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Brooks’ theorem

Theorem (Brooks 1941)

χ(G) ≤ ∆(G) unless G = K∆(G)+1 or G is an odd cycle.



Vizing’s problem

Vizing, “Some unsolved problems in graph theory” (1968):
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Measures of sparsity/structure

δ ≤ deg ≤ ∆

ω ≤ ρ ≤ χf ≤ χ ≤ χℓ ≤ ∆ + 1

where ρ = max
∅̸=H⊆G

|H|
α(H)

(upper bounds on ρ are like lower bounds on α)
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Local to global

What global graph structure arises
from conditions on local structure?

Examples:

• (Brooks’ theorem) ω ≤ ∆(> 2) =⇒ χ ≤ ∆

• (Off-diagonal Ramsey numbers) ω ≤ 2 =⇒ small ρ

• (Vizing’s problem) ω ≤ 2 =⇒ χ ≪ ∆?

• (Ajtai–Erdős–Komlós–Szemerédi) ω < r =⇒ ρ ≤ Cr
∆

log ∆
?

• (Reed’s) χ ≤
⌈
1
2
(ω + ∆ + 1)

⌉
?
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Probabilistic method

If random object has property with positive probability,
then there exists at least one object with that property





Chromatic number of triangle-free graphs

Further investigations could be conducted, taking into account a more exact

relationship between ∆ and ω. Perhaps one should start with estimates of the

chromatic number of a graph without triangles (ω = 2) and with given maximal

degree for vertices. (Vizing 1968)

ω(G) ≤ ρ(G) ≤ χf (G) ≤ χ(G) ≤ χℓ(G) ≤ ∆(G) + 1

Theorem (Shearer 1983, cf. Ajtai, Komlós, Szemerédi 1980/1)

ρ(G) ≲
∆

log ∆
for any triangle-free G of maximum degree ∆

(
Theorem (

Molloy 2019, cf.

Johansson 1996+)

χℓ(G) = O

(
∆

log ∆

)
for any triangle-free G of maximum degree ∆

(

NB: these bounds are sharp up to a factor 2 by random ∆-regular graphs.
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Chromatic number of Kr -free graphs

Further investigations could be conducted, taking into account a more exact

relationship between ∆ and ω. Perhaps one should start with estimates of the

chromatic number of a graph without triangles (ω = 2) and with given maximal

degree for vertices. (Vizing 1968)

ω(G) ≤ ρ(G) ≤ χf (G) ≤ χ(G) ≤ χℓ(G) ≤ ∆(G) + 1

Conjecture (Ajtai, Erdős, Komlós, Szemerédi 1981)

ρ(G) = O

(
∆

log ∆

)
for any Kr -free G of maximum degree ∆

Conjecture (Alon, Krivelevich, Sudakov 1999)

χ(G) = O

(
∆

log ∆

)
for any Kr -free G of maximum degree ∆

Bounds of Shearer (1995) and Johansson (1996+) are out by a log log ∆ factor.
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The ω, ∆, χ conjecture

ω(G) ≤ ρ(G) ≤ χf (G) ≤ χ(G) ≤ χℓ(G) ≤ ∆(G) + 1

Conjecture (Reed 1998)

χ(G) ≤
⌈
ω + ∆ + 1

2

⌉
for any G of clique number ω and maximum degree ∆

Odd cycles have ω = 2, ∆ = 2, χ = 3

Chvátal graph (1970)† has ω = 2, ∆ = 4, χ = 4

Bound holds:

• with χf instead of χ (McDiarmid, cf. Molloy & Reed 2002)

• for ω = 2, ∆ large enough (Johansson 1996+)

(for ω ≤ ∆1/101, ∆ large enough (Davies, Kang, Pirot, Sereni 2020+))

• for ω ≥ ∆ − 1 (Brooks 1941)

†Picture credit: Wikipedia/David Eppstein
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ω, ∆, χ conjecture

Theorem (Reed 1998)

χ(G) ≤
⌈
ω + ∆ + 1

2

⌉
for any G of clique number ω and maximum degree ∆

provided ω ≥ (1 − ε1)∆ for some ε1 > 0 and ∆ is large enough

Corollary

χ(G) ≤ ⌈ε2ω + (1 − ε2)(∆ + 1)⌉ for any G of clique number ω and maximum
degree ∆ for some ε2 > 0 provided ∆ is large enough

• Reed (1998): ε2 > 0.000000005

• Bonamy, Perrett, Postle (2022): ε2 > 0.038

• Delcourt, Postle (2017+): ε2 > 0.076

• Hurley, de Joannis de Verclos, Kang (2021): ε2 > 0.119

NB: ε2 may not be larger than 0.5
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Local density

no edge in any neighbourhood

⇐⇒ triangle-free

↓

at most a certain proportion of edges per neighbourhood

G of max degree ∆ has local density ≤ η if ≤ η
(
∆
2

)
edges per neighbourhood

η < 1/
(
∆
2

)
means triangle-free, η = 1 means unrestricted
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Chromatic number of locally sparse graphs

Largest chromatic number for local density ≤ η for η near 0?

Theorem (Alon, Krivelevich, Sudakov 1999, cf. Vu 2002, Achlioptas,
Iliopoulos, Sinclair 2019)

χ(G) = O

(
∆

log e√
η

)
for any G of maximum degree ∆

and local density at most η, 1
∆2 ≤ η ≤ 1

Theorem (Davies, Kang, Pirot, Sereni 2020+)

χ(G) ≲
∆

log e√
η

for any G of maximum degree ∆

and local density at most η, 1
∆2 ≤ η ≪ 1

η = 1
∆2 matches Molloy’s; the bound is sharp up to a factor of between 2 and 4

NB : η = 1 should match ∆ + 1 bound, but neither gives this. . .
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Theorem (Davies, Kang, Pirot, Sereni 2020+)

χ(G) ≲
∆

log e√
η

for any G of maximum degree ∆

and local density at most η, 1
∆2 ≤ η ≪ 1

η = 1
∆2 matches Molloy’s; the bound is sharp up to a factor of between 2 and 4

NB : η = 1 should match ∆ + 1 bound, but neither gives this. . .



Chromatic number of locally sparse graphs

Largest chromatic number for local density ≤ η for η near 0?

Theorem (Alon, Krivelevich, Sudakov 1999, cf. Vu 2002, Achlioptas,
Iliopoulos, Sinclair 2019)

χ(G) = O

(
∆

log e√
η

)
for any G of maximum degree ∆

and local density at most η, 1
∆2 ≤ η ≤ 1

Theorem (Davies, Kang, Pirot, Sereni 2020+)

χ(G) ≲
∆

log e√
η

for any G of maximum degree ∆

and local density at most η, 1
∆2 ≤ η ≪ 1

η = 1
∆2 matches Molloy’s; the bound is sharp up to a factor of between 2 and 4

NB : η = 1 should match ∆ + 1 bound, but neither gives this. . .



Chromatic number under bounded local density

Largest chromatic number for local density ≤ η for η near 1?

Nontrivial improvement on χ ≤ ∆ + 1?

Yes (asymptotically):

Theorem (Molloy & Reed 1997)

χ(G) ≤ (1 − ε)∆ for any G of maximum degree ∆ and local density at most η
for some ε(η) > 0 provided ∆ is large enough

Lower bounds on ε key to sharpest results towards Reed’s conjecture
(and sharpest results towards the Erdős-Nešeťril conjecture)
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Chromatic number under bounded local density

Theorem (Molloy & Reed 1997)

χ(G) ≤ (1 − ε)∆ for any G of maximum degree ∆ and local density at most η
for some ε(η) > 0 provided ∆ is large enough

• Molloy & Reed (1997): ε > 0.0238(1 − η)

• Bruhn & Joos (2018): ε > 0.1827(1 − η) − 0.0778(1 − η)3/2

• Bonamy, Perrett, Postle (2022): ε > 0.3012(1 − η) − 0.1283(1 − η)3/2

• Hurley, de Joannis de Verclos, Kang (2021):
ε > 0.5(1 − η) − 0.1667(1 − η)3/2

Clique of size
√
η · ∆ (+ pendant vertices) =⇒ ε ≤ 1 −√

η ∼
η→1

0.5(1 − η)



Chromatic number under bounded local density

Theorem (Molloy & Reed 1997)

χ(G) ≤ (1 − ε)∆ for any G of maximum degree ∆ and local density at most η
for some ε(η) > 0 provided ∆ is large enough

• Molloy & Reed (1997): ε > 0.0238(1 − η)

• Bruhn & Joos (2018): ε > 0.1827(1 − η) − 0.0778(1 − η)3/2

• Bonamy, Perrett, Postle (2022): ε > 0.3012(1 − η) − 0.1283(1 − η)3/2

• Hurley, de Joannis de Verclos, Kang (2021):
ε > 0.5(1 − η) − 0.1667(1 − η)3/2

Clique of size
√
η · ∆ (+ pendant vertices) =⇒ ε ≤ 1 −√

η ∼
η→1

0.5(1 − η)



Chromatic number under bounded local density

Theorem (Molloy & Reed 1997)

χ(G) ≤ (1 − ε)∆ for any G of maximum degree ∆ and local density at most η
for some ε(η) > 0 provided ∆ is large enough

• Molloy & Reed (1997): ε > 0.0238(1 − η)

• Bruhn & Joos (2018): ε > 0.1827(1 − η) − 0.0778(1 − η)3/2

• Bonamy, Perrett, Postle (2022): ε > 0.3012(1 − η) − 0.1283(1 − η)3/2

• Hurley, de Joannis de Verclos, Kang (2021):
ε > 0.5(1 − η) − 0.1667(1 − η)3/2

Clique of size
√
η · ∆ (+ pendant vertices) =⇒ ε ≤ 1 −√

η ∼
η→1

0.5(1 − η)



Chromatic number under bounded local density

Theorem (Molloy & Reed 1997)

χ(G) ≤ (1 − ε)∆ for any G of maximum degree ∆ and local density at most η
for some ε(η) > 0 provided ∆ is large enough

• Molloy & Reed (1997): ε > 0.0238(1 − η)

• Bruhn & Joos (2018): ε > 0.1827(1 − η) − 0.0778(1 − η)3/2

• Bonamy, Perrett, Postle (2022): ε > 0.3012(1 − η) − 0.1283(1 − η)3/2

• Hurley, de Joannis de Verclos, Kang (2021):
ε > 0.5(1 − η) − 0.1667(1 − η)3/2

Clique of size
√
η · ∆ (+ pendant vertices)

=⇒ ε ≤ 1 −√
η ∼

η→1
0.5(1 − η)



Chromatic number under bounded local density

Theorem (Molloy & Reed 1997)

χ(G) ≤ (1 − ε)∆ for any G of maximum degree ∆ and local density at most η
for some ε(η) > 0 provided ∆ is large enough

• Molloy & Reed (1997): ε > 0.0238(1 − η)

• Bruhn & Joos (2018): ε > 0.1827(1 − η) − 0.0778(1 − η)3/2

• Bonamy, Perrett, Postle (2022): ε > 0.3012(1 − η) − 0.1283(1 − η)3/2

• Hurley, de Joannis de Verclos, Kang (2021):
ε > 0.5(1 − η) − 0.1667(1 − η)3/2

Clique of size
√
η · ∆ (+ pendant vertices) =⇒ ε ≤ 1 −√

η ∼
η→1

0.5(1 − η)



Chromatic number under bounded local density

Theorem (Hurley, de Joannis de Verclos, Kang 2021)

χ(G) ≤ (1 − 0.5(1 − η) + 0.1667(1 − η)3/2)∆ for any G of maximum degree ∆
and local density at most η provided ∆ is large enough

Clique of size
√

1 − σ · ∆ (+ pendant vertices)



Näıve colouring

Given G and palette [M] = {1, . . . ,M}:

1. independently assign a colour to each v uniformly from [M]

2. uncolour one or both endpoints of each monochromatic edge

3. complete partial proper colouring to full one

• Molloy & Reed (1997): uncolour both endpoints in ??

• Bruhn & Joos (2018): toss a coin to decide in ??

• Bonamy, Perrett, Postle (2022): several iterations of ?? and ??

• Hurley, de Joannis de Verclos, Kang (2021):
random vertex ordering to decide in ??

allows better iteration of ?? and ??
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Link up?

Theorem (Davies, Kang, Pirot, Sereni 2020+)

χ(G) ≲
∆

log e√
η

for any G of maximum degree ∆

and local density at most η, 1
∆2 ≤ η ≪ 1

Theorem (Hurley, de Joannis de Verclos, Kang 2021)

χ(G) ≤ (1 − 0.5(1 − η) + 0.1667(1 − η)3/2)∆ for any G of maximum degree ∆
and local density at most η provided ∆ is large enough





Beyond trivial

ω(G) ≤ ρ(G) ≤ χf (G) ≤ χ(G) ≤ χℓ(G) ≤ ∆(G) + 1



List colouring (formally)

Introduced independently by Vizing (1976) and Erdős, Rubin, Taylor (1980).

A list-assignment is some L : V (G) → 2Z+

;

a k-list-assignment is some L : V (G) →
(Z+

k

)
.

An L-colouring is some c : V (G) → Z+ with c(v) ∈ L(v) for every v ∈ V (G).

G is k-choosable if there is a proper L-colouring for any k-list-assignment L.

The list chromatic number χℓ(G) is least k such that G is k-choosable.

χℓ(G) ≥ χ(G) by considering constant L.
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A list-assignment is some L : V (G) → 2Z+

;

a k-list-assignment is some L : V (G) →
(Z+

k

)
.

An L-colouring is some c : V (G) → Z+ with c(v) ∈ L(v) for every v ∈ V (G).

G is k-choosable if there is a proper L-colouring for any k-list-assignment L.

The list chromatic number χℓ(G) is least k such that G is k-choosable.

χℓ(G) ≥ χ(G) by considering constant L.



List colouring (formally)

Introduced independently by Vizing (1976) and Erdős, Rubin, Taylor (1980).
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That was a bit too far

We want independent transversals (ITs) in vertex-partitioned graphs.

An aside: In 1972 Woodall presented at the open problem session of the 3rd
BCC here in Oxford. After some interchange with Erdős, there eventually arose
the Bollobás–Erdős–Szemerédi conjecture (1975), solved much later:

Theorem (Haxell 2001)

Any graph of maximum degree D with a partition into parts of size at least 2D
admits an IT.

BESz knew hypothetically the sharpness of the factor 2, but a construction of
Szabó & Tardos (2005) shows moreover the statement is exactly sharp!

Theorem (Szabó & Tardos 2005)

There is a graph of maximum degree D with a partition into parts of size
2D − 1 that does not admit an IT.
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Bruce didn’t want to go so far

Trivial bound (χℓ(G) ≤ ∆(G) + 1) redux:

If H is the cover graph of some graph G with a (D + 1)-list-assignment
and G has maximum degree D, then H admits an IT.

Conjecture (Reed 1999)

If H is the cover graph of some graph G with a (D + 1)-list-assignment
and H has maximum degree D, then H admits an IT.

NB: so G may well be a complete graph!

Bohman & Holzman (2002): counterexample!
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At least a little bit!

Conjecture (Reed 1999)

If H is the cover graph of some graph G with a (D + 1)-list-assignment
and H has maximum degree D, then H admits an IT.

Theorem (Reed & Sudakov 2002)

There is an f satisfying f (D) = D + o(D) as D → ∞ so the following holds.
If H is the cover graph of some graph with an f (D)-list-assignment
and H has maximum degree D, then H admits an IT.

Still open: could f (D) = D + C suffice?
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And a little bit further?

Trivial bound (χc(G) ≤ ∆(G) + 1) redux redux:

If H is a (D + 1)-fold correspondence-cover graph of some graph G
and G has maximum degree D, then H admits an IT.

Solving a problem of Aharoni & Holzman:

Theorem (Loh & Sudakov 2007)

There is an f satisfying f (D) = D + o(D) as D → ∞ so the following holds.
If H is an f (D)-fold correspondence-cover graph
and H has maximum degree D, then H admits an IT.

NB: this is stronger than Reed–Sudakov.
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And then even a little further

Proposition (Dvǒrák, Esperet, Kang, Ozeki 2021, cf. Wanless & Wood
2022)

If H is a 4D-fold cover graph and H has maximum part-averaged degree D,
then H admits an IT.

NB: the maximum degree of H may be much larger than D!
NB: Reed & Wood (2012) already knew/used this with 2e instead of 4.
NB: 4 is necessary (Groenland, Kaiser, Treffers, Wales 2021+).

Theorem (Glock & Sudakov 2022, Kang & Kelly 2022)

There is an f satisfying f (D) = D + o(D) as D → ∞ so the following holds.
If H is an f (D)-fold correspondence-cover graph and
H has maximum part-averaged degree D, then H admits an IT.

NB: this is stronger than Loh–Sudakov.
NB: incidentally, this confirms a conjecture of Erdős, Gyárfás,  Luczak (1994).
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Proposition (Dvǒrák, Esperet, Kang, Ozeki 2021, cf. Wanless & Wood
2022)

If H is a 4D-fold cover graph and H has maximum part-averaged degree D,
then H admits an IT.

NB: the maximum degree of H may be much larger than D!

NB: Reed & Wood (2012) already knew/used this with 2e instead of 4.
NB: 4 is necessary (Groenland, Kaiser, Treffers, Wales 2021+).

Theorem (Glock & Sudakov 2022, Kang & Kelly 2022)

There is an f satisfying f (D) = D + o(D) as D → ∞ so the following holds.
If H is an f (D)-fold correspondence-cover graph and
H has maximum part-averaged degree D, then H admits an IT.

NB: this is stronger than Loh–Sudakov.
NB: incidentally, this confirms a conjecture of Erdős, Gyárfás,  Luczak (1994).
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NB: incidentally, this confirms a conjecture of Erdős, Gyárfás,  Luczak (1994).
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Even further?
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A crossing of the two arcs

Theorem (Amini & Reed 2008)

There is C > 0 such that, if H is a (C · D/ logD)-fold list-cover,
H is triangle-free, and H has maximum degree D, then H admits an IT.

NB: Alon & Assadi (2020+) independently derived a very similar result with
the aim of ‘palette sparsification’.

Conjecture (Cambie & Kang 2020+)

There is C > 0 such that, if H is a (C · D/ logD)-fold correspondence-cover,
H is triangle-free, and H has maximum degree D, then H admits an IT.

NB: Anderson, Bernshteyn, Dhawan (2021+) propose an even stronger form.
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