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Chromatic mystery when χ = 2??



List colouring

Imagine adversaries to colouring

• that issue arbitrary lists of allowable colours per vertex

• but must give at least k per list

What is least k for which colouring is always possible? (Necessarily k ≥ χ.)
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List colouring (formally)

Let G be a graph.

A list-assignment is some L : V (G) → 2Z
+

;

a k-list-assignment is some L : V (G) →
(Z+

k

)
.

An L-colouring is some c : V (G) → Z+ with c(v) ∈ L(v) for every v ∈ V (G).

G is k-choosable if there is a proper L-colouring for any k-list-assignment L.

The list chromatic number ch(G) is least k such that G is k-choosable.

Introduced independently by Vizing (1976) and Erdős, Rubin, Taylor (1980).
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χ = 2 while ch > k

Theorem (Erdős, Rubin, Taylor 1980)

There are bipartite graphs with arbitrarily large list chromatic number.

Proof.
Let F be a family of finite sets. Consider K|F|,|F| with parts A and B.
For L, for each part, let lists be in 1–1 correspondence with F.
If there is a proper L-colouring, consider set X of colours used in part A.
X intersects every member of F.
But X contains no member of F, for otherwise some list in part B is blocked.

Such an X does not exist for F =
(
[2k−1]

k

)
. =⇒ ch

(
K([2k−1]

k ),([2k−1]
k )

)
> k.
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Property B

F. Bernstein. Zur theorie der trigonometrische Reihen.

Leipz. Ber. 60: 325-328, 1908.

A family F of finite sets has Property B if there is some set X such that

• X intersects every member of F, but

• X contains no member of F.

M(k) := min{|F| | ∀F ∈ F : |F | = k and F doesn’t have Property B}.

Note M(k) ≤
(
2k−1

k

)
.

Theorem (Erdős 1963/4, Radhakrishnan & Srinivasan 2000)

M(k) = Ω(2k
√

k/ log k) and M(k) = O(k22k).
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Upper bound proof already given.

For lower, suffices to show K|A|,|B| is k-choosable if |A|+ |B| < M(k).
For any k-list-assignment L, let F = {L(v) | v ∈ A ∪ B}.
Since |F| < M(k), there is some X certifying Property B for F.
Colour from L(v) ∩ X if v ∈ A, from L(v) \ X if v ∈ B.
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Theorem (Erdős, Rubin, Taylor 1980)

M(k) ≤ N(2, k) ≤ 2M(k).

Corollary

N(2, k) = Ω(2k
√

k/ log k) and N(2, k) = O(k22k).

=⇒ ch(Kn,n) ∼ log2 n.



χ = 2 while ch > k

A family F of finite sets has Property B if there is some set X such that

• X intersects every member of F, but

• X contains no member of F.

M(k) := min{|F| | ∀F ∈ F : |F | = k and F doesn’t have Property B}.
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Two follow-up problems

Erdős, Rubin, Taylor (1980): ch(Kn,n) ∼ log2 n.

Two degree refinement challenges?

1. Does a (bipartite) graph of minimum degree δ have ch = Ω(log δ)?

2. Does a bipartite graph of maximum degree ∆ have ch = O(log∆)?
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Two follow-up problems

Erdős, Rubin, Taylor (1980): ch(Kn,n) ∼ log2 n.

Two degree refinement challenges?

1. Does a (bipartite) graph of minimum degree δ have ch = Ω(log δ)?†

2. Does a bipartite graph of maximum degree ∆ have ch = O(log∆)?

†Alon 2000, Saxton & Thomason 2015



Bipartite choice number and maximum degree

Erdős, Rubin, Taylor (1980): ch(Kn,n) ∼ log2 n.

Conjecture (Alon & Krivelevich 1998)

For any bipartite G of maximum degree ∆, ch(G) = O(log∆).

Theorem (Johansson 1996+)

For any triangle-free G of maximum degree ∆, ch(G) = O(∆/ log∆).
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A coupon collector heuristic for colouring bipartite graphs.

Let [k] be common set of possible colours.
Colour part B by independent uniform colour from [k] for each vertex.
For each v ∈ A, what is the chance all colours in [k] are blocked?
By our understanding of coupon collector problem, if

deg(v) ≤ (1− ε)k log k,

then this chance is tiny, so there should be a spare colour to use for v .
If k ≥ (1 + ε)∆/ log∆, then w.p.p. there’s spare colour for every v ∈ A.
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Erdős, Rubin, Taylor (1980): ch(Kn,n) ∼ log2 n.

Conjecture (Alon & Krivelevich 1998)

For any bipartite G of maximum degree ∆, ch(G) = O(log∆).

Theorem (Johansson 1996+)

For any triangle-free G of maximum degree ∆, ch(G) = O(∆/ log∆).

A coupon collector heuristic for colouring bipartite graphs.

Let [k] be common set of possible colours.
Colour part B by independent uniform colour from [k] for each vertex.
For each v ∈ A, what is the chance all colours in [k] are blocked?
By our understanding of coupon collector problem, if

deg(v) ≤ (1− ε)k log k,

then this chance is tiny, so there should be a spare colour to use for v .

If k ≥ (1 + ε)∆/ log∆, then w.p.p. there’s spare colour for every v ∈ A.



Bipartite choice number and maximum degree
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NB2: For bipartite, a persistent exponential gap in our knowledge!
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A tilted perspective

In the heuristic, the colouring tasks are isolated per part.

What if we more explicitly isolate these?

1. Prescribe separate list sizes: kA in part A, kB in part B.

2. Allow separate degree bounds: ∆A in part A, ∆B in part B.

Let’s first focus on first.
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Theorem (Alon, Cambie, Kang 2021)

Any bipartite G of (large enough) maximum degree ∆ with parts A and B is
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∆A = ∆B = ∆, kA = (1 + ε)∆/ log∆, kB = log∆ satisfies the condition.
(In fact, ∆B superpolynomial in ∆ still suffices!)
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kB∆A/kA)kA .

The lemma follows by checking mutual independence for the local lemma.
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Hypergraph Turán numbers

For 2 ≤ k1, k2 ≤ ℓ, a family F ⊆
(
[ℓ]
k2

)
has Property A(k1, k2, ℓ) if there is

some set X ∈
(
[ℓ]
k1

)
that intersects every member of F.

M(k1, k2, ℓ) := min{|F| | F ⊆
(
[ℓ]
k2

)
and F doesn’t have Property A(k1, k2, ℓ)}.

M(k1, k2, ℓ) is minimum number of edges in k2-uniform hypergraph on ℓ
vertices with no independent set of size ℓ− k1.

Among other things, we know

Theorem (Erdős & Spencer 1974)

For k1, k2 ≥ 2 and ℓ ≥ k1 + k2,

ℓ!(ℓ− k1 − k2)!

(ℓ− k2)!(ℓ− k1)!
≤ M(k1, k2, ℓ) <

ℓ!(ℓ− k1 − k2)!

(ℓ− k2)!(ℓ− k1)!
log

(
ℓ

k1

)
.
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Theorem (Erdős & Spencer 1974)

For k1, k2 ≥ 2 and ℓ ≥ k1 + k2,

ℓ!(ℓ− k1 − k2)!

(ℓ− k2)!(ℓ− k1)!
≤ M(k1, k2, ℓ) <

ℓ!(ℓ− k1 − k2)!

(ℓ− k2)!(ℓ− k1)!
log

(
ℓ

k1

)
.



Hypergraph Turán numbers

For 2 ≤ k1, k2 ≤ ℓ, a family F ⊆
(
[ℓ]
k2

)
has Property A(k1, k2, ℓ) if there is

some set X ∈
(
[ℓ]
k1

)
that intersects every member of F.

M(k1, k2, ℓ) := min{|F| | F ⊆
(
[ℓ]
k2

)
and F doesn’t have Property A(k1, k2, ℓ)}.

M(k1, k2, ℓ) is minimum number of edges in k2-uniform hypergraph on ℓ
vertices with no independent set of size ℓ− k1.

Among other things, we know
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Complete characterisation?

For 2 ≤ k1, k2 ≤ ℓ, a family F ⊆
(
[ℓ]
k2

)
has Property A(k1, k2, ℓ) if there is

some set X ∈
(
[ℓ]
k1

)
that intersects every member of F.

M(k1, k2, ℓ) := min{|F| | F ⊆
(
[ℓ]
k2

)
and F doesn’t have Property A(k1, k2, ℓ)}.

Proposition (Alon, Cambie, Kang 2021)

For kA, kB ≥ 2 and ℓ = k1 + k2 +1, KM(k1,kA,ℓ),M(k2,kB ,ℓ) isn’t (kA, kB)-choosable.

Not far from extremal for most of 4-parameter space for complete bipartite,
and perhaps even for general bipartite graphs. . .
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Asymmetric Alon–Krivelevich conjecture

Conjecture (Alon, Cambie, Kang 2021)

Assume one of the following.

1. For any ε > 0 and sufficiently large ∆A,∆B , kA ≥ ∆ε
A and kB ≥ ∆ε

B .

2. For some C > 1, kA ≥ C log∆B and kB ≥ C log∆A.

3. ∆A = ∆B = ∆, and, for some C > 0,

kB ≥ C(∆/ log∆)1/kA log∆ or kA ≥ C(∆/ log∆)1/kB log∆.

Then any bipartite G with parts A and B is (kA, kB)-choosable.
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List packing

Not only 1 proper L-colouring, but k pairwise-disjoint ones?

Given k-list-assignment L, proper L-packing is collection of k pairwise-disjoint
proper L-colourings. The list packing number ch⋆(G) of G is least k for which
G admits a proper L-packing for any such L.

Suggested tangentially by Alon, Fellows, Hare (1996).

This is well-defined and ch⋆ ≥ ch.

Conjecture (Cambie, Cames van Batenburg, Davies, Kang 2021+)

ch⋆(G) = O(ch(G)).

NB: We know ch⋆(G) = 2O(ch(G)).
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Bipartite list packing

Theorem (Cambie, Cames van Batenburg, Davies, Kang 2021+)

ch⋆(Kn,n) ∼ log2 n.

Theorem (Cambie, Cames van Batenburg, Davies, Kang 2021+)

For any bipartite G of maximum degree ∆, ch⋆(G) ≲ ∆/ log∆.

NB: Bipartite graphs seem our best hope of disproving our general conjecture

Conjecture (Cambie, Cames van Batenburg, Davies, Kang 2021+)

For any triangle-free G of maximum degree ∆, ch⋆(G) = O(∆/ log∆).
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