LOCAL GRAPH COLOURING

Ross J. Kang*

'Recent Progress in Chromatic Graph Theory' AMS Spring Eastern Virtual Sectional Eastern USA (via zoom) 4/2023

^{*}With Davies, de Joannis de Verclos, Pirot, Sereni. Support from NWO.

GRAPH COLOURING

Even if the conditions are simple and *local*, i.e. check the neighbours' colours for each vertex,

GRAPH COLOURING

Even if the conditions are simple and *local*,

i.e. check the neighbours' colours for each vertex,

we quickly learn how complex and global a problem it is,

e.g. modifications in one place can propagate unpredictably throughout

GRAPH COLOURING

Even if the conditions are simple and *local*,

i.e. check the neighbours' colours for each vertex,

we quickly learn how complex and global a problem it is,

e.g. modifications in one place can propagate unpredictably throughout

(It epitomises the classic NP-hard problems)

More local?

Despite this, one can demand more based on 'more local' conditions:

More local?

Despite this, one can demand more based on 'more local' conditions:

- probabilistic/extremal, e.g. graph limits, hard-core model, ...
- algorithms, e.g. distributed computing, entropy compression, ...

More local?

Despite this, one can demand more based on 'more local' conditions:

- probabilistic/extremal, e.g. graph limits, hard-core model, ...
- algorithms, e.g. distributed computing, entropy compression, ...
- many colouring methods we have are 'still' local! (push further?)

BROOKS' THEOREM

A 'locally greedy' algorithm implies the upper bound:

Theorem (Brooks' 1941) $\chi(G) \leq \Delta(G) + 1$ with equality if and only if G an odd cycle or clique

BROOKS' THEOREM

A 'locally greedy' algorithm implies the upper bound:

Theorem (Brooks' 1941) $\chi(G) \leq \Delta(G) + 1$ with equality if and only if G an odd cycle or clique

$$\implies \alpha(G) \ge \frac{n(G)}{\Delta(G)+1}$$

THE GREEDY BOUND COROLLARY

$$\implies \alpha(G) \ge \frac{n(G)}{\Delta(G)+1}$$

The greedy bound corollary, more locally

Do we have finer bound using finer degree information?

$$\implies lpha(G) \ge rac{n(G)}{\Delta(G) + 1}$$

Do we have finer bound using finer degree information?

Theorem (Caro 1979, Wei 1981) $\alpha(G) \ge \sum_{v \in V(G)} \frac{1}{\deg(v) + 1}$

$$\implies \alpha(G) \ge \frac{n(G)}{\Delta(G) + 1}$$

Encoding colouring more locally

Want 'amount' of colour per vertex to be local \rightarrow

Encoding colouring more locally

Want 'amount' of colour per vertex to be local \rightarrow list colouring

Want 'amount' of colour per vertex to be local \rightarrow list colouring

Recall

- *list-assignment* is some $L: V(G) \rightarrow 2^{\mathbb{Z}^+}$
- L-colouring is some $c: V(G) \to \mathbb{Z}^+$ with $c(v) \in L(v)$ for every $v \in V(G)$
- G is k-choosable if there is a proper L-colouring for any list-assignment L with |L(v)| ≥ k for every v ∈ V(G)
- *list chromatic number* ch(G) is least k such that G is k-choosable

Introduced independently by Vizing 1976 and Erdős, Rubin, Taylor 1980

Want 'amount' of colour per vertex to be local \rightarrow list colouring Recall

- *list-assignment* is some $L: V(G) \rightarrow 2^{\mathbb{Z}^+}$
- L-colouring is some $c: V(G) \to \mathbb{Z}^+$ with $c(v) \in L(v)$ for every $v \in V(G)$
- G is k-choosable if there is a proper L-colouring for any list-assignment L with |L(v)| ≥ k for every v ∈ V(G)
- list chromatic number ch(G) is least k such that G is k-choosable

Introduced independently by Vizing 1976 and Erdős, Rubin, Taylor 1980 Can allow k to 'vary' with v, or rather, according to quantities local to v

A more local Brooks' theorem

An (important) example: allow smaller degree vertices smaller lists

A more local Brooks' theorem

An (important) example: allow smaller degree vertices smaller lists

G is *degree-choosable* if there is a proper *L*-colouring for any list-assignment *L* with $|L(v)| \ge \deg(v)$ for every $v \in V(G)$

A more local Brooks' theorem

An (important) example: allow smaller degree vertices smaller lists

G is *degree-choosable* if there is a proper *L*-colouring for any list-assignment *L* with $|L(v)| \ge \deg(v)$ for every $v \in V(G)$

Theorem (Borodin 1979, Erdős, Rubin, Taylor 1980, cf. Gallai 1963)

G is not degree-choosable if and only if G a Gallai tree

Quantities local to v

• degree of v

• degree of v

• size of largest clique containing v

• degree of v

- size of largest clique containing v
- number of triangles containing v

• degree of v

- size of largest clique containing v
- number of triangles containing v
- chromatic number of the neighbourhood subgraph of v

• degree of v

- size of largest clique containing v
- number of triangles containing v
- chromatic number of the neighbourhood subgraph of v
- number of cycles of length ℓ containing v

• ...

• degree of v

- size of largest clique containing v
- number of triangles containing v
- chromatic number of the neighbourhood subgraph of v
- number of cycles of length ℓ containing v

• ...

Given a function $f : V(G) \to \mathbb{Z}^+$, G is *f*-choosable if there is proper L-colouring for any list-assignment L with $|L(v)| \ge f(v)$ for every $v \in V(G)$

• degree of v

- size of largest clique containing v
- number of triangles containing v
- chromatic number of the neighbourhood subgraph of v
- number of cycles of length ℓ containing v

• ...

Given a function $f: V(G) \to \mathbb{Z}^+$, *G* is *f*-choosable if there is proper *L*-colouring for any list-assignment *L* with $|L(v)| \ge f(v)$ for every $v \in V(G)$ So *k*-choosability has f(v) = k and degree-choosability has $f(v) = \deg(v)$.

degree of v

- size of largest clique containing v
- number of triangles containing v
- chromatic number of the neighbourhood subgraph of v
- number of cycles of length ℓ containing v

• ...

Given a function $f: V(G) \to \mathbb{Z}^+$, G is *f*-choosable if there is proper L-colouring for any list-assignment L with $|L(v)| \ge f(v)$ for every $v \in V(G)$ So k-choosability has f(v) = k and degree-choosability has $f(v) = \deg(v)$. With various local quantities, what 'natural' choices of f suffice?

• Bonamy, Kelly, Nelson, Postle 2022 initiated

 $^{^\}dagger More$ fully, the lattice gas with hard-core self-repulsion and nearest-neighbour exclusion. Picture credit: Wikipedia/Grap-wh

- Bonamy, Kelly, Nelson, Postle 2022 initiated
- Davies, Kang, Pirot, Sereni 2020+, by generalising the breakthrough method/result of Molloy 2019, reduced many problems of this type to an optimisation problem related to local properties of the hard-core model[†]

[†]More fully, the lattice gas with hard-core self-repulsion and nearest-neighbour exclusion. Picture credit: Wikipedia/Grap-wh

- Bonamy, Kelly, Nelson, Postle 2022 initiated
- Davies, Kang, Pirot, Sereni 2020+, by generalising the breakthrough method/result of Molloy 2019, reduced many problems of this type to an optimisation problem related to local properties of the hard-core model[†] → local occupancy method

(actually, local results seem to follow 'for free' from the method)

[†]More fully, the lattice gas with hard-core self-repulsion and nearest-neighbour exclusion. Picture credit: Wikipedia/Grap-wh

- Bonamy, Kelly, Nelson, Postle 2022 initiated
- Davies, Kang, Pirot, Sereni 2020+, by generalising the breakthrough method/result of Molloy 2019, reduced many problems of this type to an optimisation problem related to local properties of the hard-core model[†] → local occupancy method

(actually, local results seem to follow 'for free' from the method)

• today we highlight a particularly elegant setting, the triangle-free case

[†]More fully, the lattice gas with hard-core self-repulsion and nearest-neighbour exclusion. Picture credit: Wikipedia/Grap-wh

Vizing 1968: '... one should start with estimates of the chromatic number of a graph without triangles ($\omega = 2$) and with given maximal degree for vertices'

Vizing 1968: '... one should start with estimates of the chromatic number of a graph without triangles ($\omega = 2$) and with given maximal degree for vertices'

Theorem (Borodin & Kostochka 1977) $\chi(G) \leq \lfloor \frac{3}{4}(\Delta(G) + 2) \rfloor$ for any triangle-free graph G

Vizing 1968: '... one should start with estimates of the chromatic number of a graph without triangles ($\omega = 2$) and with given maximal degree for vertices'

Theorem (Borodin & Kostochka 1977) $\chi(G) \le \lfloor \frac{3}{4}(\Delta(G) + 2) \rfloor$ for any triangle-free graph G

Theorem (Johansson 1996+) $\chi(G) = O\left(\frac{\Delta(G)}{\log \Delta(G)}\right)$ for any triangle-free graph G

Vizing 1968: '... one should start with estimates of the chromatic number of a graph without triangles ($\omega = 2$) and with given maximal degree for vertices'

Theorem (Borodin & Kostochka 1977) $\chi(G) \le \lfloor \frac{3}{4}(\Delta(G) + 2) \rfloor$ for any triangle-free graph G

Theorem (Johansson 1996+) $\chi(G) = O\left(\frac{\Delta(G)}{\log \Delta(G)}\right)$ for any triangle-free graph G

Theorem (Molloy 2019) $\chi(G) \sim \frac{\Delta(G)}{\log \Delta(G)}$ for any triangle-free graph G (as $\Delta(G) \to \infty$)

Vizing 1968: '... one should start with estimates of the chromatic number of a graph without triangles ($\omega = 2$) and with given maximal degree for vertices'

Theorem (Borodin & Kostochka 1977) $\chi(G) \leq \lfloor \frac{3}{4}(\Delta(G) + 2) \rfloor$ for any triangle-free graph G

Theorem (Johansson 1996+)
$$\chi(G) = O\left(\frac{\Delta(G)}{\log \Delta(G)}\right)$$
 for any triangle-free graph G

Theorem (Molloy 2019)
$$\chi(G) \sim \frac{\Delta(G)}{\log \Delta(G)}$$
 for any triangle-free graph G (as $\Delta(G) \to \infty$)

Due to random Δ -regular graphs, this is asymptotically sharp up to a factor 2 Incidentally matches the longstanding bound for R(3, k) due to Shearer 1983

LOCALLY COLOURING TRIANGLE-FREE GRAPHS

A local Molloy's:

A local Molloy's:

Theorem (Davies, de Joannis de Verclos, Kang, Pirot 2020) Fix $\varepsilon > 0$. For Δ sufficiently large and $\delta = (192 \log \Delta)^{2/\varepsilon}$, any triangle-free graph of maximum degree Δ and minimum degree δ is f-choosable with

$$f(v) = (1 + \varepsilon) \frac{\deg(v)}{\log \deg(v)}$$

A local Molloy's:

Theorem (Davies, de Joannis de Verclos, Kang, Pirot 2020) Fix $\varepsilon > 0$. For Δ sufficiently large and $\delta = (192 \log \Delta)^{2/\varepsilon}$, any triangle-free graph of maximum degree Δ and minimum degree δ is f-choosable with

$$f(v) = (1 + \varepsilon) \frac{\deg(v)}{\log \deg(v)}$$

Davies, Kang, Pirot, Sereni 2020+:

In fact there are analogous results for all the local quantities mentioned earlier,

A local Molloy's:

Theorem (Davies, de Joannis de Verclos, Kang, Pirot 2020) Fix $\varepsilon > 0$. For Δ sufficiently large and $\delta = (192 \log \Delta)^{2/\varepsilon}$, any triangle-free graph of maximum degree Δ and minimum degree δ is f-choosable with

$$f(v) = (1 + \varepsilon) \frac{\deg(v)}{\log \deg(v)}$$

Davies, Kang, Pirot, Sereni 2020+:

In fact there are analogous results for *all* the local quantities mentioned earlier, though always with the caveat of some δ condition

THE PESKY MINIMUM LIST-SIZE/DEGREE CONDITION

Is δ needed?

Is δ needed?

Proposition (Davies, de Joannis de Verclos, Kang, Pirot 2020)

For any δ , there is a bipartite graph of maximum degree $\Delta := \exp^{\delta - 1}(\delta)$ and minimum degree δ that is not f-choosable with

$$f(v) = \frac{\deg(v)}{\log\deg(v)}$$

Is δ needed?

Proposition (Davies, de Joannis de Verclos, Kang, Pirot 2020)

For any δ , there is a bipartite graph of maximum degree $\Delta := \exp^{\delta - 1}(\delta)$ and minimum degree δ that is not f-choosable with

$$f(v) = \frac{\deg(v)}{\log \deg(v)}$$

NB: this is stated in a clean form but works for any f as deg $(v) \rightarrow \infty$ with $f = \omega(\log \deg(v))$ and $f = o(\deg(v))$, subject to a different degree span

Is δ needed?

Proposition (Davies, de Joannis de Verclos, Kang, Pirot 2020)

For any δ , there is a bipartite graph of maximum degree $\Delta := \exp^{\delta - 1}(\delta)$ and minimum degree δ that is not f-choosable with

$$f(v) = \frac{\deg(v)}{\log \deg(v)}$$

NB: this is stated in a clean form but works for any f as deg $(v) \rightarrow \infty$ with $f = \omega(\log \deg(v))$ and $f = o(\deg(v))$, subject to a different degree span

Problem

What is the largest degree span that suffices for a 'local Molloy's'?

Proposition (Davies, de Joannis de Verclos, Kang, Pirot 2020)

For any δ , there is a bipartite graph of maximum degree $\Delta := \exp^{\delta - 1}(\delta)$ and minimum degree δ that is not f-choosable with

$$f(v) = rac{\deg(v)}{\log\deg(v)}$$

QUESTIONS?

