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Some classics



Brooks’ theorem

Theorem (Brooks 1941)

χ(G) ≤ ∆(G) unless G = K∆(G)+1 or G is an odd cycle.



Off-diagonal Ramsey numbers†

Ramsey (1930), Erdős & Szekeres (1935)

R(3, k) : smallest n such that any red/blue-edge-coloured Kn

with no red K3 must contain a blue Kk

†Picture credit: Soifer 2009



Vizing’s problem

Vizing, “Some unsolved problems in graph theory” (1968):



Vizing’s problem

Vizing, “Some unsolved problems in graph theory” (1968):



A common landscape



Measures of sparsity/structure

δ ≤ deg ≤ ∆

ω ≤ ρ ≤ χf ≤ χ ≤ χℓ ≤ ∆+ 1

where ρ = max
∅̸=H⊆G

|H|
α(H)

(upper bounds on ρ are like lower bounds on α)
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Local to global

What global graph structure arises
from conditions on local structure?

Examples:

• (Brooks’ theorem) ω ≤ ∆(> 2) =⇒ χ ≤ ∆

• (Off-diagonal Ramsey numbers) ω ≤ 2 =⇒ small ρ

• (Vizing’s problem) ω ≤ 2 =⇒ χ ≪ ∆?

• (Reed’s) χ ≤
⌈
1
2
(ω +∆+ 1)

⌉
?

• (Ajtai–Erdős–Komlós–Szemerédi) ω ≤ k =⇒ ρ ≤ Ck
∆

log∆
?

• (Alon–Krivelevich) χ ≤ 2 =⇒ χℓ ≤ C log∆?
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∆

log∆
?

• (Alon–Krivelevich) χ ≤ 2 =⇒ χℓ ≤ C log∆?



Local to global

What global graph structure arises
from conditions on local structure?

Examples:

• (Brooks’ theorem) ω ≤ ∆(> 2) =⇒ χ ≤ ∆

• (Off-diagonal Ramsey numbers) ω ≤ 2 =⇒ small ρ

• (Vizing’s problem) ω ≤ 2 =⇒ χ ≪ ∆?

• (Reed’s) χ ≤
⌈
1
2
(ω +∆+ 1)

⌉
?
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Probabilistic method

If random object has property with positive probability,
then there exists at least one object with that property



Random links



Stochastic local search

Suppose quest for some “flawless” combinatorial object uses
a stochastic procedure with only local changes at each step

What are the theoretical limits of such algorithms?
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Suppose quest for some “flawless” combinatorial object uses
a stochastic procedure with only local changes at each step

What are the theoretical limits of such algorithms?



Hard-core model‡

‡More fully, the lattice gas with hard-core self-repulsion and nearest-neighbour exclusion.
Picture credit: Wikipedia/Grap-wh



Semi-random method (or Rödl nibble)

Iterated application of probabilistic method to create structured object
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Iterated application of probabilistic method to create structured object



Gotta catch ‘em all

At each turn you get a random pokémon (card)

How long until you have at least one of each type?
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Triangle-free graphs



Off-diagonal Ramsey numbers

∗

i.e. Independence number of triangle-free graphs

R(3, k) : smallest n such that any red/blue-edge-coloured Kn

with no red K3 must contain a blue Kk

R(3, k) : minimum order of triangle-free G that guarantees α(G) ≥ k

Theorem (Shearer 1983, cf. Ajtai, Komlós, Szemerédi 1980/1)

R(3, k) ≲
k2

log k

α(G) ≳
n log∆

∆
for any n-vertex triangle-free G of maximum degree ∆

Theorem (Bohman & Keevash 2021, Fiz Pontiveros, Griffiths, Morris
2020, cf. Kim 1995)

R(3, k) ≳
k2

4 log k
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Off-diagonal Ramsey numbers∗

i.e.

Independence number of triangle-free graphs

R(3, k) : largest n such that there is red/blue-edge-coloured Kn−1

with no red triangle and no blue Kk

R(3, k) : minimum size of triangle-free G guaranteeing α(G) ≥ k

Theorem (Shearer 1983, cf. Ajtai, Komlós, Szemerédi 1980/1)

R(3, k) ≲
k2

log k

α(G) ≳
n log∆

∆
for any n-vertex triangle-free G of maximum degree ∆

Theorem (Bollobás 1981)

ρ(G) ≥ ∆

2 log∆
and G has arbitrarily large girth wpp for G ∼ Gn,∆
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Chromatic number of triangle-free graphs,

a Ramsey-type problem

Perhaps one should start with estimates of the chromatic number of a graph without

triangles (ω = 2) and with given maximal degree for vertices. (Vizing 1968)

ω(G) ≤ ρ(G) ≤ χf (G) ≤ χ(G) ≤ χℓ(G) ≤ ∆(G) + 1

Theorem (Shearer 1983, cf. Ajtai, Komlós, Szemerédi 1980/1)

ρ(G) ≲
∆

log∆
for any triangle-free G of maximum degree ∆

Theorem (Davies, de Joannis de Verclos, Kang, Pirot 2021)

χf (G) ≲
∆

log∆
for any triangle-free G of maximum degree ∆ ;

Theorem (

Molloy 2019, cf.

Johansson 1996+)

χℓ(G) = O

(
∆

log∆

)
for any triangle-free G of maximum degree ∆

(
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Another Ramsey-type problem



ω, ∆, χ conjecture

ω(G) ≤ ρ(G) ≤ χf (G) ≤χ(G)≤ χℓ(G) ≤ ∆(G) + 1

Conjecture (Reed 1998)

χ(G) ≤
⌈
ω +∆+ 1

2

⌉
for any G of clique number ω and maximum degree ∆

Odd cycles have ω = 2, ∆ = 2, χ = 3

Chvátal graph (1970)§ has ω = 2, ∆ = 4, χ = 4

Bound holds for:

• ω = 2, ∆ large enough (Johansson 1996+)

(ω ≤ ∆1/100, ∆ large enough (Davies, Kang, Pirot, Sereni 2020+))

• for ω ≥ ∆− 1 (Brooks 1941)

§Picture credit: Wikipedia/David Eppstein
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ω, ∆, χ conjecture

Theorem (Reed 1998)

χ(G) ≤
⌈
ω +∆+ 1

2

⌉
for any G of clique number ω and maximum degree ∆

provided ω ≥ (1− ε1)∆ for some ε1 > 0 and ∆ is large enough

Corollary

χ(G) ≤ ⌈ε2ω + (1− ε2)(∆ + 1)⌉ for any G of clique number ω and maximum
degree ∆ for some ε2 > 0 provided ∆ is large enough

• Reed (1998): ε2 > 0.000000005

• Bonamy, Perrett, Postle (2022): ε2 > 0.038

• Delcourt, Postle (2017+): ε2 > 0.076

• Hurley, de Joannis de Verclos, Kang (2021): ε2 > 0.119

NB: ε2 may not be larger than 0.5
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Local density



Local density

no edge in any neighbourhood

⇐⇒ triangle-free

↓

at most a certain proportion of edges per neighbourhood

G of max degree ∆ has local density ≤ η if ≤ η
(
∆
2

)
edges per neighbourhood

η < 1/
(
∆
2

)
means triangle-free, η = 1 means unrestricted
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Chromatic number of locally sparse graphs

Largest chromatic number for local density ≤ η for η near 0?

Theorem (Alon, Krivelevich, Sudakov 1999, cf. Vu 2002, Achlioptas,
Iliopoulos, Sinclair 2019)

χ(G) = O

(
∆

log e√
η

)
for any G of maximum degree ∆

and local density at most η, 1
∆2 ≤ η ≤ 1

Theorem (Davies, Kang, Pirot, Sereni 2020+, cf. Davies, de Joannis de
Verclos, Kang, Pirot 2021)

χ(G) ≲
∆

log e√
η

for any G of maximum degree ∆

and local density at most η, 1
∆2 ≤ η ≪ 1

η = 1
∆2 matches Molloy’s; the bound is sharp up to a factor of between 2 and 4

NB : η = 1 should match ∆ + 1 bound, but neither gives this. . .
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Local occupancy method

Theorem (Davies, Kang, Pirot, Sereni 2020+)

χ(G) ≲
∆

log e√
η

for any G of maximum degree ∆

and local density at most η, 1
∆2 ≤ η ≪ 1

Corollary to a broad framework for deriving global graph structure built upon

local analysis of hard-core model + entropy compression

(NB: also gives record for e.g. Ajtai–Erdős–Komlós–Szemerédi conjecture)
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Chromatic number of
graphs of bounded local density

Largest chromatic number for local density ≤ η for η near 1?

Nontrivial improvement on χ ≤ ∆+ 1?

Yes (asymptotically):

Theorem (Molloy & Reed 1997)

χ(G) ≤ (1− ε)∆ for any G of maximum degree ∆ and local density at most η
for some ε(η) > 0 provided ∆ is large enough

Lower bounds on ε key to bounds for Reed’s and Erdős-Nešeťril conjectures
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Chromatic number of
graphs of bounded local density

Theorem (Molloy & Reed 1997)

χ(G) ≤ (1− ε)∆ for any G of maximum degree ∆ and local density at most η
for some ε(η) > 0 provided ∆ is large enough

• Molloy & Reed (1997): ε > 0.0238(1− η)

• Bruhn & Joos (2018): ε > 0.1827(1− η)− 0.0778(1− η)3/2

• Bonamy, Perrett, Postle (2022): ε > 0.3012(1− η)− 0.1283(1− η)3/2

• Hurley, de Joannis de Verclos, Kang (2021):
ε > 0.5(1− η)− 0.1667(1− η)3/2

Clique of size
√
η ·∆ (+ pendant vertices) =⇒ ε ≤ 1−√

η ∼
η→1

0.5(1− η)
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Chromatic number of
graphs of bounded local density

Theorem (Hurley, de Joannis de Verclos, Kang 2021)

χ(G) ≤ (1− 0.5(1− η) + 0.1667(1− η)3/2)∆ for any G of maximum degree ∆
and local density at most η provided ∆ is large enough

Clique of size
√
1− σ ·∆ (+ pendant vertices)



Näıve random colouring

Theorem (Hurley, de Joannis de Verclos, Kang 2021)

χ(G) ≤ (1− 0.5(1− η) + 0.1667(1− η)3/2)∆ for any G of maximum degree ∆
and local density at most η provided ∆ is large enough



Link up?

Theorem (Davies, Kang, Pirot, Sereni 2020+)

χ(G) ≲
∆

log e√
η

for any G of maximum degree ∆

and local density at most η, 1
∆2 ≤ η ≪ 1

Theorem (Hurley, de Joannis de Verclos, Kang 2021)

χ(G) ≤ (1− 0.5(1− η) + 0.1667(1− η)3/2)∆ for any G of maximum degree ∆
and local density at most η provided ∆ is large enough





Beyond?

Erdős, Rubin, Taylor (1980): χℓ(Kn,n) ∼ log2 n.

Conjecture (Alon & Krivelevich 1998)

For any bipartite G of maximum degree ∆, χℓ(G) = O(log∆).

Theorem (Johansson 1996+)

For any triangle-free G of maximum degree ∆, χℓ(G) = O(∆/ log∆).
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A pokémon heuristic for colouring bipartite graphs.

Let [k] be common set of possible colours.
Colour part B by independent uniform colour from [k] for each vertex.
For each v ∈ A, what is the chance all colours in [k] are blocked?
By our understanding of coupon collector problem, if

deg(v) ≤ (1− ε)k log k,

then this chance is tiny, so there should be a spare colour to use for v .
If k ≥ (1 + ε)∆/ log∆, then w.p.p. there’s spare colour for every v ∈ A.
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Beyond?

Theorem (Shearer 1983)

α(G) ≳
n log∆

∆
for any n-vertex triangle-free G of maximum degree ∆

Sharp up to factor 2 due to the random ∆-regular graphs Gn,∆

Theorem (Davies, Jenssen, Perkins, Roberts 2018)
Z ′
G (1)

ZG (1)
≳

n log∆

∆
for any n-vertex triangle-free G of maximum degree ∆

Sharp due to the random ∆-regular graphs Gn,∆!

Question (Karp 1976)

Is there a polynomial-time algorithm that with high probability outputs an
independent set

Conjecture (Davies, Jenssen, Perkins, Roberts 2018)

α(G) ≳ 2 · Z
′
G (1)

ZG (1)
for any triangle-free G of minimum degree δ
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