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Introduced independently by Vizing (1976) and Erdés, Rubin, Taylor (1980).
A list-assignment is some L : V(G) — 2°";

a k-list-assignment is some L : V(G) — (Z:).

An L-colouring is some c : V(G) — Z* with c(v) € L(v) for every v € V(G).
G is k-choosable if there is a proper L-colouring for any k-list-assignment L.

The list chromatic number x,(G) is least k such that G is k-choosable.

x¢(G) > x(G) by considering constant L.



How BEST TO COLOUR A BIPARTITE GRAPH?

Conjecture (Alon & Krivelevich 1998)
For bipartite G of maximum degree A, x¢(G) = O(log A) as A —

Best possible if true, but only O(A/log A) bound known
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LIST-COLOURING = IT IN LIST-COVER

We want independent transversals (ITs) in vertex-partitioned graphs.
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We want in vertex-partitioned graphs.

: In 1972 Woodall presented an open problem at the 3rd British
Combinatorial Conference in Oxford. From this, after exchanges with Erdés,
arose the Bollobds—Erd8s—Szemerédi conjecture (1975), solved later:

Any graph of maximum degree D with a vertex-partition into parts of
size 2D admits an IT.

There is a graph of maximum degree D with a vertex-partition into parts of
size 2D — 1 that does not admit an IT.
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Treat the two sides independently!

Let degree conditions, list-/part-sizes depend on the side
Notation: Call the sides A and B, with max degrees Aa, Ag and sizes ka, ks

(Warning: Parameter soup!)
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Notation: Call the sides A and B, with max degrees A, Ag and sizes ka, kg

Theorem (Alon, Cambie, Kang 2021)

Given bipartite graph of maximum degree A, any list-assignment with
A-lists of size log A and B-lists of size (1 + ¢)A/log A admits a list-colouring.

Conjecture (Alon, Cambie, Kang 2021, the ‘crossed’ one)

Given bipartite graph with max A-degree Aa, max B-degree Ag, any
list-assignment with A-lists of size C log Ag, B-lists of size Clog Aa admits a
list-colouring.



ITS IN ASYMMETRIC BIPARTITE LIST-COVERS
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Notation: Call the sides A and B, with max degrees Aa, Ag and sizes ka, kg
Theorem (Alon, Cambie, Kang 2021)

Any bipartite list-cover of maximum degree A with
A-parts of size log A and B-parts of size (1 + £)A/log A admits an IT.

Conjecture (Alon, Cambie, Kang 2021, the ‘crossed’ one)

Any bipartite list-cover with max A-degree Aa, max B-degree Ag,
A-parts of size Clog Ag, B-parts of size Clog Aa admits an IT.
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Notation: Call the sides A and B, with max degrees Aa, Ag and sizes ka, ks

Problem (Cambie & Kang 2022)

Without any constraint on the structure between parts (like in a list-cover),
what conditions on parameters A, Ag and ka, kg guarantee an IT?

Theorem (Cambie, Haxell, Kang, Wdowinski 2023+)

Any bipartite cover with max A-degree Aa, max B-degree Ag,
A-parts of size ka, B-parts of size kg such that

Ap/ka+ Aa/ks <1

admits an IT. Moreover if the inequality does not hold there exists a
corresponding cover with no IT.
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Any bipartite correspondence-cover of maximum degree A with parts of size
Clog A admits an IT.



I'Ts IN BIPARTITE CORRESPONDENCE-COVERS

Conjecture (Cambie, Haxell, Kang, Wdowinski 2023+)

Any bipartite correspondence-cover of maximum degree A with parts of size
Clog A admits an IT.

(Warning: Equivalent to Alon—Krivelevich conjecture!)



QUESTIONS?




