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Cyclic proof theory of K∗



Unimodal logic with the master modality

• Syntax: ϕ ::= p | ⊥ | ϕ→ ϕ | �ϕ | �∗ϕ.

• Semantics: usual interpretation of ML over Kripke models, plus:

(S ,R,V ), s  �∗ψ :⇔ for all t ∈ S such that sR∗t: S, t  ψ

where R∗ is the reflexive-transitive closure of R.

• Hilbert-style axiomatisation (HiK∗): usual axioms and rules for

the modal logic K, plus:

�∗p ↔ (p ∧ ��∗p) (fix)

(p ∧ �∗(p → �p))→ �∗p (ind)

Note: �∗p ≡ νx .p ∧ �x .
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The quest for an analytic proof system

HiK∗ suffers the usual drawbacks of a Hilbert-style proof system. Most

importantly, it contains the rule modus ponens:

ϕ ϕ→ ψ
mp

ψ

making it unsuitable for proof-theoretic analysis.

Is there an analytic proof system for K∗?
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First start: a Gentzen-style counterpart of HiK∗

id ϕ⇒ ϕ ⊥ ⊥ ⇒

Γ⇒ ∆wL
Γ, ϕ⇒ ∆

Γ⇒ ∆wR
Γ⇒ ϕ,∆

Γ, ψ ⇒ ∆ Γ⇒ ϕ,∆→L
Γ, ϕ→ ψ ⇒ ∆

Γ, ϕ⇒ ψ,∆→R
Γ⇒ ϕ→ ψ,∆

Γ⇒ ϕ
�
�Γ⇒ �ϕ

Γ1, ϕ⇒ ∆1 Γ2 ⇒ ϕ,∆2

•

cut
Γ1, Γ2 ⇒ ∆1,∆2

Γ, ϕ,��∗ϕ⇒ ∆
�∗L

Γ,�∗ϕ⇒ ∆

Γ⇒ ϕ,∆ Γ⇒ ��∗ϕ,∆
�∗R

Γ⇒ �∗ϕ,∆

Γ⇒ ϕ ∧ �Γ̂

•

ind
Γ⇒ �∗ϕ
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What if we get rid of both cut and the induction rule?

id ϕ⇒ ϕ ⊥ ⊥ ⇒

Γ⇒ ∆wL
Γ, ϕ⇒ ∆

Γ⇒ ∆wR
Γ⇒ ϕ,∆

Γ, ψ ⇒ ∆ Γ⇒ ϕ,∆→L
Γ, ϕ→ ψ ⇒ ∆

Γ, ϕ⇒ ψ,∆→R
Γ⇒ ϕ→ ψ,∆

Γ⇒ ϕ
�
�Γ⇒ �ϕ

Γ, ϕ,��∗ϕ⇒ ∆
�∗L

Γ,�∗ϕ⇒ ∆

Γ⇒ ϕ,∆ Γ⇒ ��∗ϕ,∆
�∗R
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Another option: use an infinitary branching ω-rule

id ϕ⇒ ϕ ⊥ ⊥ ⇒

Γ⇒ ∆wL
Γ, ϕ⇒ ∆

Γ⇒ ∆wR
Γ⇒ ϕ,∆

Γ, ψ ⇒ ∆ Γ⇒ ϕ,∆→L
Γ, ϕ→ ψ ⇒ ∆

Γ, ϕ⇒ ψ,∆→R
Γ⇒ ϕ→ ψ,∆

Γ⇒ ϕ
�
�Γ⇒ �ϕ

Γ, ϕ,��∗ϕ⇒ ∆
�∗L

Γ,�∗ϕ⇒ ∆

Γ⇒ ϕ,∆ Γ⇒ ��∗ϕ,∆
�∗R

Γ⇒ �∗ϕ,∆

{Γ⇒ �nϕ : n ∈ N}
ω-ind

Γ⇒ �∗ϕ



A proof about K∗ by infinite descent

Claim

The formula (�∗(p → q) ∧ �∗p)→ �∗q is valid.

Proof.

Suppose, towards a contradiction, that S, s  �∗(p → q) and S, s  �∗p,

but S, s 6 �∗q. Then there is some n0 ∈ N such that S, s 6 �n0q. Since

S, s  q, we have n0 > 0. Thus there is a state s1 ∈ S such that sRs1
and S, s1 6 �n0−1q. Letting n1 := n0 − 1, we have S, s1 6 �n1q.

Moreover, since S, s  ��∗(p → q) and S, s  ��∗p, it holds that

S, s1  �∗(p → q) and S, s1  �∗p. Repeating this argument we find an

infinite strictly decreasing chain n0 < n1 < · · · , a contradiction.



A formal counterpart of this proof

id p ⇒ p

...

id q ⇒ q

...

...
�∗(p → q),�∗p ⇒ �∗q

�
��∗(p → q),��∗p ⇒ ��∗q

wL
��∗(p → q), p,��∗p ⇒ ��∗q

wL
q,��∗(p → q), p,��∗p ⇒ ��∗q

�∗R
q,��∗(p → q), p,��∗p ⇒ �∗q →L

p → q,��∗(p → q), p,��∗p ⇒ �∗q
�∗L

�∗(p → q), p,��∗p ⇒ �∗q
�∗L

�∗(p → q),�∗p ⇒ �∗q



The infinitary proof system K∗inf

id ϕ⇒ ϕ ⊥ ⊥ ⇒

Γ⇒ ∆wL
Γ, ϕ⇒ ∆

Γ⇒ ∆wR
Γ⇒ ϕ,∆

Γ, ψ ⇒ ∆ Γ⇒ ϕ,∆→L
Γ, ϕ→ ψ ⇒ ∆

Γ, ϕ⇒ ψ,∆→R
Γ⇒ ϕ→ ψ,∆

Γ⇒ ϕ
�
�Γ⇒ �ϕ

Γ, ϕ,��∗ϕ⇒ ∆
�∗L

Γ,�∗ϕ⇒ ∆

Γ⇒ ϕ,∆ Γ⇒ ��∗ϕ,∆
�∗R

Γ⇒ �∗ϕ,∆

An K∗inf -proof is a (possibly infinite) derivation in K∗ of which each

infinite branch contains a trace with infinitely many unfoldings.



Soundness and completeness of K∗inf

Theorem

If Γ⇒ ∆ is provable in K∗inf , then
∧

Γ→
∨

∆ is valid.

Theorem

If
∧

Γ→
∨

∆ is valid, then Γ⇒ ∆ is provable in K∗inf .

Theorem ([4])

If Γ⇒ ∆ has a K∗inf -proof, then it has a regular K∗inf -proof.

[4] Damian Niwinski and Igor Walukiewicz. “Games for the

mu-Calculus”. In: Theor. Comput. Sci. 163.1&2 (1996), pp. 99–116



The annotated cyclic proof system K∗circ

The cyclic system K∗circ is obtained by encoding the traces in the sequents

through focus annotations and adding a focus change rule.

id p ⇒ p

...

id q ⇒ q

...

�∗(p → q),�∗p ⇒ [�∗q]
�

��∗(p → q),��∗p ⇒ [��∗q]
wL

��∗(p → q), p,��∗p ⇒ [��∗q]
wL

q,��∗(p → q), p,��∗p ⇒ [��∗q]
�∗R

q,��∗(p → q), p,��∗p ⇒ [�∗q] →L
p → q,��∗(p → q), p,��∗p ⇒ [�∗q]

�∗L
�∗(p → q), p,��∗p ⇒ [�∗q]

�∗L
�∗(p → q),�∗p ⇒ [�∗q]

A cyclic derivation of an annotated sequent is a K∗circ-proof if:

1. Every non-axiomatic leaf has a companion that is labelled by the

same annotated hypersequent.

2. Between every non-axiomatic leaf and its companion there is always

a formula in focus and the focus change rule is not applied.

3. Between every non-axiomatic leaf and its companion a formula that

is in focus is unfolded.
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Cyclic proof theory of modal

fixpoint logics



Incomplete overview of results in cyclic proof theory of mfl’s

1996 Cyclic system for µML (Niwinski & Walukiewicz)

2001 Annotated cyclic systems for LTL and CTL (Lange & Stirling)

2009 Annotated cyclic system for µML (Jungteerapanich & Stirling)

2014 Cyclic system and interpolation for GL (Shamkanov)

2016 Constructive completeness for µML (Afshari & Leigh)

2019 Constructive completeness for Game Logic (Enqvist et al.)

2021 Uniform Interpolation for µML (Afshari, Leigh & Menéndez Turata)



Research theme

• Most results in cyclic proof theory for modal fixpoint logics treat a

particular logic

• In contrast, for basic modal logic very general methods exist:

I Sahlqvist’s Theorem for Hilbert-style proof systems
I Formalisms that enrich ordinary sequent calculi: hypersequents,

nested sequents, labelled sequents, display calculi

• Research theme: combine cyclic proof theory with existing general

methods for basic modal logic to uniformly obtain proof systems for

multiple modal fixpoint logics
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Lahav’s method for ML



Lahav’s method

Start with a hypersequent calculus HK for the basic modal logic K (or

for KB, or for K4, or for KB4)

id ϕ⇒ ϕ ⊥ ⊥ ⇒

H | Γ⇒ ∆
iwL

H | Γ, ϕ⇒ ∆

H | Γ⇒ ∆
iwR

H | Γ⇒ ϕ,∆

Hew
H | Γ⇒ ∆

H | Γ, ψ ⇒ ∆ H | Γ⇒ ϕ,∆→L
H | Γ, ϕ→ ψ ⇒ ∆

H | Γ, ϕ⇒ ψ,∆→R
H | Γ⇒ ϕ→ ψ,∆

H | Γ⇒ ϕ
�

H | �Γ⇒ �ϕ

H | Γ1, ϕ⇒ ∆1 H | Γ2 ⇒ ϕ,∆2
cut

H | Γ1, Γ2 ⇒ ∆1,∆2

HK ` H :⇔ For every Kripke model S, there is a Γ⇒ ∆ ∈ H,

such that for every state s: S, s 6
∧

Γ or S, s 
∨

∆.
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Lahav’s method, continued
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formula

∀x1 · · · xn∃uϕ in C

take its normal form

∀x1 · · · xn∃u
∨

(CR ,C=)∈C

(
∧
i∈CR

xiRu ∧
∧
j∈C=

xj = u).

and add the following rule to HK:

{H |
⋃

i∈CR
Γ′i ,

⋃
j∈C=

Γj ⇒
⋃

j∈C=
∆j : (CR ,C=) ∈ C}

rHK
C H | �Γ′1, Γ1 ⇒ ∆1 | · · · | �Γ′n, Γn ⇒ ∆n

Let HK + RC be the resulting system.

Theorem (Lahav)

HK + RC is sound and cut-free complete w.r.t. the class of C-models.
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Adapting Lahav’s calculi to ML∗



The hypersequent calculus HK∗

id ϕ⇒ ϕ ⊥ ⊥ ⇒

H | Γ⇒ ∆
iwL

H | Γ, ϕ⇒ ∆

H | Γ⇒ ∆
iwR

H | Γ⇒ ϕ,∆

Hew
H | Γ⇒ ∆

H | Γ, ψ ⇒ ∆ H | Γ⇒ ϕ,∆→L
H | Γ, ϕ→ ψ ⇒ ∆

H | Γ, ϕ⇒ ψ,∆→R
H | Γ⇒ ϕ→ ψ,∆

H | Γ⇒ ϕ
�

H | �Γ⇒ �ϕ

H | Γ1, ϕ⇒ ∆1 H | Γ2 ⇒ ϕ,∆2
cut

H | Γ1, Γ2 ⇒ ∆1,∆2

H | Γ, ϕ,��∗ϕ⇒ ∆
�∗L

H | Γ,�∗ϕ⇒ ∆

H | Γ⇒ ϕ,∆ H | Γ⇒ ��∗ϕ,∆
�∗R

H | Γ⇒ �∗ϕ,∆
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Infinitary proofs in HK∗ + RC

An HK∗inf + RC-proof is a (possibly infinite) derivation in HK∗ + RC
whose infinite branches each have a trace on which infinitely many

unfoldings occur.

{H |
⋃

i∈CR
Γ′i ,

⋃
j∈C=

Γj ⇒
⋃

j∈C=
∆j : (CR ,C=) ∈ C}

rHKC H | �Γ′1, Γ1 ⇒ ∆1 | · · · | �Γ′n, Γn ⇒ ∆n

id p ⇒ pr〈{1},{2}〉
�p ⇒ �∗p | ⇒ p

...
�p ⇒ �∗p | ⇒ �∗p

�
�p ⇒ �∗p | ⇒ ��∗p

�∗R
�p ⇒ �∗p | ⇒ �∗p

iwL �p ⇒ �∗p
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Soundness of infinitary proofs in HK∗ + RC

Theorem (Soundness for HK∗inf + RC)

Let C be a finite set of simple frame conditions. If a hypersequent is

HK∗inf + RC-provable, then it is valid in every C-model.

Proof.

Using the method of descending countermodels.

The technical treatment of takes inspiration from:

[1] Simon Docherty and Reuben N.S. Rowe. “A non-wellfounded, labelled

proof system for propositional dynamic logic”. In: International

Conference on Automated Reasoning with Analytic Tableaux and Related

Methods. Springer. 2019, pp. 335–352
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Cyclic proofs in HK∗ + RC

The cyclic system HK∗ + RC is obtained by encoding the traces in the

hypersequents through focus annotations and adding a focus change rule.

id p ⇒ pr〈{1},{2}〉
�p ⇒ �∗p | ⇒ p

�p ⇒ �∗p | ⇒ [�∗p]
�

�p ⇒ �∗p | ⇒ [��∗p]
�∗

�p ⇒ �∗p | ⇒ [�∗p]
iwL

�p ⇒ [�∗p]

A cyclic derivation of an annotated hypersequent is an HK∗circ + RC
derivation if:

1. Every non-axiomatic leaf has a companion that is labelled by the

same annotated hypersequent.

2. Between every non-axiomatic leaf and its companion there is always

a formula in focus and the focus change rule is not applied.

3. Between every non-axiomatic leaf and its companion a formula that

is in focus is unfolded.
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Completeness of cyclic proofs for equable frame conditions

Definition (equable simple frame conditions)

An simple frame condition C is called: equable if for every

〈C 1
R ,C

1
=〉, 〈C 2

R ,C
2
=〉 ∈ C it holds that C 1

= = C 2
=.

Universality ∀x1x2∃u(x1Ru ∧ x2 = u) X

Theorem (Completeness of HK∗circ + RC)

Let C be a finite set of equable frame conditions. If a hypersequent is

valid in every C-model, then it is cut-free HK∗circ + RC-provable.

Proof.

Any HK∗circ + RC-unprovable hypersequent H can be extended to an

unprovable hypersequent that can be viewed as a (finite)

countermodel.



Completeness of cyclic proofs for equable frame conditions

Definition (equable simple frame conditions)

An simple frame condition C is called: equable if for every

〈C 1
R ,C

1
=〉, 〈C 2

R ,C
2
=〉 ∈ C it holds that C 1

= = C 2
=.

Universality ∀x1x2∃u(x1Ru ∧ x2 = u) X

Theorem (Completeness of HK∗circ + RC)

Let C be a finite set of equable frame conditions. If a hypersequent is

valid in every C-model, then it is cut-free HK∗circ + RC-provable.

Proof.

Any HK∗circ + RC-unprovable hypersequent H can be extended to an

unprovable hypersequent that can be viewed as a (finite)

countermodel.



Completeness of cyclic proofs for equable frame conditions

Definition (equable simple frame conditions)

An simple frame condition C is called: equable if for every

〈C 1
R ,C

1
=〉, 〈C 2

R ,C
2
=〉 ∈ C it holds that C 1

= = C 2
=.

Reflexivity ∀x1∃u(x1Ru ∧ x1 = u) X

Theorem (Completeness of HK∗circ + RC)

Let C be a finite set of equable frame conditions. If a hypersequent is

valid in every C-model, then it is cut-free HK∗circ + RC-provable.

Proof.

Any HK∗circ + RC-unprovable hypersequent H can be extended to an

unprovable hypersequent that can be viewed as a (finite)

countermodel.



Completeness of cyclic proofs for equable frame conditions

Definition (equable simple frame conditions)

An simple frame condition C is called: equable if for every

〈C 1
R ,C

1
=〉, 〈C 2

R ,C
2
=〉 ∈ C it holds that C 1

= = C 2
=.

k-bounded top width ∀x1 · · · xk∃u
∨

1≤i<j≤k

(xiRu ∧ xjRu) X

Theorem (Completeness of HK∗circ + RC)

Let C be a finite set of equable frame conditions. If a hypersequent is

valid in every C-model, then it is cut-free HK∗circ + RC-provable.

Proof.

Any HK∗circ + RC-unprovable hypersequent H can be extended to an

unprovable hypersequent that can be viewed as a (finite)

countermodel.



Completeness of cyclic proofs for equable frame conditions

Definition (equable simple frame conditions)

An simple frame condition C is called: equable if for every

〈C 1
R ,C

1
=〉, 〈C 2

R ,C
2
=〉 ∈ C it holds that C 1

= = C 2
=.

Linearity ∀x1x2∃u((x1Ru ∧ x2 = u) ∨ (x2Ru ∧ x1 = u)) X

Theorem (Completeness of HK∗circ + RC)

Let C be a finite set of equable frame conditions. If a hypersequent is

valid in every C-model, then it is cut-free HK∗circ + RC-provable.

Proof.

Any HK∗circ + RC-unprovable hypersequent H can be extended to an

unprovable hypersequent that can be viewed as a (finite)

countermodel.



Completeness of cyclic proofs for equable frame conditions

Definition (equable simple frame conditions)

An simple frame condition C is called: equable if for every

〈C 1
R ,C

1
=〉, 〈C 2

R ,C
2
=〉 ∈ C it holds that C 1

= = C 2
=.

Linearity ∀x1x2∃u((x1Ru ∧ x2 = u) ∨ (x2Ru ∧ x1 = u)) X

Theorem (Completeness of HK∗circ + RC)

Let C be a finite set of equable frame conditions. If a hypersequent is

valid in every C-model, then it is cut-free HK∗circ + RC-provable.

Proof.

Any HK∗circ + RC-unprovable hypersequent H can be extended to an

unprovable hypersequent that can be viewed as a (finite)

countermodel.



Completeness of cyclic proofs for equable frame conditions

Definition (equable simple frame conditions)

An simple frame condition C is called: equable if for every

〈C 1
R ,C

1
=〉, 〈C 2

R ,C
2
=〉 ∈ C it holds that C 1

= = C 2
=.

Linearity ∀x1x2∃u((x1Ru ∧ x2 = u) ∨ (x2Ru ∧ x1 = u)) X

Theorem (Completeness of HK∗circ + RC)

Let C be a finite set of equable frame conditions. If a hypersequent is

valid in every C-model, then it is cut-free HK∗circ + RC-provable.

Proof.

Any HK∗circ + RC-unprovable hypersequent H can be extended to an

unprovable hypersequent that can be viewed as a (finite)

countermodel.



Conclusion and future work



Future work

• Give a bound on the size of proofs

• Are there non-equable simple frame conditions for which HK∗ + RC
is complete? Are there non-equable simple frame conditions for

which it is not?

• Interpolation

• More expressive fragments of the modal µ-calculus

• Other sequent systems: labelled sequents, nested sequents
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Thank you!
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