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® but must give at least k per list

What is least k for which colouring is always possible? (Necessarily k > x.)
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LIST COLOURING (FORMALLY)

Let G be a graph.

A list-assignment is some L : V(G) — 2%,
a k-list-assignment is some L : V(G) — (Z;).
An L-colouring is some ¢ : V(G) — Z" with c(v) € L(v) for every v € V(G).
G is k-choosable if there is a proper L-colouring for any k-list-assignment L.

The list chromatic number ch(G) is least k such that G is k-choosable.

Introduced independently by Vizing (1976) and Erd&s, Rubin, Taylor (1980).
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Theorem (Erdds, Rubin, Taylor 1980)
There are bipartite graphs with arbitrarily large list chromatic number.

Proof.

Let J be a family of finite sets. Consider K|z| |5 with parts A and B.

For L, for each part, let lists be in 1-1 correspondence with F.

If there is a proper L-colouring, consider set X of colours used in part A.

X intersects every member of J.

But X contains no member of F, for otherwise some list in part B is blocked.

Such an X does not exist for ¥ = (P 1). = ch (K([zkk—l])’([Zkk—l])) >k, O
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OPEN QUESTION
what is the minimum number N(2,k) of nodes in a graph G
which is 2-colorable but not k-choosable?
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PROPERTY B

F. Bernstein. Zur theorie der trigonometrische Reihen.
Leipz. Ber. 60: 325-328, 1908.
A family J of finite sets has Property B if there is some set X such that
® X intersects every member of F, but
® X contains no member of J.
M(k) := min{|F| | VF € F: |F| = k and F doesn’t have Property B}.
Note M(k) < (*.1).
Theorem (Erd6s 1963/4, Radhakrishnan & Srinivasan 2000)
M(k) = Q(2\/k/log k) and M(k) = O(k*2").
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OPEN QUESTION
What is the minimum number N(2,k) of nodes in a graph G
which is 2-colorable but not k-choosable?

A family & of finite sets has Property B if there is some set X such that

® X intersects every member of &, but

® X contains no member of J.
M(k) := min{|F| | VF € F: |F| = k and F doesn’t have Property B}.

Theorem (Erdds, Rubin, Taylor 1980)
M(K) < N(2, k) < 2M(K).

Proof.

Upper bound proof already given.

For lower, suffices to show K4 5| is k-choosable if |A| 4 |B| < M(k).
For any k-list-assignment L, let ¥ = {L(v) | v € AU B}.

Since |F| < M(k), there is some X certifying Property B for J.
Colour from L(v)N X if v € A, from L(v)\ X if v € B.
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OPEN QUESTION
What is the minimum number N(2,k) of nodes in a graph G
which is 2-colorable but not k-choosable?

A family & of finite sets has Property B if there is some set X such that
® X intersects every member of &, but
® X contains no member of J.
M(k) := min{|F| | VF € F: |F| = k and F doesn’t have Property B}.
Theorem (Erdés, Rubin, Taylor 1980)
M(k) < N(2,k) < 2M(k).

Corollary
N(2, k) = Q(2%\/k/log k) and N(2, k) = O(k*2¥).

= ch(Kn,n) ~ log, n.
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TWO FOLLOW-UP PROBLEMS

Erdés, Rubin, Taylor (1980): ch(Kn,n) ~ log, n.

Two degree refinement challenges?

2. Does a bipartite graph of maximum degree A have ch = O(log A)?

tAlon 2000, Saxton & Thomason 2015
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Erdds, Rubin, Taylor (1980): ch(Kn,n) ~ log, n.
Conjecture (Alon & Krivelevich 1998)
For any bipartite G of maximum degree A, ch(G) = O(log A).

Theorem (Johansson 1996+)
For any triangle-free G of maximum degree A, ch(G) = O(A/log A).

A coupon collector heuristic for colouring bipartite graphs.

Let [k] be common set of possible colours.

Colour part B by independent uniform colour from [k] for each vertex.
For each v € A, what is the chance all colours in [k] are blocked?

By our understanding of coupon collector problem, if

deg(v) < (1 —e)klogk,

then this chance is tiny, so there should be a spare colour to use for v.
If k> (1+¢e)A/logA, then w.p.p. there's spare colour for every v € A.
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BIPARTITE CHOICE NUMBER AND MAXIMUM DEGREE
Erdds, Rubin, Taylor (1980): ch(Kn,n) ~ log, n.
Conjecture (Alon & Krivelevich 1998)
For any bipartite G of maximum degree A, ch(G) = O(log A).

Theorem (Johansson 1996+)
For any triangle-free G of maximum degree A, ch(G) = O(A/log A).

Theorem (Molloy 2019)
For any triangle-free G of maximum degree A, ch(G) S A/log A.

NB1: Improving triangle-free would be a major breakthrough in Ramsey theory.

NB2: For bipartite, a persistent exponential gap in our knowledge!



A TILTED PERSPECTIVE

In the heuristic, the colouring tasks are isolated per part.

What if we more explicitly isolate these?



A TILTED PERSPECTIVE

In the heuristic, the colouring tasks are isolated per part.

What if we more explicitly isolate these?

1. Prescribe separate list sizes: ka in part A, kg in part B.



A TILTED PERSPECTIVE

In the heuristic, the colouring tasks are isolated per part.

What if we more explicitly isolate these?

1. Prescribe separate list sizes: ka in part A, kg in part B.

2. Allow separate degree bounds: A4 in part A, Ag in part B.



A TILTED PERSPECTIVE

In the heuristic, the colouring tasks are isolated per part.

What if we more explicitly isolate these?

1. Prescribe separate list sizes: ka in part A, kg in part B.

2. Allow separate degree bounds: A4 in part A, Ag in part B.

Let's first focus on first.
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HALFWAY??

Conjecture (Alon & Krivelevich 1998)
For any bipartite G of maximum degree A, ch(G) = O(log A).

Theorem (Alon, Cambie, Kang 2021)

Any bipartite G of (large enough) maximum degree A with parts A and B is
(ka, kg)-choosable for ka = (1 +e)A/log A and kg = log A.

Lemma
Any bipartite G with parts A and B is (ka, ks)-choosable if

eAn(Ap —1)(1 — (1 — 1/kg) Ela/kayka < 1.

Proof of theorem.
Ap=Ag=A, ka=(1+¢)A/log A, kg = log A satisfies the condition.
(In fact, Ag superpolynomial in A still suffices!) O
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For each w € B, colour with independent uniform choice from L(w).

For each v € A, what is the chance all colours in L(v) are blocked?

The individual chance that ¢ € L(v) is blocked is 1 — (1 — 1/kg)*(,

where x(c) counts the times L(w) > ¢ for some w € N(v).

By checking negative correlation and Jensen’s, the chance that L(v) blocked is
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COUPON COLLECTOR AGAIN

Lemma
Any bipartite G with parts A and B is (ka, kg)-choosable if
eAa(Dp —1)(1 — (1 — 1/kg) &4/ kayka < 1.

Proof sketch.

For each w € B, colour with independent uniform choice from L(w).

For each v € A, what is the chance all colours in L(v) are blocked?

The individual chance that ¢ € L(v) is blocked is 1 — (1 — 1/kg)*(,

where x(c) counts the times L(w) > ¢ for some w € N(v).

By checking negative correlation and Jensen’s, the chance that L(v) blocked is

x(c Zc v |0g(1 - (1 - l/kB)X(C))
< J] - —1/ke) @) = exp (kA cL) :
cel(v) Z«SGL(V)

< exp (kA log(1 — (1 — 1/kB)ZceL(V) X(C)/kA) <(1-(1- l/kB)kBAA/kA)kA.

The lemma follows by checking mutual independence for the local lemma. [
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EXPLORING A 4-PARAMETER SPACE

1. Prescribe separate list sizes: ka in part A, kg in part B.

2. Allow separate degree bounds: A4 in part A, Ag in part B.

What happens for complete bipartite graphs?
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For 2 < ki, ko < ¢, a family F C (Efz]) has Property A(ki, ko, £) if there is

some set X € ([kzl

) that intersects every member of .

M(ki, ko, £) == min{|F| | F C ([é]) and F doesn't have Property A(ki, k2, £)}.

M(ki, k2, £) is minimum number of edges in ko-uniform hypergraph on ¢
vertices with no independent set of size £ — k.

Among other things, we know

Theorem (Erd8s & Spencer 1974)
For kl,kz >2 and ¢ > ki + ko,

00—k — k)l — 0 — kg — k) ¢
= ta)(f = k) = MUaske £) < G ST k)1 108 (kl)'
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some set X € ([kel
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M(ki, ko, £) == min{|F| | F C ([é]) and ¥ doesn't have Property A(ki, k2, £)}.

Proposition (Alon, Cambie, Kang 2021)
For ka, kg > 2 and 0 = ki + ko + 1, Kﬁ(kl,kA,Z),V(kz,kB,l) isn't (ka, kg)-choosable.

Proof.
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Let F5 C ([k‘g) be a family without Property A(ks, kg, £) of size M(ks, kg, £).
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Suppose there’s proper L-colouring: consider set X4 of colours used in part A.
Xa intersects every member of Fa, so | Xa| > ki. Similarly, | Xg| > ko.

But |Xa| + | Xg| > ki + k2 + 2 > ¢, contradicting that colouring is proper. [l
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For 2 < ki, ko < ¢, a family F C (Efz]) has Property A(ki, ko, £) if there is

some set X € ([kzl

) that intersects every member of .
M(ki, ko, £) == min{|F| | F C ([ki]) and ¥ doesn't have Property A(ki, k2, £)}.

Proposition (Alon, Cambie, Kang 2021)
For ka, kg > 2 and 0 = ki + ko + 1, Kﬁ(kl,kA,Z),W(kz,kB,l) isn't (ka, kg)-choosable.

Not far from extremal for most of 4-parameter space for complete bipartite,
and perhaps even for general bipartite graphs. ..
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ASYMMETRIC ALON-KRIVELEVICH CONJECTURE

Conjecture (Alon, Cambie, Kang 2021)
Assume one of the following.

1. For any € > 0 and sufficiently large Aa, Ag, ka > A% and kg > A%.
2. For some C > 1, ka > Clog Ag and kg > Clog Aa.
3. Aa=Ap = A, and, for some C > 0,

ke > C(A/log A)Y*log A or ka> C(A/log A)*8 log A.

Then any bipartite G with parts A and B is (ka, kg)-choosable.
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Not only 1 proper L-colouring, but k pairwise-disjoint ones?

Given k-list-assignment L, proper L-packing is collection of k pairwise-disjoint
proper L-colourings. The list packing number ch*(G) of G is least k for which
G admits a proper L-packing for any such L.

Suggested tangentially by Alon, Fellows, Hare (1996).

This is well-defined and ch* > ch.

Conjecture (Cambie, Cames van Batenburg, Davies, Kang 2021+)
ch*(G) = O(ch(G)).

NB: We know ch*(G) = 20(h(¢),
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Theorem (Cambie, Cames van Batenburg, Davies, Kang 2021+)
ch*(Khn,n) ~ log, n.

Theorem (Cambie, Cames van Batenburg, Davies, Kang 2021+)
For any bipartite G of maximum degree A, ch*(G) < A/log A.
NB: Bipartite graphs seem our best hope of disproving our general conjecture

Conjecture (Cambie, Cames van Batenburg, Davies, Kang 2021+)
For any triangle-free G of maximum degree A, ch*(G) = O(A/ log A).
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