Focus-style proofs for the two-way alternation-free μ -calculus

(joint work in progress with Yde Venema)

Jan Rooduijn

ILLC, University of Amsterdam

Groningen, 4 May 2023

Overview

- The (alternation-free) modal μ -calculus
 - Game semantics
 - · Cyclic proofs for the alternation-free modal mu-calculus
 - Focus annotations
 - Completeness
- ullet The two-way alternation-free modal μ -calculus
 - Problems for completeness
 - The solution: trace atoms
- Our results
- Conclusion and future work

The modal μ -calculus

- A set P of propositional variables.
- A set D of actions.

$$\varphi ::= \frac{p}{p} \mid \overline{p} \mid \varphi \lor \psi \mid \varphi \land \psi \mid \langle a \rangle \varphi \mid [a] \varphi \mid \mu \underset{\nearrow}{\times} \varphi \mid \nu \underset{\nearrow}{\times} \varphi$$
 where $\overline{\times}$ does not occur in φ .

Given a Kripke model $\mathbb{S} = (S, (R_a)_{a \in D}, V)$ and a propositional variable x, a formula φ induces a function

$$\llbracket \varphi \rrbracket_{\mathsf{x}}^{\mathbb{S}} : \mathcal{P}(S) \to \mathcal{P}(S)$$
$$: X \mapsto \llbracket \varphi \rrbracket^{\mathbb{S}[\mathsf{x} \mapsto X]}$$

 $[\![\eta x \varphi]\!]^{\mathbb{S}}$ is the least/greatest fixed point of $[\![\varphi]\!]_{\mathbf{x}}^{\mathbb{S}}$.

The alternation-free fragment

Definition

A formula ξ is alternation free if for every subformula $\eta x \varphi$ of ξ it holds that no free occurrence of x in φ is in the scope of an $\overline{\eta}$ -operator in φ .

$$\mu \times \mu y (\langle a \rangle (x \vee p) \wedge \langle b \rangle y) \qquad \mu \times \nu y (\langle a \rangle (x \vee p) \wedge \langle b \rangle y)$$
$$\mu \times (\langle a \rangle (x \vee p) \wedge \mu y \langle b \rangle y) \qquad \mu \times (\langle a \rangle (x \vee p) \wedge \nu y \langle b \rangle y)$$

ullet The alternation-free modal μ -calculus subsumes PDL, CKL and many other extensions of modal logic by fixed point operators.

At position (φ, s) , player \exists wants to show that φ is true s, while player \forall wishes to show that φ is false at s.

 $(\langle a \rangle [b] \mu x (\langle a \rangle x \vee p), s_1)$

$$(\langle a \rangle [b] \mu x (\langle a \rangle x \vee p), s_1)$$

$$\xrightarrow{\exists} ([b] \mu x (\langle a \rangle x \vee p), s_2)$$

$$(\langle a \rangle [b] \mu x (\langle a \rangle x \vee p), s_1)$$

$$\xrightarrow{\exists} ([b] \mu x (\langle a \rangle x \vee p), s_2)$$

$$\xrightarrow{\forall} (\mu x (\langle a \rangle x \vee p), s_3)$$

$$(\langle a \rangle [b] \mu x (\langle a \rangle x \vee p), s_1)$$

$$\xrightarrow{\exists} ([b] \mu x (\langle a \rangle x \vee p), s_2)$$

$$\xrightarrow{\forall} (\mu x (\langle a \rangle x \vee p), s_3)$$

$$\xrightarrow{} (\langle a \rangle \mu x (\langle a \rangle x \vee p) \vee p, s_3)$$

$$(\langle a \rangle [b] \mu x (\langle a \rangle x \vee p), s_1)$$

$$\xrightarrow{\exists} ([b] \mu x (\langle a \rangle x \vee p), s_2)$$

$$\xrightarrow{\forall} (\mu x (\langle a \rangle x \vee p), s_3)$$

$$\xrightarrow{\rightarrow} (\langle a \rangle \mu x (\langle a \rangle x \vee p) \vee p, s_3)$$

$$\xrightarrow{\exists} (\langle a \rangle \mu x (\langle a \rangle x \vee p), s_3)$$

$$\begin{array}{c} \exists \text{ } (\langle a \rangle [b] \mu x (\langle a \rangle x \vee p), s_1) \\ \xrightarrow{\exists} ([b] \mu x (\langle a \rangle x \vee p), s_2) \\ \xrightarrow{\forall} (\mu x (\langle a \rangle x \vee p), s_3) \\ \xrightarrow{\cdot} (\langle a \rangle \mu x (\langle a \rangle x \vee p) \vee p, s_3) \\ \xrightarrow{\exists} (\langle a \rangle \mu x (\langle a \rangle x \vee p), s_3) \\ \xrightarrow{\exists} (\mu x (\langle a \rangle x \vee p), s_4) \end{array}$$

$$(\langle a \rangle [b] \mu x (\langle a \rangle x \vee p), s_1)$$

$$\xrightarrow{\exists} ([b] \mu x (\langle a \rangle x \vee p), s_2)$$

$$\xrightarrow{\forall} (\mu x (\langle a \rangle x \vee p), s_3)$$

$$\xrightarrow{\cdot} (\langle a \rangle \mu x (\langle a \rangle x \vee p) \vee p, s_3)$$

$$\xrightarrow{\exists} (\langle a \rangle \mu x (\langle a \rangle x \vee p), s_3)$$

$$\xrightarrow{\exists} (\mu x (\langle a \rangle x \vee p), s_4)$$

$$\xrightarrow{\cdot} (\langle a \rangle \mu x (\langle a \rangle x \vee p) \vee p, s_4)$$

$$\xrightarrow{\cdot} (\langle a \rangle \mu x (\langle a \rangle x \vee p) \vee p, s_4)$$

$$(\langle a \rangle [b] \mu x (\langle a \rangle x \vee p), s_1)$$

$$\xrightarrow{\exists} ([b] \mu x (\langle a \rangle x \vee p), s_2)$$

$$\xrightarrow{\forall} (\mu x (\langle a \rangle x \vee p), s_3)$$

$$\xrightarrow{\cdot} (\langle a \rangle \mu x (\langle a \rangle x \vee p) \vee p, s_3)$$

$$\xrightarrow{\exists} (\langle a \rangle \mu x (\langle a \rangle x \vee p), s_3)$$

$$\xrightarrow{\exists} (\mu x (\langle a \rangle x \vee p), s_4)$$

$$\xrightarrow{\cdot} (\langle a \rangle \mu x (\langle a \rangle x \vee p) \vee p, s_4)$$

$$\xrightarrow{\exists} (\langle a \rangle \mu x (\langle a \rangle x \vee p), s_4)$$

$$\xrightarrow{\exists} (\langle a \rangle \mu x (\langle a \rangle x \vee p), s_4)$$

$$(\langle a \rangle [b] \mu x (\langle a \rangle x \vee p), s_1)$$

$$\xrightarrow{\exists} ([b] \mu x (\langle a \rangle x \vee p), s_2)$$

$$\xrightarrow{\forall} (\mu x (\langle a \rangle x \vee p), s_3)$$

$$\xrightarrow{\cdot} (\langle a \rangle \mu x (\langle a \rangle x \vee p) \vee p, s_3)$$

$$\xrightarrow{\exists} (\langle a \rangle \mu x (\langle a \rangle x \vee p), s_3)$$

$$\xrightarrow{\exists} (\mu x (\langle a \rangle x \vee p), s_4)$$

$$\xrightarrow{\cdot} (\langle a \rangle \mu x (\langle a \rangle x \vee p) \vee p, s_4)$$

$$\xrightarrow{\exists} (\langle a \rangle \mu x (\langle a \rangle x \vee p), s_4)$$

$$\xrightarrow{\exists} (\langle a \rangle \mu x (\langle a \rangle x \vee p), s_4)$$

$$\xrightarrow{\exists} (\mu x (\langle a \rangle x \vee p) \vee p, s_6)$$

$$(\langle a \rangle [b] \mu x (\langle a \rangle x \vee p), s_1)$$

$$\xrightarrow{\exists} ([b] \mu x (\langle a \rangle x \vee p), s_2)$$

$$\xrightarrow{\forall} (\mu x (\langle a \rangle x \vee p), s_3)$$

$$\xrightarrow{\rightarrow} (\langle a \rangle \mu x (\langle a \rangle x \vee p) \vee p, s_3)$$

$$\xrightarrow{\exists} (\langle a \rangle \mu x (\langle a \rangle x \vee p), s_3)$$

$$\xrightarrow{\exists} (\mu x (\langle a \rangle x \vee p), s_4)$$

$$\xrightarrow{\rightarrow} (\langle a \rangle \mu x (\langle a \rangle x \vee p) \vee p, s_4)$$

$$\xrightarrow{\exists} (\langle a \rangle \mu x (\langle a \rangle x \vee p), s_4)$$

$$\xrightarrow{\exists} (\mu x (\langle a \rangle x \vee p), s_4)$$

$$\xrightarrow{\exists} (\mu x (\langle a \rangle x \vee p), s_4)$$

$$\xrightarrow{\exists} (\mu x (\langle a \rangle x \vee p), s_6)$$

$$\xrightarrow{\rightarrow} (\langle a \rangle \mu x (\langle a \rangle x \vee p) \vee p, s_6)$$

$$\xrightarrow{\rightarrow} (\langle a \rangle \mu x (\langle a \rangle x \vee p) \vee p, s_6)$$

$$(\langle a \rangle [b] \mu x (\langle a \rangle x \vee p), s_1)$$

$$\stackrel{\exists}{\rightarrow} ([b] \mu x (\langle a \rangle x \vee p), s_2)$$

$$\stackrel{\forall}{\rightarrow} (\mu x (\langle a \rangle x \vee p), s_3)$$

$$\stackrel{\vdots}{\rightarrow} (\langle a \rangle \mu x (\langle a \rangle x \vee p) \vee p, s_3)$$

$$\stackrel{\exists}{\rightarrow} (\langle a \rangle \mu x (\langle a \rangle x \vee p), s_3)$$

$$\stackrel{\exists}{\rightarrow} (\mu x (\langle a \rangle x \vee p), s_4)$$

$$\stackrel{\vdots}{\rightarrow} (\langle a \rangle \mu x (\langle a \rangle x \vee p) \vee p, s_4)$$

$$\stackrel{\exists}{\rightarrow} (\langle a \rangle \mu x (\langle a \rangle x \vee p), s_4)$$

$$\stackrel{\exists}{\rightarrow} (\langle a \rangle \mu x (\langle a \rangle x \vee p), s_4)$$

$$\stackrel{\exists}{\rightarrow} (\mu x (\langle a \rangle x \vee p) \vee p, s_6)$$

$$\stackrel{\vdots}{\rightarrow} (\langle a \rangle \mu x (\langle a \rangle x \vee p) \vee p, s_6)$$

$$\stackrel{\exists}{\rightarrow} (p, s_6)$$

The evaluation game (definition)

The game $\mathcal{E}(\xi,\mathbb{S})$ is played on the board $\mathsf{Clos}(\xi) \times S$.

Position	Owner	Admissible moves
$(p,s), s \in V(p)$	A	Ø
$(p,s), s \notin V(p)$	∃ ∃	Ø
$(\varphi \lor \psi, s)$	3	$\{(\varphi,s),(\psi,s)\}$
$(arphi \wedge \psi, s)$	\forall	$\{(\varphi,s),(\psi,s)\}$
$(\langle a angle arphi, s)$	3	$\{\varphi\} \times R_a[s]$
([a]arphi,s)	\forall	$\{\varphi\} \times R_a[s]$
$(\eta x arphi, s)$	_	$\{(\varphi[\eta x \varphi/x], s)\}$

An infinite $\mathcal{E}(\xi,\mathbb{S})$ -match is won by \exists (\forall) iff it contains infinitely many ν -formulas (μ -formulas)

Example

 $\mu x \langle a \rangle x \vee p \equiv$ "a p-state is reachable by an a-path"

Theorem (Kozen)

 $Clos(\xi)$ is always finite.

A non-well-founded proof system

A non-well-founded proof system, continued

$$\begin{array}{c} \vdots \\ \mu x[a]x \\ \hline [a]\mu x[a]x \\ \hline \mu x[a]x \\ \hline R_{\mu} \\ \hline [a]\mu x[a]x \\ \hline \mu x[a]x \\ R_{\mu} \end{array}$$

$$\frac{\begin{array}{c} \vdots \\ \nu x[a]x \\ \hline [a]\nu x[a]x \\ \hline \nu x[a]x \\ \hline \hline [a]\nu x[a]x \\ \hline [a]\nu x[a]x \\ \hline \nu x[a]x \\ R_{\nu}
\end{array}} R_{[a]}$$

Definition

A non-well-founded derivation is a proof if every infinite branch contains a v-trace.

The proof search game

Definition

A rule instance is a triple $(\Gamma, r, \langle \Delta_1, \dots, \Delta_n \rangle)$ such that $\frac{\Delta_1 \cdots \Delta_n}{\Gamma}$ r is a valid rule application.

Let Σ be some finite and closed set of formulas. We write:

- Seq_Σ for the sequents containing only formulas from Σ .
- Inst $_{\Sigma}$ for the rule instances containing only formulas from Σ .
- conc(i) for the conclusion of some instance $i \in Inst_{\Sigma}$.

The game $\mathcal{G}(\Sigma)$ is played on the board $\mathsf{Seq}_\Sigma \cup \mathsf{Inst}_\Sigma.$

Position	Owner	Admissible moves
$\Gamma \in Seq_{oldsymbol{\Sigma}}$	Prover	$ \{i \in Inst_{\Sigma} \mid conc(i) = \Gamma\} $
$(\Gamma,r,\langle\Delta_1,\ldots,\Delta_n\rangle)\inInst_\Sigma$	Refuter	$\{\Delta_i \mid 1 \le i \le n\}$

An infinite match is won by Prover if and only if every infinite branch contains a ν -trace. Viewed as a tree, a winning strategy for Prover is the same as a proof.

Parity games

Definition

A game $\mathcal G$ is said to be a *parity game* if there exists a priority function $\Omega: B \to \omega$ with $|\mathrm{ran}(\Omega)| < \omega$ on the set of positions B of $\mathcal G$ such that an infinite match $\alpha \in B^\omega$ is won iff the greatest priority encountered infinitely often is even.

Theorem (Emerson & Jutla, Mostowski)

Parity games are positionally determined.

Cyclic proofs (first step)

$$\varphi = \nu x.(\langle a \rangle x \vee \psi) \vee (\langle b \rangle x \vee \psi)$$

$$\psi = [a] \bot \wedge [b] \bot$$

Corollary

For every non-well-founded proof, there is a regular non-well-founded proof.

Cyclic proofs (second step)

$$\frac{\vdots}{\langle a \rangle \varphi^{\bullet}, \langle b \rangle \varphi^{\bullet}, [a] \perp^{\bullet}} \frac{\varphi^{\bullet}, \perp^{\bullet}}{\langle a \rangle \varphi^{\bullet}, \langle b \rangle \varphi^{\bullet}, [b] \perp^{\bullet}} \frac{\langle a \rangle \varphi^{\bullet}, \langle b \rangle \varphi^{\bullet}, [b] \perp^{\bullet}}{\langle (\langle a \rangle \varphi \vee \psi) \vee (\langle b \rangle \varphi \vee \psi)^{\bullet}} \frac{\langle a \rangle \varphi^{\bullet}, \langle b \rangle \varphi^{\bullet}, \psi^{\bullet}}{\varphi^{\bullet}}$$

Most convenient form for interpolation, proof translations, cut-elimination, ...

An annotated proof system (Marti & Venema)

$$\frac{\varphi^{u}, \overline{\varphi}^{v}, \Gamma}{\varphi^{u}, \overline{\varphi}^{v}, \Gamma} \operatorname{Ax} \qquad \frac{\varphi^{u}, \psi^{u}, \Gamma}{\varphi \vee \psi^{u}, \Gamma} \vee \qquad \frac{\varphi^{u}, \Gamma}{\varphi \wedge \psi^{u}, \Gamma} \wedge$$

$$\frac{\varphi^{u}, \Delta}{[a] \varphi^{u}, \langle a \rangle \Delta, \Gamma} [a] \qquad \frac{\varphi[\mu x \varphi/x]^{\circ}, \Gamma}{\mu x \varphi^{u}, \Gamma} \mu \qquad \frac{\varphi[\nu x \varphi/x]^{u}, \Gamma}{\nu x \varphi^{u}, \Gamma} \nu \qquad \frac{\Gamma^{\bullet}}{\Gamma^{\circ}} \operatorname{F}$$

Definition

A non-well-founded derivation is a *proof* if every infinite branch has a final segment on which there is always a formula in focus.

- The (path-based) focus system is equivalent to the trace-based system.
- The proof-search game for the focus system is a parity game.
- The focus annotations allow for a nice soundness condition on cyclic proofs as finite trees with back edges.

Completeness

Theorem (Niwinski & Walukiewicz, Marti & Venema)

Every valid sequent Γ is provable.

Proof (sketch).

Suppose Γ is not provable. By determinacy, there is a winning strategy T for Refuter in $\mathcal{G}(\Gamma)$.

 $S^T := \{ \text{maximal paths } \rho \text{ in } T \text{ such that } \rho \text{ does not pass a modal rule} \}$ $\rho_1 R_1^T \rho_2 : \Leftrightarrow \rho_1$ is connected to ρ_2 by an application of the rule [a] $p \in V^T(\rho) :\Leftrightarrow p \text{ occurs in } \rho$

The two-way alternation-free modal μ -calculus

- A set P of propositional variables.
- A set D of actions.

Fix an involution operation $\check{\cdot}$ on D, i.e. $a \neq \check{a}$ and $\check{\check{a}} = a$ for every $a \in \mathsf{D}$

$$\varphi ::= \frac{p}{p} | \overline{p} | \varphi \lor \psi | \varphi \land \psi | \langle a \rangle \varphi | [a] \varphi | \underset{\nearrow}{\mu \times \varphi} | \underset{\searrow}{\nu \times \varphi}$$
 where \overline{x} does not occur in φ .

The two-way modal μ -calculus is interpreted over *regular* models:

$$R_{\breve{\mathsf{a}}} = \{(t,s) : (s,t) \in R_{\mathsf{a}}\}$$

Problem for completeness

$$(\langle \breve{\mathbf{a}} \rangle \psi, \rho_1) \stackrel{\exists}{\longrightarrow} (\psi, \rho_0)$$

Modal rule for the two-way μ -calculus

$$\begin{split} \frac{\varphi,\Delta,[\widecheck{\mathtt{a}}]\Gamma}{[\mathtt{a}]\varphi,\langle\mathtt{a}\rangle\Delta,\Gamma} \, \mathsf{R}_{[\mathtt{a}]} & \frac{\varphi^{\circ},\Gamma}{\Gamma} \, \overline{\varphi}^{\circ},\Gamma \\ \\ \langle \widecheck{\mathtt{a}}\rangle\psi \in \Gamma_{1} \Rightarrow [\widecheck{\mathtt{a}}]\overline{\psi} \notin \Gamma_{0} \Rightarrow \overline{\psi} \notin \Gamma_{0} \Rightarrow \psi \in \Gamma_{0} \end{split}$$

Another problem for completeness

If $\langle \check{a} \rangle \psi^{\bullet}$ occurs in ρ_1 , then ψ^u occurs in ρ_0 . But how do we get $u = \bullet$?

Trace atoms (inspired by Vardi)

Definition

Given φ, ψ , there is a trace atom $\varphi \rightsquigarrow \psi$ and a negated trace atom $\varphi \not\rightsquigarrow \psi$.

Definition

Given a positional strategy f for \forall in \mathcal{E} , we say that $\varphi \leadsto \psi$ is satisfied in \mathbb{S} at s with respect to f (and write $\mathbb{S}, s \Vdash_f \varphi \leadsto \psi$) if there is an f-guided match

$$(\varphi,s)=(\varphi_0,s_0)\cdot(\varphi_1,s_1)\cdots(\varphi_n,s_n)=(\psi,s)\quad (n\geq 0)$$

such that for no i < n the formula φ_i is a μ -formula. We say that $\mathbb S$ satisfies $\varphi \not \rightsquigarrow \psi$ at s with respect to f (and write $\mathbb{S}, s \Vdash_f \varphi \not \rightsquigarrow \psi$) iff $\mathbb{S}, s \not\Vdash_f \varphi \rightsquigarrow \psi$.

Example

If $\mathbb{S}, s \Vdash_f \varphi \leadsto \psi$ and $\mathbb{S}, s \Vdash_f \psi \leadsto \varphi$ for some $\varphi \neq \psi$, then $\mathbb{S}, s \Vdash_f \varphi$.

Theorem

 $\mathbb{S}, s \Vdash \varphi$ iff for every positional strategy f for \forall in \mathcal{E} it holds that $\mathbb{S}, s \Vdash_f \varphi$.

Incorporating trace atoms in the proof system

If $\chi \not\rightsquigarrow \langle a \rangle \psi$ occurs in ρ_0 , then $\langle \check{a} \rangle \chi \not\rightsquigarrow \psi$ occurs in ρ_1 .

Completenes

Lemma

Let $\rho \in S^T$. Suppose \mathbb{S}^T , $\rho \Vdash_f \varphi \leadsto \psi$. Then $\varphi \not\rightsquigarrow \psi$ occurs in ρ .

Results

Let Γ be a sequent consisting of annotated formulas (i.e. φ^u with $u \in \{\circ, \bullet\}$), trace atoms, and negated trace atoms.

Theorem (Soundness)

If Γ is provable, then for every model $\mathbb S$, state s of $\mathbb S$ and positional strategy f for \forall in $\mathcal E$, there is an $A \in \Gamma$ such that $\mathbb S, s \Vdash_f A$.

Let Γ^- be the set of annotated formulas in Γ .

Theorem (Completeness)

If Γ^- is valid, then Γ is provable.

Remark

The infinitary proof system naturally restricts to a finitary cyclic system.

Corollary

The two-way alternation-free modal μ -calculus is decidable and has the regular model property.

Future work

- Completeness for all sequents, e.g. $\{\varphi_1 \land \varphi_2 \leadsto \varphi_1, \varphi_1 \land \varphi_2 \leadsto \varphi_2\}$.
- Interpolation
- Incorporating trace atoms in the syntax?
- Extending this system to the full two-way modal μ -calculus (*i.e.* with alternation)

Thank you

https://staff.fnwi.uva.nl/j.m.w.rooduijn/

$$\frac{\varphi^{u}, \overline{\varphi}^{v}, \Gamma}{\varphi^{u}, \overline{\varphi}^{v}, \Gamma} \text{ Ax1} \qquad \frac{\varphi \rightsquigarrow \psi, \varphi \not \rightsquigarrow \psi, \Gamma}{\varphi \lor \psi^{u}, \Gamma} \text{ Ax2} \qquad \frac{\varphi^{\circ}, \Gamma}{\varphi \rightsquigarrow \varphi, \Gamma} \text{ Ax3}$$

$$\frac{(\varphi \lor \psi) \not \rightsquigarrow \varphi, (\varphi \lor \psi) \not \rightsquigarrow \psi, \varphi^{u}, \psi^{u}, \Gamma}{\varphi \lor \psi^{u}, \Gamma} \text{ R}_{V} \qquad \frac{\varphi^{\circ}, \Gamma}{\Gamma} \text{ cut}$$

$$\frac{(\varphi \land \psi) \not \rightsquigarrow \varphi, \varphi^{u}, \Gamma}{\varphi \land \psi^{u}, \Gamma} \qquad (\varphi \land \psi) \not \rightsquigarrow \psi, \psi^{u}, \Gamma}{\varphi \land \psi^{u}, \Gamma} \text{ R}_{\Lambda} \qquad \frac{\varphi[\mu x \varphi / x]^{\circ}, \Gamma}{\mu x \varphi^{u}, \Gamma} \text{ R}_{\mu}$$

$$\frac{\nu x \varphi \not \rightsquigarrow \varphi[\nu x \varphi / x], \varphi[\nu x \varphi / x] \rightsquigarrow \nu x \varphi, \varphi[\nu x \varphi / x]^{u}, \Gamma}{\nu x \varphi^{u}, \Gamma} \text{ R}_{[a]}$$

$$\frac{\Gamma^{\bullet}}{\Gamma^{\circ}} \text{ F} \qquad \frac{\varphi \not \rightsquigarrow \psi, \psi \not \rightsquigarrow \chi, \varphi \not \rightsquigarrow \chi, \Gamma}{\varphi \not \rightsquigarrow \psi, \psi \not \rightsquigarrow \chi, \Gamma} \text{ trans} \qquad \frac{\varphi \leadsto \psi, \Gamma}{\varphi \not \rightsquigarrow \psi, \psi \not \sim \psi, \Gamma} \text{ tc}$$

Definition

Let Γ be a sequent and let $[a]\varphi^b$ be an annotated formula. The $jump\ \Gamma^{[a]\varphi^b}$ of Γ with respect to $[a]\varphi^b$ consists of:

- - **3** $[\check{a}]\chi^{\circ}$ for every $\chi^{d} \in \Gamma$ such that $[\check{a}]\chi \in \Sigma$;
- - $② \ \, \langle \breve{\mathbf{a}} \rangle \chi \not \rightsquigarrow \varphi \text{ for every } \chi \not \rightsquigarrow [\mathbf{a}] \varphi \in \Gamma \text{ such that } \langle \breve{\mathbf{a}} \rangle \chi \in \Sigma;$

 - $\langle \breve{a} \rangle \chi \not \rightsquigarrow \psi$ for every $\chi \not \rightsquigarrow \langle a \rangle \psi \in \Gamma$ such that $\langle \breve{a} \rangle \chi \in \Sigma$.

where $s(\xi, \Gamma)$ is defined by:

$$s(\xi, \Gamma) = \begin{cases} \bullet & \text{if } \xi^{\bullet} \in \Gamma, \\ \bullet & \text{if } \theta \not \rightsquigarrow \xi \in \Gamma \text{ for some } \theta^{\bullet} \in \Gamma \\ \circ & \text{otherwise.} \end{cases}$$

When taking the strategy tree T, we assume that Prover adheres to the following non-deterministic strategy:

- Only apply a modal rule when all of the propositional rules are exhausted.
- Apply the rule F whenever possible.

The canonical strategy f for \forall in $\mathcal{E}(\Gamma, \mathbb{S}^T)$ is given by:

- At $(\varphi \land \psi, \rho)$ choose the conjunct corresponding to the choice of Refuter when $\varphi \land \psi$ is principal in an application of the rule \wedge in ρ .
- At ($[a]\varphi, \rho$) choose an a-successor ρ' of ρ such that ρ and ρ' are separated by an application of [a].