FROM LOCAL SPARSITY TO GLOBAL

Ross J. Kang*

Dutch Day of Combinatorics Eindhoven 12/5/2022

^{*}With Alon, Cambie, Davies, Hurley, de Joannis de Verclos, Pirot, Sereni. Support from NWO.

BROOKS' THEOREM

Theorem (Brooks 1941) $\chi(G) \leq \Delta(G)$ unless $G = K_{\Delta(G)+1}$ or G is an odd cycle.

Off-diagonal Ramsey numbers {}^{\dagger}

Ramsey (1930), Erdős & Szekeres (1935)

R(3, k): smallest *n* such that any red/blue-edge-coloured K_n with no red K_3 must contain a blue K_k

[†]Picture credit: Soifer 2009

VIZING'S PROBLEM

Vizing, "Some unsolved problems in graph theory" (1968):

Можно ли для любого наперед заданного натурального числа $k \ge 2$ построить граф со сколь угодно большим обхватом и с хроматическим числом k? Можно. Это доказал П. Эрдёш [39], основываясь на мощностных соображениях. Удивительно, что до сих пор нет конструктивного доказательства этого факта. В [40] указан способ построения графов с любым хроматическим числом без циклов длины $\leqslant 7$. Это лучшее, что мы имеем на сегодняшний день.

Если $\sigma(L)$ — максимальная степень вершины графа L, то, очевидно, $\gamma(L) \leqslant \sigma(L) + 1$. В 1941 г. Р. Брукс [41] доказал, что при $\sigma(L) \geqslant 3$ и $\omega(L) \leqslant \sigma(L)$ справедлива оценка $\gamma(L) \leqslant \sigma(L)$. Дальнейшие исследования можно проводить, учитывая более точно соотношения между σ и ω . Пожалуй, следует начать с оценки хроматического числа графа без треугольников ($\omega = 2$) с данной максимальной степенью вершины.

VIZING'S PROBLEM

Vizing, "Some unsolved problems in graph theory" (1968):

Given a natural number $k \ge 2$, is it possible to construct a graph with arbitrarily large compass and with chromatic number k? Erdős [39] has oroved this; his proof is based on counting arguments. It is astonishing that no constructive proof for this fact has yet been given. In [40] a method is given of constructing graphs of arbitrary chromatic number without having cycles of length < 7. This is the best we have at the present time.

If $\sigma(L)$ is the maximum degree of a vertex in a graph L, it is clear that $\gamma(L) < \sigma(L) + 1$. Brooks [41] showed in 1941 that $\gamma(L) \leq \sigma(L)$ whenever $\sigma(L) > 3$ and $\omega(L) < \sigma(L)$. Further investigations could be conducted, taking into account a more exact relation between σ and ω . Perhaps one should start with estimates of the chromatic number of a graph without triangles ($\omega = 2$) and with given maximal degree for vertices.

A COMMON LANDSCAPE

Measures of sparsity/structure

$$\delta \leq \overline{\mathsf{deg}} \leq \Delta$$

Measures of sparsity/structure

$$\delta \leq \overline{\mathsf{deg}} \leq \Delta$$

$$\omega \le \rho \le \chi_{\mathsf{f}} \le \chi \le \chi_{\ell} \le \Delta + 1$$

Measures of sparsity/structure

$$\delta \leq \overline{\mathsf{deg}} \leq \Delta$$

$$\omega \le \rho \le \chi_f \le \chi \le \chi_\ell \le \Delta + 1$$

where $\rho = \max_{\emptyset \neq H \subseteq G} \frac{|H|}{\alpha(H)}$ (upper bounds on ρ are like lower bounds on α)

What global graph structure arises from conditions on local structure?

What global graph structure arises from conditions on local structure?

Examples:

• (Brooks' theorem)

 $\omega \leq \Delta(>2) \implies \chi \leq \Delta$

What global graph structure arises from conditions on local structure?

Examples:

- (Brooks' theorem)
- (Off-diagonal Ramsey numbers)

$$\begin{split} \omega &\leq \Delta (>2) \implies \chi \leq \Delta \\ \omega &\leq 2 \implies \text{small } \rho \end{split}$$

What global graph structure arises from conditions on local structure?

Examples:

- (Brooks' theorem)
- (Off-diagonal Ramsey numbers)
- (Vizing's problem)

$$\begin{split} \omega &\leq \Delta(>2) \implies \chi \leq \Delta \\ \omega &\leq 2 \implies \text{small } \rho \\ \omega &\leq 2 \implies \chi \ll \Delta? \end{split}$$

What global graph structure arises from conditions on local structure?

Examples:

- (Brooks' theorem)
- (Off-diagonal Ramsey numbers)
- (Vizing's problem)
- (Reed's)

 $\omega \leq \Delta(>2) \implies \chi \leq \Delta$ $\omega \leq 2 \implies \text{small } \rho$ $\omega \leq 2 \implies \chi \ll \Delta?$ $\chi \leq \left[\frac{1}{2}(\omega + \Delta + 1)\right]?$

What global graph structure arises from conditions on local structure?

Examples:

- (Brooks' theorem)
- (Off-diagonal Ramsey numbers)
- (Vizing's problem)
- (Reed's)
- (Ajtai–Erdős–Komlós–Szemerédi)

$$\begin{split} \omega &\leq \Delta(>2) \implies \chi \leq \Delta \\ \omega &\leq 2 \implies \text{small } \rho \\ \omega &\leq 2 \implies \chi \ll \Delta? \\ \chi &\leq \left\lceil \frac{1}{2}(\omega + \Delta + 1) \right\rceil? \\ \omega &\leq k \implies \rho \leq C_k \frac{\Delta}{\log \Delta}? \end{split}$$

What global graph structure arises from conditions on local structure?

Examples:

- (Brooks' theorem)
- (Off-diagonal Ramsey numbers)
- (Vizing's problem)
- (Reed's)
- (Ajtai–Erdős–Komlós–Szemerédi)
- (Alon-Krivelevich)

$$\begin{split} \omega &\leq \Delta(>2) \implies \chi \leq \Delta \\ \omega &\leq 2 \implies \text{small } \rho \\ \omega &\leq 2 \implies \chi \ll \Delta? \\ \chi &\leq \left\lceil \frac{1}{2}(\omega + \Delta + 1) \right\rceil? \\ \omega &\leq k \implies \rho \leq C_k \frac{\Delta}{\log \Delta}? \\ \chi &\leq 2 \implies \chi_\ell \leq C \log \Delta? \end{split}$$

PROBABILISTIC METHOD

If random object has property with positive probability, then there exists *at least one* object with that property

RANDOM LINKS

STOCHASTIC LOCAL SEARCH

Suppose quest for some "flawless" combinatorial object uses a stochastic procedure with only local changes at each step

STOCHASTIC LOCAL SEARCH

Suppose quest for some "flawless" combinatorial object uses a stochastic procedure with only local changes at each step

What are the theoretical limits of such algorithms?

Hard-core model^\ddagger

[‡]More fully, the lattice gas with hard-core self-repulsion and nearest-neighbour exclusion. Picture credit: Wikipedia/Grap-wh

Gotta catch 'em all

At each turn you get a random pokémon (card)

Gotta catch 'em all

At each turn you get a random pokémon (card) How long until you have at least one of each type?

TRIANGLE-FREE GRAPHS

OFF-DIAGONAL RAMSEY NUMBERS

R(3, k): smallest *n* such that any red/blue-edge-coloured K_n with no red K_3 must contain a blue K_k

Off-diagonal Ramsey numbers i.e. Independence number of triangle-free graphs

- R(3, k): smallest *n* such that any red/blue-edge-coloured K_n with no red K_3 must contain a blue K_k
- R(3, k) : minimum order of triangle-free G that guarantees $\alpha(G) \ge k$

Off-diagonal Ramsey numbers i.e. Independence number of triangle-free graphs

R(3, k): smallest *n* such that any red/blue-edge-coloured K_n with no red K_3 must contain a blue K_k

R(3, k) : minimum order of triangle-free G that guarantees $\alpha(G) \ge k$

Theorem (Shearer 1983, cf. Ajtai, Komlós, Szemerédi 1980/1)

$$R(3,k) \lesssim rac{k^2}{\log k}$$

Off-diagonal Ramsey numbers i.e. Independence number of triangle-free graphs

R(3, k): smallest *n* such that any red/blue-edge-coloured K_n with no red K_3 must contain a blue K_k

R(3, k) : minimum order of triangle-free G that guarantees $\alpha(G) \ge k$

Theorem (Shearer 1983, cf. Ajtai, Komlós, Szemerédi 1980/1)

$$R(3,k) \lesssim rac{k^2}{\log k}$$

Theorem (Bohman & Keevash 2021, Fiz Pontiveros, Griffiths, Morris 2020, cf. Kim 1995)

$$R(3,k) \gtrsim rac{k^2}{4\log k}$$

Off-diagonal Ramsey numbers i.e. Independence number of triangle-free graphs

R(3, k): smallest *n* such that any red/blue-edge-coloured K_n with no red K_3 must contain a blue K_k

R(3, k) : minimum order of triangle-free G that guarantees $\alpha(G) \ge k$

Theorem (Shearer 1983, cf. Ajtai, Komlós, Szemerédi 1980/1)

$$R(3,k) \lesssim rac{k^2}{\log k}$$

 $\alpha(G)\gtrsim \frac{n\log\Delta}{\Delta} \ \text{for any n-vertex triangle-free } G \ \text{of maximum degree } \Delta$

Theorem (Bohman & Keevash 2021, Fiz Pontiveros, Griffiths, Morris 2020, cf. Kim 1995)

$$R(3,k) \gtrsim rac{k^2}{4\log k}$$

INDEPENDENCE NUMBER OF TRIANGLE-FREE GRAPHS

Theorem (Shearer 1983, cf. Ajtai, Komlós, Szemerédi 1980/1)

$$lpha({\sf G})\gtrsim rac{n\log\Delta}{\Delta}$$
 for any n-vertex triangle-free G of maximum degree Δ

INDEPENDENCE NUMBER OF TRIANGLE-FREE GRAPHS

Theorem (Shearer 1983, cf. Ajtai, Komlós, Szemerédi 1980/1)

$$\rho(G) \lesssim \frac{\Delta}{\log \Delta}$$
 for any triangle-free G of maximum degree Δ
where $\rho = \max_{\substack{\emptyset \neq H \subseteq G}} \frac{|H|}{\alpha(H)}$

INDEPENDENCE NUMBER OF TRIANGLE-FREE GRAPHS

Theorem (Shearer 1983, cf. Ajtai, Komlós, Szemerédi 1980/1)

$$ho({\sf G}) \lesssim rac{\Delta}{\log \Delta}$$
 for any triangle-free ${\sf G}$ of maximum degree Δ

Theorem (Bollobás 1981) $\rho(G) \ge \frac{\Delta}{2 \log \Delta}$ and G has arbitrarily large girth wpp for $G \sim G_{n,\Delta}$ Perhaps one should start with estimates of the chromatic number of a graph without triangles ($\omega = 2$) and with given maximal degree for vertices. (Vizing 1968)

Perhaps one should start with estimates of the chromatic number of a graph without triangles ($\omega = 2$) and with given maximal degree for vertices. (Vizing 1968)

$$\omega(\mathsf{G}) \leq -
ho(\mathsf{G}) \leq \chi_{\mathit{f}}(\mathsf{G}) \leq \chi(\mathsf{G}) \leq \chi_{\ell}(\mathsf{G}) - \leq \Delta(\mathsf{G}) + 1$$

Theorem (Shearer 1983, cf. Ajtai, Komlós, Szemerédi 1980/1) $\rho(G) \lesssim \frac{\Delta}{\log \Delta}$ for any triangle-free G of maximum degree Δ

Perhaps one should start with estimates of the chromatic number of a graph without triangles ($\omega = 2$) and with given maximal degree for vertices. (Vizing 1968)

$$\omega(\mathsf{G}) \leq -
ho(\mathsf{G}) \leq \chi_{\mathsf{f}}(\mathsf{G}) \leq \chi(\mathsf{G}) \leq \chi_{\ell}(\mathsf{G}) - \leq \Delta(\mathsf{G}) + 1$$

Theorem (Shearer 1983, cf. Ajtai, Komlós, Szemerédi 1980/1) $\rho(G) \lesssim \frac{\Delta}{\log \Delta}$ for any triangle-free G of maximum degree Δ

 $\begin{array}{l} \text{Theorem (} & \text{Johansson 1996+)} \\ \chi_{\ell}(G) = O\left(\frac{\Delta}{\log\Delta}\right) \text{ for any triangle-free } G \text{ of maximum degree } \Delta \end{array}$

Perhaps one should start with estimates of the chromatic number of a graph without triangles ($\omega = 2$) and with given maximal degree for vertices. (Vizing 1968)

$$\omega({\sf G})\leq -
ho({\sf G})\leq \chi_{{\sf f}}({\sf G})\leq \chi({\sf G})\leq \chi_{\ell}({\sf G}) \quad \leq \Delta({\sf G})+1$$

Theorem (Shearer 1983, cf. Ajtai, Komlós, Szemerédi 1980/1) $\rho(G) \lesssim \frac{\Delta}{\log \Delta}$ for any triangle-free G of maximum degree Δ

Theorem (Molloy 2019, cf. Johansson 1996+) $\chi_{\ell}(G) \lesssim \frac{\Delta}{\log \Delta}$ for any triangle-free G of maximum degree Δ

Perhaps one should start with estimates of the chromatic number of a graph without triangles ($\omega = 2$) and with given maximal degree for vertices. (Vizing 1968)

$$\omega(G) \leq -
ho(G) \leq \chi_f(G) \leq \chi(G) \leq \chi_\ell(G) - \leq \Delta(G) + 1$$

Theorem (Shearer 1983, cf. Ajtai, Komlós, Szemerédi 1980/1) $\rho(G) \lesssim \frac{\Delta}{\log \Delta}$ for any triangle-free G of maximum degree Δ

Theorem (Davies, de Joannis de Verclos, Kang, Pirot 2021) $\chi_f(G) \lesssim \frac{\Delta}{\log \Delta}$ for any triangle-free G of maximum degree $\Delta \rightsquigarrow$

Theorem (Molloy 2019, cf. Johansson 1996+) $\chi_{\ell}(G) \lesssim \frac{\Delta}{\log \Delta}$ for any triangle-free G of maximum degree Δ

ANOTHER RAMSEY-TYPE PROBLEM

$\omega({\sf G}) \leq -\rho({\sf G}) \leq \chi_\ell({\sf G}) \leq \chi({\sf G}) \leq \chi_\ell({\sf G}) - \leq \Delta({\sf G}) + 1$

[§]Picture credit: Wikipedia/David Eppstein

 $\omega(G) \leq ho(G) \leq \chi_f(G) \leq \chi(G) \leq \chi_\ell(G) - \leq \Delta(G) + 1$

Conjecture (Reed 1998) $\chi(G) \leq \left\lceil \frac{\omega + \Delta + 1}{2} \right\rceil$ for any G of clique number ω and maximum degree Δ

[§]Picture credit: Wikipedia/David Eppstein

 $\omega(G) \leq ho(G) \leq \chi_{\ell}(G) \leq \chi(G) \leq \chi_{\ell}(G) - \leq \Delta(G) + 1$

Conjecture (Reed 1998) $\chi(G) \leq \left\lceil \frac{\omega + \Delta + 1}{2} \right\rceil$ for any G of clique number ω and maximum degree Δ

Odd cycles have $\omega =$ 2, $\Delta =$ 2, $\chi =$ 3

[§]Picture credit: Wikipedia/David Eppstein

 $\omega(G) \leq ho(G) \leq \chi_{\ell}(G) \leq \chi(G) \leq \chi_{\ell}(G) - \leq \Delta(G) + 1$

Conjecture (Reed 1998) $\chi(G) \leq \left\lceil \frac{\omega + \Delta + 1}{2} \right\rceil$ for any G of clique number ω and maximum degree Δ

Odd cycles have $\omega = 2$, $\Delta = 2$, $\chi = 3$

Chvátal graph (1970)§ has $\omega = 2$, $\Delta = 4$, $\chi = 4$

[§]Picture credit: Wikipedia/David Eppstein

 $\omega(G) \leq -\rho(G) \leq \chi_f(G) \leq \chi(G) \leq \chi_\ell(G) - \leq \Delta(G) + 1$

Conjecture (Reed 1998) $\chi(G) \leq \left\lceil \frac{\omega + \Delta + 1}{2} \right\rceil$ for any G of clique number ω and maximum degree Δ

Odd cycles have $\omega = 2$, $\Delta = 2$, $\chi = 3$ Chvátal graph (1970)[§] has $\omega = 2$, $\Delta = 4$, $\chi = 4$ Bound holds for:

[§]Picture credit: Wikipedia/David Eppstein

 $\omega(G) \leq -\rho(G) \leq \chi_f(G) \leq \chi(G) \leq \chi_\ell(G) - \leq \Delta(G) + 1$

Conjecture (Reed 1998) $\chi(G) \leq \left\lceil \frac{\omega + \Delta + 1}{2} \right\rceil$ for any G of clique number ω and maximum degree Δ

Odd cycles have $\omega = 2$, $\Delta = 2$, $\chi = 3$

Chvátal graph (1970)§ has $\omega=$ 2, $\Delta=$ 4, $\chi=$ 4

Bound holds for:

 ω = 2, Δ large enough (Johansson 1996+) (ω ≤ Δ^{1/100}, Δ large enough (Davies, Kang, Pirot, Sereni 2020+))
 for ω > Δ − 1 (Brooks 1941)

[§]Picture credit: Wikipedia/David Eppstein

Corollary

 $\chi(G) \leq \lceil \varepsilon_2 \omega + (1 - \varepsilon_2)(\Delta + 1) \rceil$ for any G of clique number ω and maximum degree Δ for some $\varepsilon_2 > 0$ provided Δ is large enough

Corollary

 $\chi(G) \leq \lceil \varepsilon_2 \omega + (1 - \varepsilon_2)(\Delta + 1) \rceil$ for any G of clique number ω and maximum degree Δ for some $\varepsilon_2 > 0$ provided Δ is large enough

• Reed (1998): $\varepsilon_2 > 0.00000005$

NB: ε_2 may not be larger than 0.5

Corollary

 $\chi(G) \leq \lceil \varepsilon_2 \omega + (1 - \varepsilon_2)(\Delta + 1) \rceil$ for any G of clique number ω and maximum degree Δ for some $\varepsilon_2 > 0$ provided Δ is large enough

• Reed (1998):	$arepsilon_2 > 0.000000005$
 Bonamy, Perrett, Postle (2022): 	$arepsilon_2 > 0.038$
 Delcourt, Postle (2017+): 	$arepsilon_2 > 0.076$

NB: ε_2 may not be larger than 0.5

Corollary

 $\chi(G) \leq \lceil \varepsilon_2 \omega + (1 - \varepsilon_2)(\Delta + 1) \rceil$ for any G of clique number ω and maximum degree Δ for some $\varepsilon_2 > 0$ provided Δ is large enough

• Reed (1998):	$arepsilon_2 > 0.000000005$
 Bonamy, Perrett, Postle (2022): 	$arepsilon_2 > 0.038$
 Delcourt, Postle (2017+): 	$arepsilon_2 > 0.076$
 Hurley, de Joannis de Verclos, Kang (2021): 	$arepsilon_2 > 0.119$

NB: ε_2 may not be larger than 0.5

no edge in any neighbourhood

no edge in any neighbourhood \iff triangle-free

no edge in any neighbourhood \iff triangle-free \downarrow at most a certain proportion of edges per neighbourhood

no edge in any neighbourhood \iff triangle-free \downarrow at most a certain proportion of edges per neighbourhood

G of max degree Δ has local density $\leq \eta$ if $\leq \eta {\Delta \choose 2}$ edges per neighbourhood

no edge in any neighbourhood \iff triangle-free \downarrow at most a certain proportion of edges per neighbourhood

G of max degree Δ has local density $\leq \eta$ if $\leq \eta {\Delta \choose 2}$ edges per neighbourhood

 $\eta < 1/{\Delta \choose 2}$ means triangle-free, $\eta = 1$ means unrestricted

CHROMATIC NUMBER OF LOCALLY SPARSE GRAPHS

Largest chromatic number for local density $\leq \eta$ for η near 0?

Theorem (Alon, Krivelevich, Sudakov 1999, cf. Vu 2002, Achlioptas, Iliopoulos, Sinclair 2019)

 $\chi(G) = O\left(\frac{\Delta}{\log \frac{e}{\sqrt{\eta}}}\right) \text{ for any } G \text{ of maximum degree } \Delta$ and local density at most η , $\frac{1}{\Delta^2} \le \eta \le 1$

Theorem (Alon, Krivelevich, Sudakov 1999, cf. Vu 2002, Achlioptas, lliopoulos, Sinclair 2019)

$$\chi(G) = O\left(\frac{\Delta}{\log \frac{e}{\sqrt{\eta}}}\right) \text{ for any } G \text{ of maximum degree } \Delta$$

and local density at most η , $\frac{1}{\Delta^2} \le \eta \le 1$

Theorem (Davies, Kang, Pirot, Sereni 2020+, cf. Davies, de Joannis de Verclos, Kang, Pirot 2021) $\chi(G) \lesssim \frac{\Delta}{\log \frac{e}{\sqrt{\eta}}}$ for any G of maximum degree Δ and local density at most η , $\frac{1}{\Lambda^2} \leq \eta \ll 1$

Theorem (Alon, Krivelevich, Sudakov 1999, cf. Vu 2002, Achlioptas, lliopoulos, Sinclair 2019)

$$\chi(G) = O\left(\frac{\Delta}{\log \frac{e}{\sqrt{\eta}}}\right)$$
 for any G of maximum degree Δ
and local density at most η , $\frac{1}{\Delta^2} \le \eta \le 1$

Theorem (Davies, Kang, Pirot, Sereni 2020+, cf. Davies, de Joannis de Verclos, Kang, Pirot 2021) $\chi(G) \lesssim \frac{\Delta}{\log \frac{e}{\sqrt{\eta}}}$ for any G of maximum degree Δ and local density at most η , $\frac{1}{\Delta^2} \leq \eta \ll 1$

 $\eta = \frac{1}{\Delta^2}$ matches Molloy's;

Theorem (Alon, Krivelevich, Sudakov 1999, cf. Vu 2002, Achlioptas, lliopoulos, Sinclair 2019)

$$\chi(G) = O\left(\frac{\Delta}{\log \frac{e}{\sqrt{\eta}}}\right)$$
 for any G of maximum degree Δ
and local density at most η , $\frac{1}{\Delta^2} \le \eta \le 1$

Theorem (Davies, Kang, Pirot, Sereni 2020+, cf. Davies, de Joannis de Verclos, Kang, Pirot 2021) $\chi(G) \lesssim \frac{\Delta}{\log \frac{e}{\sqrt{\eta}}}$ for any G of maximum degree Δ and local density at most η , $\frac{1}{\Delta^2} \leq \eta \ll 1$

 $\eta = \frac{1}{\Lambda^2}$ matches Molloy's; the bound is sharp up to a factor of between 2 and 4

Theorem (Alon, Krivelevich, Sudakov 1999, cf. Vu 2002, Achlioptas, lliopoulos, Sinclair 2019)

$$\chi(G) = O\left(\frac{\Delta}{\log \frac{e}{\sqrt{\eta}}}\right)$$
 for any G of maximum degree Δ
and local density at most η , $\frac{1}{\Delta^2} \le \eta \le 1$

Theorem (Davies, Kang, Pirot, Sereni 2020+, cf. Davies, de Joannis de Verclos, Kang, Pirot 2021) $\chi(G) \lesssim \frac{\Delta}{\log \frac{e}{\sqrt{\eta}}}$ for any G of maximum degree Δ and local density at most η , $\frac{1}{\Lambda^2} \leq \eta \ll 1$

 $\eta = \frac{1}{\Delta^2}$ matches Molloy's; the bound is sharp up to a factor of between 2 and 4 $NB : \eta = 1$ should match $\Delta + 1$ bound, but neither gives this...

LOCAL OCCUPANCY METHOD

 $\begin{array}{l} \text{Theorem (Davies, Kang, Pirot, Sereni 2020+)} \\ \chi(G) \lesssim \frac{\Delta}{\log \frac{e}{\sqrt{\eta}}} \ \text{for any } G \ \text{of maximum degree } \Delta \\ & \text{ and local density at most } \eta, \ \frac{1}{\Delta^2} \leq \eta \ll 1 \end{array}$

 $\begin{array}{l} \text{Theorem (Davies, Kang, Pirot, Sereni 2020+)} \\ \chi(G) \lesssim \frac{\Delta}{\log \frac{e}{\sqrt{\eta}}} \ \text{for any } G \ \text{of maximum degree } \Delta \\ & \text{and local density at most } \eta, \ \frac{1}{\Delta^2} \leq \eta \ll 1 \end{array}$

Corollary to a broad framework for deriving global graph structure built upon

Theorem (Davies, Kang, Pirot, Sereni 2020+) $\chi(G) \lesssim \frac{\Delta}{\log \frac{e}{\sqrt{\eta}}}$ for any G of maximum degree Δ and local density at most η , $\frac{1}{\Delta^2} \le \eta \ll 1$

Corollary to a broad framework for deriving global graph structure built upon

Theorem (Davies, Kang, Pirot, Sereni 2020+) $\chi(G) \lesssim \frac{\Delta}{\log \frac{e}{\sqrt{\eta}}}$ for any G of maximum degree Δ and local density at most η , $\frac{1}{\Delta^2} \le \eta \ll 1$

Corollary to a broad framework for deriving global graph structure built upon

(NB: also gives record for e.g. Ajtai-Erdős-Komlós-Szemerédi conjecture)

Largest chromatic number for local density $\leq \eta$ for η near 1?

Nontrivial improvement on $\chi \leq \Delta + 1$?

Largest chromatic number for local density $\leq \eta$ for η near 1?

Nontrivial improvement on $\chi \leq \Delta + 1$? Yes (asymptotically):

Theorem (Molloy & Reed 1997)

 $\chi(G) \leq (1 - \varepsilon)\Delta$ for any G of maximum degree Δ and local density at most η for some $\varepsilon(\eta) > 0$ provided Δ is large enough

Largest chromatic number for local density $\leq \eta$ for η near 1?

Nontrivial improvement on $\chi \leq \Delta + 1$? Yes (asymptotically):

Theorem (Molloy & Reed 1997)

 $\chi(G) \leq (1 - \varepsilon)\Delta$ for any G of maximum degree Δ and local density at most η for some $\varepsilon(\eta) > 0$ provided Δ is large enough

Lower bounds on ε key to bounds for Reed's and Erdős-Nešetřil conjectures

Theorem (Molloy & Reed 1997)

 $\chi(G) \leq (1 - \varepsilon)\Delta$ for any G of maximum degree Δ and local density at most η for some $\varepsilon(\eta) > 0$ provided Δ is large enough

• Molloy & Reed (1997): $\varepsilon > 0.0238(1 - \eta)$

Theorem (Molloy & Reed 1997)

 $\chi(G) \leq (1-\varepsilon)\Delta$ for any G of maximum degree Δ and local density at most η for some $\varepsilon(\eta) > 0$ provided Δ is large enough

- Molloy & Reed (1997): $\varepsilon > 0.0238(1 - \eta)$
- Bruhn & Joos (2018):

 $\varepsilon > 0.1827(1 - \eta) - 0.0778(1 - \eta)^{3/2}$ Bonamy, Perrett, Postle (2022): $\varepsilon > 0.3012(1 - \eta) - 0.1283(1 - \eta)^{3/2}$

Theorem (Molloy & Reed 1997)

 $\chi(G) \leq (1 - \varepsilon)\Delta$ for any G of maximum degree Δ and local density at most η for some $\varepsilon(\eta) > 0$ provided Δ is large enough

• Molloy & Reed (1997): $\varepsilon > 0.0238(1 - \eta)$ • Bruhn & Joos (2018): $\varepsilon > 0.1827(1 - \eta) - 0.0778(1 - \eta)^{3/2}$ • Bonamy, Perrett, Postle (2022): $\varepsilon > 0.3012(1 - \eta) - 0.1283(1 - \eta)^{3/2}$ • Hurley, de Joannis de Verclos, Kang (2021):

$$arepsilon > 0.5(1-\eta) - 0.1667(1-\eta)^{3/2}$$

Theorem (Molloy & Reed 1997)

 $\chi(G) \leq (1 - \varepsilon)\Delta$ for any G of maximum degree Δ and local density at most η for some $\varepsilon(\eta) > 0$ provided Δ is large enough

Clique of size $\sqrt{\eta} \cdot \Delta$ (+ pendant vertices)

Theorem (Molloy & Reed 1997)

 $\chi(G) \leq (1 - \varepsilon)\Delta$ for any G of maximum degree Δ and local density at most η for some $\varepsilon(\eta) > 0$ provided Δ is large enough

Theorem (Hurley, de Joannis de Verclos, Kang 2021) $\chi(G) \leq (1 - 0.5(1 - \eta) + 0.1667(1 - \eta)^{3/2})\Delta$ for any G of maximum degree Δ and local density at most η provided Δ is large enough

Clique of size $\sqrt{1-\sigma} \cdot \Delta$ (+ pendant vertices)

Theorem (Hurley, de Joannis de Verclos, Kang 2021) $\chi(G) \leq (1 - 0.5(1 - \eta) + 0.1667(1 - \eta)^{3/2})\Delta$ for any G of maximum degree Δ and local density at most η provided Δ is large enough

LINK UP?

 $\begin{array}{l} \text{Theorem (Davies, Kang, Pirot, Sereni 2020+)} \\ \chi(G) \lesssim \frac{\Delta}{\log \frac{e}{\sqrt{\eta}}} \text{ for any } G \text{ of maximum degree } \Delta \\ & \text{ and local density at most } \eta, \ \frac{1}{\Delta^2} \leq \eta \ll 1 \end{array}$

Theorem (Hurley, de Joannis de Verclos, Kang 2021) $\chi(G) \leq (1 - 0.5(1 - \eta) + 0.1667(1 - \eta)^{3/2})\Delta$ for any G of maximum degree Δ and local density at most η provided Δ is large enough

Erdős, Rubin, Taylor (1980): $\chi_{\ell}(K_{n,n}) \sim \log_2 n$. Conjecture (Alon & Krivelevich 1998) For any bipartite G of maximum degree Δ , $\chi_{\ell}(G) = O(\log \Delta)$.

Erdős, Rubin, Taylor (1980): $\chi_{\ell}(K_{n,n}) \sim \log_2 n$. Conjecture (Alon & Krivelevich 1998) For any bipartite G of maximum degree Δ , $\chi_{\ell}(G) = O(\log \Delta)$.

Theorem (Johansson 1996+)

For any triangle-free G of maximum degree Δ , $\chi_{\ell}(G) = O(\Delta/\log \Delta)$.

Erdős, Rubin, Taylor (1980): $\chi_{\ell}(K_{n,n}) \sim \log_2 n$. Conjecture (Alon & Krivelevich 1998) For any bipartite G of maximum degree Δ , $\chi_{\ell}(G) = O(\log \Delta)$.

Theorem (Johansson 1996+)

For any triangle-free G of maximum degree Δ , $\chi_{\ell}(G) = O(\Delta/\log \Delta)$.

A pokémon heuristic for colouring bipartite graphs.

Erdős, Rubin, Taylor (1980): $\chi_{\ell}(K_{n,n}) \sim \log_2 n$. Conjecture (Alon & Krivelevich 1998) For any bipartite G of maximum degree Δ , $\chi_{\ell}(G) = O(\log \Delta)$.

Theorem (Johansson 1996+)

For any triangle-free G of maximum degree Δ , $\chi_{\ell}(G) = O(\Delta/\log \Delta)$.

A pokémon heuristic for colouring bipartite graphs. Let [k] be common set of possible colours.

Erdős, Rubin, Taylor (1980): $\chi_{\ell}(K_{n,n}) \sim \log_2 n$. Conjecture (Alon & Krivelevich 1998) For any bipartite G of maximum degree Δ , $\chi_{\ell}(G) = O(\log \Delta)$.

Theorem (Johansson 1996+)

For any triangle-free G of maximum degree Δ , $\chi_{\ell}(G) = O(\Delta/\log \Delta)$.

A pokémon heuristic for colouring bipartite graphs.

Let [k] be common set of possible colours. Colour part *B* by independent uniform colour from [k] for each vertex.

Erdős, Rubin, Taylor (1980): $\chi_{\ell}(K_{n,n}) \sim \log_2 n$.

Conjecture (Alon & Krivelevich 1998)

For any bipartite G of maximum degree Δ , $\chi_{\ell}(G) = O(\log \Delta)$.

Theorem (Johansson 1996+)

For any triangle-free G of maximum degree Δ , $\chi_{\ell}(G) = O(\Delta / \log \Delta)$.

A pokémon heuristic for colouring bipartite graphs.

Let [k] be common set of possible colours. Colour part *B* by independent uniform colour from [k] for each vertex. For each $v \in A$, what is the chance all colours in [k] are blocked?

Erdős, Rubin, Taylor (1980): $\chi_{\ell}(K_{n,n}) \sim \log_2 n$.

Conjecture (Alon & Krivelevich 1998)

For any bipartite G of maximum degree Δ , $\chi_{\ell}(G) = O(\log \Delta)$.

Theorem (Johansson 1996+)

For any triangle-free G of maximum degree Δ , $\chi_{\ell}(G) = O(\Delta / \log \Delta)$.

A pokémon heuristic for colouring bipartite graphs.

Let [k] be common set of possible colours. Colour part *B* by independent uniform colour from [k] for each vertex. For each $v \in A$, what is the chance all colours in [k] are blocked? By our understanding of coupon collector problem, if

$$\deg(v) \leq (1-\varepsilon)k\log k,$$

then this chance is tiny, so there should be a spare colour to use for v.

Erdős, Rubin, Taylor (1980): $\chi_{\ell}(K_{n,n}) \sim \log_2 n$.

Conjecture (Alon & Krivelevich 1998)

For any bipartite G of maximum degree Δ , $\chi_{\ell}(G) = O(\log \Delta)$.

Theorem (Johansson 1996+)

For any triangle-free G of maximum degree Δ , $\chi_{\ell}(G) = O(\Delta/\log \Delta)$.

A pokémon heuristic for colouring bipartite graphs.

Let [k] be common set of possible colours. Colour part *B* by independent uniform colour from [k] for each vertex. For each $v \in A$, what is the chance all colours in [k] are blocked? By our understanding of coupon collector problem, if

$$\deg(v) \leq (1-\varepsilon)k\log k,$$

then this chance is tiny, so there should be a spare colour to use for v. If $k \ge (1 + \varepsilon)\Delta/\log \Delta$, then w.p.p. there's spare colour for every $v \in A$.

Erdős, Rubin, Taylor (1980): $\chi_{\ell}(K_{n,n}) \sim \log_2 n$. Conjecture (Alon & Krivelevich 1998) For any bipartite G of maximum degree Δ , $\chi_{\ell}(G) = O(\log \Delta)$.

Theorem (Johansson 1996+)

For any triangle-free G of maximum degree Δ , $\chi_{\ell}(G) = O(\Delta / \log \Delta)$.

Theorem (Molloy 2019)

For any triangle-free G of maximum degree Δ , $\chi_{\ell}(G) \lesssim \Delta/\log \Delta$.

Erdős, Rubin, Taylor (1980): $\chi_{\ell}(K_{n,n}) \sim \log_2 n$. Conjecture (Alon & Krivelevich 1998) For any bipartite G of maximum degree Δ , $\chi_{\ell}(G) = O(\log \Delta)$.

Theorem (Johansson 1996+)

For any triangle-free G of maximum degree Δ , $\chi_{\ell}(G) = O(\Delta / \log \Delta)$.

Theorem (Molloy 2019)

For any triangle-free G of maximum degree Δ , $\chi_{\ell}(G) \lesssim \Delta/\log \Delta$.

Theorem (Alon, Cambie, Kang 2021)

Any bipartite G of (large enough) maximum degree Δ with parts A and B is (k_A, k_B) -choosable for $k_A = (1 + \varepsilon)\Delta/\log \Delta$ and $k_B = \log \Delta$.

Theorem (Shearer 1983) $\alpha(G) \gtrsim \frac{n \log \Delta}{\Delta}$ for any n-vertex triangle-free G of maximum degree Δ

Sharp up to factor 2 due to the random Δ -regular graphs $G_{n,\Delta}$

Theorem (Shearer 1983) $\alpha(G) \gtrsim \frac{n \log \Delta}{\Delta}$ for any n-vertex triangle-free G of maximum degree Δ

Sharp up to factor 2 due to the random Δ -regular graphs $G_{n,\Delta}$

 $\begin{array}{l} \mbox{Theorem (Davies, Jenssen, Perkins, Roberts 2018)} \\ \frac{Z'_G(1)}{Z_G(1)} \gtrsim \frac{n\log\Delta}{\Delta} \mbox{ for any n-vertex triangle-free } G \mbox{ of maximum degree } \Delta \end{array}$

Sharp due to the random Δ -regular graphs $G_{n,\Delta}$!

Theorem (Shearer 1983) $\alpha(G) \gtrsim \frac{n \log \Delta}{\Delta}$ for any n-vertex triangle-free G of maximum degree Δ

Sharp up to factor 2 due to the random Δ -regular graphs $G_{n,\Delta}$

 $\begin{array}{l} \mbox{Theorem (Davies, Jenssen, Perkins, Roberts 2018)} \\ \frac{Z'_G(1)}{Z_G(1)} \gtrsim \frac{n\log\Delta}{\Delta} \mbox{ for any n-vertex triangle-free } G \mbox{ of maximum degree } \Delta \end{array}$

Sharp due to the random Δ -regular graphs $G_{n,\Delta}$!

Question (Karp 1976)

Is there a polynomial-time algorithm that with high probability outputs an independent set of $G_{n,1/2}$ of size $(1 + \varepsilon) \log_2 n$?

Theorem (Shearer 1983) $\alpha(G) \gtrsim \frac{n \log \Delta}{\Delta}$ for any n-vertex triangle-free G of maximum degree Δ

Sharp up to factor 2 due to the random Δ -regular graphs $G_{n,\Delta}$

 $\begin{array}{l} \mbox{Theorem (Davies, Jenssen, Perkins, Roberts 2018)} \\ \frac{Z'_G(1)}{Z_G(1)} \gtrsim \frac{n\log\Delta}{\Delta} \mbox{ for any n-vertex triangle-free } G \mbox{ of maximum degree } \Delta \end{array}$

Sharp due to the random Δ -regular graphs $G_{n,\Delta}$!

Question (Karp 1976)

Is there a polynomial-time algorithm that with high probability outputs an independent set of $G_{n,\Delta}$ of size $(1 + \varepsilon)(n \log \Delta)/\Delta$?

Theorem (Shearer 1983) $\alpha(G) \gtrsim \frac{n \log \Delta}{\Delta}$ for any n-vertex triangle-free G of maximum degree Δ

Sharp up to factor 2 due to the random Δ -regular graphs $G_{n,\Delta}$

 $\begin{array}{l} \mbox{Theorem (Davies, Jenssen, Perkins, Roberts 2018)} \\ \frac{Z'_G(1)}{Z_G(1)} \gtrsim \frac{n\log\Delta}{\Delta} \mbox{ for any n-vertex triangle-free } G \mbox{ of maximum degree } \Delta \end{array}$

Sharp due to the random Δ -regular graphs $G_{n,\Delta}$!

Question (Karp 1976)

Is there a polynomial-time algorithm that with high probability outputs an independent set of $G_{n,\Delta}$ of size $(1 + \varepsilon)(n \log \Delta)/\Delta$?

Conjecture (Davies, Jenssen, Perkins, Roberts 2018)

$$\alpha(G) \gtrsim 2 \cdot \frac{Z'_G(1)}{Z_G(1)}$$
 for any triangle-free G of minimum degree δ

QUESTIONS?

