Focus-style proofs for the two-way alternation-free μ-calculus

(joint work with Yde Venema)

Jan Rooduijn
ILLC, University of Amsterdam

WoLLIC, 12 July 2023

Overview

- The (alternation-free) modal μ-calculus
- Game semantics
- Focus-style proofs for the alternation-free modal μ-calculus
- Completeness
- The two-way alternation-free modal μ-calculus
- Problems for completeness
- The solution: trace atoms
- Our results
- Conclusion and future work

The modal μ-calculus

- A set P of propositional variables.
- A set D of actions.

$$
\begin{aligned}
& \varphi::=p|\bar{p}| \varphi \vee \psi|\varphi \wedge \psi|\langle\text { à } \varphi|[\text { a] } \varphi|\mu \times \varphi| \nu \times \varphi \\
& \text { re } \bar{x} \text { does not occur in } \varphi \text {. }
\end{aligned}
$$

Given a Kripke model $\mathbb{S}=\left(S,\left(R_{a}\right)_{a \in \mathrm{D}}, V\right)$ and a propositional variable x, a formula φ induces a function

$$
\begin{aligned}
\llbracket \varphi \rrbracket_{x}^{\mathbb{S}} & : \mathcal{P}(S) \rightarrow \mathcal{P}(S) \\
& : X \mapsto \llbracket \varphi \rrbracket^{\mathbb{S}[x \mapsto X]}
\end{aligned}
$$

$\llbracket \eta x \varphi \rrbracket^{\mathbb{S}}$ is the least/greatest fixed point of $\llbracket \varphi \rrbracket_{x}^{\mathbb{S}}(\eta \in\{\mu, \nu\})$.

The alternation-free fragment

Roughly: a formula φ is alternation free if there is no entanglement bewetween μ and ν operators.

$$
\begin{array}{ll}
\mu x \mu y(\langle a\rangle(x \vee p) \wedge\langle b\rangle y) & \mu x \nu y(\langle a\rangle(x \vee p) \wedge\langle b\rangle y) \\
\mu x(\langle a\rangle(x \vee p) \wedge \mu y\langle b\rangle y) & \mu x(\langle a\rangle(x \vee p) \wedge \nu y\langle b\rangle y)
\end{array}
$$

- The alternation-free modal μ-calculus subsumes PDL, CKL and many other extensions of modal logic by fixed point operators.

The evaluation game (example)

At position (φ, s), player \exists wants to show that φ is true s, while player \forall wishes to show that φ is false at s.

$V(p)=\left\{s_{i}: s_{i}\right.$ has a double circle $\}$

The evaluation game (example)

At position (φ, s), player \exists wants to show that φ is true s, while player \forall wishes to show that φ is false at s.

$$
\begin{array}{r}
\left(\langle a\rangle[b] \mu x(\langle a\rangle x \vee p), s_{1}\right) \\
V(p)=\left\{s_{i}: s_{i} \text { has a double circle }\right\}
\end{array}
$$

The evaluation game (example)

At position (φ, s), player \exists wants to show that φ is true s, while player \forall wishes to show that φ is false at s.

The evaluation game (example)

At position (φ, s), player \exists wants to show that φ is true s, while player \forall wishes to show that φ is false at s.

The evaluation game (example)

At position (φ, s), player \exists wants to show that φ is true s, while player \forall wishes to show that φ is false at s.

$$
\begin{aligned}
& \left(\langle a\rangle[b] \mu x(\langle a\rangle x \vee p), s_{1}\right) \\
\xrightarrow{ヨ} & \left([b] \mu x(\langle a\rangle x \vee p), s_{2}\right) \\
\xrightarrow{\forall} & \left(\mu x(\langle a\rangle x \vee p), s_{3}\right) \\
\rightarrow & \left(\langle a\rangle \mu x(\langle a\rangle x \vee p) \vee p, s_{3}\right)
\end{aligned}
$$

$$
V(p)=\left\{s_{i}: s_{i} \text { has a double circle }\right\}
$$

The evaluation game (example)

At position (φ, s), player \exists wants to show that φ is true s, while player \forall wishes to show that φ is false at s.

$$
\begin{aligned}
& \left(\langle a\rangle[b] \mu \times(\langle a\rangle \times \vee p), s_{1}\right) \\
\vec{\rightarrow} & \left([b] \mu \times(\langle a\rangle \times \vee p), s_{2}\right) \\
\xrightarrow{\forall} & \left(\mu \times(\langle a\rangle \times \vee p), s_{3}\right) \\
\rightarrow & \left(\langle a\rangle \mu x(\langle a\rangle \times \vee p) \vee p, s_{3}\right) \\
\xrightarrow{\exists} & \left(p, s_{3}\right)
\end{aligned}
$$

$V(p)=\left\{s_{i}: s_{i}\right.$ has a double circle $\}$

The evaluation game (definition)

The game $\mathcal{E}(\xi, \mathbb{S})$ is played on the board $\operatorname{Clos}(\xi) \times S$.

Position	Owner	Admissible moves
$(p, s), s \in V(p)$	\forall	\emptyset
$(p, s), s \notin V(p)$	\exists	\emptyset
$(\bar{p}, s), s \notin V(p)$	\forall	\emptyset
$(\bar{p}, s), s \in V(p)$	\exists	\emptyset
$(\varphi \vee \psi, s)$	\exists	$\{(\varphi, s),(\psi, s)\}$
$(\varphi \wedge \psi, s)$	\forall	$\{(\varphi, s),(\psi, s)\}$
$(\langle a\rangle \varphi, s)$	\exists	$\left.\{\varphi\} \times R_{a} s\right]$
$([a] \varphi, s)$	\forall	$\{\varphi\} \times R_{a}[s]$
$(\eta \times \varphi, s)$	-	$\{(\varphi[\eta \times \varphi / \times], s)\}$

An infinite $\mathcal{E}(\xi, \mathbb{S})$-match is won by $\exists(\forall)$ iff it contains infinitely many ν-formulas (μ-formulas)

Example

$\mu x(\langle a\rangle x \vee p) \equiv$ "a p-state is reachable by an a-path"

An annotated proof system (Marti \& Venema)

A sequent is a finite set Γ consiting of annotated formulas φ^{u} with $u \in\{0, \bullet\}$.

$$
\overline{\varphi^{u}, \bar{\varphi}^{v}, \Gamma} \mathrm{Ax} \quad \frac{\varphi^{u}, \psi^{u}, \Gamma}{\varphi \vee \psi^{u}, \Gamma} \vee \quad \frac{\varphi^{u}, \Gamma \quad \psi^{u}, \Gamma}{\varphi \wedge \psi^{u}, \Gamma} \wedge
$$

$$
\frac{\varphi^{u}, \Delta}{[a] \varphi^{u},\langle a\rangle \Delta, \Gamma}[a] \quad \frac{\varphi[\mu x \varphi / x]^{0}, \Gamma}{\mu x \varphi^{u}, \Gamma} \mu \quad \frac{\varphi[\nu x \varphi / x]^{u}, \Gamma}{\nu x \varphi^{u}, \Gamma} \nu \quad \frac{\Gamma^{\bullet}}{\Gamma^{\circ}} \mathrm{F}
$$

Definition

A non-well-founded derivation is a proof if every infinite branch has a final segment on which there is always a formula in focus.

- The (path-based) focus system is equivalent to the trace-based system.
- The focus annotations allow for a nice soundness condition on cyclic proofs as finite trees with back edges.

The proof search game

The proof search game is defined as follows:

- Given a sequent Γ, Prover chooses a rule instance $\frac{\Delta_{1} \cdots \Delta_{n}}{\Gamma} r$
- Given a rule instance $\frac{\Delta_{1} \cdots \Delta_{n}}{\Gamma}$ r, Refuter chooses a sequent Δ_{i}.
- An infinite match is won by Prover if and only if from some point on, every sequent has a formula in focus.

Note: viewed as a tree, a winning strategy for Prover is the same as a proof.

Completeness

Theorem (Niwinski \& Walukiewicz, Marti \& Venema)

Every valid sequent Γ is provable.

Proof (sketch).

Suppose Γ is not provable. By determinacy, there is a winning strategy T for Refuter in the proof search game. This winning strategy carries a countermodel.

$S^{T}:=\{$ maximal paths ρ in T such that ρ does not pass a modal rule $\}$ $\rho_{1} R_{a}^{T} \rho_{2}: \Leftrightarrow \rho_{1}$ is connected to ρ_{2} by an application of the rule [a] $p \in V^{T}(\rho): \Leftrightarrow p$ does not occur in a sequent on the path ρ

The two-way alternation-free modal μ-calculus

- A set P of propositional variables.
- A set D of actions.

Fix an involution operation $\breve{\text { on }} \mathrm{D}$, i.e. $a \neq \breve{a}$ and $\breve{a}=a$ for every $a \in \mathrm{D}$

The two-way modal μ-calculus is interpreted over regular models:

$$
R_{a}=\left\{(t, s):(s, t) \in R_{a}\right\}
$$

Example

$\nu x(\langle a\rangle\langle\breve{a}\rangle x) \equiv$ "there is an infinite path of alternating a and \breve{a} transitions"

Problem for completeness

$$
\left(\langle\breve{a}\rangle \psi, \rho_{1}\right) \xrightarrow{\exists}\left(\psi, \rho_{0}\right)
$$

Modal rule for the two-way μ-calculus

$$
\begin{gathered}
\frac{\varphi, \Delta,[\breve{a}] \Gamma}{[a] \varphi,\langle a\rangle \Delta, \Gamma} \mathrm{R}_{[a]} \quad \frac{\varphi^{\circ}, \Gamma \bar{\varphi}^{\circ}, \Gamma}{\Gamma} \mathrm{cut} \\
\frac{\Gamma_{1}}{\Gamma_{0}} \mathrm{R}_{[a]} \\
\langle\breve{a}\rangle \psi \in \Gamma_{1} \Rightarrow[\breve{a}] \bar{\psi} \notin \Gamma_{0} \Rightarrow \bar{\psi} \notin \Gamma_{0} \Rightarrow \psi \in \Gamma_{0}
\end{gathered}
$$

Another problem for completeness

If \langle ă $\rangle \psi^{\bullet}$ occurs in ρ_{1}, then ψ^{u} occurs in ρ_{0}. But how do we get $u=\bullet$?

Trace atoms (inspired by Vardi)

Definition

Given φ, ψ, there is a trace atom $\varphi \rightsquigarrow \psi$ and a negated trace atom $\varphi \nLeftarrow \psi \psi$.
The semantics of trace atoms is defined relative to a positional strategy for \forall.

Definition

Given a positional strategy f for \forall in \mathcal{E}, we say that $\varphi \rightsquigarrow \psi$ is satisfied in \mathbb{S} at s with respect to f (and write $\mathbb{S}, s \Vdash_{f} \varphi \rightsquigarrow \psi$) if there is an f-guided match

$$
(\varphi, s)=\left(\varphi_{0}, s_{0}\right) \cdot\left(\varphi_{1}, s_{1}\right) \cdots\left(\varphi_{n}, s_{n}\right)=(\psi, s) \quad(n \geq 0)
$$

such that for no $i<n$ the formula φ_{i} is a μ-formula. We say that \mathbb{S} satisfies $\varphi \nLeftarrow \psi$ at s with respect to f (and write $\mathbb{S}, s \Vdash_{f} \varphi \nsim \psi \psi$) iff $\mathbb{S}, s \Vdash_{f} \varphi \rightsquigarrow \psi$.

Some examples

Example

(1) $\mu \times \varphi \rightsquigarrow \chi$ is only satisfiable if $\chi=\mu \times \varphi$.
(3) $\nu \times \varphi \rightsquigarrow \varphi[\nu x \varphi / x]$ is always true.
(3) If $\mathbb{S}, s \Vdash_{f} \varphi \rightsquigarrow \psi$ and $\mathbb{S}, s \Vdash_{f} \psi \rightsquigarrow \varphi$ for some $\varphi \neq \psi$, then $\mathbb{S}, s \Vdash_{f} \varphi$.
(1) $\mathbb{S}, s \Vdash_{f} \varphi \rightsquigarrow\langle a\rangle \psi$ implies $\mathbb{S}, t \Vdash_{f}\langle a ̆\rangle \varphi \rightsquigarrow \psi$ for every a-successor f of s.

Incorporating trace atoms in the proof system

If $\varphi \nsim\left\langle\langle\breve{a}\rangle \psi\right.$ occurs in ρ_{1}, then $\varphi \rightsquigarrow\langle\breve{a}\rangle \psi$ does not occur ρ_{1}, so $\langle a\rangle \varphi \rightsquigarrow \psi$ does not occur in ρ_{0}, and thus $\langle a\rangle \varphi \nsim \psi \psi$ occurs in ρ_{0}.

Completeness

Lemma
Let $\rho \in S^{T}$. Suppose $\mathbb{S}^{T}, \rho \Vdash_{f} \varphi \rightsquigarrow \psi$. Then $\varphi \nLeftarrow \psi$ occurs in ρ.

Results

Let Γ be a sequent consisting of annotated formulas (i.e. φ^{u} with $u \in\{0, \bullet\}$), trace atoms, and negated trace atoms.

Theorem (Soundness)

If Γ is provable, then for every model \mathbb{S}, state s of \mathbb{S} and optimal positional strategy f for \forall in \mathcal{E}, there is an $A \in \Gamma$ such that $\mathbb{S}, s \Vdash_{f} A$.

Let Γ^{-}be the set of annotated formulas in Γ (so we remove the trace atoms).

Theorem (Completeness)

If Γ^{-}is valid, then Γ is provable.

Remark

The infinitary proof system naturally restricts to a finitary cyclic system.

Corollary

The two-way alternation-free modal μ-calculus is decidable and has the regular tree model property.

Future work

- Completeness for all sequents, e.g. $\left\{\varphi_{1} \wedge \varphi_{2} \rightsquigarrow \varphi_{1}, \varphi_{1} \wedge \varphi_{2} \rightsquigarrow \varphi_{2}\right\}$.
- Interpolation
- Incorporating trace atoms in the syntax?
- Extending this system to the full two-way modal μ-calculus (i.e. with alternation)

Thank you

https://staff.fnwi.uva.nl/j.m.w.rooduijn/

$$
\begin{aligned}
& \varphi^{u}, \bar{\varphi}^{v}, \Gamma \mathrm{~A} \times 1 \quad \overline{\varphi \rightsquigarrow \psi, \varphi \nLeftarrow \psi, \Gamma} \mathrm{~A} \times 2 \quad \underset{\varphi \rightsquigarrow \varphi, \Gamma}{ } \mathrm{~A} \times 3 \\
& \frac{(\varphi \vee \psi) \nLeftarrow \varphi,(\varphi \vee \psi) \nLeftarrow \psi, \varphi^{u}, \psi^{u}, \Gamma}{\varphi \vee \psi^{u}, \Gamma} \mathrm{R}_{\vee} \quad \frac{\varphi^{\circ}, \Gamma \quad \bar{\varphi}^{\circ}, \Gamma}{\Gamma} \text { cut } \\
& \frac{(\varphi \wedge \psi) \nLeftarrow \varphi, \varphi^{u}, \Gamma \quad(\varphi \wedge \psi) \nLeftarrow \psi, \psi^{u}, \Gamma}{\varphi \wedge \psi^{u}, \Gamma} \mathrm{R}_{\wedge} \quad \frac{\varphi[\mu x \varphi / x]^{\circ}, \Gamma}{\mu x \varphi^{u}, \Gamma} \mathrm{R}_{\mu} \\
& \frac{\nu x \varphi \nLeftarrow \varphi[\nu \times \varphi / x], \varphi[\nu x \varphi / x] \rightsquigarrow \nu x \varphi, \varphi[\nu \times \varphi / x]^{u}, \Gamma}{\nu x \varphi^{u}, \Gamma} \mathrm{R}_{\nu} \frac{\Gamma^{[a] \varphi^{u}}}{[a] \varphi^{u}, \Gamma} \mathrm{R}_{[a]} \\
& \frac{\Gamma^{\bullet}}{\Gamma^{\circ}} \mathrm{F} \quad \frac{\varphi \nLeftarrow \psi, \psi \nLeftarrow \chi, \varphi \nLeftarrow \chi, \Gamma}{\varphi \nLeftarrow \rightarrow \psi, \psi \nLeftarrow \rightarrow \chi, \Gamma} \operatorname{trans} \quad \frac{\varphi \rightsquigarrow \psi, \Gamma \quad \varphi \nLeftarrow \psi, \Gamma}{\Gamma} \mathrm{tc}
\end{aligned}
$$

Definition

Let Γ be a sequent and let $[a] \varphi^{b}$ be an annotated formula. The jump $\Gamma^{[a] \varphi^{b}}$ of Γ with respect to $[a] \varphi^{b}$ consists of:
(1) (1) $\varphi^{s([\mathrm{a}] \varphi, \Gamma) \text {; }}$
(2) $\psi^{s(\langle a\rangle \psi, \Gamma)}$ for every $\langle a\rangle \psi^{c} \in \Gamma$;
(3) [ă] χ° for every $\chi^{d} \in \Gamma$ such that $[$ ă $] \chi \in \Sigma$;
(2) (1) $\varphi \rightsquigarrow\langle\breve{a}\rangle \chi$ for every $[a] \varphi \rightsquigarrow \chi \in \Gamma$ such that \langle ă $\rangle \chi \in \Sigma$;
(2) $\langle\breve{a}\rangle \chi \not \nrightarrow \varphi$ for every $\chi \nLeftarrow[a] \varphi \in \Gamma$ such that $\langle a ̆\rangle \chi \in \Sigma$;
(3) $\psi \rightsquigarrow\langle a ̆\rangle \chi$ for every $\langle a\rangle \psi \rightsquigarrow \chi \in \Gamma$ such that $\langle a ̆\rangle \chi \in \Sigma$;
(9) $\langle\breve{a}\rangle \chi \nsim \psi$ for every $\chi \nLeftarrow\langle a\rangle \psi \in \Gamma$ such that $\langle a ̆\rangle \chi \in \Sigma$.
where $s(\xi, \Gamma)$ is defined by:

$$
s(\xi, \Gamma)= \begin{cases}\bullet & \text { if } \xi^{\bullet} \in \Gamma \\ \bullet & \text { if } \theta \nLeftarrow \xi \in \Gamma \text { for some } \theta^{\bullet} \in \Gamma \\ \bigcirc & \text { otherwise }\end{cases}
$$

When taking the strategy tree T, we assume that Prover adheres to the following non-deterministic strategy:

- Only apply a modal rule when all of the propositional rules are exhausted.
- Apply the rule F whenever possible.

The canonical strategy f for \forall in $\mathcal{E}\left(\Gamma, \mathbb{S}^{T}\right)$ is given by:

- At $(\varphi \wedge \psi, \rho)$ choose the conjunct corresponding to the choice of Refuter when $\varphi \wedge \psi$ is principal in an application of the rule \wedge in ρ.
- At $([a] \varphi, \rho)$ choose an a-successor ρ^{\prime} of ρ such that ρ and ρ^{\prime} are separated by an application of [a].

Example

Define $\varphi:=\nu x\langle a\rangle\langle\breve{a}\rangle x$, i.e. φ expresses that there is an infinite path of alternating a and a transitions. Clearly this holds at every state with an a-successor. Hence the implication $\langle a\rangle p \rightarrow \varphi$ is valid. As context Σ we consider the least negation-closed set containing both $\langle a\rangle p$ and φ, i.e.,

$$
\{\langle a\rangle p, p, \varphi,\langle a\rangle\langle\breve{a}\rangle \varphi,\langle\breve{a}\rangle \varphi,[a] \bar{p}, \bar{p}, \bar{\varphi},[a][\breve{a}] \bar{\varphi},[\breve{a}] \bar{\varphi}\} .
$$

The following is a Focus ${ }_{\infty}^{2}$-proof of $\langle a\rangle p \rightarrow \varphi$.

$$
\frac{\frac{\bar{p}^{\bullet},\langle\breve{a}\rangle \varphi^{\bullet},\langle\breve{a}\rangle \varphi \nsim \rightarrow\langle\breve{a}\rangle \varphi,\langle\breve{a}\rangle \varphi \rightsquigarrow\langle\breve{a}\rangle \varphi}{[a] \bar{p}^{\bullet},\langle a\rangle\langle\breve{a}\rangle \varphi^{\bullet}, \varphi \nsim \rightarrow\langle a\rangle\langle\breve{a}\rangle \varphi,\langle a\rangle\langle\breve{a}\rangle \varphi \rightsquigarrow \varphi} \mathrm{A}^{[a] \bar{p}^{\bullet}, \varphi^{\bullet}} \mathrm{R}_{[a]}}{} \mathrm{R}_{\nu}
$$

Note that it is also possible to use $A \times 3$ instead of $A \times 2$ in the above proof.

