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Graph colouring

Even if the conditions are simple and local,
i.e. check the neighbours’ colours for each vertex,

we quickly learn how complex and global a problem it is,
e.g. modifications in one place can propagate unpredictably throughout

(It epitomises the classic NP-hard problems)
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More local?

Despite this, one can demand more based on ‘more local’ conditions:

• probabilistic/extremal, e.g. graph limits, hard-core model, . . .

• algorithms, e.g. distributed computing, entropy compression, . . .

• many colouring methods we have are ‘still’ local! (push further?)
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Brooks’ theorem

A ‘locally greedy’ algorithm implies the upper bound:

Theorem (Brooks’ 1941)

χ(G) ≤ ∆(G) + 1 with equality if and only if G an odd cycle or clique

=⇒ α(G) ≥ n(G)

∆(G) + 1
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The greedy bound corollary

, more locally

Do we have finer bound using finer degree information?

Theorem (Caro 1979, Wei 1981)

α(G) ≥
∑

v∈V (G)

1
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Encoding colouring more locally

Want ‘amount’ of colour per vertex to be local →

list colouring

Recall

• list-assignment is some L : V (G) → 2Z
+

• L-colouring is some c : V (G) → Z+ with c(v) ∈ L(v) for every v ∈ V (G)

• G is k-choosable if there is a proper L-colouring for any list-assignment L
with |L(v)| ≥ k for every v ∈ V (G)

• list chromatic number ch(G) is least k such that G is k-choosable

Introduced independently by Vizing 1976 and Erdős, Rubin, Taylor 1980

Can allow k to ‘vary’ with v , or rather, according to quantities local to v
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A more local Brooks’ theorem

An (important) example: allow smaller degree vertices smaller lists

G is degree-choosable if there is a proper L-colouring for any list-assignment L
with |L(v)| ≥ deg(v) for every v ∈ V (G)

Theorem (Borodin 1979, Erdős, Rubin, Taylor 1980, cf. Gallai 1963)

G is not degree-choosable if and only if G a Gallai tree
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Quantities local to v

• degree of v

• size of largest clique containing v

• number of triangles containing v

• chromatic number of the neighbourhood subgraph of v

• number of cycles of length ℓ containing v

• · · ·

Given a function f : V (G) → Z+, G is f -choosable if there is proper
L-colouring for any list-assignment L with |L(v)| ≥ f (v) for every v ∈ V (G)

So k-choosability has f (v) = k and degree-choosability has f (v) = deg(v).

With various local quantities, what ‘natural’ choices of f suffice?
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Systematically more local?

• Bonamy, Kelly, Nelson, Postle 2022 initiated

• Davies, Kang, Pirot, Sereni 2020+, by generalising the breakthrough
method/result of Molloy 2019, reduced many problems of this type to an
optimisation problem related to local properties of the hard-core model†

→ local occupancy method

(actually, local results seem to follow ‘for free’ from the method)

• today we highlight a particularly elegant setting, the triangle-free case

†More fully, the lattice gas with hard-core self-repulsion and nearest-neighbour exclusion.
Picture credit: Wikipedia/Grap-wh
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Colouring triangle-free graphs:
a brief history

Vizing 1968: ‘. . . one should start with estimates of the chromatic number of a
graph without triangles (ω = 2) and with given maximal degree for vertices’

Theorem (Borodin & Kostochka 1977)

χ(G) ≤
⌊
3
4
(∆(G) + 2)

⌋
for any triangle-free graph G

Theorem (Johansson 1996+)

χ(G) = O

(
∆(G)

log∆(G)

)
for any triangle-free graph G

Theorem (Molloy 2019)

χ(G) ∼ ∆(G)

log∆(G)
for any triangle-free graph G (as ∆(G) → ∞)

Due to random ∆-regular graphs, this is asymptotically sharp up to a factor 2

Incidentally matches the longstanding bound for R(3, k) due to Shearer 1983
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Locally colouring triangle-free graphs

A local Molloy’s:

Theorem (Davies, de Joannis de Verclos, Kang, Pirot 2020)

Fix ε > 0. For ∆ sufficiently large and δ = (192 log∆)2/ε, any triangle-free
graph of maximum degree ∆ and minimum degree δ is f -choosable with

f (v) = (1 + ε)
deg(v)

log deg(v)

Davies, Kang, Pirot, Sereni 2020+:
In fact there are analogous results for all the local quantities mentioned earlier,
though always with the caveat of some δ condition
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The pesky minimum list-size/degree condition

Is δ needed?

Proposition (Davies, de Joannis de Verclos, Kang, Pirot 2020)

For any δ, there is a bipartite graph of maximum degree ∆ := expδ−1(δ) and
minimum degree δ that is not f -choosable with

f (v) =
deg(v)

log deg(v)

NB: this is stated in a clean form but works for any f as deg(v) → ∞ with
f = ω(log deg(v)) and f = o(deg(v)), subject to a different degree span

Problem
What is the largest degree span that suffices for a ‘local Molloy’s’?
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