COLOURING GRAPHS OF BOUNDED LOCAL DENSITY

Ross J. Kang*

Radboud University Nijmegen

SCMS Combinatorics Seminar Shanghai (via zoom) 29/11/2021

^{*}With Davies, Hurley, de Joannis de Verclos, Pirot, Sereni. Support from NWO.

VIZING'S PROBLEM

Vizing, "Some unsolved problems in graph theory" (1968):

Можно ли для любого наперед заданного натурального числа $k \ge 2$ построить граф со сколь угодно большим обхватом и с хроматическим числом k? Можно. Это доказал П. Эрдёш [39], основываясь на мощностных соображениях. Удивительно, что до сих пор нет конструктивного доказательства этого факта. В [40] указан способ построения графов с любым хроматическим числом без циклов длины $\leqslant 7$. Это лучшее, что мы имеем на сегодняшний день.

Если $\sigma(L)$ — максимальная степень вершины графа L, то, очевидно, $\gamma(L) \leqslant \sigma(L) + 1$. В 1941 г. Р. Брукс [41] доказал, что при $\sigma(L) \geqslant 3$ и $\omega(L) \leqslant \sigma(L)$ справедлива оценка $\gamma(L) \leqslant \sigma(L)$. Дальнейшие исследования можно проводить, учитывая более точно соотношения между σ и ω . Пожалуй, следует начать с оценки хроматического числа графа без треугольников ($\omega = 2$) с данной максимальной степенью вершины.

VIZING'S PROBLEM

Vizing, "Some unsolved problems in graph theory" (1968):

Given a natural number $k \ge 2$, is it possible to construct a graph with arbitrarily large compass and with chromatic number k? Erdős [39] has oroved this; his proof is based on counting arguments. It is astonishing that no constructive proof for this fact has yet been given. In [40] a method is given of constructing graphs of arbitrary chromatic number without having cycles of length < 7. This is the best we have at the present time.

If $\sigma(L)$ is the maximum degree of a vertex in a graph L, it is clear that $\gamma(L) < \sigma(L) + 1$. Brooks [41] showed in 1941 that $\gamma(L) \leq \sigma(L)$ whenever $\sigma(L) > 3$ and $\omega(L) < \sigma(L)$. Further investigations could be conducted, taking into account a more exact relation between σ and ω . Perhaps one should start with estimates of the chromatic number of a graph without triangles ($\omega = 2$) and with given maximal degree for vertices.

LOCAL TO GLOBAL

Asymptotically, what global graph structure if no edge is induced in any neighbourhood?

LOCAL TO GLOBAL

Asymptotically, what global graph structure if no edge is induced in any neighbourhood?

Distinguished origins:

- Mantel (1907), Turán (1941)
- Ramsey (1930), Erdős & Szekeres (1935)
- Zykov (1949), Ungar & Descartes (1954), Mycielski (1955), Erdős (1959)

LOCAL TO GLOBAL

Asymptotically, what global graph structure if no edge is induced in any neighbourhood?

Distinguished origins:

- Mantel (1907), Turán (1941)
- Ramsey (1930), Erdős & Szekeres (1935)
- Zykov (1949), Ungar & Descartes (1954), Mycielski (1955), Erdős (1959)

Elegant, modern challenges!

 $\omega(G)$

$$\omega(G) \leq \max_{\emptyset \neq H \subseteq G} \frac{|H|}{\alpha(H)}$$

$$\omega(G) \leq \max_{\emptyset \neq H \subseteq G} \frac{|H|}{\alpha(H)} \leq \chi_f(G)$$

$$\omega(G) \leq \max_{\emptyset \neq H \subseteq G} \frac{|H|}{\alpha(H)} \leq \chi_f(G) \leq \chi(G) \leq ch(G)$$

$$\omega(G) \leq \max_{\emptyset \neq H \subseteq G} \frac{|H|}{\alpha(H)} \leq \chi_f(G) \leq \chi(G) \leq \mathsf{ch}(G) \leq \Delta(G) + 1$$

$$\omega(G) \leq \max_{\emptyset \neq H \subseteq G} \frac{|H|}{\alpha(H)} \leq \chi_f(G) \leq \chi(G) \leq \mathsf{ch}(G) \leq \Delta(G) + 1$$

In general, each inequality can be strict[†]

[†]On strictness of the second, see Blumenthal, Lidický, Martin, Norin, Pfender, Volec (2018+), and Dvořák, Ossona de Mendez, Wu (2020); nice open question in the triangle-free case.

PROBABILISTIC METHOD

If random object has property with positive probability, then there exists *at least one* object with that property

TRIANGLE-FREE GRAPHS

Off-diagonal Ramsey $\operatorname{numbers}^{\ddagger}$

[‡]Picture credit: Soifer 2009

Off-diagonal Ramsey numbers

R(3, k): largest *n* such that there is red/blue-edge-coloured K_{n-1} with no red triangle and no blue K_k

- R(3, k): largest *n* such that there is red/blue-edge-coloured K_{n-1} with no red triangle and no blue K_k
- R(3, k): minimum order of triangle-free G that guarantees $\alpha(G) \ge k$

R(3, k): largest *n* such that there is red/blue-edge-coloured K_{n-1} with no red triangle and no blue K_k

R(3, k): minimum order of triangle-free G that guarantees $\alpha(G) \ge k$

Theorem (Shearer 1983, cf. Ajtai, Komlós, Szemerédi 1980/1)

$$R(3,k) \lesssim \frac{k^2}{\log k}$$

R(3, k): largest *n* such that there is red/blue-edge-coloured K_{n-1} with no red triangle and no blue K_k

R(3, k): minimum order of triangle-free G that guarantees $\alpha(G) \ge k$

Theorem (Shearer 1983, cf. Ajtai, Komlós, Szemerédi 1980/1)

$$R(3,k) \lesssim \frac{k^2}{\log k}$$

Theorem (Bohman & Keevash 2021, Fiz Pontiveros, Griffiths, Morris 2020, cf. Kim 1995)

$$R(3,k) \gtrsim rac{k^2}{4\log k}$$

R(3, k): largest *n* such that there is red/blue-edge-coloured K_{n-1} with no red triangle and no blue K_k

R(3, k): minimum order of triangle-free G that guarantees $\alpha(G) \ge k$

Theorem (Shearer 1983, cf. Ajtai, Komlós, Szemerédi 1980/1)

$$R(3,k) \lesssim rac{k^2}{\log k}$$

 $\alpha(G)\gtrsim \frac{n\log\Delta}{\Delta} \ \text{for any n-vertex triangle-free } G \ \text{of maximum degree } \Delta$

Theorem (Bohman & Keevash 2021, Fiz Pontiveros, Griffiths, Morris 2020, cf. Kim 1995)

$$R(3,k)\gtrsim \frac{k^2}{4\log k}$$

INDEPENDENCE NUMBER OF TRIANGLE-FREE GRAPHS

Theorem (Shearer 1983, cf. Ajtai, Komlós, Szemerédi 1980/1)

$$lpha({\sf G})\gtrsim rac{n\log\Delta}{\Delta}$$
 for any n-vertex triangle-free G of maximum degree Δ

INDEPENDENCE NUMBER OF TRIANGLE-FREE GRAPHS

Theorem (Shearer 1983, cf. Ajtai, Komlós, Szemerédi 1980/1)

$$\max_{\emptyset \neq H \subseteq G} \frac{|H|}{\alpha(H)} \lesssim \frac{\Delta}{\log \Delta} \text{ for any triangle-free } G \text{ of maximum degree } \Delta$$

INDEPENDENCE NUMBER OF TRIANGLE-FREE GRAPHS

Theorem (Shearer 1983, cf. Ajtai, Komlós, Szemerédi 1980/1)

$$\max_{\emptyset
eq H\subseteq G} rac{|H|}{lpha(H)} \lesssim rac{\Delta}{\log\Delta}$$
 for any triangle-free G of maximum degree Δ

Theorem (Bollobás 1981) $\max_{\emptyset \neq H \subseteq G} \frac{|H|}{\alpha(H)} \geq \frac{\Delta}{2 \log \Delta} \text{ and } G \text{ has arbitrarily large girth whp for } G \sim G_{n,\Delta}$

CHROMATIC NUMBER OF TRIANGLE-FREE GRAPHS,

Perhaps one should start with estimates of the chromatic number of a graph without triangles ($\omega = 2$) and with given maximal degree for vertices. (Vizing 1968)

CHROMATIC NUMBER OF TRIANGLE-FREE GRAPHS, A RAMSEY-TYPE PROBLEM?

Perhaps one should start with estimates of the chromatic number of a graph without triangles ($\omega = 2$) and with given maximal degree for vertices. (Vizing 1968)

$$\omega(G) \leq \max_{\emptyset \neq H \subseteq G} \frac{|H|}{\alpha(H)} \leq \chi_f(G) \leq \chi(G) \leq \mathsf{ch}(G) \leq \Delta(G) + 1$$

Theorem (Shearer 1983, cf. Ajtai, Komlós, Szemerédi 1980/1) $\max_{\emptyset \neq H \subseteq G} \frac{|H|}{\alpha(H)} \lesssim \frac{\Delta}{\log \Delta} \text{ for any triangle-free } G \text{ of maximum degree } \Delta$

CHROMATIC NUMBER OF TRIANGLE-FREE GRAPHS, A RAMSEY-TYPE PROBLEM

Perhaps one should start with estimates of the chromatic number of a graph without triangles ($\omega = 2$) and with given maximal degree for vertices. (Vizing 1968)

$$\omega(G) \leq \max_{\emptyset \neq H \subseteq G} \frac{|H|}{\alpha(H)} \leq \chi_f(G) \leq \chi(G) \leq ch(G) \leq \Delta(G) + 1$$

Theorem (Shearer 1983, cf. Ajtai, Komlós, Szemerédi 1980/1) $\max_{\emptyset \neq H \subseteq G} \frac{|H|}{\alpha(H)} \lesssim \frac{\Delta}{\log \Delta} \text{ for any triangle-free } G \text{ of maximum degree } \Delta$

 $\begin{array}{ll} \mbox{Theorem (} & \mbox{Johansson 1996+)} \\ \mbox{ch}(G) = O\left(\frac{\Delta}{\log\Delta}\right) \mbox{ for any triangle-free G of maximum degree Δ} \end{array}$

CHROMATIC NUMBER OF TRIANGLE-FREE GRAPHS, A RAMSEY-TYPE PROBLEM

Perhaps one should start with estimates of the chromatic number of a graph without triangles ($\omega = 2$) and with given maximal degree for vertices. (Vizing 1968)

$$\omega(G) \leq \max_{\emptyset \neq H \subseteq G} \frac{|H|}{\alpha(H)} \leq \chi_f(G) \leq \chi(G) \leq ch(G) \leq \Delta(G) + 1$$

Theorem (Shearer 1983, cf. Ajtai, Komlós, Szemerédi 1980/1) $\max_{\emptyset \neq H \subseteq G} \frac{|H|}{\alpha(H)} \lesssim \frac{\Delta}{\log \Delta} \text{ for any triangle-free } G \text{ of maximum degree } \Delta$

Theorem (Molloy 2019, cf. Johansson 1996+) $ch(G) \lesssim \frac{\Delta}{\log \Delta}$ for any triangle-free G of maximum degree Δ

CHROMATIC NUMBER OF TRIANGLE-FREE GRAPHS, A RAMSEY-TYPE PROBLEM

Perhaps one should start with estimates of the chromatic number of a graph without triangles ($\omega = 2$) and with given maximal degree for vertices. (Vizing 1968)

$$\omega(G) \leq \max_{\emptyset \neq H \subseteq G} \frac{|H|}{\alpha(H)} \leq \chi_f(G) \leq \chi(G) \leq ch(G) \leq \Delta(G) + 1$$

Theorem (Shearer 1983, cf. Ajtai, Komlós, Szemerédi 1980/1) $\max_{\emptyset \neq H \subseteq G} \frac{|H|}{\alpha(H)} \lesssim \frac{\Delta}{\log \Delta} \text{ for any triangle-free } G \text{ of maximum degree } \Delta$

Theorem (Davies, de Joannis de Verclos, Kang, Pirot 2021) $\chi_f(G) \lesssim \frac{\Delta}{\log \Delta}$ for any triangle-free G of maximum degree $\Delta \rightsquigarrow$

 $\begin{array}{l} \mbox{Theorem (Molloy 2019, cf. Johansson 1996+)} \\ \mbox{ch}(G) \lesssim \frac{\Delta}{\log \Delta} \mbox{ for any triangle-free } G \mbox{ of maximum degree } \Delta \end{array}$
Two more Ramsey-type problems

$$\omega(G) \leq \max_{\substack{0 \neq H \subseteq G}} \frac{|H|}{\alpha(H)} \leq \chi_f(G) \leq \chi(G) \leq ch(G) \leq \Delta(G) + 1$$

[§]Picture credit: Wikipedia/David Eppstein

$$\omega(G) \leq \max_{\emptyset \neq H \subseteq G} \frac{|H|}{\alpha(H)} \leq \chi_f(G) \leq \chi(G) \leq ch(G) \leq \Delta(G) + 1$$

Conjecture (Reed 1998) $\chi(G) \leq \left\lceil \frac{\omega + \Delta + 1}{2} \right\rceil$ for any G of clique number ω and maximum degree Δ

[§]Picture credit: Wikipedia/David Eppstein

$$\omega(G) \leq \max_{\substack{\emptyset \neq H \subseteq G}} \frac{|H|}{\alpha(H)} \leq \chi_f(G) \leq \chi(G) \leq ch(G) \leq \Delta(G) + 1$$

Conjecture (Reed 1998) $\chi(G) \leq \left\lceil \frac{\omega + \Delta + 1}{2} \right\rceil$ for any G of clique number ω and maximum degree Δ

Odd cycles have $\omega =$ 2, $\Delta =$ 2, $\chi =$ 3

[§]Picture credit: Wikipedia/David Eppstein

$$\omega(G) \leq \max_{\substack{\emptyset \neq H \subseteq G}} \frac{|H|}{\alpha(H)} \leq \chi_f(G) \leq \chi(G) \leq ch(G) \leq \Delta(G) + 1$$

Conjecture (Reed 1998) $\chi(G) \leq \left\lceil \frac{\omega + \Delta + 1}{2} \right\rceil$ for any G of clique number ω and maximum degree Δ

Odd cycles have $\omega = 2$, $\Delta = 2$, $\chi = 3$ Chvátal graph (1970)[§] has $\omega = 2$, $\Delta = 4$, $\chi = 4$

[§]Picture credit: Wikipedia/David Eppstein

$$\omega(G) \leq \max_{\substack{\emptyset \neq H \subseteq G}} \frac{|H|}{\alpha(H)} \leq \chi_f(G) \leq \chi(G) \leq ch(G) \leq \Delta(G) + 1$$

Conjecture (Reed 1998) $\chi(G) \leq \left\lceil \frac{\omega + \Delta + 1}{2} \right\rceil$ for any G of clique number ω and maximum degree Δ

Odd cycles have $\omega = 2$, $\Delta = 2$, $\chi = 3$ Chvátal graph (1970)[§] has $\omega = 2$, $\Delta = 4$, $\chi = 4$ Bound holds for:

- $\omega = 2$, Δ large enough (Johansson 1996+)
- for $\omega \geq \Delta 1$ (Brooks 1941)

[§]Picture credit: Wikipedia/David Eppstein

$$\omega(G) \leq \max_{\substack{\emptyset \neq H \subseteq G}} \frac{|H|}{\alpha(H)} \leq \chi_f(G) \leq \chi(G) \leq ch(G) \leq \Delta(G) + 1$$

 $\begin{array}{l} \text{Conjecture (Reed 1998)} \\ \chi(G) \leq \left\lceil \frac{\omega + \Delta + 1}{2} \right\rceil \text{ for any } G \text{ of clique number } \omega \text{ and maximum degree } \Delta \end{array}$

Odd cycles have $\omega = 2$, $\Delta = 2$, $\chi = 3$

Chvátal graph (1970)§ has $\omega=$ 2, $\Delta=$ 4, $\chi=$ 4

Bound holds for:

- $\omega = 2$, Δ large enough (Johansson 1996+) ($\omega \leq \Delta^{1/100}$, Δ large enough (Davies, Kang, Pirot, Sereni 2020+))
- for $\omega \geq \Delta 1$ (Brooks 1941)

[§]Picture credit: Wikipedia/David Eppstein

Corollary

 $\chi(G) \leq [\varepsilon_2 \omega + (1 - \varepsilon_2)(\Delta + 1)]$ for any G of clique number ω and maximum degree Δ for some $\varepsilon_2 > 0$ provided Δ is large enough

Corollary

 $\chi(G) \leq \lceil \varepsilon_2 \omega + (1 - \varepsilon_2)(\Delta + 1) \rceil$ for any G of clique number ω and maximum degree Δ for some $\varepsilon_2 > 0$ provided Δ is large enough

• Reed (1998): $\varepsilon_2 > 0.00000005$

Corollary

 $\chi(G) \leq \lceil \varepsilon_2 \omega + (1 - \varepsilon_2)(\Delta + 1) \rceil$ for any G of clique number ω and maximum degree Δ for some $\varepsilon_2 > 0$ provided Δ is large enough

• Reed (1998): $\varepsilon_2 > 0.000000005$ • Bonamy, Perrett, Postle (2018+): $\varepsilon_2 > 0.038$

Corollary

 $\chi(G) \leq \lceil \varepsilon_2 \omega + (1 - \varepsilon_2)(\Delta + 1) \rceil$ for any G of clique number ω and maximum degree Δ for some $\varepsilon_2 > 0$ provided Δ is large enough

 • Reed (1998):
 $\varepsilon_2 > 0.000000005$

 • Bonamy, Perrett, Postle (2018+):
 $\varepsilon_2 > 0.038$

 • Delcourt, Postle (2017+):
 $\varepsilon_2 > 0.076$

Corollary

 $\chi(G) \leq \lceil \varepsilon_2 \omega + (1 - \varepsilon_2)(\Delta + 1) \rceil$ for any G of clique number ω and maximum degree Δ for some $\varepsilon_2 > 0$ provided Δ is large enough

- Reed (1998):
 $\varepsilon_2 > 0.000000005$

 Bonamy, Perrett, Postle (2018+):
 $\varepsilon_2 > 0.038$

 Delcourt, Postle (2017+):
 $\varepsilon_2 > 0.076$
- Hurley, de Joannis de Verclos, Kang (2021): $arepsilon_2 > 0.119$

Corollary

 $\chi(G) \leq \lceil \varepsilon_2 \omega + (1 - \varepsilon_2)(\Delta + 1) \rceil$ for any G of clique number ω and maximum degree Δ for some $\varepsilon_2 > 0$ provided Δ is large enough

- - Hurley, de Joannis de Verclos, Kang (2021): $arepsilon_2 > 0.119$

NB: ε_2 may not be larger than 0.5

two edges "close": incident or connected by an edge induced matching: edge subset with no two edges close

strong edge-colouring of G: partition of the edges into induced matchings strong chromatic index $\chi(L(G)^2)$ of G: least number of parts needed

strong edge-colouring of G: partition of the edges into induced matchings strong chromatic index $\chi(L(G)^2)$ of G: least number of parts needed

strong edge-colouring of G: partition of the edges into induced matchings strong chromatic index $\chi(L(G)^2)$ of G: least number of parts needed

 $\begin{array}{l} \mbox{Conjecture (Erdős & Nešetřil 1985)} \\ \chi(L(G)^2) \leq \frac{5}{4} \Delta^2 \mbox{ for any } G \mbox{ of maximum degree } \Delta \end{array}$

strong edge-colouring of G: partition of the edges into induced matchings strong chromatic index $\chi(L(G)^2)$ of G: least number of parts needed

Conjecture (Erdős & Nešetřil 1985) $\chi(L(G)^2) \leq \frac{5}{4}\Delta^2$ for any G of maximum degree Δ

So far only confirmed for $\Delta \leq 3$ (Andersen 1992, Horák, He, Trotter 1993)

 $\chi(L(G)^2) < 2\Delta^2$ since $\Delta(L(G)^2) \le 2\Delta(\Delta-1)$ trivially

 $\chi(L(G)^2) < 2\Delta^2$ since $\Delta(L(G)^2) \le 2\Delta(\Delta-1)$ trivially

Theorem (Molloy & Reed 1997) $\chi(L(G)^2) \leq (2 - \varepsilon_3)\Delta^2$ for any G of maximum degree Δ for some $\varepsilon_3 > 0$ provided Δ is large enough

$$\chi(\mathcal{L}(\mathcal{G})^2) < 2\Delta^2$$
 since $\Delta(\mathcal{L}(\mathcal{G})^2) \leq 2\Delta(\Delta-1)$ trivially

Theorem (Molloy & Reed 1997) $\chi(L(G)^2) \leq (2 - \varepsilon_3)\Delta^2$ for any G of maximum degree Δ for some $\varepsilon_3 > 0$ provided Δ is large enough

Corollary $\chi(L(G)^2) \leq (2 - \varepsilon_4)\Delta^2$ for any G of maximum degree Δ for some $\varepsilon_4 > 0$

$$\chi(\mathcal{L}(\mathcal{G})^2) < 2\Delta^2$$
 since $\Delta(\mathcal{L}(\mathcal{G})^2) \leq 2\Delta(\Delta-1)$ trivially

Theorem (Molloy & Reed 1997) $\chi(L(G)^2) \leq (2 - \varepsilon_3)\Delta^2$ for any G of maximum degree Δ for some $\varepsilon_3 > 0$ provided Δ is large enough

Corollary $\chi(L(G)^2) \leq (2 - \varepsilon_4)\Delta^2$ for any G of maximum degree Δ for some $\varepsilon_4 > 0$

• Molloy & Reed (1997): ${arepsilon_3} > 0.001$

$$\chi(\mathcal{L}(\mathcal{G})^2) < 2\Delta^2$$
 since $\Delta(\mathcal{L}(\mathcal{G})^2) \leq 2\Delta(\Delta-1)$ trivially

Theorem (Molloy & Reed 1997) $\chi(L(G)^2) \leq (2 - \varepsilon_3)\Delta^2$ for any G of maximum degree Δ for some $\varepsilon_3 > 0$ provided Δ is large enough

Corollary $\chi(L(G)^2) \leq (2 - \varepsilon_4)\Delta^2$ for any G of maximum degree Δ for some $\varepsilon_4 > 0$

• Molloy & Reed (1997): $\varepsilon_3 > 0.001$ • Bruhn & Joos (2018): $\varepsilon_3 > 0.070$

$$\chi(\mathcal{L}(\mathcal{G})^2) < 2\Delta^2$$
 since $\Delta(\mathcal{L}(\mathcal{G})^2) \leq 2\Delta(\Delta-1)$ trivially

Theorem (Molloy & Reed 1997) $\chi(L(G)^2) \leq (2 - \varepsilon_3)\Delta^2$ for any G of maximum degree Δ for some $\varepsilon_3 > 0$ provided Δ is large enough

Corollary

 $\chi(L(G)^2) \leq (2 - \varepsilon_4)\Delta^2$ for any G of maximum degree Δ for some $\varepsilon_4 > 0$

- Molloy & Reed (1997):
 $\varepsilon_3 > 0.001$

 Bruhn & Joos (2018):
 $\varepsilon_3 > 0.070$

 Down & Down (2010 + 1)
 $\varepsilon_3 > 0.165$
- Bonamy, Perrett, Postle (2018+): $arepsilon_3 > 0.165$

$$\chi(\mathcal{L}(\mathcal{G})^2) < 2\Delta^2$$
 since $\Delta(\mathcal{L}(\mathcal{G})^2) \leq 2\Delta(\Delta-1)$ trivially

Theorem (Molloy & Reed 1997) $\chi(L(G)^2) \leq (2 - \varepsilon_3)\Delta^2$ for any G of maximum degree Δ for some $\varepsilon_3 > 0$ provided Δ is large enough

Corollary

 $\chi(L(G)^2) \leq (2 - \varepsilon_4) \Delta^2$ for any G of maximum degree Δ for some $\varepsilon_4 > 0$

 • Molloy & Reed (1997):
 $\varepsilon_3 > 0.001$

 • Bruhn & Joos (2018):
 $\varepsilon_3 > 0.070$

 • Bonamy, Perrett, Postle (2018+):
 $\varepsilon_3 > 0.165$

 • Hurley, de Joannis de Verclos, Kang (2021):
 $\varepsilon_3 > 0.228$

$$\chi(\mathcal{L}(\mathcal{G})^2) < 2\Delta^2$$
 since $\Delta(\mathcal{L}(\mathcal{G})^2) \leq 2\Delta(\Delta-1)$ trivially

Theorem (Molloy & Reed 1997) $\chi(L(G)^2) \leq (2 - \varepsilon_3)\Delta^2$ for any G of maximum degree Δ for some $\varepsilon_3 > 0$ provided Δ is large enough

Corollary

 $\chi(L(G)^2) \leq (2 - \varepsilon_4) \Delta^2$ for any G of maximum degree Δ for some $\varepsilon_4 > 0$

NB: $\varepsilon_3 (\geq \varepsilon_4)$ may not be larger than 0.75

LOCALLY SPARSE GRAPHS

LOCALLY SPARSE GRAPHS

no edge is induced in any neighbourhood

LOCALLY SPARSE GRAPHS

no edge is induced in any neighbourhood \iff triangle-free

no edge is induced in any neighbourhood \iff triangle-free \downarrow

at most a certain number of edges are induced in any neighbourhood

no edge is induced in any neighbourhood \iff triangle-free

at most a certain number of edges are induced in any neighbourhood

G of maximum degree Δ has local density at most η or, alternatively, is (locally) $(1 - \eta)$ -sparse if $\leq \eta {\Delta \choose 2}$ edges per neighbourhood no edge is induced in any neighbourhood \iff triangle-free

at most a certain number of edges are induced in any neighbourhood

G of maximum degree Δ has local density at most η or, alternatively, is (locally) $(1 - \eta)$ -sparse if $\leq \eta {\Delta \choose 2}$ edges per neighbourhood

 $\eta < 1/{\Delta \choose 2}$ corresponds to triangle-free, $\eta = 1$ corresponds to general case

CHROMATIC NUMBER OF LOCALLY SPARSE GRAPHS

Best chromatic number bounds in graphs of local density at most η ?

CHROMATIC NUMBER OF LOCALLY SPARSE GRAPHS

Best chromatic number bounds in graphs of local density at most η ?

Theorem (Alon, Krivelevich, Sudakov 1999, cf. Vu 2002, Achlioptas, lliopoulos, Sinclair 2019)

 $\chi(G) = O\left(\frac{\Delta}{\log \frac{e}{\sqrt{\eta}}}\right) \text{ for any } G \text{ of maximum degree } \Delta$ and local density at most η , $\frac{1}{\Delta^2} \le \eta \le 1$ Best chromatic number bounds in graphs of local density at most η ?

Theorem (Alon, Krivelevich, Sudakov 1999, cf. Vu 2002, Achlioptas, lliopoulos, Sinclair 2019)

$$\chi(G) = O\left(\frac{\Delta}{\log \frac{e}{\sqrt{\eta}}}\right) \text{ for any } G \text{ of maximum degree } \Delta$$

and local density at most η , $\frac{1}{\Delta^2} \le \eta \le 1$

Theorem (Davies, Kang, Pirot, Sereni 2020+, cf. Davies, de Joannis de Verclos, Kang, Pirot 2021) $\chi(G) \lesssim \frac{\Delta}{\log \frac{e}{\sqrt{2}}}$ for any G of maximum degree Δ

and local density at most $\eta, \; rac{1}{\Delta^2} \leq \eta \ll 1$
Best chromatic number bounds in graphs of local density at most η ?

Theorem (Alon, Krivelevich, Sudakov 1999, cf. Vu 2002, Achlioptas, lliopoulos, Sinclair 2019)

$$\chi(G) = O\left(\frac{\Delta}{\log \frac{e}{\sqrt{\eta}}}\right) \text{ for any } G \text{ of maximum degree } \Delta$$

and local density at most η , $\frac{1}{\Delta^2} \le \eta \le 1$

 $\begin{array}{l} \text{Theorem (Davies, Kang, Pirot, Sereni 2020+, cf. Davies, de Joannis de } \\ \text{Verclos, Kang, Pirot 2021)} \\ \chi(G) \lesssim \frac{\Delta}{\log \frac{e}{\sqrt{\eta}}} \ \text{for any G of maximum degree Δ} \\ \text{and local density at most η, $\frac{1}{\Delta^2} \leq \eta \ll 1$} \end{array}$

 $\eta=\frac{1}{\Delta^2}$ matches Molloy's;

Best chromatic number bounds in graphs of local density at most η ?

Theorem (Alon, Krivelevich, Sudakov 1999, cf. Vu 2002, Achlioptas, lliopoulos, Sinclair 2019)

$$\chi(G) = O\left(\frac{\Delta}{\log \frac{e}{\sqrt{\eta}}}\right)$$
 for any G of maximum degree Δ
and local density at most η , $\frac{1}{\Delta^2} \le \eta \le 1$

Theorem (Davies, Kang, Pirot, Sereni 2020+, cf. Davies, de Joannis de Verclos, Kang, Pirot 2021) $\chi(G) \lesssim \frac{\Delta}{\log \frac{e}{\sqrt{\eta}}}$ for any G of maximum degree Δ and local density at most η , $\frac{1}{\Delta^2} \leq \eta \ll 1$

 $\eta = \frac{1}{\Lambda^2}$ matches Molloy's; the bound is sharp up to a factor of between 2 and 4

Best chromatic number bounds in graphs of local density at most η ?

Theorem (Alon, Krivelevich, Sudakov 1999, cf. Vu 2002, Achlioptas, lliopoulos, Sinclair 2019)

$$\chi(G) = O\left(\frac{\Delta}{\log \frac{e}{\sqrt{\eta}}}\right)$$
 for any G of maximum degree Δ
and local density at most η , $\frac{1}{\Delta^2} \le \eta \le 1$

Theorem (Davies, Kang, Pirot, Sereni 2020+, cf. Davies, de Joannis de Verclos, Kang, Pirot 2021) $\chi(G) \lesssim \frac{\Delta}{\log \frac{e}{\sqrt{\eta}}}$ for any G of maximum degree Δ and local density at most η , $\frac{1}{\Lambda^2} \leq \eta \ll 1$

 $\eta = \frac{1}{\Delta^2}$ matches Molloy's; the bound is sharp up to a factor of between 2 and 4 NB: Shearer (1983) established the analogous bound for $\alpha(G)$

Write $\sigma = 1 - \eta$ and consider σ -sparse graphs

Best chromatic number bounds in σ -sparse graphs?

Results so far concern $\sigma \rightarrow 1$.

Write $\sigma = 1 - \eta$ and consider σ -sparse graphs

Best chromatic number bounds in σ -sparse graphs?

Results so far concern $\sigma \rightarrow 1$. What if σ bounded below 1? What if $\sigma \rightarrow 0$?

Write $\sigma = 1 - \eta$ and consider σ -sparse graphs

Best chromatic number bounds in σ -sparse graphs?

Results so far concern $\sigma \to 1$. What if σ bounded below 1? What if $\sigma \to 0$? Nontrivial improvement on $\chi(G) \leq \Delta(G) + 1$?

Write $\sigma = 1 - \eta$ and consider σ -sparse graphs

Best chromatic number bounds in σ -sparse graphs?

Results so far concern $\sigma \to 1$. What if σ bounded below 1? What if $\sigma \to 0$?

Nontrivial improvement on $\chi(G) \leq \Delta(G) + 1$? Yes (asymptotically):

Theorem (Molloy & Reed 1997)

 $\chi(G) \leq (1 - \varepsilon)\Delta$ for any σ -sparse G of maximum degree Δ for some $\varepsilon(\sigma) > 0$ provided Δ is large enough

Write $\sigma = 1 - \eta$ and consider σ -sparse graphs

Best chromatic number bounds in σ -sparse graphs?

Results so far concern $\sigma \to 1$. What if σ bounded below 1? What if $\sigma \to 0$?

Nontrivial improvement on $\chi(G) \leq \Delta(G) + 1$? Yes (asymptotically):

Theorem (Molloy & Reed 1997)

 $\chi(G) \leq (1 - \varepsilon)\Delta$ for any σ -sparse G of maximum degree Δ for some $\varepsilon(\sigma) > 0$ provided Δ is large enough

Improved lower bounds on ε yield improvements for Reed's and Erdős-Nešetřil

G of maximum degree Δ is σ -sparse if $\leq (1 - \sigma) {\Delta \choose 2}$ edges per neighbourhood Theorem (Molloy & Reed 1997) $\chi(G) \leq (1 - \varepsilon)\Delta$ for any σ -sparse *G* of maximum degree Δ for some $\varepsilon(\sigma) > 0$ provided Δ is large enough

• Molloy & Reed (1997): $arepsilon > 0.0238\sigma$

G of maximum degree Δ is σ -sparse if $\leq (1 - \sigma) {\Delta \choose 2}$ edges per neighbourhood Theorem (Molloy & Reed 1997) $\chi(G) \leq (1 - \varepsilon)\Delta$ for any σ -sparse *G* of maximum degree Δ for some $\varepsilon(\sigma) > 0$ provided Δ is large enough

- Molloy & Reed (1997): $\varepsilon > 0.0238\sigma$
- Bruhn & Joos (2018): ${arepsilon} > 0.1827\sigma 0.0778\sigma^{3/2}$

G of maximum degree Δ is σ -sparse if $\leq (1 - \sigma) {\Delta \choose 2}$ edges per neighbourhood Theorem (Molloy & Reed 1997) $\chi(G) \leq (1 - \varepsilon)\Delta$ for any σ -sparse *G* of maximum degree Δ for some $\varepsilon(\sigma) > 0$

 $\chi(G) \leq (1 - \varepsilon)\Delta$ for any σ -sparse G of maximum degree Δ for some $\varepsilon(\sigma) > 0$ provided Δ is large enough

 • Molloy & Reed (1997):
 $\varepsilon > 0.0238\sigma$

 • Bruhn & Joos (2018):
 $\varepsilon > 0.1827\sigma - 0.0778\sigma^{3/2}$

 • Bonamy, Perrett, Postle (2018+):
 $\varepsilon > 0.3012\sigma - 0.1283\sigma^{3/2}$

G of maximum degree Δ is σ -sparse if $\leq (1 - \sigma) {\Delta \choose 2}$ edges per neighbourhood Theorem (Molloy & Reed 1997)

 $\chi(G) \leq (1 - \varepsilon)\Delta$ for any σ -sparse G of maximum degree Δ for some $\varepsilon(\sigma) > 0$ provided Δ is large enough

G of maximum degree Δ is σ -sparse if $\leq (1 - \sigma) {\Delta \choose 2}$ edges per neighbourhood Theorem (Molloy & Reed 1997)

 $\chi(G) \leq (1 - \varepsilon)\Delta$ for any σ -sparse G of maximum degree Δ for some $\varepsilon(\sigma) > 0$ provided Δ is large enough

Clique of size $\sqrt{1-\sigma} \cdot \Delta$ (+ pendant vertices)

G of maximum degree Δ is σ -sparse if $\leq (1 - \sigma) {\Delta \choose 2}$ edges per neighbourhood Theorem (Molloy & Reed 1997)

 $\chi(G) \leq (1 - \varepsilon)\Delta$ for any σ -sparse G of maximum degree Δ for some $\varepsilon(\sigma) > 0$ provided Δ is large enough

• Molloy & Reed (1997): • Bruhn & Joos (2018): • Bonamy, Perrett, Postle (2018+): • Hurley, de Joannis de Verclos, Kang (2021): Clique of size $\sqrt{1-\sigma} \cdot \Delta$ (+ pendant vertices) $\implies \varepsilon \le 1 - \sqrt{1-\sigma} \approx 0.5\sigma$

G of maximum degree Δ is σ -sparse if $\leq (1 - \sigma) {\Delta \choose 2}$ edges per neighbourhood Theorem (Hurley, de Joannis de Verclos, Kang 2021) $\chi(G) \leq (1 - 0.5\sigma + 0.1667\sigma^{3/2})\Delta$ for any σ -sparse *G* of maximum degree Δ provided Δ is large enough

Clique of size $\sqrt{1-\sigma} \cdot \Delta$ (+ pendant vertices)

G of maximum degree Δ is σ -sparse if $\leq (1 - \sigma) {\Delta \choose 2}$ edges per neighbourhood Theorem (Hurley, de Joannis de Verclos, Kang 2021) $\chi(G) \leq (1 - 0.5\sigma + 0.1667\sigma^{3/2})\Delta$ for any σ -sparse *G* of maximum degree Δ provided Δ is large enough

Clique of size $\sqrt{1-\sigma} \cdot \Delta$ (+ pendant vertices)

1. independently assign a colour to each v uniformly from [M]

- 1. independently assign a colour to each v uniformly from [M]
- 2. uncolour one or both endpoints of each monochromatic edge

- 1. independently assign a colour to each v uniformly from [M]
- 2. uncolour one or both endpoints of each monochromatic edge
- 3. complete partial proper colouring to full one

- 1. independently assign a colour to each v uniformly from [M]
- 2. uncolour one or both endpoints of each monochromatic edge
- 3. complete partial proper colouring to full one
- Molloy & Reed (1997):

uncolour both endpoints in 2

NAÏVE COLOURING

- 1. independently assign a colour to each v uniformly from [M]
- 2. uncolour one or both endpoints of each monochromatic edge
- 3. complete partial proper colouring to full one
- Molloy & Reed (1997):
- Bruhn & Joos (2018):

- uncolour both endpoints in 2
 - toss a coin to decide in $\ensuremath{\mathsf{2}}$

NAÏVE COLOURING

- 1. independently assign a colour to each v uniformly from [M]
- 2. uncolour one or both endpoints of each monochromatic edge
- 3. complete partial proper colouring to full one
- Molloy & Reed (1997):
- Bruhn & Joos (2018):
- Bonamy, Perrett, Postle (2018+):

- uncolour both endpoints in 2
 - toss a coin to decide in 2
 - several iterations of $1 \mbox{ and } 2$

NAÏVE COLOURING

- 1. independently assign a colour to each v uniformly from [M]
- 2. uncolour one or both endpoints of each monochromatic edge
- 3. complete partial proper colouring to full one
- Molloy & Reed (1997):
- Bruhn & Joos (2018):
- Bonamy, Perrett, Postle (2018+):

- uncolour both endpoints in 2
 - toss a coin to decide in 2
 - several iterations of 1 and 2
- Hurley, de Joannis de Verclos, Kang (2021):
 - random vertex ordering to decide in 2
 - allows better iteration of 1 and 2

NAÏVE INDEPENDENT SETS

Given Δ -regular graph, fix parameter $\gamma > 0$

a. independently with probability $\frac{\gamma}{\Delta}$ add each v to activated set \pmb{A}

Given Δ -regular graph, fix parameter $\gamma > 0$

- a. independently with probability $\frac{\gamma}{\Lambda}$ add each v to activated set **A**
- b. assign each activated v a random priority $\pi(v)$ uniformly from [0,1]

Given Δ -regular graph, fix parameter $\gamma > 0$

- a. independently with probability $\frac{\gamma}{\Delta}$ add each v to activated set **A**
- b. assign each activated v a random priority $\pi(v)$ uniformly from [0,1]
- c. for every two adjacent activated vertices, remove the lower priority one:

$$I = \{v \in A \mid \pi(v) > \pi(u) \text{ for every } u \in N(v) \cap A\}$$

Given Δ -regular graph, fix parameter $\gamma > 0$

- a. independently with probability $\frac{\gamma}{\Delta}$ add each v to activated set **A**
- b. assign each activated v a random priority $\pi(v)$ uniformly from [0,1]
- c. for every two adjacent activated vertices, remove the lower priority one:

$$I = \{v \in A \mid \pi(v) > \pi(u) \text{ for every } u \in N(v) \cap A\}$$

Lemma

For $\iota > 0$, generating I as above from a σ -sparse Δ -regular graph satisfies for large enough Δ and γ , and for every v

$$\left| \mathbb{P}(\mathbf{v} \in \mathbf{I}) - \frac{1 - e^{-\gamma}}{\Delta} \right| \le \frac{2}{\Delta^2},$$
$$\frac{\mathbb{P}(\mathbf{N}(\mathbf{v}) \cap \mathbf{I} \neq \emptyset)}{\mathbb{E}|\mathbf{N}(\mathbf{v}) \cap \mathbf{I}|} \le 1 - \frac{\sigma}{2} + \frac{\sigma^{3/2}}{6} + \iota$$

 $\begin{array}{l} \text{Theorem (Davies, Kang, Pirot, Sereni 2020+)} \\ \chi(G) \lesssim \frac{\Delta}{\log \frac{e}{\sqrt{\eta}}} \text{ for any } G \text{ of maximum degree } \Delta \\ & \text{ and local density at most } \eta, \ \frac{1}{\Delta^2} \leq \eta \ll 1 \end{array}$

Theorem (Hurley, de Joannis de Verclos, Kang 2021)

 $\chi(G) \leq (1 - 0.5\sigma + 0.1667\sigma^{3/2})\Delta$ for any σ -sparse G of maximum degree Δ provided Δ is large enough

QUESTIONS?

QUESTIONS?

