A Precise Condition for Independent Transversals in Bipartite Covers

Ross J. Kang*

University of Amsterdam

EUROCOMB 2023

Prague 8/2023

[^0]
Shameless Plugs

1. Postdoc opportunities in Amsterdam!

- 12 to 24 months, starting ASAP
- eligibility: ≤ 2 years from $\mathrm{PhD}, \leq 12$ of previous 48 months based in NL
- affiliated with NETWORKS consortium

2. Launch of Innovations in Graph Theory journal!

Shameless Plugs

1. Postdoc opportunities in Amsterdam!

- 12 to 24 months, starting ASAP
- eligibility: ≤ 2 years from $\mathrm{PhD}, \leq 12$ of previous 48 months based in NL
- affiliated with NETWORKS consortium

2. Launch of Innovations in Graph Theory journal!

How best to colour a bipartite graph?

How best to colour a bipartite graph?

List colouring (FORMALLY)

Introduced independently by Vizing (1976) and Erdős, Rubin, Taylor (1980).

List colouring (FORMALLY)

Introduced independently by Vizing (1976) and Erdős, Rubin, Taylor (1980).
A list-assignment is some $L: V(G) \rightarrow 2^{Z^{+}}$;
a $\underline{k \text {-list-assignment }}$ is some $L: V(G) \rightarrow\binom{\mathbb{Z}^{+}}{k}$.

List colouring (FORMALLY)

Introduced independently by Vizing (1976) and Erdős, Rubin, Taylor (1980).
A list-assignment is some $L: V(G) \rightarrow 2^{Z^{+}}$;
a k-list-assignment is some $L: V(G) \rightarrow\binom{\mathbb{Z}^{+}}{k}$.
An L-colouring is some $c: V(G) \rightarrow \mathbb{Z}^{+}$with $c(v) \in L(v)$ for every $v \in V(G)$.
G is k-choosable if there is a proper L-colouring for any k-list-assignment L.

List colouring (FORMALLY)

Introduced independently by Vizing (1976) and Erdős, Rubin, Taylor (1980).
A list-assignment is some $L: V(G) \rightarrow 2^{\mathbb{Z}^{+}}$;
a k-list-assignment is some $L: V(G) \rightarrow\binom{\mathbb{Z}^{+}}{k}$.

G is k-choosable if there is a proper L-colouring for any k-list-assignment L.
The list chromatic number $\chi_{\ell}(G)$ is least k such that G is k-choosable.
$\chi_{\ell}(G) \geq \chi(G)$ by considering constant L.

How best to colour a bipartite graph?

Conjecture (Alon \& Krivelevich 1998)

For bipartite G of maximum degree $\Delta, \chi_{\ell}(G)=O(\log \Delta)$ as $\Delta \rightarrow \infty$
Best possible if true, but only $O(\Delta / \log \Delta)$ bound known

List-ASSIGNMENTS

$$
\begin{aligned}
& u \quad \bullet \longrightarrow \quad v \\
& \{1,2,3,4,5\} \\
& \{1,4,5,7,9\}
\end{aligned}
$$

LIST-COVERS

LIST-COVERS

LIST-COVERS

Correspondence-covers

Covers

List-COLOURING \equiv IT IN LIST-COVER

We want independent transversals (ITs) in vertex-partitioned graphs.

List-COLOURING \equiv IT IN LIST-COVER

We want independent transversals (ITs) in vertex-partitioned graphs.

IT IN COVER

We want independent transversals (ITs) in vertex-partitioned graphs.

IT IN COVER

We want independent transversals (ITs) in vertex-partitioned graphs.

IT IN COVER

We want independent transversals (ITs) in vertex-partitioned graphs.

An aside: In 1972 Woodall presented an open problem at the 3rd British Combinatorial Conference in Oxford. From this, after exchanges with Erdős, arose the Bollobás-Erdős-Szemerédi conjecture (1975), solved later:

IT IN COVER

We want independent transversals (ITs) in vertex-partitioned graphs.

An aside: In 1972 Woodall presented an open problem at the 3rd British Combinatorial Conference in Oxford. From this, after exchanges with Erdős, arose the Bollobás-Erdős-Szemerédi conjecture (1975), solved later:

Theorem (Haxell 2001)

Any graph of maximum degree D with a vertex-partition into parts of size $2 D$ admits an IT.

IT in Cover

We want independent transversals (ITs) in vertex-partitioned graphs.

An aside: In 1972 Woodall presented an open problem at the 3rd British Combinatorial Conference in Oxford. From this, after exchanges with Erdős, arose the Bollobás-Erdős-Szemerédi conjecture (1975), solved later:

Theorem (Haxell 2001)

Any graph of maximum degree D with a vertex-partition into parts of size $2 D$ admits an IT.

Theorem (Szabó \& Tardos 2005)

There is a graph of maximum degree D with a vertex-partition into parts of size 2D-1 that does not admit an IT.

An ASYMMETRIC VIEW ON BIPARTITE COLOURING

Treat the two sides independently!

An asymmetric view on bipartite colouring

Treat the two sides independently!

Let degree conditions, list-/part-sizes depend on the side

An asymmetric view on bipartite colouring

Treat the two sides independently!

Let degree conditions, list-/part-sizes depend on the side
Notation: Call the sides A and B, with max degrees Δ_{A}, Δ_{B} and sizes k_{A}, k_{B}

An asymmetric view on bipartite colouring

Treat the two sides independently!

Let degree conditions, list-/part-sizes depend on the side
Notation: Call the sides A and B, with max degrees Δ_{A}, Δ_{B} and sizes k_{A}, k_{B} (Warning: Parameter soup!)

Asymme'tric bipartite list colouring

$$
\begin{array}{cc}
u \\
\{1,2,3,4,5\}
\end{array} \bullet \stackrel{v}{v}
$$

Notation: Call the sides A and B, with max degrees Δ_{A}, Δ_{B} and sizes k_{A}, k_{B}

Asymmetric bipartite list colouring

Notation: Call the sides A and B, with max degrees Δ_{A}, Δ_{B} and sizes k_{A}, k_{B}
Theorem (Alon, Cambie, Kang 2021)
Given bipartite graph of maximum degree Δ, any list-assignment with A-lists of size $\log \Delta$ and B-lists of size $(1+\varepsilon) \Delta / \log \Delta$ admits a list-colouring.

Asymmetric bipartite list colouring

Notation: Call the sides A and B, with max degrees Δ_{A}, Δ_{B} and sizes k_{A}, k_{B}
Theorem (Alon, Cambie, Kang 2021)
Given bipartite graph of maximum degree Δ, any list-assignment with A-lists of size $\log \Delta$ and B-lists of size $(1+\varepsilon) \Delta / \log \Delta$ admits a list-colouring.

Conjecture (Alon, Cambie, Kang 2021, the 'crossed' one)

Given bipartite graph with max A-degree Δ_{A}, max B-degree Δ_{B}, any list-assignment with A-lists of size $C \log \Delta_{B}, B$-lists of size $C \log \Delta_{A}$ admits a list-colouring.

ITS IN ASYMMETRIC BIPARTITE LIST-COVERS

Notation: Call the sides A and B, with max degrees Δ_{A}, Δ_{B} and sizes k_{A}, k_{B}
Theorem (Alon, Cambie, Kang 2021)
Any bipartite list-cover of maximum degree Δ with A-parts of size $\log \Delta$ and B-parts of size $(1+\varepsilon) \Delta / \log \Delta$ admits an IT.

Conjecture (Alon, Cambie, Kang 2021, the 'crossed' one)

Any bipartite list-cover with max A-degree $\Delta_{A}, \max B$-degree Δ_{B}, A-parts of size $C \log \Delta_{B}, B$-parts of size $C \log \Delta_{A}$ admits an IT.

ITS IN ASYMMETRIC BIPARTITE COVERS

Notation: Call the sides A and B, with max degrees Δ_{A}, Δ_{B} and sizes k_{A}, k_{B}

ITS IN ASYMMETRIC BIPARTITE COVERS

Notation: Call the sides A and B, with max degrees Δ_{A}, Δ_{B} and sizes k_{A}, k_{B} Problem (Cambie \& Kang 2022)
Without any constraint on the structure between parts (like in a list-cover), what conditions on parameters Δ_{A}, Δ_{B} and k_{A}, k_{B} guarantee an IT?

ITs in ASYMMETRIC BIPARTITE COVERS

Notation: Call the sides A and B, with max degrees Δ_{A}, Δ_{B} and sizes k_{A}, k_{B} Problem (Cambie \& Kang 2022)
Without any constraint on the structure between parts (like in a list-cover), what conditions on parameters Δ_{A}, Δ_{B} and k_{A}, k_{B} guarantee an IT?

Theorem (Cambie, Haxell, Kang, Wdowinski 2023+)

Any bipartite cover with max A-degree Δ_{A}, max B-degree Δ_{B}, A-parts of size k_{A}, B-parts of size k_{B} such that

$$
\Delta_{B} / k_{A}+\Delta_{A} / k_{B} \leq 1
$$

admits an IT.

ITS IN ASYMMETRIC BIPARTITE COVERS

Notation: Call the sides A and B, with max degrees Δ_{A}, Δ_{B} and sizes k_{A}, k_{B} Problem (Cambie \& Kang 2022)
Without any constraint on the structure between parts (like in a list-cover), what conditions on parameters Δ_{A}, Δ_{B} and k_{A}, k_{B} guarantee an IT?

Theorem (Cambie, Haxell, Kang, Wdowinski 2023+)

Any bipartite cover with max A-degree Δ_{A}, max B-degree Δ_{B}, A-parts of size k_{A}, B-parts of size k_{B} such that

$$
\Delta_{B} / k_{A}+\Delta_{A} / k_{B} \leq 1
$$

admits an IT. Moreover if the inequality does not hold there exists a corresponding cover with no IT.

ITS IN BIPARTITE CORRESPONDENCE-COVERS

ITs in bipartite correspondence-covers

Conjecture (Cambie, Haxell, Kang, Wdowinski 2023+)
Any bipartite correspondence-cover of maximum degree Δ with parts of size $C \log \Delta$ admits an IT.

ITs in bipartite correspondence-covers

Conjecture (Cambie, Haxell, Kang, Wdowinski 2023+)

Any bipartite correspondence-cover of maximum degree Δ with parts of size $C \log \Delta$ admits an IT.
(Warning: Equivalent to Alon-Krivelevich conjecture!)

Questions?

[^0]: *Joint with Stijn Cambie, Penny Haxell, Ronen Wdowinski. Support from NWO Vidi grant.

