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Multi-agent epistemic logic

A countable set P of propositional variables.

A finite set A of agents.

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | �iϕ

�iϕ expresses that agent i ∈ A knows that ϕ.
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Epistemic principles

Principle Axiom Formula Frame condition

Epistemic closure K �i (ϕ→ ψ)→ (�iϕ→ �iψ) -
Veridicality T �iϕ→ ϕ Reflexivity

Positive introspection 4 �iϕ→ �i�iϕ Transitivity
Negative introspection 5 ¬�iϕ→ �i¬�iϕ Euclideaness

Negative introspection is philosophically controversial, but standard in
applications in computer science and game theory.

We assume all axioms above.
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Semantics

Definition

An epistemic Kripke model is a tuple S = (S , {Ri | i ∈ A},V ) where

• S is a non-empty set;

• Ri is an equivalence relation on S for each i ∈ A;

• V is a function S → P(P).

s  p t  ¬p
1, 2

s  p ∧ ¬�1p ∧ ¬�2p.
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Common knowledge logic

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | �iϕ | �∗ϕ

�ϕ := ϕ1 ∧ · · · ∧ ϕn (everybody knows ϕ)

�∗ϕ ≡ ϕ ∧ �ϕ ∧ ��ϕ ∧ · · · (it is common knowledge that ϕ)

s  �ϕ⇔ t  ϕ for every t such that sRi t with i ∈ A.

s  �∗ϕ⇔ t  ϕ for every path s = s0Ri1s1Ri2 · · ·Rimsm = t with each ik in A.
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Hilbert-style proof system

Standard axioms and rules for basic multi-modal logic Kn

Axioms for S5n

(T) �ip → p.
(5 ) ¬�ip → �i¬�ip

Axiom and rule for �∗
(fix) �∗ϕ↔ ϕ ∧ ��∗ϕ

ϕ→ (�ϕ ∧ ψ)
(ind)

ϕ→ �∗ψ

W. van der Hoek H. van Ditmarsch J.Y. Halpern and B. Kooi. “An Introduction to Logics
of Knowledge and Belief”. In: Handbook of Epistemic Logic. College Publications, 2015.
Chap. 1, pp. 1–51.
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A Gentzen-style reformulation

All sequent rules for propositional logic (inlcuding wL and wR)

Modal rules

Γ, ϕ⇒ ∆
�T

Γ,�iϕ⇒ ∆

�iΓ⇒ ϕ,�i∆
�S5

�iΓ⇒ �iϕ,�i∆

Fixpoint rules

Γ, ϕ,��∗ϕ⇒ ∆
�∗L

Γ,�∗ϕ⇒ ∆

Γ⇒ ϕ,∆ Γ⇒ ��∗ϕ,∆
�∗R

Γ⇒ �∗ϕ,∆
Induction rule

ϕ⇒ �ϕ ϕ⇒ ψ
ind

ϕ⇒ �∗ψ,∆
Cut rule

Γ⇒ ϕ,∆ Γ, ϕ⇒ ∆
cut

Γ⇒ ∆

Luca Alberucci and Gerhard Jäger. “About cut elimination for logics of common
knowledge”. In: Annals of Pure and Applied Logic 133.1-3 (2005), pp. 73–99.
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Fischer-Ladner closure

Definition

The Fischer-Ladner closure of a formula ϕ is the smallest set of formulas Cl(ϕ)
which contains ϕ and is closed under the following conditions:

• ¬ψ ∈ Cl(ϕ) implies ψ ∈ Cl(ϕ);

• ψ1 ∧ ψ2 ∈ Cl(ϕ) implies ψk ∈ Cl(ϕ) for each k ∈ {1, 2};
• �iψ ∈ Cl(ϕ) implies ψ ∈ Cl(ϕ);

• �∗ψ ∈ Cl(ϕ) implies ψ ∈ Cl(ϕ) and ��∗ϕ ∈ Cl(ϕ).

Moreover, for A a set of formulas, we define:

Cl(A) :=
⋃
{Cl(ϕ) | ϕ ∈ A}.

The closure of a finite set of formulas is always finite.
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The Alberucci-Jäger calculus is not analytic

• The induction rule does not stay within Cl(ϕ):

ϕ⇒ �ϕ ϕ⇒ ψ
ind

ϕ⇒ �∗ψ,∆

• Cut-restriction has only been proven to the ‘conjunctive closure’ of Cl(ϕ),
which is exponentially larger than Cl(ϕ) itself.

Γ⇒ ϕ,∆ Γ, ϕ⇒ ∆
cut

Γ⇒ ∆
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Some remarks on cut-elimination for S5n

Recall the modal rule
�iΓ⇒ ϕ,�i∆

�S5
�iΓ⇒ �iϕ,�i∆

.

The following sequent is valid: ⇒ �i¬�ip, p.

However, the only way to derive it would be by applying the modal rule:

⇒ ¬�ip,�i¬�ip
�S5 ⇒ �i¬�ip, p

of which the premiss is not valid.

• Ordinary sequents for S5n require analytic cuts.

• Hypersequents satisfy cut-elimination for S51.

• For cut-elimination for S5n one needs an even more expressive framework
(e.g. nested sequents)

Masao Ohnishi and Kazuo Matsumoto. “Gentzen method in modal calculi”. In: Osaka
Mathematical Journal 9.2 (1957), pp. 113–130.
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The Hill-Poggiolesi calculus

• Labelled hypersequent calculus

• Syntactic cut-elimination

• Induction rule of the form:

Γ⇒ ∆, ϕ ϕ⇒ ψ ϕ⇒ �ϕ
ind2 Γ⇒ ∆,�∗ψ

Brian Hill and Francesca Poggiolesi. “Common knowledge: a finitary calculus with a
syntactic cut-elimination procedure”. In: Logique et Analyse (2015), pp. 279–306.

Jan Rooduijn (ILLC) An analytic proof system for S5-CKL LIRa Seminar, 8 June 2023 12 / 35



The sequent calculus sCKLf

Definition

An annotated formula is a pair (ϕ, a), usually written ϕa, where ϕ is a formula
and a ∈ {u, f }. The annotation u indicates that ϕ is unfocussed and f indicates
that ϕ is in focus.

Definition

A sequent is an ordered pair (Γ,∆), usually written Γ⇒ ∆, where Γ,∆ are sets of
annotated formulas.
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The sequent calculus sCKLf

Definition
A CKL-sequent is a sequent Γ⇒ ∆ which satisfies the following properties:

1 Every formula in Γ is unfocussed.

2 At most one formula in ∆ is in focus.

3 If ϕf ∈ ∆, then ϕ = �∗ψ or ϕ = �i�∗ψ.
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The sequent calculus sCKLf

Γ, ϕu, {�i�∗ϕu}ni=1 ⇒ ∆
�∗L

Γ,�∗ϕu ⇒ ∆

Γ⇒ ϕu,∆ {Γ⇒ �i�∗ϕa,∆}ni=1
�∗R

Γ⇒ �∗ϕa,∆

Γ, ϕu ⇒ ∆
�T

Γ,�iϕ
u ⇒ ∆

�iΓ⇒ ϕa,�i∆
�S5

�iΓ⇒ �iϕ
a,�i∆

Γ⇒ ∆u

U
Γ⇒ ∆

Γ⇒ ϕf ,∆u

F
Γ⇒ ϕu,∆u

Γ⇒ ϕu,∆ Γ, ϕu ⇒ ∆
cut

Γ⇒ ∆
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The sequent calculus sCKLf

Definition
1 A derivation is a finite tree whose nodes are labelled by CKL-sequents and

which is generated by the rules of sCKLf .

2 An sCKLf -proof is a derivation in which every leaf l is either an axiom or
there exists a proper ancestor c(l) labelled by the same sequent as l such that
the upward path ρ from c(l) to l satisfies the following conditions:

1 every sequent in ρ has a formula in focus, and
2 ρ passes through an application of the rule �∗R where the principal formula is

in focus.
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Examples of derivations and proofs

�ip
u ⇒ qu,�iq

u

�S5
�ip

u ⇒ qu,�iq
u

...
pu, qu ⇒ p ∧ qu

�∗L, wL
�∗pu,�∗qu ⇒ p ∧ qu

�∗pu,�∗qu ⇒ �∗(p ∧ q)f
�S5, �T, wL

�i�∗pu,�i�∗qu ⇒ �i�∗(p ∧ q)f
�∗L, wL

�∗pu,�∗qu ⇒ �i�∗(p ∧ q)f
�∗R

�∗pu,�∗qu ⇒ �∗(p ∧ q)f
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Soundness

Lemma (Weak local soundness)

Let
σ1 · · · σnr σ be any rule application of sCKLf . If σ is invalid, then so is one

of the premisses.

Definition

Let σ be a sequent that has a formula in focus, i.e. for j ∈ {0, 1} the right-hand

side ∆ of σ contains a formula of the form �
j
i�∗ψf . We denote by σ(n) the

sequent obtained by adding the formula �
j
i�

nψu to ∆. For any invalid sequent σ
that has a formula in focus, we define µ(σ) := min{n ∈ ω : σ(n) is invalid}.

Lemma (Strong local soundness)

Let
σ1 · · · σnr σ be any rule application of sCKLf . If σ is invalid, then there is an

invalid premiss σi such that, if σ and σi both have a formula in focus, then
µ(σi ) ≤ µ(σ), and, if moreover r = �∗R and the principal formula is in focus, this
inequality is strict.
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Proof of strong local soundness

Lemma (Strong local soundness)

Let
σ1 · · · σnr σ be any rule application of sCKLf . If σ is invalid, then there is an

invalid premiss σi such that, if σ and σi both have a formula in focus, then
µ(σi ) ≤ µ(σ), and, if moreover r = �∗R and the principal formula is in focus, this
inequality is strict.

Sketch.
If either σ, or all of the σi , have no formula in focus, the statement reduces
to weak local soundness.

If the formula in focus in σ is not the principal formula, every premiss σi has
a formula in focus and

σ1(µ(σ)) · · · σn(µ(σ))
r

σ(µ(σ))

is a valid rule application. Thus we can apply weak local soundness.
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Proof of strong local soundness (continued)

Lemma (Strong local soundness)

Let
σ1 · · · σnr σ be any rule application of sCKLf . If σ is invalid, then there is an

invalid premiss σi such that, if σ and σi both have a formula in focus, then
µ(σi ) ≤ µ(σ), and, if moreover r = �∗R and the principal formula is in focus, this
inequality is strict.

Sketch.
In the remaining case the principal formula in σ is in focus.

This can only be the case if r ∈ {wR ,�S5,�∗R}.
Suppose r = �∗R . Let n := µ(σ) and let S, s be such that S, s 6 σ(n). Then
S, s 6 �∗ϕ, where �∗ϕf is the principal formula. If n = 0, then S, s 6 ϕ and
thus the leftmost premiss is invalid and forms a witness to the statement, as it
has no formula in focus. If n > 0, then S, s 6 �i�

n−1ϕ, for some i ∈ A. This
means that there is an invalid premiss σk with µ(σk) = n − 1, as required.

The other cases are similar.
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Proof of soundness

Theorem
If a sequent σ has a sCKLf -proof, then σ is valid.

Proof.
Suppose, towards a contradiction, that an invalid sequent σ is the root of some
sCKLf -proof π. Repeatedly applying strong local soundness, we obtain an upward
path

ρ = σ0, σ1, . . . , σn

through π such that σ0 = σ and σn labels a leaf of π. Since σn is invalid by
construction, this leaf cannot be an axiom. Therefore, there there must be some
k < n such that 〈σk , σn〉 is a successful repetition. Observe that this implies that
σk = σn. However, by the fact that we constructed this path using strong local
soundness, it holds that µ(σk) < µ(σn), a contradiction.
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Analytic completeness

Theorem
If a sequent σ is valid, then σ has an analytic sCKLf -proof.

Observe that the only non-analytic rule of sCKLf is the cut-rule.

Proof idea: We show analytic completeness via a canonical model construction,
where applications of cut are restricted to analytic cuts.
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Analytic completeness

Definition
Let Σ be a finite and closed set of formulas.

A sequent Γ⇒ ∆ is called a Σ-sequent if Γ− ∪∆− ⊆ Σ.

A sequent Γ⇒ ∆ is Σ-provable if there exists a proof of Γ⇒ ∆ in which
only Σ-sequents occur.

A Σ-sequent Γ⇒ ∆ is called saturated if it is Σ-unprovable and
Γ− ∪∆− = Σ.
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Analytic completeness

Definition

Let Σ be a non-empty, finite and closed set of formulas. The canonical model SΣ

of Σ is given by:

SΣ := {Γ− | Γ⇒ ∆ is a saturated Σ-sequent}
ARΣ

i B :⇔ �i�
−1
i A = �i�

−1
i B

V Σ(A) := {p ∈ P | p ∈ A}
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Completeness

Lemma (Truth Lemma)

For every ϕ ∈ Σ: SΣ,A  ϕ if and only if ϕ ∈ A.

Proof.
We consider the implication ⇒ in the case for ϕ = �∗ψ. Suppose ϕ 6∈ A and
suppose towards a contradiction that

SΣ,A  �∗ψ

This implies that for all B with ARΣ
i B:

SΣ,B  ψ and SΣ,B  �∗ψ

In particular SΣ,A  ψ and so ψ ∈ A, by the induction hypothesis.
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Completeness

Let Γ⇒ ∆ be a saturated Σ-sequent with Γ− = A.

π
Γ⇒ ψu,∆

π1

Γ⇒ �1�∗ψf ,∆ · · ·
πn

Γ⇒ �n�∗ψf ,∆
�∗R

Γ⇒ �∗ψf ,∆
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Completeness

π′

σ′
π′1

σ′1
· · ·
· · ·

π′n

σ′n
�∗R

�i�
−1
i Γ⇒ �∗ψf ,�i�

−1
i ∆

�S5
�i�
−1
i Γ⇒ �i�∗ψf ,�i�

−1
i ∆

wL
...wL

Γ⇒ �i�∗ψf ,�i�
−1
i ∆

wR
...wR

Γ⇒ �i�∗ψf ,∆
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Completeness

1 σ′ = �i�
−1
i Γ⇒ ψu,�i�

−1
i ∆ must be provable. (If not, extend it into a

saturated sequent Γ′ ⇒ ∆′. By construction ARΣ
i B = Γ′ and SΣ,B 6 ψ.)

2 For σ′k = �i�
−1
i Γ⇒ �k�∗ψf ,�i�

−1
i ∆ we apply cut repeatedly until every leaf

is either saturated or provable.
1 For provable sequents, append their respective proofs.
2 For saturated sequents, observe that we have met a repetition in our

procedure.

⇒ Repeat argument until - by the pidgeonhole principle - every leaf is an axiom or
a successful repetition.
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−1
i ∆ we apply cut repeatedly until every leaf

is either saturated or provable.
1 For provable sequents, append their respective proofs.
2 For saturated sequents, observe that we have met a repetition in our

procedure.

⇒ Repeat argument until - by the pidgeonhole principle - every leaf is an axiom or
a successful repetition.
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Decision procedure

A Σ-sequent σ has an analytic proof if and only if Prover has a winning
strategy in Gσ.

The game Gσ is a parity game.

Positional determinacy of parity games ⇒ the bounded proof property.

Decision procedure for parity games gives an EXPTIME decision procedure
for sCKLf -provability.
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Future work

Syntactic cut-reduction

Extension to Dynamic Epistemic Logic

Interpolation?

Realisation theorem for Justifcation Logic

Extension to larger fragments of the modal µ-calculus.

A cut-free cyclic system
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Thank you!
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Propositional rules

id
ϕu ⇒ ϕa

Γ⇒ ∆wL
Γ, ϕu ⇒ ∆

Γ⇒ ∆wR
Γ⇒ ϕu,∆

Γ⇒ ϕu,∆¬L
Γ,¬ϕu ⇒ ∆

Γ, ϕu ⇒ ∆¬R
Γ⇒ ¬ϕu,∆

Γ, ϕu, ψu ⇒ ∆∧L
Γ, (ϕ ∧ ψ)u ⇒ ∆

Γ⇒ ϕu,∆ Γ⇒ ψu,∆∧R
Γ⇒ (ϕ ∧ ψ)u,∆
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Strong local soundness for r = �S5

Suppose r = �S5: Then σ is of the form:

�iΓ⇒ �i�∗ψf ,�i∆.

Let n := µ(σ). By the definition of µ, there is an epistemic Kripke model S, and a
state s of S such that S, s 6 σ(n). In particular, it holds that

S, s 6 �i�
nψ.

It follows that there is a state t in S such that sRi t and S, t 6 �nψ. Clearly this
also means that S, t 6 �∗ψ. We claim that, in fact,

S, t 6 �iΓ⇒ �∗ψf ,�nψu,�i∆,

which gives the required result.
By the fact that Ri is transitive, it holds for all ϕ such that S, s  �iϕ, that
S, t  �iϕ. It follows that S, t  �iϕ for each �iϕ

u ∈ �iΓ. Moreover, suppose
that �iψ

a ∈ �i∆. Then S, s 6 �iψ. Thus there is a state r in S such that sRi r
and S, r 6 ψ. By symmetry and transitivity, we get tRi s, whence S, t 6 �iψ, as
required.
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A proof search game

Definition
Let σ be a Σ-sequent. The proof search game Gσ associated to σ has the
following ownership function and admissible moves:

Position Owner Admissible moves

σ Prover

{
σ1 · · · σnr σ : σ1, . . . , σn are Σ sequents

}
σ1 · · · σnr σ Refuter {σi | 1 ≤ i ≤ n}

The positions are given the following priorities:

1 Every position of the form Γ⇒ ∆u has priority 3;

2 Every position of the form
σ1 · · · σn

�∗R σ where the principal formula is in

focus has priority 2;

3 Every other position has priority 1.

An infinite match is won by Prover (Refuter) if the highest priority encountered
infinitely often is even (odd).
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