FROM LOCAL SPARSITY TO GLOBAL

Ross J. Kang*

Dutch Day of Combinatorics
Eindhoven 12/5/2022

*With Alon, Cambie, Davies, Hurley, de Joannis de Verclos, Pirot, Sereni. Support from NWO.
Some classics
Brooks’ theorem

Theorem (Brooks 1941)

\[\chi(G) \leq \Delta(G) \text{ unless } G = K_{\Delta(G)+1} \text{ or } G \text{ is an odd cycle.} \]
Off-diagonal Ramsey numbers†

Ramsey (1930), Erdős & Szekeres (1935)

\[R(3, k) : \text{smallest } n \text{ such that any red/blue-edge-coloured } K_n \]
\[\text{with no red } K_3 \text{ must contain a blue } K_k \]

†Picture credit: Soifer 2009
Vizing, “Some unsolved problems in graph theory” (1968):

Можно ли для любого наперед заданного натурального числа \(k \geq 2 \) построить граф со сколь угодно большим обхватом и с хроматическим числом \(k \)? Можно. Это доказал П. Эрдёш [39], основываясь на мощностных соображениях. Удивительно, что до сих пор нет констрктивного доказательства этого факта. В [40] указан способ построения графов с любым хроматическим числом без циклов длины \(\leq 7 \). Это лучшее, что мы имеем на сегодняшний день.

Если \(\sigma (L) \) — максимальная степень вершины графа \(L \), то, очевидно, \(\gamma (L) \leq \sigma (L) + 1 \). В 1941 г. Р. Брукс [41] доказал, что при \(\sigma (L) \geq 3 \) и \(\omega (L) \leq \sigma (L) \) справедлива оценка \(\gamma (L) \leq \sigma (L) \). Дальнейшие исследования можно проводить, учитывая более точно соотношения между \(\sigma \) и \(\omega \). Пожалуй, следует начать с оценки хроматического числа графа без треугольников \((\omega = 2) \) с данной максимальной степенью вершины.
Vizing's problem

Vizing, "Some unsolved problems in graph theory" (1968):

Given a natural number $k \geq 2$, is it possible to construct a graph with arbitrarily large compass and with chromatic number k? Erdős [39] has proved this; his proof is based on counting arguments. It is astonishing that no constructive proof for this fact has yet been given. In [40] a method is given of constructing graphs of arbitrary chromatic number without having cycles of length ≤ 7. This is the best we have at the present time.

If $\sigma(L)$ is the maximum degree of a vertex in a graph L, it is clear that $\gamma(L) < \sigma(L) + 1$. Brooks [41] showed in 1941 that $\gamma(L) \leq \sigma(L)$ whenever $\sigma(L) > 3$ and $\omega(L) \leq \sigma(L)$. Further investigations could be conducted, taking into account a more exact relation between σ and ω. Perhaps one should start with estimates of the chromatic number of a graph without triangles ($\omega = 2$) and with given maximal degree for vertices.
A common landscape
Measures of sparsity/structure

\[\delta \leq \underline{\text{deg}} \leq \Delta \]
Measures of sparsity/structure

\[\delta \leq \text{deg} \leq \Delta \]

\[\omega \leq \rho \leq \chi_f \leq \chi \leq \chi_\ell \leq \Delta + 1 \]
Measures of sparsity/structure

\[\delta \leq \overline{\text{deg}} \leq \Delta \]

\[\omega \leq \rho \leq \chi_f \leq \chi \leq \chi_{\ell} \leq \Delta + 1 \]

where \(\rho = \max_{\emptyset \neq H \subseteq G} \frac{|H|}{\alpha(H)} \)

(upper bounds on \(\rho \) are like lower bounds on \(\alpha \))
Local to global

What global graph structure arises from conditions on local structure?
Local to global

What global graph structure arises from conditions on local structure?

Examples:

- (Brooks’ theorem) \(\omega \leq \Delta (> 2) \implies \chi \leq \Delta \)
What global graph structure arises from conditions on local structure?

Examples:

- (Brooks’ theorem) \(\omega \leq \Delta (> 2) \implies \chi \leq \Delta \)
- (Off-diagonal Ramsey numbers) \(\omega \leq 2 \implies \text{small } \rho \)
Local to global

What global graph structure arises from conditions on local structure?

Examples:

- (Brooks’ theorem) $\omega \leq \Delta (> 2) \implies \chi \leq \Delta$
- (Off-diagonal Ramsey numbers) $\omega \leq 2 \implies$ small ρ
- (Vizing’s problem) $\omega \leq 2 \implies \chi \ll \Delta$?
What global graph structure arises from conditions on local structure?

Examples:

- (Brooks’ theorem) \(\omega \leq \Delta(>2) \implies \chi \leq \Delta \)
- (Off-diagonal Ramsey numbers) \(\omega \leq 2 \implies \text{small } \rho \)
- (Vizing’s problem) \(\omega \leq 2 \implies \chi \ll \Delta? \)
- (Reed’s) \(\chi \leq \left\lceil \frac{1}{2}(\omega + \Delta + 1) \right\rceil? \)
Local to global

What global graph structure arises from conditions on local structure?

Examples:

- (Brooks’ theorem)
 \[\omega \leq \Delta (>2) \implies \chi \leq \Delta \]
- (Off-diagonal Ramsey numbers)
 \[\omega \leq 2 \implies \text{small } \rho \]
- (Vizing’s problem)
 \[\omega \leq 2 \implies \chi \ll \Delta ? \]
- (Reed’s)
 \[\chi \leq \left\lfloor \frac{1}{2}(\omega + \Delta + 1) \right\rfloor ? \]
- (Ajtai–Erdős–Komlós–Szemerédi)
 \[\omega \leq k \implies \rho \leq C_k \frac{\Delta}{\log \Delta} ? \]
Local to global

What global graph structure arises from conditions on local structure?

Examples:

• (Brooks’ theorem) \(\omega \leq \Delta(>2) \implies \chi \leq \Delta \)
 \(\omega \leq 2 \implies \text{small } \rho \)
 \(\omega \leq 2 \implies \chi \ll \Delta? \)

• (Off-diagonal Ramsey numbers) \(\omega \leq 2 \implies \chi \ll \Delta? \)

• (Vizing’s problem) \(\chi \leq \left\lfloor \frac{1}{2}(\omega + \Delta + 1) \right\rfloor ? \)

• (Reed’s) \(\omega \leq k \implies \rho \leq C_k \frac{\Delta}{\log \Delta} ? \)

• (Ajtai–Erdős–Komlós–Szemerédi) \(\chi \leq 2 \implies \chi^\ell \leq C \log \Delta? \)

• (Alon–Krivelevich)
Probabilistic method

If random object has property with positive probability, then there exists \textit{at least one} object with that property.
Random links
Suppose quest for some “flawless” combinatorial object uses a stochastic procedure with only local changes at each step.
Suppose quest for some “flawless” combinatorial object uses a stochastic procedure with only local changes at each step.

What are the theoretical limits of such algorithms?
Semi-random method (or Rödl nibble)

Iterated application of probabilistic method to create structured object
Semi-random method (or Rödl nibble)

Iterated application of probabilistic method to create structured object
Semi-random method (or Rödl nibble)

Iterated application of probabilistic method to create structured object
Semi-random method (or Rödl nibble)

Iterated application of probabilistic method to create structured object
Semi-random method (or Rödl nibble)

Iterated application of probabilistic method to create structured object
Semi-random method (or Rödl nibble)

Iterated application of probabilistic method to create structured object
Semi-random method (or Rödl nibble)

Iterated application of probabilistic method to create structured object
Gotta catch ‘em all

At each turn you get a random pokémon (card)
At each turn you get a random pokémon (card)
How long until you have at least one of each type?
Off-diagonal Ramsey numbers

\[R(3, k) : \text{smallest } n \text{ such that any red/blue-edge-coloured } K_n \text{ with no red } K_3 \text{ must contain a blue } K_k \]
Off-diagonal Ramsey numbers
i.e. Independence number of triangle-free graphs

\[R(3, k) : \text{smallest } n \text{ such that any red/blue-edge-coloured } K_n \]
\[\text{with no red } K_3 \text{ must contain a blue } K_k \]
\[R(3, k) : \text{minimum order of triangle-free } G \text{ that guarantees } \alpha(G) \geq k \]
Off-diagonal Ramsey numbers
i.e. Independence number of triangle-free graphs

$R(3, k)$: smallest n such that any red/blue-edge-coloured K_n
with no red K_3 must contain a blue K_k

$R(3, k)$: minimum order of triangle-free G that guarantees $\alpha(G) \geq k$

Theorem (Shearer 1983, cf. Ajtai, Komlós, Szemerédi 1980/1)

$$R(3, k) \lesssim \frac{k^2}{\log k}$$
Off-diagonal Ramsey numbers
i.e. Independence number of triangle-free graphs

\(R(3, k) \) : smallest \(n \) such that any red/blue-edge-coloured \(K_n \) with no red \(K_3 \) must contain a blue \(K_k \)

\(R(3, k) \) : minimum order of triangle-free \(G \) that guarantees \(\alpha(G) \geq k \)

Theorem (Shearer 1983, cf. Ajtai, Komlós, Szemerédi 1980/1)

\[
R(3, k) \lesssim \frac{k^2}{\log k}
\]

\[
R(3, k) \gtrsim \frac{k^2}{4 \log k}
\]
Off-diagonal Ramsey numbers
i.e. Independence number of triangle-free graphs

\[R(3, k) : \text{smallest } n \text{ such that any red/blue-edge-coloured } K_n \]
with no red \(K_3\) must contain a blue \(K_k\)

\[R(3, k) : \text{minimum order of triangle-free } G \text{ that guarantees } \alpha(G) \geq k \]

Theorem (Shearer 1983, cf. Ajtai, Komlós, Szemerédi 1980/1)

\[R(3, k) \lesssim \frac{k^2}{\log k} \]

\[\alpha(G) \gtrsim \frac{n \log \Delta}{\Delta} \text{ for any } n\text{-vertex triangle-free } G \text{ of maximum degree } \Delta \]

\[R(3, k) \gtrsim \frac{k^2}{4 \log k} \]
Theorem (Shearer 1983, cf. Ajtai, Komlós, Szemerédi 1980/1)

\[\alpha(G) \gtrsim \frac{n \log \Delta}{\Delta} \]

for any \(n \)-vertex triangle-free \(G \) of maximum degree \(\Delta \)
Theorem (Shearer 1983, cf. Ajtai, Komlós, Szemerédi 1980/1)

\[\rho(G) \lesssim \frac{\Delta}{\log \Delta} \quad \text{for any triangle-free } G \text{ of maximum degree } \Delta \]

where \(\rho = \max_{\emptyset \neq H \subseteq G} \frac{|H|}{\alpha(H)} \)
Theorem (Shearer 1983, cf. Ajtai, Komlós, Szemerédi 1980/1)

\[\rho(G) \lesssim \frac{\Delta}{\log \Delta} \quad \text{for any triangle-free } G \text{ of maximum degree } \Delta \]

Theorem (Bollobás 1981)

\[\rho(G) \geq \frac{\Delta}{2 \log \Delta} \quad \text{and } G \text{ has arbitrarily large girth wpp for } G \sim G_{n,\Delta} \]
Perhaps one should start with estimates of the chromatic number of a graph without triangles ($\omega = 2$) and with given maximal degree for vertices. (Vizing 1968)
Perhaps one should start with estimates of the chromatic number of a graph without triangles ($\omega = 2$) and with given maximal degree for vertices. (Vizing 1968)

$$
\omega(G) \leq \rho(G) \leq \chi_f(G) \leq \chi(G) \leq \chi_\ell(G) \leq \Delta(G) + 1
$$

Theorem (Shearer 1983, cf. Ajtai, Komlós, Szemerédi 1980/1)

$$
\rho(G) \lesssim \frac{\Delta}{\log \Delta} \text{ for any triangle-free } G \text{ of maximum degree } \Delta
$$
Chromatic number of triangle-free graphs,
a Ramsey-type problem

Perhaps one should start with estimates of the chromatic number of a graph without triangles ($\omega = 2$) and with given maximal degree for vertices. (Vizing 1968)

$$\omega(G) \leq \rho(G) \leq \chi_f(G) \leq \chi(G) \leq \chi_\ell(G) \leq \Delta(G) + 1$$

Theorem (Shearer 1983, cf. Ajtai, Komlós, Szemerédi 1980/1)
$$\rho(G) \lesssim \frac{\Delta}{\log \Delta} \text{ for any triangle-free } G \text{ of maximum degree } \Delta$$

$$\chi_\ell(G) = O \left(\frac{\Delta}{\log \Delta} \right) \text{ for any triangle-free } G \text{ of maximum degree } \Delta$$
Perhaps one should start with estimates of the chromatic number of a graph without triangles ($\omega = 2$) and with given maximal degree for vertices. (Vizing 1968)

$$\omega(G) \leq \rho(G) \leq \chi_f(G) \leq \chi(G) \leq \chi_\ell(G) \leq \Delta(G) + 1$$

Theorem (Shearer 1983, cf. Ajtai, Komlós, Szemerédi 1980/1)
$$\rho(G) \lesssim \frac{\Delta}{\log \Delta} \text{ for any triangle-free } G \text{ of maximum degree } \Delta$$

$$\chi_\ell(G) \lesssim \frac{\Delta}{\log \Delta} \text{ for any triangle-free } G \text{ of maximum degree } \Delta$$
Chromatic number of triangle-free graphs, a Ramsey-type problem

Perhaps one should start with estimates of the chromatic number of a graph without triangles ($\omega = 2$) and with given maximal degree for vertices. (Vizing 1968)

$$\omega(G) \leq \rho(G) \leq \chi_f(G) \leq \chi(G) \leq \chi_{\ell}(G) \leq \Delta(G) + 1$$

Theorem (Shearer 1983, cf. Ajtai, Komlós, Szemerédi 1980/1)
$$\rho(G) \lesssim \frac{\Delta}{\log \Delta} \text{ for any triangle-free } G \text{ of maximum degree } \Delta$$

Theorem (Davies, de Joannis de Verclos, Kang, Pirot 2021)
$$\chi_f(G) \lesssim \frac{\Delta}{\log \Delta} \text{ for any triangle-free } G \text{ of maximum degree } \Delta \quad \sim$$

$$\chi_{\ell}(G) \lesssim \frac{\Delta}{\log \Delta} \text{ for any triangle-free } G \text{ of maximum degree } \Delta$$
Another Ramsey-type problem
\[\omega(G) \leq p(G) \leq \chi_f(G) \leq \chi(G) \leq \chi\ell(G) \leq \Delta(G) + 1 \]
\(\omega, \Delta, \chi\) CONJECTURE

\[
\omega(G) \leq \rho(G) \leq \chi_f(G) \leq \chi(G) \leq \chi_e(G) \leq \Delta(G) + 1
\]

Conjecture (Reed 1998)

\[
\chi(G) \leq \left\lfloor \frac{\omega + \Delta + 1}{2} \right\rfloor \quad \text{for any } G \text{ of clique number } \omega \text{ and maximum degree } \Delta
\]

§Picture credit: Wikipedia/David Eppstein
\[\omega(G) \leq \rho(G) \leq \chi_f(G) \leq \chi(G) \leq \chi_e(G) \leq \Delta(G) + 1 \]

Conjecture (Reed 1998)
\[\chi(G) \leq \left\lceil \frac{\omega + \Delta + 1}{2} \right\rceil \text{ for any } G \text{ of clique number } \omega \text{ and maximum degree } \Delta \]

Odd cycles have \(\omega = 2, \Delta = 2, \chi = 3 \)
Conjecture (Reed 1998)
\[\chi(G) \leq \left\lceil \frac{\omega + \Delta + 1}{2} \right\rceil \] for any G of clique number \(\omega \) and maximum degree \(\Delta \)

Odd cycles have \(\omega = 2, \Delta = 2, \chi = 3 \)

Chvátal graph (1970)\(^\S\) has \(\omega = 2, \Delta = 4, \chi = 4 \)

\(^\S\)Picture credit: Wikipedia/David Eppstein
\[\omega(G) \leq \rho(G) \leq \chi_f(G) \leq \chi(G) \leq \chi_e(G) \leq \Delta(G) + 1 \]

Conjecture (Reed 1998)
\[\chi(G) \leq \left\lfloor \frac{\omega + \Delta + 1}{2} \right\rfloor \]
for any \(G \) of clique number \(\omega \) and maximum degree \(\Delta \)

Odd cycles have \(\omega = 2, \Delta = 2, \chi = 3 \)

Chvátal graph (1970)\(^\S\) has \(\omega = 2, \Delta = 4, \chi = 4 \)

Bound holds for:
- \(\omega = 2, \Delta \) large enough (Johansson 1996+)\(^\S\)
- for \(\omega \geq \Delta - 1 \) (Brooks 1941)

\(^\S\)Picture credit: Wikipedia/David Eppstein
\[\omega(G) \leq \rho(G) \leq \chi_f(G) \leq \chi(G) \leq \chi_e(G) \leq \Delta(G) + 1 \]

Conjecture (Reed 1998)

\[\chi(G) \leq \left\lceil \frac{\omega + \Delta + 1}{2} \right\rceil \quad \text{for any } G \text{ of clique number } \omega \text{ and maximum degree } \Delta \]

Odd cycles have \(\omega = 2, \Delta = 2, \chi = 3 \)

Chvátal graph (1970)§ has \(\omega = 2, \Delta = 4, \chi = 4 \)

Bound holds for:
- \(\omega = 2, \Delta \) large enough (Johansson 1996+)
 \((\omega \leq \Delta^{1/100}, \Delta \) large enough (Davies, Kang, Pirot, Sereni 2020+))
- for \(\omega \geq \Delta - 1 \) (Brooks 1941)

§Picture credit: Wikipedia/David Eppstein
Theorem (Reed 1998)

\[\chi(G) \leq \left\lceil \frac{\omega + \Delta + 1}{2} \right\rceil \]

for any G of clique number \(\omega \) and maximum degree \(\Delta \)

provided \(\omega \geq (1 - \varepsilon_1)\Delta \) for some \(\varepsilon_1 > 0 \) and \(\Delta \) is large enough.
Theorem (Reed 1998)

\[
\chi(G) \leq \left\lceil \frac{\omega + \Delta + 1}{2} \right\rceil
\]

for any \(G \) of clique number \(\omega \) and maximum degree \(\Delta \) provided \(\omega \geq (1 - \varepsilon_1)\Delta \) for some \(\varepsilon_1 > 0 \) and \(\Delta \) is large enough.

Corollary

\[
\chi(G) \leq \left\lceil \varepsilon_2\omega + (1 - \varepsilon_2)(\Delta + 1) \right\rceil
\]

for any \(G \) of clique number \(\omega \) and maximum degree \(\Delta \) for some \(\varepsilon_2 > 0 \) provided \(\Delta \) is large enough.
Theorem (Reed 1998)
\[\chi(G) \leq \left\lceil \frac{\omega + \Delta + 1}{2} \right\rceil \]
for any G of clique number \(\omega \) and maximum degree \(\Delta \)
provided \(\omega \geq (1 - \varepsilon_1)\Delta \) for some \(\varepsilon_1 > 0 \) and \(\Delta \) is large enough

Corollary
\[\chi(G) \leq \lceil \varepsilon_2 \omega + (1 - \varepsilon_2)(\Delta + 1) \rceil \]
for any G of clique number \(\omega \) and maximum degree \(\Delta \) for some \(\varepsilon_2 > 0 \) provided \(\Delta \) is large enough

- Reed (1998): \(\varepsilon_2 > 0.000000005 \)

NB: \(\varepsilon_2 \) may not be larger than 0.5
\(\omega, \Delta, \chi \) CONJECTURE

Theorem (Reed 1998)
\[\chi(G) \leq \left[\frac{\omega + \Delta + 1}{2} \right] \]
for any \(G \) of clique number \(\omega \) and maximum degree \(\Delta \)
provided \(\omega \geq (1 - \varepsilon_1)\Delta \) for some \(\varepsilon_1 > 0 \) and \(\Delta \) is large enough

Corollary
\[\chi(G) \leq \left\lceil \varepsilon_2 \omega + (1 - \varepsilon_2)(\Delta + 1) \right\rceil \]
for any \(G \) of clique number \(\omega \) and maximum degree \(\Delta \) for some \(\varepsilon_2 > 0 \) provided \(\Delta \) is large enough

- Reed (1998): \(\varepsilon_2 > 0.000000005 \)
- Bonamy, Perrett, Postle (2022): \(\varepsilon_2 > 0.038 \)
- Delcourt, Postle (2017+): \(\varepsilon_2 > 0.076 \)

NB: \(\varepsilon_2 \) may not be larger than 0.5
\(\omega, \Delta, \chi \) CONJECTURE

Theorem (Reed 1998)
\[
\chi(G) \leq \left\lceil \frac{\omega + \Delta + 1}{2} \right\rceil
\]
for any \(G \) of clique number \(\omega \) and maximum degree \(\Delta \)
provided \(\omega \geq (1 - \varepsilon_1)\Delta \) for some \(\varepsilon_1 > 0 \) and \(\Delta \) is large enough

Corollary
\[
\chi(G) \leq \lceil \varepsilon_2\omega + (1 - \varepsilon_2)(\Delta + 1) \rceil
\]
for any \(G \) of clique number \(\omega \) and maximum degree \(\Delta \) for some \(\varepsilon_2 > 0 \) provided \(\Delta \) is large enough

- Reed (1998): \(\varepsilon_2 > 0.000000005 \)
- Bonamy, Perrett, Postle (2022): \(\varepsilon_2 > 0.038 \)
- Delcourt, Postle (2017+): \(\varepsilon_2 > 0.076 \)
- Hurley, de Joannis de Verclos, Kang (2021): \(\varepsilon_2 > 0.119 \)

NB: \(\varepsilon_2 \) may not be larger than 0.5
Local density
Local density

no edge in any neighbourhood

\(\Rightarrow \) triangle-free

\[\downarrow \]

at most a certain proportion of edges per neighbourhood

\(G \) of max degree \(\Delta \) has local density \(\leq \eta \) if

\[\leq \eta \leq \Delta^2 \]

\(\eta < \frac{1}{\Delta^2} \) means triangle-free,

\(\eta = 1 \) means unrestricted
Local density

no edge in any neighbourhood \iff triangle-free
Local density

no edge in any neighbourhood \iff triangle-free

\[\downarrow \]

at most a certain proportion of edges per neighbourhood
Local density

no edge in any neighbourhood ⇐⇒ triangle-free

↓

at most a certain proportion of edges per neighbourhood

G of max degree Δ has local density $\leq \eta$ if $\leq \eta\left(\frac{\Delta}{2}\right)$ edges per neighbourhood
Local density

no edge in any neighbourhood \iff triangle-free

\[\downarrow \]

at most a certain proportion of edges per neighbourhood

G of max degree Δ has local density $\leq \eta$ if $\leq \eta\binom{\Delta}{2}$ edges per neighbourhood

$\eta < 1/\binom{\Delta}{2}$ means triangle-free, $\eta = 1$ means unrestricted
Largest chromatic number for local density $\leq \eta$ for η near 0?
Largest chromatic number for local density $\leq \eta$ for η near 0?

\[\chi(G) = O \left(\frac{\Delta}{\log \frac{e}{\sqrt{\eta}}} \right) \text{ for any } G \text{ of maximum degree } \Delta \]

and local density at most η, $\frac{1}{\Delta^2} \leq \eta \leq 1$
Chromatic number of locally sparse graphs

Largest chromatic number for local density $\leq \eta$ for η near 0?

$$\chi(G) = O\left(\frac{\Delta}{\log \frac{e}{\sqrt{\eta}}}\right) \text{ for any } G \text{ of maximum degree } \Delta$$

and local density at most η, $\frac{1}{\Delta^2} \leq \eta \leq 1$

Theorem (Davies, Kang, Pirot, Sereni 2020+, cf. Davies, de Joannis de Verclos, Kang, Pirot 2021)

$$\chi(G) \precsim \frac{\Delta}{\log \frac{e}{\sqrt{\eta}}} \text{ for any } G \text{ of maximum degree } \Delta$$

and local density at most η, $\frac{1}{\Delta^2} \leq \eta \ll 1$
chromatic number of locally sparse graphs

Largest chromatic number for local density $\leq \eta$ for η near 0?

$$\chi(G) = O\left(\frac{\Delta}{\log \frac{e}{\sqrt{\eta}}} \right)$$

for any G of maximum degree Δ

and local density at most η, $\frac{1}{\Delta^2} \leq \eta \leq 1$

Theorem (Davies, Kang, Pirot, Sereni 2020+, cf. Davies, de Joannis de Verclos, Kang, Pirot 2021)

$$\chi(G) \lesssim \frac{\Delta}{\log \frac{e}{\sqrt{\eta}}}$$

for any G of maximum degree Δ

and local density at most η, $\frac{1}{\Delta^2} \leq \eta \ll 1$

$\eta = \frac{1}{\Delta^2}$ matches Molloy’s;
Chromatic number of locally sparse graphs

Largest chromatic number for local density $\leq \eta$ for η near 0?

$$\chi(G) = O\left(\frac{\Delta}{\log \frac{e}{\sqrt{\eta}}}\right)$$
for any G of maximum degree Δ
and local density at most η, $\frac{1}{\Delta^2} \leq \eta \leq 1$

Theorem (Davies, Kang, Pirot, Sereni 2020+, cf. Davies, de Joannis de Verclos, Kang, Pirot 2021)

$$\chi(G) \lesssim \frac{\Delta}{\log \frac{e}{\sqrt{\eta}}}$$
for any G of maximum degree Δ
and local density at most η, $\frac{1}{\Delta^2} \leq \eta \ll 1$

$\eta = \frac{1}{\Delta^2}$ matches Molloy’s; the bound is sharp up to a factor of between 2 and 4
Chromatic number of locally sparse graphs

Largest chromatic number for local density \(\leq \eta \) for \(\eta \) near 0?

\[
\chi(G) = O\left(\frac{\Delta}{\log \frac{e}{\sqrt{\eta}}}\right) \quad \text{for any } G \text{ of maximum degree } \Delta \\
\text{and local density at most } \eta, \frac{1}{\Delta^2} \leq \eta \leq 1
\]

Theorem (Davies, Kang, Pirot, Sereni 2020+, cf. Davies, de Joannis de Verclos, Kang, Pirot 2021)

\[
\chi(G) \lesssim \frac{\Delta}{\log \frac{e}{\sqrt{\eta}}} \quad \text{for any } G \text{ of maximum degree } \Delta \\
\text{and local density at most } \eta, \frac{1}{\Delta^2} \leq \eta \ll 1
\]

\(\eta = \frac{1}{\Delta^2} \) matches Molloy’s; the bound is sharp up to a factor of between 2 and 4

NB : \(\eta = 1 \) should match \(\Delta + 1 \) bound, but neither gives this...
Local occupancy method

Theorem (Davies, Kang, Pirot, Sereni 2020+)

\[
\chi(G) \lesssim \frac{\Delta}{\log \frac{e}{\sqrt{\eta}}} \quad \text{for any } G \text{ of maximum degree } \Delta
\]

and local density at most \(\eta, \frac{1}{\Delta^2} \leq \eta \ll 1 \)
Local occupancy method

Theorem (Davies, Kang, Pirot, Sereni 2020+)
\[\chi(G) \lesssim \frac{\Delta}{\log \frac{e}{\sqrt{\eta}}} \]
for any \(G \) of maximum degree \(\Delta \)
and local density at most \(\eta \), \(\frac{1}{\Delta^2} \leq \eta \ll 1 \)

Corollary to a broad framework for deriving global graph structure built upon
Local occupancy method

Theorem (Davies, Kang, Pirot, Sereni 2020+)

\[\chi(G) \lesssim \frac{\Delta}{\log \frac{e}{\sqrt{\eta}}} \text{ for any } G \text{ of maximum degree } \Delta \]

and local density at most \(\eta \), \(\frac{1}{\Delta^2} \leq \eta \ll 1 \)

Corollary to a broad framework for deriving global graph structure built upon

local analysis of hard-core model \(+\) entropy compression
Local occupancy method

Theorem (Davies, Kang, Pirot, Sereni 2020+)
\[\chi(G) \lesssim \frac{\Delta}{\log \frac{e}{\sqrt{\eta}}} \] for any G of maximum degree Δ
and local density at most η, $\frac{1}{\Delta^2} \leq \eta \ll 1$

Corollary to a broad framework for deriving global graph structure built upon

local analysis of hard-core model $+$ entropy compression

(NB: also gives record for e.g. Ajtai–Erdős–Komlós–Szemerédi conjecture)
Largest chromatic number for local density $\leq \eta$ for η near 1?

Nontrivial improvement on $\chi \leq \Delta + 1$?

Theorem (Molloy & Reed 1997)

\[\chi(G) \leq (1 - \varepsilon)\Delta \]

for any G of maximum degree Δ and local density at most η for some $\varepsilon(\eta) > 0$ provided Δ is large enough.

Lower bounds on ε key to bounds for Reed’s and Erdős-Nešetřil conjectures.
Chromatic number of graphs of bounded local density

Largest chromatic number for local density $\leq \eta$ for η near 1?

Nontrivial improvement on $\chi \leq \Delta + 1$? Yes (asymptotically):

Theorem (Molloy & Reed 1997)

$\chi(G) \leq (1 - \varepsilon)\Delta$ for any G of maximum degree Δ and local density at most η for some $\varepsilon(\eta) > 0$ provided Δ is large enough.
Largest chromatic number for local density $\leq \eta$ for η near 1?

Nontrivial improvement on $\chi \leq \Delta + 1$? Yes (asymptotically):

Theorem (Molloy & Reed 1997)

$\chi(G) \leq (1 - \varepsilon)\Delta$ for any G of maximum degree Δ and local density at most η for some $\varepsilon(\eta) > 0$ provided Δ is large enough

Lower bounds on ε key to bounds for Reed’s and Erdős-Nešetřil conjectures
Theorem (Molloy & Reed 1997)

\[\chi(G) \leq (1 - \varepsilon)\Delta \] for any \(G \) of maximum degree \(\Delta \) and local density at most \(\eta \) for some \(\varepsilon(\eta) > 0 \) provided \(\Delta \) is large enough

- Molloy & Reed (1997): \(\varepsilon > 0.0238(1 - \eta) \)
Theorem (Molloy & Reed 1997)

\[\chi(G) \leq (1 - \varepsilon)\Delta \] for any \(G \) of maximum degree \(\Delta \) and local density at most \(\eta \) for some \(\varepsilon(\eta) > 0 \) provided \(\Delta \) is large enough

- Molloy & Reed (1997): \(\varepsilon > 0.0238(1 - \eta) \)
- Bruhn & Joos (2018): \(\varepsilon > 0.1827(1 - \eta) - 0.0778(1 - \eta)^{3/2} \)
- Bonamy, Perrett, Postle (2022): \(\varepsilon > 0.3012(1 - \eta) - 0.1283(1 - \eta)^{3/2} \)
Theorem (Molloy & Reed 1997)

\(\chi(G) \leq (1 - \varepsilon)\Delta \) for any \(G \) of maximum degree \(\Delta \) and local density at most \(\eta \) for some \(\varepsilon(\eta) > 0 \) provided \(\Delta \) is large enough

- Molloy & Reed (1997): \(\varepsilon > 0.0238(1 - \eta) \)
- Bruhn & Joos (2018): \(\varepsilon > 0.1827(1 - \eta) - 0.0778(1 - \eta)^{3/2} \)
- Bonamy, Perrett, Postle (2022): \(\varepsilon > 0.3012(1 - \eta) - 0.1283(1 - \eta)^{3/2} \)
 \(\varepsilon > 0.5(1 - \eta) - 0.1667(1 - \eta)^{3/2} \)
Theorem (Molloy & Reed 1997)

\[\chi(G) \leq (1 - \varepsilon)\Delta \] for any \(G \) of maximum degree \(\Delta \) and local density at most \(\eta \) for some \(\varepsilon(\eta) > 0 \) provided \(\Delta \) is large enough.

- **Molloy & Reed (1997):** \(\varepsilon > 0.0238(1 - \eta) \)
- **Bruhn & Joos (2018):** \(\varepsilon > 0.1827(1 - \eta) - 0.0778(1 - \eta)^{3/2} \)
- **Bonamy, Perrett, Postle (2022):** \(\varepsilon > 0.3012(1 - \eta) - 0.1283(1 - \eta)^{3/2} \)
- **Hurley, de Joannis de Verclos, Kang (2021):** \(\varepsilon > 0.5(1 - \eta) - 0.1667(1 - \eta)^{3/2} \)

Clique of size \(\sqrt{\eta} \cdot \Delta \) (+ pendant vertices)
Chromatic number of graphs of bounded local density

Theorem (Molloy & Reed 1997)
\[\chi(G) \leq (1 - \varepsilon)\Delta \text{ for any } G \text{ of maximum degree } \Delta \text{ and local density at most } \eta \text{ for some } \varepsilon(\eta) > 0 \text{ provided } \Delta \text{ is large enough} \]

- Molloy & Reed (1997): \[\varepsilon > 0.0238(1 - \eta) \]
- Bruhn & Joos (2018): \[\varepsilon > 0.1827(1 - \eta) - 0.0778(1 - \eta)^{3/2} \]
- Bonamy, Perrett, Postle (2022): \[\varepsilon > 0.3012(1 - \eta) - 0.1283(1 - \eta)^{3/2} \]
- Hurley, de Joannis de Verclos, Kang (2021): \[\varepsilon > 0.5(1 - \eta) - 0.1667(1 - \eta)^{3/2} \]

Clique of size \(\sqrt{\eta} \cdot \Delta \) (\(+\) pendant vertices) \[\implies \varepsilon \leq 1 - \sqrt{\eta} \xrightarrow{\eta \to 1} 0.5(1 - \eta) \]
Chromatic number of graphs of bounded local density

Theorem (Hurley, de Joannis de Verclos, Kang 2021)

\[\chi(G) \leq (1 - 0.5(1 - \eta) + 0.1667(1 - \eta)^{3/2})\Delta \] for any G of maximum degree Δ and local density at most η provided Δ is large enough

Clique of size $\sqrt{1 - \sigma} \cdot \Delta$ (+ pendant vertices)
Naïve random colouring

Theorem (Hurley, de Joannis de Verclos, Kang 2021)
\[\chi(G) \leq (1 - 0.5(1 - \eta)) + 0.1667(1 - \eta)^{3/2})\Delta \] for any G of maximum degree \(\Delta \) and local density at most \(\eta \) provided \(\Delta \) is large enough.
Theorem (Davies, Kang, Pirot, Sereni 2020+)

\[\chi(G) \lesssim \frac{\Delta}{\log \frac{e}{\sqrt{\eta}}} \text{ for any } G \text{ of maximum degree } \Delta \]

and local density at most \(\eta, \frac{1}{\Delta^2} \leq \eta \ll 1 \)

Theorem (Hurley, de Joannis de Verclos, Kang 2021)

\[\chi(G) \leq (1 - 0.5(1 - \eta) + 0.1667(1 - \eta)^{3/2})\Delta \text{ for any } G \text{ of maximum degree } \Delta \]

and local density at most \(\eta \) provided \(\Delta \) is large enough
Beyond?

Erdős, Rubin, Taylor (1980): $\chi_{\ell}(K_{n,n}) \sim \log_2 n$.

Conjecture (Alon & Krivelevich 1998)

For any bipartite G of maximum degree Δ, $\chi_{\ell}(G) = O(\log \Delta)$.
Beyond?

Erdős, Rubin, Taylor (1980): $\chi_\ell(K_{n,n}) \sim \log_2 n$.

Conjecture (Alon & Krivelevich 1998)

For any bipartite G of maximum degree Δ, $\chi_\ell(G) = O(\log \Delta)$.

Theorem (Johansson 1996+)

For any triangle-free G of maximum degree Δ, $\chi_\ell(G) = O(\Delta / \log \Delta)$.
Beyond?

Erdős, Rubin, Taylor (1980): \(\chi_\ell(K_{n,n}) \sim \log_2 n. \)

Conjecture (Alon & Krivelevich 1998)

For any bipartite \(G \) of maximum degree \(\Delta \), \(\chi_\ell(G) = O(\log \Delta) \).

Theorem (Johansson 1996+)

For any triangle-free \(G \) of maximum degree \(\Delta \), \(\chi_\ell(G) = O(\Delta / \log \Delta) \).

A pokémon heuristic for colouring bipartite graphs.
Beyond?

Erdős, Rubin, Taylor (1980): $\chi_\ell(K_{n,n}) \sim \log_2 n$.

Conjecture (Alon & Krivelevich 1998)

For any bipartite G of maximum degree Δ, $\chi_\ell(G) = O(\log \Delta)$.

Theorem (Johansson 1996+)

For any triangle-free G of maximum degree Δ, $\chi_\ell(G) = O(\Delta/\log \Delta)$.

A pokémon heuristic for colouring bipartite graphs.
Let $[k]$ be common set of possible colours.
Beyond?

Erdős, Rubin, Taylor (1980): $\chi_\ell(K_{n,n}) \sim \log_2 n$.

Conjecture (Alon & Krivelevich 1998)

For any bipartite G of maximum degree Δ, $\chi_\ell(G) = O(\log \Delta)$.

Theorem (Johansson 1996+)

For any triangle-free G of maximum degree Δ, $\chi_\ell(G) = O(\Delta / \log \Delta)$.

A pokémon heuristic for colouring bipartite graphs.
Let $[k]$ be common set of possible colours.
Colour part B by independent uniform colour from $[k]$ for each vertex.
Beyond?

Erdős, Rubin, Taylor (1980): $\chi_\ell(K_{n,n}) \sim \log_2 n$.

Conjecture (Alon & Krivelevich 1998)
For any bipartite G of maximum degree Δ, $\chi_\ell(G) = O(\log \Delta)$.

Theorem (Johansson 1996+)
For any triangle-free G of maximum degree Δ, $\chi_\ell(G) = O(\Delta / \log \Delta)$.

A pokémon heuristic for colouring bipartite graphs.
Let $[k]$ be common set of possible colours.
Colour part B by independent uniform colour from $[k]$ for each vertex.
For each $v \in A$, what is the chance all colours in $[k]$ are blocked?
Beyond?

Erdős, Rubin, Taylor (1980): $\chi_\ell(K_{n,n}) \sim \log_2 n$.

Conjecture (Alon & Krivelevich 1998)

For any bipartite G of maximum degree Δ, $\chi_\ell(G) = O(\log \Delta)$.

Theorem (Johansson 1996+)

For any triangle-free G of maximum degree Δ, $\chi_\ell(G) = O(\Delta / \log \Delta)$.

A pokémon heuristic for colouring bipartite graphs.

Let $[k]$ be common set of possible colours.

Colour part B by independent uniform colour from $[k]$ for each vertex.

For each $v \in A$, what is the chance all colours in $[k]$ are blocked?

By our understanding of coupon collector problem, if

$$\deg(v) \leq (1 - \varepsilon)k \log k,$$

then this chance is tiny, so there should be a spare colour to use for v.
Beyond?

Erdős, Rubin, Taylor (1980): $\chi_\ell(K_{n,n}) \sim \log_2 n$.

Conjecture (Alon & Krivelevich 1998)
For any bipartite G of maximum degree Δ, $\chi_\ell(G) = O(\log \Delta)$.

Theorem (Johansson 1996+)
For any triangle-free G of maximum degree Δ, $\chi_\ell(G) = O(\Delta / \log \Delta)$.

A pokémon heuristic for colouring bipartite graphs.
Let $[k]$ be common set of possible colours.
Colour part B by independent uniform colour from $[k]$ for each vertex.
For each $v \in A$, what is the chance all colours in $[k]$ are blocked?
By our understanding of coupon collector problem, if
\[
\deg(v) \leq (1 - \varepsilon)k \log k,
\]
then this chance is tiny, so there should be a spare colour to use for v.
If $k \geq (1 + \varepsilon)\Delta / \log \Delta$, then w.p.p. there’s spare colour for every $v \in A$. \qed
Beyond?

Erdős, Rubin, Taylor (1980): $\chi_\ell(K_{n,n}) \sim \log_2 n$.

Conjecture (Alon & Krivelevich 1998)

For any bipartite G of maximum degree Δ, $\chi_\ell(G) = O(\log \Delta)$.

Theorem (Johansson 1996+)

For any triangle-free G of maximum degree Δ, $\chi_\ell(G) = O(\Delta / \log \Delta)$.

Theorem (Molloy 2019)

For any triangle-free G of maximum degree Δ, $\chi_\ell(G) \preceq \Delta / \log \Delta$.
Beyond?

Erdős, Rubin, Taylor (1980): $\chi_\ell(K_{n,n}) \sim \log_2 n$.

Conjecture (Alon & Krivelevich 1998)
*For any bipartite G of maximum degree Δ, $\chi_\ell(G) = O(\log \Delta)$.***

Theorem (Johansson 1996+)
*For any triangle-free G of maximum degree Δ, $\chi_\ell(G) = O(\Delta/\log \Delta)$.***

Theorem (Molloy 2019)
*For any triangle-free G of maximum degree Δ, $\chi_\ell(G) \lesssim \Delta/\log \Delta$.***

Theorem (Alon, Cambie, Kang 2021)
*Any bipartite G of (large enough) maximum degree Δ with parts A and B is (k_A, k_B)-choosable for $k_A = (1 + \varepsilon)\Delta/\log \Delta$ and $k_B = \log \Delta$.***
Beyond?

Theorem (Shearer 1983)

\[\alpha(G) \gtrsim \frac{n \log \Delta}{\Delta} \] for any \(n \)-vertex triangle-free \(G \) of maximum degree \(\Delta \)

Sharp up to factor 2 due to the random \(\Delta \)-regular graphs \(G_{n,\Delta} \)
Beyond?

Theorem (Shearer 1983)

\[\alpha(G) \gtrsim \frac{n \log \Delta}{\Delta} \quad \text{for any } n\text{-vertex triangle-free } G \text{ of maximum degree } \Delta \]

Sharp up to factor 2 due to the random \(\Delta \)-regular graphs \(G_{n,\Delta} \)

Theorem (Davies, Jenssen, Perkins, Roberts 2018)

\[\frac{Z'_G(1)}{Z_G(1)} \gtrsim \frac{n \log \Delta}{\Delta} \quad \text{for any } n\text{-vertex triangle-free } G \text{ of maximum degree } \Delta \]

Sharp due to the random \(\Delta \)-regular graphs \(G_{n,\Delta} \)!
Beyond?

Theorem (Shearer 1983)
\[\alpha(G) \gtrsim \frac{n \log \Delta}{\Delta} \text{ for any } n\text{-vertex triangle-free } G \text{ of maximum degree } \Delta \]

Sharp up to factor 2 due to the random \(\Delta \)-regular graphs \(G_{n,\Delta} \)

Theorem (Davies, Jenssen, Perkins, Roberts 2018)
\[\frac{Z'_G(1)}{Z_G(1)} \gtrsim \frac{n \log \Delta}{\Delta} \text{ for any } n\text{-vertex triangle-free } G \text{ of maximum degree } \Delta \]

Sharp due to the random \(\Delta \)-regular graphs \(G_{n,\Delta} \)!

Question (Karp 1976)

Is there a polynomial-time algorithm that with high probability outputs an independent set of \(G_{n,1/2} \) of size \((1 + \varepsilon) \log_2 n\)?
Beyond?

Theorem (Shearer 1983)
\[\alpha(G) \gtrsim \frac{n \log \Delta}{\Delta} \quad \text{for any } n\text{-vertex triangle-free } G \text{ of maximum degree } \Delta \]

Sharp up to factor 2 due to the random \(\Delta \)-regular graphs \(G_{n,\Delta} \)

Theorem (Davies, Jenssen, Perkins, Roberts 2018)
\[\frac{Z'_G(1)}{Z_G(1)} \gtrsim \frac{n \log \Delta}{\Delta} \quad \text{for any } n\text{-vertex triangle-free } G \text{ of maximum degree } \Delta \]

Sharp due to the random \(\Delta \)-regular graphs \(G_{n,\Delta} \)!

Question (Karp 1976)

Is there a polynomial-time algorithm that with high probability outputs an independent set of \(G_{n,\Delta} \) of size \((1 + \varepsilon)(n \log \Delta)/\Delta\)?
Beyond?

Theorem (Shearer 1983)
\[\alpha(G) \gtrsim \frac{n \log \Delta}{\Delta} \] for any \(n \)-vertex triangle-free \(G \) of maximum degree \(\Delta \)

Sharp up to factor 2 due to the random \(\Delta \)-regular graphs \(G_{n,\Delta} \)

Theorem (Davies, Jenssen, Perkins, Roberts 2018)
\[\frac{Z_{G}'(1)}{Z_G(1)} \gtrsim \frac{n \log \Delta}{\Delta} \] for any \(n \)-vertex triangle-free \(G \) of maximum degree \(\Delta \)

Sharp due to the random \(\Delta \)-regular graphs \(G_{n,\Delta} \)!

Question (Karp 1976)

Is there a polynomial-time algorithm that with high probability outputs an independent set of \(G_{n,\Delta} \) of size \((1 + \varepsilon)(n \log \Delta)/\Delta \)?

Conjecture (Davies, Jenssen, Perkins, Roberts 2018)
\[\alpha(G) \gtrsim 2 \cdot \frac{Z_{G}'(1)}{Z_G(1)} \] for any triangle-free \(G \) of minimum degree \(\delta \)
Questions?