Focus-style proofs for the two-way alternation-free μ -calculus

(joint work with Yde Venema)

Jan Rooduijn

ILLC, University of Amsterdam

WoLLIC, 12 July 2023

Overview

- The (alternation-free) modal μ -calculus
 - Game semantics
 - ullet Focus-style proofs for the alternation-free modal μ -calculus
 - Completeness
- ullet The two-way alternation-free modal μ -calculus
 - Problems for completeness
 - The solution: trace atoms
- Our results
- Conclusion and future work

The modal μ -calculus

- A set P of propositional variables.
- A set D of actions.

$$\varphi ::= \frac{p}{p} \mid \overline{p} \mid \varphi \lor \psi \mid \varphi \land \psi \mid \langle a \rangle \varphi \mid [a] \varphi \mid \underset{\times}{\mu_{\times}} \varphi \mid \underset{\times}{\nu_{\times}} \varphi$$
 where $\overline{\times}$ does not occur in φ .

Given a Kripke model $\mathbb{S} = (S, (R_a)_{a \in D}, V)$ and a propositional variable x, a formula φ induces a function

$$\llbracket \varphi \rrbracket_{\mathbf{x}}^{\mathbb{S}} : \mathcal{P}(S) \to \mathcal{P}(S)$$
$$: X \mapsto \llbracket \varphi \rrbracket^{\mathbb{S}[x \mapsto X]}$$

 $[\![\eta x\varphi]\!]^{\mathbb{S}} \text{ is the least/greatest fixed point of } [\![\varphi]\!]_{\mathbf{x}}^{\mathbb{S}} \text{ } (\eta \in \{\mu,\nu\}).$

The alternation-free fragment

Roughly: a formula φ is alternation free if there is no entanglement bewetween μ and ν operators.

$$\mu \times \mu y(\langle a \rangle (x \vee p) \wedge \langle b \rangle y) \qquad \qquad \mu \times \nu y(\langle a \rangle (x \vee p) \wedge \langle b \rangle y)$$
$$\mu \times (\langle a \rangle (x \vee p) \wedge \mu y \langle b \rangle y) \qquad \qquad \mu \times (\langle a \rangle (x \vee p) \wedge \nu y \langle b \rangle y)$$

ullet The alternation-free modal μ -calculus subsumes PDL, CKL and many other extensions of modal logic by fixed point operators.

At position (φ, s) , player \exists wants to show that φ is true s, while player \forall wishes to show that φ is false at s.

At position (φ, s) , player \exists wants to show that φ is true s, while player \forall wishes to show that φ is false at s.

$$(\langle a \rangle [b] \mu x (\langle a \rangle x \vee p), s_1)$$

At position (φ, s) , player \exists wants to show that φ is true s, while player \forall wishes to show that φ is false at s.

$$(\langle a \rangle [b] \mu x (\langle a \rangle x \vee p), s_1)$$

$$\xrightarrow{\exists} ([b] \mu x (\langle a \rangle x \vee p), s_2)$$

At position (φ, s) , player \exists wants to show that φ is true s, while player \forall wishes to show that φ is false at s.

$$(\langle a \rangle [b] \mu x (\langle a \rangle x \vee p), s_1)$$

$$\xrightarrow{\exists} ([b] \mu x (\langle a \rangle x \vee p), s_2)$$

$$\xrightarrow{\forall} (\mu x (\langle a \rangle x \vee p), s_3)$$

At position (φ, s) , player \exists wants to show that φ is true s, while player \forall wishes to show that φ is false at s.

$$(\langle a \rangle [b] \mu x (\langle a \rangle x \vee p), s_1)$$

$$\xrightarrow{\exists} ([b] \mu x (\langle a \rangle x \vee p), s_2)$$

$$\xrightarrow{\forall} (\mu x (\langle a \rangle x \vee p), s_3)$$

$$\xrightarrow{\cdot} (\langle a \rangle \mu x (\langle a \rangle x \vee p) \vee p, s_3)$$

At position (φ, s) , player \exists wants to show that φ is true s, while player \forall wishes to show that φ is false at s.

$$(\langle a \rangle [b] \mu x (\langle a \rangle x \vee p), s_1)$$

$$\xrightarrow{\exists} ([b] \mu x (\langle a \rangle x \vee p), s_2)$$

$$\xrightarrow{\forall} (\mu x (\langle a \rangle x \vee p), s_3)$$

$$\xrightarrow{\cdot} (\langle a \rangle \mu x (\langle a \rangle x \vee p) \vee p, s_3)$$

$$\xrightarrow{\exists} (p, s_3)$$

The evaluation game (definition)

The game $\mathcal{E}(\xi,\mathbb{S})$ is played on the board $\mathsf{Clos}(\xi) \times S$.

Position	Owner	Admissible moves
$(p,s), s \in V(p)$	A	Ø
$(p,s), s \notin V(p)$	∃	Ø
$(\overline{p},s),s\notin V(p)$	\forall	Ø
$(\overline{p},s),s\in V(p)$	∃	Ø
$(arphiee\psi,s)$	∃	$\{(\varphi,s),(\psi,s)\}$
$(\varphi \wedge \psi, s)$	\forall	$\{(\varphi,s),(\psi,s)\}$
$(\langle a \rangle arphi, s)$	3	$\{\varphi\} \times R_a[s]$
([a]arphi,s)	\forall	$\{\varphi\} imes R_a[s]$
$(\eta x \varphi, s)$	_	$\{(\varphi[\eta x \varphi/x], s)\}$

An infinite $\mathcal{E}(\xi,\mathbb{S})$ -match is won by \exists (\forall) iff it contains infinitely many ν -formulas (μ -formulas)

Example

 $\mu x(\langle a \rangle x \vee p) \equiv$ "a p-state is reachable by an a-path"

An annotated proof system (Marti & Venema)

A sequent is a finite set Γ consiting of annotated formulas φ^u with $u \in \{\circ, \bullet\}$.

$$\frac{\varphi^{u}, \overline{\varphi}^{v}, \Gamma}{\varphi^{u}, \overline{\varphi}^{v}, \Gamma} \operatorname{Ax} \qquad \frac{\varphi^{u}, \psi^{u}, \Gamma}{\varphi \vee \psi^{u}, \Gamma} \vee \qquad \frac{\varphi^{u}, \Gamma}{\varphi \wedge \psi^{u}, \Gamma} \wedge$$

$$\frac{\varphi^{u}, \Delta}{[a] \varphi^{u}, \langle a \rangle \Delta, \Gamma} [a] \qquad \frac{\varphi[\mu x \varphi/x]^{\circ}, \Gamma}{\mu x \varphi^{u}, \Gamma} \mu \qquad \frac{\varphi[\nu x \varphi/x]^{u}, \Gamma}{\nu x \varphi^{u}, \Gamma} \nu \qquad \frac{\Gamma^{\bullet}}{\Gamma^{\circ}} \operatorname{F}$$

Definition

A non-well-founded derivation is a *proof* if every infinite branch has a final segment on which there is always a formula in focus.

- The (path-based) focus system is equivalent to the trace-based system.
- The focus annotations allow for a nice soundness condition on cyclic proofs as finite trees with back edges.

The proof search game

The proof search game is defined as follows:

- Given a sequent Γ , Prover chooses a rule instance $\frac{\Delta_1\cdots\Delta_n}{\Gamma}$ r
- Given a rule instance $\frac{\Delta_1 \cdots \Delta_n}{\Gamma}$ r, Refuter chooses a sequent Δ_i .
- An infinite match is won by Prover if and only if from some point on, every sequent has a formula in focus.

Note: viewed as a tree, a winning strategy for Prover is the same as a proof.

Completeness

Theorem (Niwinski & Walukiewicz, Marti & Venema)

Every valid sequent Γ is provable.

Proof (sketch).

Suppose Γ is not provable. By determinacy, there is a winning strategy T for Refuter in the proof search game. This winning strategy carries a countermodel.

 $S^T := \{ \text{maximal paths } \rho \text{ in } T \text{ such that } \rho \text{ does not pass a modal rule} \}$ $\rho_1 R_a^T \rho_2 : \Leftrightarrow \rho_1$ is connected to ρ_2 by an application of the rule [a] $p \in V^T(\rho) :\Leftrightarrow p$ does not occur in a sequent on the path ρ

The two-way alternation-free modal μ -calculus

- A set P of propositional variables.
- A set D of actions.

Fix an involution operation $\check{}$ on D, i.e. $a \neq \check{a}$ and $\check{a} = a$ for every $a \in D$

$$\varphi ::= \frac{p}{p} \mid \overline{p} \mid \varphi \lor \psi \mid \varphi \land \psi \mid \langle a \rangle \varphi \mid [a] \varphi \mid \underset{\chi}{\mu \chi} \varphi \mid \underset{\chi}{\nu \chi} \varphi$$
 where $\overline{\chi}$ does not occur in φ .

The two-way modal μ -calculus is interpreted over *regular* models:

$$R_{\breve{\mathsf{a}}} = \{(t,s) : (s,t) \in R_{\mathsf{a}}\}$$

Example

 $\nu x(\langle a \rangle \langle \breve{a} \rangle x) \equiv$ "there is an infinite path of alternating a and \breve{a} transitions"

Problem for completeness

$$(\langle \breve{\mathbf{a}} \rangle \psi, \rho_1) \stackrel{\exists}{\longrightarrow} (\psi, \rho_0)$$

Modal rule for the two-way μ -calculus

$$\frac{\varphi, \Delta, []\Gamma}{[a]\varphi, \langle a \rangle \Delta, \Gamma} R_{[a]} \qquad \frac{\varphi^{\circ}, \Gamma}{\Gamma} \text{ cut}$$

$$\frac{\Gamma_1}{\Gamma_0} R_{[a]}$$

$$\langle \rangle \psi \in \Gamma_1 \Rightarrow [] \overline{\psi} \notin \Gamma_0 \Rightarrow \overline{\psi} \notin \Gamma_0 \Rightarrow \psi \in \Gamma_0$$

Another problem for completeness

If $\langle \check{a} \rangle \psi^{\bullet}$ occurs in ρ_1 , then ψ^u occurs in ρ_0 . But how do we get $u = \bullet$?

Trace atoms (inspired by Vardi)

Definition

Given φ, ψ , there is a trace atom $\varphi \leadsto \psi$ and a negated trace atom $\varphi \not\leadsto \psi$.

The semantics of trace atoms is defined relative to a positional strategy for \forall .

Definition

Given a positional strategy f for \forall in \mathcal{E} , we say that $\varphi \leadsto \psi$ is satisfied in \mathbb{S} at s with respect to f (and write $\mathbb{S}, s \Vdash_f \varphi \leadsto \psi$) if there is an f-guided match

$$(\varphi,s)=(\varphi_0,s_0)\cdot(\varphi_1,s_1)\cdots(\varphi_n,s_n)=(\psi,s) \quad (n\geq 0)$$

such that for no i < n the formula φ_i is a μ -formula. We say that $\mathbb S$ satisfies $\varphi \not\rightsquigarrow \psi$ at s with respect to f (and write $\mathbb S, s \Vdash_f \varphi \not\rightsquigarrow \psi$) iff $\mathbb S, s \not\Vdash_f \varphi \leadsto \psi$.

Some examples

Example

- **1** $\mu x \varphi \rightsquigarrow \chi$ is only satisfiable if $\chi = \mu x \varphi$.
- 2 $\nu x \varphi \leadsto \varphi [\nu x \varphi / x]$ is always true.
- \bullet $S, s \Vdash_f \varphi \leadsto \langle a \rangle \psi$ implies $S, t \Vdash_f \langle \breve{a} \rangle \varphi \leadsto \psi$ for every a-successor f of s.

Incorporating trace atoms in the proof system

If $\varphi \not \rightsquigarrow \langle \breve{\mathbf{a}} \rangle \psi$ occurs in ρ_1 , then $\varphi \rightsquigarrow \langle \breve{\mathbf{a}} \rangle \psi$ does not occur ρ_1 , so $\langle a \rangle \varphi \rightsquigarrow \psi$ does not occur in ρ_0 , and thus $\langle a \rangle \varphi \not \rightsquigarrow \psi$ occurs in ρ_0 .

Completeness

Lemma

Let $\rho \in S^T$. Suppose \mathbb{S}^T , $\rho \Vdash_f \varphi \leadsto \psi$. Then $\varphi \not\rightsquigarrow \psi$ occurs in ρ .

Results

Let Γ be a sequent consisting of annotated formulas (i.e. φ^u with $u \in \{\circ, \bullet\}$), trace atoms, and negated trace atoms.

Theorem (Soundness)

If Γ is provable, then for every model $\mathbb S$, state s of $\mathbb S$ and optimal positional strategy f for \forall in $\mathcal E$, there is an $A \in \Gamma$ such that $\mathbb S, s \Vdash_f A$.

Let Γ^- be the set of annotated formulas in Γ (so we remove the trace atoms).

Theorem (Completeness)

If Γ^- is valid, then Γ is provable.

Remark

The infinitary proof system naturally restricts to a finitary cyclic system.

Corollary

The two-way alternation-free modal μ -calculus is decidable and has the regular tree model property.

Future work

- Completeness for all sequents, e.g. $\{\varphi_1 \land \varphi_2 \leadsto \varphi_1, \varphi_1 \land \varphi_2 \leadsto \varphi_2\}$.
- Interpolation
- Incorporating trace atoms in the syntax?
- Extending this system to the full two-way modal μ -calculus (i.e. with alternation)

Thank you

https://staff.fnwi.uva.nl/j.m.w.rooduijn/

$$\frac{\varphi^{u}, \overline{\varphi}^{v}, \Gamma}{\varphi^{u}, \overline{\varphi}^{v}, \Gamma} \text{ Ax1} \qquad \frac{\varphi \rightsquigarrow \psi, \varphi \not \rightsquigarrow \psi, \Gamma}{\varphi \lor \psi^{u}, \Gamma} \text{ Ax2} \qquad \frac{\varphi^{\circ}, \Gamma}{\varphi \rightsquigarrow \varphi, \Gamma} \text{ Ax3}$$

$$\frac{(\varphi \lor \psi) \not \rightsquigarrow \varphi, (\varphi \lor \psi) \not \rightsquigarrow \psi, \varphi^{u}, \psi^{u}, \Gamma}{\varphi \lor \psi^{u}, \Gamma} \text{ R}_{V} \qquad \frac{\varphi^{\circ}, \Gamma}{\Gamma} \text{ cut}$$

$$\frac{(\varphi \land \psi) \not \rightsquigarrow \varphi, \varphi^{u}, \Gamma}{\varphi \land \psi^{u}, \Gamma} \qquad (\varphi \land \psi) \not \rightsquigarrow \psi, \psi^{u}, \Gamma}{\varphi \land \psi^{u}, \Gamma} \text{ R}_{\Lambda} \qquad \frac{\varphi[\mu x \varphi / x]^{\circ}, \Gamma}{\mu x \varphi^{u}, \Gamma} \text{ R}_{\mu}$$

$$\frac{\nu x \varphi \not \rightsquigarrow \varphi[\nu x \varphi / x], \varphi[\nu x \varphi / x] \rightsquigarrow \nu x \varphi, \varphi[\nu x \varphi / x]^{u}, \Gamma}{\nu x \varphi^{u}, \Gamma} \text{ R}_{[a]}$$

$$\frac{\Gamma^{\bullet}}{\Gamma^{\circ}} \text{ F} \qquad \frac{\varphi \not \rightsquigarrow \psi, \psi \not \rightsquigarrow \chi, \varphi \not \rightsquigarrow \chi, \Gamma}{\varphi \not \rightsquigarrow \psi, \psi \not \rightsquigarrow \chi, \Gamma} \text{ trans} \qquad \frac{\varphi \leadsto \psi, \Gamma}{\varphi \not \rightsquigarrow \psi, \psi \not \sim \psi, \Gamma} \text{ tc}$$

Definition

Let Γ be a sequent and let $[a]\varphi^b$ be an annotated formula. The $jump\ \Gamma^{[a]\varphi^b}$ of Γ with respect to $[a]\varphi^b$ consists of:

- - **3** $[\breve{a}]\chi^{\circ}$ for every $\chi^{d} \in \Gamma$ such that $[\breve{a}]\chi \in \Sigma$;
- **2** $\varphi \leadsto \langle \breve{a} \rangle \chi$ for every $[a]\varphi \leadsto \chi \in \Gamma$ such that $\langle \breve{a} \rangle \chi \in \Sigma$;
 - $② \ \, \langle \breve{\mathbf{a}} \rangle \chi \not \rightsquigarrow \varphi \text{ for every } \chi \not \rightsquigarrow [\mathbf{a}] \varphi \in \Gamma \text{ such that } \langle \breve{\mathbf{a}} \rangle \chi \in \Sigma;$

where $s(\xi, \Gamma)$ is defined by:

$$s(\xi, \Gamma) = \begin{cases} \bullet & \text{if } \xi^{\bullet} \in \Gamma, \\ \bullet & \text{if } \theta \not \rightsquigarrow \xi \in \Gamma \text{ for some } \theta^{\bullet} \in \Gamma \\ \circ & \text{otherwise.} \end{cases}$$

When taking the strategy tree T, we assume that Prover adheres to the following non-deterministic strategy:

- Only apply a modal rule when all of the propositional rules are exhausted.
- Apply the rule F whenever possible.

The canonical strategy f for \forall in $\mathcal{E}(\Gamma, \mathbb{S}^T)$ is given by:

- At $(\varphi \land \psi, \rho)$ choose the conjunct corresponding to the choice of Refuter when $\varphi \land \psi$ is principal in an application of the rule \wedge in ρ .
- At ($[a]\varphi, \rho$) choose an a-successor ρ' of ρ such that ρ and ρ' are separated by an application of [a].

Example

Define $\varphi:=\nu x\langle a\rangle\langle \check{a}\rangle x$, *i.e.* φ expresses that there is an infinite path of alternating a and \check{a} transitions. Clearly this holds at every state with an a-successor. Hence the implication $\langle a\rangle p\to \varphi$ is valid. As context Σ we consider the least negation-closed set containing both $\langle a\rangle p$ and φ , *i.e.*,

$$\{\langle \mathbf{a} \rangle \mathbf{p}, \mathbf{p}, \varphi, \langle \mathbf{a} \rangle \langle \widecheck{\mathbf{a}} \rangle \varphi, \langle \widecheck{\mathbf{a}} \rangle \varphi, [\mathbf{a}] \overline{\mathbf{p}}, \overline{\mathbf{p}}, \overline{\varphi}, [\mathbf{a}] [\widecheck{\mathbf{a}}] \overline{\varphi}, [\widecheck{\mathbf{a}}] \overline{\varphi}\}.$$

The following is a $\mathsf{Focus}^2_\infty\mathsf{-proof}$ of $\langle a\rangle p\to \varphi$.

$$\frac{\overline{\overline{p}^{\bullet}, \langle \breve{a} \rangle \varphi^{\bullet}, \langle \breve{a} \rangle \varphi \not \sim \langle \breve{a} \rangle \varphi, \langle \breve{a} \rangle \varphi \leadsto \langle \breve{a} \rangle \varphi}}{\underline{[a]\overline{p}^{\bullet}, \langle a \rangle \langle \breve{a} \rangle \varphi^{\bullet}, \varphi \not \sim \langle a \rangle \langle \breve{a} \rangle \varphi, \langle a \rangle \langle \breve{a} \rangle \varphi \leadsto \varphi}} R_{[a]}}{R_{\nu}}$$

Note that it is also possible to use Ax3 instead of Ax2 in the above proof.