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Brooks’ theorem

Theorem (Brooks 1941)

χ(G) ≤ ∆(G) unless G = K∆(G)+1 or G is an odd cycle.



Vizing’s problem

Vizing, “Some unsolved problems in graph theory” (1968):
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Measures of sparsity/structure

δ(G) ≤ deg(G) ≤ ∆(G)

ω(G) ≤ ρ(G) ≤ χf (G) ≤ χ(G) ≤ χℓ(G) ≤ ∆(G) + 1

where ρ(G) = max
∅̸=H⊆G

|H|
α(H)

(upper bounds on ρ(G) are like lower bounds on α(G))
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Local to global

What global graph structure arises
from conditions on local structure?

Examples:

• (Brooks’ theorem) ω(G) ≤ ∆(G)(> 2) =⇒ χ(G) ≤ ∆(G)

• (Off-diagonal Ramsey numbers) ω(G) ≤ 2 =⇒ small ρ(G)

• (Vizing’s problem) ω(G) ≤ 2 =⇒ χ(G) ≪ ∆(G)?

• (Ajtai–Erdős–Komlós–Szemerédi) ω(G) < r =⇒ ρ(G) ≤ Cr
∆(G)

log∆(G)
?

• (Reed’s) χ(G) ≤
⌈
1
2
(ω(G) + ∆(G) + 1)

⌉
?
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Probabilistic method

If random object has property with positive probability,
then there exists at least one object with that property





Chromatic number of triangle-free graphs

Further investigations could be conducted, taking into account a more exact

relationship between ∆ and ω. Perhaps one should start with estimates of the

chromatic number of a graph without triangles (ω = 2) and with given maximal

degree for vertices. (Vizing 1968)

ω(G) ≤ ρ(G) ≤ χf (G) ≤ χ(G) ≤ χℓ(G) ≤ ∆(G) + 1

Theorem (Shearer 1983, cf. Ajtai, Komlós, Szemerédi 1980/1)

ρ(G) ≲
∆

log∆
for any triangle-free G of maximum degree ∆

(
Theorem (

Molloy 2019, cf.

Johansson 1996+)

χℓ(G) = O

(
∆

log∆

)
for any triangle-free G of maximum degree ∆

(

NB: these bounds are sharp up to a factor 2 by random ∆-regular graphs.
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Chromatic number of Kr -free graphs

Further investigations could be conducted, taking into account a more exact

relationship between ∆ and ω. Perhaps one should start with estimates of the

chromatic number of a graph without triangles (ω = 2) and with given maximal

degree for vertices. (Vizing 1968)

ω(G) ≤ ρ(G) ≤ χf (G) ≤ χ(G) ≤ χℓ(G) ≤ ∆(G) + 1

Conjecture (Ajtai, Erdős, Komlós, Szemerédi 1981)

ρ(G) = O

(
∆

log∆

)
for any Kr -free G of maximum degree ∆

Conjecture (Alon, Krivelevich, Sudakov 1999)

χ(G) = O

(
∆

log∆

)
for any Kr -free G of maximum degree ∆

Bounds of Shearer (1995) and Johansson (1996+) are out by a log log∆ factor.
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The ω, ∆, χ conjecture

ω(G) ≤ ρ(G) ≤ χf (G) ≤ χ(G) ≤ χℓ(G) ≤ ∆(G) + 1

Conjecture (Reed 1998)

χ(G) ≤
⌈
ω +∆+ 1

2

⌉
for any G of clique number ω and maximum degree ∆

Odd cycles have ω = 2, ∆ = 2, χ = 3

Chvátal graph (1970)† has ω = 2, ∆ = 4, χ = 4

Bound holds:

• with χf instead of χ (McDiarmid, cf. Molloy & Reed 2002)

• for ω = 2, ∆ large enough (Johansson 1996+)

(for ω ≤ ∆1/101, ∆ large enough (Davies, Kang, Pirot, Sereni 2020+))

• for ω ≥ ∆− 1 (Brooks 1941)

†Picture credit: Wikipedia/David Eppstein



The ω, ∆, χ conjecture

ω(G) ≤ ρ(G) ≤ χf (G) ≤ χ(G) ≤ χℓ(G) ≤ ∆(G) + 1

Conjecture (Reed 1998)

χ(G) ≤
⌈
ω +∆+ 1

2

⌉
for any G of clique number ω and maximum degree ∆

Odd cycles have ω = 2, ∆ = 2, χ = 3
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Chvátal graph (1970)† has ω = 2, ∆ = 4, χ = 4

Bound holds:

• with χf instead of χ (McDiarmid, cf. Molloy & Reed 2002)

• for ω = 2, ∆ large enough (Johansson 1996+)

(for ω ≤ ∆1/101, ∆ large enough (Davies, Kang, Pirot, Sereni 2020+))

• for ω ≥ ∆− 1 (Brooks 1941)

†Picture credit: Wikipedia/David Eppstein



The ω, ∆, χ conjecture

ω(G) ≤ ρ(G) ≤ χf (G) ≤ χ(G) ≤ χℓ(G) ≤ ∆(G) + 1

Conjecture (Reed 1998)

χ(G) ≤
⌈
ω +∆+ 1

2

⌉
for any G of clique number ω and maximum degree ∆

Odd cycles have ω = 2, ∆ = 2, χ = 3
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ω, ∆, χ conjecture

Theorem (Reed 1998)

χ(G) ≤
⌈
ω +∆+ 1

2

⌉
for any G of clique number ω and maximum degree ∆

provided ω ≥ (1− ε1)∆ for some ε1 > 0 and ∆ is large enough

Corollary

χ(G) ≤ ⌈ε2ω + (1− ε2)(∆ + 1)⌉ for any G of clique number ω and maximum
degree ∆ for some ε2 > 0 provided ∆ is large enough

• Reed (1998): ε2 > 0.000000005

• Bonamy, Perrett, Postle (2022): ε2 > 0.038

• Delcourt, Postle (2017+): ε2 > 0.076

• Hurley, de Joannis de Verclos, Kang (2022): ε2 > 0.119

NB: ε2 may not be larger than 0.5
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Local density

no edge in any neighbourhood

⇐⇒ triangle-free

↓

at most a certain proportion of edges per neighbourhood

G of max degree ∆ has local density ratio ≤ η if ≤ η
(
∆
2

)
edges per nbhd

η < 1/
(
∆
2

)
means triangle-free, η = 1 means unrestricted
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Chromatic number of locally sparse graphs

Largest chromatic number for local density ratio ≤ η for η near 0?

Theorem (Alon, Krivelevich, Sudakov 1999, cf. Vu 2002, Achlioptas,
Iliopoulos, Sinclair 2019)

χ(G) = O

(
∆

log e√
η

)
for any G of maximum degree ∆

and local density ratio ≤ η, 1
∆2 ≤ η ≤ 1

Theorem (Davies, Kang, Pirot, Sereni 2020+)

χ(G) ≲
∆

log e√
η

for any G of maximum degree ∆

and local density ratio ≤ η, 1
∆2 ≤ η ≪ 1

η = 1
∆2 matches Molloy’s; the bound is sharp up to a factor of between 2 and 4

NB : η = 1 should match ∆ + 1 bound, but neither gives this. . .
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NB : η = 1 should match ∆ + 1 bound, but neither gives this. . .
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Chromatic number under bounded local density

Largest chromatic number for local density ratio ≤ η for η near 1?

Nontrivial improvement on χ ≤ ∆+ 1?

Yes (asymptotically):

Theorem (Molloy & Reed 1997)

χ(G) ≤ (1− ε)∆ for any G of maximum degree ∆ and local density ratio ≤ η
for some ε(η) > 0 provided ∆ is large enough

Lower bounds on ε key to sharpest results towards Reed’s conjecture
(and sharpest results towards the Erdős-Nešeťril conjecture)
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Chromatic number under bounded local density

Theorem (Molloy & Reed 1997)

χ(G) ≤ (1− ε)∆ for any G of maximum degree ∆ and local density ratio ≤ η
for some ε(η) > 0 provided ∆ is large enough

• Molloy & Reed (1997): ε > 0.0238(1− η)

• Bruhn & Joos (2018): ε > 0.1827(1− η)− 0.0778(1− η)3/2

• Bonamy, Perrett, Postle (2022): ε > 0.3012(1− η)− 0.1283(1− η)3/2

• Hurley, de Joannis de Verclos, Kang (2022):
ε > 0.5(1− η)− 0.1667(1− η)3/2

Clique of size
√
η ·∆ (+ pendant vertices) =⇒ ε ≤ 1−√

η ∼
η→1

0.5(1− η)
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Chromatic number under bounded local density

Theorem (Hurley, de Joannis de Verclos, Kang 2022)

χ(G) ≤ (1− 0.5(1− η) + 0.1667(1− η)3/2)∆ for any G of maximum degree ∆
and local density ratio ≤ η provided ∆ is large enough

Clique of size
√
1− σ ·∆ (+ pendant vertices)



Näıve colouring

Given G and palette [M] = {1, . . . ,M}:

1. independently assign a colour to each v uniformly from [M]

2. uncolour one or both endpoints of each monochromatic edge

3. complete partial proper colouring to full one

• Molloy & Reed (1997): uncolour both endpoints in 2

• Bruhn & Joos (2018): toss a coin to decide in 2

• Bonamy, Perrett, Postle (2022): several iterations of 1 and 2

• Hurley, de Joannis de Verclos, Kang (2022):
random vertex ordering to decide in 2

allows better iteration of 1 and 2



Näıve colouring

Given G and palette [M] = {1, . . . ,M}:

1. independently assign a colour to each v uniformly from [M]

2. uncolour one or both endpoints of each monochromatic edge

3. complete partial proper colouring to full one

• Molloy & Reed (1997): uncolour both endpoints in 2

• Bruhn & Joos (2018): toss a coin to decide in 2

• Bonamy, Perrett, Postle (2022): several iterations of 1 and 2

• Hurley, de Joannis de Verclos, Kang (2022):
random vertex ordering to decide in 2

allows better iteration of 1 and 2
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Link up?

Theorem (Davies, Kang, Pirot, Sereni 2020+)

χ(G) ≲
∆

log e√
η

for any G of maximum degree ∆

and local density ratio ≤ η, 1
∆2 ≤ η ≪ 1

Theorem (Hurley, de Joannis de Verclos, Kang 2022)

χ(G) ≤ (1− 0.5(1− η) + 0.1667(1− η)3/2)∆ for any G of maximum degree ∆
and local density ratio ≤ η provided ∆ is large enough





Infinitesimal sharpness for
other measures of local density?

δ(G) ≤ deg(G) ≤ ∆(G)

ω(G) ≤ ρ(G) ≤ χf (G) ≤ χ(G) ≤ χℓ(G) ≤ ∆(G) + 1

Corollary (Reed 1998)

χ(G) ≤ (1− 0.5(1− η̇))∆ + 1/2 for any G of maximum degree ∆ and (local)
clique number ratio ≤ η̇ provided 1− η̇ ≤ 1/70000000 and ∆ is large enough

Theorem (Hurley, de Joannis de Verclos, Kang 2022)

χ(G) ≤ (1− (1− η̂) + oη̂→1(1− η̂))∆ for any G of maximum degree ∆ and
local maximum degree ratio ≤ η̂ provided 1− η̂ ≤ 0.028 and ∆ is large enough

Problem (Hurley, de Joannis de Verclos, Kang 2022)

What about for bounded local Hall ratio (ratio)?
Local chromatic number ratio? Local maximum average degree ratio?
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