Filtration and canonical completeness for continuous modal μ -calculi

Jan Rooduijn

joint work with

Yde Venema

ILLC, University of Amsterdam

GandALF 2021, 21 September 2021

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

<ロ>

(ML)
$$\varphi ::= p \mid \neg p \mid \varphi \lor \varphi \mid \varphi \land \varphi \mid \Diamond \varphi \mid \Box \varphi, \ p \in \mathsf{P}$$

$$(\mathsf{ML}) \quad \varphi ::= p \mid \neg p \mid \varphi \lor \varphi \mid \varphi \land \varphi \mid \Diamond \varphi \mid \Box \varphi, \ p \in \mathsf{P}$$

Given a formula $\varphi \in ML$ and a variable $x \in P$, we may regard x as a free variable of φ . For every Kripke model $\mathbb{S} = (S, R, V)$, this induces a function:

$$\varphi_x^{\mathbb{S}}: \mathcal{P}(S) o \mathcal{P}(S)$$
 given by $\varphi_x^{\mathbb{S}}(A) := \llbracket \varphi \rrbracket^{\mathbb{S}[x \mapsto A]}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

$$(\mathsf{ML}) \quad \varphi ::= p \mid \neg p \mid \varphi \lor \varphi \mid \varphi \land \varphi \mid \Diamond \varphi \mid \Box \varphi, \ p \in \mathsf{P}$$

Given a formula $\varphi \in ML$ and a variable $x \in P$, we may regard x as a free variable of φ . For every Kripke model $\mathbb{S} = (S, R, V)$, this induces a function:

$$\varphi_x^{\mathbb{S}}: \mathcal{P}(\mathcal{S}) o \mathcal{P}(\mathcal{S})$$
 given by $\varphi_x^{\mathbb{S}}(\mathcal{A}) := \llbracket \varphi \rrbracket^{\mathbb{S}[x \mapsto \mathcal{A}]}$

Observation

If x occurs only positively in φ , then $\varphi_x^{\mathbb{S}}$ is monotone and so, by the Knaster-Tarski theorem, it has both a least and a greatest fixpoint.

$$(\mathsf{ML}) \quad \varphi ::= p \mid \neg p \mid \varphi \lor \varphi \mid \varphi \land \varphi \mid \Diamond \varphi \mid \Box \varphi, \ p \in \mathsf{P}$$

Given a formula $\varphi \in ML$ and a variable $x \in P$, we may regard x as a free variable of φ . For every Kripke model $\mathbb{S} = (S, R, V)$, this induces a function:

$$\varphi_x^{\mathbb{S}}: \mathcal{P}(S) o \mathcal{P}(S)$$
 given by $\varphi_x^{\mathbb{S}}(A) := \llbracket \varphi \rrbracket^{\mathbb{S}[x \mapsto A]}$

Observation

If x occurs only positively in φ , then $\varphi_x^{\mathbb{S}}$ is monotone and so, by the Knaster-Tarski theorem, it has both a least and a greatest fixpoint.

$$(\mu\mathsf{ML}) \quad \varphi ::= p \mid \neg p \mid \varphi \lor \varphi \mid \varphi \land \varphi \mid \Diamond \varphi \mid \Box \varphi \mid \mu x \psi \mid \nu x \psi,$$

A D N A 目 N A E N A E N A B N A C N

where $p \in P$ and x occurs only positively in ψ .

$$(\mathsf{ML}) \quad \varphi ::= p \mid \neg p \mid \varphi \lor \varphi \mid \varphi \land \varphi \mid \Diamond \varphi \mid \Box \varphi, \ p \in \mathsf{P}$$

Given a formula $\varphi \in ML$ and a variable $x \in P$, we may regard x as a free variable of φ . For every Kripke model $\mathbb{S} = (S, R, V)$, this induces a function:

$$\varphi_x^{\mathbb{S}}: \mathcal{P}(\mathcal{S}) o \mathcal{P}(\mathcal{S})$$
 given by $\varphi_x^{\mathbb{S}}(\mathcal{A}) := \llbracket \varphi \rrbracket^{\mathbb{S}[x \mapsto \mathcal{A}]}$

Observation

If x occurs only positively in φ , then $\varphi_x^{\mathbb{S}}$ is monotone and so, by the Knaster-Tarski theorem, it has both a least and a greatest fixpoint.

$$(\mu\mathsf{ML}) \quad \varphi ::= p \mid \neg p \mid \varphi \lor \varphi \mid \varphi \land \varphi \mid \Diamond \varphi \mid \Box \varphi \mid \mu x \psi \mid \nu x \psi,$$

where $p \in P$ and x occurs only positively in ψ .

$$\llbracket \mu x \varphi \rrbracket_{x}^{\mathbb{S}} := LFP(\varphi_{x}^{\mathbb{S}}) \qquad \llbracket \nu x \varphi \rrbracket_{x}^{\mathbb{S}} := GFP(\varphi_{x}^{\mathbb{S}})$$

A D N A 目 N A E N A E N A B N A C N

Evaluation game

▲□▶▲圖▶▲≧▶▲≧▶ ≧ のへで

Evaluation game

The evaluation game $\mathcal{E}(\xi, \mathbb{S})$ takes positions in $Sf(\xi) \times S$ and has the following ownership function and admissible moves.

Position		Player	Admissible moves
$(\varphi_1 \lor \varphi_2, s)$		Э	$\{(\varphi_1,s),(\varphi_2,s)\}$
$(\varphi_1 \land \varphi_2, s)$		\forall	$\{(\varphi_1, s), (\varphi_2, s)\}$
$(\diamondsuit \varphi, s)$		Э	$\{(\varphi, t) : sRt\}$
$(\Box \varphi, s)$		\forall	$\{(\varphi, t) : sRt\}$
$(\eta x.\delta_x, s)$		-	$\{(\delta_x, s)\}$
(x, s)	with $x \in BV(\xi)$	-	$\{(\delta_x, s)\}$
(p, s)	with $p \in FV(\xi)$ and $s \in V(p)$	A	Ø
$(\neg p, s)$	with $p \in FV(\xi)$ and $s \in V(p)$	3	Ø
(p, s)	with $p \in FV(\xi)$ and $s \not\in V(p)$	Э	Ø
$(\neg p, s)$	with $p \in FV(\xi)$ and $s \not\in V(p)$	\forall	Ø

An infinite match is won by \exists (\forall) if the 'most important' fixpoint variable reached infinitely often is a ν -variable (a μ -variable)

Evaluation game

The evaluation game $\mathcal{E}(\xi, \mathbb{S})$ takes positions in $Sf(\xi) \times S$ and has the following ownership function and admissible moves.

Position		Player	Admissible moves
$(\varphi_1 \lor \varphi_2, s)$		Э	$\{(\varphi_1,s),(\varphi_2,s)\}$
$(\varphi_1 \land \varphi_2, s)$		\forall	$\{(\varphi_1, s), (\varphi_2, s)\}$
$(\diamondsuit \varphi, s)$		Э	$\{(\varphi, t) : sRt\}$
$(\Box \varphi, s)$		\forall	$\{(\varphi, t) : sRt\}$
$(\eta x.\delta_x, s)$		-	$\{(\delta_x, s)\}$
(x, s)	with $x \in BV(\xi)$	-	$\{(\delta_x, s)\}$
(p, s)	with $p \in FV(\xi)$ and $s \in V(p)$	A	Ø
$(\neg p, s)$	with $p \in FV(\xi)$ and $s \in V(p)$	3	Ø
(p, s)	with $p \in FV(\xi)$ and $s \not\in V(p)$	Э	Ø
$(\neg p, s)$	with $p \in FV(\xi)$ and $s \not\in V(p)$	\forall	Ø

An infinite match is won by \exists (\forall) if the 'most important' fixpoint variable reached infinitely often is a ν -variable (a μ -variable)

Example: $\mu x \Box x$ is true at a state s_0 iff there is no infinite path starting at s_0 .

$$(\mu x \Box x, s_0) \xrightarrow{-} (\Box x, s_0) \xrightarrow{\forall} (x, s_1) \xrightarrow{-} (\Box x, s_1) \xrightarrow{\forall} (x, s_2) \xrightarrow{-} \cdots$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

(4日) (個) (主) (主) (三) の(の)

The modal µ-calculus is highly expressive, yet retains many of the desirable properties of basic modal logic, e.g bisimulation invariance and the finite model property.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- The modal µ-calculus is highly expressive, yet retains many of the desirable properties of basic modal logic, e.g bisimulation invariance and the finite model property.
- However, two important methods fail: (i) filtration and (ii) canonical models.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- The modal µ-calculus is highly expressive, yet retains many of the desirable properties of basic modal logic, e.g bisimulation invariance and the finite model property.
- However, two important methods fail: (i) filtration and (ii) canonical models.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Both of these methods are well-known to work for PDL.

- The modal µ-calculus is highly expressive, yet retains many of the desirable properties of basic modal logic, e.g bisimulation invariance and the finite model property.
- However, two important methods fail: (i) filtration and (ii) canonical models.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Both of these methods are well-known to work for PDL.

Question

Can we do better?

- The modal µ-calculus is highly expressive, yet retains many of the desirable properties of basic modal logic, e.g bisimulation invariance and the finite model property.
- However, two important methods fail: (i) filtration and (ii) canonical models.
- Both of these methods are well-known to work for PDL.

Question

Can we do better? That is, is there a natural fragment of μ ML that subsumes PDL and to which the methods of filtration and canonical models can be applied?

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- The modal µ-calculus is highly expressive, yet retains many of the desirable properties of basic modal logic, e.g bisimulation invariance and the finite model property.
- However, two important methods fail: (i) filtration and (ii) canonical models.
- Both of these methods are well-known to work for PDL.

Question

Can we do better? That is, is there a natural fragment of μ ML that subsumes PDL and to which the methods of filtration and canonical models can be applied?

Our answer (very roughly)

Yes, namely the continuous modal μ -calculus.

Let S = (S, R, V) be a Kripke model and let Σ be a finite and closed set of formulas.

Let S = (S, R, V) be a Kripke model and let Σ be a finite and closed set of formulas.

Let $\sim_{\Sigma}^{\mathbb{S}}$ be the equivalence relation given by:

 $s \sim_{\Sigma}^{\mathbb{S}} s'$ if and only if $s \in \llbracket \varphi \rrbracket^{\mathbb{S}} \Leftrightarrow s' \in \llbracket \varphi \rrbracket^{\mathbb{S}}$ for all $\varphi \in \Sigma$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

and define $\overline{S} := S / \sim_{\Sigma}^{\mathbb{S}}$.

Let S = (S, R, V) be a Kripke model and let Σ be a finite and closed set of formulas.

Let $\sim_{\Sigma}^{\mathbb{S}}$ be the equivalence relation given by:

 $s \sim_{\Sigma}^{\mathbb{S}} s'$ if and only if $s \in \llbracket \varphi \rrbracket^{\mathbb{S}} \Leftrightarrow s' \in \llbracket \varphi \rrbracket^{\mathbb{S}}$ for all $\varphi \in \Sigma$.

and define $\overline{S} := S/\sim_{\Sigma}^{\mathbb{S}}$.

Pick any relation $\overline{R} \subseteq \overline{S} \times \overline{S}$ such that $R^{\min} \subseteq \overline{R} \subseteq R^{\max}$, where

$$\begin{split} R^{\min} &:= \{ (\overline{s}, \overline{t}) : \text{there are } s' \sim_{\Sigma}^{\mathbb{S}} s \text{ and } t' \sim_{\Sigma}^{\mathbb{S}} t \text{ such that } Rs't' \}, \\ R^{\max} &:= \{ (\overline{s}, \overline{t}) : \text{for all } \Box \varphi \in \Sigma; \text{ if } s \Vdash \Box \varphi, \text{ then } t \Vdash \varphi \}. \end{split}$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Let S = (S, R, V) be a Kripke model and let Σ be a finite and closed set of formulas.

Let $\sim_{\Sigma}^{\mathbb{S}}$ be the equivalence relation given by:

 $s \sim_{\Sigma}^{\mathbb{S}} s'$ if and only if $s \in \llbracket \varphi \rrbracket^{\mathbb{S}} \Leftrightarrow s' \in \llbracket \varphi \rrbracket^{\mathbb{S}}$ for all $\varphi \in \Sigma$.

and define $\overline{S} := S/\sim_{\Sigma}^{\mathbb{S}}$.

Pick any relation $\overline{R} \subseteq \overline{S} \times \overline{S}$ such that $R^{\min} \subseteq \overline{R} \subseteq R^{\max}$, where

$$\begin{split} R^{\min} &:= \{ (\overline{s}, \overline{t}) : \text{there are } s' \sim_{\Sigma}^{\mathbb{S}} s \text{ and } t' \sim_{\Sigma}^{\mathbb{S}} t \text{ such that } Rs't' \}, \\ R^{\max} &:= \{ (\overline{s}, \overline{t}) : \text{for all } \Box \varphi \in \Sigma; \text{ if } s \Vdash \Box \varphi, \text{ then } t \Vdash \varphi \}. \end{split}$$

Finally, let $\overline{V}(p) := \{\overline{s} : s \Vdash p\}$ for every $p \in \Sigma \cap P$.

Let S = (S, R, V) be a Kripke model and let Σ be a finite and closed set of formulas.

Let $\sim_{\Sigma}^{\mathbb{S}}$ be the equivalence relation given by:

 $s \sim_{\Sigma}^{\mathbb{S}} s'$ if and only if $s \in \llbracket \varphi \rrbracket^{\mathbb{S}} \Leftrightarrow s' \in \llbracket \varphi \rrbracket^{\mathbb{S}}$ for all $\varphi \in \Sigma$.

and define $\overline{S} := S/\sim_{\Sigma}^{\mathbb{S}}$.

Pick any relation $\overline{R} \subseteq \overline{S} \times \overline{S}$ such that $R^{\min} \subseteq \overline{R} \subseteq R^{\max}$, where

$$\begin{split} R^{\min} &:= \{(\overline{s}, \overline{t}) : \text{there are } s' \sim_{\Sigma}^{\mathbb{S}} s \text{ and } t' \sim_{\Sigma}^{\mathbb{S}} t \text{ such that } Rs't'\},\\ R^{\max} &:= \{(\overline{s}, \overline{t}) : \text{for all } \Box \varphi \in \Sigma; \text{ if } s \Vdash \Box \varphi, \text{ then } t \Vdash \varphi\}. \end{split}$$

Finally, let $\overline{V}(p) := \{\overline{s} : s \Vdash p\}$ for every $p \in \Sigma \cap P$.

Then the model $\overline{\mathbb{S}} := (\overline{S}, \overline{R}, \overline{V})$ is called a filtration of \mathbb{S} through Σ .

(4日) (個) (主) (主) (三) の(の)

The Filtration Theorem holds for a modal language D if for any finite and closed set Σ of D-formulas and any filtration $\overline{\mathbb{S}}$ of \mathbb{S} through Σ we have:

$$ar{s} \in \llbracket arphi
rbrace{\mathbb{S}}{\mathbb{S}} \Leftrightarrow s \in \llbracket arphi
rbrace{\mathbb{S}}{\mathbb{S}}$$

for every $\varphi \in \Sigma$.

The Filtration Theorem holds for a modal language D if for any finite and closed set Σ of D-formulas and any filtration $\overline{\mathbb{S}}$ of \mathbb{S} through Σ we have:

$$ar{s} \in \llbracket arphi
rbrace{\mathbb{S}}{\mathbb{S}} \Leftrightarrow s \in \llbracket arphi
rbrace{\mathbb{S}}{\mathbb{S}}$$

for every $\varphi \in \Sigma$.

The Filtration Theorem holds for ML, for PDL, but not for μ ML:

The Filtration Theorem holds for a modal language D if for any finite and closed set Σ of D-formulas and any filtration $\overline{\mathbb{S}}$ of \mathbb{S} through Σ we have:

$$ar{s} \in \llbracket arphi
rbrace{\mathbb{S}} \Leftrightarrow s \in \llbracket arphi
rbrace{\mathbb{S}}$$

for every $\varphi \in \Sigma$.

The Filtration Theorem holds for ML, for PDL, but not for μ ML:

Consider the formula $\varphi := \mu x \Box x$ and the model $\mathbb{S} := (\mathbb{N}, <, V)$:

$$0 \leftarrow 1 \leftarrow 2 \leftarrow 3 \leftarrow \cdots$$

+ transitive arrows

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のへで

Idea: restrict the use of the least and greatest fixpoint operators to (formulas that induce) functions that are Scott continuous, rather than merely monotone.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Idea: restrict the use of the least and greatest fixpoint operators to (formulas that induce) functions that are Scott continuous, rather than merely monotone.

Fontaine (2008) proves the following syntactic characterisation:

$$\varphi ::= x \mid \alpha \mid \varphi \lor \varphi \mid \varphi \land \varphi \mid \Diamond \varphi \mid \mu y \varphi'$$

where $x \in X$, $y \in P$, $\alpha \in \mu_c ML$ X-free, and $\varphi' \in Con_{X \cup \{y\}}(\mu_c ML)$.

Idea: restrict the use of the least and greatest fixpoint operators to (formulas that induce) functions that are Scott continuous, rather than merely monotone.

Fontaine (2008) proves the following syntactic characterisation:

$$\varphi ::= x \mid \alpha \mid \varphi \lor \varphi \mid \varphi \land \varphi \mid \Diamond \varphi \mid \mu y \varphi'$$

where $x \in X$, $y \in P$, $\alpha \in \mu_c ML$ X-free, and $\varphi' \in Con_{X \cup \{y\}}(\mu_c ML)$.

Roughly: under a μ we disallow \Box and ν and, dually, under a ν we disallow \diamondsuit and μ .

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ ▲国 ● ● ●

 \blacktriangleright Constructive: fixpoints are reached after at most ω iterations.

 \blacktriangleright Constructive: fixpoints are reached after at most ω iterations.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Strictly more expressive than PDL.

- Constructive: fixpoints are reached after at most ω iterations.
- Strictly more expressive than PDL.

Properties of the evaluation game played with μ_c ML-formulas:

1. A match progresses at most finitely often from a position $(s, \eta x.\delta)$ to a position $(t, \overline{\eta} y.\theta)$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- Constructive: fixpoints are reached after at most ω iterations.
- Strictly more expressive than PDL.

Properties of the evaluation game played with μ_c ML-formulas:

- 1. A match progresses at most finitely often from a position $(s, \eta x.\delta)$ to a position $(t, \overline{\eta} y.\theta)$.
- 2. A match progresses at most finitely often from a position $(s, \mu x. \delta)$ to a position $(t, \Box \psi)$.

For any finite and closed set Σ of μ_c ML-formulas and any filtration $\overline{\mathbb{S}}$ of \mathbb{S} through Σ it holds that:

$$\overline{s} \in \llbracket \varphi \rrbracket^{\overline{\mathbb{S}}} \Leftrightarrow s \in \llbracket \varphi \rrbracket^{\mathbb{S}}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

for every $\varphi \in \Sigma$.

For any finite and closed set Σ of μ_c ML-formulas and any filtration $\overline{\mathbb{S}}$ of \mathbb{S} through Σ it holds that:

$$\overline{s} \in \llbracket \varphi \rrbracket^{\overline{\mathbb{S}}} \Leftrightarrow s \in \llbracket \varphi \rrbracket^{\mathbb{S}}$$

for every $\varphi \in \Sigma$.

Proof sketch.

Suppose \exists has a winning strategy f for \mathcal{G} at (φ, s) ; we must show that she has a winning strategy for $\overline{\mathcal{G}}$ at (φ, \overline{s}) .

For any finite and closed set Σ of μ_c ML-formulas and any filtration $\overline{\mathbb{S}}$ of \mathbb{S} through Σ it holds that:

$$\overline{s} \in \llbracket \varphi \rrbracket^{\overline{\mathbb{S}}} \Leftrightarrow s \in \llbracket \varphi \rrbracket^{\mathbb{S}}$$

for every $\varphi \in \Sigma$.

Proof sketch.

Suppose \exists has a winning strategy f for \mathcal{G} at (φ, s) ; we must show that she has a winning strategy for $\overline{\mathcal{G}}$ at (φ, \overline{s}) . We play a shadow match, copying in $\overline{\mathcal{G}}$ the moves suggested to \exists by the strategy f in \mathcal{G} , and simulating in \mathcal{G} the moves played by \forall in $\overline{\mathcal{G}}$.

For any finite and closed set Σ of μ_c ML-formulas and any filtration $\overline{\mathbb{S}}$ of \mathbb{S} through Σ it holds that:

$$\overline{s} \in \llbracket \varphi \rrbracket^{\overline{\mathbb{S}}} \Leftrightarrow s \in \llbracket \varphi \rrbracket^{\mathbb{S}}$$

for every $\varphi \in \Sigma$.

Proof sketch.

Suppose \exists has a winning strategy f for \mathcal{G} at (φ, s) ; we must show that she has a winning strategy for $\overline{\mathcal{G}}$ at (φ, \overline{s}) . We play a shadow match, copying in $\overline{\mathcal{G}}$ the moves suggested to \exists by the strategy f in \mathcal{G} , and simulating in \mathcal{G} the moves played by \forall in $\overline{\mathcal{G}}$. Note: at each position $(s, \Box \varphi)$ we must reset the shadow match.

For any finite and closed set Σ of μ_c ML-formulas and any filtration $\overline{\mathbb{S}}$ of \mathbb{S} through Σ it holds that:

$$\overline{s} \in \llbracket \varphi \rrbracket^{\overline{\mathbb{S}}} \Leftrightarrow s \in \llbracket \varphi \rrbracket^{\mathbb{S}}$$

for every $\varphi \in \Sigma$.

Proof sketch.

Suppose \exists has a winning strategy f for \mathcal{G} at (φ, s) ; we must show that she has a winning strategy for $\overline{\mathcal{G}}$ at (φ, \overline{s}) . We play a shadow match, copying in $\overline{\mathcal{G}}$ the moves suggested to \exists by the strategy f in \mathcal{G} , and simulating in \mathcal{G} the moves played by \forall in $\overline{\mathcal{G}}$. Note: at each position $(s, \Box \varphi)$ we must reset the shadow match. However, if the obtained strategy would be losing for \exists this reset could happen only finitely often, contradicting the assumption that f is winning. \Box

Definition

A class of models \mathcal{M} is said to admit filtration with respect to a language D if for every model S in \mathcal{M} and every finite closed set of D-formulas Σ , the class \mathcal{M} contains a filtration of S through Σ . A class of frames \mathcal{F} is said to admit filtration if the class of models $\{(S, R, V) : (S, R) \in \mathcal{F}\}$ does.

Definition

A class of models \mathcal{M} is said to admit filtration with respect to a language D if for every model S in \mathcal{M} and every finite closed set of D-formulas Σ , the class \mathcal{M} contains a filtration of S through Σ . A class of frames \mathcal{F} is said to admit filtration if the class of models $\{(S, R, V) : (S, R) \in \mathcal{F}\}$ does.

Lemma

For any logic L, the class Mod(L) admits filtration wrt ML iff it admits filtration wrt μ_c ML.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

Definition

A class of models \mathcal{M} is said to admit filtration with respect to a language D if for every model S in \mathcal{M} and every finite closed set of D-formulas Σ , the class \mathcal{M} contains a filtration of S through Σ . A class of frames \mathcal{F} is said to admit filtration if the class of models $\{(S, R, V) : (S, R) \in \mathcal{F}\}$ does.

Lemma

For any logic L, the class Mod(L) admits filtration wrt ML iff it admits filtration wrt μ_c ML.

Corollary (Finite Model Property)

Let L be a logic such that Mod(L) admits filtration with respect to ML, and let ϕ be a formula of the continuous μ -calculus. Then ϕ is valid in every L-model if and only if ϕ is valid in every finite L-model.

Definition

A class of models \mathcal{M} is said to admit filtration with respect to a language D if for every model S in \mathcal{M} and every finite closed set of D-formulas Σ , the class \mathcal{M} contains a filtration of S through Σ . A class of frames \mathcal{F} is said to admit filtration if the class of models $\{(S, R, V) : (S, R) \in \mathcal{F}\}$ does.

Lemma

For any logic L, the class Mod(L) admits filtration wrt ML iff it admits filtration wrt μ_c ML.

Corollary (Finite Model Property)

Let L be a logic such that Mod(L) admits filtration with respect to ML, and let ϕ be a formula of the continuous μ -calculus. Then ϕ is valid in every L-model if and only if ϕ is valid in every finite L-model.

For example: μ_c ML has the FMP over symmetric models.

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = ● ● ●

Theorem

Let L be a canonical logic in the basic modal language such Fr(L) admits filtration. Then μ_c -L is sound and complete with respect to Fr(L).

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Theorem

Let L be a canonical logic in the basic modal language such Fr(L) admits filtration. Then μ_c -L is sound and complete with respect to Fr(L).

For example: L = KB, K4, S4, S5, ...

Theorem

Let L be a canonical logic in the basic modal language such Fr(L) admits filtration. Then μ_c -L is sound and complete with respect to Fr(L).

For example: L = KB, K4, S4, S5, ...

The last two results generalise results for PDL in Kikot, Shapirovsky & Zolin (AiML 2020).

<ロト < 団 > < 巨 > < 巨 > 三 の < で</p>

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = のへで

- Relation to constructiveness.
- ls μ_c ML somehow a maximal 'natural' fragment of μ ML to which filtration is applicable?

- Relation to constructiveness.
- Is μ_cML somehow a maximal 'natural' fragment of μML to which filtration is applicable?
- Can the currently separate proofs of the Filtration Theorem and canonical completeness be unified by taking a filtration of some canonical model (as with PDL).

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Thank you

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?