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i.e. “local versus global”
Distinguished origins:

® Mantel (1907), Turdn (1941)
® Ramsey (1930), Erdés & Szekeres (1935)
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Elegant, modern challenges!



PROBABILISTIC METHOD
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If a random object has desired property with positive probability,
then there exists at least one object with that property



HARD-CORE MODEL!

o

tMore fully, the lattice gas with hard-core self-repulsion and nearest-neighbour exclusion.
Picture credit: Wikipedia/Grap-wh
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LIST COLOURING

Given a graph G, imagine enemies to you properly colouring it

® that give lists of allowed colours per vertex

® but must allow at least ¢ colours per vertex

What is least ¢ for which you can always defeat them?

Called list chromatic number or choosability ch(G) of G
(Necessarily x(G) < ch(G) < A(G)+1)
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ch is not bounded by any function of chromatic number x
Theorem (Erdés, Rubin, Taylor 1980)

ch(Kq,q) ~ log, d (and ch(Kg+1) =d +1)

More closely related to density

Theorem (Saxton & Thomason 2015, cf. Alon 2000)
ch(G) = log, & for any G of minimum degree 0

Still not completely well understood

Conjecture (Alon & Krivelevich 1998)
ch(G) < log, A for any bipartite G of maximum degree A

To date(!): ch(G) < é (Molloy 2019, cf. Alon, Cambie, Kang 2020+)
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BID(G) is largest minimum degree of any bipartite induced subgraph of G

Conjecture (Esperet, Kang, Thomassé 2019)
BID(G) = Q(log §) for any triangle-free G of minimum degree §

® Without triangle-free, trivially false due to cliques

® Without induced, trivially true with 6/2 rather than Q(log 6)
® |If true, it is sharp up to constant factor due to random graph
® True with “semi-bipartite” instead of bipartite

® BID(G) > 2 is presence of an even hole (Radovanovi¢ and Vuskovi¢ '13)
We do not even understand the least ¢ forcing BID(G) > 3!
Theorem (Kwan, Letzter, Sudakov, Tran 2020%)

BID(G) =Q log 9 for any triangle-free G of minimum degree §
log log &

A very recent simplification by Glock 2020+
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a(G) is size of largest independent set of G
BID(G) is largest minimum degree of any bipartite induced subgraph of G

a(G) > BID(G)

Suppose G has minimum degree § and a proper x-colouring

Each of ~ %x2 pairs of colour classes induces a bipartite graph
> %né edges are distributed across these

By pigeonhole, one has > nd/x* edges
So it has minimum degree (/) if the colouring is balanced. ..

Theorem (Esperet, Kang, Thomassé 2019)

BID(G) > % for any G with minimum degree 6 and chromatic number x
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A SEQUENCE WITH INDEPENDENT SET AND COLOURING

w(6) < max. % < x¢(6) < X(G) < ch(G) < A(G) +1

In general, all can be strict §

We focus on triangle-free. ..

§On strictness of second, see Blumenthal, Lidicky, Martin, Norin, Pfender, Volec (2018+), and
Dvoték, Ossona de Mendez, Wu (2018+); nice open question in the triangle-free case
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R(3, k) : largest n such that there is red/blue-edge-coloured Kp—1
with no red triangle and no blue K
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for any n-vertex triangle-free G of maximum degree A

Theorem (Bohman & Keevash 2013+, Fiz Pontiveros, Griffiths, Morris
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a(G) 2 nlog A for any n-vertex triangle-free G of maximum degree A

Proof with @@? I
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PROBABILISTIC METHOD

Theorem (Shearer 1983, cf. Ajtai, Komlds, Szemerédi 1980/1)
o(G) > nlog A

for any n-vertex triangle-free G of maximum degree A

Proof with ? I

Good probability distribution over the set .#(G) of independent sets of G
for proving that random | has

nIogA? q
A

ENlZ

IYes, cf. Davies, Jenssen, Perkins, Roberts 2018. . .
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a=4, xr=5/2

Xr > n/a=5/2

fractional vertex-colouring : allow “fractions” of independent sets
fractional chromatic number xr : least “amount” needed
xr(G) < k if there is probability distribution over .#(G) such that for random |

P(vel)>1/k for every vertex v



FRACTIONAL CHROMATIC NUMBER

= e
- bt / a=4,xr=5/2
o = Xr > n/a=5/2
/ Nl

fractional vertex-colouring : allow “fractions” of independent sets

fractional chromatic number xr : least “amount” needed
xf(G) < k if there is probability distribution over .#(G) such that for random |

P(vel)>1/k for every vertex v

" B | > n/k g;a&%
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Theorem (Davies, de Joannis de Verclos, Kang, Pirot 2018+)
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CHROMATIC NUMBER OF TRIANGLE-FREE GRAPHS

w(6) = max_ L < 3:(6) < 1(6) < eh(6) < a(6) +1

Theorem (Shearer 1983, cf. Ajtai, Komlds, Szemerédi 1980/1)
n < 2
a(G) ~ log A

for any n-vertex triangle-free G of maximum degree A

Theorem (Davies, de Joannis de Verclos, Kang, Pirot 2018+)
xr(G) <

log A for any triangle-free G of maximum degree A

Theorem (Molloy 2019, cf. Johansson 1996+, cf. also Bernshteyn 2019)

<
ch(G) < log

A for any triangle-free G of maximum degree A

Why? Simple, conceptual, versatile, and more. . .
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Hard-core model on G at fugacity A > 0 is probability distribution over .#(G)
such that random | satisfies for all S € .#(G)

Al

P1=5)= 7 55

where Zo(A) = > Al
Se.#(G)
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SPATIAL MARKOV PROPERTY

For S € #(G), call u occupied if u € S and call v uncovered if N(u)NS =10

Take | from hard-core model on G at fugacity A and let X C V(G)
Reveal '\ X and let Ux := X \ N(I\ X) (the externally uncovered part)
Then I N X is hard-core on G[Ux] at fugacity A
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LOCAL OCCUPANCY METHOD

Distribution | on .#(G) has local (a, b)-occupancy if for every vertex v

a-P(vel)+b-E[N(v)NnI| >1

B If there is probability distribution | on .#(G) with local (a, b)-occupancy,
then x¢(G) <a+b-A

Originally used by Molloy & Reed (2002) to prove fractional Reed’s Conjecture

Idea: greedily add weight/colour to independent sets according to probability
distribution induced by | on vertices not yet completely coloured, and iterate

One can think of it as “evening out” the distribution
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LOCAL OCCUPANCY METHOD

Distribution | on .#(G) has local (a, b)-occupancy if for every vertex v
a-P(vel)+b-E[N(v)NnI| >1

A Hard-core model on any triangle-free G has local (a, b)-occupancy,
for specific a, b depending on fugacity A and maximum degree A

Fact 1 P(v € | | v uncovered) = 1_’_%
1
Fact 2 P(v uncovered | v has j uncovered neighbours) = EYY

(needs triangle-free!)
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Fact 2 P(v uncovered | v has j uncovered neighbours) =

FREYY
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E|N(v)NI|

a-P(vel)+b-E|N(v)NI|



LOCAL OCCUPANCY METHOD

Fact 1 P(v €1 | v uncovered) = H—L)\
Fact 2 P(v uncovered | v has j uncovered neighbours) = (1—1})\)1'

P(v € 1) =P(v € | and v uncovered)

E[N(v)N|

a-P(vel)+b-E|N(v)NI|



LOCAL OCCUPANCY METHOD

A

Fact 1 P(v €1 | v uncovered) = T

1

Fact 2 P(v uncovered | v has j uncovered neighbours) = Ay
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A

Fact 1 P(v €1 | v uncovered) = Ton

Fact 2 P(v uncovered | v has j uncovered neighbours) = Y]

Factt HL)\]P’(V uncovered)
Fact 2 Z P(v has j uncovered neighbours)
1+A

L+ Ay

P(vel)= ]P’(v € | and v uncovered)

A
T14A

E[N(v)Nl|

E(1+A)~
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Fact 1 P(v €1 | v uncovered) = 1 i Y
Fact 2 P(v uncovered | v has j uncovered neighbours) = a _:)\)j
Fact 1 A
P(vel)= ]P’(v € | and v uncovered) m[[”(v uncovered)
Fact 2 Z P(v has j uncovered neighbours)
1+ A (T4+ Ay
A _ Jensen's A _RJ
= ——E(1+X — (1 + X
Tty A
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1
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Fact 1 A
P(vel) =P(v el and v uncovered) H—)\P(v uncovered)
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Fact 1 A
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Fact 1 P(v €| | v uncovered) = H—LA
Fact 2 P(v uncovered | v has j uncovered neighbours) = (1—1})\)1'
Factl A
P(vel)= (v € | and v uncovered) m]?(v uncovered)
Fact 2 Z (v has j uncovered neighbours)
1+ (14 Ny
A _ Jensen's by _EJ
. > 4
1+/\]E(1+)\) > 1+)\(1+)\)
EIN(W)N"" " (0 e || o uncovered) - ) T2 : J’: o E

A —EJ
— a-B(vel)+b-ENW NI 2 ;7 (a~(1+)\) +b-1EJ)
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Fact 1 A
P(vel)= (v € | and v uncovered) H—)\P(v uncovered)
Fact 2 Z (v has j uncovered neighbours)
1+ (14 Ny
A _j Jensen’s by _EJ
. > 4
1+/\]E(1+>\) > 1+)\(1+)\)
EIN(W)N"" " (0 e || o uncovered) - ) T2 HL/\]EJ

A —EJ
= a-P(vel)+b-ENWV)NI| > m<a~(1+>\) +b EJ)

congxity bA(log((ea/b)log(1 + A)))

2 min = (1+ ) log(1+ A

LERT 1+A (

(14 X) "+ b
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Distribution | on .#(G) has local (a, b)-occupancy if for every vertex v
a-P(vel)+b-E[N(v)NnI| >1

A Hard-core model on any triangle-free G has local (a, b)-occupancy,
for specific a, b depending on fugacity A and maximum degree A

B If there is probability distribution | on .#(G) with local (a, b)-occupancy,
then x¢(G) <a+b-A
In A, Fact 1 and Fact 2 imply

log((ea/b) log(1 + X))
(14 A)log(1+ A)

2 P(vel)+b-EN(w) NI > 2L

and so from B it suffices to show

bA(log((ea/b) log(1 + N))) 1o

atb-As (1+Nlog(1+x) = o

~ log

subject to
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Hard-core model on G has local (a, b)-occupancy if for every vertex v and
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Hard-core model on G has local (a, b)-occupancy if for every vertex v and
every induced subgraph F of the neighbourhood subgraph G[N(v)].
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then ch(G) < a-O(logA) + (1+¢e)b- A
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= optimisation for a(G) or xr(G) also yields bounds for x(G) and ch(G)

C relies crucially on seminal proofs of Molloy (2019) and Bernshteyn (2019)
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LOCAL OCCUPANCY METHOD

Hard-core model on G has local (a, b)-occupancy if for every vertex v and
every induced subgraph F of the neighbourhood subgraph G[N(v)].
!
A 1 ‘b AZE(N)
14+ X Zp(N) Zr ()
A Hard-core model on any locally sparse™™ G has local (a, b)-occupancy,
for specific a, b depending on fugacity A and maximum degree A

B If there is probability distribution | on .#(G) with local (a, b)-occupancy,
then x¢(G) <a+b-A

C If hard-core model has local (a, b)-occupancy (4 mild conditions),
then ch(G) < a-O(logA) + (1+¢e)b- A

>1

a

= optimisation for a(G) or xr(G) also yields bounds for x(G) and ch(G)

C relies crucially on seminal proofs of Molloy (2019) and Bernshteyn (2019)
combined with properties of the hard-core model

C’, an algorithmic version of C (under additional conditions), merges the
hard-core model into framework of Achlioptas, lliopoulous, Sinclair (2019)

**i.e. satisfying some structural sparsity condition for every neighbourhood subgraph
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GRAPHS WITH COLOURABLE NEIGHBOURHOODS

Theorem (Johansson 1996+, cf. Alon 1996, Molloy 2019, Bonamy, Kelly,
Nelson, Postle 2018+)

ch(G)=0 (Iog(r + 1)@) for any G of maximum degree A
in which every neighbourhood is r-colourable
Theorem (Davies, Kang, Pirot, Sereni 2020+)

ch(G) £ K(r)-

g A for any G of maximum degree A
og
in which every neighbourhood is r-colourable,

where K(1) =1 and K(r) ~ logr as r — oo

NB: r =1 corresponds to Molloy's and r = A + 1 corresponds to trivial bound
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Cix-FREE GRAPHS

Theorem (Kim 1995)

A
ch(G) < og A for any G of girth 5 and maximum degree A

Theorem (Davies, Kang, Pirot, Sereni 2020+)
A
< - =
ch(G) < max{Iog(A/(klogA))’O(k|0gA)
for any Cy-free G of maximum degree A

NB: k = A°® includes Kim's and Molloy's
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Theorem (Alon, Krivelevich, Sudakov 1999, cf. Vu 2002 and Achlioptas,
lliopoulos, Sinclair 2019)

A
h(€)=0 l(A/ﬁ))

for any G of maximum degree A
with each vertex in < T triangles, 1/2 < T < (?)

Theorem (Davies, Kang, Pirot, Sereni 2020+, cf. Davies, de Joannis de
Verclos, Kang, Pirot 2018+)

ch(G)gmax{ A

oa(a/(VTiog ) OV Tl )

for any G of maximum degree A
with each vertex in < T triangles, 1/2 < T < (?)




GRAPHS WITH SPARSE NEIGHBOURHOODS

Theorem (Alon, Krivelevich, Sudakov 1999, cf. Vu 2002 and Achlioptas,
lliopoulos, Sinclair 2019)

A
h(€)=0 l(A/ﬁ))

for any G of maximum degree A
with each vertex in < T triangles, 1/2 < T < (?)

Theorem (Davies, Kang, Pirot, Sereni 2020+, cf. Davies, de Joannis de
Verclos, Kang, Pirot 2018+)

A
ch(€) % max { o8&/ (VT log A)

,O(VT log A)}

for any G of maximum degree A
with each vertex in < T triangles, 1/2 < T < (?)

NB: T = A°® includes Molloy's
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o(G) > nlog A

for any n-vertex triangle-free G of maximum degree A

Theorem (Davies, Jenssen, Perkins, Roberts 2018)
Zs(1) - nlogA
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a(G) 22 Zz(l)

for any triangle-free G of minimum degree §
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BARRIERS

“89 years of R(3, k)"

Theorem (Shearer 1983)
o(G) = nlog A

for any n-vertex triangle-free G of maximum degree A

Theorem (Davies, Jenssen, Perkins, Roberts 2018)
Zs(1) - nlogA
Zs(1) ™~ A

for any n-vertex triangle-free G of maximum degree A

Asymptotically sharp for the random A-regular graphs G, a!

Conjecture (Davies, Jenssen, Perkins, Roberts 2018)

Z5(1)
a(6)22- 2505

for any triangle-free G of minimum degree §

Question (Karp 1976)

Is there a polynomial-time algorithm that with high probability outputs an
independent set of G, a of size (1+¢€)(nlog A)/A?






STRUCTURE OF TRIANGLE-FREE GRAPHS

Theorem (Shearer 1983)
n 2n
< - 3 u
a(G) ~ ! / log 1 for any n-vertex triangle-free G




STRUCTURE OF TRIANGLE-FREE GRAPHS

Theorem (Shearer 1983)
n 2n
< - 3 o
a(G) ~ 1/ log for any n-vertex triangle-free G

Conjecture (Cames van Batenburg, de Joannis de Verclos, Kang, Pirot)

xf(G) S \/ Ic>2gnn for any n-vertex triangle-free G




STRUCTURE OF TRIANGLE-FREE GRAPHS

Theorem (Shearer 1983)

n

2 .
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STRUCTURE OF TRIANGLE-FREE GRAPHS

Theorem (Shearer 1983)
5 (nG) </ Io2gnn for any n-vertex triangle-free G

Conjecture (Cames van Batenburg, de Joannis de Verclos, Kang, Pirot)

2 .
xf(G) S I " for any n-vertex triangle-free G
\/ log n

Conjecture (Cames van Batenburg, de Joannis de Verclos, Kang, Pirot)

ch(G)=0 (, /L> for any n-vertex triangle-free G
log n

Known:  x#(G) < /. x(G) < 4/-2" . ch(G) = O(v/n)
~ \ logn ~V\logn'

NB: Conjecture on “fractional colouring with local demands” implies the first
(Kelly & Postle 2018+)
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STRUCTURE OF TRIANGLE-FREE GRAPHS

Conjecture (Esperet, Kang, Thomassé 2019)
BID(G) = Q(log §) for any triangle-free G of minimum degree §
Theorem (Esperet, Kang, Thomassé 2019)

BID(G) > for any G with minimum degree 6

_0
2x¢(G)
Conjecture (Harris 2019)

xr(G) =0 (%) for any triangle-free G with degeneracy 6*

NB: False for x(G) (Alon, Krivelevich, Sudakov 1999)
Question (Blumenthal, Lidicky, Martin, Norin, Pfender, Volec 2018+)

xfr(G) = O(p) for any triangle-free G where p = w;r?:éc a‘(l—ll-|l) ?

NB: False without triangle-free (BLMNPV 2018+)



STRUCTURE OF TRIANGLE-FREE GRAPHS

Conjecture (Alon & Krivelevich 1998)
ch(G) < log, A for any bipartite G of maximum degree A



STRUCTURE OF TRIANGLE-FREE GRAPHS

Conjecture (Alon & Krivelevich 1998)
ch(G) < log, A for any bipartite G of maximum degree A

Recent: one side log A, other side ~ A/log A (Alon, Cambie, Kang 2020+)



Gracies!



