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The modal µ-calculus

(ML) ϕ ::= p | ¬p | ϕ ∨ ϕ | ϕ ∧ ϕ | �ϕ | �ϕ, p ∈ P

Given a formula ϕ ∈ ML and a variable x ∈ P, we may regard x as
a free variable of ϕ. For every Kripke model S = (S ,R,V ), this
induces a function:

ϕS
x : P(S)→ P(S) given by ϕS

x(A) := [[ϕ]]S[x 7→A]

Observation
If x occurs only positively in ϕ, then ϕS

x is monotone and so, by the
Knaster-Tarski theorem, it has both a least and a greatest fixpoint.

(µML) ϕ ::= p | ¬p | ϕ ∨ ϕ | ϕ ∧ ϕ | �ϕ | �ϕ | µxψ | νxψ,

where p ∈ P and x occurs only positively in ψ.

[[µxϕ]]Sx := LFP(ϕS
x) [[νxϕ]]Sx := GFP(ϕS

x)



The modal µ-calculus

(ML) ϕ ::= p | ¬p | ϕ ∨ ϕ | ϕ ∧ ϕ | �ϕ | �ϕ, p ∈ P

Given a formula ϕ ∈ ML and a variable x ∈ P, we may regard x as
a free variable of ϕ. For every Kripke model S = (S ,R,V ), this
induces a function:

ϕS
x : P(S)→ P(S) given by ϕS

x(A) := [[ϕ]]S[x 7→A]

Observation
If x occurs only positively in ϕ, then ϕS

x is monotone and so, by the
Knaster-Tarski theorem, it has both a least and a greatest fixpoint.

(µML) ϕ ::= p | ¬p | ϕ ∨ ϕ | ϕ ∧ ϕ | �ϕ | �ϕ | µxψ | νxψ,

where p ∈ P and x occurs only positively in ψ.

[[µxϕ]]Sx := LFP(ϕS
x) [[νxϕ]]Sx := GFP(ϕS

x)



The modal µ-calculus

(ML) ϕ ::= p | ¬p | ϕ ∨ ϕ | ϕ ∧ ϕ | �ϕ | �ϕ, p ∈ P

Given a formula ϕ ∈ ML and a variable x ∈ P, we may regard x as
a free variable of ϕ. For every Kripke model S = (S ,R,V ), this
induces a function:

ϕS
x : P(S)→ P(S) given by ϕS

x(A) := [[ϕ]]S[x 7→A]

Observation
If x occurs only positively in ϕ, then ϕS

x is monotone and so, by the
Knaster-Tarski theorem, it has both a least and a greatest fixpoint.

(µML) ϕ ::= p | ¬p | ϕ ∨ ϕ | ϕ ∧ ϕ | �ϕ | �ϕ | µxψ | νxψ,

where p ∈ P and x occurs only positively in ψ.

[[µxϕ]]Sx := LFP(ϕS
x) [[νxϕ]]Sx := GFP(ϕS

x)



The modal µ-calculus

(ML) ϕ ::= p | ¬p | ϕ ∨ ϕ | ϕ ∧ ϕ | �ϕ | �ϕ, p ∈ P

Given a formula ϕ ∈ ML and a variable x ∈ P, we may regard x as
a free variable of ϕ. For every Kripke model S = (S ,R,V ), this
induces a function:

ϕS
x : P(S)→ P(S) given by ϕS

x(A) := [[ϕ]]S[x 7→A]

Observation
If x occurs only positively in ϕ, then ϕS

x is monotone and so, by the
Knaster-Tarski theorem, it has both a least and a greatest fixpoint.

(µML) ϕ ::= p | ¬p | ϕ ∨ ϕ | ϕ ∧ ϕ | �ϕ | �ϕ | µxψ | νxψ,

where p ∈ P and x occurs only positively in ψ.

[[µxϕ]]Sx := LFP(ϕS
x) [[νxϕ]]Sx := GFP(ϕS

x)



The modal µ-calculus

(ML) ϕ ::= p | ¬p | ϕ ∨ ϕ | ϕ ∧ ϕ | �ϕ | �ϕ, p ∈ P

Given a formula ϕ ∈ ML and a variable x ∈ P, we may regard x as
a free variable of ϕ. For every Kripke model S = (S ,R,V ), this
induces a function:

ϕS
x : P(S)→ P(S) given by ϕS

x(A) := [[ϕ]]S[x 7→A]

Observation
If x occurs only positively in ϕ, then ϕS

x is monotone and so, by the
Knaster-Tarski theorem, it has both a least and a greatest fixpoint.

(µML) ϕ ::= p | ¬p | ϕ ∨ ϕ | ϕ ∧ ϕ | �ϕ | �ϕ | µxψ | νxψ,

where p ∈ P and x occurs only positively in ψ.

[[µxϕ]]Sx := LFP(ϕS
x) [[νxϕ]]Sx := GFP(ϕS

x)



The modal µ-calculus

(ML) ϕ ::= p | ¬p | ϕ ∨ ϕ | ϕ ∧ ϕ | �ϕ | �ϕ, p ∈ P

Given a formula ϕ ∈ ML and a variable x ∈ P, we may regard x as
a free variable of ϕ. For every Kripke model S = (S ,R,V ), this
induces a function:

ϕS
x : P(S)→ P(S) given by ϕS

x(A) := [[ϕ]]S[x 7→A]

Observation
If x occurs only positively in ϕ, then ϕS

x is monotone and so, by the
Knaster-Tarski theorem, it has both a least and a greatest fixpoint.

(µML) ϕ ::= p | ¬p | ϕ ∨ ϕ | ϕ ∧ ϕ | �ϕ | �ϕ | µxψ | νxψ,

where p ∈ P and x occurs only positively in ψ.

[[µxϕ]]Sx := LFP(ϕS
x) [[νxϕ]]Sx := GFP(ϕS

x)



Evaluation game

The evaluation game E(ξ, S) takes positions in Sf(ξ)× S and has
the following ownership function and admissible moves.

Position Player Admissible moves
(ϕ1 ∨ ϕ2, s) ∃ {(ϕ1, s), (ϕ2, s)}
(ϕ1 ∧ ϕ2, s) ∀ {(ϕ1, s), (ϕ2, s)}

( �ϕ, s) ∃ {(ϕ, t) : sRt}
(�ϕ, s) ∀ {(ϕ, t) : sRt}

(ηx.δx , s) - {(δx , s)}
(x, s) with x ∈ BV(ξ) - {(δx , s)}
(p, s) with p ∈ FV(ξ) and s ∈ V (p) ∀ ∅

(¬p, s) with p ∈ FV(ξ) and s ∈ V (p) ∃ ∅
(p, s) with p ∈ FV(ξ) and s 6∈ V (p) ∃ ∅

(¬p, s) with p ∈ FV(ξ) and s 6∈ V (p) ∀ ∅

An infinite match is won by ∃ (∀) if the ‘most important’ fixpoint
variable reached infinitely often is a ν-variable (a µ-variable)

Example: µx�x is true at a state s0 iff there is no infinite path
starting at s0.

(µx�x , s0)
−−→ (�x , s0)

∀−→ (x , s1)
−−→ (�x , s1)

∀−→ (x , s2)
−−→ · · ·
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Motivation of the paper

I The modal µ-calculus is highly expressive, yet retains many of
the desirable properties of basic modal logic, e.g bisimulation
invariance and the finite model property.

I However, two important methods fail: (i) filtration and (ii)
canonical models.

I Both of these methods are well-known to work for PDL.

Question
Can we do better? That is, is there a natural fragment of µML
that subsumes PDL and to which the methods of filtration and
canonical models can be applied?

Our answer (very roughly)

Yes, namely the continuous modal µ-calculus.



Motivation of the paper

I The modal µ-calculus is highly expressive, yet retains many of
the desirable properties of basic modal logic, e.g bisimulation
invariance and the finite model property.

I However, two important methods fail: (i) filtration and (ii)
canonical models.

I Both of these methods are well-known to work for PDL.

Question
Can we do better? That is, is there a natural fragment of µML
that subsumes PDL and to which the methods of filtration and
canonical models can be applied?

Our answer (very roughly)

Yes, namely the continuous modal µ-calculus.



Motivation of the paper

I The modal µ-calculus is highly expressive, yet retains many of
the desirable properties of basic modal logic, e.g bisimulation
invariance and the finite model property.

I However, two important methods fail: (i) filtration and (ii)
canonical models.

I Both of these methods are well-known to work for PDL.

Question
Can we do better? That is, is there a natural fragment of µML
that subsumes PDL and to which the methods of filtration and
canonical models can be applied?

Our answer (very roughly)

Yes, namely the continuous modal µ-calculus.



Motivation of the paper

I The modal µ-calculus is highly expressive, yet retains many of
the desirable properties of basic modal logic, e.g bisimulation
invariance and the finite model property.

I However, two important methods fail: (i) filtration and (ii)
canonical models.

I Both of these methods are well-known to work for PDL.

Question
Can we do better? That is, is there a natural fragment of µML
that subsumes PDL and to which the methods of filtration and
canonical models can be applied?

Our answer (very roughly)

Yes, namely the continuous modal µ-calculus.



Motivation of the paper

I The modal µ-calculus is highly expressive, yet retains many of
the desirable properties of basic modal logic, e.g bisimulation
invariance and the finite model property.

I However, two important methods fail: (i) filtration and (ii)
canonical models.

I Both of these methods are well-known to work for PDL.

Question
Can we do better?

That is, is there a natural fragment of µML
that subsumes PDL and to which the methods of filtration and
canonical models can be applied?

Our answer (very roughly)

Yes, namely the continuous modal µ-calculus.



Motivation of the paper

I The modal µ-calculus is highly expressive, yet retains many of
the desirable properties of basic modal logic, e.g bisimulation
invariance and the finite model property.

I However, two important methods fail: (i) filtration and (ii)
canonical models.

I Both of these methods are well-known to work for PDL.

Question
Can we do better? That is, is there a natural fragment of µML
that subsumes PDL and to which the methods of filtration and
canonical models can be applied?

Our answer (very roughly)

Yes, namely the continuous modal µ-calculus.



Motivation of the paper

I The modal µ-calculus is highly expressive, yet retains many of
the desirable properties of basic modal logic, e.g bisimulation
invariance and the finite model property.

I However, two important methods fail: (i) filtration and (ii)
canonical models.

I Both of these methods are well-known to work for PDL.

Question
Can we do better? That is, is there a natural fragment of µML
that subsumes PDL and to which the methods of filtration and
canonical models can be applied?

Our answer (very roughly)

Yes, namely the continuous modal µ-calculus.



Filtration

Let S = (S ,R,V ) be a Kripke model and let Σ be a finite and
closed set of formulas.

Let ∼S
Σ be the equivalence relation given by:

s ∼S
Σ s ′ if and only if s ∈ [[ϕ]]S ⇔ s ′ ∈ [[ϕ]]S for all ϕ ∈ Σ.

and define S := S/∼S
Σ.

Pick any relation R ⊆ S × S such that Rmin ⊆ R ⊆ Rmax, where

Rmin := {(s, t) : there are s ′ ∼S
Σ s and t ′ ∼S

Σ t such that Rs ′t ′},
Rmax := {(s, t) : for all �ϕ ∈ Σ; if s  �ϕ, then t  ϕ}.

Finally, let V (p) := {s : s  p} for every p ∈ Σ ∩ P.

Then the model S := (S ,R,V ) is called a filtration of S through Σ.
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Filtration (ii)

The Filtration Theorem holds for a modal language D if for any
finite and closed set Σ of D-formulas and any filtration S of S
through Σ we have:

s ∈ [[ϕ]]S ⇔ s ∈ [[ϕ]]S

for every ϕ ∈ Σ.

The Filtration Theorem holds for ML, for PDL, but not for µML:

Consider the formula ϕ := µx�x and the model S := (N, <,V ):

0← 1← 2← 3← · · ·

+ transitive arrows
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The continuous modal µ-calculus

Idea: restrict the use of the least and greatest fixpoint operators to
(formulas that induce) functions that are Scott continuous, rather
than merely monotone.

Fontaine (2008) proves the following syntactic characterisation:

ϕ ::= x | α | ϕ ∨ ϕ | ϕ ∧ ϕ | �ϕ | µyϕ′

where x ∈ X, y ∈ P, α ∈ µcML X-free, and ϕ′ ∈ ConX∪{y}(µcML).

Roughly: under a µ we disallow � and ν and, dually, under a ν we
disallow � and µ.



The continuous modal µ-calculus

Idea: restrict the use of the least and greatest fixpoint operators to
(formulas that induce) functions that are Scott continuous, rather
than merely monotone.

Fontaine (2008) proves the following syntactic characterisation:

ϕ ::= x | α | ϕ ∨ ϕ | ϕ ∧ ϕ | �ϕ | µyϕ′

where x ∈ X, y ∈ P, α ∈ µcML X-free, and ϕ′ ∈ ConX∪{y}(µcML).

Roughly: under a µ we disallow � and ν and, dually, under a ν we
disallow � and µ.



The continuous modal µ-calculus

Idea: restrict the use of the least and greatest fixpoint operators to
(formulas that induce) functions that are Scott continuous, rather
than merely monotone.

Fontaine (2008) proves the following syntactic characterisation:

ϕ ::= x | α | ϕ ∨ ϕ | ϕ ∧ ϕ | �ϕ | µyϕ′

where x ∈ X, y ∈ P, α ∈ µcML X-free, and ϕ′ ∈ ConX∪{y}(µcML).

Roughly: under a µ we disallow � and ν and, dually, under a ν we
disallow � and µ.



The continuous modal µ-calculus

Idea: restrict the use of the least and greatest fixpoint operators to
(formulas that induce) functions that are Scott continuous, rather
than merely monotone.

Fontaine (2008) proves the following syntactic characterisation:

ϕ ::= x | α | ϕ ∨ ϕ | ϕ ∧ ϕ | �ϕ | µyϕ′

where x ∈ X, y ∈ P, α ∈ µcML X-free, and ϕ′ ∈ ConX∪{y}(µcML).

Roughly: under a µ we disallow � and ν and, dually, under a ν we
disallow � and µ.



Properties of µcML

I Constructive: fixpoints are reached after at most ω iterations.

I Strictly more expressive than PDL.

Properties of the evaluation game played with µcML-formulas:

1. A match progresses at most finitely often from a position
(s, ηx .δ) to a position (t, ηy .θ).

2. A match progresses at most finitely often from a position
(s, µx .δ) to a position (t,�ψ).
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Theorem (Filtration Theorem for µcML)

For any finite and closed set Σ of µcML-formulas and any filtration
S of S through Σ it holds that:

s ∈ [[ϕ]]S ⇔ s ∈ [[ϕ]]S

for every ϕ ∈ Σ.

Proof sketch.
Suppose ∃ has a winning strategy f for G at (ϕ, s); we must show
that she has a winning strategy for G at (ϕ, s). We play a shadow
match, copying in G the moves suggested to ∃ by the strategy f in
G, and simulating in G the moves played by ∀ in G. Note: at each
position (s,�ϕ) we must reset the shadow match. However, if the
obtained strategy would be losing for ∃ this reset could happen only
finitely often, contradicting the assumption that f is winning.
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Other results

Definition
A class of models M is said to admit filtration with respect to a
language D if for every model S in M and every finite closed set of
D-formulas Σ, the class M contains a filtration of S through Σ. A
class of frames F is said to admit filtration if the class of models
{(S ,R,V ) : (S ,R) ∈ F} does.

Lemma
For any logic L, the class Mod(L) admits filtration wrt ML iff it
admits filtration wrt µcML.

Corollary (Finite Model Property)

Let L be a logic such that Mod(L) admits filtration with respect to
ML, and let φ be a formula of the continuous µ-calculus. Then φ
is valid in every L-model if and only if φ is valid in every finite
L-model.

For example: µcML has the FMP over symmetric models.
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Other results (ii)

Theorem
Let L be a canonical logic in the basic modal language such Fr(L)
admits filtration. Then µc -L is sound and complete with respect to
Fr(L).

For example: L = KB, K4, S4, S5, . . .

The last two results generalise results for PDL in Kikot,
Shapirovsky & Zolin (AiML 2020).
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Future work

I Relation to constructiveness.

I Is µcML somehow a maximal ‘natural’ fragment of µML to
which filtration is applicable?

I Can the currently separate proofs of the Filtration Theorem
and canonical completeness be unified by taking a filtration of
some canonical model (as with PDL).
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