Type-II errors of independence tests can lead to arbitrarily large errors in estimated causal effects: an illustrative example Workshop UAI 2014

Nicholas Cornia & Joris M. Mooij

University of Amsterdam

27/07/2014

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

1 Problem Setting

2 Estimation of the causal effect error form the observed covariance matrix

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

3 Discussion

4 Conclusions and future work

1 Problem Setting

2 Estimation of the causal effect error form the observed covariance matrix

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

3 Discussion

4 Conclusions and future work

Introduction

- Task: Inferring causation from observational data
- **Challenge:** Presence of hidden confounders.
- Approach: Causal discovery algorithms based on conditional independence (CIs) tests.
- Simplest case: Three random variables, a single CI test (LCD-Trigger setting).
- Contribution: Causal predictions are extremely unstable when type II errors arise.

(ロ) (同) (三) (三) (三) (○) (○)

Cooper (1997) and Chen et al. (2007). The following causal model

$$X_1 \stackrel{{\scriptstyle \leftarrow}{
ightarrow}}{
ightarrow} X_2
ightarrow X_3$$

is implied by

Prior assumptions

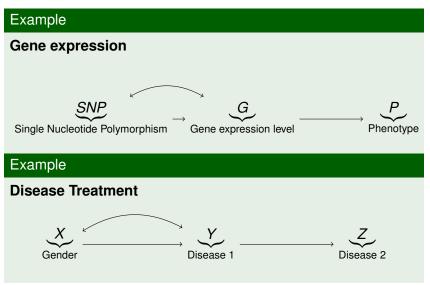
- No Selection Bias
- Acyclicity
- Faithfulness
- \blacksquare X₂, X₃ do not cause X₁

Statistical tests

- X₁ ⊥ X₂
- X₂ ⊥ X₃
- $\blacksquare X_1 \perp \perp X_3 | X_2$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Application of the LCD in biology



Linear Gaussian model

For simplicity: linear-Gaussian case. Structural equations:

$$X_i = \sum_{i \neq j} \alpha_{ij} X_j + E_i$$
 $X = AX + E$

 $X \sim \mathcal{N}(0, \Sigma)$ $\Sigma = \Sigma(A, \Delta)$

where

$$m{E} \sim \mathcal{N}ig(0, \Delta ig) \quad \Delta = diagig(\delta_i^2 ig)$$

and $A = \{\alpha_{ij}\}$ is the weighted adjacency matrix of the causal graph ($\alpha_{ij} \neq 0 \iff X_i \rightarrow X_j$). Example

$$X_1 \stackrel{\alpha_{12}}{\rightarrow} X_2 \stackrel{\alpha_{23}}{\rightarrow} X_3$$

$$\begin{cases} X_1 = E_1 \\ X_2 = \alpha_{12}X_1 + E_2 \\ X_3 = \alpha_{23}X_2 + E_3 \end{cases}$$

・ロト・日本・日本・日本・日本・ショックのの

Then:

Causal effect of X_2 on X_3 :

Under the LCD assumptions

$$A \ni \alpha_{23} = \frac{\partial}{\partial x_2} \mathbb{E} \big(X_3 | do(X_2 = x_2) \big) \qquad \qquad \mathbb{E} \big(X_3 | X_2 \big) = \frac{\Sigma_{32}}{\Sigma_{22}}$$

is a valid estimator for the causal effect of X_2 on X_3 .

Example

Structural equations (observed)

$$\begin{cases} X_1 = E_1 \\ X_2 = \alpha_{12}X_1 + E_2 \\ X_3 = \alpha_{23}X_2 + E_3 \end{cases}$$

Structural equations after an intervention

$$\begin{cases} X_1 = E_1 \\ X_2 = X_2 \\ X_3 = \alpha_{23} X_2 + E_3 \end{cases}$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

- What happens to the error in the causal effect estimator if in reality there is a weak dependence X₁ ⊥ X₃ | X₂, but we do not have enough data to detect it?
- **Type II error:** Erroneously accepting the null hypotesis of independence in the statistical test *X*₁ ⊥⊥ *X*₃|*X*₂. Can we still guarantee some kind of bound for the distance

$$|\mathbb{E}(X_3|X_2) - \mathbb{E}(X_3|do(X_2))|$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Starting from the chain

$$X_1
ightarrow X_2
ightarrow X_3$$
 $X_1 \perp \perp X_3 | X_2$

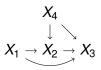
If we consider a possible weak dependence not detected by our test suddenly the causal graph gains complexity

$$egin{array}{ccc} X_4 & & & & \ & \downarrow & \searrow & \ X_1 & \to & X_2 & op & X_3 & & & X_1
otin X_3 | X_2 \end{array}$$

(日) (日) (日) (日) (日) (日) (日)

where X_4 is a confounding variable between X_2 and X_3 .

True model



Prior assumptions

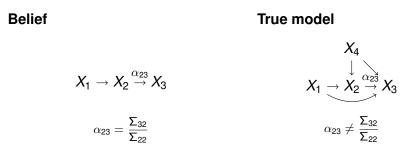
- No Selection Bias
- Acyclicity
- Faithfulness
- \blacksquare X₂, X₃ do not cause X₁
- No confounders between X₁ and X₂, or X₃, or both (for simplicity)

Statistical tests

- X₁ ⊥ X₂
- X₂ ⊥ X₃
- A weak conditional dependence X₁ ⊥ X₃|X₂

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Causal effect estimation error function



Error in the causal effect estimation function

$$g(A, \Sigma) = rac{\Sigma_{32}}{\Sigma_{22}} - lpha_{23}$$

< □ > < 同 > < Ξ > < Ξ > < Ξ > < Ξ < </p>

1 Problem Setting

2 Estimation of the causal effect error form the observed covariance matrix

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

3 Discussion

4 Conclusions and future work

Constraint equations

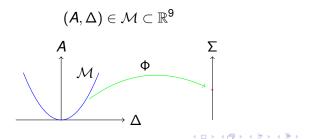
Proposition

There exists a map

$$\Phi: (\textbf{\textit{A}}, \Delta) \rightarrow \Sigma$$

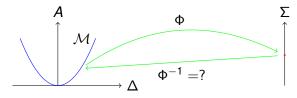
from the model parameters to the observed covariance matrix that defines a set of polynomial equations.

From a geometrical point of view, given $\boldsymbol{\Sigma}$



-

 In our model the map Φ is not injective. Thus, the manifold *M* does not reduce to a single point.



Nevertheless it is still an interesting question whether the function g is a bounded function on M or not.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Main result

Theorem

There exists a map

$$\Psi(\boldsymbol{\Sigma},\delta_2^2,\delta_3^2,\boldsymbol{s}_1,\boldsymbol{s}_2)=\boldsymbol{A}$$

where s_1, s_2 are two signs and the δ_2^2, δ_3^2 are the variance of the noise sources of X_2 and X_3 respectively.

Corollary

It is possible to express the error in the causal effect estimation function g as

$$g(\Sigma, \Psi(\Sigma, \delta_2^2, \delta_3^2, s_1, s_2)) = \underbrace{\frac{\vartheta \Sigma_{12}}{m \Sigma_{22}}}_{small \text{ for weak dep.}} + \underbrace{s_1 s_2 \frac{\sqrt{\det \Sigma - m\delta_3^2}\sqrt{m - \Sigma_{11}\delta_2^2}}{m\sqrt{\delta_2^2}}_{arbitrarily large}$$

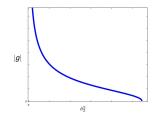
where $\vartheta = \Sigma_{13}\Sigma_{22} - \Sigma_{12}\Sigma_{23}$ and $m = \Sigma_{11}\Sigma_{22} - \Sigma_{12}^2$.

Approaching the singularity

Proposition

$$\lim_{\delta_2^2\to 0}|g|=+\infty$$

 $\forall \ \delta_3^2 \in [0, \det \Sigma/m] \quad (\textbf{\textit{s}}_1, \textbf{\textit{s}}_2) \in \{-1, 1\}^2$



▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

1 Problem Setting

2 Estimation of the causal effect error form the observed covariance matrix

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

3 Discussion

4 Conclusions and future work

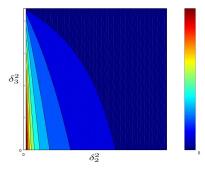
Probabilistic estimation of the error

$$(\delta_2^2,\delta_3^2)\in \textit{D}(\Sigma)\subset \mathbb{R}^2$$

$$\mathcal{M}_{M} = \{ \left(\delta_{2}^{2}, \delta_{3}^{2} \right) : |g| \leq M \}$$

If we put a uniform prior on the noise variances

$$Pr(|g| \leq M) = \frac{||\mathcal{M}_M||}{||D(\Sigma)||}$$



・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

• What would be a reasonable prior distribution for δ_2^2, δ_3^2 ?

The causal effect error function *g* can be optimized over the δ_3^2 parameters, giving a confidence interval for the causal weight α_{23}

$$\alpha_{23} \in [b_-, b_+] \subset \mathbb{R}$$

where

$$b_{\pm}(\delta_2^2) = rac{\gamma}{m} \pm rac{\sqrt{\det \Sigma} \sqrt{m - \Sigma_{11} \delta_2^2}}{m \sqrt{\delta_2^2}}$$

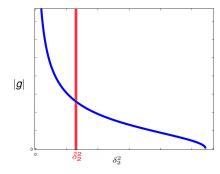
▲□▶▲圖▶▲≣▶▲≣▶ ≣ の�?

Looking for an approximate bound

Suppose we would have a lower bound

$$\delta_{\rm 2}^{\rm 2} \geq \hat{\delta}_{\rm 2}^{\rm 2}$$

then this implies an upper bound on |g|.



What would be a practical example where we can assume such a lower bound for the variance δ²₂?

1 Problem Setting

2 Estimation of the causal effect error form the observed covariance matrix

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

3 Discussion

4 Conclusions and future work

Conclusions

- The causal effect estimation error is sensible to erroneous conclusions in conditional independence tests.
- The result is in accord with Robins et al. (2003), on the lack of uniform consistency of causal discovery algorithms, but through this paper we wish to emphasize this issue on the more practical matter of type II errors.

(日) (日) (日) (日) (日) (日) (日)

In our case it was not possible to identify the model parameters explicitly.

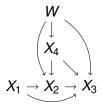
Proposal for future work

- Bayesian model selection: What would be a reasonable prior distribution for the model parameters?
- Bayesian Information Criterion: Will the BIC still give reasonable results even though the model parameters are not identifiable? Could it deal with irregular or even singular models?

(ロ) (同) (三) (三) (三) (○) (○)

Proposal for future work

Adding an "environment" variable: Might it be reasonable to assume that a part, or most, of the external variability is carried by the covariance between the environment variable W and the other measured ones, including possible confounders?



(日) (日) (日) (日) (日) (日) (日)

Thanks for your attention!