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Abstract. At LICS 2013, O. Lahav introduced a technique to uniformly
construct cut-free hypersequent calculi for basic modal logics charac-
terised by frames satisfying so-called ‘simple’ first-order conditions. We
investigate the generalisation of this technique to modal logics with
the master modality (a.k.a. reflexive-transitive closure modality). The
(co)inductive nature of this modality is accounted for through the use of
non-well-founded proofs, which are made cyclic using focus-style annota-
tions. We show that the peculiarities of hypersequents hinder the usual
method of completeness via infinitary proof-search. Instead, we construct
countermodels from maximally unprovable hypersequents. We show that
this yields completeness for a small (yet infinite) subset of simple frame
conditions.

Keywords: Hypersequent calculi · Modal logic · Master modality ·
Non-well-founded proofs · Cyclic proofs

1 Introduction

Cyclic and non-well-founded proofs have turned out to be highly effective in
the proof theory of modal fixpoint logics. They have been applied to obtain
proof-theoretic proofs of known results, such as the completeness of Kozen’s
axiomatisation of the modal μ-calculus [1], and Lyndon interpolation for Gödel-
Löb logic [12]. Moreover, cyclic proof systems have been constructed for logics
for which until then no proof system was known, e.g. Game Logic [7] and the
hybrid μ-calculus [6]. The key advantage of cyclic proof systems over systems
with explicit (co)induction rules, is that they enjoy a variant of the subformula
property. Among other benefits, this makes them more suitable for proof search.
Although cyclic proof systems have by now been devised for many modal fixpoint
logics, little work has been done on constructing such systems in a uniform way.
In particular, there is no general method to obtain cyclic proof systems for modal
fixpoint logics characterised by various classes of frames. This paper attempts
to take a first step in that direction.
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Already without fixpoints, many modal logics call for a deviation from the
standard sequent calculus. A typical example is the modal logic S5 (charac-
terised by frames whose accessibility relation is an equivalence relation), for
which obtaining a cut-free calculus in the standard sequent system is notori-
ously difficult. Several alternatives have been proposed, most of which equip
ordinary sequents with extra structure, often echoing the Kripke semantics (for
an overview we refer the reader to Chap. 4 of [8]). The alternative that arguably
stays closest to Gentzen’s original approach is that of hypersequents, which are
nothing but finite disjunctions of sequents. Already with this minor modifica-
tion, many more modal logics, including S5, can be given a sound and complete
proof system. In [10], Ori Lahav presents a systematic method for constructing
hypersequent calculi for any extension of one of the modal logics K, K4 or KB,
characterised by frames satisfying any finite number of so-called simple frame
conditions.

In this paper we adapt Lahav’s method to uniformly obtain cyclic proof
systems for a comparatively simple modal fixpoint logic: unimodal logic with
the master modality. This language, denoted ML∗, augments the basic modal
language with a modality �∗ , which is to be thought of as the reflexive-transitive
closure of the basic modality �. For each finite set C of simple frame conditions
we uniformly construct both an infinitary and a cyclic hypersequent calculus
for ML∗ interpreted on the class of C-frames. In the cyclic systems, sequents are
annotated using a focus mechanism originally due to Lange and Stirling (see
e.g. [11]). All systems are proven to be sound, but completeness is only proven
for a subset of the simple frame conditions which we shall call equable. While
many simple frame conditions are not equable, there are infinitely many equable
frame conditions, including: seriality, reflexivity, directedness and universality.
As a corollary, we obtain decidability for each of these logics.

As for related work, a finitary analytic proof system for ML∗ interpreted on
the class of all frames is given in [5]. In [3], a cyclic proof system is presented
for LTL and CTL, two modal fixpoint logics that are interpreted on restricted
frames classes. In [9], a general method is given for constructing sound and
complete Hilbert systems for ML∗ interpreted on various frame classes, but this
concerns non-analytic systems having both a cut-rule and an explicit induction
rule. Another notable example of related work is [4], where, like here, cyclic
proofs are combined with some calculus that extends the ordinary sequent cal-
culus. However, they use labelled sequents rather than hypersequents and do not
consider multiple logics at once.

In Sect. 2 we introduce the syntax and semantics of ML∗ and define simple
and equable frame conditions. In Sect. 3 we introduce our hypersequent cal-
culi. Section 4 proves soundness for all calculi. Finally, in Sect. 5 completeness is
proven for those calculi that contain only rules for equable frame classes.
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2 Preliminaries

For the rest of this article, we fix a countable set of P of propositional variables.

Definition 1. The syntax ML∗ of modal ∗-formulas over P is generated by:

ϕ ::= p | ⊥ | ϕ → ϕ | �ϕ | �∗ϕ

where p ∈ P.

As usual, formulas will be interpreted in Kripke models. We will refer to modal
∗-formulas as just formulas.

Definition 2. A Kripke frame is a pair (S,R) consisting of a set S of states
together with an accessibility relation R ⊆ S × S. A Kripke model is a triple
(S,R, V ), where (S,R) is a Kripke frame and V : P → P(S) a valuation func-
tion.

Formulas are interpreted in Kripke models in the usual way, with the following
additional clause for �∗ :

S, s � �∗ψ :⇔ for all t ∈ S such that sR∗t: S, t � ψ

where R∗ is the reflexive-transitive closure of R. Whenever the intended the
model S is clear from the context, we will simply write s � ϕ instead of S, s � ϕ.

Let L1 be the first-order language with equality and a single relation symbol
R. In contrast to ML∗, we let L1 include the propositional connectives ∧, ∨
and ¬. A frame condition then is nothing but an L1-sentence. For Θ a set of
frame conditions, a Kripke frame (S,R) is said to be a Θ-frame whenever, when
regarded an L1-structure, the frame (S,R) satisfies each sentence ϕ in Θ. A
Kripke model will be called a Θ-model whenever its underlying frame is a Θ-
frame.

The following definitions and proposition are taken from [10].

Definition 3. A frame condition is called n-simple whenever it is of the form
∀s1 · · · sn∃uϕ, where ϕ is built up using the connectives ∨ and ∧ from atomic
formulas of the form siRu and si = u with 1 ≤ i ≤ n.

Definition 4. Given n ∈ ω, an abstract n-simple frame condition is a finite
non-empty set C consisting of pairs (CR, C=) of subsets CR, C= ⊆ {1, . . . , n}
such that at least one of CR and C= is non-empty.

Definition 5. The interpretation of some abstract n-simple frame condition C
is the following first-order formula:

∀s1 · · · sn∃u
∨

(CR,C=)∈C

(
∧

i∈CR

siRu ∧
∧

j∈C=

sj = u).

Using disjunctive normal forms, the following proposition is immediate.
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Proposition 1. Any n-simple frame condition is equivalent to the interpreta-
tion of some abstract n-simple frame condition.

In the following, we use the general term (abstract) simple frame condition to
encapsulate every (abstract) frame condition that is n-simple for some n ∈ ω. For
the sake simplicity we will sometimes blur the distinction between an abstract
frame condition C and its interpretation. In particular, for C a finite set of
abstract simple frame conditions and Θ the set of their interpretations, we often
use the terms C-model and C-frame where we mean Θ-model and Θ-frame.

We close this section by defining the subclasses of the class of simple frame
conditions, to which we will restrict most of our attention for the rest of this
paper.

Definition 6. An abstract n-simple frame condition C is called:

– equality-free if C= = ∅ for all (CR, C=) ∈ C;
– disjunction-free if C is a singleton;
– equable if for some U ⊆ {1, . . . , n}, we have U = C= for all (CR, C=) ∈ C.

Clearly if C is equality-free or disjunction-free, then it is equable. It turns out
that the converse is also true (up to logical equivalence). The verification of
this fact is left to the reader. Some examples of equable frame conditions are
reflexivity, given by C = {〈{1}, {1}〉}, and k-bounded top width, which is given
by C = {〈{i, j}, ∅〉 : 1 ≤ i < j ≤ k} for any k ≥ 2. An example of a simple frame
condition which is not equable is C = {〈{1}, {2}〉, 〈{2}, {1}〉}, which in [10]
is called linearity. For more examples of simple frame conditions, we refer the
reader to the aforementioned article.

3 Infinitary and Cyclic Hypersequent Calculi

In this section we introduce families of infinitary and cyclic hypersequent calculi
for ML∗ interpreted on classes of Θ-models, where Θ is an arbitrary set of simple
frame conditions.

3.1 Hypersequents and Pre-proofs

Definition 7. A sequent is an ordered pair (Γ,Δ) of finite sets of formulas,
usually written Γ ⇒ Δ. A hypersequent is a finite set {σ0, . . . , σn} of sequents,
usually written σ0 | · · · | σn.

We adopt the convention of using shorthand notation for singleton formulas and
sequents. For instance, we write Γ, ϕ ⇒ ψ,Δ where we mean {ϕ}∪Γ ⇒ {ψ}∪Δ,
and the hypersequent H ∪ {σ} may be written as H | σ.

(Hyper)sequents are interpreted in Kripke models as follows.

Definition 8. Let S be a Kripke model. Then:

– A sequent Γ ⇒ Δ is said to be satisfied at a state s of S whenever:
If s � ϕ for all ϕ ∈ Γ , then s � ψ for some ψ ∈ Δ.

– A sequent is valid in S if it is satisfied at every state of S.
– A hypersequent H is valid in S if there is a σ ∈ H which is valid in S.

A hypersequent valid in all C-models will be called C-valid.
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The following hypersequent calculus is an expansion by two additional fix-
point rules of the system HK given in [10] for basic modal logic.

Definition 9. The hypersequent calculus HK∗ has the following axioms and
rules.

id ϕ ⇒ ϕ ⊥ ⊥ ⇒

H | Γ ⇒ Δ
iwL

H | Γ, ϕ ⇒ Δ

H | Γ ⇒ Δ
iwR

H | Γ ⇒ ϕ, Δ

Hew
H | Γ ⇒ Δ

H | Γ, ψ ⇒ Δ H | Γ ⇒ ϕ, Δ→L
H | Γ, ϕ → ψ ⇒ Δ

H | Γ, ϕ ⇒ ψ, Δ→R
H | Γ ⇒ ϕ → ψ, Δ

H | Γ ⇒ ϕ
�

H | �Γ ⇒ �ϕ

H | Γ1, ϕ ⇒ Δ1 H | Γ2 ⇒ ϕ, Δ2
cut

H | Γ1, Γ2 ⇒ Δ1, Δ2

H | Γ, ϕ, ��∗ϕ ⇒ Δ
�∗L

H | Γ, �∗ϕ ⇒ Δ

H | Γ ⇒ ϕ, Δ H | Γ ⇒ ��∗ϕ, Δ
�∗R

H | Γ ⇒ �∗ϕ, Δ

Following [10], we augment HK∗ with rules corresponding to certain simple frame
conditions.

Definition 10. Let C be an abstract n-simple frame condition. The rule rHK
∗

C

induced by C is defined as follows:

{H | ⋃
i∈CR

Γ ′
i ,

⋃
j∈C=

Γj ⇒ ⋃
j∈C=

Δj : (CR, C=) ∈ C}
rHK

∗
C H | �Γ ′

1, Γ1 ⇒ Δ1 | · · · | �Γ ′
n, Γn ⇒ Δn

Given a finite set C of abstract simple frame conditions, we let HK∗ +RC be the
system HK∗ augmented with the rules rHK

∗
C for each C ∈ C.

In any application of some rule of HK∗ +RC , the sequents outside of the con-
text H are called active. Furthermore, the active formulas of an active sequent
are those that occur outside of Γ and Δ. All other formulas and sequents are
called inactive. Note that due to the fact the (hyper)sequents are sets, the con-
texts H might also contain active sequents (and likewise Γ and Δ might contain
active formulas). In the case of rHK

∗
C , the i-th active sequent in the conclusion is

said to have index i and the premiss corresponding to (CR, C=) ∈ C is said to
have index (CR, C=). Here the fact that hypersequents are sets means that one
sequent might have multiple indices.

For the rest of this paper we assume that C is an arbitrary finite set of simple
frame conditions, unless specified otherwise.

Definition 11. An HK∗ + RC-pre-proof is a (possibly infinite) derivation in
HK∗ + RC.

For any HK∗+RC-pre-proof π with root H, we say that π is a HK∗+RC-pre-proof
of H.

This derivation system has a property akin to the subformula property.
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Definition 12. The closure of a set Φ of formulas is the least Ψ ⊇ Φ such that:

(i) If ϕ → ψ ∈ Ψ , then ϕ,ψ ∈ Ψ ;
(ii) If �ϕ ∈ Ψ , then ϕ ∈ Ψ ;

(iii) If �∗ϕ ∈ Ψ , then ϕ, ��∗ϕ ∈ Ψ .

We write Cl(Φ) for the closure of Φ. It is easy to see that Cl is a closure operator
and that the closure of any finite set of formulas is finite. The following lemma
can be verified by direct inspection of the rules.

Lemma 1. Let π be a cut-free HK∗ +RC-pre-proof of H. Any formula occurring
in π belongs to the closure of the set of formulas occurring in H.

3.2 Infinitary Proofs with Trace Condition

It is not hard to show that the system HK∗ +RC need not be sound with respect
to all Kripke models based on a C-frame. In fact, already when C is empty
there are infinite pre-proofs of invalid hypersequents. We therefore need a way
to recognize valid infinite proofs. The technical treatment in this section takes
inspiration from [4], which in turn follows [2].

We use �nϕ as a shorthand for the formula ϕ preceded by n instances of �.

Definition 13. A formula ϕ is said to be a trace formula if it is of the form
�i�∗ψ for i ∈ {0, 1}. If i = 1, we say that ϕ is unfolded.

Definition 14. A trace value is either the empty trace value ε, or a pair (ϕ, σ),
where σ is a sequent and ϕ a trace formula in the right-hand side of σ.

If τ is the empty trace value or τ = (ϕ, σ) such that the sequent σ belongs to
some hypersequent H, then τ is said to be a trace value for H.

Definition 15. Let (H,H ′) be a pair consisting of the conclusion and a premiss,
respectively, of an application of a some rule r of HK∗ + RC and let τ and τ ′ be
trace values for H and H ′. The pair (τ, τ ′) is called a trace pair for (H,H ′) if
one of τ and τ ′ is the empty trace value, or one of the following conditions holds
for τ = (ϕ, σ) and τ = (ϕ′, σ′):

1. σ′ is an inactive sequent equal to σ and ϕ = ϕ′.
2. σ and σ′ are active sequents and one of the following holds:

(a) r is among iwL, iwR, cut,→L,→R, �∗L, �∗R and ϕ′ = ϕ.
(b) r ∈ {rHK∗

C | C ∈ C}, the index of σ is in C=, where (CR, C=) is the index
of H ′, and ϕ = ϕ′.

(c) r is � and �ϕ′ = ϕ.
(d) r is �∗R, ϕ is active, H ′ is the right-hand premiss, and ϕ′ = �ϕ.

When (τ, τ ′) is a trace pair by virtue of item 2(d), it will be called an unfolding.
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Remark 1. There are several subtleties involved with Definition 15:

– Consider the following inference, where every trace value is marked.

p ⇒
τ3︷︸︸︷

��∗p | p ⇒
τ4︷︸︸︷
�∗p | p ⇒ p p ⇒

τ5︷︸︸︷
�∗p | p ⇒

τ6︷︸︸︷
��∗p

�∗R
p ⇒ ��∗p︸︷︷︸

τ1

| p ⇒ �∗p︸︷︷︸
τ2

The trace value τ1 does not form a trace pair with τ6, because the sequent
belonging to τ6 is active, whereas the one belonging to τ1 is not. In contrast,
since the sequent of τ5 is inactive, the pair (τ2, τ5) is a trace value, even though
τ2 is active. The other trace pairs are (τ1, τ3), (τ2, τ4) and (τ2, τ6) is a trace
pair, with the latter being an unfolding.

– In case (2)(c), the shape of the rule � forces σ′ to be of the form Γ ⇒ ϕ′,
where σ is of the form �Γ ⇒ �ϕ′.

Definition 16. A trace is a sequence of trace pairs. A trace is called good if it
contains finitely many empty trace values and infinitely many unfoldings.

Definition 17. A path (Hi)i∈I in some proof is said to be covered by a trace
(τi)i∈I if (τi, τi+1) is a trace pair for (Hi,Hi+1) for each i ∈ I such that i+1 ∈ I.

Definition 18. An HK∗
inf + RC-proof is an HK∗ + RC-pre-proof of which every

infinite branch is covered by a good trace.

A hypersequent H will be called HK∗
inf + RC-provable if there is an HK∗

inf + RC-
proof whose root is labelled by H.

3.3 Cyclic Proofs

In this section we assume that C is a finite set of equable frame conditions.

Definition 19. An annotated hypersequent is a hypersequent H together with
a trace value τ for H. We call τ an annotation, say that H is annotated by τ
and write τ � H.

In proof trees, we often simplify notation by, instead of writing τ �, putting the
formula designated by τ between square brackets. This formula is then said to
be in focus. When τ is empty, we signify this by putting no formula between
brackets.

Definition 20. The derivation system HK∗
circ + RC is obtained from HK∗ + RC

by making the following adaptations:

1. The basic judgments are annotated hypersequents.
2. If H is derivable from H1, . . . ,Hn by some rule r of HK∗ + RC, then τ � H

is derivable from τ1 � H1, . . . , τn � Hn by r in HK∗
circ + RC if and only if the

pair (τ, τi) is a trace pair for (H,Hi).
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3. The following structural rule, called focus change, is added:

τ � H
fc

τ ′ � H

Here τ and τ ′ may be any two trace values for H.

Although the rules of the derivation system HK∗
circ + RC are given in an indi-

rect fashion, it is clearly decidable whether some given inference is a valid rule
application.

Whenever some leaf l of some derivation in HK∗
circ + RC is the conclusion of

an application of id or ⊥, we say that l is an axiomatic leaf.

Definition 21. An HK∗
circ + RC-proof is a finite derivation π in HK∗

circ + RC
together with a back edge map f assigning to each non-axiomatic leaf l of π a
node f(l) such that:

– f(l) is a proper ancestor of l, labelled by the same annotated hypersequent.
– For each step 〈τ � H, τ ′ � H ′〉 on the path between f(l) and l, it holds that

τ ′ is not empty and the surrounding rule application is not fc.
– For some step 〈τ � H, τ ′ � H ′〉 on the path between f(l) and l it holds that

(τ, τ ′) is an unfolding.

An (unannotated) hypersequent H will be called HK∗
circ +RC-provable if there is

an HK∗
circ+RC-proof with root τ � H, where τ may be any annotation. Note that,

by the availability of fc, this is equivalent to there being an HK∗
circ + RC-proof

whose root is annotated by the empty trace value.

Definition 22. Let (T, f) be a finite tree with back edges. The one-step depen-
dency order �1 on ran(f) is given by:

u �1 v :⇔ u lies on the path between v and v′ for some v′ ∈ f−1(v).

The dependency order � on ran(f) is defined as the transitive closure of �1.

For α a sequence, we let Inf(α) denote the set of elements occurring infinitely
often in α. The proof of the following lemma is omitted to conserve space.

Lemma 2. For any infinite path α through some finite tree with back edges
(T, f), the set Inf(α) ∩ ran(f) has a �-greatest element.

Proposition 2. If H is HK∗
circ + RC-provable, then H is HK∗

inf + RC-provable.

Proof. Let (π, f) be an HK∗
circ + RC-proof with root τ � H. We let π0 be the

HK∗
inf + RC-proof obtained by unravelling (π, f) and removing all annotations

and applications of fc. It suffices to show that every infinite branch γ of π0 is
covered by a good trace. To that end, note that any such γ corresponds to an
infinite path ρ through (π, f). Let � be the dependency order on ran(f) given
in Definition 22. For any two u, v ∈ ran(f) such that u � v, it holds that the
focus rule is not applied on the path from v to u, because this path is an initial
segment of the path from v to a leaf l with f(l) = v. By Lemma 2, the set



362 J. Rooduijn

Inf(ρ) ∩ ran(f) must contain a �-greatest element u0. It follows that from some
point in ρ every node has a formula in focus and the focus rule is not applied.
Since, moreover, the node u0 is visited infinitely often, an unfolding happens
infinitely often on the trace corresponding to the formulas in focus on this tail
of ρ. Therefore, the infinite branch γ is covered by a good trace, as required. ��

4 Soundness

This section is devoted to proving the following soundness theorem. Again, our
treatment is based on [4].

Theorem 1. Let C be a finite set of abstract simple frame conditions. If a hyper-
sequent is HK∗

inf + RC-provable, then it is valid in every C-model.

Definition 23. Let H be a hypersequent and S a Kripke model. A countermodel
state assignment (cmsa) of H in S is a function α : H → S assigning to each
sequent σ of H a state α(σ) of S in which σ is not satisfied.

Clearly for every model S in which H is invalid, there is a cmsa of H in S.

Definition 24. Let α be a cmsa of H in S and let τ := (�i�∗ψ, σ) be a non-empty
trace value in H. The weight of τ with respect to α is given by

μα(τ) := min{n ∈ ω : S, α(σ) �� �i�nψ}.

Note that the minimum taken in the above definition always exists by the fact
that α is assumed to be a cmsa.

Lemma 3. Let H be the conclusion of an application of some rule r of HK∗+RC
with premisses H1, . . . , Hn and let S be a C-model. For every cmsa α of H in S,
there is a premiss Hk and a cmsa αk of Hk in S such that for every trace pair
(τ, τk) for (H,Hk) consisting of non-empty trace values, it holds that

μαk
(τk) ≤ μα(τ),

and if (τ, τk) is an unfolding, then this inequality is strict.

Proof. For the choice of Hk and αk we make a case distinction on the rule r of
HK∗ +RC that is applied. We first define αk only on the active sequent of Hk (if
it exists). Because of space issues, we only treat three cases, leaving the others
to the reader.

– r = �. There is a single premiss H1 and there are two active sequents σ ∈ H
and σ1 ∈ H1. Moreover, the sequent σ is of the form �Γ ⇒ �ϕ. Since α is
a cmsa, there must be some state s1 for which it holds that α(σ)Rs1 and
s1 �� ϕ. If ϕ is not of the form �∗ψ, we pick any such s1 and put α1(σ1) := s1.
If, on the other hand, the formula ϕ is of the form �∗ψ, then we need to take a
bit more care in picking the successor s1 of α(σ). By definition, it holds that
α(σ) �� ��μα(σ,�ϕ)ψ. Thus it has a successor s1 such that s1 �� �μα(σ,�ϕ)ψ.
We set α1(σ1) := s1.
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– r = rHK
∗

C for some n-simple C ∈ C. Let σ1, . . . , σn be the active sequents in
H. By the fact that S is a C-model, there must be some state s of S and
pair (CR, C=) ∈ C such that for all i ∈ CR it holds that α(σi)Rs and for
all j ∈ C= that α(σj) = s. As premiss we pick the Hk corresponding to this
(CR, C=) ∈ C and we set: αk(

⋃
i∈CR

Γ ′
i ,

⋃
j∈C=

Γj ⇒ ⋃
j∈C=

Δj) := s.
– r = �∗R. Then H has an active sequent σ of the form Γ ⇒ �∗ϕ,Δ, and there are

two premisses H1 and H2, with as active sequent respectively σ1 = Γ ⇒ ϕ,Δ
and σ2 = Γ ⇒ ��∗ϕ,Δ. If α(σ) �� ϕ, we pick H1 and set α1(σ1) := α(σ). If, on
the other hand, we have α(σ) �� ��∗ϕ, then we pick H2 and set α2(σ2) := α(σ).

To complete the definition of αk, for each inactive sequent σk ∈ Hk, we put
αk(σk) := α(σk). We leave it to the reader to verify that in each case αk is a
cmsa of Hk in S.

It remains to verify the condition on trace pairs (τ, τk) for (H,Hk). First note
that if τk is inactive, then τ and τk must have the same underlying sequent. By
definition, it follows that μαk

(τk) = μα(τ).
For trace pairs between active sequents, we only cover the case r = �∗R,

leaving the other cases to the reader. Suppose that 〈(ϕ, σ), (ϕk, σk)〉 is a trace
pair for (H,Hk) such that both σ and σk are active sequents in an application
of �∗R. By the definition of αk given above, it holds that α(σ) = αk(σk). If
ϕk = ϕ, then clearly μα(ϕ, σ) = μαk

(ϕk, σk). If, on the other hand, the trace
pair is an unfolding, then ϕ is active and Hk is the right-hand premiss. It follows
there is some ψ such that ϕ = �∗ψ and ϕk = ��∗ψ. Therefore we have that
μαk

(ϕk, σk) = μα(ϕ, σ) − 1 < μα(ϕ, σ), as required. ��

Proof of Theorem 1. Suppose, towards a contradiction, that some HK∗
inf + RC-

provable hypersequent H is C-invalid. Then there is a cmsa α of H in some model
S. Repeatedly applying Lemma 3, we obtain a branch H = H0,H1,H2 . . . in the
proof of H, with for each Hi a cmsa αi of Hi in S. Note that this branch must be
infinite, for otherwise the final Hi is an axiom, contradicting the fact that it has
a cmsa. Moreover, by the condition of infinite branches it contains a good trace τ
which from some point, say, from the hypersequent Hk, contains no empty trace
values. By construction, we have μαk

(τ0) ≤ μαk+1(τ1) ≤ μαk+2(τ2) ≤ . . . and,
since infinitely many unfoldings occur on τ , this inequality is strict infinitely
often. Clearly we have reached the desired contradiction.

Question 1. Suppose we weaken Condition 2 of Definition 15 to allow σ to be
inactive, provided that it is equal to σ′. The pair (τ1, τ6) of Remark 1 then
becomes a trace pair. Is the system HK∗

inf + RC still sound for any finite C?

5 Completeness
In this section we prove cut-free completeness for HK∗

circ+RC , where C is any finite
set of equable frame conditions. Our method is an adaptation of the one in [10].
We close the section with a brief explanation for why the more common method
of completeness via infinitary proof search is hard to apply to our hypersequent
calculi.
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5.1 Completeness of HK∗
circ + RC for Equable C

This subsection will be devoted to proving the following theorem, which is the
main theorem of this paper.

Theorem 2. Let C be a finite set of equable frame conditions. If a hypersequent
is valid in every C-model, then it has a cut-free HK∗

circ + RC-proof.

We will prove this theorem by constructing a countermodel for each unprovable
hypersequent. For Γ a set of formulas, we define �−1Γ := {ϕ | �ϕ ∈ Γ}.

Definition 25. Let H be a hypersequent. The canonical model SH for H is the
model (S,R, V ) given by:

– S := H.
– Γ1 ⇒ Δ1RΓ2 ⇒ Δ2 :⇔ �−1Γ1 ⊆ Γ2.
– V (p) := {Γ ⇒ Δ | p ∈ Γ}.
The key property of canonical models is that, for certain unprovable hyperse-
quents H, they satisfy a Truth Lemma, with the consequence that H is invalid in
the canonical model SH of H. The bulk of this subsection concerns constructing
such unprovable hypersequents and establishing the Truth Lemma.

Definition 26. Let Σ be a finite closed set of formulas. An (annotated)
(hyper)sequent is said to be a Σ-(annotated) (hyper)sequent if it contains only
formulas from Σ.

For the rest of this section we assume an arbitrary finite closed set of formulas Σ.
First, we want our unprovable hypersequent to satisfy the following saturation
properties.

Definition 27. A sequent Γ ⇒ Δ is said to be propositionally saturated if the
following closure conditions hold:

(i) ⊥ �∈ Γ .
(ii) Γ ∩ Δ = ∅.
(iii) If ϕ1 → ϕ2 ∈ Γ , then ϕ2 ∈ Γ or ϕ1 ∈ Δ.
(iv) If ϕ1 → ϕ2 ∈ Δ, then ϕ1 ∈ Γ and ϕ2 ∈ Δ.
(v) If �∗ϕ ∈ Γ , then ϕ ∈ Γ and ��∗ϕ ∈ Γ .
(vi) If �∗ϕ ∈ Δ, then ϕ ∈ Δ or ��∗ϕ ∈ Δ.

A hypersequent is propositionally saturated whenever each of its sequents is.

Definition 28. Let C be a finite set of abstract simple frame conditions. A
hypersequent H is said to be C-presaturated if SH is a C-model. If, moreover,
the hypersequent H is propositionally saturated, it is be said to be C-saturated.

An annotated hypersequent will be called C-(pre)saturated whenever the under-
lying hypersequent is.
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Definition 29. Let Γ1 ⇒ Δ1 and Γ2 ⇒ Δ2 be sequents and let H1,H2 be
hypersequents. We define:

– Γ1 ⇒ Δ1 � Γ2 ⇒ Δ2 if Γ1 ⊆ Γ2 and Δ1 ⊆ Δ2.
– H1 � H2 if for all σ1 ∈ H1, there is some σ2 ∈ H2 such that σ1 � σ2.

If two (hyper)sequents are related by �, we say that the former is encompassed
by the latter.

The following definition and lemmas are based on the notion of a propositional
retract in [5].

Definition 30. Let C be a finite set of simple frame conditions. A retract of
an annotated Σ-hypersequent (ϕ, σ) � H | σ is a finite set H consisting of
annotated Σ-hypersequents of the form (ϕ, σ′) � H | σ′ with σ � σ′, such
that (ϕ, σ) � H | σ is derivable from H in HK∗

circ + RC without using the rules
�, fc, and cut. Moreover, the retract H is said to be C-saturated if for every
(ϕ, σ′) � H ′ ∈ H such that σ′ � H it holds that H ′ is C-saturated.
The following crucial lemma is the only part of the completeness proof where we
rely on the restriction to equable frame conditions.

Lemma 4. Let C be a finite set of equable frame conditions and H a C-saturated
hypersequent. Then any annotated Σ-hypersequent (ϕ, σ) � H | σ has a C-
saturated retract.

Proof. We say that a retract H is C-presaturated (propositionally saturated) if
for every (ϕ, σ′) � H ′ ∈ H such that σ′ � H it holds that H ′ is C-presaturated
(propositionally saturated). The proof rests on the following two claims.

1. Any annotated Σ-hypersequent has a propositionally saturated retract.
2. For C a finite set of equable frame conditions, and H a C-presaturated hyper-

sequent, any annotated Σ-hypersequent (ϕ, σ) � H | σ has a C-presaturated
retract.

The proof of Claim 1 is analogous to the proof of Lemma 6.1 in [5]. For Claim
2, we argue by induction on the number of Σ-formulas not occurring in the
sequent σ. If σ �� H or if H | σ is already C-presaturated, then we simply set
H := {H | σ}.

Now suppose, towards a contradiction, that σ � H and H | σ is not C-
presaturated, that is:

There is an n-simple C ∈ C and a list (Γk ⇒ Δk)1≤k≤n of sequents in
H ∪ {σ} such that for every Γ ⇒ Δ ∈ H ∪ {σ} and (CR, C=) ∈ C there
is an i ∈ CR s.t. �−1Γi �⊆ Γ or a j ∈ C= s.t. Γj ⇒ Δj �= Γ ⇒ Δ.

(1)

For the rest of this proof we fix a condition C ∈ C and a list (Γk ⇒ Δk)1≤k≤n

that witness (1).
Since σ � H, there is a sequent σ ∈ H such that σ � σ. Let (Γk ⇒ Δk)1≤k≤n

be the list obtained by replacing in (Γk ⇒ Δk)1≤k≤n each occurrence of σ by σ.
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By the C-presaturation of H, there must be some (CR, C=) ∈ C and Γ ⇒ Δ ∈ H
such that it holds for each i ∈ CR that �−1Γi ⊆ Γ and for each j ∈ C= that
Γj ⇒ Δj = Γ ⇒ Δ.

It follows for every i ∈ CR that �−1Γi ⊆ �−1Γi ⊆ Γ . Thus, by the fact that
H | σ is not C-presaturated, there must be some k ∈ C= such that Γk ⇒ Δk �=
Γk ⇒ Δk. By construction this can only be the case if Γk ⇒ Δk = σ.

Now consider the following inference.

{H | ⋃
i∈CR

�−1Γi,
⋃

j∈C=
Γj ⇒ [ϕ],

⋃
j∈C=

Δj : (CR, C=) ∈ C}
rHK

∗
C H | Γk ⇒ [ϕ],Δk

Observe that the right-hand side of each premiss contains ϕ. The reason is that
ϕ belongs to the right-hand side of σ = Γk ⇒ Δk and, by equability, k ∈ C= for
every (CR, C=) ∈ C. We claim that for any (CR, C=) ∈ C, the Σ-sequent

σR :=
⋃

i∈CR

�−1Γi ∪
⋃

j∈C=

Γj ⇒
⋃

j∈C=

Δj

is such that σ � σR, whence contains strictly less Σ-formulas than σ. Note that
no information is lost by indexing σR solely by R, since, by equability, for each
(C1

R, C1
=), (C2

R, C2
=) ∈ C it holds that C1

= = C2
=. Since k ∈ C=, we already have

σ � σR. Now suppose, towards a contradiction, that σ = σR. Then by (1), there
must be some j ∈ C= such that Γj ⇒ Δj �= σ. It follows that

Γj ⇒ Δj = Γj ⇒ Δj (because Γj ⇒ Δj �= σ)

= Γk ⇒ Γk (because j, k ∈ C=)
= σ.

But then σ � σ, so σ = σ and H | σ = H, contradicting the assumption that
H | σ is not C-presaturated.

Finally, the induction hypothesis gives, for each (CR, C=) ∈ C, a suitable
retract HR of (ϕ, σR) � H | σR. We put:

H :=
⋃

(CR,C=)∈C

HR,

which finishes the proof of Claim 2.
The main statement of the lemma can now be proven from claims 1 and 2

by a straightforward induction. ��
Definition 31. Let C be some finite set of abstract simple frame conditions. A
Σ-hypersequent H is called C-maximal if the following hold:

(i) There is no cut-free HK∗
circ + RC-proof of H.

(ii) H is C-saturated.
(iii) H is ⊆-maximal as a Σ-hypersequent satisfying both (i) and (ii).
(iv) For every Σ-sequent σ:

Either σ � H or there is a cut-free HK∗
circ + RC-proof of H | σ.
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Because of space limitations the proof of the following lemma is only sketched.

Lemma 5. Let C be some finite set of abstract simple frame conditions. Then
any hypersequent H which has no cut-free HK∗

circ + RC-proof, can be �-extended
to be C-maximal.

Proof (sketch). In the same way as one can prove Lemma 2 of [10], it can be
shown that there is a Σ-hypersequent H0 such that H � H0 and H0 satisfies
conditions (i) and (iv) of C-maximality. Using similar arguments as in the proof
of Theorem 3 of [10], it can then be shown that H0 also satisfies condition (ii).
Finally, taking a ⊆-maximal extension of H0 with respect to conditions (i) and
(ii) breaks neither condition (iv) nor the encompassing of H. ��
We will prove our Truth Lemma for the canonical models of C-maximal hyper-
sequents. We first prove the following existence lemma.

Lemma 6. For C a finite set of equable simple frame conditions, let H be a
C-maximal Σ-hypersequent, and let S be its canonical model. Then for every
sequent σ := Γ ⇒ Δ ∈ H the following hold:

(i) For all �ψ ∈ Σ:
If �ψ ∈ Δ, then there is σ′ := Γ ′ ⇒ Δ′ ∈ H such that σRσ′ and ψ ∈ Δ′.

(ii) For all �∗ψ ∈ Σ:
If �∗ψ ∈ Δ, then there is σ′ := Γ ′ ⇒ Δ′ ∈ H such that σR∗σ′ and ψ ∈ Δ′.

Proof. We leave the proof of item (i) to the reader. For item (ii), define

S := {Γ ′ ⇒ Δ′ ∈ H : σR∗Γ ′ ⇒ Δ′ and, ψ ∈ Δ′ or ��∗ψ ∈ Δ′}.

We must show that S contains a sequent Γ ′ ⇒ Δ′ with ψ ∈ Δ′. Assume that
this is not the case. We will reach a contradiction by constructing a cut-free
HK∗

circ + RC-proof (π, f) of H.
Since σ ∈ S, we have ��∗ψ ∈ Δ by our assumption. We begin the construction

of (π, f) as follows:

(π1, f1)

H | �−1Γ ⇒ ψ

π2

H | �−1Γ ⇒ [��∗ψ]
�∗R

H | �−1Γ ⇒ [�∗ψ]
�

H | ��−1Γ ⇒ [��∗ψ]
iwL

...
iwL

H | Γ ⇒ [��∗ψ]
iwR

...
iwR

H | Γ ⇒ Δ, [��∗ψ]

The cut-free HK∗ +RC proof (π1, f1) is obtained by the C-maximality of H and
the fact that �−1Γ ⇒ ψ �� H. The latter must be the case, for otherwise there
would be a Γ1 ⇒ Δ1 ∈ H such that �−1Γ ⇒ ψ � Γ1 ⇒ Δ1. But that would
mean that Γ1 ⇒ Δ1 ∈ S with ψ ∈ Δ1, which we assumed not to be the case.
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We invoke Lemma 4 to obtain a retract H of H | �−1Γ ⇒ ��∗ψ and let π2 be
the derivation of this hypersequent from H. By construction, every annotated
hypersequent in H is of the form (��∗ψ, σ′) � H | σ′ where σ′ � �−1Γ ⇒ ��∗ψ.
Furthermore, the sequent σ′ is such that σ′ �� H or H | σ′ is C-saturated. By the
C-maximality of H this means that either H | σ′ has a cut-free HK∗

circ+RC-proof,
or σ′ ∈ H.

To every leaf of π2 that has a cut-free HK∗
circ + RC-proof, we append that

proof. Observe that any other leaf is of the form (��∗ψ, σ′) � H | σ′ for some
σ′ ∈ S. To each such leaf we recursively apply the above procedure. By the
finiteness of S, every branch created in this way must at some point encounter
the same annotated hypersequent (��∗ψ, σ′) � H | σ′ twice, for some in σ′ ∈ S.
Whenever that happens, we add a back edge from the second encounter to the
first and terminate the procedure for this branch. Notice that between target of
the newly added back edge and its source the focus rule is not applied, there is
always a formula in focus, and at least one unfolding happens on the induced
trace.

After finitely many steps this procedure terminates for every branch and we
obtain a cut-free HK∗

circ + RC-proof of H, giving the desired contradiction. ��
The following Truth Lemma is now proven using a straightforward induction,
which we leave to the reader.

Lemma 7. Let SH be the canonical model for some C-maximal Σ-hypersequent
H. Then for all σ := Γ ⇒ Δ ∈ SH and ϕ ∈ Σ the following hold:

(a) If ϕ ∈ Γ , then S
H , s � ϕ.

(b) If ϕ ∈ Δ, then S
H , s �� ϕ.

Proof of Theorem 2. We argue by contraposition. Suppose H has no cut-free
HK∗

circ + RC-proof. Let Σ be a finite closed set such that H is a Σ-sequent. By
Lemma 5, there is a C-maximal Σ-hypersequent H0 encompassing H.

We claim that the canonical model S
H0 for H0 is a countermodel to H.

Indeed, let σ ∈ H, then there is σ0 := Γ0 ⇒ Δ0 ∈ H0 such that σ � σ0. By
Lemma 7, we have for each ϕ ∈ Γ0 that S

H0 , s0 � ϕ and for each ψ ∈ Δ0 that
S

H0 , s0 �� ψ. Thus σ0 is not valid in S
H0 , and the same holds for σ. Since σ was

taken arbitrarily, the hypersequent H is not valid in S
H0 .

Finally, the result follows that fact that, by C-saturation, the model SH0 is a
C-model. ��
Question 2. For which other finite sets C of simple (not necessarily equable)
frame conditions is HK∗

circ + RC cut-free complete?

Corollary 1. For C a finite set of equable frame conditions, the logic obtained
by interpreting ML∗ on the class of C-frames is decidable.

Proof. Let H be an arbitrary hypersequent. Then H is a Σ-hypersequent for
some finite closed set Σ. If H is invalid in some C-model, then, by Theorem 1, it
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follows that H cannot have a cut-free HK∗
circ + RC-proof. By the same reasoning

as in the proof of Theorem 2 we obtain a model SH0 in which H is not valid.
Since the size of this model is by construction bounded by the size of Σ, we can
decide the C-validity of H by checking its validity in finitely many models.

Question 3. Is the size of the smallest cut-free HK∗
circ +RC-proof of some C-valid

Σ-hypersequent also bounded by the size of Σ? We conjecture that this question
can be answered positively by showing that for every cut-free HK∗

circ +RC-proof,
there is a cut-free HK∗

circ +RC-proof of the same hypersequent, with the property
that every branch contains at most one annotated hypersequent twice (in which
case these two occurrences are connected by a back edge) and no annotated
hypersequent more than twice.

5.2 Completeness via (Infinitary) Proof Search

A standard method for proving completeness of non-well-founded proof systems
is via infinitary proof search. Roughly, the idea is to find some proof-search
strategy such that a countermodel can be extracted from a failed attempt, i.e.
an attempt that does not yield a proof. Then, since soundness entails that the
proof-search must fail for any invalid hypersequent, completeness follows. This
is also the method used to prove completeness in [4].

In this subsection we briefly sketch a complication that arises when one tries
to apply this method to our hypersequent calculi. Because this already occurs
in the case of HK∗

inf (without additional rules for frame conditions), we restrict
our attention to this system.

Suppose we obtain a pre-proof π from the failure of an application of some
proof-search strategy for HK∗

inf to the hypersequent H. The problem arises in the
case that π is infinite. In this case we wish to use the fact that π has a branch β
which is not covered by a good trace, in order to extract a countermodel. One
might for example try to take the canonical model SH of some hypersequent H
that occurs infinitely often on β. To prove an analogue of part (ii) of Lemma 6
for S

H , we would have to show that any �∗ψ ∈ Δ for some Γ ⇒ Δ in H is not
unfolded infinitely often on β. The proof-search strategy would then ensure that
at some point in the branch β the rule �∗R is applied to �∗ψ in Γ ⇒ Δ and the
branch β continues through the premiss on the left-hand side. This would give
us a state Γ ′ ⇒ Δ′ in S

H such that Γ ⇒ ΔR∗Γ ′ ⇒ Δ′ and ψ ∈ Δ′. The problem
is that we cannot guarantee that �∗ψ is not unfolded infinitely often, because we
might repeatedly lose its trace due to that trace being overtaken by some other
active sequent (cf. Remark 1 and Question 1).

6 Conclusion

In this paper we have constructed sound and complete infinitary and cyclic proof
systems for ML∗ interpreted on any frame class characterised by a finite number
of equable frame conditions.
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In future work we wish to extend this to non-equable frame conditions. We
conjecture that there are cases in which the single focus-style annotations are
not sufficient, and one must turn a more complex annotating mechanism.

We would also like to extend this work to more expressive fragments of the
modal μ-calculus, such as polymodal logic with the master modality, PDL, the
alternation-free modal μ-calculus, or even the modal μ-calculus itself.

Another avenue for further research is to see whether our hypersequent calculi
can be used to establish Craig interpolation for their respective logics.

Finally, we wish to combine non-well-founded proof theory with other enrich-
ments of ordinary Gentzen sequents, such as nested sequents. It would be inter-
esting to better understand which of such systems combine well with non-well-
founded proof theory and why.
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