THE GLOBAL STRUCTURE OF LARGE LOCALLY SPARSE GRAPHS

Ross J. Kang*

Radboud University Nijmegen

Bordeaux Graphs Workshop 10/2019

^{*}With Cames van Batenburg, Davies, Esperet, de Joannis de Verclos, Pirot, Sereni, Thomassé. Research received support from Nuffic/PHC, ANR, FWB, NWO and ERC grants.

STRUCTURE OF TRIANGLE-FREE GRAPHS

Asymptotically, what global graph structure forms if no edge is induced in any neighbourhood?

STRUCTURE OF TRIANGLE-FREE GRAPHS

Asymptotically, what global graph structure forms if no edge is induced in any neighbourhood?

i.e. "local versus global"

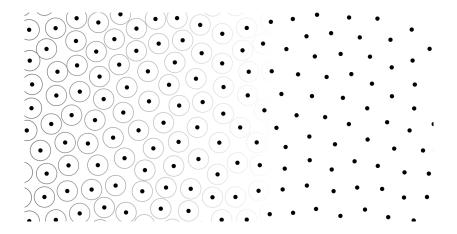
Distinguished origins:

- Mantel (1907), Turán (1941)
- Ramsey (1930), Erdős & Szekeres (1935)
- Zykov (1949), Ungar & "Blanche Descartes" (1954)

PROBABILISTIC METHOD

If a random object has desired property with positive probability, then there exists *at least one* object with that property

Hard-core Model^{\dagger}



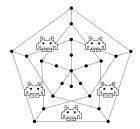
 $^\dagger \text{More}$ fully, the lattice gas with hard-core self-repulsion and nearest-neighbour exclusion. Picture credit: Wikipedia/Grap-wh

LIST COLOURING

Given a graph G, imagine *adversaries* to you properly colouring it

- that annoyingly issue lists of permissible colours
- but must permit at least ℓ colours per vertex

What is least ℓ for which you can *always* win? (Necessarily $\chi \leq \ell \leq |G|$)

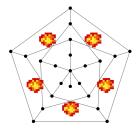


LIST COLOURING

Given a graph G, imagine *adversaries* to you properly colouring it

- that annoyingly issue lists of permissible colours
- but must permit at least ℓ colours per vertex

What is least ℓ for which you can *always* win? (Necessarily $\chi \leq \ell \leq |G|$)



Called list chromatic number or choosability ch(G) of G

ch is not bounded by any function of chromatic number χ Theorem (Erdős, Rubin, Taylor 1980)

 $\operatorname{ch}(K_{d,d}) \sim \log_2 d \text{ (and } \operatorname{ch}(K_{d+1}) = d+1)$

ch is not bounded by any function of chromatic number $\boldsymbol{\chi}$

Theorem (Erdős, Rubin, Taylor 1980) $ch(K_{d,d}) \sim log_2 d (and ch(K_{d+1}) = d + 1)$

More closely related to density

Theorem (Alon 2000, cf. Saxton & Thomason 2015) ch(G) $\gtrsim \log_2 \delta$ for any G of minimum degree δ ch is not bounded by any function of chromatic number $\boldsymbol{\chi}$

Theorem (Erdős, Rubin, Taylor 1980) $ch(K_{d,d}) \sim log_2 d (and ch(K_{d+1}) = d + 1)$

More closely related to density

Theorem (Alon 2000, cf. Saxton & Thomason 2015) ch(G) $\gtrsim \log_2 \delta$ for any G of minimum degree δ

Still not completely well understood

 $\begin{array}{l} \mbox{Conjecture (Alon \& Krivelevich 1998)} \\ \mbox{ch}({\cal G}) \lesssim \log_2 \Delta \mbox{ for any bipartite } {\cal G} \mbox{ of maximum degree } \Delta \end{array}$

د لا∈ Separation makes it "easier"? ∋

What if adjacent lists are all disjoint?

د ال∈ Separation makes it "easier"? ∋ا

What if adjacent lists are all almost disjoint?

د ال∈ Separation makes it "easier"? ∋ا

What if adjacent lists are all almost disjoint, so 1 common colour?

د الا = Separation makes it "easier"? ∋

What if adjacent lists are all *almost* disjoint, so 1 common colour? Call the corresponding least ℓ separation choosability ch_{sep}

^A ^A Separation makes it "easier"? ^A

What if adjacent lists are all *almost* disjoint, so 1 common colour? Call the corresponding least ℓ separation choosability ch_{sep} Theorem (Kratochvíl, Tuza, Voigt 1998) ch_{sep}(K_{d+1}) ~ \sqrt{d}

^β ↓ Separation makes it "easier"? ⇒

What if adjacent lists are all *almost* disjoint, so 1 common colour? Call the corresponding least ℓ separation choosability ch_{sep} Theorem (Kratochvíl, Tuza, Voigt 1998) ch_{sep}(K_{d+1}) ~ \sqrt{d}

Theorem (Füredi, Kostochka, Kumbhat 2014) $ch_{sep}(K_{d,d}) \sim \log_2 d$

ந. ⊷ Separation makes it "easier"? ∋ி

What if adjacent lists are all *almost* disjoint, so 1 common colour?

Call the corresponding least ℓ separation choosability $\mathsf{ch}_{\mathsf{sep}}$

Theorem (Kratochvíl, Tuza, Voigt 1998) $ch_{sep}(K_{d+1}) \sim \sqrt{d}$

Theorem (Füredi, Kostochka, Kumbhat 2014) $ch_{sep}(K_{d,d}) \sim \log_2 d$

Theorem (Esperet, Kang, Thomassé 2019) $ch_{sep}(G) = \Omega(\log \delta)$ for any bipartite G of minimum degree δ

^β ^α Separation makes it "easier"? ³

What if adjacent lists are all almost disjoint, so 1 common colour?

Call the corresponding least ℓ separation choosability $\mathsf{ch}_{\mathsf{sep}}$

Theorem (Kratochvíl, Tuza, Voigt 1998) $ch_{sep}(K_{d+1}) \sim \sqrt{d}$

Theorem (Füredi, Kostochka, Kumbhat 2014) $ch_{sep}(K_{d,d}) \sim \log_2 d$

Theorem (Esperet, Kang, Thomassé 2019) $ch_{sep}(G) = \Omega(\log \delta)$ for any bipartite G of minimum degree δ

Question: Does ch_{sep} grow in δ ?

Problem: Almost-disjointness of lists is not monotone under edge-addition!

RAMSEY-TYPE QUESTION/SOLUTION?

Theorem (Kratochvíl, Tuza, Voigt 1998) $ch_{sep}(K_{d+1}) \sim \sqrt{d}$

Theorem (Esperet, Kang, Thomassé 2019) $ch_{sep}(G) = \Omega(\log \delta)$ for any bipartite G of minimum degree δ

Question: Does ch_{sep} grow in δ ?

RAMSEY-TYPE QUESTION/SOLUTION?

Theorem (Kratochvíl, Tuza, Voigt 1998) $ch_{sep}(K_{d+1}) \sim \sqrt{d}$

Theorem (Esperet, Kang, Thomassé 2019) $ch_{sep}(G) = \Omega(\log \delta)$ for any bipartite G of minimum degree δ

Question: Does ch_{sep} grow in δ ?

Easier(?) question: Does every graph of high minimum degree contain either

- a large clique or
- a bipartite induced subgraph of large minimum degree?

RAMSEY-TYPE QUESTION/SOLUTION?

Theorem (Kratochvíl, Tuza, Voigt 1998) $ch_{sep}(K_{d+1}) \sim \sqrt{d}$

Theorem (Esperet, Kang, Thomassé 2019) $ch_{sep}(G) = \Omega(\log \delta)$ for any bipartite G of minimum degree δ

Question: Does ch_{sep} grow in δ ?

Easier(?) question: Does every graph of high minimum degree contain either

• a large clique or \leftarrow local

a bipartite induced subgraph of large minimum degree? ← global

RAMSEY-TYPE QUESTION/SOLUTION? =→

Theorem (Kratochvíl, Tuza, Voigt 1998) $ch_{sep}(K_{d+1}) \sim \sqrt{d}$

Theorem (Esperet, Kang, Thomassé 2019) $ch_{sep}(G) = \Omega(\log \delta)$ for any bipartite G of minimum degree δ

Question: Does ch_{sep} grow in δ ?

Easier(?) question: Does every graph of high minimum degree contain either

- a large clique or \leftarrow local

BID(G) is largest minimum degree of any bipartite induced subgraph of G

BID(G) is largest minimum degree of any bipartite induced subgraph of G Conjecture (Esperet, Kang, Thomassé 2019) BID(G) = $\Omega(\log \delta)$ for any triangle-free G of minimum degree δ

• Without triangle-free, trivially false due to cliques

- Without triangle-free, trivially false due to cliques
- Without induced, trivially true with $\delta/2$ rather than $\Omega(\log \delta)$

- Without triangle-free, trivially false due to cliques
- Without induced, trivially true with $\delta/2$ rather than $\Omega(\log \delta)$
- If true, it is sharp up to constant factor due to random graph

- Without triangle-free, trivially false due to cliques
- Without induced, trivially true with $\delta/2$ rather than $\Omega(\log \delta)$
- If true, it is sharp up to constant factor due to random graph
- True with "semi-bipartite" instead of bipartite

- Without triangle-free, trivially false due to cliques
- Without induced, trivially true with $\delta/2$ rather than $\Omega(\log \delta)$
- If true, it is sharp up to constant factor due to random graph
- True with "semi-bipartite" instead of bipartite
- $BID(G) \ge 2$ is presence of an even hole (Radovanović and Vušković '13)

- Without triangle-free, trivially false due to cliques
- Without induced, trivially true with $\delta/2$ rather than $\Omega(\log \delta)$
- If true, it is sharp up to constant factor due to random graph
- True with "semi-bipartite" instead of bipartite
- $BID(G) \ge 2$ is presence of an even hole (Radovanović and Vušković '13)

We do not even understand the least δ forcing BID(G) $\geq 3!$

- Without triangle-free, trivially false due to cliques
- Without induced, trivially true with $\delta/2$ rather than $\Omega(\log \delta)$
- If true, it is sharp up to constant factor due to random graph
- True with "semi-bipartite" instead of bipartite
- BID(G) ≥ 2 is presence of an even hole (Radovanović and Vušković '13)

We do not even understand the least δ forcing BID(G) $\geq 3!$

Theorem (Kwan, Letzter, Sudakov, Tran 2018+) BID(G) = $\Omega\left(\frac{\log \delta}{\log \log \delta}\right)$ for any triangle-free G of minimum degree δ $\alpha(G)$ is size of largest independent set of G BID(G) is largest minimum degree of any bipartite induced subgraph of G

BID "BETWEEN" INDEPENDENCE AND COLOURING

 $\alpha(G)$ is size of largest independent set of G BID(G) is largest minimum degree of any bipartite induced subgraph of G

 $\alpha(G) \geq \mathsf{BID}(G)$

 $\alpha(G)$ is size of largest independent set of G BID(G) is largest minimum degree of any bipartite induced subgraph of G

 $\alpha(G) \geq \mathsf{BID}(G)$

Suppose G has minimum degree δ and a proper $\chi\text{-colouring}$

 $\alpha(G)$ is size of largest independent set of G BID(G) is largest minimum degree of any bipartite induced subgraph of G

 $\alpha(G) \geq \mathsf{BID}(G)$

Suppose G has minimum degree δ and a proper $\chi\text{-colouring}$

Each of $\sim \frac{1}{2}\chi^2$ pairs of colour classes induces a bipartite graph $\geq \frac{1}{2}n\delta$ edges are distributed across these

By pigeonhole, one has $\gtrsim n\delta/\chi^2$ edges

 $\alpha(G)$ is size of largest independent set of G BID(G) is largest minimum degree of any bipartite induced subgraph of G

 $\alpha(G) \geq \mathsf{BID}(G)$

Suppose G has minimum degree δ and a proper χ -colouring

Each of $\sim \frac{1}{2}\chi^2$ pairs of colour classes induces a bipartite graph $\geq \frac{1}{2}n\delta$ edges are distributed across these

By pigeonhole, one has $\gtrsim n\delta/\chi^2$ edges So it has minimum degree $\Omega(\delta/\chi)$ if the colouring is balanced... $\alpha(G)$ is size of largest independent set of G BID(G) is largest minimum degree of any bipartite induced subgraph of G

 $\alpha(G) \geq \mathsf{BID}(G)$

Suppose G has minimum degree δ and a proper χ -colouring

Each of $\sim \frac{1}{2}\chi^2$ pairs of colour classes induces a bipartite graph $\geq \frac{1}{2}n\delta$ edges are distributed across these

By pigeonhole, one has $\gtrsim n\delta/\chi^2$ edges So it has minimum degree $\Omega(\delta/\chi)$ if the colouring is balanced...

Theorem (Esperet, Kang, Thomassé 2019) BID(G) $\geq \frac{\delta}{2\chi}$ for any G with minimum degree δ and chromatic number χ

A SEQUENCE WITH INDEPENDENCE AND COLOURING

$$\begin{split} & \underset{\emptyset \neq H \subseteq G}{\overset{\mathsf{BID}(G)}{\downarrow}} \\ & \omega(G) \leq \max_{\emptyset \neq H \subseteq G} \frac{|H|}{\alpha(H)} \leq \chi_f(G) \leq \chi(G) \leq \mathsf{ch}(G) \leq \Delta(G) + 1 \end{split}$$

‡

A sequence with independence and colouring

$$\begin{aligned} & \underset{\emptyset \neq H \subseteq G}{\overset{\mathsf{BID}(G)}{\downarrow}} \\ & \omega(G) \leq \max_{\emptyset \neq H \subseteq G} \frac{|H|}{\alpha(H)} \leq \chi_f(G) \leq \chi(G) \leq \mathsf{ch}(G) \leq \Delta(G) + 1 \end{aligned}$$

In general, all can be strict \ddagger

[‡]On strictness of second, see Blumenthal, Lidický, Martin, Norin, Pfender, Volec (2018+), and Dvořák, Ossona de Mendez, Wu (2018+); nice open question in the triangle-free case

A SEQUENCE WITH INDEPENDENCE AND COLOURING

$$\begin{aligned} & \underset{\emptyset \neq H \subseteq G}{\overset{\mathsf{BID}(G)}{\downarrow}} \\ & \omega(G) \leq \max_{\emptyset \neq H \subseteq G} \frac{|H|}{\alpha(H)} \leq \chi_f(G) \leq \chi(G) \leq \mathsf{ch}(G) \leq \Delta(G) + 1 \end{aligned}$$

In general, all can be strict [‡] We focus on triangle-free. . .

[‡]On strictness of second, see Blumenthal, Lidický, Martin, Norin, Pfender, Volec (2018+), and Dvořák, Ossona de Mendez, Wu (2018+); nice open question in the triangle-free case

Off-diagonal Ramsey numbers[§]

[§]Picture credit: Soifer 2009

OFF-DIAGONAL RAMSEY NUMBERS

R(3, k): largest *n* such that there is red/blue-edge-coloured K_{n-1} with no red triangle and no blue K_k

Off-diagonal Ramsey numbers i.e. Independence number of triangle-free graphs

- R(3, k): largest *n* such that there is red/blue-edge-coloured K_{n-1} with no red triangle and no blue K_k
- R(3, k) : minimum size of triangle-free G guaranteeing $\alpha(G) \ge k$

OFF-DIAGONAL RAMSEY NUMBERS I.E. INDEPENDENCE NUMBER OF TRIANGLE-FREE GRAPHS

R(3, k): largest *n* such that there is red/blue-edge-coloured K_{n-1} with no red triangle and no blue K_k

R(3, k): minimum size of triangle-free G guaranteeing $\alpha(G) \ge k$

Theorem (Shearer 1983, cf. Ajtai, Komlós, Szemerédi 1980/1)

$$R(3,k) \lesssim rac{k^2}{\log k}$$

Off-diagonal Ramsey numbers i.e. Independence number of triangle-free graphs

R(3, k): largest *n* such that there is red/blue-edge-coloured K_{n-1} with no red triangle and no blue K_k

R(3, k): minimum size of triangle-free G guaranteeing $\alpha(G) \ge k$

Theorem (Shearer 1983, cf. Ajtai, Komlós, Szemerédi 1980/1)

$$R(3,k) \lesssim rac{k^2}{\log k}$$

Theorem (Bohman & Keevash 2013+, Fiz Pontiveros, Griffiths, Morris 2013+, cf. Kim 1995)

$$R(3,k)\gtrsim \frac{k^2}{4\log k}$$

OFF-DIAGONAL RAMSEY NUMBERS I.E. INDEPENDENCE NUMBER OF TRIANGLE-FREE GRAPHS

R(3, k): largest *n* such that there is red/blue-edge-coloured K_{n-1} with no red triangle and no blue K_k

R(3, k): minimum size of triangle-free G guaranteeing $\alpha(G) \ge k$

Theorem (Shearer 1983, cf. Ajtai, Komlós, Szemerédi 1980/1)

$$R(3,k) \lesssim rac{k^2}{\log k}$$

 $\alpha({\sf G})\gtrsim \frac{n\log\Delta}{\Delta} \ \text{for any n-vertex triangle-free ${\sf G}$ of maximum degree Δ}$

Theorem (Bohman & Keevash 2013+, Fiz Pontiveros, Griffiths, Morris 2013+, cf. Kim 1995)

$$R(3,k)\gtrsim \frac{k^2}{4\log k}$$

Theorem (Shearer 1983, cf. Ajtai, Komlós, Szemerédi 1980/1) $\alpha(G) \gtrsim \frac{n \log \Delta}{\Delta}$ for any n-vertex triangle-free G of maximum degree Δ

Theorem (Shearer 1983, cf. Ajtai, Komlós, Szemerédi 1980/1) $\alpha(G) \gtrsim \frac{n \log \Delta}{\Delta}$ for any n-vertex triangle-free G of maximum degree Δ

Proof with

Good probability distribution over the set $\mathscr{I}(G)$ of independent sets of G for proving that random I has

$$\mathbb{E} \left| \mathbf{I} \right| \gtrsim rac{n \log \Delta}{\Delta} ? \ ^{\P}$$

Theorem (Shearer 1983, cf. Ajtai, Komlós, Szemerédi 1980/1) $\alpha(G) \gtrsim \frac{n \log \Delta}{\Delta}$ for any n-vertex triangle-free G of maximum degree Δ

Proof with

Good probability distribution over the set $\mathscr{I}(G)$ of independent sets of G for proving that random I has

$$\mathbb{E} \left| \mathbf{I} \right| \gtrsim rac{n \log \Delta}{\Delta} ? \ ^{\P}$$

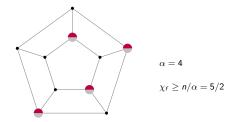
Theorem (Shearer 1983, cf. Ajtai, Komlós, Szemerédi 1980/1) $\alpha(G) \gtrsim \frac{n \log \Delta}{\Delta}$ for any n-vertex triangle-free G of maximum degree Δ

Proof with

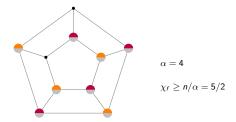
Good probability distribution over the set $\mathscr{I}(G)$ of independent sets of G for proving that random **I** has

$$\mathbb{E} \left| \mathbf{I}
ight| \gtrsim rac{n \log \Delta}{\Delta} ? \ ^{\P}$$

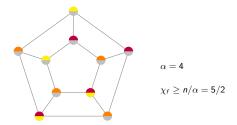
[¶]Yes, cf. Davies, Jenssen, Perkins, Roberts 2018...



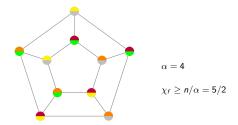
fractional vertex-colouring : allow "fractions" of independent sets fractional chromatic number χ_f : least "amount" needed



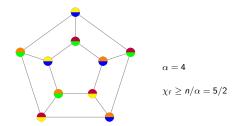
fractional vertex-colouring : allow "fractions" of independent sets fractional chromatic number χ_f : least "amount" needed



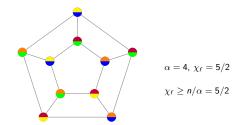
fractional vertex-colouring : allow "fractions" of independent sets fractional chromatic number χ_f : least "amount" needed



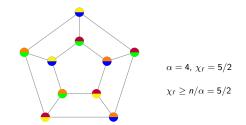
fractional vertex-colouring : allow "fractions" of independent sets fractional chromatic number χ_f : least "amount" needed



fractional vertex-colouring : allow "fractions" of independent sets fractional chromatic number χ_f : least "amount" needed

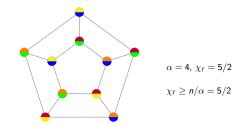


fractional vertex-colouring : allow "fractions" of independent sets fractional chromatic number χ_f : least "amount" needed



fractional vertex-colouring : allow "fractions" of independent sets fractional chromatic number χ_f : least "amount" needed

 $\chi_f(G) \le k$ if there is probability distribution over $\mathscr{I}(G)$ such that for random I $\mathbb{P}(v \in I) \ge 1/k \quad \text{ for every vertex } v$



fractional vertex-colouring : allow "fractions" of independent sets fractional chromatic number χ_f : least "amount" needed

 $\chi_f(G) \leq k$ if there is probability distribution over $\mathscr{I}(G)$ such that for random I $\mathbb{P}(v \in I) \geq 1/k$ for every vertex v

$$\stackrel{\text{linearity}}{\Longrightarrow} \mathbb{E} \left| \mathbf{I} \right| \geq n/k \qquad \cdots \qquad \longleftrightarrow \bigotimes$$

$$\omega(G) \leq \max_{\emptyset \neq H \subseteq G} \frac{|H|}{\alpha(H)} \leq \chi_f(G) \leq \chi(G) \leq \mathsf{ch}(G) \leq \Delta(G) + 1$$

$$\omega(G) \leq \max_{\emptyset \neq H \subseteq G} \frac{|H|}{\alpha(H)} \leq \chi_f(G) \leq \chi(G) \leq \mathsf{ch}(G) \leq \Delta(G) + 1$$

Theorem (Molloy 2019, cf. Johansson 1996+, cf. also Bernshteyn 2019) ch(G) $\lesssim \frac{\Delta}{\log \Delta}$ for any triangle-free G of maximum degree Δ

$$\omega(G) \leq \max_{\emptyset \neq H \subseteq G} \frac{|H|}{\alpha(H)} \leq \chi_f(G) \leq \chi(G) \leq \mathsf{ch}(G) \leq \Delta(G) + 1$$

Theorem (Davies, de Joannis de Verclos, Kang, Pirot 2018+) $\chi_f(G) \lesssim \frac{\Delta}{\log \Delta}$ for any triangle-free G of maximum degree Δ

Theorem (Molloy 2019, cf. Johansson 1996+, cf. also Bernshteyn 2019) ch(G) $\lesssim \frac{\Delta}{\log \Delta}$ for any triangle-free G of maximum degree Δ

$$\omega(G) \leq \max_{\emptyset \neq H \subseteq G} \frac{|H|}{\alpha(H)} \leq \chi_f(G) \leq \chi(G) \leq \mathsf{ch}(G) \leq \Delta(G) + 1$$

Theorem (Davies, de Joannis de Verclos, Kang, Pirot 2018+) $\chi_f(G) \lesssim \frac{\Delta}{\log \Delta}$ for any triangle-free G of maximum degree Δ

Theorem (Molloy 2019, cf. Johansson 1996+, cf. also Bernshteyn 2019) ch(G) $\lesssim \frac{\Delta}{\log \Delta}$ for any triangle-free G of maximum degree Δ

Why?

$$\omega(G) \leq \max_{\emptyset \neq H \subseteq G} \frac{|H|}{\alpha(H)} \leq \chi_f(G) \leq \chi(G) \leq \mathsf{ch}(G) \leq \Delta(G) + 1$$

Theorem (Davies, de Joannis de Verclos, Kang, Pirot 2018+) $\chi_f(G) \lesssim \frac{\Delta}{\log \Delta}$ for any triangle-free G of maximum degree Δ

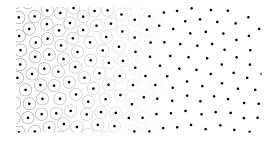
Why?

Theorem (Molloy 2019, cf. Johansson 1996+, cf. also Bernshteyn 2019) ch(G) $\lesssim \frac{\Delta}{\log \Delta}$ for any triangle-free G of maximum degree Δ

Simple, conceptual, versatile, and more...

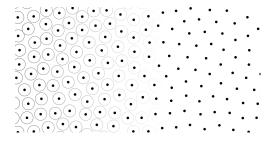
HARD-CORE MODEL

A probability distribution over $\mathscr{I}(G)$ the set of independent sets of G



HARD-CORE MODEL

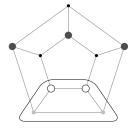
A probability distribution over $\mathscr{I}(G)$ the set of independent sets of G



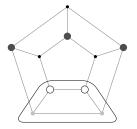
Hard-core model on G at fugacity $\lambda > 0$ is probability distribution over $\mathscr{I}(G)$ such that random I satisfies for all $S \in \mathscr{I}(G)$

$$\mathbb{P}(\mathbf{I} = S) = \frac{\lambda^{|S|}}{Z_G(\lambda)}, \quad \text{where } Z_G(\lambda) = \sum_{S \in \mathscr{I}(G)} \lambda^{|S|}$$

For $S \in \mathscr{I}(G)$, call u occupied if $u \in S$ and call u uncovered if $N(u) \cap S = \emptyset$

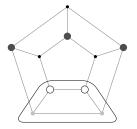


For $S \in \mathscr{I}(G)$, call u occupied if $u \in S$ and call u uncovered if $N(u) \cap S = \emptyset$



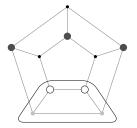
Take I from hard-core model on G at fugacity λ and let $X \subseteq V(G)$

For $S \in \mathscr{I}(G)$, call u occupied if $u \in S$ and call u uncovered if $N(u) \cap S = \emptyset$



Take I from hard-core model on G at fugacity λ and let $X \subseteq V(G)$ Reveal $I \setminus X$ and let $U_X := X \setminus N(I \setminus X)$ (the externally uncovered part)

For $S \in \mathscr{I}(G)$, call u occupied if $u \in S$ and call u uncovered if $N(u) \cap S = \emptyset$



Take I from hard-core model on G at fugacity λ and let $X \subseteq V(G)$ Reveal $I \setminus X$ and let $U_X := X \setminus N(I \setminus X)$ (the externally uncovered part) Then $I \cap X$ is hard-core on $G[U_X]$ at fugacity λ

Distribution I on $\mathscr{I}(G)$ has local (a, b)-occupancy if for every vertex v $a \cdot \mathbb{P}(v \in I) + b \cdot \mathbb{E}|N(v) \cap I| \ge 1$

Distribution I on $\mathscr{I}(G)$ has local (a, b)-occupancy if for every vertex v

 $a \cdot \mathbb{P}(v \in \mathbf{I}) + b \cdot \mathbb{E}|N(v) \cap \mathbf{I}| \geq 1$

A Hard-core model on any triangle-free G has local (a, b)-occupancy, for specific a, b depending on fugacity λ and maximum degree Δ

- A Hard-core model on any triangle-free G has local (a, b)-occupancy, for specific a, b depending on fugacity λ and maximum degree Δ
- B If there is probability distribution I on $\mathscr{I}(G)$ with local (a, b)-occupancy, then $\chi_f(G) \leq a + b \cdot \Delta$

- A Hard-core model on any triangle-free G has local (a, b)-occupancy, for specific a, b depending on fugacity λ and maximum degree Δ
- B If there is probability distribution I on $\mathscr{I}(G)$ with local (a, b)-occupancy, then $\chi_f(G) \leq a + b \cdot \Delta$

$$\rightsquigarrow$$
 analysis to minimise $a + b \cdot \Delta \rightsquigarrow \qquad \chi_f(G) \lesssim rac{\Delta}{\log \Delta}$

 $a \cdot \mathbb{P}(v \in I) + b \cdot \mathbb{E}|N(v) \cap I| \geq 1$

- A Hard-core model on any triangle-free G has local (a, b)-occupancy, for specific a, b depending on fugacity λ and maximum degree Δ
- B If there is probability distribution I on $\mathscr{I}(G)$ with local (a, b)-occupancy, then $\chi_f(G) \leq a + b \cdot \Delta$

 $a \cdot \mathbb{P}(v \in I) + b \cdot \mathbb{E}|N(v) \cap I| \geq 1$

- A Hard-core model on any triangle-free G has local (a, b)-occupancy, for specific a, b depending on fugacity λ and maximum degree Δ
- B If there is probability distribution I on $\mathscr{I}(G)$ with local (a, b)-occupancy, then $\chi_f(G) \leq a + b \cdot \Delta$

Originally used by Molloy & Reed (2002) to prove fractional Reed's Conjecture

 $a \cdot \mathbb{P}(v \in I) + b \cdot \mathbb{E}|N(v) \cap I| \geq 1$

- A Hard-core model on any triangle-free G has local (a, b)-occupancy, for specific a, b depending on fugacity λ and maximum degree Δ
- B If there is probability distribution I on $\mathscr{I}(G)$ with local (a, b)-occupancy, then $\chi_f(G) \leq a + b \cdot \Delta$

Originally used by Molloy & Reed (2002) to prove fractional Reed's Conjecture

Idea: greedily add weight/colour to independent sets according to probability distribution induced by ${\bf I}$ on vertices not yet completely coloured, and iterate

One can think of it as "evening out" the distribution

 $a \cdot \mathbb{P}(v \in I) + b \cdot \mathbb{E}|N(v) \cap I| \geq 1$

- A Hard-core model on any triangle-free G has local (a, b)-occupancy, for specific a, b depending on fugacity λ and maximum degree Δ
- B If there is probability distribution I on $\mathscr{I}(G)$ with local (a, b)-occupancy, then $\chi_f(G) \leq a + b \cdot \Delta$

 $a \cdot \mathbb{P}(v \in I) + b \cdot \mathbb{E}|N(v) \cap I| \geq 1$

- A Hard-core model on any triangle-free G has local (a, b)-occupancy, for specific a, b depending on fugacity λ and maximum degree Δ
- B If there is probability distribution I on $\mathscr{I}(G)$ with local (a, b)-occupancy, then $\chi_f(G) \leq a + b \cdot \Delta$

Fact 1 $\mathbb{P}(v \in \mathbf{I} \mid v \text{ uncovered}) = \frac{\lambda}{1+\lambda}$

 $a \cdot \mathbb{P}(v \in I) + b \cdot \mathbb{E}|N(v) \cap I| \geq 1$

- A Hard-core model on any triangle-free G has local (a, b)-occupancy, for specific a, b depending on fugacity λ and maximum degree Δ
- B If there is probability distribution I on $\mathscr{I}(G)$ with local (a, b)-occupancy, then $\chi_f(G) \leq a + b \cdot \Delta$

Fact 1 $\mathbb{P}(v \in I \mid v \text{ uncovered}) = \frac{\lambda}{1+\lambda}$ Fact 2 $\mathbb{P}(v \text{ uncovered} \mid v \text{ has } j \text{ uncovered neighbours}) = \frac{1}{(1+\lambda)^j}$

 $a \cdot \mathbb{P}(v \in \mathbf{I}) + b \cdot \mathbb{E}|N(v) \cap \mathbf{I}| \geq 1$

- A Hard-core model on any triangle-free G has local (a, b)-occupancy, for specific a, b depending on fugacity λ and maximum degree Δ
- B If there is probability distribution I on $\mathscr{I}(G)$ with local (a, b)-occupancy, then $\chi_f(G) \leq a + b \cdot \Delta$

$$\mathsf{Fact 1} \ \mathbb{P}(\nu \in \mathsf{I} \ | \ \nu \text{ uncovered}) = \frac{\lambda}{1+\lambda}$$

Fact 2 $\mathbb{P}(v \text{ uncovered } | v \text{ has } j \text{ uncovered neighbours}) = \frac{1}{(1 + \lambda)^j}$ (needs triangle-free!)

Fact 1
$$\mathbb{P}(v \in I \mid v \text{ uncovered}) = \frac{\lambda}{1+\lambda}$$

Fact 2 $\mathbb{P}(v \text{ uncovered} \mid v \text{ has } j \text{ uncovered neighbours}) = \frac{1}{(1+\lambda)^j}$

Fact 1
$$\mathbb{P}(v \in I \mid v \text{ uncovered}) = \frac{\lambda}{1+\lambda}$$

Fact 2 $\mathbb{P}(v \text{ uncovered} \mid v \text{ has } j \text{ uncovered neighbours}) = \frac{1}{(1+\lambda)^j}$

 $\mathbb{P}(v \in \mathbf{I})$

$\mathbb{E}|N(v)\cap \mathbf{I}|$

$$\begin{array}{l} \mathsf{Fact 1} \ \mathbb{P}(v \in \mathsf{I} \ | \ v \ \mathsf{uncovered}) = \frac{\lambda}{1+\lambda} \\ \\ \mathsf{Fact 2} \ \mathbb{P}(v \ \mathsf{uncovered} \ | \ v \ \mathsf{has} \ j \ \mathsf{uncovered} \ \mathsf{neighbours}) = \frac{1}{(1+\lambda)^j} \end{array}$$

 $\mathbb{P}(v \in \mathbf{I}) = \mathbb{P}(v \in \mathbf{I} \text{ and } v \text{ uncovered})$

 $\mathbb{E}|N(v)\cap \mathbf{I}|$

Fact 1 $\mathbb{P}(v \in \mathbf{I} | v \text{ uncovered}) = \frac{\lambda}{1+\lambda}$ Fact 2 $\mathbb{P}(v \text{ uncovered} | v \text{ has } j \text{ uncovered neighbours}) = \frac{1}{(1+\lambda)^j}$

$$\mathbb{P}(\nu \in \mathsf{I}) = \mathbb{P}(\nu \in \mathsf{I} \text{ and } \nu \text{ uncovered}) \stackrel{\mathsf{Bayes}}{\underset{r = 1}{\overset{\mathsf{Bayes}}{=}}} \frac{\lambda}{1+\lambda} \mathbb{P}(\nu \text{ uncovered})$$

$\mathbb{E}|N(v)\cap \mathbf{I}|$

Fact 1 $\mathbb{P}(v \in \mathbf{I} | v \text{ uncovered}) = \frac{\lambda}{1+\lambda}$ Fact 2 $\mathbb{P}(v \text{ uncovered} | v \text{ has } j \text{ uncovered neighbours}) = \frac{1}{(1+\lambda)^j}$

$$\mathbb{P}(v \in \mathbf{I}) = \mathbb{P}(v \in \mathbf{I} \text{ and } v \text{ uncovered}) \xrightarrow[Fact 1]{Bayes}{=} \frac{\lambda}{1+\lambda} \mathbb{P}(v \text{ uncovered})$$

$$\frac{Bayes}{Fact 2} \frac{\lambda}{1+\lambda} \sum_{j} \frac{\mathbb{P}(v \text{ has } j \text{ uncovered neighbours})}{(1+\lambda)^{j}}$$

$$= \frac{\lambda}{1+\lambda} \mathbb{E}(1+\lambda)^{-J}$$

$$\mathbb{E}[N(v) \cap \mathbf{I}]$$

Fact 1 $\mathbb{P}(v \in \mathbf{I} | v \text{ uncovered}) = \frac{\lambda}{1+\lambda}$ Fact 2 $\mathbb{P}(v \text{ uncovered} | v \text{ has } j \text{ uncovered neighbours}) = \frac{1}{(1+\lambda)^j}$

$$\mathbb{P}(v \in \mathbf{I}) = \mathbb{P}(v \in \mathbf{I} \text{ and } v \text{ uncovered}) \xrightarrow[\text{Fact } 1]{\text{Bayes}} \frac{\lambda}{1+\lambda} \mathbb{P}(v \text{ uncovered})$$

$$\underset{\text{Fact } 2}{\overset{\text{Bayes}}{=}} \frac{\lambda}{1+\lambda} \sum_{j} \frac{\mathbb{P}(v \text{ has } j \text{ uncovered neighbours})}{(1+\lambda)^{j}}$$

$$= \frac{\lambda}{1+\lambda} \mathbb{E}(1+\lambda)^{-\mathbf{J}} \xrightarrow[\text{Densen's}]{} \frac{\lambda}{1+\lambda} (1+\lambda)^{-\mathbb{E}\mathbf{J}}$$

$$\mathbb{E}|N(v) \cap \mathbf{I}|$$

 $a \cdot \mathbb{P}(v \in I) + b \cdot \mathbb{E}|N(v) \cap I|$

Fact 1 $\mathbb{P}(v \in \mathbf{I} \mid v \text{ uncovered}) = \frac{\lambda}{1+\lambda}$ Fact 2 $\mathbb{P}(v \text{ uncovered } | v \text{ has } j \text{ uncovered neighbours}) = \frac{1}{(1+\lambda)^j}$ $\mathbb{P}(\mathbf{v} \in \mathbf{I}) = \mathbb{P}(\mathbf{v} \in \mathbf{I} \text{ and } \mathbf{v} \text{ uncovered}) \stackrel{\text{Bayes}}{=} \frac{\lambda}{1+\nu} \mathbb{P}(\mathbf{v} \text{ uncovered})$ $\underset{\text{Fact 2}}{\overset{\text{Bayes}}{=}} \frac{\lambda}{1+\lambda} \sum_{j} \frac{\mathbb{P}(\nu \text{ has } j \text{ uncovered neighbours})}{(1+\lambda)^j}$ $= \frac{\lambda}{1+\lambda} \mathbb{E}(1+\lambda)^{-\mathsf{J}} \stackrel{\text{Jensen's}}{\geq} \frac{\lambda}{1+\lambda} (1+\lambda)^{-\mathbb{E}\mathsf{J}}$ $\mathbb{E}|N(v)\cap I| \stackrel{\text{linearity}}{=} \mathbb{P}(u \in I \mid u \text{ uncovered}) \cdot \mathbb{E}J$

Fact 1 $\mathbb{P}(v \in \mathbf{I} \mid v \text{ uncovered}) = \frac{\lambda}{1+\lambda}$ Fact 2 $\mathbb{P}(v \text{ uncovered } | v \text{ has } j \text{ uncovered neighbours}) = \frac{1}{(1+\lambda)^j}$ $\mathbb{P}(\mathbf{v} \in \mathbf{I}) = \mathbb{P}(\mathbf{v} \in \mathbf{I} \text{ and } \mathbf{v} \text{ uncovered}) \stackrel{\text{Bayes}}{=} \frac{\lambda}{1+\nu} \mathbb{P}(\mathbf{v} \text{ uncovered})$ $\underset{\text{Fact 2}}{\overset{\text{Bayes}}{=}} \frac{\lambda}{1+\lambda} \sum_{j} \frac{\mathbb{P}(\nu \text{ has } j \text{ uncovered neighbours})}{(1+\lambda)^j}$ $=\frac{\lambda}{1+\lambda}\mathbb{E}(1+\lambda)^{-J} \stackrel{\text{Jensen's}}{\geq} \frac{\lambda}{1+\lambda}(1+\lambda)^{-\mathbb{E}J}$ $\mathbb{E}|N(v)\cap \mathbf{I}| \stackrel{\text{linearity}}{=} \mathbb{P}(u \in \mathbf{I} \mid u \text{ uncovered}) \cdot \mathbb{E}\mathbf{J} \stackrel{\text{Fact } 1}{=} \frac{\lambda}{1+\lambda} \mathbb{E}\mathbf{J}$

Fact 1 $\mathbb{P}(v \in \mathbf{I} \mid v \text{ uncovered}) = \frac{\lambda}{1+\lambda}$ Fact 2 $\mathbb{P}(v \text{ uncovered } | v \text{ has } j \text{ uncovered neighbours}) = \frac{1}{(1+\lambda)^j}$ $\mathbb{P}(\mathbf{v} \in \mathbf{I}) = \mathbb{P}(\mathbf{v} \in \mathbf{I} \text{ and } \mathbf{v} \text{ uncovered}) \xrightarrow{\mathsf{Bayes}}_{r=1}^{\mathsf{Bayes}} \frac{\lambda}{1+\lambda} \mathbb{P}(\mathbf{v} \text{ uncovered})$ $\underset{\text{Fact 2}}{\overset{\text{Bayes}}{=}} \frac{\lambda}{1+\lambda} \sum_{j} \frac{\mathbb{P}(\nu \text{ has } j \text{ uncovered neighbours})}{(1+\lambda)^j}$ $= \frac{\lambda}{1+\lambda} \mathbb{E}(1+\lambda)^{-\mathsf{J}} \stackrel{\text{Jensen's}}{\geq} \frac{\lambda}{1+\lambda} (1+\lambda)^{-\mathbb{E}\mathsf{J}}$ $\mathbb{E}|N(\mathbf{v})\cap \mathbf{I}| \stackrel{\text{linearity}}{=} \mathbb{P}(u \in \mathbf{I} \mid u \text{ uncovered}) \cdot \mathbb{E}\mathbf{J} \stackrel{\text{Fact } 1}{=} \frac{\lambda}{1+\lambda} \mathbb{E}\mathbf{J}$ $\implies \boldsymbol{a} \cdot \mathbb{P}(\boldsymbol{\nu} \in \boldsymbol{\mathsf{I}}) + \boldsymbol{b} \cdot \mathbb{E}|\boldsymbol{N}(\boldsymbol{\nu}) \cap \boldsymbol{\mathsf{I}}| \geq \frac{\lambda}{1+\lambda} \left(\boldsymbol{a} \cdot (1+\lambda)^{-\mathbb{E}\boldsymbol{\mathsf{J}}} + \boldsymbol{b} \cdot \mathbb{E}\boldsymbol{\mathsf{J}} \right)$

Fact 1 $\mathbb{P}(v \in \mathbf{I} \mid v \text{ uncovered}) = \frac{\lambda}{1+\lambda}$ Fact 2 $\mathbb{P}(v \text{ uncovered } | v \text{ has } j \text{ uncovered neighbours}) = \frac{1}{(1+\lambda)i}$ $\mathbb{P}(\mathbf{v} \in \mathbf{I}) = \mathbb{P}(\mathbf{v} \in \mathbf{I} \text{ and } \mathbf{v} \text{ uncovered}) \xrightarrow{\text{Bayes}}_{\mathbf{I} = \mathbf{v}} \frac{\lambda}{1 + 1} \mathbb{P}(\mathbf{v} \text{ uncovered})$ $\underset{\text{Fact 2}}{\overset{\text{Bayes}}{=}} \frac{\lambda}{1+\lambda} \sum_{j} \frac{\mathbb{P}(\nu \text{ has } j \text{ uncovered neighbours})}{(1+\lambda)^{j}}$ $= \frac{\lambda}{1+\lambda} \mathbb{E}(1+\lambda)^{-\mathsf{J}} \stackrel{\text{Jensen's}}{\geq} \frac{\lambda}{1+\lambda} (1+\lambda)^{-\mathbb{E}\mathsf{J}}$ $\mathbb{E}|N(\mathbf{v})\cap \mathbf{I}| \stackrel{\text{linearity}}{=} \mathbb{P}(u \in \mathbf{I} \mid u \text{ uncovered}) \cdot \mathbb{E}\mathbf{J} \stackrel{\text{Fact } 1}{=} \frac{\lambda}{1+\lambda} \mathbb{E}\mathbf{J}$ $\implies \boldsymbol{a} \cdot \mathbb{P}(\boldsymbol{v} \in \boldsymbol{\mathsf{I}}) + \boldsymbol{b} \cdot \mathbb{E}|\boldsymbol{N}(\boldsymbol{v}) \cap \boldsymbol{\mathsf{I}}| \geq \frac{\lambda}{1+\lambda} \left(\boldsymbol{a} \cdot (1+\lambda)^{-\mathbb{E}\boldsymbol{\mathsf{J}}} + \boldsymbol{b} \cdot \mathbb{E}\boldsymbol{\mathsf{J}}\right)$ $\geq \min_{I \in \mathbb{D}^+} \frac{\lambda}{1+\lambda} \left(a \cdot (1+\lambda)^{-J} + b \cdot J \right)$

Fact 1 $\mathbb{P}(v \in \mathbf{I} \mid v \text{ uncovered}) = \frac{\lambda}{1+\lambda}$ Fact 2 $\mathbb{P}(v \text{ uncovered } | v \text{ has } j \text{ uncovered neighbours}) = \frac{1}{(1+\lambda)i}$ $\mathbb{P}(\mathbf{v} \in \mathbf{I}) = \mathbb{P}(\mathbf{v} \in \mathbf{I} \text{ and } \mathbf{v} \text{ uncovered}) \xrightarrow{\text{Bayes}}_{\mathbf{I} = \mathbf{v}} \frac{\lambda}{1 + 1} \mathbb{P}(\mathbf{v} \text{ uncovered})$ $\underset{\text{Fact 2}}{\overset{\text{Bayes}}{=}} \frac{\lambda}{1+\lambda} \sum_{j} \frac{\mathbb{P}(\nu \text{ has } j \text{ uncovered neighbours})}{(1+\lambda)^j}$ $= \frac{\lambda}{1+\lambda} \mathbb{E}(1+\lambda)^{-\mathsf{J}} \stackrel{\text{Jensen's}}{\geq} \frac{\lambda}{1+\lambda} (1+\lambda)^{-\mathbb{E}\mathsf{J}}$ $\mathbb{E}|N(\mathbf{v})\cap \mathbf{I}| \stackrel{\text{linearity}}{=} \mathbb{P}(u \in \mathbf{I} \mid u \text{ uncovered}) \cdot \mathbb{E}\mathbf{J} \stackrel{\text{Fact } 1}{=} \frac{\lambda}{1+\lambda} \mathbb{E}\mathbf{J}$ $\implies a \cdot \mathbb{P}(v \in \mathbf{I}) + b \cdot \mathbb{E}|N(v) \cap \mathbf{I}| \geq \frac{\lambda}{1+\lambda} \left(a \cdot (1+\lambda)^{-\mathbb{E}\mathbf{J}} + b \cdot \mathbb{E}\mathbf{J} \right)$ $\geq \min_{I \subset \mathbb{R}^{+}} \frac{\lambda}{1+\lambda} \left(a \cdot (1+\lambda)^{-J} + b \cdot J \right) \stackrel{\text{convexity}}{\geq} \frac{b\lambda(\log((ea/b)\log(1+\lambda)))}{(1+\lambda)\log(1+\lambda)}$ Fact 1 $\mathbb{P}(v \in \mathbf{I} \mid v \text{ uncovered}) = \frac{\lambda}{1+\lambda}$ Fact 2 $\mathbb{P}(v \text{ uncovered } | v \text{ has } j \text{ uncovered neighbours}) = \frac{1}{(1+\lambda)i}$ $\mathbb{P}(\mathbf{v} \in \mathbf{I}) = \mathbb{P}(\mathbf{v} \in \mathbf{I} \text{ and } \mathbf{v} \text{ uncovered}) \xrightarrow{\text{Bayes}}_{\mathbf{I} = \mathbf{v}} \frac{\lambda}{1 + 1} \mathbb{P}(\mathbf{v} \text{ uncovered})$ $\underset{\text{Fact 2}}{\overset{\text{Bayes}}{=}} \frac{\lambda}{1+\lambda} \sum_{j} \frac{\mathbb{P}(\nu \text{ has } j \text{ uncovered neighbours})}{(1+\lambda)^j}$ $= \frac{\lambda}{1+\lambda} \mathbb{E}(1+\lambda)^{-\mathsf{J}} \stackrel{\text{Jensen's}}{\geq} \frac{\lambda}{1+\lambda} (1+\lambda)^{-\mathbb{E}\mathsf{J}}$ $\mathbb{E}|N(v)\cap I| \stackrel{\text{linearity}}{=} \mathbb{P}(u \in I \mid u \text{ uncovered}) \cdot \mathbb{E}J \stackrel{\text{Fact } 1}{=} \frac{\lambda}{1+\lambda} \mathbb{E}J$ $\implies \mathbf{a} \cdot \mathbb{P}(\mathbf{v} \in \mathbf{I}) + \mathbf{b} \cdot \mathbb{E}[\mathbf{N}(\mathbf{v}) \cap \mathbf{I}] \geq \frac{\lambda}{1+\lambda} \left(\mathbf{a} \cdot (1+\lambda)^{-\mathbb{E}\mathbf{J}} + \mathbf{b} \cdot \mathbb{E}\mathbf{J} \right)$ $\geq \min_{J \in \mathbb{R}^{+}} \frac{\lambda}{1+\lambda} \left(a \cdot (1+\lambda)^{-J} + b \cdot J \right) \stackrel{\text{convexity}}{\geq} \frac{b\lambda(\log((ea/b)\log(1+\lambda)))}{(1+\lambda)\log(1+\lambda)}$

- A Hard-core model on any triangle-free G has local (a, b)-occupancy, for specific a, b depending on fugacity λ and maximum degree Δ
- B If there is probability distribution I on $\mathscr{I}(G)$ with local (a, b)-occupancy, then $\chi_f(G) \leq a + b \cdot \Delta$

 $a \cdot \mathbb{P}(v \in \mathbf{I}) + b \cdot \mathbb{E}|N(v) \cap \mathbf{I}| \geq 1$

- A Hard-core model on any triangle-free G has local (a, b)-occupancy, for specific a, b depending on fugacity λ and maximum degree Δ
- B If there is probability distribution I on $\mathscr{I}(G)$ with local (a, b)-occupancy, then $\chi_f(G) \leq a + b \cdot \Delta$

In A, Fact 1 and Fact 2 imply

$$egin{array}{l} \mathbf{a} \cdot \mathbb{P}(\mathbf{v} \in \mathbf{I}) + b \cdot \mathbb{E} | N(\mathbf{v}) \cap \mathbf{I} | \geq rac{b\lambda (\log((ea/b)\log(1+\lambda)))}{(1+\lambda)\log(1+\lambda)} \end{array}$$

$$a \cdot \mathbb{P}(v \in \mathbf{I}) + b \cdot \mathbb{E}|N(v) \cap \mathbf{I}| \geq 1$$

- A Hard-core model on any triangle-free G has local (a, b)-occupancy, for specific a, b depending on fugacity λ and maximum degree Δ
- B If there is probability distribution I on $\mathscr{I}(G)$ with local (a, b)-occupancy, then $\chi_f(G) \leq a + b \cdot \Delta$

In A, Fact 1 and Fact 2 imply

$$m{a} \cdot \mathbb{P}(m{v} \in m{I}) + m{b} \cdot \mathbb{E}|m{N}(m{v}) \cap m{I}| \geq rac{b\lambda(\log((ea/b)\log(1+\lambda)))}{(1+\lambda)\log(1+\lambda)}$$

and so from B it suffices to show

$$a + b \cdot \Delta \lesssim rac{\Delta}{\log \Delta}$$
 subject to $rac{b\lambda(\log((ea/b)\log(1+\lambda)))}{(1+\lambda)\log(1+\lambda)} \ge 1 \rightsquigarrow$

- A Hard-core model on any triangle-free G has local (a, b)-occupancy, for specific a, b depending on fugacity λ and maximum degree Δ
- B If there is probability distribution I on $\mathscr{I}(G)$ with local (a, b)-occupancy, then $\chi_f(G) \leq a + b \cdot \Delta$

- A Hard-core model on any **locally sparse**^{\parallel} *G* has local (*a*, *b*)-occupancy, for specific *a*, *b* depending on fugacity λ and maximum degree Δ
- B If there is probability distribution I on $\mathscr{I}(G)$ with local (a, b)-occupancy, then $\chi_f(G) \leq a + b \cdot \Delta$

 $^{^{\}parallel}\textsc{i.e.}$ satisfying some structural sparsity condition for every neighbourhood subgraph

$$a \cdot rac{\lambda}{1+\lambda} rac{1}{Z_{ extsf{F}}(\lambda)} + b \cdot rac{\lambda Z_{ extsf{F}}'(\lambda)}{Z_{ extsf{F}}(\lambda)} \geq 1$$

- A Hard-core model on any **locally sparse**^{\parallel} *G* has local (*a*, *b*)-occupancy, for specific *a*, *b* depending on fugacity λ and maximum degree Δ
- B If there is probability distribution I on $\mathscr{I}(G)$ with local (a, b)-occupancy, then $\chi_f(G) \leq a + b \cdot \Delta$

 $^{^{\}parallel}\textsc{i.e.}$ satisfying some structural sparsity condition for every neighbourhood subgraph

$$a \cdot rac{\lambda}{1+\lambda} rac{1}{Z_{ extsf{F}}(\lambda)} + b \cdot rac{\lambda Z_{ extsf{F}}'(\lambda)}{Z_{ extsf{F}}(\lambda)} \geq 1$$

- A Hard-core model on any **locally sparse**^{\parallel} *G* has local (*a*, *b*)-occupancy, for specific *a*, *b* depending on fugacity λ and maximum degree Δ
- B If there is probability distribution I on $\mathscr{I}(G)$ with local (a, b)-occupancy, then $\chi_f(G) \leq a + b \cdot \Delta$
- C If hard-core model has local (a, b)-occupancy (+ mild conditions), then $ch(G) \leq a \cdot O(\log \Delta) + (1 + \varepsilon)b \cdot \Delta$

 $^{^{\}parallel}\textsc{i.e.}$ satisfying some structural sparsity condition for every neighbourhood subgraph

$$a \cdot rac{\lambda}{1+\lambda} rac{1}{Z_{ extsf{F}}(\lambda)} + b \cdot rac{\lambda Z_{ extsf{F}}'(\lambda)}{Z_{ extsf{F}}(\lambda)} \geq 1$$

- A Hard-core model on any **locally sparse**^{\parallel} *G* has local (*a*, *b*)-occupancy, for specific *a*, *b* depending on fugacity λ and maximum degree Δ
- B If there is probability distribution I on $\mathscr{I}(G)$ with local (a, b)-occupancy, then $\chi_f(G) \leq a + b \cdot \Delta$
- C If hard-core model has local (a, b)-occupancy (+ mild conditions), then $ch(G) \leq a \cdot O(\log \Delta) + (1 + \varepsilon)b \cdot \Delta$
- \implies optimisation for $\alpha(G)$ or $\chi_f(G)$ also yields bounds for $\chi(G)$ and ch(G)

 $^{^{\}parallel}\textsc{i.e.}$ satisfying some structural sparsity condition for every neighbourhood subgraph

$$a \cdot rac{\lambda}{1+\lambda} rac{1}{Z_{ extsf{F}}(\lambda)} + b \cdot rac{\lambda Z_{ extsf{F}}'(\lambda)}{Z_{ extsf{F}}(\lambda)} \geq 1$$

- A Hard-core model on any **locally sparse**^{\parallel} *G* has local (*a*, *b*)-occupancy, for specific *a*, *b* depending on fugacity λ and maximum degree Δ
- B If there is probability distribution I on $\mathscr{I}(G)$ with local (a, b)-occupancy, then $\chi_f(G) \leq a + b \cdot \Delta$
- C If hard-core model has local (a, b)-occupancy (+ mild conditions), then $ch(G) \leq a \cdot O(\log \Delta) + (1 + \varepsilon)b \cdot \Delta$
- \implies optimisation for $\alpha(G)$ or $\chi_f(G)$ also yields bounds for $\chi(G)$ and ch(G)

C relies crucially on seminal proofs of Molloy (2019) and Bernshteyn (2019) combined with properties of the hard-core model

 $^{^{\}parallel}\ensuremath{\text{i.e.}}$ satisfying some structural sparsity condition for every neighbourhood subgraph

Theorem (Johansson 1996+, cf. Alon 1996, Molloy 2019, Bonamy, Kelly, Nelson, Postle 2018+) $ch(G) = O\left(log(r+1)\frac{\Delta}{log\Delta}\right)$ for any G of maximum degree Δ in which every neighbourhood is r-colourable Theorem (Johansson 1996+, cf. Alon 1996, Molloy 2019, Bonamy, Kelly, Nelson, Postle 2018+) $ch(G) = O\left(log(r+1)\frac{\Delta}{log\Delta}\right)$ for any G of maximum degree Δ in which every neighbourhood is r-colourable

Theorem (Davies, Kang, Pirot, Sereni, in progress) $ch(G) \lesssim K(r) \cdot \frac{\Delta}{\log \Delta}$ for any G of maximum degree Δ in which every neighbourhood is r-colourable, where K(1) = 1 and $K(r) \sim \log r$ as $r \to \infty$ Theorem (Alon, Krivelevich, Sudakov 1999, cf. Vu 2002 and Achlioptas, Iliopoulos, Sinclair 2019) $ch(G) = O\left(\frac{\Delta}{\log \Delta - \log \sqrt{T+1}}\right)$ for any G of maximum degree Δ with each vertex in $\leq T$ triangles, $0 \leq T = o(\Delta^2)$ Theorem (Alon, Krivelevich, Sudakov 1999, cf. Vu 2002 and Achlioptas, lliopoulos, Sinclair 2019)

 $ch(G) = O\left(\frac{\Delta}{\log \Delta - \log \sqrt{T+1}}\right) \text{ for any } G \text{ of maximum degree } \Delta$ with each vertex in $\leq T$ triangles, $0 \leq T = o(\Delta^2)$

Theorem (Davies, Kang, Pirot, Sereni, in progress, cf. Davies, de Joannis de Verclos, Kang, Pirot 2018+) $ch(G) \lesssim \frac{\Delta}{\log \Delta - \log \sqrt{T+1}} \text{ for any } G \text{ of maximum degree } \Delta$ with each vertex in $\leq T$ triangles, $0 \leq T = o(\Delta^2)$

STRUCTURE OF TRIANGLE-FREE GRAPHS

Central, classic topic, yet basic discoveries potentially still to be made:

STRUCTURE OF TRIANGLE-FREE GRAPHS

Central, classic topic, yet basic discoveries potentially still to be made:

Conjecture (Davies, Jenssen, Perkins, Roberts 2018) $\alpha(G) \gtrsim \frac{2Z'_G(1)}{Z_G(1)}$ for any triangle-free G of minimum degree δ Central, classic topic, yet basic discoveries potentially still to be made:

Conjecture (Davies, Jenssen, Perkins, Roberts 2018) $\alpha(G) \gtrsim \frac{2Z'_G(1)}{Z_G(1)}$ for any triangle-free G of minimum degree δ

Conjecture (Esperet, Kang, Thomassé 2019) BID(G) = $\Omega(\log \delta)$ for any triangle-free G of minimum degree δ Central, classic topic, yet basic discoveries potentially still to be made:

Conjecture (Davies, Jenssen, Perkins, Roberts 2018) $\alpha(G) \gtrsim \frac{2Z'_G(1)}{Z_G(1)}$ for any triangle-free G of minimum degree δ

Conjecture (Esperet, Kang, Thomassé 2019) BID(G) = $\Omega(\log \delta)$ for any triangle-free G of minimum degree δ

Conjecture (Harris 2019) $\chi_f(G) = O\left(\frac{\delta^*}{\log \delta^*}\right)$ for any triangle-free G with degeneracy δ^* Central, classic topic, yet basic discoveries potentially still to be made:

Conjecture (Davies, Jenssen, Perkins, Roberts 2018) $\alpha(G) \gtrsim \frac{2Z'_G(1)}{Z_G(1)}$ for any triangle-free G of minimum degree δ

Conjecture (Esperet, Kang, Thomassé 2019) BID(G) = $\Omega(\log \delta)$ for any triangle-free G of minimum degree δ

Conjecture (Harris 2019) $\chi_f(G) = O\left(\frac{\delta^*}{\log \delta^*}\right)$ for any triangle-free G with degeneracy δ^*

Conjecture (Cames van Batenburg, de Joannis de Verclos, Kang, Pirot) $\chi_f(G) \lesssim \sqrt{\frac{2n}{\log n}}$ and $ch(G) = O\left(\sqrt{\frac{n}{\log n}}\right)$ for any n-vertex triangle-free G

Merci!