On conjectures of Reed

Ross J. Kang*

Radboud University Nijmegen University of Amsterdam

Reedfest

Oxford 7/2022

* Joint works with Cambie, Davies, Dvořák, Esperet, Hurley, de Joannis de Verclos, Kelly, Ozeki, Pirot, Sereni. Support from NWO and Van Gogh grants.
Brooks’ theorem

Theorem (Brooks 1941)

\[\chi(G) \leq \Delta(G) \text{ unless } G = K_{\Delta(G)+1} \text{ or } G \text{ is an odd cycle.} \]
Vizing’s problem

Vizing, “Some unsolved problems in graph theory” (1968):

Можно ли для любого наперед заданного натурального числа $k \geq 2$ построить граф со сколь угодно большим обхватом и с хроматическим числом k? Можно. Это доказал П. Эрдёш [39], основываясь на мощностных соображениях. Удивительно, что до сих пор нет конструктивного доказательства этого факта. В [40] указан способ построения графов с любым хроматическим числом без циклов длины ≤ 7. Это лучшее, что мы имеем на сегодняшний день.

Если $\sigma(L)$ — максимальная степень вершины графа L, то, очевидно, $\gamma(L) \leq \sigma(L) + 1$. В 1941 г. Р. Брукс [41] доказал, что при $\sigma(L) \geq 3$ и $\omega(L) \leq \sigma(L)$ справедлива оценка $\gamma(L) \leq \sigma(L)$. Дальнейшие исследования можно проводить, учитывая более точно соотношения между σ и ω. Пожалуй, следует начать с оценки хроматического числа графа без треугольников ($\omega = 2$) с данной максимальной степенью вершины.
Vizing, "Some unsolved problems in graph theory" (1968):

Given a natural number \(k \geq 2 \), is it possible to construct a graph with arbitrarily large compass and with chromatic number \(k \)? Erdős [39] has proved this; his proof is based on counting arguments. It is astonishing that no constructive proof for this fact has yet been given. In [40] a method is given of constructing graphs of arbitrary chromatic number without having cycles of length \(< 7\). This is the best we have at the present time.

If \(\sigma(L) \) is the maximum degree of a vertex in a graph \(L \), it is clear that \(\gamma(L) \leq \sigma(L) + 1 \). Brooks [41] showed in 1941 that \(\gamma(L) \leq \sigma(L) \) whenever \(\sigma(L) > 3 \) and \(\omega(L) \leq \sigma(L) \). Further investigations could be conducted, taking into account a more exact relation between \(\sigma \) and \(\omega \). Perhaps one should start with estimates of the chromatic number of a graph without triangles (\(\omega = 2 \)) and with given maximal degree for vertices.
Measures of sparsity/structure

\[\delta \leq \deg \leq \Delta \]
Measures of sparsity/structure

\[\delta \leq \bar{\text{deg}} \leq \Delta \]

\[\omega \leq \rho \leq \chi_f \leq \chi \leq \chi_\ell \leq \Delta + 1 \]
Measures of sparsity/structure

\[\delta \leq \overline{\text{deg}} \leq \Delta \]

\[\omega \leq \rho \leq \chi_f \leq \chi \leq \chi_\ell \leq \Delta + 1 \]

where \(\rho = \max_{\emptyset \neq H \subseteq G} \frac{|H|}{\alpha(H)} \)

(upper bounds on \(\rho \) are like lower bounds on \(\alpha \))
Local to global

What global graph structure arises from conditions on local structure?

- (Brooks' theorem) $\omega \leq \Delta > 2 \Rightarrow \chi \leq \Delta$
- (Off-diagonal Ramsey numbers) $\omega \leq 2 \Rightarrow \text{small} \rho$
- (Vizing's problem) $\omega \leq 2 \Rightarrow \chi \ll \Delta$
- (Ajtai–Erdős–Komlós–Szemerédi) $\omega < \rho = \Rightarrow \rho \leq C \rho \Delta \log \Delta$
- (Reed's) $\chi \leq \frac{1}{2} (\omega + \Delta + 1)$
Local to Global

What global graph structure arises from conditions on local structure?

Examples:

• (Brooks’ theorem) \(\omega \leq \Delta(> 2) \implies \chi \leq \Delta \)

• (Off-diagonal Ramsey numbers)

• (Vizing’s problem)

• (Ajtai–Erdős–Komlós–Szemerédi)

• (Reed’s)
Local to global

What global graph structure arises from conditions on local structure?

Examples:

• (Brooks’ theorem) $\omega \leq \Delta (> 2) \implies \chi \leq \Delta$
• (Off-diagonal Ramsey numbers) $\omega \leq 2 \implies \text{small } \rho$
Local to global

What global graph structure arises from conditions on local structure?

Examples:

- (Brooks’ theorem) \(\omega \leq \Delta (> 2) \implies \chi \leq \Delta \)
- (Off-diagonal Ramsey numbers) \(\omega \leq 2 \implies \text{small } \rho \)
- (Vizing’s problem) \(\omega \leq 2 \implies \chi \ll \Delta ? \)
Local to global

What global graph structure arises from conditions on local structure?

Examples:

• (Brooks’ theorem) \(\omega \leq \Delta (> 2) \implies \chi \leq \Delta \)
• (Off-diagonal Ramsey numbers) \(\omega \leq 2 \implies \text{small } \rho \)
• (Vizing’s problem) \(\omega \leq 2 \implies \chi \ll \Delta ? \)
• (Ajtai–Erdős–Komlós–Szemerédi) \(\omega < r \implies \rho \leq C_r \frac{\Delta}{\log \Delta} ? \)
Local to global

What global graph structure arises from conditions on local structure?

Examples:

- (Brooks’ theorem) \(\omega \leq \Delta(>2) \implies \chi \leq \Delta \)
- (Off-diagonal Ramsey numbers) \(\omega \leq 2 \implies \text{small } \rho \)
- (Vizing’s problem) \(\omega \leq 2 \implies \chi \ll \Delta? \)
- (Ajtai–Erdős–Komlós–Szemerédi) \(\omega < r \implies \rho \leq C_r \frac{\Delta}{\log \Delta}? \)
- (Reed’s) \(\chi \leq \left\lceil \frac{1}{2} (\omega + \Delta + 1) \right\rceil? \)
Probabilistic method

If random object has property with positive probability, then there exists at least one object with that property
Further investigations could be conducted, taking into account a more exact relationship between Δ and ω. Perhaps one should start with estimates of the chromatic number of a graph without triangles ($\omega = 2$) and with given maximal degree for vertices. (Vizing 1968)
Further investigations could be conducted, taking into account a more exact relationship between Δ and ω. Perhaps one should start with estimates of the chromatic number of a graph without triangles ($\omega = 2$) and with given maximal degree for vertices. (Vizing 1968)

$$\omega(G) \leq \rho(G) \leq \chi_f(G) \leq \chi(G) \leq \chi_\ell(G) \leq \Delta(G) + 1$$

Theorem (Shearer 1983, cf. Ajtai, Komlós, Szemerédi 1980/1)

$$\rho(G) \lesssim \frac{\Delta}{\log \Delta}$$
for any triangle-free G of maximum degree Δ
Further investigations could be conducted, taking into account a more exact relationship between Δ and ω. Perhaps one should start with estimates of the chromatic number of a graph without triangles ($\omega = 2$) and with given maximal degree for vertices. (Vizing 1968)

$$\omega(G) \leq \rho(G) \leq \chi_f(G) \leq \chi(G) \leq \chi_\ell(G) \leq \Delta(G) + 1$$

Theorem (Shearer 1983, cf. Ajtai, Komlós, Szemerédi 1980/1)

$$\rho(G) \lesssim \frac{\Delta}{\log \Delta} \quad \text{for any triangle-free } G \text{ of maximum degree } \Delta$$

Theorem (Johansson 1996+)

$$\chi_\ell(G) = O \left(\frac{\Delta}{\log \Delta} \right) \quad \text{for any triangle-free } G \text{ of maximum degree } \Delta$$
Further investigations could be conducted, taking into account a more exact relationship between Δ and ω. Perhaps one should start with estimates of the chromatic number of a graph without triangles ($\omega = 2$) and with given maximal degree for vertices. (Vizing 1968)

$$\omega(G) \leq \rho(G) \leq \chi_f(G) \leq \chi(G) \leq \chi_\ell(G) \leq \Delta(G) + 1$$

Theorem (Shearer 1983, cf. Ajtai, Komlós, Szemerédi 1980/1)

$$\rho(G) \lesssim \frac{\Delta}{\log \Delta} \quad \text{for any triangle-free } G \text{ of maximum degree } \Delta$$

$$\chi_\ell(G) \lesssim \frac{\Delta}{\log \Delta} \quad \text{for any triangle-free } G \text{ of maximum degree } \Delta$$
Further investigations could be conducted, taking into account a more exact relationship between Δ and ω. Perhaps one should start with estimates of the chromatic number of a graph without triangles ($\omega = 2$) and with given maximal degree for vertices. (Vizing 1968)

$$\omega(G) \leq \rho(G) \leq \chi_f(G) \leq \chi(G) \leq \chi_\ell(G) \leq \Delta(G) + 1$$

Theorem (Shearer 1983, cf. Ajtai, Komlós, Szemerédi 1980/1)

$$\rho(G) \preceq \frac{\Delta}{\log \Delta} \quad \text{for any triangle-free } G \text{ of maximum degree } \Delta$$

$$\chi_\ell(G) \preceq \frac{\Delta}{\log \Delta} \quad \text{for any triangle-free } G \text{ of maximum degree } \Delta$$

NB: these bounds are sharp up to a factor 2 by random Δ-regular graphs.
Further investigations could be conducted, taking into account a more exact relationship between Δ and ω. Perhaps one should start with estimates of the chromatic number of a graph without triangles ($\omega = 2$) and with given maximal degree for vertices. (Vizing 1968)

$$\omega(G) \leq \rho(G) \leq \chi_f(G) \leq \chi(G) \leq \chi_{\ell}(G) \leq \Delta(G) + 1$$
Further investigations could be conducted, taking into account a more exact relationship between Δ and ω. Perhaps one should start with estimates of the chromatic number of a graph without triangles ($\omega = 2$) and with given maximal degree for vertices. (Vizing 1968)

$$\omega(G) \leq \rho(G) \leq \chi_f(G) \leq \chi(G) \leq \chi_\ell(G) \leq \Delta(G) + 1$$

Conjecture (Ajtai, Erdős, Komlós, Szemerédi 1981)

$$\rho(G) = O\left(\frac{\Delta}{\log \Delta}\right)$$

for any K_r-free G of maximum degree Δ
Further investigations could be conducted, taking into account a more exact relationship between Δ and ω. Perhaps one should start with estimates of the chromatic number of a graph without triangles ($\omega = 2$) and with given maximal degree for vertices. (Vizing 1968)

$$\omega(G) \leq \rho(G) \leq \chi_f(G) \leq \chi(G) \leq \chi_\ell(G) \leq \Delta(G) + 1$$

Conjecture (Ajtai, Erdős, Komlós, Szemerédi 1981)
$$\rho(G) = O\left(\frac{\Delta}{\log \Delta}\right) \quad \text{for any } K_r\text{-free } G \text{ of maximum degree } \Delta$$

Conjecture (Alon, Krivelevich, Sudakov 1999)
$$\chi(G) = O\left(\frac{\Delta}{\log \Delta}\right) \quad \text{for any } K_r\text{-free } G \text{ of maximum degree } \Delta$$
Further investigations could be conducted, taking into account a more exact relationship between Δ and ω. Perhaps one should start with estimates of the chromatic number of a graph without triangles ($\omega = 2$) and with given maximal degree for vertices. (Vizing 1968)

$$\omega(G) \leq \rho(G) \leq \chi_f(G) \leq \chi(G) \leq \chi_{\ell}(G) \leq \Delta(G) + 1$$

Conjecture (Ajtai, Erdős, Komlós, Szemerédi 1981)

$$\rho(G) = O\left(\frac{\Delta}{\log \Delta}\right)$$ for any K_r-free G of maximum degree Δ

Conjecture (Alon, Krivelevich, Sudakov 1999)

$$\chi(G) = O\left(\frac{\Delta}{\log \Delta}\right)$$ for any K_r-free G of maximum degree Δ

Bounds of Shearer (1995) and Johansson (1996+) are out by a $\log \log \Delta$ factor.
The ω, Δ, χ conjecture

\[\omega(G) \leq \rho(G) \leq \chi_f(G) \leq \chi(G) \leq \chi_\ell(G) \leq \Delta(G) + 1\]
The ω, Δ, χ Conjecture

\[
\omega(G) \leq \rho(G) \leq \chi_f(G) \leq \chi(G) \leq \chi_e(G) \leq \Delta(G) + 1
\]

Conjecture (Reed 1998)

\[
\chi(G) \leq \left\lceil \frac{\omega + \Delta + 1}{2} \right\rceil \text{ for any } G \text{ of clique number } \omega \text{ and maximum degree } \Delta
\]

†Picture credit: Wikipedia/David Eppstein
The ω, Δ, χ conjecture

\[\omega(G) \leq \rho(G) \leq \chi_f(G) \leq \chi(G) \leq \chi_e(G) \leq \Delta(G) + 1 \]

Conjecture (Reed 1998)

\[\chi(G) \leq \left\lceil \frac{\omega + \Delta + 1}{2} \right\rceil \text{ for any } G \text{ of clique number } \omega \text{ and maximum degree } \Delta \]

Odd cycles have \(\omega = 2, \Delta = 2, \chi = 3 \)

† Picture credit: Wikipedia/David Eppstein
THE ω, Δ, χ CONJECTURE

$$\omega(G) \leq \rho(G) \leq \chi_f(G) \leq \chi(G) \leq \chi_e(G) \leq \Delta(G) + 1$$

Conjecture (Reed 1998)

$$\chi(G) \leq \left\lfloor \frac{\omega + \Delta + 1}{2} \right\rfloor$$ for any G of clique number ω and maximum degree Δ

Odd cycles have $\omega = 2$, $\Delta = 2$, $\chi = 3$

Chvátal graph (1970)† has $\omega = 2$, $\Delta = 4$, $\chi = 4$

†Picture credit: Wikipedia/David Eppstein
The ω, Δ, χ Conjecture

$$\omega(G) \leq \rho(G) \leq \chi_f(G) \leq \chi(G) \leq \chi_{\ell}(G) \leq \Delta(G) + 1$$

Conjecture (Reed 1998)

$$\chi(G) \leq \left\lceil \frac{\omega + \Delta + 1}{2} \right\rceil$$ for any G of clique number ω and maximum degree Δ

Odd cycles have $\omega = 2$, $\Delta = 2$, $\chi = 3$

Chvátal graph (1970)† has $\omega = 2$, $\Delta = 4$, $\chi = 4$

Bound holds:
- with χ_f instead of χ (McDiarmid, cf. Molloy & Reed 2002)

†Picture credit: Wikipedia/David Eppstein
The ω, Δ, χ Conjecture

\[\omega(G) \leq \rho(G) \leq \chi_f(G) \leq \chi(G) \leq \chi_\ell(G) \leq \Delta(G) + 1 \]

Conjecture (Reed 1998)

\[\chi(G) \leq \left\lceil \frac{\omega + \Delta + 1}{2} \right\rceil \text{ for any } G \text{ of clique number } \omega \text{ and maximum degree } \Delta \]

Odd cycles have $\omega = 2$, $\Delta = 2$, $\chi = 3$

Chvátal graph (1970)\(^\dagger\) has $\omega = 2$, $\Delta = 4$, $\chi = 4$

Bound holds:

- with χ_f instead of χ (McDiarmid, cf. Molloy & Reed 2002)
- for $\omega = 2$, Δ large enough (Johansson 1996+)
- for $\omega \geq \Delta - 1$ (Brooks 1941)

\(^\dagger\)Picture credit: Wikipedia/David Eppstein
The ω, Δ, χ conjecture

$$\omega(G) \leq \rho(G) \leq \chi_f(G) \leq \chi(G) \leq \chi_e(G) \leq \Delta(G) + 1$$

Conjecture (Reed 1998)

$$\chi(G) \leq \left\lfloor \frac{\omega + \Delta + 1}{2} \right\rfloor$$

for any G of clique number ω and maximum degree Δ

Odd cycles have $\omega = 2$, $\Delta = 2$, $\chi = 3$

Chvátal graph (1970)† has $\omega = 2$, $\Delta = 4$, $\chi = 4$

Bound holds:

- with χ_f instead of χ (McDiarmid, cf. Molloy & Reed 2002)
- for $\omega = 2$, Δ large enough (Johansson 1996$^+$)
- (for $\omega \leq \Delta^{1/101}$, Δ large enough (Davies, Kang, Pirot, Sereni 2020$^+$))
- for $\omega \geq \Delta - 1$ (Brooks 1941)

†Picture credit: Wikipedia/David Eppstein
Theorem (Reed 1998)

\[\chi(G) \leq \left\lceil \frac{\omega + \Delta + 1}{2} \right\rceil \] for any \(G \) of clique number \(\omega \) and maximum degree \(\Delta \) provided \(\omega \geq (1 - \varepsilon_1)\Delta \) for some \(\varepsilon_1 > 0 \) and \(\Delta \) is large enough
Theorem (Reed 1998)
\[\chi(G) \leq \left\lfloor \frac{\omega + \Delta + 1}{2} \right\rfloor \text{ for any } G \text{ of clique number } \omega \text{ and maximum degree } \Delta \]
provided \(\omega \geq (1 - \varepsilon_1)\Delta \) for some \(\varepsilon_1 > 0 \) and \(\Delta \) is large enough

Corollary
\[\chi(G) \leq \lceil \varepsilon_2 \omega + (1 - \varepsilon_2)(\Delta + 1) \rceil \text{ for any } G \text{ of clique number } \omega \text{ and maximum degree } \Delta \text{ for some } \varepsilon_2 > 0 \text{ provided } \Delta \text{ is large enough} \]
Theorem (Reed 1998)
\[
\chi(G) \leq \left\lceil \frac{\omega + \Delta + 1}{2} \right\rceil
\]
for any \(G \) of clique number \(\omega \) and maximum degree \(\Delta \)
provided \(\omega \geq (1 - \varepsilon_1)\Delta \) for some \(\varepsilon_1 > 0 \) and \(\Delta \) is large enough

Corollary
\[
\chi(G) \leq \left\lceil \varepsilon_2\omega + (1 - \varepsilon_2)(\Delta + 1) \right\rceil
\]
for any \(G \) of clique number \(\omega \) and maximum degree \(\Delta \) for some \(\varepsilon_2 > 0 \) provided \(\Delta \) is large enough

- Reed (1998): \(\varepsilon_2 > 0.000000005 \)

NB: \(\varepsilon_2 \) may not be larger than 0.5
Theorem (Reed 1998)
\[\chi(G) \leq \left\lceil \frac{\omega + \Delta + 1}{2} \right\rceil \] for any \(G \) of clique number \(\omega \) and maximum degree \(\Delta \) provided \(\omega \geq (1 - \varepsilon_1)\Delta \) for some \(\varepsilon_1 > 0 \) and \(\Delta \) is large enough.

Corollary
\[\chi(G) \leq \left\lceil \varepsilon_2 \omega + (1 - \varepsilon_2)(\Delta + 1) \right\rceil \] for any \(G \) of clique number \(\omega \) and maximum degree \(\Delta \) for some \(\varepsilon_2 > 0 \) provided \(\Delta \) is large enough.

- Reed (1998): \(\varepsilon_2 > 0.000000005 \)
- Bonamy, Perrett, Postle (2022): \(\varepsilon_2 > 0.038 \)
- Delcourt, Postle (2017+): \(\varepsilon_2 > 0.076 \)

NB: \(\varepsilon_2 \) may not be larger than 0.5.
ω, Δ, χ CONJECTURE

Theorem (Reed 1998)

\[\chi(G) \leq \left\lfloor \frac{\omega + \Delta + 1}{2} \right\rfloor \]

for any G of clique number \(\omega \) and maximum degree \(\Delta \)

provided \(\omega \geq (1 - \varepsilon_1)\Delta \) for some \(\varepsilon_1 > 0 \) and \(\Delta \) is large enough

Corollary

\[\chi(G) \leq \lceil \varepsilon_2 \omega + (1 - \varepsilon_2)(\Delta + 1) \rceil \]

for any G of clique number \(\omega \) and maximum degree \(\Delta \) for some \(\varepsilon_2 > 0 \) provided \(\Delta \) is large enough

- Reed (1998): \(\varepsilon_2 > 0.000000005 \)
- Bonamy, Perrett, Postle (2022): \(\varepsilon_2 > 0.038 \)
- Delcourt, Postle (2017+): \(\varepsilon_2 > 0.076 \)
- Hurley, de Joannis de Verclos, Kang (2021): \(\varepsilon_2 > 0.119 \)

NB: \(\varepsilon_2 \) may not be larger than 0.5
Local density

no edge in any neighbourhood
Local density

no edge in any neighbourhood \iff triangle-free
Local density

no edge in any neighbourhood \iff triangle-free

\downarrow

at most a certain proportion of edges per neighbourhood

$\eta < \frac{1}{\Delta^2}$ means triangle-free,
$\eta = 1$ means unrestricted
Local density

no edge in any neighbourhood \iff triangle-free

\downarrow

at most a certain proportion of edges per neighbourhood

G of max degree Δ has local density $\leq \eta$ if $\leq \eta\left(\frac{\Delta}{2}\right)$ edges per neighbourhood
Local density

no edge in any neighbourhood \iff triangle-free

\downarrow

at most a certain proportion of edges per neighbourhood

G of max degree Δ has local density $\leq \eta$ if $\leq \eta\binom{\Delta}{2}$ edges per neighbourhood

$\eta < 1/\binom{\Delta}{2}$ means triangle-free, $\eta = 1$ means unrestricted
Largest chromatic number for local density \(\leq \eta \) for \(\eta \) near 0?
Largest chromatic number for local density $\leq \eta$ for η near 0?

$$\chi(G) = O\left(\frac{\Delta}{\log \frac{e}{\sqrt{\eta}}}\right) \text{ for any } G \text{ of maximum degree } \Delta$$

and local density at most η, $\frac{1}{\Delta^2} \leq \eta \leq 1$
Largest chromatic number for local density $\leq \eta$ for η near 0?

$$\chi(G) = O\left(\frac{\Delta}{\log \frac{e}{\sqrt{\eta}}}\right) \text{ for any } G \text{ of maximum degree } \Delta$$

and local density at most η, $\frac{1}{\Delta^2} \leq \eta \leq 1$

Theorem (Davies, Kang, Pirot, Sereni 2020+)

$$\chi(G) \lesssim \frac{\Delta}{\log \frac{e}{\sqrt{\eta}}} \text{ for any } G \text{ of maximum degree } \Delta$$

and local density at most η, $\frac{1}{\Delta^2} \leq \eta \ll 1$
Largest chromatic number for local density $\leq \eta$ for η near 0?

$$\chi(G) = O\left(\frac{\Delta}{\log \frac{e}{\sqrt{\eta}}}\right) \text{ for any } G \text{ of maximum degree } \Delta$$

and local density at most η, $\frac{1}{\Delta^2} \leq \eta \leq 1$

Theorem (Davies, Kang, Pirot, Sereni 2020+)

$$\chi(G) \preceq \frac{\Delta}{\log \frac{e}{\sqrt{\eta}}} \text{ for any } G \text{ of maximum degree } \Delta$$

and local density at most η, $\frac{1}{\Delta^2} \leq \eta \ll 1$

$\eta = \frac{1}{\Delta^2}$ matches Molloy’s;
Chromatic number of locally sparse graphs

Largest chromatic number for local density $\leq \eta$ for η near 0?

$$\chi(G) = O\left(\frac{\Delta}{\log \frac{e}{\sqrt{\eta}}}\right) \text{ for any } G \text{ of maximum degree } \Delta$$

and local density at most η, $\frac{1}{\Delta^2} \leq \eta \leq 1$

Theorem (Davies, Kang, Pirot, Sereni 2020+)

$$\chi(G) \lesssim \frac{\Delta}{\log \frac{e}{\sqrt{\eta}}} \text{ for any } G \text{ of maximum degree } \Delta$$

and local density at most η, $\frac{1}{\Delta^2} \leq \eta \ll 1$

$\eta = \frac{1}{\Delta^2}$ matches Molloy’s; the bound is sharp up to a factor of between 2 and 4
Largest chromatic number for local density $\leq \eta$ for η near 0?

$$\chi(G) = O \left(\frac{\Delta}{\log e^{\sqrt{\eta}}} \right) \text{ for any } G \text{ of maximum degree } \Delta$$

and local density at most η, $\frac{1}{\Delta^2} \leq \eta \leq 1$

Theorem (Davies, Kang, Pirot, Sereni 2020+)

$$\chi(G) \lesssim \frac{\Delta}{\log e^{\sqrt{\eta}}} \text{ for any } G \text{ of maximum degree } \Delta$$

and local density at most η, $\frac{1}{\Delta^2} \leq \eta \ll 1$

$\eta = \frac{1}{\Delta^2}$ matches Molloy’s; the bound is sharp up to a factor of between 2 and 4

NB: $\eta = 1$ should match $\Delta + 1$ bound, but neither gives this...
Largest chromatic number for local density $\leq \eta$ for η near 1?

Nontrivial improvement on $\chi \leq \Delta + 1$?
Largest chromatic number for local density $\leq \eta$ for η near 1?

Nontrivial improvement on $\chi \leq \Delta + 1$? Yes (asymptotically):

Theorem (Molloy & Reed 1997)

$\chi(G) \leq (1 - \varepsilon)\Delta$ for any G of maximum degree Δ and local density at most η for some $\varepsilon(\eta) > 0$ provided Δ is large enough
Largest chromatic number for local density $\leq \eta$ for η near 1?

Nontrivial improvement on $\chi \leq \Delta + 1$? Yes (asymptotically):

Theorem (Molloy & Reed 1997)

$\chi(G) \leq (1 - \varepsilon)\Delta$ for any G of maximum degree Δ and local density at most η for some $\varepsilon(\eta) > 0$ provided Δ is large enough

Lower bounds on ε key to sharpest results towards Reed’s conjecture (and sharpest results towards the Erdős-Nešetřil conjecture)
Theorem (Molloy & Reed 1997)
\[\chi(G) \leq (1 - \varepsilon)\Delta \text{ for any } G \text{ of maximum degree } \Delta \text{ and local density at most } \eta \text{ for some } \varepsilon(\eta) > 0 \text{ provided } \Delta \text{ is large enough} \]

- Molloy & Reed (1997):
 \[\varepsilon > 0.0238(1 - \eta) \]
Theorem (Molloy & Reed 1997)

\(\chi(G) \leq (1 - \varepsilon)\Delta\) for any \(G\) of maximum degree \(\Delta\) and local density at most \(\eta\) for some \(\varepsilon(\eta) > 0\) provided \(\Delta\) is large enough

- Molloy & Reed (1997): \(\varepsilon > 0.0238(1 - \eta)\)
- Bruhn & Joos (2018): \(\varepsilon > 0.1827(1 - \eta) - 0.0778(1 - \eta)^{3/2}\)
- Bonamy, Perrett, Postle (2022): \(\varepsilon > 0.3012(1 - \eta) - 0.1283(1 - \eta)^{3/2}\)
Theorem (Molloy & Reed 1997)

\[\chi(G) \leq (1 - \varepsilon) \Delta \text{ for any } G \text{ of maximum degree } \Delta \text{ and local density at most } \eta \text{ for some } \varepsilon(\eta) > 0 \text{ provided } \Delta \text{ is large enough} \]

- Molloy & Reed (1997): \[\varepsilon > 0.0238(1 - \eta) \]
- Bruhn & Joos (2018): \[\varepsilon > 0.1827(1 - \eta) - 0.0778(1 - \eta)^{3/2} \]
- Bonamy, Perrett, Postle (2022): \[\varepsilon > 0.3012(1 - \eta) - 0.1283(1 - \eta)^{3/2} \]
- Hurley, de Joannis de Verclos, Kang (2021): \[\varepsilon > 0.5(1 - \eta) - 0.1667(1 - \eta)^{3/2} \]
Theorem (Molloy & Reed 1997)
\[\chi(G) \leq (1 - \varepsilon)\Delta \] for any \(G \) of maximum degree \(\Delta \) and local density at most \(\eta \) for some \(\varepsilon(\eta) > 0 \) provided \(\Delta \) is large enough

- Molloy & Reed (1997): \(\varepsilon > 0.0238(1 - \eta) \)
- Bruhn & Joos (2018): \(\varepsilon > 0.1827(1 - \eta) - 0.0778(1 - \eta)^{3/2} \)
- Bonamy, Perrett, Postle (2022): \(\varepsilon > 0.3012(1 - \eta) - 0.1283(1 - \eta)^{3/2} \)
- Hurley, de Joannis de Verclos, Kang (2021): \(\varepsilon > 0.5(1 - \eta) - 0.1667(1 - \eta)^{3/2} \)

Clique of size \(\sqrt{\eta} \cdot \Delta \) (+ pendant vertices)
Theorem (Molloy & Reed 1997)
\(\chi(G) \leq (1 - \varepsilon)\Delta \) for any \(G \) of maximum degree \(\Delta \) and local density at most \(\eta \) for some \(\varepsilon(\eta) > 0 \) provided \(\Delta \) is large enough

- Molloy & Reed (1997): \(\varepsilon > 0.0238(1 - \eta) \)
- Bruhn & Joos (2018): \(\varepsilon > 0.1827(1 - \eta) - 0.0778(1 - \eta)^{3/2} \)
- Bonamy, Perrett, Postle (2022): \(\varepsilon > 0.3012(1 - \eta) - 0.1283(1 - \eta)^{3/2} \)
 \[
 \varepsilon > 0.5(1 - \eta) - 0.1667(1 - \eta)^{3/2}
 \]

Clique of size \(\sqrt{\eta} \cdot \Delta \) (plus pendant vertices) \(\implies \varepsilon \leq 1 - \sqrt{\eta} \xrightarrow{\eta \to 1} 0.5(1 - \eta) \)
Theorem (Hurley, de Joannis de Verclos, Kang 2021)

\[\chi(G) \leq (1 - 0.5(1 - \eta) + 0.1667(1 - \eta)^{3/2})\Delta \] for any \(G \) of maximum degree \(\Delta \) and local density at most \(\eta \) provided \(\Delta \) is large enough.

Clique of size \(\sqrt{1 - \sigma} \cdot \Delta \) (+ pendant vertices)
Naïve colouring

Given G and palette $[M] = \{1, \ldots, M\}$:

1. independently assign a colour to each v uniformly from $[M]$
Naïve colouring

Given G and palette $[M] = \{1, \ldots, M\}$:

1. independently assign a colour to each v uniformly from $[M]$
2. uncolour one or both endpoints of each monochromatic edge

• Molloy & Reed (1997): uncolour both endpoints in

• Bruhn & Joos (2018): toss a coin to decide in

• Bonamy, Perrett, Postle (2022): several iterations of

• Hurley, de Joannis de Verclos, Kang (2021): random vertex ordering to decide in

allows better iteration of
Naïve colouring

Given G and palette $[M] = \{1, \ldots, M\}$:

1. independently assign a colour to each v uniformly from $[M]$
2. uncolour one or both endpoints of each monochromatic edge
3. complete partial proper colouring to full one
Naïve colouring

Given G and palette $[M] = \{1, \ldots, M\}$:

1. independently assign a colour to each v uniformly from $[M]$
2. uncolour one or both endpoints of each monochromatic edge
3. complete partial proper colouring to full one

- Molloy & Reed (1997): uncolour both endpoints in ??
- Bruhn & Joos (2018): toss a coin to decide in ??
- Bonamy, Perrett, Postle (2022): several iterations of ??
- Hurley, de Joannis de Verclos, Kang (2021): random vertex ordering to decide in ?? allows better iteration of ?? and ??
Naïve colouring

Given G and palette $[M] = \{1, \ldots, M\}$:

1. independently assign a colour to each v uniformly from $[M]$
2. uncolour one or both endpoints of each monochromatic edge
3. complete partial proper colouring to full one

- Molloy & Reed (1997): uncolour both endpoints in ??
- Bruhn & Joos (2018): toss a coin to decide in ??
- Bonamy, Perrett, Postle (2022): several iterations of ?? and ??
- Hurley, de Joannis de Verclos, Kang (2021): random vertex ordering to decide in ?? allows better iteration of ?? and ??
Naïve colouring

Given G and palette $[M] = \{1, \ldots, M\}$:

1. independently assign a colour to each v uniformly from $[M]$
2. uncolour one or both endpoints of each monochromatic edge
3. complete partial proper colouring to full one

- Molloy & Reed (1997): uncolour both endpoints in ??
- Bruhn & Joos (2018): toss a coin to decide in ??
- Bonamy, Perrett, Postle (2022): several iterations of ?? and ??
Naïve colouring

Given G and palette $[M] = \{1, \ldots, M\}$:

1. independently assign a colour to each v uniformly from $[M]$
2. uncolour one or both endpoints of each monochromatic edge
3. complete partial proper colouring to full one

- Molloy & Reed (1997): uncolour both endpoints in ??
- Bruhn & Joos (2018): toss a coin to decide in ??
- Bonamy, Perrett, Postle (2022): several iterations of ?? and ??
- Hurley, de Joannis de Verclos, Kang (2021): random vertex ordering to decide in ??
 allows better iteration of ?? and ??
Theorem (Davies, Kang, Pirot, Sereni 2020+)

\[\chi(G) \lesssim \frac{\Delta}{\log \frac{e}{\sqrt{\eta}}} \quad \text{for any } G \text{ of maximum degree } \Delta \]

and local density at most \(\eta, \frac{1}{\Delta^2} \leq \eta \ll 1 \)

Theorem (Hurley, de Joannis de Verclos, Kang 2021)

\[\chi(G) \leq (1 - 0.5(1 - \eta) + 0.1667(1 - \eta)^{3/2})\Delta \quad \text{for any } G \text{ of maximum degree } \Delta \]

and local density at most \(\eta \) provided \(\Delta \) is large enough.
\[\omega(G) \leq \rho(G) \leq \chi_f(G) \leq \chi(G) \leq \chi_e(G) \leq \Delta(G) + 1 \]
List colouring (formally)

Introduced independently by Vizing (1976) and Erdős, Rubin, Taylor (1980).
List colouring (formally)

Introduced independently by Vizing (1976) and Erdős, Rubin, Taylor (1980).

A list-assignment is some \(L : V(G) \rightarrow 2^{\mathbb{Z}^+} \);
a \(k \)-list-assignment is some \(L : V(G) \rightarrow \binom{\mathbb{Z}^+}{k} \).
List colouring (formally)

Introduced independently by Vizing (1976) and Erdős, Rubin, Taylor (1980).

A list-assignment is some \(L : V(G) \rightarrow 2^{\mathbb{Z}^+} \);
a \(k \)-list-assignment is some \(L : V(G) \rightarrow \binom{\mathbb{Z}^+}{k} \).

An \(L \)-colouring is some \(c : V(G) \rightarrow \mathbb{Z}^+ \) with \(c(v) \in L(v) \) for every \(v \in V(G) \). G is \(k \)-choosable if there is a proper \(L \)-colouring for any \(k \)-list-assignment \(L \).
List colouring (formally)

Introduced independently by Vizing (1976) and Erdős, Rubin, Taylor (1980).

A list-assignment is some $L : V(G) \to 2\mathbb{Z}^+$;
a k-list-assignment is some $L : V(G) \to \binom{\mathbb{Z}^+}{k}$.

An L-colouring is some $c : V(G) \to \mathbb{Z}^+$ with $c(v) \in L(v)$ for every $v \in V(G)$.

G is k-choosable if there is a proper L-colouring for any k-list-assignment L.

The list chromatic number $\chi_\ell(G)$ is least k such that G is k-choosable.

$\chi_\ell(G) \geq \chi(G)$ by considering constant L.
Cover graphs

$u \quad \bullet \quad \bullet \quad \bullet \quad v$
Cover graphs

$L(u)$

10 • 9 • 8 • 7 • 6 • 5 • 4 • 3 • 2 • 1

$L(v)$

17 • 15 • 14 • 11 • 10 • 9 • 7 • 5 • 4 • 1
Cover graphs

\[L(u) \]

\[L(v) \]
Cover graphs
Cover graphs
Cover graphs
We want independent transversals (ITs) in vertex-partitioned graphs.
We want independent transversals (ITs) in vertex-partitioned graphs.

An aside: In 1972 Woodall presented at the open problem session of the 3rd BCC here in Oxford. After some interchange with Erdős, there eventually arose the Bollobás–Erdős–Szemerédi conjecture (1975), solved much later:
We want independent transversals (ITs) in vertex-partitioned graphs.

An aside: In 1972 Woodall presented at the open problem session of the 3rd BCC here in Oxford. After some interchange with Erdős, there eventually arose the Bollobás–Erdős–Szemerédi conjecture (1975), solved much later:

Theorem (Haxell 2001)

Any graph of maximum degree D with a partition into parts of size at least $2D$ admits an IT.
We want independent transversals (ITs) in vertex-partitioned graphs.

An aside: In 1972 Woodall presented at the open problem session of the 3rd BCC here in Oxford. After some interchange with Erdős, there eventually arose the Bollobás–Erdős–Szemerédi conjecture (1975), solved much later:

Theorem (Haxell 2001)

Any graph of maximum degree D with a partition into parts of size at least $2D$ admits an IT.

BESz knew hypothetically the sharpness of the factor 2, but a construction of Szabó & Tardos (2005) shows moreover the statement is **exactly** sharp!

Theorem (Szabó & Tardos 2005)

*There is a graph of maximum degree D with a partition into parts of size $2D - 1$ that does **not** admit an IT.*
Trivial bound $(\chi^\ell(G) \leq \Delta(G) + 1)$ redux:

If H is the cover graph of some graph G with a $(D + 1)$-list-assignment and G has maximum degree D, then H admits an IT.
Trivial bound ($\chi_\ell(G) \leq \Delta(G) + 1$) redux:

*If H is the cover graph of some graph G with a $(D + 1)$-list-assignment and G has maximum degree D, then H admits an IT."

Conjecture (Reed 1999)

*If H is the cover graph of some graph G with a $(D + 1)$-list-assignment and H has maximum degree D, then H admits an IT."

NB: so G may well be a complete graph!

Bohman & Holzman (2002): counterexample!
Trivial bound ($\chi_e(G) \leq \Delta(G) + 1$) redux:

If H is the cover graph of some graph G with a $(D + 1)$-list-assignment and G has maximum degree D, then H admits an IT.

Conjecture (Reed 1999)

If H is the cover graph of some graph G with a $(D + 1)$-list-assignment and H has maximum degree D, then H admits an IT.

NB: so G may well be a complete graph!
Trivial bound ($\chi_\ell(G) \leq \Delta(G) + 1$) redux:

If H is the cover graph of some graph G with a $(D + 1)$-list-assignment and G has maximum degree D, then H admits an IT.

Conjecture (Reed 1999)

If H is the cover graph of some graph G with a $(D + 1)$-list-assignment and H has maximum degree D, then H admits an IT.

NB: so G may well be a complete graph!

Bohman & Holzman (2002): counterexample!
Conjecture (Reed 1999)

If H is the cover graph of some graph G with a $(D + 1)$-list-assignment and H has maximum degree D, then H admits an IT.

Still open: could $f(D) = D + C$ suffice?
Conjecture (Reed 1999)
If H is the cover graph of some graph G with a $(D + 1)$-list-assignment and H has maximum degree D, then H admits an IT.

Theorem (Reed & Sudakov 2002)
There is an f satisfying $f(D) = D + o(D)$ as $D \to \infty$ so the following holds. If H is the cover graph of some graph with an $f(D)$-list-assignment and H has maximum degree D, then H admits an IT.
Conjecture (Reed 1999)

If H is the cover graph of some graph G with a $(D + 1)$-list-assignment and H has maximum degree D, then H admits an IT.

Theorem (Reed & Sudakov 2002)

There is an f satisfying $f(D) = D + o(D)$ as $D \to \infty$ so the following holds. If H is the cover graph of some graph with an $f(D)$-list-assignment and H has maximum degree D, then H admits an IT.

Still open: could $f(D) = D + C$ suffice?
Trivial bound $(\chi_c(G) \leq \Delta(G) + 1)$ redux redux:

If H is a $(D + 1)$-fold correspondence-cover graph of some graph G and G has maximum degree D, then H admits an IT.
Trivial bound \(\chi_c(G) \leq \Delta(G) + 1 \) redux redux:

If \(H \) is a \((D + 1)\)-fold correspondence-cover graph of some graph \(G \) and \(G \) has maximum degree \(D \), then \(H \) admits an IT.

Solving a problem of Aharoni & Holzman:

Theorem (Loh & Sudakov 2007)

There is an \(f \) satisfying \(f(D) = D + o(D) \) as \(D \to \infty \) so the following holds.

If \(H \) is an \(f(D) \)-fold correspondence-cover graph and \(H \) has maximum degree \(D \), then \(H \) admits an IT.
Trivial bound ($\chi_c(G) \leq \Delta(G) + 1$) redux redux:

If H *is a* $(D + 1)$-*fold correspondence-cover graph of some graph* G *and* G *has maximum degree* D, *then* H *admits an IT.*

Solving a problem of Aharoni & Holzman:

Theorem (Loh & Sudakov 2007)

There is an f satisfying $f(D) = D + o(D)$ as $D \to \infty$ so the following holds. *If* H *is an* $f(D)$-*fold correspondence-cover graph and* H *has maximum degree* D, *then* H *admits an IT.*

NB: this is stronger than Reed–Sudakov.
Proposition (Dvořák, Esperet, Kang, Ozeki 2021, cf. Wanless & Wood 2022)

If H is a $4D$-fold cover graph and H has maximum part-averaged degree D, then H admits an IT.

NB: the maximum degree of H may be much larger than $D!$

NB: Reed & Wood (2012) already knew/used this with $2e$ instead of 4.

NB: 4 is necessary (Groenland, Kaiser, Treffers, Wales 2021+).

Theorem (Glock & Sudakov 2022, Kang & Kelly 2022)

There is an f satisfying $f(D) = D + o(D)$ as $D \to \infty$ so the following holds.

If H is an $f(D)$-fold correspondence-cover graph and H has maximum part-averaged degree D, then H admits an IT.

NB: this is stronger than Loh–Sudakov.

NB: incidentally, this confirms a conjecture of Erdős, Gyárfás, Luczak (1994).
Proposition (Dvořák, Esperet, Kang, Ozeki 2021, cf. Wanless & Wood 2022)

If H is a $4D$-fold cover graph and H has maximum *part-averaged* degree D, then H admits an IT.

NB: the maximum degree of H may be much larger than D!
Proposition (Dvořák, Esperet, Kang, Ozeki 2021, cf. Wanless & Wood 2022)

If H is a $4D$-fold cover graph and H has maximum part-averaged degree D, then H admits an IT.

NB: the maximum degree of H may be much larger than D!

NB: Reed & Wood (2012) already knew/used this with $2e$ instead of 4.
Proposition (Dvořák, Esperet, Kang, Ozeki 2021, cf. Wanless & Wood 2022)

If H is a $4D$-fold cover graph and H has maximum part-averaged degree D, then H admits an IT.

NB: the maximum degree of H may be much larger than D!
NB: Reed & Wood (2012) already knew/used this with $2e$ instead of 4.
NB: 4 is necessary (Groenland, Kaiser, Treffers, Wales 2021+).
And then even a little further

Proposition (Dvořák, Esperet, Kang, Ozeki 2021, cf. Wanless & Wood 2022)

If H is a $4D$-fold cover graph and H has maximum part-averaged degree D, then H admits an IT.

NB: the maximum degree of H may be much larger than D!
NB: Reed & Wood (2012) already knew/used this with $2e$ instead of 4.
NB: 4 is necessary (Groenland, Kaiser, Treffers, Wales 2021+).

Theorem (Glock & Sudakov 2022, Kang & Kelly 2022)

There is an f satisfying $f(D) = D + o(D)$ as $D \to \infty$ so the following holds. If H is an $f(D)$-fold correspondence-cover graph and H has maximum part-averaged degree D, then H admits an IT.
Proposition (Dvořák, Esperet, Kang, Ozeki 2021, cf. Wanless & Wood 2022)

If H is a $4D$-fold cover graph and H has maximum part-averaged degree D, then H admits an IT.

NB: the maximum degree of H may be much larger than D!
NB: Reed & Wood (2012) already knew/used this with $2e$ instead of 4.
NB: 4 is necessary (Groenland, Kaiser, Treffers, Wales 2021+).

Theorem (Glock & Sudakov 2022, Kang & Kelly 2022)

There is an f satisfying $f(D) = D + o(D)$ as $D \to \infty$ so the following holds.
If H is an $f(D)$-fold correspondence-cover graph and H has maximum part-averaged degree D, then H admits an IT.

NB: this is stronger than Loh–Sudakov.
And then even a little further

Proposition (Dvořák, Esperet, Kang, Ozeki 2021, cf. Wanless & Wood 2022)

If H is a $4D$-fold cover graph and H has maximum part-averaged degree D, then H admits an IT.

NB: the maximum degree of H may be much larger than D!
NB: Reed & Wood (2012) already knew/used this with $2e$ instead of 4.
NB: 4 is necessary (Groenland, Kaiser, Treffers, Wales 2021+).

Theorem (Glock & Sudakov 2022, Kang & Kelly 2022)

There is an f satisfying $f(D) = D + o(D)$ as $D \to \infty$ so the following holds.

If H is an $f(D)$-fold correspondence-cover graph and H has maximum part-averaged degree D, then H admits an IT.

NB: this is stronger than Loh–Sudakov.
NB: incidentally, this confirms a conjecture of Erdős, Gyárfás, Łuczak (1994).
Instead of prescribing maximum part-degree (correspondence-cover means 1),
Instead of prescribing maximum part-degree (correspondence-cover means 1), prescribe maximum part-averaged part-degree, say $o(D)$?
Instead of prescribing maximum part-degree (correspondence-cover means 1), prescribe maximum part-averaged part-degree, say $o(D)$?

Loh–Sudakov (2007) and Kang–Kelly (2022) conjectures
Theorem (Amini & Reed 2008)

There is $C > 0$ such that, if H is a $(C \cdot D / \log D)$-fold list-cover, H is triangle-free, and H has maximum degree D, then H admits an IT.

NB: Alon & Assadi (2020+) independently derived a very similar result with the aim of ‘palette sparsification’.
Theorem (Amini & Reed 2008)

There is $C > 0$ such that, if H is a $(C \cdot D / \log D)$-fold list-cover, H is triangle-free, and H has maximum degree D, then H admits an IT.

NB: Alon & Assadi (2020+) independently derived a very similar result with the aim of ‘palette sparsification’.

Conjecture (Cambie & Kang 2020+)

There is $C > 0$ such that, if H is a $(C \cdot D / \log D)$-fold correspondence-cover, H is triangle-free, and H has maximum degree D, then H admits an IT.

NB: Anderson, Bernshteyn, Dhawan (2021+) propose an even stronger form.
Questions?