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VIZING’S PROBLEM

Vizing, “Some unsolved problems in graph theory” (1968):

Moskno sm mias m06oTo Hamepes 3aJaHHOTO HATYPANBHOTO duexa k > 2
MOCTPOUTH TPad €O CKONb YLOXHO GONBIIMM 0GXBATOM M C XPOMATHUECKUM HUIC-
aoM k? Moskro. 9to morasan II. 9pgém [39], ocHoBHBasgCh HA MOITHOCTHEIX
co00payKeHNAX. YIUBUTEIBHO, UTO [0 CHX IIOP HET KOHCTPYKTHBHOTO JOKa3a-
texaberBa ororo ¢axra. B [40] yrasam cmoco6 mocrpoerus rpados ¢ T00BIM
XPOMATHUYECKUM YHMCJIOM €3 IMKIOB AMHHBL < 7. ITO Jydiiee, U4TO MBI MMeeM
Ha CerojHANIHUN JIeHb.

Ecau o (L) — MakcuMadpHasi creleHb BepumumHHL rpada L, To, oueBUIHO,
v (L) <o (L)+1. B 1941 r. P. Bpykc [41] poxasax, uro upm o (L) >3
uo (L) < o (L) cnpaBegmua onenka y (L) < ¢ (L). [laxbHeiimue nccaegoBanus
MOKHO IPOBOJUTH, YIUTHIBAg Gosee TOYHO COOTHOUICHUS MKy ¢ M o. llomwa-
nyi, caeyer HauaTh ¢ ONEHKM XPOMATUYECKOTO unciaa rpada 6es TpeyroJabHIKOB
(0 =2) ¢ HaHHOii MAKCHMMATLHOII CTENMEeHbI0 BePIIMHEL.



VIZING’S PROBLEM

Vizing, “Some unsolved problems in graph theory” (1968):

Given a natural number k > 2, is it vossible to construct a graph with
arbitrarily large compass and with chromatic number k? Erdés [39] has
oroved this; his proof is based on counting arguments. It is astonishing
that no constructive proof for this fact has yet been given. In [40] a
method is given of constructing graphs of arbitrary chromatic number
without having cycles of length < 7. This is the best we have at the
nresent time.

If o(L) is the maximum degree of a vertex in a graph L, it is clear
that Y(L) < o(L) + 1. Brooks [41] showed in 1941 that Y(L) < o(L ) whenever
o(L) > 3 and w(L) < o(L). Further investigations could be conducted,
taking into account a more exact relation between O and w. Perhaps one
should start with estimates of the chromatic number of a graph without
triangles (w = 2) and with given maximal degree for vertices.
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if no edge is induced in any neighbourhood?
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LLOCAL TO GLOBAL

Asymptotically, what global graph structure
if no edge is induced in any neighbourhood?

Distinguished origins:

® Mantel (1907), Turdn (1941)
® Ramsey (1930), Erdés & Szekeres (1935)
® Zykov (1949), Ungar & Descartes (1954), Mycielski (1955), Erdés (1959)

Elegant, modern challenges!
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[H|
< —_ 1
w(C) < max 2 H)
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|HL
w(6) = max 2y < Xr(6)
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SEQUENCE OF STRUCTURE

w(6) < max, a'(*,’j) < xr(6) < x(6) < ch(G) < A(G) + 1




SEQUENCE OF STRUCTURE

w(G) < pmax % < xr(G) < x(G) < ch(G) < A(G)+1

In general, each inequality can be strict!

fOn strictness of the second, see Blumenthal, Lidicky, Martin, Norin, Pfender, Volec (2018+),
and Dvorak, Ossona de Mendez, Wu (2020); nice open question in the triangle-free case.



PROBABILISTIC METHOD
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If random object has property with positive probability,
then there exists at least one object with that property
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Picture credit: Soifer 2009
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INDEPENDENCE NUMBER OF TRIANGLE-FREE GRAPHS

Theorem (Shearer 1983, cf. Ajtai, Komlds, Szemerédi 1980/1)

o(G) > nlog A

~

for any n-vertex triangle-free G of maximum degree A



INDEPENDENCE NUMBER OF TRIANGLE-FREE GRAPHS

Theorem (Shearer 1983, cf. Ajtai, Komlds, Szemerédi 1980/1)

|H|

oohice a(H) ~ log A

for any triangle-free G of maximum degree A



INDEPENDENCE NUMBER OF TRIANGLE-FREE GRAPHS

Theorem (Shearer 1983, cf. Ajtai, Komlds, Szemerédi 1980/1)

H

max
p#HCG a(H

S logh for any triangle-free G of maximum degree A

)
Theorem (Bollobas 1981)
|H]

#l—?cc a(H and G has arbitrarily large girth whp for G ~ G, a
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CHROMATIC NUMBER OF TRIANGLE-FREE GRAPHS,
A RAMSEY-TYPE PROBLEM

Perhaps one should start with estimates of the chromatic number of a graph without

triangles (w =2) and with given maximal degree for vertices. (Vizing 1968)

w(6) £ max L < 3:(6) < 1(6) < eh(6) < A(6) +1

Theorem (Shearer 1983, cf. Ajtai, Komlds, Szemerédi 1980/1)

H A
(Z);H-?CG a|(l-|l) < S logh for any triangle-free G of maximum degree A

Theorem (Davies, de Joannis de Verclos, Kang, Pirot 2021)

A
xr(G) < fogAA for any triangle-free G of maximum degree A ~»

Theorem (Molloy 2019, cf. Johansson 1996+)

ch(G) < AA for any triangle-free G of maximum degree A
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Odd cycles have w =2, A =2, x =3
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Bound holds for:
® w =2, A large enough (Johansson 1996+)

® for w > A — 1 (Brooks 1941)
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w, A, x CONJECTURE
w(G) < x(G) <A(G)+1

Conjecture (Reed 1998)

x(G) < {%M—‘ for any G of clique number w and maximum degree A

Odd cycles have w =2, A =2, x =3
Chvétal graph (1970) hasw =2, A =4, x =4

Bound holds for:

® w =2, A large enough (Johansson 1996+)
(w< A0 A large enough (Davies, Kang, Pirot, Sereni 2020+ ))

® for w > A — 1 (Brooks 1941)

$picture credit: Wikipedia/David Eppstein
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w, A, x CONJECTURE

Theorem (Reed 1998)

x(G) < %M—‘ for any G of clique number w and maximum degree A

provided w > (1 — €1)A for some 1 > 0 and A is large enough

Corollary

X(G) < [eaw + (1 — &2)(A + 1)] for any G of clique number w and maximum
degree A for some €2 > 0 provided A is large enough

* Reed (1998): £, > 0.000000005
® Bonamy, Perrett, Postle (2018+): €2 > 0.038
® Delcourt, Postle (2017+): g2 > 0.076
® Hurley, de Joannis de Verclos, Kang (2021): €2 > 0.119

NB: g2 may not be larger than 0.5
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STRONG EDGE-COLOURING

two edges “close”: incident or connected by an edge
induced matching: edge subset with no two edges close

strong edge-colouring of G: partition of the edges into induced matchings
strong chromatic index x(L(G)?) of G: least number of parts needed
Conjecture (Erdés & Nesetfil 1985) @
x(L(G)?) < %Az for any G of maximum degree A @.@
So far only confirmed for A < 3 @ @

(Andersen 1992, Horak, He, Trotter 1993)
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STRONG EDGE-COLOURING

X(L(G)?) < 2A? since A(L(G)?) < 2A(A — 1) trivially

Theorem (Molloy & Reed 1997)

X(L(G)?) < (2 — £3)A? for any G of maximum degree A for some £3 > 0
provided A is large enough

Corollary
X(L(G)?) < (2 — €4)A? for any G of maximum degree A for some 4 > 0

® Molloy & Reed (1997): €3 > 0.001
® Bruhn & Joos (2018): €3 > 0.070
® Bonamy, Perrett, Postle (2018+): e3 > 0.165
® Hurley, de Joannis de Verclos, Kang (2021): €3 > 0.228

NB: e3(> €4) may not be larger than 0.75
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LOCALLY SPARSE GRAPHS

no edge is induced in any neighbourhood <= triangle-free

1

at most a certain number of edges are induced in any neighbourhood

G of maximum degree A
has local density at most 7 or, alternatively, is (locally) (1 — n)-sparse
if < 7](?) edges per neighbourhood

n < 1/(?) corresponds to triangle-free, n = 1 corresponds to general case
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CHROMATIC NUMBER OF LOCALLY SPARSE GRAPHS

Best chromatic number bounds in graphs of local density at most n?

Theorem (Alon, Krivelevich, Sudakov 1999, cf. Vu 2002, Achlioptas,
lliopoulos, Sinclair 2019)

x(G) =0 I Ae) for any G of maximum degree A

&V and local density at most 7, é <n<l1
Theorem (Davies, Kang, Pirot, Sereni 2020+, cf. Davies, de Joannis de
Verclos, Kang, Pirot 2021)

<
x(G) S g

—— for any G of maximum degree A

v and local density at most 1), 77 <1 < 1

n= i matches Molloy's; the bound is sharp up to a factor of between 2 and 4

NB: Shearer (1983) established the analogous bound for a(G)
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Write 0 = 1 — i and consider o-sparse graphs

Best chromatic number bounds in o-sparse graphs?
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Given G and palette [M] = {1,...,M}:

1. independently assign a colour to each v uniformly from [M]

2. uncolour one or both endpoints of each monochromatic edge

3. complete partial proper colouring to full one

® Molloy & Reed (1997): uncolour both endpoints in 2
® Bruhn & Joos (2018): toss a coin to decide in 2
® Bonamy, Perrett, Postle (2018+): several iterations of 1 and 2

® Hurley, de Joannis de Verclos, Kang (2021):
random vertex ordering to decide in 2
allows better iteration of 1 and 2
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NAIVE INDEPENDENT SETS

Given A-regular graph, fix parameter v > 0

a. independently with probability X add each v to activated set A
b. assign each activated v a random priority 7(v) uniformly from [0, 1]

c. for every two adjacent activated vertices, remove the lower priority one:
I={veA| n(v) > n(u) for every u € N(v) N A}

Lemma
For v > 0, generating | as above from a o-sparse A-regular graph satisfies for
large enough A and ~, and for every v
1—e™” 2
_ < =
P(vel) A S A
P(N(v) N1 #0) o o2
—=t T {1l — 4 ‘
BNV = 2t T QQ@%



Theorem (Davies, Kang, Pirot, Sereni 2020+)
x(G) <

~ log =
&va and local density at most n), i <nk1

for any G of maximum degree A

Theorem (Hurley, de Joannis de Verclos, Kang 2021)

x(G) <(1-0.50+ 0.166703/2)A for any o-sparse G of maximum degree A
provided A is large enough
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