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STRUCTURE OF TRIANGLE-FREE GRAPHS

Asymptotically, what global graph structure forms if
no edge is induced in any neighbourhood?
i.e. “local versus global”
Distinguished origins:
® Mantel (1907), Turdn (1941)

® Ramsey (1930), Erdés & Szekeres (1935)
® Zykov (1949), Ungar & “Blanche Descartes” (1954)



PROBABILISTIC METHOD
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If a random object has desired property with positive probability,
then there exists at least one object with that property
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fMore fully, the lattice gas with hard-core self-repulsion and nearest-neighbour exclusion.
Picture credit: Wikipedia/Grap-wh
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® that annoyingly issue lists of permissible colours

® but must permit at least £ colours per vertex
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LIST COLOURING

Given a graph G, imagine adversaries to you properly colouring it

® that annoyingly issue lists of permissible colours

® but must permit at least £ colours per vertex

What is least £ for which you can always win? (Necessarily x < ¢ < |G])

Called list chromatic number or choosability ch(G) of G
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ch is not bounded by any function of chromatic number x
Theorem (Erd6s, Rubin, Taylor 1980)

ch(K4,q4) ~ log, d (and ch(Kg41) =d +1)

More closely related to density

Theorem (Alon 2000, cf. Saxton & Thomason 2015)
ch(G) = log, § for any G of minimum degree &

Still not completely well understood

Conjecture (Alon & Krivelevich 1998)
ch(G) < log, A for any bipartite G of maximum degree A
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Theorem (Kratochvil, Tuza, Voigt 1998)
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Eﬁg:; SEPARATION MAKES IT “EASIER”? i

What if adjacent lists are all almost disjoint, so 1 common colour?
Call the corresponding least ¢ separation choosability chsep

Theorem (Kratochvil, Tuza, Voigt 1998)
Chsep(Kd+1) ~ \/3

Theorem (Firedi, Kostochka, Kumbhat 2014)
Cheep(Ka,d) ~ log, d

Theorem (Esperet, Kang, Thomassé 2019)
chsep(G) = Q(log 8) for any bipartite G of minimum degree §

Question: Does cheep grow in 67

Problem: Almost-disjointness of lists is not monotone under edge-addition!
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Eﬁgé RAMSEY-TYPE QUESTION/SOLUTION? jﬂ

Theorem (Kratochvil, Tuza, Voigt 1998)
Chsep(Kd+1) ~ \/H

Theorem (Esperet, Kang, Thomassé 2019)
chsep(G) = Q(log &) for any bipartite G of minimum degree §

Question: Does chsep grow in 67

Easier(?) question: Does every graph of high minimum degree contain either

® a large clique or < local

® a bipartite induced subgraph of large minimum degree? < global



Eﬁg:; RAMSEY-TYPE QUESTION/SOLUTION? i

Theorem (Kratochvil, Tuza, Voigt 1998)
Chsep(Kd+1) ~ \/H

Theorem (Esperet, Kang, Thomassé 2019)
chsep(G) = Q(log &) for any bipartite G of minimum degree §

Question: Does chsep grow in 67

Easier(?) question: Does every graph of high minimum degree contain either

® a large clique or < local

® a bipartite induced subgraph of large minimum degree? < global

BID(G) is largest minimum degree of any bipartite induced subgraph of G
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BIPARTITE INDUCED DENSITY

BID(G) is largest minimum degree of any bipartite induced subgraph of G

Conjecture (Esperet, Kang, Thomassé 2019)
BID(G) = Q(log d) for any triangle-free G of minimum degree &

® Without triangle-free, trivially false due to cliques

® Without induced, trivially true with 6/2 rather than Q(log d)
® |If true, it is sharp up to constant factor due to random graph
® True with “semi-bipartite” instead of bipartite

® BID(G) > 2 is presence of an even hole (Radovanovi¢ and Vuskovi¢ '13)

We do not even understand the least § forcing BID(G) > 3!
Theorem (Kwan, Letzter, Sudakov, Tran 2018+)

BID(G) = Q log 0 for any triangle-free G of minimum degree §
log log &
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BID “BETWEEN” INDEPENDENCE AND COLOURING

a(G) is size of largest independent set of G
BID(G) is largest minimum degree of any bipartite induced subgraph of G

a(G) > BID(G)

Suppose G has minimum degree § and a proper x-colouring

Each of ~ %x2 pairs of colour classes induces a bipartite graph
> %né edges are distributed across these

By pigeonhole, one has > nd/x* edges
So it has minimum degree (/) if the colouring is balanced. ..

Theorem (Esperet, Kang, Thomassé 2019)

BID(G) > % for any G with minimum degree 6 and chromatic number x
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A SEQUENCE WITH INDEPENDENCE AND COLOURING

w(6) < max % < xr(6) < x(G) < ch(G) < A(G) + 1

In general, all can be strict *

We focus on triangle-free. . .

*On strictness of second, see Blumenthal, Lidicky, Martin, Norin, Pfender, Volec (2018+), and
Dvoték, Ossona de Mendez, Wu (2018+); nice open question in the triangle-free case
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§Picture credit: Soifer 2009
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2013+, cf. Kim 1995)
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OFF-DIAGONAL RAMSEY NUMBERS
I.E. INDEPENDENCE NUMBER OF TRIANGLE-FREE GRAPHS

R(3, k) : largest n such that there is red/blue-edge-coloured Kp—1
with no red triangle and no blue K

R(3, k) : minimum size of triangle-free G guaranteeing o(G) > k

Theorem (Shearer 1983, cf. Ajtai, Komlds, Szemerédi 1980,/1)

k2
< -
REK) S o

nlog A

a(G) 2

for any n-vertex triangle-free G of maximum degree A

Theorem (Bohman & Keevash 2013+, Fiz Pontiveros, Griffiths, Morris
2013+, cf. Kim 1995)
k2

>
R(3,K) 2 4log k
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PROBABILISTIC METHOD

Theorem (Shearer 1983, cf. Ajtai, Komlds, Szemerédi 1980/1)
o(G) > nlog A

for any n-vertex triangle-free G of maximum degree A

Proof with ? 1

Good probability distribution over the set .#(G) of independent sets of G
for proving that random | has

nlog A
E|l| > ——271
Iz 8

9Yes, cf. Davies, Jenssen, Perkins, Roberts 2018. ..
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a=4, xr=5/2

Xf > n/a=5/2

fractional vertex-colouring : allow “fractions” of independent sets

fractional chromatic number xr : least “amount” needed

xr(G) < k if there is probability distribution over .#(G) such that for random |

P(vel)>1/k for every vertex v



FRACTIONAL CHROMATIC NUMBER

X T/ a=4, xr=5/2
;_A / Xf > n/a=5/2
\ /// \\\\ /
- -

fractional vertex-colouring : allow “fractions” of independent sets

fractional chromatic number xr : least “amount” needed

xr(G) < k if there is probability distribution over .#(G) such that for random |

P(vel)>1/k for every vertex v

RN > n/k 59#‘%
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w(6) < max, a'(*,’j) < x#(6) < X(6) < ch(G) < A(G) +1

Theorem (Shearer 1983, cf. Ajtai, Komlés, Szemerédi 1980/1)

n

A . .
m < m for any n-vertex triangle-free G of maximum degree A
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Theorem (Shearer 1983, cf. Ajtai, Komlds, Szemerédi 1980/1)

n_ _ A
a(G) ~ log A

for any n-vertex triangle-free G of maximum degree A

Theorem (Davies, de Joannis de Verclos, Kang, Pirot 2018+)

A . .
xr(G) < log A for any triangle-free G of maximum degree A

Theorem (Molloy 2019, cf. Johansson 1996+, cf. also Bernshteyn 2019)

<
ch(G) < log

A for any triangle-free G of maximum degree A



CHROMATIC NUMBER OF TRIANGLE-FREE GRAPHS

w(6) = max_ L < 3:(6) < 1(6) < eh(6) < a(6) +1

Theorem (Shearer 1983, cf. Ajtai, Komlds, Szemerédi 1980/1)
n < 2
a(G) ~ log A

for any n-vertex triangle-free G of maximum degree A

Theorem (Davies, de Joannis de Verclos, Kang, Pirot 2018+)
xr(G) <

log A for any triangle-free G of maximum degree A

Theorem (Molloy 2019, cf. Johansson 1996+, cf. also Bernshteyn 2019)

<
ch(G) < log

A for any triangle-free G of maximum degree A

Why?



CHROMATIC NUMBER OF TRIANGLE-FREE GRAPHS

w(6) = max_ L < 3:(6) < 1(6) < eh(6) < a(6) +1

Theorem (Shearer 1983, cf. Ajtai, Komlds, Szemerédi 1980/1)
n < 2
a(G) ~ log A

for any n-vertex triangle-free G of maximum degree A

Theorem (Davies, de Joannis de Verclos, Kang, Pirot 2018+)
xr(G) <

log A for any triangle-free G of maximum degree A

Theorem (Molloy 2019, cf. Johansson 1996+, cf. also Bernshteyn 2019)

<
ch(G) < log

A for any triangle-free G of maximum degree A

Why? Simple, conceptual, versatile, and more. . .
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Hard-core model on G at fugacity A > 0 is probability distribution over .#(G)
such that random | satisfies for all S € .7 (G)

Al
P(l=S5)= , here Zg()\) = AlSl
( ) Zs(A) where Z6(2) SE;G)
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SPATIAL MARKOV PROPERTY

For S € #(G), call u occupied if u € S and call u uncovered if N(u)NS =0

Take | from hard-core model on G at fugacity A and let X C V(G)
Reveal I'\ X and let Ux := X \ N(I'\ X) (the externally uncovered part)
Then 1N X is hard-core on G[Ux] at fugacity A
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Distribution | on .#(G) has local (a, b)-occupancy if for every vertex v
a-Plvel)+b-ENV)NI>1

A Hard-core model on any triangle-free G has local (a, b)-occupancy,
for specific a, b depending on fugacity A and maximum degree A

B If there is probability distribution | on .#(G) with local (a, b)-occupancy,
then x¢(G) <a+b-A

A SR
~> analysis to minimise a+ b- A ~» x#(G) < log A %’



LOCAL OCCUPANCY METHOD

Distribution I on .#(G) has local (a, b)-occupancy if for every vertex v
a-P(vel)+b-E|N(v)NnI>1

A Hard-core model on any triangle-free G has local (a, b)-occupancy,
for specific a, b depending on fugacity A and maximum degree A

B If there is probability distribution | on .#(G) with local (a, b)-occupancy,
then xf(G) <a+b-A



LOCAL OCCUPANCY METHOD

Distribution | on .#(G) has local (a, b)-occupancy if for every vertex v

a-Plvel)+b-ENV)NI>1

B If there is probability distribution | on .#(G) with local (a, b)-occupancy,
then x¢(G) <a+b-A

Originally used by Molloy & Reed (2002) to prove fractional Reed’s Conjecture



LOCAL OCCUPANCY METHOD

Distribution | on .#(G) has local (a, b)-occupancy if for every vertex v

a-Plvel)+b-ENV)NI>1

B If there is probability distribution | on .#(G) with local (a, b)-occupancy,
then x¢(G) <a+b-A

Originally used by Molloy & Reed (2002) to prove fractional Reed’s Conjecture

Idea: greedily add weight/colour to independent sets according to probability
distribution induced by | on vertices not yet completely coloured, and iterate

One can think of it as “evening out” the distribution
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and so from B it suffices to show
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(14 X)log(1+ ) =

at+b-AS subject to

A
log A



LOCAL OCCUPANCY METHOD

Distribution | on .#(G) has local (a, b)-occupancy if for every vertex v
a-Plvel)+b-ENV)NI>1

A Hard-core model on any triangle-free G has local (a, b)-occupancy,
for specific a, b depending on fugacity A and maximum degree A

B If there is probability distribution | on .#(G) with local (a, b)-occupancy,
then x¢(G) <a+b-A



LOCAL OCCUPANCY METHOD

Distribution | on .#(G) has local (a, b)-occupancy if for every vertex v
a-Plvel)+b-ENV)NI>1

A Hard-core model on any locally sparseH G has local (a, b)-occupancy,
for specific a, b depending on fugacity A and maximum degree A

B If there is probability distribution | on .#(G) with local (a, b)-occupancy,
then x¢(G) <a+b-A

lie. satisfying some structural sparsity condition for every neighbourhood subgraph



LOCAL OCCUPANCY METHOD

Hard-core model on G has local (a, b)-occupancy if for every vertex v and
every induced subgraph F of the neighbourhood subgraph G[N(v)].
!
A 1 ‘b AZE(N)
14+ X Zp(N) Zr(N)
A Hard-core model on any locally sparse! G has local (a, b)-occupancy,
for specific a, b depending on fugacity A and maximum degree A
B If there is probability distribution | on .#(G) with local (a, b)-occupancy,
then x¢(G) <a+b-A

>1

a

lie. satisfying some structural sparsity condition for every neighbourhood subgraph



LOCAL OCCUPANCY METHOD

Hard-core model on G has local (a, b)-occupancy if for every vertex v and
every induced subgraph F of the neighbourhood subgraph G[N(v)].
A 1 AZE(N)

Tz Pz

A Hard-core model on any locally sparse! G has local (a, b)-occupancy,
for specific a, b depending on fugacity A and maximum degree A

B If there is probability distribution | on .#(G) with local (a, b)-occupancy,
then x¢(G) <a+b-A

C If hard-core model has local (a, b)-occupancy (4 mild conditions),
then ch(G) < a-O(logA) + (1+¢e)b- A

>1

a

Iie. satisfying some structural sparsity condition for every neighbourhood subgraph



LOCAL OCCUPANCY METHOD

Hard-core model on G has local (a, b)-occupancy if for every vertex v and
every induced subgraph F of the neighbourhood subgraph G[N(v)].
A 1 AZE(N)

Tz Pz

A Hard-core model on any locally sparse! G has local (a, b)-occupancy,
for specific a, b depending on fugacity A and maximum degree A

B If there is probability distribution | on .#(G) with local (a, b)-occupancy,
then x¢(G) <a+b-A

C If hard-core model has local (a, b)-occupancy (4 mild conditions),
then ch(G) < a-O(logA) + (1+¢e)b- A

>1

a

= optimisation for a(G) or xr(G) also yields bounds for x(G) and ch(G)

Iie. satisfying some structural sparsity condition for every neighbourhood subgraph



LOCAL OCCUPANCY METHOD

Hard-core model on G has local (a, b)-occupancy if for every vertex v and
every induced subgraph F of the neighbourhood subgraph G[N(v)].
A 1 AZE(N)

Tz Pz

A Hard-core model on any locally sparse! G has local (a, b)-occupancy,
for specific a, b depending on fugacity A and maximum degree A

B If there is probability distribution | on .#(G) with local (a, b)-occupancy,
then x¢(G) <a+b-A

C If hard-core model has local (a, b)-occupancy (4 mild conditions),
then ch(G) < a-O(logA) + (1+¢e)b- A

>1

a

= optimisation for a(G) or xr(G) also yields bounds for x(G) and ch(G)

C relies crucially on seminal proofs of Molloy (2019) and Bernshteyn (2019)
combined with properties of the hard-core model

Iie. satisfying some structural sparsity condition for every neighbourhood subgraph
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Theorem (Johansson 1996+, cf. Alon 1996, Molloy 2019, Bonamy, Kelly,
Nelson, Postle 2018+)

ch(G)=0 (Iog(r + 1)&) for any G of maximum degree A

in which every neighbourhood is r-colourable

Theorem (Davies, Kang, Pirot, Sereni, in progress)
< .
h(6) £ K(1) (o

in which every neighbourhood is r-colourable,
where K(1) =1 and K(r) ~ logr as r — oo

for any G of maximum degree A
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Theorem (Alon, Krivelevich, Sudakov 1999, cf. Vu 2002 and Achlioptas,
lliopoulos, Sinclair 2019)

A
h(G)=0
ch(€) (IogA—Iog\/T—&-l

with each vertex in < T triangles, 0 < T = o(A?)

) for any G of maximum degree A

Theorem (Davies, Kang, Pirot, Sereni, in progress, cf. Davies, de Joannis

de Verclos, Kang, Pirot 2018+)

A .
ch(G) < for any G of maximum degree A

~logA —logV/T +1

with each vertex in < T triangles, 0 < T = o(A?)
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STRUCTURE OF TRIANGLE-FREE GRAPHS

Central, classic topic, yet basic discoveries potentially still to be made:

Conjecture (Davies, Jenssen, Perkins, Roberts 2018)

for any triangle-free G of minimum degree 0
Conjecture (Esperet, Kang, Thomassé 2019)

BID(G) = Q(log d) for any triangle-free G of minimum degree &

(1
xr(G) = (

Conjecture (Cames van Batenburg, de Joannis de Verclos, Kang, Pirot)

xf(G) S 2n and ch(G) =0 (, /é) for any n-vertex triangle-free G

logn

(
Ql
Conjecture (H rris 2019)
for any triangle-free G with degeneracy §*
(
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