A PRECISE CONDITION FOR INDEPENDENT TRANSVERSALS IN BIPARTITE COVERS

Ross J. Kang*

University of Amsterdam

EUROCOMB 2023 Prague 8/2023

^{*}Joint with Stijn Cambie, Penny Haxell, Ronen Wdowinski. Support from NWO Vidi grant.

Shameless plugs

- 1. Postdoc opportunities in Amsterdam!
 - 12 to 24 months, starting ASAP
 - eligibility: \leq 2 years from PhD, \leq 12 of previous 48 months based in NL
 - affiliated with NETWORKS consortium
- 2. Launch of Innovations in Graph Theory journal!

Shameless plugs

- 1. Postdoc opportunities in Amsterdam!
 - 12 to 24 months, starting ASAP
 - eligibility: \leq 2 years from PhD, \leq 12 of previous 48 months based in NL
 - affiliated with NETWORKS consortium
- 2. Launch of Innovations in Graph Theory journal!

 $\leftarrow \rightarrow$ C \triangleq igt.centre-mersenne.org

Server Error (500)

How best to colour a bipartite graph?

How best to colour a bipartite graph?

Introduced independently by Vizing (1976) and Erdős, Rubin, Taylor (1980).

Introduced independently by Vizing (1976) and Erdős, Rubin, Taylor (1980).

- A <u>list-assignment</u> is some $L: V(G) \to 2^{\mathbb{Z}^+}$;
- a $\overline{k\text{-list-assignment}}$ is some $L: V(G) \to {\mathbb{Z}^+ \choose k}$.

Introduced independently by Vizing (1976) and Erdős, Rubin, Taylor (1980).

A <u>list-assignment</u> is some $L: V(G) \to 2^{\mathbb{Z}^+}$;

a <u>k-list-assignment</u> is some $L: V(G) \to {\mathbb{Z}^+ \choose k}$.

An <u>L-colouring</u> is some $c : V(G) \to \mathbb{Z}^+$ with $c(v) \in L(v)$ for every $v \in V(G)$.

G is k-choosable if there is a proper L-colouring for any k-list-assignment L.

Introduced independently by Vizing (1976) and Erdős, Rubin, Taylor (1980).

A list-assignment is some $L: V(G) \to 2^{\mathbb{Z}^+}$;

a <u>k-list-assignment</u> is some $L: V(G) \to {\mathbb{Z}^+ \choose k}$.

An <u>L-colouring</u> is some $c : V(G) \to \mathbb{Z}^+$ with $c(v) \in L(v)$ for every $v \in V(G)$.

G is k-choosable if there is a proper L-colouring for any k-list-assignment L.

The list chromatic number $\chi_{\ell}(G)$ is least k such that G is k-choosable.

 $\chi_{\ell}(G) \geq \chi(G)$ by considering constant *L*.

Conjecture (Alon & Krivelevich 1998) For bipartite G of maximum degree Δ , $\chi_{\ell}(G) = O(\log \Delta)$ as $\Delta \to \infty$

Best possible if true, but only $O(\Delta / \log \Delta)$ bound known

LIST-ASSIGNMENTS

CORRESPONDENCE-COVERS

COVERS

LIST-COLOURING \equiv IT in LIST-COVER

LIST-COLOURING \equiv IT in LIST-COVER

We want independent transversals (ITs) in vertex-partitioned graphs.

An aside: In 1972 Woodall presented an open problem at the 3rd British Combinatorial Conference in Oxford. From this, after exchanges with Erdős, arose the Bollobás–Erdős–Szemerédi conjecture (1975), solved later:

We want independent transversals (ITs) in vertex-partitioned graphs.

An aside: In 1972 Woodall presented an open problem at the 3rd British Combinatorial Conference in Oxford. From this, after exchanges with Erdős, arose the Bollobás–Erdős–Szemerédi conjecture (1975), solved later:

Theorem (Haxell 2001)

Any graph of maximum degree D with a vertex-partition into parts of size 2D admits an IT.

We want independent transversals (ITs) in vertex-partitioned graphs.

An aside: In 1972 Woodall presented an open problem at the 3rd British Combinatorial Conference in Oxford. From this, after exchanges with Erdős, arose the Bollobás–Erdős–Szemerédi conjecture (1975), solved later:

Theorem (Haxell 2001)

Any graph of maximum degree D with a vertex-partition into parts of size 2D admits an IT.

Theorem (Szabó & Tardos 2005)

There is a graph of maximum degree D with a vertex-partition into parts of size 2D - 1 that does not admit an IT.

Treat the two sides independently!

Treat the two sides independently!

Let degree conditions, list-/part-sizes depend on the side

Treat the two sides independently!

Let degree conditions, list-/part-sizes depend on the side **Notation:** Call the sides A and B, with max degrees Δ_A , Δ_B and sizes k_A , k_B

Treat the two sides independently!

Let degree conditions, list-/part-sizes depend on the side **Notation:** Call the sides A and B, with max degrees Δ_A , Δ_B and sizes k_A , k_B (Warning: Parameter soup!)

ASYMMETRIC BIPARTITE LIST COLOURING

Notation: Call the sides A and B, with max degrees Δ_A, Δ_B and sizes k_A, k_B

Notation: Call the sides A and B, with max degrees Δ_A , Δ_B and sizes k_A , k_B Theorem (Alon, Cambie, Kang 2021)

Given bipartite graph of maximum degree Δ , any list-assignment with A-lists of size $\log \Delta$ and B-lists of size $(1 + \varepsilon)\Delta/\log \Delta$ admits a list-colouring.

Asymmetric bipartite list colouring

Notation: Call the sides A and B, with max degrees Δ_A, Δ_B and sizes k_A, k_B

Theorem (Alon, Cambie, Kang 2021)

Given bipartite graph of maximum degree Δ , any list-assignment with A-lists of size log Δ and B-lists of size $(1 + \varepsilon)\Delta/\log \Delta$ admits a list-colouring.

Conjecture (Alon, Cambie, Kang 2021, the 'crossed' one)

Given bipartite graph with max A-degree Δ_A , max B-degree Δ_B , any list-assignment with A-lists of size C log Δ_B , B-lists of size C log Δ_A admits a list-colouring.

Notation: Call the sides A and B, with max degrees Δ_A, Δ_B and sizes k_A, k_B

Theorem (Alon, Cambie, Kang 2021)

Any bipartite list-cover of maximum degree Δ with A-parts of size log Δ and B-parts of size $(1 + \varepsilon)\Delta/\log \Delta$ admits an IT.

Conjecture (Alon, Cambie, Kang 2021, the 'crossed' one)

Any bipartite list-cover with max A-degree Δ_A , max B-degree Δ_B , A-parts of size C log Δ_B , B-parts of size C log Δ_A admits an IT.

Notation: Call the sides A and B, with max degrees Δ_A, Δ_B and sizes k_A, k_B

Notation: Call the sides A and B, with max degrees Δ_A, Δ_B and sizes k_A, k_B

Problem (Cambie & Kang 2022)

Without any constraint on the structure between parts (like in a list-cover), what conditions on parameters Δ_A, Δ_B and k_A, k_B guarantee an IT?

Notation: Call the sides A and B, with max degrees Δ_A, Δ_B and sizes k_A, k_B

Problem (Cambie & Kang 2022)

Without any constraint on the structure between parts (like in a list-cover), what conditions on parameters Δ_A, Δ_B and k_A, k_B guarantee an IT?

Theorem (Cambie, Haxell, Kang, Wdowinski 2023+)

Any bipartite cover with max A-degree Δ_A , max B-degree Δ_B , A-parts of size k_A , B-parts of size k_B such that

 $\Delta_B/k_A + \Delta_A/k_B \leq 1$

admits an IT.

Notation: Call the sides A and B, with max degrees Δ_A, Δ_B and sizes k_A, k_B

Problem (Cambie & Kang 2022)

Without any constraint on the structure between parts (like in a list-cover), what conditions on parameters Δ_A, Δ_B and k_A, k_B guarantee an IT?

Theorem (Cambie, Haxell, Kang, Wdowinski 2023+)

Any bipartite cover with max A-degree Δ_A , max B-degree Δ_B , A-parts of size k_A , B-parts of size k_B such that

$$\Delta_B/k_A + \Delta_A/k_B \leq 1$$

admits an IT. Moreover if the inequality does not hold there exists a corresponding cover with no IT.

ITS IN BIPARTITE CORRESPONDENCE-COVERS

ITS IN BIPARTITE CORRESPONDENCE-COVERS

Conjecture (Cambie, Haxell, Kang, Wdowinski 2023+)

Any bipartite correspondence-cover of maximum degree Δ with parts of size $C \log \Delta$ admits an IT.

ITS IN BIPARTITE CORRESPONDENCE-COVERS

Conjecture (Cambie, Haxell, Kang, Wdowinski 2023+)

Any bipartite correspondence-cover of maximum degree Δ with parts of size $C \log \Delta$ admits an IT.

(Warning: Equivalent to Alon-Krivelevich conjecture!)

QUESTIONS?

