆) and the model complexity, without assum-
ing any prior distribution for the model parame-
ters.

• Nonlinear structural causal equations: To
deal with nonlinearity it is possible to consider
Spearman’s correlation instead of the usual one,
using the following relationships:

m = Σ11Σ22(1− ρ2
12)

η = Σ11Σ33(1− ρ2
13)

ω = Σ22Σ33(1− ρ2
23)

γ = Σ11

√
Σ22Σ33(ρ23 − ρ12ρ13)

ϑ = Σ22

√
Σ11Σ33(ρ13 − ρ12ρ23)

• “Environment” variable: In many applica-
tions in biology, for example where X1 is geno-
type, X2 gene expression and X3 phenotype,
the observed random variables X2 and X3 are
strongly dependent on the environmental condi-
tions of the experiment. It might be reasonable
to assume that most of the external variability
is carried by the covariance between the environ-
ment variable W and the other measured ones,
including possible confounders. This leads to the
following graphical model, which could be useful
in deriving some type of guarantees for this sce-
nario:

X1 X2 X3

X4

W
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