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Main themes



Vizing’s problem

Vizing, “Some unsolved problems in graph theory” (1968):
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Local to global

Asymptotically, what global graph structure
if no edge is induced in any neighbourhood?

Distinguished origins:

• Mantel (1907), Turán (1941)

• Ramsey (1930), Erdős & Szekeres (1935)

• Zykov (1949), Ungar & Descartes (1954), Mycielski (1955), Erdős (1959)

Elegant, modern challenges!
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Sequence of structure

ω(G)

≤ max
∅̸=H⊆G

|H|
α(H)

≤ χf (G) ≤ χ(G) ≤ ch(G) ≤ ∆(G) + 1

In general, each inequality can be strict†

†

On strictness of the second, see Blumenthal, Lidický, Martin, Norin, Pfender, Volec (2018+),
and Dvǒrák, Ossona de Mendez, Wu (2020); nice open question in the triangle-free case.
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∅≠H⊆G

|H|
α(H)

≤ χf (G) ≤ χ(G) ≤ ch(G) ≤ ∆(G) + 1

In general, each inequality can be strict†

†

On strictness of the second, see Blumenthal, Lidický, Martin, Norin, Pfender, Volec (2018+),
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∅≠H⊆G

|H|
α(H)

≤ χf (G) ≤ χ(G) ≤ ch(G) ≤ ∆(G) + 1

In general, each inequality can be strict†

†On strictness of the second, see Blumenthal, Lidický, Martin, Norin, Pfender, Volec (2018+),
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Probabilistic method

If random object has property with positive probability,
then there exists at least one object with that property



Semi-random method (or Rödl nibble)

Iterated application of probabilistic method to create structured object
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Triangle-free graphs



Off-diagonal Ramsey numbers‡

‡Picture credit: Soifer 2009



Off-diagonal Ramsey numbers

∗

i.e. Independence number of triangle-free graphs

R(3, k) : largest n such that there is red/blue-edge-coloured Kn−1

with no red triangle and no blue Kk

R(3, k) : minimum order of triangle-free G that guarantees α(G) ≥ k

Theorem (Shearer 1983, cf. Ajtai, Komlós, Szemerédi 1980/1)

R(3, k) ≲
k2

log k

α(G) ≳
n log∆

∆
for any n-vertex triangle-free G of maximum degree ∆

Theorem (Bohman & Keevash 2021, Fiz Pontiveros, Griffiths, Morris
2020, cf. Kim 1995)

R(3, k) ≳
k2

4 log k
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Off-diagonal Ramsey numbers∗

i.e.

Independence number of triangle-free graphs

R(3, k) : largest n such that there is red/blue-edge-coloured Kn−1

with no red triangle and no blue Kk

R(3, k) : minimum size of triangle-free G guaranteeing α(G) ≥ k

Theorem (Shearer 1983, cf. Ajtai, Komlós, Szemerédi 1980/1)

R(3, k) ≲
k2

log k

α(G) ≳
n log∆

∆
for any n-vertex triangle-free G of maximum degree ∆

Theorem (Bollobás 1981)

max
∅̸=H⊆G

|H|
α(H)

≥ ∆

2 log∆
and G has arbitrarily large girth whp for G ∼ Gn,∆
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Chromatic number of triangle-free graphs,

a Ramsey-type problem?

Perhaps one should start with estimates of the chromatic number of a graph without

triangles (ω = 2) and with given maximal degree for vertices. (Vizing 1968)

ω(G) ≤ max
∅̸=H⊆G

|H|
α(H)

≤ χf (G) ≤ χ(G) ≤ ch(G) ≤ ∆(G) + 1

Theorem (Shearer 1983, cf. Ajtai, Komlós, Szemerédi 1980/1)

max
∅̸=H⊆G

|H|
α(H)

≲
∆

log∆
for any triangle-free G of maximum degree ∆

Theorem (Davies, de Joannis de Verclos, Kang, Pirot 2021)

χf (G) ≲
∆

log∆
for any triangle-free G of maximum degree ∆ ;

Theorem (

Molloy 2019, cf.

Johansson 1996+)

ch(G) = O

(
∆

log∆

)
for any triangle-free G of maximum degree ∆

(
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∅≠H⊆G

|H|
α(H)

≤ χf (G) ≤ χ(G) ≤ ch(G) ≤ ∆(G) + 1

Theorem (Shearer 1983, cf. Ajtai, Komlós, Szemerédi 1980/1)
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Two more Ramsey-type problems



ω, ∆, χ conjecture

ω(G) ≤ max
∅≠H⊆G

|H|
α(H)

≤ χf (G) ≤χ(G)≤ ch(G) ≤ ∆(G) + 1

Conjecture (Reed 1998)

χ(G) ≤
⌈
ω +∆+ 1

2

⌉
for any G of clique number ω and maximum degree ∆

Odd cycles have ω = 2, ∆ = 2, χ = 3

Chvátal graph (1970)§ has ω = 2, ∆ = 4, χ = 4

Bound holds for:

• ω = 2, ∆ large enough (Johansson 1996+)

(ω ≤ ∆1/100, ∆ large enough (Davies, Kang, Pirot, Sereni 2020+))

• for ω ≥ ∆− 1 (Brooks 1941)

§Picture credit: Wikipedia/David Eppstein
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Chvátal graph (1970)§ has ω = 2, ∆ = 4, χ = 4

Bound holds for:

• ω = 2, ∆ large enough (Johansson 1996+)
(ω ≤ ∆1/100, ∆ large enough (Davies, Kang, Pirot, Sereni 2020+))

• for ω ≥ ∆− 1 (Brooks 1941)

§Picture credit: Wikipedia/David Eppstein



ω, ∆, χ conjecture

Theorem (Reed 1998)

χ(G) ≤
⌈
ω +∆+ 1

2

⌉
for any G of clique number ω and maximum degree ∆

provided ω ≥ (1− ε1)∆ for some ε1 > 0 and ∆ is large enough

Corollary

χ(G) ≤ ⌈ε2ω + (1− ε2)(∆ + 1)⌉ for any G of clique number ω and maximum
degree ∆ for some ε2 > 0 provided ∆ is large enough

• Reed (1998): ε2 > 0.000000005

• Bonamy, Perrett, Postle (2018+): ε2 > 0.038

• Delcourt, Postle (2017+): ε2 > 0.076

• Hurley, de Joannis de Verclos, Kang (2021): ε2 > 0.119

NB: ε2 may not be larger than 0.5
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Strong edge-colouring

two edges “close”: incident or connected by an edge
induced matching: edge subset with no two edges close

strong edge-colouring of G : partition of the edges into induced matchings
strong chromatic index χ(L(G)2) of G : least number of parts needed

Conjecture (Erdős & Nešeťril 1985)

χ(L(G)2) ≤ 5

4
∆2 for any G of maximum degree ∆

So far only confirmed for ∆ ≤ 3
(Andersen 1992, Horák, He, Trotter 1993)
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Strong edge-colouring

χ(L(G)2) < 2∆2 since ∆(L(G)2) ≤ 2∆(∆− 1) trivially

Theorem (Molloy & Reed 1997)

χ(L(G)2) ≤ (2− ε3)∆
2 for any G of maximum degree ∆ for some ε3 > 0

provided ∆ is large enough

Corollary

χ(L(G)2) ≤ (2− ε4)∆
2 for any G of maximum degree ∆ for some ε4 > 0

• Molloy & Reed (1997): ε3 > 0.001

• Bruhn & Joos (2018): ε3 > 0.070

• Bonamy, Perrett, Postle (2018+): ε3 > 0.165

• Hurley, de Joannis de Verclos, Kang (2021): ε3 > 0.228

NB: ε3(≥ ε4) may not be larger than 0.75



Strong edge-colouring

χ(L(G)2) < 2∆2 since ∆(L(G)2) ≤ 2∆(∆− 1) trivially

Theorem (Molloy & Reed 1997)

χ(L(G)2) ≤ (2− ε3)∆
2 for any G of maximum degree ∆ for some ε3 > 0

provided ∆ is large enough

Corollary

χ(L(G)2) ≤ (2− ε4)∆
2 for any G of maximum degree ∆ for some ε4 > 0

• Molloy & Reed (1997): ε3 > 0.001

• Bruhn & Joos (2018): ε3 > 0.070

• Bonamy, Perrett, Postle (2018+): ε3 > 0.165

• Hurley, de Joannis de Verclos, Kang (2021): ε3 > 0.228

NB: ε3(≥ ε4) may not be larger than 0.75



Strong edge-colouring

χ(L(G)2) < 2∆2 since ∆(L(G)2) ≤ 2∆(∆− 1) trivially

Theorem (Molloy & Reed 1997)

χ(L(G)2) ≤ (2− ε3)∆
2 for any G of maximum degree ∆ for some ε3 > 0

provided ∆ is large enough

Corollary

χ(L(G)2) ≤ (2− ε4)∆
2 for any G of maximum degree ∆ for some ε4 > 0

• Molloy & Reed (1997): ε3 > 0.001

• Bruhn & Joos (2018): ε3 > 0.070

• Bonamy, Perrett, Postle (2018+): ε3 > 0.165

• Hurley, de Joannis de Verclos, Kang (2021): ε3 > 0.228

NB: ε3(≥ ε4) may not be larger than 0.75



Strong edge-colouring

χ(L(G)2) < 2∆2 since ∆(L(G)2) ≤ 2∆(∆− 1) trivially

Theorem (Molloy & Reed 1997)

χ(L(G)2) ≤ (2− ε3)∆
2 for any G of maximum degree ∆ for some ε3 > 0

provided ∆ is large enough

Corollary

χ(L(G)2) ≤ (2− ε4)∆
2 for any G of maximum degree ∆ for some ε4 > 0

• Molloy & Reed (1997): ε3 > 0.001

• Bruhn & Joos (2018): ε3 > 0.070

• Bonamy, Perrett, Postle (2018+): ε3 > 0.165

• Hurley, de Joannis de Verclos, Kang (2021): ε3 > 0.228

NB: ε3(≥ ε4) may not be larger than 0.75



Strong edge-colouring

χ(L(G)2) < 2∆2 since ∆(L(G)2) ≤ 2∆(∆− 1) trivially

Theorem (Molloy & Reed 1997)

χ(L(G)2) ≤ (2− ε3)∆
2 for any G of maximum degree ∆ for some ε3 > 0

provided ∆ is large enough

Corollary

χ(L(G)2) ≤ (2− ε4)∆
2 for any G of maximum degree ∆ for some ε4 > 0

• Molloy & Reed (1997): ε3 > 0.001

• Bruhn & Joos (2018): ε3 > 0.070

• Bonamy, Perrett, Postle (2018+): ε3 > 0.165

• Hurley, de Joannis de Verclos, Kang (2021): ε3 > 0.228

NB: ε3(≥ ε4) may not be larger than 0.75



Strong edge-colouring

χ(L(G)2) < 2∆2 since ∆(L(G)2) ≤ 2∆(∆− 1) trivially

Theorem (Molloy & Reed 1997)

χ(L(G)2) ≤ (2− ε3)∆
2 for any G of maximum degree ∆ for some ε3 > 0

provided ∆ is large enough

Corollary

χ(L(G)2) ≤ (2− ε4)∆
2 for any G of maximum degree ∆ for some ε4 > 0

• Molloy & Reed (1997): ε3 > 0.001

• Bruhn & Joos (2018): ε3 > 0.070

• Bonamy, Perrett, Postle (2018+): ε3 > 0.165

• Hurley, de Joannis de Verclos, Kang (2021): ε3 > 0.228

NB: ε3(≥ ε4) may not be larger than 0.75



Strong edge-colouring

χ(L(G)2) < 2∆2 since ∆(L(G)2) ≤ 2∆(∆− 1) trivially

Theorem (Molloy & Reed 1997)

χ(L(G)2) ≤ (2− ε3)∆
2 for any G of maximum degree ∆ for some ε3 > 0

provided ∆ is large enough

Corollary

χ(L(G)2) ≤ (2− ε4)∆
2 for any G of maximum degree ∆ for some ε4 > 0

• Molloy & Reed (1997): ε3 > 0.001

• Bruhn & Joos (2018): ε3 > 0.070

• Bonamy, Perrett, Postle (2018+): ε3 > 0.165

• Hurley, de Joannis de Verclos, Kang (2021): ε3 > 0.228

NB: ε3(≥ ε4) may not be larger than 0.75



Strong edge-colouring

χ(L(G)2) < 2∆2 since ∆(L(G)2) ≤ 2∆(∆− 1) trivially

Theorem (Molloy & Reed 1997)

χ(L(G)2) ≤ (2− ε3)∆
2 for any G of maximum degree ∆ for some ε3 > 0

provided ∆ is large enough

Corollary

χ(L(G)2) ≤ (2− ε4)∆
2 for any G of maximum degree ∆ for some ε4 > 0

• Molloy & Reed (1997): ε3 > 0.001

• Bruhn & Joos (2018): ε3 > 0.070

• Bonamy, Perrett, Postle (2018+): ε3 > 0.165

• Hurley, de Joannis de Verclos, Kang (2021): ε3 > 0.228

NB: ε3(≥ ε4) may not be larger than 0.75



Locally sparse graphs



Locally sparse graphs

no edge is induced in any neighbourhood

⇐⇒ triangle-free

↓
at most a certain number of edges are induced in any neighbourhood

G of maximum degree ∆
has local density at most η or, alternatively, is (locally) (1− η)-sparse

if ≤ η
(
∆
2

)
edges per neighbourhood

η < 1/
(
∆
2

)
corresponds to triangle-free, η = 1 corresponds to general case
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Chromatic number of locally sparse graphs

Best chromatic number bounds in graphs of local density at most η?

Theorem (Alon, Krivelevich, Sudakov 1999, cf. Vu 2002, Achlioptas,
Iliopoulos, Sinclair 2019)

χ(G) = O

(
∆

log e√
η

)
for any G of maximum degree ∆

and local density at most η, 1
∆2 ≤ η ≤ 1

Theorem (Davies, Kang, Pirot, Sereni 2020+, cf. Davies, de Joannis de
Verclos, Kang, Pirot 2021)

χ(G) ≲
∆

log e√
η

for any G of maximum degree ∆

and local density at most η, 1
∆2 ≤ η ≪ 1

η = 1
∆2 matches Molloy’s; the bound is sharp up to a factor of between 2 and 4

NB: Shearer (1983) established the analogous bound for α(G)
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Chromatic number of
graphs of bounded local density

Write σ = 1− η and consider σ-sparse graphs

Best chromatic number bounds in σ-sparse graphs?

Results so far concern σ → 1.

What if σ bounded below 1? What if σ → 0?

Nontrivial improvement on χ(G) ≤ ∆(G) + 1? Yes (asymptotically):

Theorem (Molloy & Reed 1997)

χ(G) ≤ (1− ε)∆ for any σ-sparse G of maximum degree ∆ for some ε(σ) > 0
provided ∆ is large enough

Improved lower bounds on ε yield improvements for Reed’s and Erdős-Nešeťril
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Chromatic number of
graphs of bounded local density

G of maximum degree ∆ is σ-sparse if ≤ (1− σ)
(
∆
2

)
edges per neighbourhood

Theorem (Molloy & Reed 1997)

χ(G) ≤ (1− ε)∆ for any σ-sparse G of maximum degree ∆ for some ε(σ) > 0
provided ∆ is large enough

• Molloy & Reed (1997): ε > 0.0238σ

• Bruhn & Joos (2018): ε > 0.1827σ − 0.0778σ3/2

• Bonamy, Perrett, Postle (2018+): ε > 0.3012σ − 0.1283σ3/2

• Hurley, de Joannis de Verclos, Kang (2021): ε > 0.5σ − 0.1667σ3/2

Clique of size
√
1− σ ·∆ (+ pendant vertices) =⇒ ε ≤ 1−

√
1− σ ∼

σ→0
0.5σ
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Näıve colouring

Given G and palette [M] = {1, . . . ,M}:

1. independently assign a colour to each v uniformly from [M]

2. uncolour one or both endpoints of each monochromatic edge

3. complete partial proper colouring to full one

• Molloy & Reed (1997): uncolour both endpoints in 2

• Bruhn & Joos (2018): toss a coin to decide in 2

• Bonamy, Perrett, Postle (2018+): several iterations of 1 and 2

• Hurley, de Joannis de Verclos, Kang (2021):
random vertex ordering to decide in 2

allows better iteration of 1 and 2
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random vertex ordering to decide in 2

allows better iteration of 1 and 2
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Näıve colouring

Given G and palette [M] = {1, . . . ,M}:

1. independently assign a colour to each v uniformly from [M]

2. uncolour one or both endpoints of each monochromatic edge

3. complete partial proper colouring to full one

• Molloy & Reed (1997): uncolour both endpoints in 2

• Bruhn & Joos (2018): toss a coin to decide in 2

• Bonamy, Perrett, Postle (2018+): several iterations of 1 and 2

• Hurley, de Joannis de Verclos, Kang (2021):
random vertex ordering to decide in 2

allows better iteration of 1 and 2



Näıve independent sets

Given ∆-regular graph, fix parameter γ > 0

a. independently with probability γ
∆

add each v to activated set A

b. assign each activated v a random priority π(v) uniformly from [0, 1]

c. for every two adjacent activated vertices, remove the lower priority one:

I = {v ∈ A | π(v) > π(u) for every u ∈ N(v) ∩ A}

Lemma
For ι > 0, generating I as above from a σ-sparse ∆-regular graph satisfies for
large enough ∆ and γ, and for every v∣∣∣∣P(v ∈ I )− 1− e−γ

∆

∣∣∣∣ ≤ 2

∆2
,

P(N(v) ∩ I ̸= ∅)
E|N(v) ∩ I | ≤ 1− σ

2
+

σ3/2

6
+ ι
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Näıve independent sets

Given ∆-regular graph, fix parameter γ > 0

a. independently with probability γ
∆

add each v to activated set A
b. assign each activated v a random priority π(v) uniformly from [0, 1]

c. for every two adjacent activated vertices, remove the lower priority one:

I = {v ∈ A | π(v) > π(u) for every u ∈ N(v) ∩ A}

Lemma
For ι > 0, generating I as above from a σ-sparse ∆-regular graph satisfies for
large enough ∆ and γ, and for every v∣∣∣∣P(v ∈ I )− 1− e−γ

∆

∣∣∣∣ ≤ 2

∆2
,

P(N(v) ∩ I ̸= ∅)
E|N(v) ∩ I | ≤ 1− σ

2
+

σ3/2

6
+ ι
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Theorem (Davies, Kang, Pirot, Sereni 2020+)

χ(G) ≲
∆

log e√
η

for any G of maximum degree ∆

and local density at most η, 1
∆2 ≤ η ≪ 1

Theorem (Hurley, de Joannis de Verclos, Kang 2021)

χ(G) ≤ (1− 0.5σ + 0.1667σ3/2)∆ for any σ-sparse G of maximum degree ∆
provided ∆ is large enough



Questions?

Questions?



Questions?

Questions?


