ON CONJECTURES OF REED

Ross J. Kang*

Radboud University Nijmegen University of Amsterdam

Reedfest Oxford 7/2022

^{*}Joint works with Cambie, Davies, Dvořák, Esperet, Hurley, de Joannis de Verclos, Kelly, Ozeki, Pirot, Sereni. Support from NWO and Van Gogh grants.

BROOKS' THEOREM

Theorem (Brooks 1941) $\chi(G) \leq \Delta(G)$ unless $G = K_{\Delta(G)+1}$ or G is an odd cycle.

VIZING'S PROBLEM

Vizing, "Some unsolved problems in graph theory" (1968):

Можно ли для любого наперед заданного натурального числа $k \ge 2$ построить граф со сколь угодно большим обхватом и с хроматическим числом k? Можно. Это доказал П. Эрдёш [39], основываясь на мощностных соображениях. Удивительно, что до сих пор нет конструктивного доказательства этого факта. В [40] указан способ построения графов с любым хроматическим числом без циклов длины $\leqslant 7$. Это лучшее, что мы имеем на сегодняшний день.

Если $\sigma(L)$ — максимальная степень вершины графа L, то, очевидно, $\gamma(L) \leqslant \sigma(L) + 1$. В 1941 г. Р. Брукс [41] доказал, что при $\sigma(L) \geqslant 3$ и $\omega(L) \leqslant \sigma(L)$ справедлива оценка $\gamma(L) \leqslant \sigma(L)$. Дальнейшие исследования можно проводить, учитывая более точно соотношения между σ и ω . Пожалуй, следует начать с оценки хроматического числа графа без треугольников ($\omega = 2$) с данной максимальной степенью вершины.

VIZING'S PROBLEM

Vizing, "Some unsolved problems in graph theory" (1968):

Given a natural number $k \ge 2$, is it possible to construct a graph with arbitrarily large compass and with chromatic number k? Erdős [39] has oroved this; his proof is based on counting arguments. It is astonishing that no constructive proof for this fact has yet been given. In [40] a method is given of constructing graphs of arbitrary chromatic number without having cycles of length < 7. This is the best we have at the present time.

If $\sigma(L)$ is the maximum degree of a vertex in a graph L, it is clear that $\gamma(L) < \sigma(L) + 1$. Brooks [41] showed in 1941 that $\gamma(L) \leq \sigma(L)$ whenever $\sigma(L) > 3$ and $\omega(L) < \sigma(L)$. Further investigations could be conducted, taking into account a more exact relation between σ and ω . Perhaps one should start with estimates of the chromatic number of a graph without triangles ($\omega = 2$) and with given maximal degree for vertices.

Measures of sparsity/structure

$$\delta \leq \overline{\mathsf{deg}} \leq \Delta$$

Measures of sparsity/structure

$$\delta \leq \overline{\mathsf{deg}} \leq \Delta$$

$$\omega \le \rho \le \chi_{\mathsf{f}} \le \chi \le \chi_{\ell} \le \Delta + 1$$

Measures of sparsity/structure

$$\delta \leq \overline{\mathsf{deg}} \leq \Delta$$

$$\omega \le \rho \le \chi_f \le \chi \le \chi_\ell \le \Delta + 1$$

where $\rho = \max_{\emptyset \neq H \subseteq G} \frac{|H|}{\alpha(H)}$ (upper bounds on ρ are like lower bounds on α)

What global graph structure arises from conditions on local structure?

What global graph structure arises from conditions on local structure?

Examples:

• (Brooks' theorem)

 $\omega \leq \Delta(>2) \implies \chi \leq \Delta$

What global graph structure arises from conditions on local structure?

Examples:

- (Brooks' theorem)
- (Off-diagonal Ramsey numbers)

 $\omega \leq \Delta(>2) \implies \chi \leq \Delta$ $\omega \leq 2 \implies \text{small } \rho$

What global graph structure arises from conditions on local structure?

Examples:

- (Brooks' theorem)
- (Off-diagonal Ramsey numbers)
- (Vizing's problem)

$$\begin{split} \omega &\leq \Delta(>2) \implies \chi \leq \Delta \\ \omega &\leq 2 \implies \text{small } \rho \\ \omega &\leq 2 \implies \chi \ll \Delta? \end{split}$$

What global graph structure arises from conditions on local structure?

Examples:

- (Brooks' theorem)
- (Off-diagonal Ramsey numbers)
- (Vizing's problem)
- (Ajtai–Erdős–Komlós–Szemerédi)

$$\begin{split} \omega &\leq \Delta(>2) \implies \chi \leq \Delta \\ \omega &\leq 2 \implies \text{small } \rho \\ \omega &\leq 2 \implies \chi \ll \Delta? \end{split}$$

$$\omega < r \implies \rho \leq C_r \frac{\Delta}{\log \Delta}?$$

What global graph structure arises from conditions on local structure?

Examples:

- (Brooks' theorem)
- (Off-diagonal Ramsey numbers)
- (Vizing's problem)
- (Ajtai–Erdős–Komlós–Szemerédi)
- (Reed's)

$$\begin{split} \omega &\leq \Delta(>2) \implies \chi \leq \Delta \\ \omega &\leq 2 \implies \text{small } \rho \\ \omega &\leq 2 \implies \chi \ll \Delta? \end{split}$$

$$\begin{split} \omega < r \implies \rho \leq C_r \frac{\Delta}{\log \Delta}? \\ \chi \leq \left\lceil \frac{1}{2} (\omega + \Delta + 1) \right\rceil? \end{split}$$

PROBABILISTIC METHOD

If random object has property with positive probability, then there exists at least one object with that property

Further investigations could be conducted, taking into account a more exact relationship between Δ and ω . Perhaps one should start with estimates of the chromatic number of a graph without triangles ($\omega = 2$) and with given maximal degree for vertices. (Vizing 1968)

Further investigations could be conducted, taking into account a more exact relationship between Δ and ω . Perhaps one should start with estimates of the chromatic number of a graph without triangles ($\omega = 2$) and with given maximal degree for vertices. (Vizing 1968)

$$\omega(G) \leq -
ho(G) \leq \chi_f(G) \leq \chi(G) \leq \chi_\ell(G) - \leq \Delta(G) + 1$$

Theorem (Shearer 1983, cf. Ajtai, Komlós, Szemerédi 1980/1) $\rho(G) \lesssim \frac{\Delta}{\log \Delta}$ for any triangle-free G of maximum degree Δ

Further investigations could be conducted, taking into account a more exact relationship between Δ and ω . Perhaps one should start with estimates of the chromatic number of a graph without triangles ($\omega = 2$) and with given maximal degree for vertices. (Vizing 1968)

$$\omega({\sf G})\leq -
ho({\sf G})\leq \chi_{\sf f}({\sf G})\leq \chi({\sf G})\leq \chi_\ell({\sf G}) - \leq \Delta({\sf G})+1$$

Theorem (Shearer 1983, cf. Ajtai, Komlós, Szemerédi 1980/1) $\rho(G) \lesssim \frac{\Delta}{\log \Delta}$ for any triangle-free G of maximum degree Δ

Theorem ($\chi_{\ell}(G) = O\left(\frac{\Delta}{\log \Delta}\right)$ Johansson 1996+)

for any triangle-free G of maximum degree Δ

Further investigations could be conducted, taking into account a more exact relationship between Δ and ω . Perhaps one should start with estimates of the chromatic number of a graph without triangles ($\omega = 2$) and with given maximal degree for vertices. (Vizing 1968)

$$\omega(G) \leq -
ho(G) \leq \chi_f(G) \leq \chi(G) \leq \chi_\ell(G) - \leq \Delta(G) + 1$$

 $\begin{array}{ll} \mbox{Theorem (Shearer 1983, cf. Ajtai, Komlós, Szemerédi 1980/1)} \\ \rho(G) \lesssim \frac{\Delta}{\log \Delta} & \mbox{for any triangle-free G of maximum degree Δ} \end{array}$

Theorem (Molloy 2019, cf. Johansson 1996+) $\chi_{\ell}(G) \lesssim \frac{\Delta}{\log \Delta}$ for any triangle-free

for any triangle-free G of maximum degree Δ

Further investigations could be conducted, taking into account a more exact relationship between Δ and ω . Perhaps one should start with estimates of the chromatic number of a graph without triangles ($\omega = 2$) and with given maximal degree for vertices. (Vizing 1968)

$$\omega({\sf G})\leq -
ho({\sf G})\leq \chi_f({\sf G})\leq \chi({\sf G})\leq \chi_\ell({\sf G}) - \leq \Delta({\sf G})+1$$

 $\begin{array}{ll} \mbox{Theorem (Shearer 1983, cf. Ajtai, Komlós, Szemerédi 1980/1)} \\ \rho(G) \lesssim \frac{\Delta}{\log \Delta} & \mbox{for any triangle-free G of maximum degree Δ} \end{array}$

 $\begin{array}{l} \text{Theorem (Molloy 2019, cf. Johansson 1996+)} \\ \chi_{\ell}(G) \lesssim \frac{\Delta}{\log \Delta} & \text{for any triangle-free } G \text{ of maximum degree } \Delta \end{array}$

NB: these bounds are sharp up to a factor 2 by random Δ -regular graphs.

CHROMATIC NUMBER OF K_r -FREE GRAPHS

Further investigations could be conducted, taking into account a more exact relationship between Δ and ω . Perhaps one should start with estimates of the chromatic number of a graph without triangles ($\omega = 2$) and with given maximal degree for vertices. (Vizing 1968)

$$\omega(G) \leq -
ho(G) \leq \chi_f(G) \leq \chi(G) \leq \chi_\ell(G) - \leq \Delta(G) + 1$$

Chromatic number of K_r -free graphs

Further investigations could be conducted, taking into account a more exact relationship between Δ and ω . Perhaps one should start with estimates of the chromatic number of a graph without triangles ($\omega = 2$) and with given maximal degree for vertices. (Vizing 1968)

$$\omega(G) \leq -
ho(G) \leq \chi_f(G) \leq \chi(G) \leq \chi_\ell(G) - \leq \Delta(G) + 1$$

Conjecture (Ajtai, Erdős, Komlós, Szemerédi 1981) $\rho(G) = O\left(\frac{\Delta}{\log \Delta}\right)$ for any K_r-free G of maximum degree Δ

Chromatic number of K_r -free graphs

Further investigations could be conducted, taking into account a more exact relationship between Δ and ω . Perhaps one should start with estimates of the chromatic number of a graph without triangles ($\omega = 2$) and with given maximal degree for vertices. (Vizing 1968)

$$\omega(G) \leq -
ho(G) \leq \chi_f(G) \leq \chi(G) \leq \chi_\ell(G) - \leq \Delta(G) + 1$$

Conjecture (Ajtai, Erdős, Komlós, Szemerédi 1981) $\rho(G) = O\left(\frac{\Delta}{\log \Delta}\right)$ for any K_r-free G of maximum degree Δ

Conjecture (Alon, Krivelevich, Sudakov 1999) $\chi(G) = O\left(\frac{\Delta}{\log \Delta}\right)$ for any K_r-free G of maximum degree Δ

Chromatic number of K_r -free graphs

Further investigations could be conducted, taking into account a more exact relationship between Δ and ω . Perhaps one should start with estimates of the chromatic number of a graph without triangles ($\omega = 2$) and with given maximal degree for vertices. (Vizing 1968)

$$\omega(G) \leq -
ho(G) \leq \chi_f(G) \leq \chi(G) \leq \chi_\ell(G) - \leq \Delta(G) + 1$$

Conjecture (Ajtai, Erdős, Komlós, Szemerédi 1981) $\rho(G) = O\left(\frac{\Delta}{\log \Delta}\right)$ for any K_r-free G of maximum degree Δ

 $\begin{array}{l} \text{Conjecture (Alon, Krivelevich, Sudakov 1999)} \\ \chi(G) = O\left(\frac{\Delta}{\log \Delta}\right) & \text{for any } K_r\text{-free } G \text{ of maximum degree } \Delta \end{array}$

Bounds of Shearer (1995) and Johansson (1996+) are out by a log log Δ factor.

$\omega(G) \leq ho(G) \leq \chi_f(G) \leq \chi(G) \leq \chi_\ell(G) - \leq \Delta(G) + 1$

[†]Picture credit: Wikipedia/David Eppstein

 $\omega(G) \leq ho(G) \leq \chi_{\ell}(G) \leq \chi(G) \leq \chi_{\ell}(G) - \leq \Delta(G) + 1$

Conjecture (Reed 1998) $\chi(G) \leq \left\lceil \frac{\omega + \Delta + 1}{2} \right\rceil$ for any G of clique number ω and maximum degree Δ

[†]Picture credit: Wikipedia/David Eppstein

 $\omega(G) \leq ho(G) \leq \chi_{\ell}(G) \leq \chi(G) \leq \chi_{\ell}(G) - \leq \Delta(G) + 1$

Conjecture (Reed 1998) $\chi(G) \leq \left\lceil \frac{\omega + \Delta + 1}{2} \right\rceil$ for any G of clique number ω and maximum degree Δ

Odd cycles have $\omega=$ 2, $\Delta=$ 2, $\chi=$ 3

[†]Picture credit: Wikipedia/David Eppstein

 $\omega(G) \leq ho(G) \leq \chi_{\ell}(G) \leq \chi(G) \leq \chi_{\ell}(G) - \leq \Delta(G) + 1$

Conjecture (Reed 1998) $\chi(G) \leq \left\lceil \frac{\omega + \Delta + 1}{2} \right\rceil$ for any G of clique number ω and maximum degree Δ

Odd cycles have $\omega =$ 2, $\Delta =$ 2, $\chi =$ 3

Chvátal graph (1970)[†] has $\omega = 2$, $\Delta = 4$, $\chi = 4$

[†]Picture credit: Wikipedia/David Eppstein

 $\omega(G) \leq ho(G) \leq \chi_{\ell}(G) \leq \chi(G) \leq \chi_{\ell}(G) - \leq \Delta(G) + 1$

Conjecture (Reed 1998) $\chi(G) \leq \left\lceil \frac{\omega + \Delta + 1}{2} \right\rceil$ for any G of clique number ω and maximum degree Δ

Odd cycles have $\omega =$ 2, $\Delta =$ 2, $\chi =$ 3

Chvátal graph (1970)[†] has $\omega = 2$, $\Delta = 4$, $\chi = 4$

Bound holds:

• with χ_f instead of χ (McDiarmid, cf. Molloy & Reed 2002)

[†]Picture credit: Wikipedia/David Eppstein

 $\omega(G) \leq ho(G) \leq \chi_{\ell}(G) \leq \chi(G) \leq \chi_{\ell}(G) - \leq \Delta(G) + 1$

Conjecture (Reed 1998) $\chi(G) \leq \left\lceil \frac{\omega + \Delta + 1}{2} \right\rceil$ for any G of clique number ω and maximum degree Δ

Odd cycles have $\omega =$ 2, $\Delta =$ 2, $\chi =$ 3

Chvátal graph (1970)[†] has $\omega =$ 2, $\Delta =$ 4, $\chi =$ 4

Bound holds:

- with χ_f instead of χ (McDiarmid, cf. Molloy & Reed 2002)
- for $\omega = 2$, Δ large enough (Johansson 1996+)
- for $\omega \geq \Delta 1$ (Brooks 1941)

[†]Picture credit: Wikipedia/David Eppstein

 $\omega(G) \leq ho(G) \leq \chi_{\ell}(G) \leq \chi(G) \leq \chi_{\ell}(G) - \leq \Delta(G) + 1$

Conjecture (Reed 1998) $\chi(G) \leq \left\lceil \frac{\omega + \Delta + 1}{2} \right\rceil$ for any G of clique number ω and maximum degree Δ

Odd cycles have $\omega =$ 2, $\Delta =$ 2, $\chi =$ 3

Chvátal graph (1970)[†] has $\omega =$ 2, $\Delta =$ 4, $\chi =$ 4

Bound holds:

- with χ_f instead of χ (McDiarmid, cf. Molloy & Reed 2002)
- for ω = 2, Δ large enough (Johansson 1996+) (for ω ≤ Δ^{1/101}, Δ large enough (Davies, Kang, Pirot, Sereni 2020+))
- for $\omega \geq \Delta 1$ (Brooks 1941)

[†]Picture credit: Wikipedia/David Eppstein

Corollary

 $\chi(G) \leq \lceil \varepsilon_2 \omega + (1 - \varepsilon_2)(\Delta + 1) \rceil$ for any G of clique number ω and maximum degree Δ for some $\varepsilon_2 > 0$ provided Δ is large enough

Corollary

 $\chi(G) \leq \lceil \varepsilon_2 \omega + (1 - \varepsilon_2)(\Delta + 1) \rceil$ for any G of clique number ω and maximum degree Δ for some $\varepsilon_2 > 0$ provided Δ is large enough

• Reed (1998): $\varepsilon_2 > 0.00000005$

NB: ε_2 may not be larger than 0.5

Corollary

 $\chi(G) \leq \lceil \varepsilon_2 \omega + (1 - \varepsilon_2)(\Delta + 1) \rceil$ for any G of clique number ω and maximum degree Δ for some $\varepsilon_2 > 0$ provided Δ is large enough

• Reed (1998):	$arepsilon_2 > 0.000000005$
 Bonamy, Perrett, Postle (2022): 	$arepsilon_2 > 0.038$
 Delcourt, Postle (2017+): 	$arepsilon_2 > 0.076$

NB: ε_2 may not be larger than 0.5

Theorem (Reed 1998) $\chi(G) \leq \left\lceil \frac{\omega + \Delta + 1}{2} \right\rceil$ for any G of clique number ω and maximum degree Δ provided $\omega \geq (1 - \varepsilon_1)\Delta$ for some $\varepsilon_1 > 0$ and Δ is large enough

Corollary

 $\chi(G) \leq \lceil \varepsilon_2 \omega + (1 - \varepsilon_2)(\Delta + 1) \rceil$ for any G of clique number ω and maximum degree Δ for some $\varepsilon_2 > 0$ provided Δ is large enough

• Reed (1998):	$arepsilon_2 > 0.000000005$
 Bonamy, Perrett, Postle (2022): 	$arepsilon_2 > 0.038$
 Delcourt, Postle (2017+): 	$arepsilon_2 > 0.076$
 Hurley, de Joannis de Verclos, Kang (2021): 	$arepsilon_2 > 0.119$

NB: ε_2 may not be larger than 0.5

no edge in any neighbourhood

no edge in any neighbourhood \iff triangle-free

no edge in any neighbourhood \iff triangle-free \downarrow at most a certain proportion of edges per neighbourhood

no edge in any neighbourhood \iff triangle-free \downarrow at most a certain proportion of edges per neighbourhood

G of max degree Δ has local density $\leq \eta$ if $\leq \eta {\Delta \choose 2}$ edges per neighbourhood

no edge in any neighbourhood \iff triangle-free \downarrow at most a certain proportion of edges per neighbourhood

G of max degree Δ has local density $\leq \eta$ if $\leq \eta {\Delta \choose 2}$ edges per neighbourhood

 $\eta < 1/{\Delta \choose 2}$ means triangle-free, $\eta = 1$ means unrestricted

CHROMATIC NUMBER OF LOCALLY SPARSE GRAPHS

Largest chromatic number for local density $\leq \eta$ for η near 0?

Theorem (Alon, Krivelevich, Sudakov 1999, cf. Vu 2002, Achlioptas, lliopoulos, Sinclair 2019)

 $\chi(G) = O\left(\frac{\Delta}{\log \frac{e}{\sqrt{\eta}}}\right) \text{ for any } G \text{ of maximum degree } \Delta$ and local density at most η , $\frac{1}{\Delta^2} \le \eta \le 1$

Theorem (Alon, Krivelevich, Sudakov 1999, cf. Vu 2002, Achlioptas, lliopoulos, Sinclair 2019)

$$\chi(G) = O\left(\frac{\Delta}{\log \frac{e}{\sqrt{\eta}}}\right)$$
 for any G of maximum degree Δ
and local density at most η , $\frac{1}{\Delta^2} \le \eta \le 1$

Theorem (Davies, Kang, Pirot, Sereni 2020+) $\chi(G) \lesssim \frac{\Delta}{\log \frac{e}{\sqrt{\eta}}}$ for any G of maximum degree Δ and local density at most η , $\frac{1}{\Delta^2} \le \eta \ll 1$

Theorem (Alon, Krivelevich, Sudakov 1999, cf. Vu 2002, Achlioptas, lliopoulos, Sinclair 2019)

$$\chi(G) = O\left(\frac{\Delta}{\log \frac{e}{\sqrt{\eta}}}\right)$$
 for any G of maximum degree Δ
and local density at most η , $\frac{1}{\Delta^2} \le \eta \le 1$

Theorem (Davies, Kang, Pirot, Sereni 2020+) $\chi(G) \lesssim \frac{\Delta}{\log \frac{e}{\sqrt{\eta}}}$ for any G of maximum degree Δ and local density at most η , $\frac{1}{\Delta^2} \le \eta \ll 1$

 $\eta = \frac{1}{\Delta^2}$ matches Molloy's;

Theorem (Alon, Krivelevich, Sudakov 1999, cf. Vu 2002, Achlioptas, lliopoulos, Sinclair 2019)

$$\chi(G) = O\left(\frac{\Delta}{\log \frac{e}{\sqrt{\eta}}}\right) \text{ for any } G \text{ of maximum degree } \Delta$$

and local density at most η , $\frac{1}{\Delta^2} \le \eta \le 1$

Theorem (Davies, Kang, Pirot, Sereni 2020+) $\chi(G) \lesssim \frac{\Delta}{\log \frac{e}{\sqrt{\eta}}}$ for any G of maximum degree Δ and local density at most η , $\frac{1}{\Delta^2} \le \eta \ll 1$

 $\eta = \frac{1}{\Delta^2}$ matches Molloy's; the bound is sharp up to a factor of between 2 and 4

Theorem (Alon, Krivelevich, Sudakov 1999, cf. Vu 2002, Achlioptas, lliopoulos, Sinclair 2019)

$$\chi(G) = O\left(\frac{\Delta}{\log \frac{e}{\sqrt{\eta}}}\right)$$
 for any G of maximum degree Δ
and local density at most η , $\frac{1}{\Delta^2} \le \eta \le 1$

Theorem (Davies, Kang, Pirot, Sereni 2020+) $\chi(G) \lesssim \frac{\Delta}{\log \frac{e}{\sqrt{\eta}}}$ for any G of maximum degree Δ and local density at most η , $\frac{1}{\Delta^2} \le \eta \ll 1$

 $\eta = \frac{1}{\Delta^2}$ matches Molloy's; the bound is sharp up to a factor of between 2 and 4 $NB: \eta = 1$ should match $\Delta + 1$ bound, but neither gives this...

Nontrivial improvement on $\chi \leq \Delta + 1$?

Nontrivial improvement on $\chi \leq \Delta + 1$? Yes (asymptotically):

Theorem (Molloy & Reed 1997)

 $\chi(G) \leq (1 - \varepsilon)\Delta$ for any G of maximum degree Δ and local density at most η for some $\varepsilon(\eta) > 0$ provided Δ is large enough

Nontrivial improvement on $\chi \leq \Delta + 1$? Yes (asymptotically):

Theorem (Molloy & Reed 1997)

 $\chi(G) \leq (1 - \varepsilon)\Delta$ for any G of maximum degree Δ and local density at most η for some $\varepsilon(\eta) > 0$ provided Δ is large enough

Lower bounds on ε key to sharpest results towards Reed's conjecture (and sharpest results towards the Erdős-Nešetřil conjecture)

 $\chi(G) \leq (1 - \varepsilon)\Delta$ for any G of maximum degree Δ and local density at most η for some $\varepsilon(\eta) > 0$ provided Δ is large enough

• Molloy & Reed (1997): $\varepsilon > 0.0238(1 - \eta)$

 $\chi(G) \leq (1-\varepsilon)\Delta$ for any G of maximum degree Δ and local density at most η for some $\varepsilon(\eta) > 0$ provided Δ is large enough

- Molloy & Reed (1997): $\varepsilon > 0.0238(1 - \eta)$
- Bruhn & Joos (2018):
- Bonamy, Perrett, Postle (2022):

 $\varepsilon > 0.1827(1 - \eta) - 0.0778(1 - \eta)^{3/2}$ $\varepsilon > 0.3012(1 - \eta) - 0.1283(1 - \eta)^{3/2}$

 $\chi(G) \leq (1 - \varepsilon)\Delta$ for any G of maximum degree Δ and local density at most η for some $\varepsilon(\eta) > 0$ provided Δ is large enough

- Molloy & Reed (1997): ${arepsilon} > 0.0238(1-\eta)$
- Bruhn & Joos (2018): $\varepsilon > 0.1827(1-\eta) 0.0778(1-\eta)^{3/2}$
- Bonamy, Perrett, Postle (2022): $arepsilon > 0.3012(1-\eta) 0.1283(1-\eta)^{3/2}$
- Hurley, de Joannis de Verclos, Kang (2021): $arepsilon > 0.5(1-\eta) 0.1667(1-\eta)^{3/2}$

 $\chi(G) \leq (1 - \varepsilon)\Delta$ for any G of maximum degree Δ and local density at most η for some $\varepsilon(\eta) > 0$ provided Δ is large enough

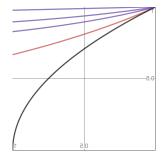
Clique of size $\sqrt{\eta} \cdot \Delta$ (+ pendant vertices)

 $\chi(G) \leq (1 - \varepsilon)\Delta$ for any G of maximum degree Δ and local density at most η for some $\varepsilon(\eta) > 0$ provided Δ is large enough

 $\text{Clique of size } \sqrt{\eta} \cdot \Delta \ (+ \text{ pendant vertices}) \quad \implies \varepsilon \leq 1 - \sqrt{\eta} \underset{\eta \to 1}{\sim} 0.5(1 - \eta)$

Theorem (Hurley, de Joannis de Verclos, Kang 2021) $\chi(G) \leq (1 - 0.5(1 - \eta) + 0.1667(1 - \eta)^{3/2})\Delta$ for any G of maximum degree Δ and local density at most η provided Δ is large enough

Clique of size $\sqrt{1-\sigma} \cdot \Delta$ (+ pendant vertices)



1. independently assign a colour to each v uniformly from [M]

- 1. independently assign a colour to each v uniformly from [M]
- 2. uncolour one or both endpoints of each monochromatic edge

- 1. independently assign a colour to each v uniformly from [M]
- 2. uncolour one or both endpoints of each monochromatic edge
- 3. complete partial proper colouring to full one

- 1. independently assign a colour to each v uniformly from [M]
- 2. uncolour one or both endpoints of each monochromatic edge
- 3. complete partial proper colouring to full one
- Molloy & Reed (1997): uncolour both endpoints in ??

NAÏVE COLOURING

Given G and palette $[M] = \{1, \ldots, M\}$:

- 1. independently assign a colour to each v uniformly from [M]
- 2. uncolour one or both endpoints of each monochromatic edge
- 3. complete partial proper colouring to full one
- Molloy & Reed (1997):
- Bruhn & Joos (2018):

uncolour <u>both</u> endpoints in ?? toss a coin to decide in ??

NAÏVE COLOURING

Given G and palette $[M] = \{1, \ldots, M\}$:

- 1. independently assign a colour to each v uniformly from [M]
- 2. uncolour one or both endpoints of each monochromatic edge
- 3. complete partial proper colouring to full one
- Molloy & Reed (1997):
- Bruhn & Joos (2018):
- Bonamy, Perrett, Postle (2022):

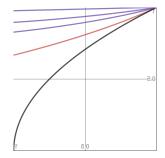
uncolour <u>both</u> endpoints in ?? toss a coin to decide in ?? several iterations of ?? and ??

- 1. independently assign a colour to each v uniformly from [M]
- 2. uncolour one or both endpoints of each monochromatic edge
- 3. complete partial proper colouring to full one
- Molloy & Reed (1997): uncolour <u>both</u> endpoints in ??
 Bruhn & Joos (2018): toss a coin to decide in ??
 Bonamy, Perrett, Postle (2022): several iterations of ?? and ??
 Hurley, de Joannis de Verclos, Kang (2021): random vertex ordering to decide in ?? allows better iteration of ?? and ??

LINK UP?

 $\begin{array}{l} \text{Theorem (Davies, Kang, Pirot, Sereni 2020+)} \\ \chi(G) \lesssim \frac{\Delta}{\log \frac{e}{\sqrt{\eta}}} \text{ for any } G \text{ of maximum degree } \Delta \\ & \text{ and local density at most } \eta, \ \frac{1}{\Delta^2} \leq \eta \ll 1 \end{array}$

Theorem (Hurley, de Joannis de Verclos, Kang 2021) $\chi(G) \leq (1 - 0.5(1 - \eta) + 0.1667(1 - \eta)^{3/2})\Delta$ for any G of maximum degree Δ and local density at most η provided Δ is large enough



BEYOND TRIVIAL

$\omega({\sf G}) \leq -\rho({\sf G}) \leq \chi_{\it f}({\sf G}) \leq \chi({\sf G}) \leq \chi_{\ell}({\sf G}) - \leq \Delta({\sf G}) + 1$

Introduced independently by Vizing (1976) and Erdős, Rubin, Taylor (1980).

Introduced independently by Vizing (1976) and Erdős, Rubin, Taylor (1980).

- A <u>list-assignment</u> is some $L: V(G) \to 2^{\mathbb{Z}^+}$;
- a $\overline{k\text{-list-assignment}}$ is some $L: V(G) \to {\mathbb{Z}^+ \choose k}$.

Introduced independently by Vizing (1976) and Erdős, Rubin, Taylor (1980).

A <u>list-assignment</u> is some $L: V(G) \to 2^{\mathbb{Z}^+}$;

a <u>k-list-assignment</u> is some $L: V(G) \to {\mathbb{Z}^+ \choose k}$.

An <u>L-colouring</u> is some $c : V(G) \to \mathbb{Z}^+$ with $c(v) \in L(v)$ for every $v \in V(G)$.

G is k-choosable if there is a proper L-colouring for any k-list-assignment L.

Introduced independently by Vizing (1976) and Erdős, Rubin, Taylor (1980).

A list-assignment is some $L: V(G) \to 2^{\mathbb{Z}^+}$;

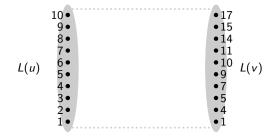
a <u>k-list-assignment</u> is some $L: V(G) \to {\mathbb{Z}^+ \choose k}$.

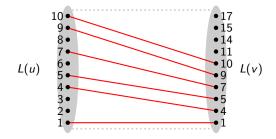
An <u>L-colouring</u> is some $c : V(G) \to \mathbb{Z}^+$ with $c(v) \in L(v)$ for every $v \in V(G)$.

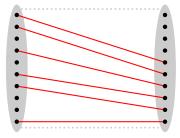
G is k-choosable if there is a proper L-colouring for any k-list-assignment L.

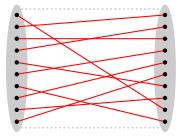
The list chromatic number $\chi_{\ell}(G)$ is least k such that G is k-choosable.

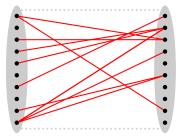
 $\chi_{\ell}(G) \geq \chi(G)$ by considering constant *L*.











We want independent transversals (ITs) in vertex-partitioned graphs.

We want independent transversals (ITs) in vertex-partitioned graphs.

An aside: In 1972 Woodall presented at the open problem session of the 3rd BCC here in Oxford. After some interchange with Erdős, there eventually arose the Bollobás–Erdős–Szemerédi conjecture (1975), solved much later:

We want independent transversals (ITs) in vertex-partitioned graphs.

An aside: In 1972 Woodall presented at the open problem session of the 3rd BCC here in Oxford. After some interchange with Erdős, there eventually arose the Bollobás–Erdős–Szemerédi conjecture (1975), solved much later:

Theorem (Haxell 2001)

Any graph of maximum degree D with a partition into parts of size at least 2D admits an IT.

We want independent transversals (ITs) in vertex-partitioned graphs.

An aside: In 1972 Woodall presented at the open problem session of the 3rd BCC here in Oxford. After some interchange with Erdős, there eventually arose the Bollobás–Erdős–Szemerédi conjecture (1975), solved much later:

Theorem (Haxell 2001)

Any graph of maximum degree D with a partition into parts of size at least 2D admits an IT.

BESz knew hypothetically the sharpness of the factor 2, but a construction of Szabó & Tardos (2005) shows moreover the statement is exactly sharp!

Theorem (Szabó & Tardos 2005)

There is a graph of maximum degree D with a partition into parts of size 2D - 1 that does not admit an IT.

If H is the cover graph of some graph G with a (D+1)-list-assignment and G has maximum degree D, then H admits an IT.

If H is the cover graph of some graph G with a (D+1)-list-assignment and G has maximum degree D, then H admits an IT.

Conjecture (Reed 1999)

If H is the cover graph of some graph G with a (D + 1)-list-assignment and H has maximum degree D, then H admits an IT.

If H is the cover graph of some graph G with a (D+1)-list-assignment and G has maximum degree D, then H admits an IT.

Conjecture (Reed 1999)

If H is the cover graph of some graph G with a (D + 1)-list-assignment and H has maximum degree D, then H admits an IT.

NB: so G may well be a complete graph!

If H is the cover graph of some graph G with a (D+1)-list-assignment and G has maximum degree D, then H admits an IT.

Conjecture (Reed 1999)

If H is the cover graph of some graph G with a (D + 1)-list-assignment and H has maximum degree D, then H admits an IT.

NB: so G may well be a complete graph!

Bohman & Holzman (2002): counterexample!

AT LEAST A LITTLE BIT!

Conjecture (Reed 1999)

If H is the cover graph of some graph G with a (D + 1)-list-assignment and H has maximum degree D, then H admits an IT.

Conjecture (Reed 1999)

If H is the cover graph of some graph G with a (D + 1)-list-assignment and H has maximum degree D, then H admits an IT.

Theorem (Reed & Sudakov 2002)

There is an f satisfying f(D) = D + o(D) as $D \to \infty$ so the following holds. If H is the cover graph of some graph with an f(D)-list-assignment and H has maximum degree D, then H admits an IT.

Conjecture (Reed 1999)

If H is the cover graph of some graph G with a (D + 1)-list-assignment and H has maximum degree D, then H admits an IT.

Theorem (Reed & Sudakov 2002)

There is an f satisfying f(D) = D + o(D) as $D \to \infty$ so the following holds. If H is the cover graph of some graph with an f(D)-list-assignment and H has maximum degree D, then H admits an IT.

Still open: could f(D) = D + C suffice?

Trivial bound $(\chi_c(G) \le \Delta(G) + 1)$ redux redux: If H is a (D + 1)-fold correspondence-cover graph of some graph G and G has maximum degree D, then H admits an IT. Trivial bound $(\chi_c(G) \leq \Delta(G) + 1)$ redux redux:

If H is a (D + 1)-fold correspondence-cover graph of some graph G and G has maximum degree D, then H admits an IT.

Solving a problem of Aharoni & Holzman:

Theorem (Loh & Sudakov 2007)

There is an f satisfying f(D) = D + o(D) as $D \to \infty$ so the following holds. If H is an f(D)-fold correspondence-cover graph and H has maximum degree D, then H admits an IT. Trivial bound $(\chi_c(G) \leq \Delta(G) + 1)$ redux redux:

If H is a (D + 1)-fold correspondence-cover graph of some graph G and G has maximum degree D, then H admits an IT.

Solving a problem of Aharoni & Holzman:

Theorem (Loh & Sudakov 2007)

There is an f satisfying f(D) = D + o(D) as $D \to \infty$ so the following holds. If H is an f(D)-fold correspondence-cover graph and H has maximum degree D, then H admits an IT.

NB: this is stronger than Reed-Sudakov.

If H is a 4D-fold cover graph and H has maximum part-averaged degree D, then H admits an IT.

If H is a 4D-fold cover graph and H has maximum part-averaged degree D, then H admits an IT.

NB: the maximum degree of H may be much larger than D!

If H is a 4D-fold cover graph and H has maximum part-averaged degree D, then H admits an IT.

NB: the maximum degree of H may be much larger than D!NB: Reed & Wood (2012) already knew/used this with 2*e* instead of 4.

If H is a 4D-fold cover graph and H has maximum part-averaged degree D, then H admits an IT.

NB: the maximum degree of H may be much larger than D!

NB: Reed & Wood (2012) already knew/used this with 2e instead of 4.

NB: 4 is necessary (Groenland, Kaiser, Treffers, Wales 2021+).

If H is a 4D-fold cover graph and H has maximum part-averaged degree D, then H admits an IT.

NB: the maximum degree of H may be much larger than D!NB: Reed & Wood (2012) already knew/used this with 2e instead of 4. NB: 4 is necessary (Groenland, Kaiser, Treffers, Wales 2021+).

Theorem (Glock & Sudakov 2022, Kang & Kelly 2022)

There is an f satisfying f(D) = D + o(D) as $D \to \infty$ so the following holds. If H is an f(D)-fold correspondence-cover graph and H has maximum part-averaged degree D, then H admits an IT.

If H is a 4D-fold cover graph and H has maximum part-averaged degree D, then H admits an IT.

NB: the maximum degree of H may be much larger than D!NB: Reed & Wood (2012) already knew/used this with 2e instead of 4. NB: 4 is necessary (Groenland, Kaiser, Treffers, Wales 2021+).

Theorem (Glock & Sudakov 2022, Kang & Kelly 2022)

There is an f satisfying f(D) = D + o(D) as $D \to \infty$ so the following holds. If H is an f(D)-fold correspondence-cover graph and H has maximum part-averaged degree D, then H admits an IT.

NB: this is stronger than Loh–Sudakov.

If H is a 4D-fold cover graph and H has maximum part-averaged degree D, then H admits an IT.

NB: the maximum degree of H may be much larger than D!NB: Reed & Wood (2012) already knew/used this with 2e instead of 4. NB: 4 is necessary (Groenland, Kaiser, Treffers, Wales 2021+).

Theorem (Glock & Sudakov 2022, Kang & Kelly 2022)

There is an f satisfying f(D) = D + o(D) as $D \to \infty$ so the following holds. If H is an f(D)-fold correspondence-cover graph and H has maximum part-averaged degree D, then H admits an IT.

NB: this is stronger than Loh–Sudakov. NB: incidentally, this confirms a conjecture of Erdős, Gyárfás, Łuczak (1994).

EVEN FURTHER?

Instead of prescribing maximum part-degree (correspondence-cover means 1),

EVEN FURTHER?

Instead of prescribing maximum part-degree (correspondence-cover means 1), prescribe maximum part-averaged part-degree, say o(D)?

EVEN FURTHER?

Instead of prescribing maximum part-degree (correspondence-cover means 1), prescribe maximum part-averaged part-degree, say o(D)?

Loh-Sudakov (2007) and Kang-Kelly (2022) conjectures

Theorem (Amini & Reed 2008)

There is C > 0 such that, if H is a $(C \cdot D/\log D)$ -fold list-cover, H is triangle-free, and H has maximum degree D, then H admits an IT.

NB: Alon & Assadi (2020+) independently derived a very similar result with the aim of 'palette sparsification'.

Theorem (Amini & Reed 2008)

There is C > 0 such that, if H is a $(C \cdot D/\log D)$ -fold list-cover, H is triangle-free, and H has maximum degree D, then H admits an IT.

NB: Alon & Assadi (2020+) independently derived a very similar result with the aim of 'palette sparsification'.

Conjecture (Cambie & Kang 2020+)

There is C > 0 such that, if H is a $(C \cdot D/\log D)$ -fold correspondence-cover, H is triangle-free, and H has maximum degree D, then H admits an IT.

NB: Anderson, Bernshteyn, Dhawan (2021+) propose an even stronger form.

QUESTIONS?

