An analytic proof system for Common Knowledge Logic over S5

Jan Rooduijn ¹ Lukas Zenger ²

¹ILLC, University of Amsterdam

²Institute of Computer Science, University of Bern

LIRa Seminar, 8 June 2023

- Introduction to S5-CKL.
- Some earlier proof systems
- Our analytic proof system
- Soundness
- Ompleteness
- Future work

- A countable set P of propositional variables.
- A finite set \mathcal{A} of agents.

 $\varphi ::= \mathbf{p} \mid \neg \varphi \mid \varphi \land \varphi \mid \Box_i \varphi$

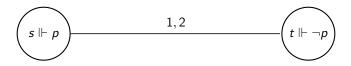
 $\Box_i \varphi$ expresses that agent $i \in \mathcal{A}$ knows that φ .

Principle	Axiom	Formula	Frame condition
Epistemic closure	K	$\Box_i(\varphi o \psi) o (\Box_i \varphi o \Box_i \psi)$	-
Veridicality	Т	$\Box_i \varphi o \varphi$	Reflexivity
Positive introspection	4	$\Box_i \varphi \rightarrow \Box_i \Box_i \varphi$	Transitivity
Negative introspection	5	$\neg \Box_i \varphi \rightarrow \Box_i \neg \Box_i \varphi$	Euclideaness

- Negative introspection is philosophically controversial, but standard in applications in computer science and game theory.
- We assume all axioms above.

An *epistemic Kripke model* is a tuple $\mathbb{S} = (S, \{R_i \mid i \in A\}, V)$ where

- *S* is a non-empty set;
- R_i is an equivalence relation on S for each $i \in A$;
- V is a function $S \to \mathcal{P}(\mathsf{P})$.



 $s \Vdash p \land \neg \Box_1 p \land \neg \Box_2 p.$

$\varphi ::= \mathbf{p} \mid \neg \varphi \mid \varphi \land \varphi \mid \Box_i \varphi \mid \underline{\mathbb{B}} \varphi$

$$\Box \varphi := \varphi_1 \wedge \dots \wedge \varphi_n \qquad (everybody \ knows \ \varphi)$$

 $\mathbb{B}\varphi \equiv \varphi \land \Box \varphi \land \Box \Box \varphi \land \cdots \qquad (\text{it is common knowledge that }\varphi)$

 $s \Vdash \Box \varphi \Leftrightarrow t \Vdash \varphi$ for every t such that sR_it with $i \in A$.

 $s \Vdash \boxtimes \varphi \Leftrightarrow t \Vdash \varphi$ for every path $s = s_0 R_{i_1} s_1 R_{i_2} \cdots R_{i_m} s_m = t$ with each i_k in \mathcal{A} .

• Standard axioms and rules for basic multi-modal logic K_n

- Axioms for S5_n
 - (T) $\Box_i p \rightarrow p$.
 - (5) $\neg \Box_i p \rightarrow \Box_i \neg \Box_i p$

● Axiom and rule for

• (fix) $\mathbb{H} \varphi \leftrightarrow \varphi \wedge \square \mathbb{H} \varphi$

• (ind)
$$\frac{\varphi \to (\Box \varphi \land \psi)}{\varphi \to \boxtimes \psi}$$

Jan Rooduijn (ILLC)

W. van der Hoek H. van Ditmarsch J.Y. Halpern and B. Kooi. "An Introduction to Logics of Knowledge and Belief". In: *Handbook of Epistemic Logic*. College Publications, 2015. Chap. 1, pp. 1–51.

A Gentzen-style reformulation

- All sequent rules for propositional logic (inlcuding w_L and w_R)
- Modal rules

$$\Box_{\mathsf{T}} \ \frac{\Gamma, \varphi \Rightarrow \Delta}{\Gamma, \Box_i \varphi \Rightarrow \Delta} \qquad \qquad \Box_{\mathsf{S5}} \ \frac{\Box_i \Gamma \Rightarrow \varphi, \Box_i \Delta}{\Box_i \Gamma \Rightarrow \Box_i \varphi, \Box_i \Delta}$$

• Fixpoint rules

$$\mathbb{B}_{L} \ \frac{\Gamma, \varphi, \Box \mathbb{B}\varphi \Rightarrow \Delta}{\Gamma, \mathbb{B}\varphi \Rightarrow \Delta} \qquad \qquad \mathbb{B}_{R} \ \frac{\Gamma \Rightarrow \varphi, \Delta \qquad \Gamma \Rightarrow \Box \mathbb{B}\varphi, \Delta}{\Gamma \Rightarrow \mathbb{B}\varphi, \Delta}$$

Induction rule

$$\operatorname{ind} \frac{\varphi \Rightarrow \Box \varphi \quad \varphi \Rightarrow \psi}{\varphi \Rightarrow \boxtimes \psi, \Delta}$$

• Cut rule

$$\operatorname{cut} \frac{\Gamma \Rightarrow \varphi, \Delta \qquad \Gamma, \varphi \Rightarrow \Delta}{\Gamma \Rightarrow \Delta}$$

Luca Alberucci and Gerhard Jäger. "About cut elimination for logics of common knowledge". In: Annals of Pure and Applied Logic 133.1-3 (2005), pp. 73–99.

Jan Rooduijn (ILLC)

The *Fischer-Ladner closure* of a formula φ is the smallest set of formulas $Cl(\varphi)$ which contains φ and is closed under the following conditions:

- $\neg \psi \in Cl(\varphi)$ implies $\psi \in Cl(\varphi)$;
- $\psi_1 \wedge \psi_2 \in Cl(\varphi)$ implies $\psi_k \in Cl(\varphi)$ for each $k \in \{1, 2\}$;
- $\Box_i \psi \in Cl(\varphi)$ implies $\psi \in Cl(\varphi)$;
- $\mathbb{B}\psi \in Cl(\varphi)$ implies $\psi \in Cl(\varphi)$ and $\Box \mathbb{B}\varphi \in Cl(\varphi)$.

Moreover, for A a set of formulas, we define:

$$CI(A) := \bigcup \{ CI(\varphi) \mid \varphi \in A \}.$$

The closure of a finite set of formulas is always finite.

• The induction rule does not stay within $Cl(\varphi)$:

$$\operatorname{ind} \frac{\varphi \Rightarrow \Box \varphi \quad \varphi \Rightarrow \psi}{\varphi \Rightarrow \boxtimes \psi, \Delta}$$

• Cut-restriction has only been proven to the 'conjunctive closure' of $Cl(\varphi)$, which is exponentially larger than $Cl(\varphi)$ itself.

$$\operatorname{cut} \frac{\Gamma \Rightarrow \varphi, \Delta \quad \Gamma, \varphi \Rightarrow \Delta}{\Gamma \Rightarrow \Delta}$$

Some remarks on cut-elimination for $S5_n$

• Recall the modal rule
$$\Box_{S5} \xrightarrow{\Box_i \Gamma \Rightarrow \varphi, \Box_i \Delta}{\Box_i \Gamma \Rightarrow \Box_i \varphi, \Box_i \Delta}$$

- The following sequent is valid: $\Rightarrow \Box_i \neg \Box_i p, p$.
- However, the only way to derive it would be by applying the modal rule:

$$\Box_{\mathsf{S5}} \xrightarrow{\Rightarrow \Box_i p, \Box_i \neg \Box_i p}{\Rightarrow \Box_i \neg \Box_i p, p}$$

of which the premiss is not valid.

- Ordinary sequents for S5_n require analytic cuts.
- Hypersequents satisfy cut-elimination for S51.
- For cut-elimination for S5_n one needs an even more expressive framework (*e.g.* nested sequents)

Masao Ohnishi and Kazuo Matsumoto. "Gentzen method in modal calculi". In: Osaka Mathematical Journal 9.2 (1957), pp. 113–130.

- Labelled hypersequent calculus
- Syntactic cut-elimination
- Induction rule of the form:

$$\operatorname{ind}_2 \frac{\Gamma \Rightarrow \Delta, \varphi \quad \varphi \Rightarrow \psi \quad \varphi \Rightarrow \Box \varphi}{\Gamma \Rightarrow \Delta, \boxtimes \psi}$$

Brian Hill and Francesca Poggiolesi. "Common knowledge: a finitary calculus with a syntactic cut-elimination procedure". In: *Logique et Analyse* (2015), pp. 279–306.

An annotated formula is a pair (φ, a) , usually written φ^a , where φ is a formula and $a \in \{u, f\}$. The annotation u indicates that φ is unfocussed and f indicates that φ is in focus.

An annotated formula is a pair (φ , a), usually written φ^a , where φ is a formula and $a \in \{u, f\}$. The annotation u indicates that φ is unfocussed and f indicates that φ is in focus.

Definition

A sequent is an ordered pair (Γ, Δ) , usually written $\Gamma \Rightarrow \Delta$, where Γ, Δ are sets of annotated formulas.

A *CKL-sequent* is a sequent $\Gamma \Rightarrow \Delta$ which satisfies the following properties:

- **(**) Every formula in Γ is unfocussed.
- **2** At most one formula in Δ is in focus.

$$If \varphi^{f} \in \Delta, \text{ then } \varphi = \mathbb{B}\psi \text{ or } \varphi = \Box_{i}\mathbb{B}\psi.$$

$$\begin{split} & \mathbb{B}_{L} \ \frac{\Gamma, \varphi^{u}, \{\Box_{i} \mathbb{R} \varphi^{u}\}_{i=1}^{n} \Rightarrow \Delta}{\Gamma, \mathbb{R} \varphi^{u} \Rightarrow \Delta} \qquad \mathbb{B}_{R} \ \frac{\Gamma \Rightarrow \varphi^{u}, \Delta \qquad \{\Gamma \Rightarrow \Box_{i} \mathbb{R} \varphi^{a}, \Delta\}_{i=1}^{n}}{\Gamma \Rightarrow \mathbb{R} \varphi^{a}, \Delta} \\ & \Box_{T} \ \frac{\Gamma, \varphi^{u} \Rightarrow \Delta}{\Gamma, \Box_{i} \varphi^{u} \Rightarrow \Delta} \qquad \Box_{S5} \ \frac{\Box_{i} \Gamma \Rightarrow \varphi^{a}, \Box_{i} \Delta}{\Box_{i} \Gamma \Rightarrow \Box_{i} \varphi^{a}, \Box_{i} \Delta} \\ & U \ \frac{\Gamma \Rightarrow \Delta^{u}}{\Gamma \Rightarrow \Delta} \qquad F \ \frac{\Gamma \Rightarrow \varphi^{f}, \Delta^{u}}{\Gamma \Rightarrow \varphi^{u}, \Delta^{u}} \qquad \operatorname{cut} \ \frac{\Gamma \Rightarrow \varphi^{u}, \Delta}{\Gamma \Rightarrow \Delta} \end{split}$$

A derivation is a finite tree whose nodes are labelled by CKL-sequents and which is generated by the rules of sCKL_f.

- A derivation is a finite tree whose nodes are labelled by CKL-sequents and which is generated by the rules of sCKL_f.
- An sCKL_f-proof is a derivation in which every leaf *l* is either an axiom or there exists a proper ancestor c(*l*) labelled by the same sequent as l such that the upward path ρ from c(*l*) to *l* satisfies the following conditions:

- A derivation is a finite tree whose nodes are labelled by CKL-sequents and which is generated by the rules of sCKL_f.
- An sCKL_f-proof is a derivation in which every leaf *l* is either an axiom or there exists a proper ancestor c(*l*) labelled by the same sequent as l such that the upward path ρ from c(*l*) to *l* satisfies the following conditions:
 - () every sequent in ρ has a formula in focus, and

- A derivation is a finite tree whose nodes are labelled by CKL-sequents and which is generated by the rules of sCKL_f.
- An sCKL_f-proof is a derivation in which every leaf *l* is either an axiom or there exists a proper ancestor c(*l*) labelled by the same sequent as l such that the upward path ρ from c(*l*) to *l* satisfies the following conditions:
 - () every sequent in ρ has a formula in focus, and
 - **2** ρ passes through an application of the rule \boxtimes_R where the principal formula is in focus.

Examples of derivations and proofs

$$\Box_{\mathsf{S5}} \xrightarrow{\Box_i p^u \Rightarrow q^u, \Box_i q^u}_{\Box_i p^u \Rightarrow q^u, \Box_i q^u}$$

$$\underbrace{ \begin{array}{c} \vdots \\ p^{u}, q^{u} \Rightarrow p \land q^{u} \\ \hline \mathbb{B}p^{u}, \mathbb{B}q^{u} \Rightarrow p \land q^{u} \\ \hline \mathbb{B}p^{u}, \mathbb{B}q^{u} \Rightarrow p \land q^{u} \\ \hline \mathbb{B}p^{u}, \mathbb{B}q^{u} \Rightarrow \square_{i}\mathbb{B}(p \land q)^{f} \\ \hline \mathbb{B}p^{u}, \mathbb{B}q^{u} \Rightarrow \square_{i}\mathbb{B}(p \land q)^{f} \\ \hline \mathbb{B}p^{u}, \mathbb{B}q^{u} \Rightarrow \square_{i}\mathbb{B}(p \land q)^{f} \\ \hline \mathbb{B}p^{u}, \mathbb{B}q^{u} \Rightarrow \mathbb{B}(p \land q)^{f} \\ \hline \mathbb{B}p^{u}, \mathbb{B}p^{u} \Rightarrow \mathbb{B}(p \land q)^{f} \\ \hline \mathbb{B}p^{u}, \mathbb{B}p^{u} \Rightarrow \mathbb{B}(p \land q)^{f} \\ \hline \mathbb{B}p^{u} \Rightarrow \mathbb{B$$

Soundness

Lemma (Weak local soundness)

Let $r \frac{\sigma_1 \cdots \sigma_n}{\sigma}$ be any rule application of sCKL_f. If σ is invalid, then so is one of the premisses.

Definition

Let σ be a sequent that has a formula in focus, *i.e.* for $j \in \{0,1\}$ the right-hand side Δ of σ contains a formula of the form $\Box_i^j \boxtimes \psi^f$. We denote by $\sigma(n)$ the sequent obtained by adding the formula $\Box_i^j \Box^n \psi^u$ to Δ . For any invalid sequent σ that has a formula in focus, we define $\mu(\sigma) := \min\{n \in \omega : \sigma(n) \text{ is invalid}\}$.

Lemma (Strong local soundness)

Let $r \frac{\sigma_1 \cdots \sigma_n}{\sigma}$ be any rule application of sCKL_f. If σ is invalid, then there is an invalid premiss σ_i such that, if σ and σ_i both have a formula in focus, then $\mu(\sigma_i) \leq \mu(\sigma)$, and, if moreover $r = \mathbb{B}_R$ and the principal formula is in focus, this inequality is strict.

Lemma (Strong local soundness)

Let $r = \frac{\sigma_1 \cdots \sigma_n}{\sigma}$ be any rule application of sCKL_f. If σ is invalid, then there is an invalid premiss σ_i such that, if σ and σ_i both have a formula in focus, then $\mu(\sigma_i) \leq \mu(\sigma)$, and, if moreover $r = \mathbb{R}_R$ and the principal formula is in focus, this inequality is strict.

Sketch.

- If either σ , or all of the σ_i , have no formula in focus, the statement reduces to weak local soundness.
- If the formula in focus in σ is *not* the principal formula, every premiss σ_i has a formula in focus and

$$\frac{\sigma_1(\mu(\sigma)) \cdots \sigma_n(\mu(\sigma))}{\sigma(\mu(\sigma))}$$

is a valid rule application. Thus we can apply weak local soundness.

Lemma (Strong local soundness)

Let $r \frac{\sigma_1 \cdots \sigma_n}{\sigma}$ be any rule application of sCKL_f. If σ is invalid, then there is an invalid premiss σ_i such that, if σ and σ_i both have a formula in focus, then $\mu(\sigma_i) \leq \mu(\sigma)$, and, if moreover $r = \mathbb{B}_R$ and the principal formula is in focus, this inequality is strict.

Sketch.

- In the remaining case the principal formula in σ is in focus.
- This can only be the case if $r \in \{w_R, \Box_{S5}, \boxtimes_R\}$.
- Suppose r = ⊠_R. Let n := μ(σ) and let S, s be such that S, s ⊮ σ(n). Then S, s ⊮ ⊠φ, where ⊠φ^f is the principal formula. If n = 0, then S, s ⊮ φ and thus the leftmost premiss is invalid and forms a witness to the statement, as it has no formula in focus. If n > 0, then S, s ⊮ □_i□ⁿ⁻¹φ, for some i ∈ A. This means that there is an invalid premiss σ_k with μ(σ_k) = n − 1, as required.
- The other cases are similar.

If a sequent σ has a sCKL_f-proof, then σ is valid.

Proof.

Suppose, towards a contradiction, that an invalid sequent σ is the root of some sCKL_f-proof π . Repeatedly applying strong local soundness, we obtain an upward path

$$\rho = \sigma_0, \sigma_1, \ldots, \sigma_n$$

through π such that $\sigma_0 = \sigma$ and σ_n labels a leaf of π . Since σ_n is invalid by construction, this leaf cannot be an axiom. Therefore, there there must be some k < n such that $\langle \sigma_k, \sigma_n \rangle$ is a successful repetition. Observe that this implies that $\sigma_k = \sigma_n$. However, by the fact that we constructed this path using strong local soundness, it holds that $\mu(\sigma_k) < \mu(\sigma_n)$, a contradiction.

If a sequent σ is valid, then σ has an analytic sCKL_f-proof.

If a sequent σ is valid, then σ has an analytic sCKL_f-proof.

Observe that the only non-analytic rule of $sCKL_f$ is the cut-rule.

If a sequent σ is valid, then σ has an analytic sCKL_f-proof.

Observe that the only non-analytic rule of $sCKL_f$ is the cut-rule.

Proof idea: We show analytic completeness via a canonical model construction, where applications of cut are restricted to *analytic* cuts.

Let $\boldsymbol{\Sigma}$ be a finite and closed set of formulas.

• A sequent $\Gamma \Rightarrow \Delta$ is called a Σ -sequent if $\Gamma^- \cup \Delta^- \subseteq \Sigma$.

Let $\boldsymbol{\Sigma}$ be a finite and closed set of formulas.

- A sequent $\Gamma \Rightarrow \Delta$ is called a Σ -sequent if $\Gamma^- \cup \Delta^- \subseteq \Sigma$.
- A sequent $\Gamma \Rightarrow \Delta$ is Σ -provable if there exists a proof of $\Gamma \Rightarrow \Delta$ in which only Σ -sequents occur.

Let $\boldsymbol{\Sigma}$ be a finite and closed set of formulas.

- A sequent $\Gamma \Rightarrow \Delta$ is called a Σ -sequent if $\Gamma^- \cup \Delta^- \subseteq \Sigma$.
- A sequent $\Gamma \Rightarrow \Delta$ is Σ -provable if there exists a proof of $\Gamma \Rightarrow \Delta$ in which only Σ -sequents occur.
- A Σ -sequent $\Gamma \Rightarrow \Delta$ is called *saturated* if it is Σ -unprovable and $\Gamma^- \cup \Delta^- = \Sigma$.

Let Σ be a non-empty, finite and closed set of formulas. The canonical model \mathbb{S}^Σ of Σ is given by:

$$S^{\Sigma} := \{ \Gamma^{-} \mid \Gamma \Rightarrow \Delta \text{ is a saturated } \Sigma \text{-sequent} \}$$
$$AR_{i}^{\Sigma}B :\Leftrightarrow \Box_{i}\Box_{i}^{-1}A = \Box_{i}\Box_{i}^{-1}B$$
$$V^{\Sigma}(A) := \{ p \in \mathsf{P} \mid p \in A \}$$

For every $\varphi \in \Sigma$: \mathbb{S}^{Σ} , $A \Vdash \varphi$ if and only if $\varphi \in A$.

For every $\varphi \in \Sigma$: \mathbb{S}^{Σ} , $A \Vdash \varphi$ if and only if $\varphi \in A$.

Proof.

We consider the implication \Rightarrow in the case for $\varphi = \mathbb{B}\psi$.

For every $\varphi \in \Sigma$: \mathbb{S}^{Σ} , $A \Vdash \varphi$ if and only if $\varphi \in A$.

Proof.

We consider the implication \Rightarrow in the case for $\varphi = \boxtimes \psi$. Suppose $\varphi \notin A$ and suppose towards a contradiction that

 $\mathcal{S}^{\Sigma}, \mathcal{A} \Vdash \textcircled{}\psi$

For every $\varphi \in \Sigma$: \mathbb{S}^{Σ} , $A \Vdash \varphi$ if and only if $\varphi \in A$.

Proof.

We consider the implication \Rightarrow in the case for $\varphi = \boxtimes \psi$. Suppose $\varphi \notin A$ and suppose towards a contradiction that

 $\mathcal{S}^{\Sigma}, \mathcal{A} \Vdash \textcircled{}\psi$

This implies that for all B with $AR_i^{\Sigma}B$:

 $\mathcal{S}^{\Sigma}, B \Vdash \psi$ and $\mathcal{S}^{\Sigma}, B \Vdash \mathbb{B}\psi$

Lemma (Truth Lemma)

For every $\varphi \in \Sigma$: \mathbb{S}^{Σ} , $A \Vdash \varphi$ if and only if $\varphi \in A$.

Proof.

We consider the implication \Rightarrow in the case for $\varphi = \mathbb{B}\psi$. Suppose $\varphi \notin A$ and suppose towards a contradiction that

 $\mathcal{S}^{\Sigma}, \mathcal{A} \Vdash \mathbb{R}\psi$

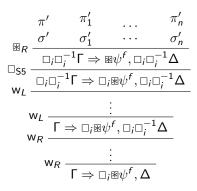
This implies that for all B with $AR_i^{\Sigma}B$:

 $\mathcal{S}^{\Sigma}, B \Vdash \psi \text{ and } \mathcal{S}^{\Sigma}, B \Vdash \mathbb{B}\psi$

In particular \mathcal{S}^{Σ} , $A \Vdash \psi$ and so $\psi \in A$, by the induction hypothesis.

Let $\Gamma \Rightarrow \Delta$ be a saturated Σ -sequent with $\Gamma^- = A$.

$$\mathbb{B}_{R} \underbrace{ \begin{array}{ccc} \pi & \pi_{1} & \pi_{n} \\ \Gamma \Rightarrow \psi^{u}, \Delta & \Gamma \Rightarrow \Box_{1} \mathbb{B} \psi^{f}, \Delta & \cdots & \Gamma \Rightarrow \Box_{n} \mathbb{B} \psi^{f}, \Delta \\ \hline \Gamma \Rightarrow \mathbb{B} \psi^{f}, \Delta \end{array} }_{ \left. \Gamma \Rightarrow \mathbb{B} \psi^{f}, \Delta \right. }$$



• $\sigma' = \Box_i \Box_i^{-1} \Gamma \Rightarrow \psi^u, \Box_i \Box_i^{-1} \Delta$ must be provable. (If not, extend it into a saturated sequent $\Gamma' \Rightarrow \Delta'$. By construction $AR_i^{\Sigma}B = \Gamma'$ and $S^{\Sigma}, B \not\models \psi$.)

- $\sigma' = \Box_i \Box_i^{-1} \Gamma \Rightarrow \psi^u, \Box_i \Box_i^{-1} \Delta$ must be provable. (If not, extend it into a saturated sequent $\Gamma' \Rightarrow \Delta'$. By construction $AR_i^{\Sigma}B = \Gamma'$ and $S^{\Sigma}, B \not\models \psi$.)
- So For $\sigma'_k = \Box_i \Box_i^{-1} \Gamma \Rightarrow \Box_k \boxtimes \psi^f, \Box_i \Box_i^{-1} \Delta$ we apply cut repeatedly until every leaf is either saturated or provable.

- $\sigma' = \Box_i \Box_i^{-1} \Gamma \Rightarrow \psi^u, \Box_i \Box_i^{-1} \Delta$ must be provable. (If not, extend it into a saturated sequent $\Gamma' \Rightarrow \Delta'$. By construction $AR_i^{\Sigma}B = \Gamma'$ and $S^{\Sigma}, B \not\models \psi$.)
- For $\sigma'_k = \Box_i \Box_i^{-1} \Gamma \Rightarrow \Box_k \otimes \psi^f, \Box_i \Box_i^{-1} \Delta$ we apply cut repeatedly until every leaf is either saturated or provable.

• For provable sequents, append their respective proofs.

- $\sigma' = \Box_i \Box_i^{-1} \Gamma \Rightarrow \psi^u, \Box_i \Box_i^{-1} \Delta$ must be provable. (If not, extend it into a saturated sequent $\Gamma' \Rightarrow \Delta'$. By construction $AR_i^{\Sigma}B = \Gamma'$ and $S^{\Sigma}, B \not\models \psi$.)
- For $\sigma'_k = \Box_i \Box_i^{-1} \Gamma \Rightarrow \Box_k \otimes \psi^f, \Box_i \Box_i^{-1} \Delta$ we apply cut repeatedly until every leaf is either saturated or provable.
 - For provable sequents, append their respective proofs.
 - For saturated sequents, observe that we have met a repetition in our procedure.

- $\sigma' = \Box_i \Box_i^{-1} \Gamma \Rightarrow \psi^u, \Box_i \Box_i^{-1} \Delta$ must be provable. (If not, extend it into a saturated sequent $\Gamma' \Rightarrow \Delta'$. By construction $AR_i^{\Sigma}B = \Gamma'$ and $S^{\Sigma}, B \not\models \psi$.)
- For $\sigma'_k = \Box_i \Box_i^{-1} \Gamma \Rightarrow \Box_k \boxtimes \psi^f, \Box_i \Box_i^{-1} \Delta$ we apply cut repeatedly until every leaf is either saturated or provable.
 - For provable sequents, append their respective proofs.
 - For saturated sequents, observe that we have met a repetition in our procedure.

 \Rightarrow Repeat argument until - by the pidgeonhole principle - every leaf is an axiom or a successful repetition.

- A Σ -sequent σ has an analytic proof if and only if Prover has a winning strategy in \mathcal{G}_{σ} .
- The game \mathcal{G}_{σ} is a *parity game*.
- Positional determinacy of parity games \Rightarrow the bounded proof property.
- Decision procedure for parity games gives an EXPTIME decision procedure for $sCKL_f$ -provability.

- Syntactic cut-reduction
- Extension to Dynamic Epistemic Logic
- Interpolation?
- Realisation theorem for Justifcation Logic
- Extension to larger fragments of the modal μ -calculus.
- A cut-free cyclic system

Thank you!

- Alberucci, Luca and Gerhard Jäger. "About cut elimination for logics of common knowledge". In: Annals of Pure and Applied Logic 133.1-3 (2005), pp. 73–99.
- H. van Ditmarsch J.Y. Halpern, W. van der Hoek and B. Kooi. "An Introduction to Logics of Knowledge and Belief". In: *Handbook of Epistemic Logic*. College Publications, 2015. Chap. 1, pp. 1–51.
- Hill, Brian and Francesca Poggiolesi. "Common knowledge: a finitary calculus with a syntactic cut-elimination procedure". In: Logique et Analyse (2015), pp. 279–306.
 - Ohnishi, Masao and Kazuo Matsumoto. "Gentzen method in modal calculi". In: *Osaka Mathematical Journal* 9.2 (1957), pp. 113–130.

$$\begin{split} \mathsf{id} & \overline{\varphi^{u} \Rightarrow \varphi^{a}} & \mathsf{w}_{L} & \frac{\Gamma \Rightarrow \Delta}{\Gamma, \varphi^{u} \Rightarrow \Delta} & \mathsf{w}_{R} & \frac{\Gamma \Rightarrow \Delta}{\Gamma \Rightarrow \varphi^{u}, \Delta} \\ & \neg_{L} & \frac{\Gamma \Rightarrow \varphi^{u}, \Delta}{\Gamma, \neg \varphi^{u} \Rightarrow \Delta} & \neg_{R} & \frac{\Gamma, \varphi^{u} \Rightarrow \Delta}{\Gamma \Rightarrow \neg \varphi^{u}, \Delta} \\ & \wedge_{L} & \frac{\Gamma, \varphi^{u}, \psi^{u} \Rightarrow \Delta}{\Gamma, (\varphi \land \psi)^{u} \Rightarrow \Delta} & \wedge_{R} & \frac{\Gamma \Rightarrow \varphi^{u}, \Delta}{\Gamma \Rightarrow (\varphi \land \psi)^{u}, \Delta} \end{split}$$

Strong local soundness for $r = \Box_{S5}$

Suppose $r = \Box_{S5}$: Then σ is of the form:

 $\Box_i \Gamma \Rightarrow \Box_i \boxtimes \psi^f, \Box_i \Delta.$

Let $n := \mu(\sigma)$. By the definition of μ , there is an epistemic Kripke model \mathbb{S} , and a state s of \mathbb{S} such that $\mathbb{S}, s \not\models \sigma(n)$. In particular, it holds that

$$\mathbb{S}, \boldsymbol{s} \not\Vdash \Box_i \Box^n \psi.$$

It follows that there is a state t in \mathbb{S} such that sR_it and $\mathbb{S}, t \not\Vdash \Box^n \psi$. Clearly this also means that $\mathbb{S}, t \not\Vdash \boxtimes \psi$. We claim that, in fact,

$$\mathbb{S}, t \not\Vdash \Box_i \Gamma \Rightarrow \mathbb{B} \psi^f, \Box^n \psi^u, \Box_i \Delta,$$

which gives the required result.

By the fact that R_i is transitive, it holds for all φ such that $\mathbb{S}, s \Vdash \Box_i \varphi$, that $\mathbb{S}, t \Vdash \Box_i \varphi$. It follows that $\mathbb{S}, t \Vdash \Box_i \varphi$ for each $\Box_i \varphi^u \in \Box_i \Gamma$. Moreover, suppose that $\Box_i \psi^a \in \Box_i \Delta$. Then $\mathbb{S}, s \not\Vdash \Box_i \psi$. Thus there is a state r in \mathbb{S} such that $sR_i r$ and $\mathbb{S}, r \not\vDash \psi$. By symmetry and transitivity, we get $tR_i s$, whence $\mathbb{S}, t \not\vDash \Box_i \psi$, as required.

A proof search game

Definition

Let σ be a Σ -sequent. The *proof search game* \mathcal{G}_{σ} associated to σ has the following ownership function and admissible moves:

Position	Owner	Admissible moves
σ	Prover	$\left\{ r \frac{\sigma_1 \cdots \sigma_n}{\sigma} : \sigma_1, \dots, \sigma_n \text{ are } \Sigma \text{ sequents} \right\}$
$r \frac{\sigma_1 \cdots \sigma_n}{\sigma}$	Refuter	$\{\sigma_i \mid 1 \le i \le n\}$

The positions are given the following priorities:

- Every position of the form $\Gamma \Rightarrow \Delta^u$ has priority 3;
- Severy position of the form
 _R <u>σ₁ ··· σ_n</u> where the principal formula is in focus has priority 2;
- Severy other position has priority 1.

An infinite match is won by Prover (Refuter) if the highest priority encountered infinitely often is even (odd).