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BROOKS’ THEOREM

Theorem (Brooks 1941)
X(G) < A(G) unless G = Ka(gy41 or G is an odd cycle.
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VIZING’S PROBLEM

Vizing, “Some unsolved problems in graph theory” (1968):

Moskno sm mias m06oTo Hamepes 3aJaHHOTO HATYPANBHOTO duexa k > 2
MOCTPOUTH TPad €O CKONb YLOXHO GONBIIMM 0GXBATOM M C XPOMATHUECKUM HUIC-
aoM k? Moskro. 9to morasan II. 9pgém [39], ocHoBHBasgCh HA MOITHOCTHEIX
co00payKeHNAX. YIUBUTEIBHO, UTO [0 CHX IIOP HET KOHCTPYKTHBHOTO JOKa3a-
texaberBa ororo ¢axra. B [40] yrasam cmoco6 mocrpoerus rpados ¢ T00BIM
XPOMATHUYECKUM YHMCJIOM €3 IMKIOB AMHHBL < 7. ITO Jydiiee, U4TO MBI MMeeM
Ha CerojHANIHUN JIeHb.

Ecau o (L) — MakcuMadpHasi creleHb BepumumHHL rpada L, To, oueBUIHO,
v (L) <o (L)+1. B 1941 r. P. Bpykc [41] poxasax, uro upm o (L) >3
uo (L) < o (L) cnpaBegmua onenka y (L) < ¢ (L). [laxbHeiimue nccaegoBanus
MOKHO IPOBOJUTH, YIUTHIBAg Gosee TOYHO COOTHOUICHUS MKy ¢ M o. llomwa-
nyi, caeyer HauaTh ¢ ONEHKM XPOMATUYECKOTO unciaa rpada 6es TpeyroJabHIKOB
(0 =2) ¢ HaHHOii MAKCHMMATLHOII CTENMEeHbI0 BePIIMHEL.



VIZING’S PROBLEM

Vizing, “Some unsolved problems in graph theory” (1968):

Given a natural number k > 2, is it vossible to construct a graph with
arbitrarily large compass and with chromatic number k? Erdés [39] has
oroved this; his proof is based on counting arguments. It is astonishing
that no constructive proof for this fact has yet been given. In [40] a
method is given of constructing graphs of arbitrary chromatic number
without having cycles of length < 7. This is the best we have at the
nresent time.

If o(L) is the maximum degree of a vertex in a graph L, it is clear
that Y(L) < o(L) + 1. Brooks [41] showed in 1941 that Y(L) < o(L ) whenever
o(L) > 3 and w(L) < o(L). Further investigations could be conducted,
taking into account a more exact relation between O and w. Perhaps one
should start with estimates of the chromatic number of a graph without
triangles (w = 2) and with given maximal degree for vertices.
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[H]|
max
0#HCG a(H)
(upper bounds on p are like lower bounds on «)

where p =
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LOCAL TO GLOBAL

What global graph structure arises
from conditions on local structure?

Examples:

® (Brooks' theorem)
® (Off-diagonal Ramsey numbers)
® (Vizing's problem)

® (Ajtai-Erdés—Komlés—Szemerédi)

® (Reed’s)

w<A(>2) = x<A
w<2 = small p
w<2 = xKA?

?
log A

X< [2w+A+1)]?

w<r = p<C




PROBABILISTIC METHOD

£
D

If random object has property with positive probability,
then there exists at least one object with that property






CHROMATIC NUMBER OF TRIANGLE-FREE GRAPHS

Further investigations could be conducted, taking into account a more exact
relationship between A and w. Perhaps one should start with estimates of the
chromatic number of a graph without triangles (w = 2) and with given maximal

degree for vertices. (Vizing 1968)
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W(G) < p(6) < x+(6) < X(G) < xe(G) < A(G)+1

Theorem (Shearer 1983, cf. Ajtai, Komlds, Szemerédi 1980/1)

A
<
p(G) < log A

for any triangle-free G of maximum degree A
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Further investigations could be conducted, taking into account a more exact
relationship between A and w. Perhaps one should start with estimates of the
chromatic number of a graph without triangles (w = 2) and with given maximal

degree for vertices. (Vizing 1968)

W(G) < p(6) < x+(6) < X(G) < xe(G) < A(G)+1

Theorem (Shearer 1983, cf. Ajtai, Komlds, Szemerédi 1980/1)

A
<
p(G) < log A

for any triangle-free G of maximum degree A

Theorem (Molloy 2019, cf. Johansson 1996+)

A
<
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CHROMATIC NUMBER OF TRIANGLE-FREE GRAPHS

Further investigations could be conducted, taking into account a more exact
relationship between A and w. Perhaps one should start with estimates of the
chromatic number of a graph without triangles (w = 2) and with given maximal

degree for vertices. (Vizing 1968)

W(G) < p(6) < x+(6) < X(G) < xe(G) < A(G)+1

Theorem (Shearer 1983, cf. Ajtai, Komlds, Szemerédi 1980/1)

A
<
p(G) < log A

for any triangle-free G of maximum degree A

Theorem (Molloy 2019, cf. Johansson 1996+)

A
<
xe(G) S og A

for any triangle-free G of maximum degree A

NB: these bounds are sharp up to a factor 2 by random A-regular graphs.
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CHROMATIC NUMBER OF K,-FREE GRAPHS

Further investigations could be conducted, taking into account a more exact

relationship between A and w. Perhaps one should start with estimates of the

chromatic number of a graph without triangles (w = 2) and with given maximal

(Vizing 1968)

degree for vertices.
w(G) < p(G) < xr(6) < X(6) < xu(G) < A(G)+1
Conjecture (Ajtai, Erdés, Komlds, Szemerédi 1981)

p(G)=0 (IogAA) for any K,-free G of maximum degree A

Conjecture (Alon, Krivelevich, Sudakov 1999)

x(G) =0 IogAA) for any K,-free G of maximum degree A




CHROMATIC NUMBER OF K,-FREE GRAPHS

Further investigations could be conducted, taking into account a more exact
relationship between A and w. Perhaps one should start with estimates of the
chromatic number of a graph without triangles (w = 2) and with given maximal

degree for vertices. (Vizing 1968)
W(G) < pG) < xr(6) < x(6) < xe(6) < A(G)+1

Conjecture (Ajtai, Erdés, Komlds, Szemerédi 1981)

p(G)=0 (IogAA) for any K,-free G of maximum degree A
Conjecture (Alon, Krivelevich, Sudakov 1999)
x(G) =0 (IogAA) for any K,-free G of maximum degree A

Bounds of Shearer (1995) and Johansson (1996+) are out by a loglog A factor.
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THE w, A, x CONJECTURE
w(6) < x(G) <SA(G)+1

Conjecture (Reed 1998)

A+1
x(G) < {u-‘ for any G of clique number w and maximum degree A

Odd cycles have w =2, A =2, x =3
Chvatal graph (1970)  hasw =2, A =4, y =4

Bound holds:
® with xf instead of x (McDiarmid, cf. Molloy & Reed 2002)
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Conjecture (Reed 1998)

x(G) < {LM-‘ for any G of clique number w and maximum degree A

Odd cycles have w =2, A =2, x =3
Chvatal graph (1970)  hasw =2, A =4, y =4

Bound holds:
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THE w, A, x CONJECTURE
w(6) < x(G) <SA(G)+1

Conjecture (Reed 1998)

x(G) < {LM-‘ for any G of clique number w and maximum degree A

Odd cycles have w =2, A =2, x =3
Chvatal graph (1970)  hasw =2, A =4, y =4
Bound holds:
® with xf instead of x (McDiarmid, cf. Molloy & Reed 2002)
® for w =2, A large enough (Johansson 1996+)
(for w < AY' A large enough (Davies, Kang, Pirot, Sereni 2020+))
e for w > A — 1 (Brooks 1941)

Picture credit: Wikipedia/David Eppstein
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Theorem (Reed 1998)

x(G) < UH—#M—‘ for any G of clique number w and maximum degree A

provided w > (1 — €1)A for some 1 > 0 and A is large enough
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Theorem (Reed 1998)
A+1
x(G) < % for any G of clique number w and maximum degree A
provided w > (1 — €1)A for some 1 > 0 and A is large enough
Corollary

X(G) < [eaw + (1 — &2)(A + 1)] for any G of clique number w and maximum
degree A for some €2 > 0 provided A is large enough
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Corollary

X(G) < [eaw + (1 — &2)(A + 1)] for any G of clique number w and maximum
degree A for some €2 > 0 provided A is large enough

* Reed (1998): &> > 0.000000005
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w, A, x CONJECTURE

Theorem (Reed 1998)

x(G) < %M—‘ for any G of clique number w and maximum degree A

provided w > (1 — €1)A for some 1 > 0 and A is large enough

Corollary

X(G) < [eaw + (1 — &2)(A + 1)] for any G of clique number w and maximum
degree A for some €2 > 0 provided A is large enough

* Reed (1998): £, > 0.000000005
® Bonamy, Perrett, Postle (2022): €2 > 0.038
® Delcourt, Postle (2017+): g2 > 0.076
® Hurley, de Joannis de Verclos, Kang (2021): €2 > 0.119

NB: g2 may not be larger than 0.5
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LOCAL DENSITY

no edge in any neighbourhood <= triangle-free

!

at most a certain proportion of edges per neighbourhood

G of max degree A has local density <7 if < 77(?) edges per neighbourhood

n < 1/(5) means triangle-free, 7 = 1 means unrestricted
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Largest chromatic number for local density < n for n near 07

Theorem (Alon, Krivelevich, Sudakov 1999, cf. Vu 2002, Achlioptas,
lliopoulos, Sinclair 2019)

x(G) =0 I Ae ) for any G of maximum degree A

M and local density at most 1, 72z <1 <1

Theorem (Davies, Kang, Pirot, Sereni 2020+)
x(6) 5

— for any G of maximum degree A

lo
&V and local density at most n), <n«k1

-

n= ﬁ matches Molloy's;
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Largest chromatic number for local density < n for n near 07

Theorem (Alon, Krivelevich, Sudakov 1999, cf. Vu 2002, Achlioptas,
lliopoulos, Sinclair 2019)
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CHROMATIC NUMBER OF LOCALLY SPARSE GRAPHS

Largest chromatic number for local density < n for n near 07

Theorem (Alon, Krivelevich, Sudakov 1999, cf. Vu 2002, Achlioptas,
lliopoulos, Sinclair 2019)

x(G)=0 Ae for any G of maximum degree A
log 7

and local density at most 7, ﬁ <n<l1

Theorem (Davies, Kang, Pirot, Sereni 2020+)
x(6) 5

I — for any G of maximum degree A
og =
&V and local density at most 1, 2y <1 < 1

n= ﬁ matches Molloy's; the bound is sharp up to a factor of between 2 and 4

NB : n =1 should match A 4 1 bound, but neither gives this. ..
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Nontrivial improvement on x < A + 1?7 Yes (asymptotically):
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CHROMATIC NUMBER UNDER BOUNDED LOCAL DENSITY

Largest chromatic number for local density < n for n near 17

Nontrivial improvement on x < A + 1?7 Yes (asymptotically):

Theorem (Molloy & Reed 1997)

X(G) < (1 —¢€)A for any G of maximum degree A and local density at most 7
for some €(n) > 0 provided A is large enough

Lower bounds on ¢ key to sharpest results towards Reed’s conjecture
(and sharpest results towards the Erd&s-Neset¥il conjecture)
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Theorem (Molloy & Reed 1997)

x(G) < (1 —¢)A for any G of maximum degree A and local density at most n
for some £(n) > 0 provided A is large enough

® Molloy & Reed (1997): e > 0.0238(1 —n)
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CHROMATIC NUMBER UNDER BOUNDED LOCAL DENSITY

Theorem (Molloy & Reed 1997)

x(G) < (1 —¢)A for any G of maximum degree A and local density at most n
for some £(n) > 0 provided A is large enough

® Molloy & Reed (1997): e > 0.0238(1 —n)
® Bruhn & Joos (2018): e > 0.1827(1 — ) — 0.0778(1 — n)*/2
* Bonamy, Perrett, Postle (2022): & > 0.3012(1 — ) — 0.1283(1 — 7)*/
® Hurley, de Joannis de Verclos, Kang (2021):

e>0.5(1—7)—0.1667(1 — n)*/?

Clique of size \/n - A (4 pendant vertices) = e¢<1—-.,/ ~, 0.5(1—mn)
n—



CHROMATIC NUMBER UNDER BOUNDED LOCAL DENSITY

Theorem (Hurley, de Joannis de Verclos, Kang 2021)

x(G) < (1 —0.5(1 —n) +0.1667(1 — 1)*?)A for any G of maximum degree A
and local density at most n provided A is large enough

Clique of size v/1 — o - A (+ pendant vertices)

—
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NAIVE COLOURING

Given G and palette [M] = {1,...,M}:

1. independently assign a colour to each v uniformly from [M]

2. uncolour one or both endpoints of each monochromatic edge

3. complete partial proper colouring to full one

® Molloy & Reed (1997): uncolour both endpoints in 7?7
® Bruhn & Joos (2018): toss a coin to decide in ?7
® Bonamy, Perrett, Postle (2022): several iterations of 77 and 77

® Hurley, de Joannis de Verclos, Kang (2021):
random vertex ordering to decide in 77
allows better iteration of 77 and 77



LINK UP?

Theorem (Davies, Kang, Pirot, Sereni 2020+ )

A .
x(G) < o 2 for any G of maximum degree A
&V and local density at most 7, é <nkl1

Theorem (Hurley, de Joannis de Verclos, Kang 2021)

x(G) < (1—0.5(1 —n) +0.1667(1 — n)*?)A for any G of maximum degree A
and local density at most n provided A is large enough

—







!EYOND TRIVIAL

e xe(G) £A(G)+1
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LIST COLOURING (FORMALLY)

Introduced independently by Vizing (1976) and Erdés, Rubin, Taylor (1980).
A list-assignment is some L : V(G) — 2°";

a k-list-assignment is some L : V(G) — (Z:).

An L-colouring is some c : V(G) — Z* with c(v) € L(v) for every v € V(G).
G is k-choosable if there is a proper L-colouring for any k-list-assignment L.

The list chromatic number x,(G) is least k such that G is k-choosable.

x¢(G) > x(G) by considering constant L.



COVER GRAPHS




L(u)

10e
Qe
8e
Te
6e
be
e
3e
Qe
le

COVER GRAPHS

°17
15
°14
ol1
10
o0 L
o7
5
o4
o]



COVER GRAPHS

L(u)




COVER GRAPHS




COVER GRAPHS



COVER GRAPHS




THAT WAS A BIT TOO FAR

We want independent transversals (ITs) in vertex-partitioned graphs.



THAT WAS A BIT TOO FAR

We want independent transversals (ITs) in vertex-partitioned graphs.

An aside: In 1972 Woodall presented at the open problem session of the 3rd
BCC here in Oxford. After some interchange with Erdds, there eventually arose
the Bollobds—Erd8s—Szemerédi conjecture (1975), solved much later:



THAT WAS A BIT TOO FAR

We want independent transversals (ITs) in vertex-partitioned graphs.

An aside: In 1972 Woodall presented at the open problem session of the 3rd
BCC here in Oxford. After some interchange with Erdds, there eventually arose
the Bollobds—Erd8s—Szemerédi conjecture (1975), solved much later:

Theorem (Haxell 2001)

Any graph of maximum degree D with a partition into parts of size at least 2D
admits an IT.



THAT WAS A BIT TOO FAR

We want independent transversals (ITs) in vertex-partitioned graphs.

An aside: In 1972 Woodall presented at the open problem session of the 3rd
BCC here in Oxford. After some interchange with Erdds, there eventually arose
the Bollobds—Erd8s—Szemerédi conjecture (1975), solved much later:

Theorem (Haxell 2001)

Any graph of maximum degree D with a partition into parts of size at least 2D
admits an IT.

BESz knew hypothetically the sharpness of the factor 2, but a construction of
Szabé & Tardos (2005) shows moreover the statement is exactly sharp!
Theorem (Szabé & Tardos 2005)

There is a graph of maximum degree D with a partition into parts of size
2D — 1 that does not admit an IT.
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Trivial bound (x¢(G) < A(G) 4 1) redux:

If H is the cover graph of some graph G with a (D + 1)-list-assignment
and G has maximum degree D, then H admits an IT.

Conjecture (Reed 1999)

If H is the cover graph of some graph G with a (D + 1)-list-assignment
and H has maximum degree D, then H admits an IT.

NB: so G may well be a complete graph!

Bohman & Holzman (2002): counterexample!
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Conjecture (Reed 1999)

If H is the cover graph of some graph G with a (D + 1)-list-assignment
and H has maximum degree D, then H admits an IT.

Theorem (Reed & Sudakov 2002)

There is an f satisfying f(D) = D + o(D) as D — oo so the following holds.
If H is the cover graph of some graph with an f(D)-list-assignment
and H has maximum degree D, then H admits an IT.

Still open: could f(D) = D + C suffice?
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AND THEN EVEN A LITTLE FURTHER

Proposition (Dvo¥éak, Esperet, Kang, Ozeki 2021, cf. Wanless & Wood
2022)

If H is a 4D-fold cover graph and H has maximum part-averaged degree D,
then H admits an IT.

NB: the maximum degree of H may be much larger than D!
NB: Reed & Wood (2012) already knew/used this with 2e instead of 4.
NB: 4 is necessary (Groenland, Kaiser, Treffers, Wales 2021+).

Theorem (Glock & Sudakov 2022, Kang & Kelly 2022)

There is an f satisfying f(D) = D + o(D) as D — oo so the following holds.
If H is an f(D)-fold correspondence-cover graph and
H has maximum part-averaged degree D, then H admits an IT.

NB: this is stronger than Loh—Sudakov.
NB: incidentally, this confirms a conjecture of Erdés, Gyérfas, tuczak (1994).
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EVEN FURTHER?

Instead of prescribing maximum part-degree (correspondence-cover means 1),
prescribe maximum part-averaged part-degree, say o(D)?

Loh—Sudakov (2007) and Kang—Kelly (2022) conjectures
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A CROSSING OF THE TWO ARCS

Theorem (Amini & Reed 2008)
There is C > 0 such that, if H is a (C - D/ log D)-fold list-cover,
H is triangle-free, and H has maximum degree D, then H admits an IT.

NB: Alon & Assadi (2020+) independently derived a very similar result with
the aim of ‘palette sparsification’.

Conjecture (Cambie & Kang 2020+)

There is C > 0 such that, if H is a (C - D/ log D)-fold correspondence-cover,
H is triangle-free, and H has maximum degree D, then H admits an IT.

NB: Anderson, Bernshteyn, Dhawan (2021+) propose an even stronger form.






UESTIONS ¢




