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!OME CLASSICS



BROOKS’ THEOREM

Theorem (Brooks 1941)
X(G) < A(G) unless G = Ka(gy41 or G is an odd cycle.



OFF-DIAGONAL RAMSEY NUMBERST

Ramsey (1930), Erd8s & Szekeres (1935)

R(3, k) : smallest n such that any red/blue-edge-coloured K,
with no red K3 must contain a blue K

tPicture credit: Soifer 2009
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VIZING’S PROBLEM

Vizing, “Some unsolved problems in graph theory” (1968):

Moskno sm mias m06oTo Hamepes 3aJaHHOTO HATYPANBHOTO duexa k > 2
MOCTPOUTH TPad €O CKONb YLOXHO GONBIIMM 0GXBATOM M C XPOMATHUECKUM HUIC-
aoM k? Moskro. 9to morasan II. 9pgém [39], ocHoBHBasgCh HA MOITHOCTHEIX
co00payKeHNAX. YIUBUTEIBHO, UTO [0 CHX IIOP HET KOHCTPYKTHBHOTO JOKa3a-
texaberBa ororo ¢axra. B [40] yrasam cmoco6 mocrpoerus rpados ¢ T00BIM
XPOMATHUYECKUM YHMCJIOM €3 IMKIOB AMHHBL < 7. ITO Jydiiee, U4TO MBI MMeeM
Ha CerojHANIHUN JIeHb.

Ecau o (L) — MakcuMadpHasi creleHb BepumumHHL rpada L, To, oueBUIHO,
v (L) <o (L)+1. B 1941 r. P. Bpykc [41] poxasax, uro upm o (L) >3
uo (L) < o (L) cnpaBegmua onenka y (L) < ¢ (L). [laxbHeiimue nccaegoBanus
MOKHO IPOBOJUTH, YIUTHIBAg Gosee TOYHO COOTHOUICHUS MKy ¢ M o. llomwa-
nyi, caeyer HauaTh ¢ ONEHKM XPOMATUYECKOTO unciaa rpada 6es TpeyroJabHIKOB
(0 =2) ¢ HaHHOii MAKCHMMATLHOII CTENMEeHbI0 BePIIMHEL.



VIZING’S PROBLEM

Vizing, “Some unsolved problems in graph theory” (1968):

Given a natural number k > 2, is it vossible to construct a graph with
arbitrarily large compass and with chromatic number k? Erdés [39] has
oroved this; his proof is based on counting arguments. It is astonishing
that no constructive proof for this fact has yet been given. In [40] a
method is given of constructing graphs of arbitrary chromatic number
without having cycles of length < 7. This is the best we have at the
nresent time.

If o(L) is the maximum degree of a vertex in a graph L, it is clear
that Y(L) < o(L) + 1. Brooks [41] showed in 1941 that Y(L) < o(L ) whenever
o(L) > 3 and w(L) < o(L). Further investigations could be conducted,
taking into account a more exact relation between O and w. Perhaps one
should start with estimates of the chromatic number of a graph without
triangles (w = 2) and with given maximal degree for vertices.
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MEASURES OF SPARSITY /STRUCTURE

[H]|
max
0#HCG a(H)
(upper bounds on p are like lower bounds on «)

where p =
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Examples:
® (Brooks’ theorem) w<A(>2) = x<A
® (Off-diagonal Ramsey numbers) w<2 = small p
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LOCAL TO GLOBAL

What global graph structure arises
from conditions on local structure?

Examples:
® (Brooks' theorem) w<A(>2) = x<A
® (Off-diagonal Ramsey numbers) w<2 = small p
® (Vizing's problem) w<2 = x <K A?
® (Reed’s) x < [Hw+A+1)]?
¢ (Ajtai-Erdés—Komlés—Szemerédi) w<k = p<C ?
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LOCAL TO GLOBAL

What global graph structure arises
from conditions on local structure?

Examples:

(Brooks' theorem)

(Off-diagonal Ramsey numbers)
(Vizing's problem)

(Reed’s)
(Ajtai—Erd8s—Komlés—Szemerédi)

(Alon—Krivelevich)

w<A(>2) = x<A
w<2 = small p
w2 = xKA?

x < [Hw+A+1)]?

2

log A”
X <2 = x¢ < ClogA?

w<k = p<C




PROBABILISTIC METHOD

5o
g

If random object has property with positive probability,
then there exists at least one object with that property



!ANDOM LINKS



STOCHASTIC LOCAL SEARCH

Suppose quest for some “flawless” combinatorial object uses
a stochastic procedure with only local changes at each step



STOCHASTIC LOCAL SEARCH

Suppose quest for some “flawless” combinatorial object uses
a stochastic procedure with only local changes at each step

What are the theoretical limits of such algorithms?
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More fully, the lattice gas with hard-core self-repulsion and nearest-neighbour exclusion.
Picture credit: Wikipedia/Grap-wh



SEMI-RANDOM METHOD (OR RODL NIBBLE)

Iterated application of probabilistic method to create structured object
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Iterated application of probabilistic method to create structured object




SEMI-RANDOM METHOD (OR RODL NIBBLE)

Iterated application of probabilistic method to create structured object




GOTTA CATCH ‘EM ALL

At each turn you get a random pokémon (card)



GOTTA CATCH ‘EM ALL

At each turn you get a random pokémon (card)

How long until you have at least one of each type?
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OFF-DIAGONAL RAMSEY NUMBERS
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OFF-DIAGONAL RAMSEY NUMBERS
I.E. INDEPENDENCE NUMBER OF TRIANGLE-FREE GRAPHS

R(3, k) : smallest n such that any red/blue-edge-coloured K,
with no red K3 must contain a blue K

R(3, k) : minimum order of triangle-free G that guarantees a(G) > k

Theorem (Shearer 1983, cf. Ajtai, Komlds, Szemerédi 1980/1)

k2
R(3,k) < ——
(k)5 log k

Theorem (Bohman & Keevash 2021, Fiz Pontiveros, Griffiths, Morris
2020, cf. Kim 1995)
k2

>
R,k 2 4log k




OFF-DIAGONAL RAMSEY NUMBERS
I.E. INDEPENDENCE NUMBER OF TRIANGLE-FREE GRAPHS

R(3, k) : smallest n such that any red/blue-edge-coloured K,
with no red K3 must contain a blue K

R(3, k) : minimum order of triangle-free G that guarantees «(G) > k

Theorem (Shearer 1983, cf. Ajtai, Komlds, Szemerédi 1980/1)
kZ
< —

o(G) > nlog A

~

for any n-vertex triangle-free G of maximum degree A

Theorem (Bohman & Keevash 2021, Fiz Pontiveros, Griffiths, Morris
2020, cf. Kim 1995)
k2

>
R,k 2 4log k




INDEPENDENCE NUMBER OF TRIANGLE-FREE GRAPHS

Theorem (Shearer 1983, cf. Ajtai, Komlds, Szemerédi 1980/1)

o(G) > nlog A
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for any n-vertex triangle-free G of maximum degree A



INDEPENDENCE NUMBER OF TRIANGLE-FREE GRAPHS

Theorem (Shearer 1983, cf. Ajtai, Komlds, Szemerédi 1980/1)

p(G)

A

A A for any triangle-free G of maximum degree A

H
where p = max u
0#HCG aH)



INDEPENDENCE NUMBER OF TRIANGLE-FREE GRAPHS

Theorem (Shearer 1983, cf. Ajtai, Komlds, Szemerédi 1980/1)

A . .
p(G) < log A for any triangle-free G of maximum degree A

Theorem (Bollobas 1981)
p(G) >

Slog A and G has arbitrarily large girth wpp for G ~ G, a
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Perhaps one should start with estimates of the chromatic number of a graph without

triangles (w = 2) and with given maximal degree for vertices. (Vizing 1968)
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CHROMATIC NUMBER OF TRIANGLE-FREE GRAPHS,
A RAMSEY-TYPE PROBLEM

Perhaps one should start with estimates of the chromatic number of a graph without

triangles (w = 2) and with given maximal degree for vertices. (Vizing 1968)

w(G) < p(6) < xr(G) < X(G) <xe(G) < A(G)+1

Theorem (Shearer 1983, cf. Ajtai, Komlés, Szemerédi 1980/1)

A
<
p(G) < log A

for any triangle-free G of maximum degree A

Theorem (Davies, de Joannis de Verclos, Kang, Pirot 2021)
xf(G) <

A for any triangle-free G of maximum degree A  ~»
log A
Theorem (Molloy 2019, cf. Johansson 1996+)
xe(G)

IogA A for any triangle-free G of maximum degree A
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w, A, x CONJECTURE

w(G) < x(G) <A(G) +1

$picture credit: Wikipedia/David Eppstein
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Conjecture (Reed 1998)
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Odd cycles have w =2, A =2, x =3
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w, A, x CONJECTURE
w(G) < x(G) <A(G)+1

Conjecture (Reed 1998)

x(G) < {LM-‘ for any G of clique number w and maximum degree A

Odd cycles have w =2, A =2, x =3
Chvatal graph (1970) hasw =2, A =4, x =4

Bound holds for:
® w =2, A large enough (Johansson 1996+)

® for w > A —1 (Brooks 1941)
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w, A, x CONJECTURE
w(G) < x(G) <A(G)+1

Conjecture (Reed 1998)

x(G) < {LM-‘ for any G of clique number w and maximum degree A

Odd cycles have w =2, A =2, x =3
Chvétal graph (1970)8 hasw =2, A =4, x =4
Bound holds for:
® w =2, A large enough (Johansson 1996+)
(w < AY1 A Jarge enough (Davies, Kang, Pirot, Sereni 2020+))
® for w > A —1 (Brooks 1941)

$picture credit: Wikipedia/David Eppstein



w, A, Y CONJECTURE

Theorem (Reed 1998)

x(G) < UH—#M—‘ for any G of clique number w and maximum degree A

provided w > (1 — €1)A for some 1 > 0 and A is large enough



w, A, x CONJECTURE

Theorem (Reed 1998)

A+1
x(G) < % for any G of clique number w and maximum degree A

provided w > (1 — €1)A for some 1 > 0 and A is large enough

Corollary

X(G) < [eaw + (1 — &2)(A + 1)] for any G of clique number w and maximum
degree A for some €2 > 0 provided A is large enough



w, A, x CONJECTURE

Theorem (Reed 1998)
A+1
x(G) < % for any G of clique number w and maximum degree A
provided w > (1 — €1)A for some 1 > 0 and A is large enough
Corollary

X(G) < [eaw + (1 — &2)(A + 1)] for any G of clique number w and maximum
degree A for some €2 > 0 provided A is large enough

* Reed (1998): £ > 0.000000005

NB: g2 may not be larger than 0.5
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Theorem (Reed 1998)

x(G) < %M—‘ for any G of clique number w and maximum degree A

provided w > (1 — €1)A for some 1 > 0 and A is large enough

Corollary

X(G) < [eaw + (1 — &2)(A + 1)] for any G of clique number w and maximum
degree A for some €2 > 0 provided A is large enough

* Reed (1998): &> > 0.000000005
® Bonamy, Perrett, Postle (2022): €2 > 0.038
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w, A, x CONJECTURE

Theorem (Reed 1998)

x(G) < %M—‘ for any G of clique number w and maximum degree A

provided w > (1 — €1)A for some 1 > 0 and A is large enough

Corollary

X(G) < [eaw + (1 — &2)(A + 1)] for any G of clique number w and maximum
degree A for some €2 > 0 provided A is large enough

* Reed (1998): £, > 0.000000005
® Bonamy, Perrett, Postle (2022): €2 > 0.038
® Delcourt, Postle (2017+): g2 > 0.076
® Hurley, de Joannis de Verclos, Kang (2021): €2 > 0.119

NB: g2 may not be larger than 0.5
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LOCAL DENSITY

no edge in any neighbourhood <= triangle-free

!

at most a certain proportion of edges per neighbourhood

G of max degree A has local density <7 if < 77(?) edges per neighbourhood

n < 1/(5) means triangle-free, 7 = 1 means unrestricted
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Theorem (Alon, Krivelevich, Sudakov 1999, cf. Vu 2002, Achlioptas,
lliopoulos, Sinclair 2019)

x(G)=0 (IogAe) for any G of maximum degree A

Vi and local density at most 1, 1z <1 <1
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Theorem (Alon, Krivelevich, Sudakov 1999, cf. Vu 2002, Achlioptas,
lliopoulos, Sinclair 2019)

x(G)=0 (IogAe) for any G of maximum degree A

Vi and local density at most 1, 1z <1 <1

Theorem (Davies, Kang, Pirot, Sereni 2020+, cf. Davies, de Joannis de
Verclos, Kang, Pirot 2021)
x(G) < o Ai for any G of maximum degree A

& and local density at most n, % <nk1
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Largest chromatic number for local density < n for ) near 07

Theorem (Alon, Krivelevich, Sudakov 1999, cf. Vu 2002, Achlioptas,
lliopoulos, Sinclair 2019)

x(G)=0 (IAE) for any G of maximum degree A

& and local density at most 1, 1z <1 <1

Theorem (Davies, Kang, Pirot, Sereni 2020+, cf. Davies, de Joannis de
Verclos, Kang, Pirot 2021)

<
x(G) S iog

for any G of maximum degree A

_e_

v and local density at most 1, % <n«k1

n= ﬁ matches Molloy's;



CHROMATIC NUMBER OF LOCALLY SPARSE GRAPHS

Largest chromatic number for local density < n for ) near 07

Theorem (Alon, Krivelevich, Sudakov 1999, cf. Vu 2002, Achlioptas,
lliopoulos, Sinclair 2019)

x(G)=0 (IogAe) for any G of maximum degree A

Vi and local density at most 1, 1z <1 <1

Theorem (Davies, Kang, Pirot, Sereni 2020+, cf. Davies, de Joannis de
Verclos, Kang, Pirot 2021)

<
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for any G of maximum degree A
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v and local density at most 1, % <n«k1

n= ﬁ matches Molloy's; the bound is sharp up to a factor of between 2 and 4



CHROMATIC NUMBER OF LOCALLY SPARSE GRAPHS

Largest chromatic number for local density < n for ) near 07

Theorem (Alon, Krivelevich, Sudakov 1999, cf. Vu 2002, Achlioptas,
lliopoulos, Sinclair 2019)

x(G)=0 (IogAe> for any G of maximum degree A

Vi and local density at most 7, ﬁ <n<l1

Theorem (Davies, Kang, Pirot, Sereni 2020+, cf. Davies, de Joannis de
Verclos, Kang, Pirot 2021)

x(G) <

S for any G of maximum degree A
og

_e_

v and local density at most 1), % <nkl1

n= ﬁ matches Molloy's; the bound is sharp up to a factor of between 2 and 4

NB : n =1 should match A 4 1 bound, but neither gives this. ..
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Corollary to a broad framework for deriving global graph structure built upon



LOCAL OCCUPANCY METHOD

Theorem (Davies, Kang, Pirot, Sereni 2020+)
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Corollary to a broad framework for deriving global graph structure built upon

local analysis of hard-core model + entropy compression



LOCAL OCCUPANCY METHOD

Theorem (Davies, Kang, Pirot, Sereni 2020+)

X(G) 5 og =
v and local density at most 1, ﬁ <nkl1

for any G of maximum degree A

Corollary to a broad framework for deriving global graph structure built upon

local analysis of hard-core model + entropy compression

(NB: also gives record for e.g. Ajtai—-Erdés—Komlés—Szemerédi conjecture)
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Theorem (Molloy & Reed 1997)
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for some €(n) > 0 provided A is large enough



CHROMATIC NUMBER OF
GRAPHS OF BOUNDED LOCAL DENSITY

Largest chromatic number for local density < n for n near 17

Nontrivial improvement on x < A + 17 Yes (asymptotically):

Theorem (Molloy & Reed 1997)

X(G) < (1 —¢)A for any G of maximum degree A and local density at most n
for some €(n) > 0 provided A is large enough

Lower bounds on ¢ key to bounds for Reed’s and Erdés-NeSet¥il conjectures
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Theorem (Molloy & Reed 1997)

X(G) < (1 —¢€)A for any G of maximum degree A and local density at most 7
for some €(n) > 0 provided A is large enough

® Molloy & Reed (1997): e > 0.0238(1 —n)
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® Hurley, de Joannis de Verclos, Kang (2021):
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Clique of size /77 - A (4 pendant vertices)



CHROMATIC NUMBER OF
GRAPHS OF BOUNDED LOCAL DENSITY

Theorem (Molloy & Reed 1997)

X(G) < (1 —¢€)A for any G of maximum degree A and local density at most 7
for some €(n) > 0 provided A is large enough

® Molloy & Reed (1997): e > 0.0238(1 —n)
® Bruhn & Joos (2018): e > 0.1827(1 — 1) — 0.0778(1 — 7)*/?
® Bonamy, Perrett, Postle (2022): e > 0.3012(1 — ) — 0.1283(1 — 7)*/?
® Hurley, de Joannis de Verclos, Kang (2021):

e>0.5(1—n)—0.1667(1 — )32

Clique of size /77 - A (4 pendant vertices) = e<1-.,/7 ~, 0.5(1 —7)
n—



CHROMATIC NUMBER OF
GRAPHS OF BOUNDED LOCAL DENSITY

Theorem (Hurley, de Joannis de Verclos, Kang 2021)

x(G) < (1 —0.5(1—1n) +0.1667(1 — 1)*?)A for any G of maximum degree A
and local density at most n provided A is large enough

Clique of size v/1 — o - A (+ pendant vertices)

=




NAIVE RANDOM COLOURING

Theorem (Hurley, de Joannis de Verclos, Kang 2021)

x(G) < (1 —0.5(1 —1n) +0.1667(1 — 1)*?)A for any G of maximum degree A
and local density at most n provided A is large enough




LINK UP?

Theorem (Davies, Kang, Pirot, Sereni 2020+ )

A .
x(G) < o 2 for any G of maximum degree A
&V and local density at most 7, é <nkl1

Theorem (Hurley, de Joannis de Verclos, Kang 2021)

x(G) < (1—0.5(1 —n) +0.1667(1 — n)*?)A for any G of maximum degree A
and local density at most n provided A is large enough

—
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Erdds, Rubin, Taylor (1980): x¢(Kn,n) ~ log, n.
Conjecture (Alon & Krivelevich 1998)
For any bipartite G of maximum degree A, x¢(G) = O(log A).

Theorem (Johansson 1996+)
For any triangle-free G of maximum degree A, x¢(G) = O(A/ log A).

A pokémon heuristic for colouring bipartite graphs.

Let [k] be common set of possible colours.

Colour part B by independent uniform colour from [k] for each vertex.
For each v € A, what is the chance all colours in [k] are blocked?

By our understanding of coupon collector problem, if

deg(v) < (1 —e)klogk,

then this chance is tiny, so there should be a spare colour to use for v.

If k> (1+¢e)A/logA, then w.p.p. there's spare colour for every v € A.
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BEYOND?
Erdds, Rubin, Taylor (1980): x¢(Kn,n) ~ log, n.
Conjecture (Alon & Krivelevich 1998)
For any bipartite G of maximum degree A, x¢(G) = O(log A).

Theorem (Johansson 1996+)
For any triangle-free G of maximum degree A, x¢(G) = O(A/ log A).

Theorem (Molloy 2019)
For any triangle-free G of maximum degree A, x,(G) < A/ log A.

Theorem (Alon, Cambie, Kang 2021)
Any bipartite G of (large enough) maximum degree A with parts A and B is
(ka, kg)-choosable for ka = (1 +¢)A/log A and kg = log A. ®
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BEYOND?

Theorem (Shearer 1983)
o(G) = nlog A

for any n-vertex triangle-free G of maximum degree A

Sharp up to factor 2 due to the random A-regular graphs G, a
Theorem (Davies, Jenssen, Perkins, Roberts 2018)

Z5(1)  nlogA
Zs(1) ™~ A

for any n-vertex triangle-free G of maximum degree A

Sharp due to the random A-regular graphs G, a!

Question (Karp 1976)

Is there a polynomial-time algorithm that with high probability outputs an
independent set of G, a of size (1+¢€)(nlog A)/A?

Conjecture (Davies, Jenssen, Perkins, Roberts 2018)

Zs(1)
a(G)z2- Zz(l)

for any triangle-free G of minimum degree ¢



UESTIONS ¢




