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Given a formula ¢ € ML and a variable x € P, we may regard x as
a free variable of . For every Kripke model S = (S, R, V), this
induces a function:

¢S P(S) — P(S) given by p5(A) := [p]PA

Observation
If x occurs only positively in ¢, then ¢} is monotone and so, by the
Knaster-Tarski theorem, it has both a least and a greatest fixpoint.

(UML) pu=p|-pleVeloAe|Op|Op | uxy | vxy,

where p € P and x occurs only positively in 1.

[uxely == LFP(g}) [vxel; = GFP(4})
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Position Player Admissible moves
(e1V @2,59) 3 {(1,9), (02, 9)}
(e1 N 2,9) v {(¢1,9), (2, 9)}

(s 5) 3 {(e, ) : sRt}

(B, s) v {(¢, t) : sRt}

(-6, 5) - [(55,5)}
(x, 5) with x € BV(€) - (50, 9)}
(p,s) with p € FV(£) and s € V(p) v 0
(=p,s) with p € FV(£) and s € V(p) 3 0
(p,s) with p € FV(§) and s € V(p) 3 0
(—=p, s) with p € FV(§) and s € V(p) v 0

An infinite match is won by 3 (V) if the ‘most important’ fixpoint
variable reached infinitely often is a v-variable (a p-variable)

Example: puxOx is true at a state sp iff there is no infinite path
starting at sp.

(ux0Ox, s0) = (Ox, 50) = (x,51) — (Ox,51) = (x,8) — - -
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Motivation of the paper

» The modal p-calculus is highly expressive, yet retains many of
the desirable properties of basic modal logic, e.g bisimulation
invariance and the finite model property.

» However, two important methods fail: (i) filtration and (ii)
canonical models.

» Both of these methods are well-known to work for PDL.

Question

Can we do better? That is, is there a natural fragment of uML
that subsumes PDL and to which the methods of filtration and
canonical models can be applied?

Our answer (very roughly)
Yes, namely the continuous modal p-calculus.
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Let S= (S, R, V) be a Kripke model and let ¥ be a finite and
closed set of formulas.

Let ~§ be the equivalence relation given by:
s~y s ifand only if s € [¢]° < s’ € [¢]° forall p € X.
and define S := S /~%.
-

Pick any relation R C S x S such that R™" C R C R™2*, where

R™n .= {(5,7) : there are s’ ~5 s and t’ ~% t such that Rs't'},
R™> .= {(5,7) : for all Oy € X; if s I+ Oy, then ¢t I @}

Finally, let V(p) := {5: s I p} for every p€ ¥ NP,

Then the model S := (S, R, V) is called a filtration of S through ¥.
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Filtration (ii)

The Filtration Theorem holds for a modal language D if for any
finite and closed set ¥ of D-formulas and any filtration S of S
through ¥ we have:

selel’ & se el
for every p € L.
The Filtration Theorem holds for ML, for PDL, but not for uML:
Consider the formula ¢ := uxOx and the model S := (N, <, V):
0123+ ---

+ transitive arrows
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Idea: restrict the use of the least and greatest fixpoint operators to
(formulas that induce) functions that are Scott continuous, rather
than merely monotone.

Fontaine (2008) proves the following syntactic characterisation:

pu=x|aleVeleAe|Op | pyy

where x € X, y € P, a € ucML X-free, and ¢’ € Cony gy} (cML).

Roughly: under a i we disallow [J and v and, dually, under a v we
disallow & and p.
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» Constructive: fixpoints are reached after at most w iterations.
> Strictly more expressive than PDL.
Properties of the evaluation game played with p-ML-formulas:
1. A match progresses at most finitely often from a position
(s,nx.0) to a position (t,7y.0).
2. A match progresses at most finitely often from a position
(s, pux.9) to a position (t,0v).
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Theorem (Filtration Theorem for ML)

For any finite and closed set ¥ of ucML-formulas and any filtration
S of S through ¥ it holds that:

selol & se ¢l

for every ¢ € .

Proof sketch.

Suppose 3 has a winning strategy f for G at (¢, s); we must show
that she has a winning strategy for G at (,5). We play a shadow
match, copying in G the moves suggested to 3 by the strategy f in
G, and simulating in G the moves played by V in G. Note: at each
position (s,y) we must reset the shadow match. However, if the
obtained strategy would be losing for 3 this reset could happen only
finitely often, contradicting the assumption that f is winning. [
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Definition

A class of models M is said to admit filtration with respect to a
language D if for every model S in M and every finite closed set of
D-formulas ¥, the class M contains a filtration of S through . A
class of frames F is said to admit filtration if the class of models
{(5,R, V) :(5,R) € F} does.

Lemma
For any logic L, the class Mod(L) admits filtration wrt ML iff it
admits filtration wrt pcML.

Corollary (Finite Model Property)

Let L be a logic such that Mod(L) admits filtration with respect to
ML, and let ¢ be a formula of the continuous p-calculus. Then ¢
is valid in every L-model if and only if ¢ is valid in every finite
L-model.

For example: pcML has the FMP over symmetric models.
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Other results (ii)

Theorem

Let L be a canonical logic in the basic modal language such Fr(L)
admits filtration. Then uc-L is sound and complete with respect to
Fr(L).

For example: L = KB, K4, 54, S5, ...

The last two results generalise results for PDL in Kikot,
Shapirovsky & Zolin (AiML 2020).
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Future work

» Relation to constructiveness.

» Is uML somehow a maximal ‘natural” fragment of uML to
which filtration is applicable?

» Can the currently separate proofs of the Filtration Theorem
and canonical completeness be unified by taking a filtration of
some canonical model (as with PDL).



Thank you



