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BROOKS’ THEOREM

Theorem (Brooks 1941)
X(G) < A(G) unless G = Ka(gy41 or G is an odd cycle.
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VIZING’S PROBLEM

Vizing, “Some unsolved problems in graph theory” (1968):

Moskno sm mias m06oTo Hamepes 3aJaHHOTO HATYPANBHOTO duexa k > 2
MOCTPOUTH TPad €O CKONb YLOXHO GONBIIMM 0GXBATOM M C XPOMATHUECKUM HUIC-
aoM k? Moskro. 9to morasan II. 9pgém [39], ocHoBHBasgCh HA MOITHOCTHEIX
co00payKeHNAX. YIUBUTEIBHO, UTO [0 CHX IIOP HET KOHCTPYKTHBHOTO JOKa3a-
texaberBa ororo ¢axra. B [40] yrasam cmoco6 mocrpoerus rpados ¢ T00BIM
XPOMATHUYECKUM YHMCJIOM €3 IMKIOB AMHHBL < 7. ITO Jydiiee, U4TO MBI MMeeM
Ha CerojHANIHUN JIeHb.

Ecau o (L) — MakcuMadpHasi creleHb BepumumHHL rpada L, To, oueBUIHO,
v (L) <o (L)+1. B 1941 r. P. Bpykc [41] poxasax, uro upm o (L) >3
uo (L) < o (L) cnpaBegmua onenka y (L) < ¢ (L). [laxbHeiimue nccaegoBanus
MOKHO IPOBOJUTH, YIUTHIBAg Gosee TOYHO COOTHOUICHUS MKy ¢ M o. llomwa-
nyi, caeyer HauaTh ¢ ONEHKM XPOMATUYECKOTO unciaa rpada 6es TpeyroJabHIKOB
(0 =2) ¢ HaHHOii MAKCHMMATLHOII CTENMEeHbI0 BePIIMHEL.



VIZING’S PROBLEM

Vizing, “Some unsolved problems in graph theory” (1968):

Given a natural number k > 2, is it vossible to construct a graph with
arbitrarily large compass and with chromatic number k? Erdés [39] has
oroved this; his proof is based on counting arguments. It is astonishing
that no constructive proof for this fact has yet been given. In [40] a
method is given of constructing graphs of arbitrary chromatic number
without having cycles of length < 7. This is the best we have at the
nresent time.

If o(L) is the maximum degree of a vertex in a graph L, it is clear
that Y(L) < o(L) + 1. Brooks [41] showed in 1941 that Y(L) < o(L ) whenever
o(L) > 3 and w(L) < o(L). Further investigations could be conducted,
taking into account a more exact relation between O and w. Perhaps one
should start with estimates of the chromatic number of a graph without
triangles (w = 2) and with given maximal degree for vertices.
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MEASURES OF SPARSITY/STRUCTURE

5(G) < deg(G) < A(G)

w(G) < p(6) < xr(G) < X(G) <xe(G) < A(G)+1

H
where p(G) = @;ni-laéc 7|(I-‘I)
C6a

(upper bounds on p(G) are like lower bounds on a(G))
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What global graph structure arises
from conditions on local structure?

Examples:
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® (Ajtai-Erdés—Komlés-Szemerédi) w(G) <r = p(G) < G;——2=7

log A(G) "



LLOCAL TO GLOBAL

What global graph structure arises
from conditions on local structure?

Examples:
® (Brooks’ theorem) w(G) < A(G)(>2) = x(G) < A(G)
® (Off-diagonal Ramsey numbers) w(G) <2 = small p(G)
® (Vizing's problem) w(G) <2 = x(G) K A(G)?
® (Ajtai-Erdés—-Komlés—Szemerédi) w(G) <r = p(G) < C,M?
— T log A(G)

® (Reed’s) x(G) < [3(w(G) + A(G) + 1)]?



PROBABILISTIC METHOD

£
D

If random object has property with positive probability,
then there exists at least one object with that property
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CHROMATIC NUMBER OF TRIANGLE-FREE GRAPHS

Further investigations could be conducted, taking into account a more exact
relationship between A and w. Perhaps one should start with estimates of the
chromatic number of a graph without triangles (w = 2) and with given maximal

degree for vertices. (Vizing 1968)

W(G) < p(6) < x+(6) < X(G) < xe(G) < A(G)+1

Theorem (Shearer 1983, cf. Ajtai, Komlds, Szemerédi 1980/1)

A
<
p(G) < log A

for any triangle-free G of maximum degree A

Theorem (Molloy 2019, cf. Johansson 1996+)

A
<
xe(G) S og A

for any triangle-free G of maximum degree A

NB: these bounds are sharp up to a factor 2 by random A-regular graphs.
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relationship between A and w. Perhaps one should start with estimates of the

chromatic number of a graph without triangles (w = 2) and with given maximal

(Vizing 1968)

degree for vertices.
w(G) < p(G) < xr(6) < X(6) < xu(G) < A(G)+1
Conjecture (Ajtai, Erdés, Komlds, Szemerédi 1981)

p(G)=0 (IogAA) for any K,-free G of maximum degree A

Conjecture (Alon, Krivelevich, Sudakov 1999)

x(G) =0 IogAA) for any K,-free G of maximum degree A




CHROMATIC NUMBER OF K,-FREE GRAPHS

Further investigations could be conducted, taking into account a more exact
relationship between A and w. Perhaps one should start with estimates of the
chromatic number of a graph without triangles (w = 2) and with given maximal

degree for vertices. (Vizing 1968)
W(G) < pG) < xr(6) < x(6) < xe(6) < A(G)+1

Conjecture (Ajtai, Erdés, Komlds, Szemerédi 1981)

p(G)=0 (IogAA) for any K,-free G of maximum degree A
Conjecture (Alon, Krivelevich, Sudakov 1999)
x(G) =0 (IogAA) for any K,-free G of maximum degree A

Bounds of Shearer (1995) and Johansson (1996+) are out by a loglog A factor.
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THE w, A, x CONJECTURE
w(6) < x(G) <SA(G)+1

Conjecture (Reed 1998)

A+1
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Picture credit: Wikipedia/David Eppstein



THE w, A, x CONJECTURE
w(6) < x(G) <SA(G)+1

Conjecture (Reed 1998)

x(G) < {LM-‘ for any G of clique number w and maximum degree A

Odd cycles have w =2, A =2, x =3
Chvatal graph (1970)  hasw =2, A =4, y =4

Bound holds:
® with xf instead of x (McDiarmid, cf. Molloy & Reed 2002)
® for w =2, A large enough (Johansson 1996+)

e for w > A — 1 (Brooks 1941)

Picture credit: Wikipedia/David Eppstein



THE w, A, x CONJECTURE
w(6) < x(G) <SA(G)+1

Conjecture (Reed 1998)

x(G) < {LM-‘ for any G of clique number w and maximum degree A

Odd cycles have w =2, A =2, x =3
Chvatal graph (1970)  hasw =2, A =4, y =4
Bound holds:
® with xf instead of x (McDiarmid, cf. Molloy & Reed 2002)
® for w =2, A large enough (Johansson 1996+)
(for w < AY' A large enough (Davies, Kang, Pirot, Sereni 2020+))
e for w > A — 1 (Brooks 1941)

Picture credit: Wikipedia/David Eppstein
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w, A, x CONJECTURE

Theorem (Reed 1998)
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w, A, x CONJECTURE

Theorem (Reed 1998)

x(G) < %M—‘ for any G of clique number w and maximum degree A

provided w > (1 — €1)A for some 1 > 0 and A is large enough

Corollary

X(G) < [eaw + (1 — &2)(A + 1)] for any G of clique number w and maximum
degree A for some €2 > 0 provided A is large enough

* Reed (1998): £, > 0.000000005
® Bonamy, Perrett, Postle (2022): €2 > 0.038
® Delcourt, Postle (2017+): g2 > 0.076
® Hurley, de Joannis de Verclos, Kang (2022): €2 > 0.119

NB: g2 may not be larger than 0.5
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LOCAL DENSITY

no edge in any neighbourhood <= triangle-free

!

at most a certain proportion of edges per neighbourhood

G of max degree A has local density ratio < n if < n(?) edges per nbhd

n < 1/(5) means triangle-free, 7 = 1 means unrestricted
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Largest chromatic number for local density ratio < n for n near 07

Theorem (Alon, Krivelevich, Sudakov 1999, cf. Vu 2002, Achlioptas,
lliopoulos, Sinclair 2019)

x(G) =0 I Ae ) for any G of maximum degree A

M and local density ratio <1, ;7 <n <1

Theorem (Davies, Kang, Pirot, Sereni 2020+)
x(6) 5

— for any G of maximum degree A

lo
&V and local density ratio < 7, <n«k1

-

n= ﬁ matches Molloy's;
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CHROMATIC NUMBER OF LOCALLY SPARSE GRAPHS

Largest chromatic number for local density ratio < n for n near 07

Theorem (Alon, Krivelevich, Sudakov 1999, cf. Vu 2002, Achlioptas,
lliopoulos, Sinclair 2019)

x(G)=0 Ae for any G of maximum degree A
log 7

and local density ratio <1, 7 <n <1

Theorem (Davies, Kang, Pirot, Sereni 2020+)
x(6) 5

I — for any G of maximum degree A
og =
&V and local density ratio <1, 2 <1< 1

n= ﬁ matches Molloy's; the bound is sharp up to a factor of between 2 and 4

NB : n =1 should match A 4 1 bound, but neither gives this. ..
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CHROMATIC NUMBER UNDER BOUNDED LOCAL DENSITY

Largest chromatic number for local density ratio < n for n near 17

Nontrivial improvement on x < A + 1?7 Yes (asymptotically):

Theorem (Molloy & Reed 1997)

X(G) < (1 —¢€)A for any G of maximum degree A and local density ratio <
for some €(n) > 0 provided A is large enough

Lower bounds on ¢ key to sharpest results towards Reed’s conjecture
(and sharpest results towards the Erd&s-Neset¥il conjecture)
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CHROMATIC NUMBER UNDER BOUNDED LOCAL DENSITY

Theorem (Molloy & Reed 1997)

X(G) < (1 —¢)A for any G of maximum degree A and local density ratio <
for some £(n) > 0 provided A is large enough

® Molloy & Reed (1997): e > 0.0238(1 —n)
® Bruhn & Joos (2018): e > 0.1827(1 — ) — 0.0778(1 — n)*/2
* Bonamy, Perrett, Postle (2022): & > 0.3012(1 — ) — 0.1283(1 — 7)*/

® Hurley, de Joannis de Verclos, Kang (2022):
e > 0.5(1—n)—0.1667(1 — n)*/?

Clique of size \/n - A (4 pendant vertices) = e¢<1—-.,/ ~, 0.5(1—mn)
n—



CHROMATIC NUMBER UNDER BOUNDED LOCAL DENSITY

Theorem (Hurley, de Joannis de Verclos, Kang 2022)

x(G) < (1 —0.5(1 —n) +0.1667(1 — 1)*?)A for any G of maximum degree A
and local density ratio < n provided A is large enough

Clique of size v/1 — o - A (+ pendant vertices)

—
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NAIVE COLOURING

Given G and palette [M] = {1,...,M}:

1. independently assign a colour to each v uniformly from [M]

2. uncolour one or both endpoints of each monochromatic edge

3. complete partial proper colouring to full one

® Molloy & Reed (1997): uncolour both endpoints in 2
® Bruhn & Joos (2018): toss a coin to decide in 2
® Bonamy, Perrett, Postle (2022): several iterations of 1 and 2

® Hurley, de Joannis de Verclos, Kang (2022):
random vertex ordering to decide in 2
allows better iteration of 1 and 2



LINK UP?

Theorem (Davies, Kang, Pirot, Sereni 2020+ )

A .
x(G) < o 2 for any G of maximum degree A
& and local density ratio <1, 2 <1< 1

Theorem (Hurley, de Joannis de Verclos, Kang 2022)

x(G) < (1—0.5(1 —n) +0.1667(1 — n)*?)A for any G of maximum degree A
and local density ratio < n provided A is large enough

—
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w(6) < p(6) <A(G)+1

Corollary (Reed 1998)
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INFINITESIMAL SHARPNESS FOR
OTHER MEASURES OF LOCAL DENSITY?

< deg(G) < A(G)

w(6) < p(6) <A(G)+1

Corollary (Reed 1998)

X(G) < (1—-0.5(1—-1n))A+1/2 for any G of maximum degree A and (local)
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Corollary (Reed 1998)

X(G) < (1—-0.5(1—-1n))A+1/2 for any G of maximum degree A and (local)
clique number ratio < 7 provided 1 — 77 < 1/70000000 and A is large enough
Theorem (Hurley, de Joannis de Verclos, Kang 2022)

X(G) < (1—-(1—-1)+ 05-1(1 —1))A for any G of maximum degree A and
local maximum degree ratio < 7} provided 1 — 7} < 0.028 and A is large enough

Problem (Hurley, de Joannis de Verclos, Kang 2022)

What about for bounded local Hall ratio (ratio)?
Local chromatic number ratio? Local maximum average degree ratio?
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