Colouring powers of graphs with one cycle length forbidden*

CWI Networks \& Optimization seminar
1/2017

[^0]Example 1: ad hoc frequency assignment ${ }^{\dagger}$

${ }^{\dagger}$ Image credit: Mesoderm/Wikipedia

Example 1: ad hoc frequency assignment ${ }^{\dagger}$

${ }^{\dagger}$ Image credit: Mesoderm/Wikipedia

Example 1: ad hoc frequency assignment ${ }^{\dagger}$

Example 1: ad hoc frequency assignment ${ }^{\dagger}$

How many channels needed?

Example 2: small-world networks

Example 2: small-world networks

Example 2: small-world networks

How large can the network be?

Graph powers

Given a graph G,

Graph powers

Given a graph G, the t-th power G^{t} is formed from G by adding all edges between vertices at distance $\leq t$.

Graph powers

Given a graph G, the t-th power G^{t} is formed from G by adding all edges between vertices at distance $\leq t$.

Graph powers

Given a graph G, the t-th power G^{t} is formed from G by adding all edges between vertices at distance $\leq t$.

Graph powers

Given a graph G, the t-th power G^{t} is formed from G by adding all edges between vertices at distance $\leq t$.

Example 2: degree-diameter problem ${ }^{\ddagger}$

With maximum degree d, how large can a network of diameter t be? (diameter $\leq t \equiv G^{t}$ has all possible edges)

[^1]
Example 2: degree-diameter problem ${ }^{\ddagger}$

With maximum degree d, how large can a network of diameter t be?

$$
\text { (diameter } \leq t \equiv G^{t} \text { has all possible edges) }
$$

"Moore bound":

$$
\begin{aligned}
|G| & \leq 1+d+d(d-1)+\cdots+d(d-1)^{t-1} \\
& =1+d \sum_{i=1}^{t}(d-1)^{i-1}
\end{aligned}
$$

[^2]
Example 2: degree-diameter problem

With maximum degree d, how large can a network of diameter t be?
Moore bound: $|G| \leq 1+d \sum_{i=1}^{t}(d-1)^{i-1}$.

Example 2: degree-diameter problem

With maximum degree d, how large can a network of diameter t be?
Moore bound: $|G| \leq 1+d \sum_{i=1}^{t}(d-1)^{i-1}$.
Theorem (Hoffmann \& Singleton 1960)
For $t=2$, there are three or four graphs attaining the Moore bound. For $t=3$, there can be only one.

Is there a graph of diameter 2, maximum degree 57, and 3250 vertices?

Example 2: degree-diameter problem

With maximum degree d, how large can a network of diameter t be?
Moore bound: $|G| \leq 1+d \sum_{i=1}^{t}(d-1)^{i-1}$

Example 2: degree-diameter problem

With maximum degree d, how large can a network of diameter t be?
Moore bound: $|G| \leq 1+d \sum_{i=1}^{t}(d-1)^{i-1} \sim d^{t}$ as $d \rightarrow \infty$.

Example 2: degree-diameter problem

With maximum degree d, how large can a network of diameter t be?
Moore bound: $|G| \leq 1+d \sum_{i=1}^{t}(d-1)^{i-1} \sim d^{t}$ as $d \rightarrow \infty$.
Conjecture (Bollobás 1980)
Fix $t \geq 1$. Given $\varepsilon>0$, for arbitrarily many d, there must be a graph with diameter t, maximum degree d and $\geq(1-\varepsilon) d^{t}$ vertices.

Example 2: degree-diameter problem

With maximum degree d, how large can a network of diameter t be?
Moore bound: $|G| \leq 1+d \sum_{i=1}^{t}(d-1)^{i-1} \sim d^{t}$ as $d \rightarrow \infty$.
Conjecture (Bollobás 1980)
Fix $t \geq 1$. Given $\varepsilon>0$, for arbitrarily many d, there must be a graph with diameter t, maximum degree d and $\geq(1-\varepsilon) d^{t}$ vertices.

- Known only for $t \in\{1,2,3,5\}$.
- For other choices of t, De Bruijn graphs give 0.5^{t} instead of $1-\varepsilon$, and best known constant is 0.625^{t} (Canale \& Gómez 2005).

Example 1: strong edge-colouring
If nearby transmissions interfere, how many channels needed?

Example 1: strong edge-colouring

If nearby transmissions interfere, how many channels needed?

Model ad hoc network with a graph.
Each transmission occurs on an edge.
Represent each channel by a colour.
Interference at distance 2.

Example 1: strong edge-colouring

If nearby transmissions interfere, how many channels needed?

Model ad hoc network with a graph.
Each transmission occurs on an edge.
Represent each channel by a colour.
Interference at distance 2 .

Problem translates:
What is the least number of colours required so that edges within distance 2 must get distinct colours?

Called strong chromatic index of graph.

Example 1: strong edge-colouring

What is the least number of colours required so that edges within distance 2 must get distinct colours?

The line graph $L(G)$ of a graph G has vertices corresponding to G-edges and edges if the two corresponding G-edges have a common G-vertex.

Example 1: strong edge-colouring

What is the least number of colours required so that edges within distance 2 must get distinct colours?

The line graph $L(G)$ of a graph G has vertices corresponding to G-edges and edges if the two corresponding G-edges have a common G-vertex.

Example 1: strong edge-colouring

What is the least number of colours required so that edges within distance 2 must get distinct colours?

The line graph $L(G)$ of a graph G has vertices corresponding to G-edges and edges if the two corresponding G-edges have a common G-vertex.

Example 1: strong edge-colouring

What is the least number of colours required so that edges within distance 2 must get distinct colours?

The line graph $L(G)$ of a graph G has vertices corresponding to G-edges and edges if the two corresponding G-edges have a common G-vertex.

strong edge-colouring in G
strong chromatic index of G

Example 1: strong edge-colouring

What is the least number of colours required so that edges within distance 2 must get distinct colours?

The line graph $L(G)$ of a graph G has vertices corresponding to G-edges and edges if the two corresponding G-edges have a common G-vertex.

strong edge-colouring in $G \equiv$ vertex-colouring in $(L(G))^{2}$
strong chromatic index of $G \equiv$ chromatic number of $(L(G))^{2}$

Erdős-Nešetřil conjecture

With maximum degree d how large can strong chromatic index be?

Erdős-Nešetřil conjecture

With maximum degree d how large can strong chromatic index be?

Must be $\leq 2 d(d-1)+1=2 d^{2}-2 d+1$. Greedy.

Erdős-Nešetřil conjecture

With maximum degree d how large can strong chromatic index be?

Must be $\leq 2 d(d-1)+1=2 d^{2}-2 d+1$. Greedy.

Erdős-Nešetřil conjecture

With maximum degree d how large can strong chromatic index be?

Must be $\leq 2 d(d-1)+1=2 d^{2}-2 d+1$. Greedy.

Lower bound examples?
Better upper bound?

Erdős-Nešetřil conjecture

With maximum degree d how large can strong chromatic index be?

Can be $\geq 5 d^{2} / 4, d$ even:

Erdős-Nešetřil conjecture

With maximum degree d how large can strong chromatic index be?

Can be $\geq 5 d^{2} / 4, d$ even:

Conjecture (Erdős \& Nešetřil 1980s)
Must be $\leq 5 d^{2} / 4$.

Theorem (Molloy \& Reed 1997)
Must be $\leq(2-\varepsilon) d^{2}$ for some absolute $\varepsilon>0$. $(\varepsilon \ll 0.002$.)

Colouring powers / distance colouring

Let G have maximum degree d.

Chromatic number of $(L(G))^{2}$?
\rightsquigarrow strong chromatic index $\chi_{s}^{\prime}(G)$ of G

Colouring powers / distance colouring

Fix $t \geq 1$.
Let G have maximum degree d.

Chromatic number of $(L(G))^{t} ? \quad \rightsquigarrow$ distance- t chromatic index $\chi_{t}^{\prime}(G)$ of G

Colouring powers / distance colouring

Fix $t \geq 1$.
Let G have maximum degree d.
$|G|$ if G^{t} is a clique?
\rightsquigarrow degree-diameter problem

Chromatic number of $(L(G))^{t}$?
\rightsquigarrow distance- t chromatic index $\chi_{t}^{\prime}(G)$ of G

Colouring powers / distance colouring

Fix $t \geq 1$.
Let G have maximum degree d.
Clique number of G^{t} ?
\rightsquigarrow distance- t clique number of G

Chromatic number of $(L(G))^{t}$? \rightsquigarrow distance- t chromatic index $\chi_{t}^{\prime}(G)$ of G

Colouring powers / distance colouring

Fix $t \geq 1$.
Let G have maximum degree d.
Chromatic number of G^{t} ? \rightsquigarrow distance- t chromatic number $\chi_{t}(G)$ of G

Chromatic number of $(L(G))^{t}$? \rightsquigarrow distance- t chromatic index $\chi_{t}^{\prime}(G)$ of G

Colouring powers / distance colouring

Fix $t \geq 1$.
Let G have maximum degree d.
Chromatic number of G^{t} ? \rightsquigarrow distance- t chromatic number $\chi_{t}(G)$ of G

- Greedy: must be $\leq d^{t}+1$.

Chromatic number of $(L(G))^{t}$? \rightsquigarrow distance- t chromatic index $\chi_{t}^{\prime}(G)$ of G

Colouring powers / distance colouring

Fix $t \geq 1$.
Let G have maximum degree d.
Chromatic number of G^{t} ? \rightsquigarrow distance- t chromatic number $\chi_{t}(G)$ of G

- Greedy: must be $\leq d^{t}+1$.
- Conjecture: given $\varepsilon>0$, can be $\geq(1-\varepsilon) d^{t}$ for arbitrarily many d. Known for $t \in\{1,2,3,5\}$. Can be $\geq 0.625^{t} \cdot d^{t}$.

Chromatic number of $(L(G))^{t}$? \rightsquigarrow distance- t chromatic index $\chi_{t}^{\prime}(G)$ of G

Colouring powers / distance colouring

Fix $t \geq 1$.
Let G have maximum degree d.
Chromatic number of G^{t} ? \rightsquigarrow distance- t chromatic number $\chi_{t}(G)$ of G

- Greedy: must be $\leq d^{t}+1$.
- Conjecture: given $\varepsilon>0$, can be $\geq(1-\varepsilon) d^{t}$ for arbitrarily many d. Known for $t \in\{1,2,3,5\}$. Can be $\geq 0.625^{t} \cdot d^{t}$.

Chromatic number of $(L(G))^{t}$? \rightsquigarrow distance- t chromatic index $\chi_{t}^{\prime}(G)$ of G

- Greedy: must be $\leq 2 d^{t}$.

Colouring powers / distance colouring

Fix $t \geq 1$.
Let G have maximum degree d.
Chromatic number of G^{t} ? \rightsquigarrow distance- t chromatic number $\chi_{t}(G)$ of G

- Greedy: must be $\leq d^{t}+1$.
- Conjecture: given $\varepsilon>0$, can be $\geq(1-\varepsilon) d^{t}$ for arbitrarily many d. Known for $t \in\{1,2,3,5\}$. Can be $\geq 0.625^{t} \cdot d^{t}$.

Chromatic number of $(L(G))^{t}$? \rightsquigarrow distance- t chromatic index $\chi_{t}^{\prime}(G)$ of G

- Greedy: must be $\leq 2 d^{t}$.
- Conjecture: given $\varepsilon>0$, must be $\leq(1+\varepsilon) d^{t}$ for all large d, if $t \neq 2$.
- Conjecture: given $\varepsilon>0$, can be $\geq(1-\varepsilon) d^{t}$ for arbitrarily many d. Known for $t \in\{1,2,3,4,6\}$. Can be $\geq 0.5^{t} \cdot d^{t}$.

Colouring powers / distance colouring

Fix $t \geq 1$.
Let G have maximum degree d.
Chromatic number of G^{t} ? \rightsquigarrow distance- t chromatic number $\chi_{t}(G)$ of G

- Greedy: must be $\leq d^{t}+1$.
- Conjecture: given $\varepsilon>0$, can be $\geq(1-\varepsilon) d^{t}$ for arbitrarily many d. Known for $t \in\{1,2,3,5\}$. Can be $\geq 0.625^{t} \cdot d^{t}$.

Chromatic number of $(L(G))^{t}$? \rightsquigarrow distance- t chromatic index $\chi_{t}^{\prime}(G)$ of G

- Greedy: must be $\leq 2 d^{t}$.
- Conjecture: given $\varepsilon>0$, must be $\leq(1+\varepsilon) d^{t}$ for all large d, if $t \neq 2$.
- Conjecture: given $\varepsilon>0$, can be $\geq(1-\varepsilon) d^{t}$ for arbitrarily many d. Known for $t \in\{1,2,3,4,6\}$. Can be $\geq 0.5^{t} \cdot d^{t}$.
- Kaiser \& K (2014): must be $\leq(2-\varepsilon) d^{t}$ for some absolute $\varepsilon>0$.

The main questions

Fix $t \geq 1$.
Let $\Delta(G)$ denote the maximum degree in a graph G.
What is the worst value among those G with $\Delta(G)=d$?

The main questions

Fix $t \geq 1$.
Let $\Delta(G)$ denote the maximum degree in a graph G.
What is the worst value among those G with $\Delta(G)=d$?

That is,

$$
\begin{aligned}
& \text { What is } \chi_{t}(d):=\sup \left\{\chi_{t}(G)=\chi\left(G^{t}\right) \mid \Delta(G)=d\right\} ? \\
& \text { What is } \chi_{t}^{\prime}(d):=\sup \left\{\chi_{t}^{\prime}(G)=\chi\left(L(G)^{t}\right) \mid \Delta(G)=d\right\} ?
\end{aligned}
$$

The main questions

Fix $t \geq 1$.
Let $\Delta(G)$ denote the maximum degree in a graph G.
What is the worst value among those G with $\Delta(G)=d$?

That is,

$$
\begin{array}{ll}
\text { What is } \chi_{t}(d):=\sup \left\{\chi_{t}(G)=\chi\left(G^{t}\right) \mid \Delta(G)=d\right\} ? & \Theta\left(d^{t}\right) \\
\text { What is } \chi_{t}^{\prime}(d):=\sup \left\{\chi_{t}^{\prime}(G)=\chi\left(L(G)^{t}\right) \mid \Delta(G)=d\right\} ? & \Theta\left(d^{t}\right)
\end{array}
$$

The main questions

Fix $t \geq 1$. Let C_{ℓ} denote a cycle of length ℓ.
Let $\Delta(G)$ denote the maximum degree in a graph G.
What is the worst value among those G with $\Delta(G)=d$ and no cycle C_{ℓ} as a subgraph?

That is,

$$
\begin{aligned}
& \text { What is } \chi_{t, \ell}(d):=\sup \left\{\chi_{t}(G)=\chi\left(G^{t}\right) \mid \Delta(G)=d, G \not \supset C_{\ell}\right\} ? \\
& \text { What is } \chi_{t, \ell}^{\prime}(d):=\sup \left\{\chi_{t}^{\prime}(G)=\chi\left(L(G)^{t}\right) \mid \Delta(G)=d, G \not \supset C_{\ell}\right\} ?
\end{aligned}
$$

The main questions

Fix $t \geq 1$. Let C_{ℓ} denote a cycle of length ℓ.
Let $\Delta(G)$ denote the maximum degree in a graph G.
What is the worst value among those G with $\Delta(G)=d$ and no cycle C_{ℓ} as a subgraph?

That is,

$$
\begin{aligned}
& \text { What is } \chi_{t, \ell}(d):=\sup \left\{\chi_{t}(G)=\chi\left(G^{t}\right) \mid \Delta(G)=d, G \not \supset C_{\ell}\right\} ? \\
& \text { What is } \chi_{t, \ell}^{\prime}(d):=\sup \left\{\chi_{t}^{\prime}(G)=\chi\left(L(G)^{t}\right) \mid \Delta(G)=d, G \not \supset C_{\ell}\right\} ?
\end{aligned}
$$

We're satisfied with being correct only up to a constant factor.

Chromatic number, triangle-free $\left(\chi_{1}, \ell=3\right)$

What is $\chi_{1,3}(d):=\sup \left\{\chi_{1}(G)=\chi(G) \mid \Delta(G)=d, G \not \supset C_{3}\right\}$?
This was a question of Vizing from the 1960s (maybe motivated by Grötzsch's),

Chromatic number, triangle-free $\left(\chi_{1}, \ell=3\right)$

What is $\chi_{1,3}(d):=\sup \left\{\chi_{1}(G)=\chi(G) \mid \Delta(G)=d, G \not \supset C_{3}\right\}$?
This was a question of Vizing from the 1960s (maybe motivated by Grötzsch's), eventually settled asymptotically with the semi-random method.

Theorem (Johansson 1996)
$\chi_{1,3}(d)=\Theta(d / \log d)$ as $d \rightarrow \infty$.

Strong chromatic index, C_{4}-free $\left(\chi_{2}^{\prime}, \ell=4\right)$

$$
\text { What is } \chi_{2,4}^{\prime}(d):=\sup \left\{\chi_{2}^{\prime}(G)=\chi\left(L(G)^{2}\right) \mid \Delta(G)=d, G \not \supset C_{4}\right\} \text { ? }
$$

(Note $\chi_{1, \ell}^{\prime}(d) \in\{d, d+1\}$ always.)

Strong chromatic index, C_{4}-free $\left(\chi_{2}^{\prime}, \ell=4\right)$

$$
\text { What is } \chi_{2,4}^{\prime}(d):=\sup \left\{\chi_{2}^{\prime}(G)=\chi\left(L(G)^{2}\right) \mid \Delta(G)=d, G \not \supset C_{4}\right\} \text { ? }
$$

(Note $\chi_{1, \ell}^{\prime}(d) \in\{d, d+1\}$ always.)
Also with the semi-random method:
Theorem (Mahdian 2000)
$\chi_{2,4}^{\prime}(d)=\Theta\left(d^{2} / \log d\right)$ as $d \rightarrow \infty$.

Strong chromatic index, C_{4}-free $\left(\chi_{2}^{\prime}, \ell=4\right)$

$$
\text { What is } \chi_{2,4}^{\prime}(d):=\sup \left\{\chi_{2}^{\prime}(G)=\chi\left(L(G)^{2}\right) \mid \Delta(G)=d, G \not \supset C_{4}\right\} ?
$$

(Note $\chi_{1, \ell}^{\prime}(d) \in\{d, d+1\}$ always.)
Also with the semi-random method:
Theorem (Mahdian 2000)
$\chi_{2,4}^{\prime}(d)=\Theta\left(d^{2} / \log d\right)$ as $d \rightarrow \infty$.

- Vu (2002) extended this to hold also for $\ell>4$ even.
- The complete d-regular bipartite graph satisfies $\chi_{2}^{\prime}\left(K_{d, d}\right)=d^{2}$, so cannot hold for any odd ℓ.

Squared chromatic number, C_{6}-free $\left(\chi_{2}, \ell=6\right)$

What is $\chi_{2,6}(d):=\sup \left\{\chi_{2}(G)=\chi\left(G^{2}\right) \mid \Delta(G)=d, G \not \supset C_{6}\right\}$?

Squared chromatic number, C_{6}-free $\left(\chi_{2}, \ell=6\right)$

$$
\text { What is } \chi_{2,6}(d):=\sup \left\{\chi_{2}(G)=\chi\left(G^{2}\right) \mid \Delta(G)=d, G \not \supset C_{6}\right\} ?
$$

Theorem (K \& Pirot 2016, cf. Alon \& Mohar 2002)

$$
\chi_{2,6}(d)=\Theta\left(d^{2} / \log d\right) \text { as } d \rightarrow \infty .
$$

Squared chromatic number, C_{6}-free $\left(\chi_{2}, \ell=6\right)$

$$
\text { What is } \chi_{2,6}(d):=\sup \left\{\chi_{2}(G)=\chi\left(G^{2}\right) \mid \Delta(G)=d, G \not \supset C_{6}\right\} ?
$$

Theorem (K \& Pirot 2016, cf. Alon \& Mohar 2002)
$\chi_{2,6}(d)=\Theta\left(d^{2} / \log d\right)$ as $d \rightarrow \infty$.
The point-line incidence graph of a finite projective plane of order $d-1$ is a d-regular, girth 6 graph whose square is covered by two ($d^{2}-d+1$)-cliques.

So, if $\ell \leq 5$, then $\chi_{2, \ell}(d) \sim d^{2}$ as $d \rightarrow \infty$.

Distance vertex-colouring with one forbidden cycle length

What is $\chi_{t, \ell}(d):=\sup \left\{\chi_{t}(G)=\chi\left(G^{t}\right) \mid \Delta(G)=d, G \not \supset C_{\ell}\right\}$?

Distance vertex-colouring with one forbidden cycle length

$$
\text { What is } \chi_{t, \ell}(d):=\sup \left\{\chi_{t}(G)=\chi\left(G^{t}\right) \mid \Delta(G)=d, G \not \supset C_{\ell}\right\} ?
$$

Theorem (K \& Pirot 2017+)
Fix positive integers t and $\ell \geq 3$. The following hold as $d \rightarrow \infty$.

- For $\ell \geq 2 t+2$ even, $\chi_{t, \ell}(d)=\Theta\left(d^{t} / \log d\right)$.
- For t odd and $\ell \geq 3 t$ odd, $\chi_{t, \ell}(d)=\Theta\left(d^{t} / \log d\right)$.
- For t even and ℓ odd, $\chi_{t, \ell}(d)=\Theta\left(d^{t}\right)$.

Distance vertex-colouring with one forbidden cycle length

$$
\text { What is } \chi_{t, \ell}(d):=\sup \left\{\chi_{t}(G)=\chi\left(G^{t}\right) \mid \Delta(G)=d, G \not \supset C_{\ell}\right\} ?
$$

Theorem (K \& Pirot 2017+)
Fix positive integers t and $\ell \geq 3$. The following hold as $d \rightarrow \infty$.

- For $\ell \geq 2 t+2$ even, $\chi_{t, \ell}(d)=\Theta\left(d^{t} / \log d\right)$.
- For t odd and $\ell \geq 3 t$ odd, $\chi_{t, \ell}(d)=\Theta\left(d^{t} / \log d\right)$.
- For t even and ℓ odd, $\chi_{t, \ell}(d)=\Theta\left(d^{t}\right)$.

Last part follows from a "circular unfolding" of the De Bruijn graph.

Distance edge-colouring with one forbidden cycle length

What is $\chi_{t, \ell}^{\prime}(d):=\sup \left\{\chi_{t}^{\prime}(G)=\chi\left(L(G)^{t}\right) \mid \Delta(G)=d, G \not \supset C_{\ell}\right\}$?

Distance edge-colouring with one forbidden cycle length

What is $\chi_{t, \ell}^{\prime}(d):=\sup \left\{\chi_{t}^{\prime}(G)=\chi\left(L(G)^{t}\right) \mid \Delta(G)=d, G \not \supset C_{\ell}\right\}$?

Theorem (K \& Pirot 2017+)
Fix positive integers $t \geq 2$ and $\ell \geq 3$. The following hold as $d \rightarrow \infty$.

- For $\ell \geq 2 t$ even, $\chi_{t, \ell}^{\prime}(d)=\Theta\left(d^{t} / \log d\right)$.
- For ℓ odd, $\chi_{t, \ell}^{\prime}(d)=\Theta\left(d^{t}\right)$.
(Note $\chi_{1, \ell}^{\prime}(d) \in\{d, d+1\}$ always.)

Distance edge-colouring with one forbidden cycle length

What is $\chi_{t, \ell}^{\prime}(d):=\sup \left\{\chi_{t}^{\prime}(G)=\chi\left(L(G)^{t}\right) \mid \Delta(G)=d, G \not \supset C_{\ell}\right\}$?

Theorem (K \& Pirot 2017+)
Fix positive integers $t \geq 2$ and $\ell \geq 3$. The following hold as $d \rightarrow \infty$.

- For $\ell \geq 2 t$ even, $\chi_{t, \ell}^{\prime}(d)=\Theta\left(d^{t} / \log d\right)$.
- For ℓ odd, $\chi_{t, \ell}^{\prime}(d)=\Theta\left(d^{t}\right)$.
(Note $\chi_{1, \ell}^{\prime}(d) \in\{d, d+1\}$ always.)
Second part uses a special bipartite graph product operation.

Distance colouring with one forbidden cycle length

What is $\chi_{t, \ell}(d):=\sup \left\{\chi_{t}(G)=\chi\left(G^{t}\right) \mid \Delta(G)=d, G \not \supset C_{\ell}\right\} ?$
What is $\chi_{t, \ell}^{\prime}(d):=\sup \left\{\chi_{t}^{\prime}(G)=\chi\left(L(G)^{t}\right) \mid \Delta(G)=d, G \not \supset C_{\ell}\right\}$?

Theorem (K \& Pirot 2017+)
Fix positive integers t and $\ell \geq 3$. The following hold as $d \rightarrow \infty$.

- For $\ell \geq 2 t+2$ even, $\chi_{t, \ell}(d)=\Theta\left(d^{t} / \log d\right)$.
- For t odd and $\ell \geq 3 t$ odd, $\chi_{t, \ell}(d)=\Theta\left(d^{t} / \log d\right)$.
- For t even and ℓ odd, $\chi_{t, \ell}(d)=\Theta\left(d^{t}\right)$.

If $t \geq 2$, then the following hold as $d \rightarrow \infty$.

- For $\ell \geq 2 t$ even, $\chi_{t, \ell}^{\prime}(d)=\Theta\left(d^{t} / \log d\right)$.
- For ℓ odd, $\chi_{t, \ell}^{\prime}(d)=\Theta\left(d^{t}\right)$.

Main tool

A "sparse colouring lemma":
Theorem (Alon, Krivelevich \& Sudakov 1999)
There exists $c>0$ such that, if \hat{G} is a graph of maximum degree \hat{d} for which at most $\binom{\hat{d}}{2} / f$ edges span each neighbourhood, then $\chi(\hat{G}) \leq c \hat{d} / \log f$.

Main tool

A "sparse colouring lemma":
Theorem (Alon, Krivelevich \& Sudakov 1999)
There exists $c>0$ such that, if \hat{G} is a graph of maximum degree \hat{d} for which at most $\binom{\hat{d}}{2} / f$ edges span each neighbourhood, then $\chi(\hat{G}) \leq c \hat{d} / \log f$.

Apply it with $\hat{G}=G^{t}$ or $L(G)^{t}, \hat{d}=2 d^{t}$ and $f=\Omega\left(d^{\varepsilon}\right)$ for some fixed $\varepsilon>0$.
So it suffices to show $O\left(d^{2 t-\varepsilon}\right)$ edges span any neighbourhood in G^{t} or $L(G)^{t}$ (under the assumed cycle length restriction for G).

Vertex-colouring with one forbidden cycle length

What is $\chi_{1, \ell}(d):=\sup \left\{\chi_{1}(G)=\chi(G) \mid \Delta(G)=d, G \not \supset C_{\ell}\right\}$?

Proposition

Fix $\ell \geq 3$. Then $\chi_{1, \ell}(d)=\Theta(d / \log d)$ as $d \rightarrow \infty$.

Vertex-colouring with one forbidden cycle length

What is $\chi_{1, \ell}(d):=\sup \left\{\chi_{1}(G)=\chi(G) \mid \Delta(G)=d, G \not \supset C_{\ell}\right\}$?

Proposition
Fix $\ell \geq$ 3. Then $\chi_{1, \ell}(d)=\Theta(d / \log d)$ as $d \rightarrow \infty$.
Theorem (Erdős \& Gallai 1959)
Fix k. The maximum number of edges in a graph on n vertices with no path P_{k} of length k as a subgraph is at most $(k-1) n / 2$.

Vertex-colouring with one forbidden cycle length

What is $\chi_{1, \ell}(d):=\sup \left\{\chi_{1}(G)=\chi(G) \mid \Delta(G)=d, G \not \supset C_{\ell}\right\}$?

Proposition
Fix $\ell \geq$ 3. Then $\chi_{1, \ell}(d)=\Theta(d / \log d)$ as $d \rightarrow \infty$.
Theorem (Erdős \& Gallai 1959)
Fix k. The maximum number of edges in a graph on n vertices with no path P_{k} of length k as a subgraph is at most $(k-1) n / 2$.

Proof of Proposition.
WLOG assume $\ell>3$. Take any G with $\Delta(G)=d, G \not \supset C_{\ell}$ and let $x \in G$.

Vertex-colouring with one forbidden cycle length

What is $\chi_{1, \ell}(d):=\sup \left\{\chi_{1}(G)=\chi(G) \mid \Delta(G)=d, G \not \supset C_{\ell}\right\}$?
Proposition
Fix $\ell \geq 3$. Then $\chi_{1, \ell}(d)=\Theta(d / \log d)$ as $d \rightarrow \infty$.
Theorem (Erdős \& Gallai 1959)
Fix k. The maximum number of edges in a graph on n vertices with no path P_{k} of length k as a subgraph is at most $(k-1) n / 2$.

Proof of Proposition.
WLOG assume $\ell>3$. Take any G with $\Delta(G)=d, G \not \supset C_{\ell}$ and let $x \in G$.
Then $\mid G[N(x)]] \mid \leq d, G[N(x)] \not \supset P_{\ell-2}$, so $|E(G[N(x)])| \leq(\ell-3) d / 2$ by EG.

Vertex-colouring with one forbidden cycle length

What is $\chi_{1, \ell}(d):=\sup \left\{\chi_{1}(G)=\chi(G) \mid \Delta(G)=d, G \not \supset C_{\ell}\right\}$?

Proposition

Fix $\ell \geq 3$. Then $\chi_{1, \ell}(d)=\Theta(d / \log d)$ as $d \rightarrow \infty$.
Theorem (Erdős \& Gallai 1959)
Fix k. The maximum number of edges in a graph on n vertices with no path P_{k} of length k as a subgraph is at most $(k-1) n / 2$.

Proof of Proposition.
WLOG assume $\ell>3$. Take any G with $\Delta(G)=d, G \not \supset C_{\ell}$ and let $x \in G$.
Then $\mid G[N(x)]] \mid \leq d, G[N(x)] \not \supset P_{\ell-2}$, so $|E(G[N(x)])| \leq(\ell-3) d / 2$ by EG.
Apply AKS with $\hat{G}=G, \hat{d}=d, f=2 d /(\ell-3)$.

Proving sparsity without even cycles

When excluding even C_{ℓ}, another classic Turán-type result is useful.
Theorem (Bondy \& Simonovits 1974)
Fix ℓ even. The maximum number of edges in a graph on n vertices with no cycle C_{ℓ} as a subgraph is $O\left(n^{1+2 / \ell}\right)$ as $n \rightarrow \infty$.

We in fact also prove and apply a special version of it suited to our needs.

Circular unfolding of De Bruijn graph

One of the graph constructions from K \& Pirot 2016:

1. Consider $[d / 2]^{t}$, the words of length t on alphabet [$d / 2$].
2. The vertex set is t copies U^{0}, \ldots, U^{t-1} placed around a circle.
3. Join $u_{0}^{i} u_{1}^{i} \ldots u_{t-1}^{i}$ and $u_{0}^{i+1 \bmod t} u_{1}^{i+1 \bmod t} \ldots u_{t-1}^{i+1 \bmod t}$ by an edge if latter is one left cyclic shift of former, i.e. $u_{j}^{i+1 \bmod t}=u_{j+1}^{i} \forall j \in[t-2]$.

A full turn of the circle shifts through all t coordinates, ensuring each U^{i} induces a clique in $t^{\text {th }}$ power.

Each U^{i} has $0.5^{t} \cdot d^{t}$ vertices.
The graph is d-regular and has no odd cycles if t is even.

Conclusion and open problems

What is $\chi_{t, \ell}(d):=\sup \left\{\chi_{t}(G)=\chi\left(G^{t}\right) \mid \Delta(G)=d, G \not \supset C_{\ell}\right\} ?$

What is $\chi_{t, \ell}^{\prime}(d):=\sup \left\{\chi_{t}^{\prime}(G)=\chi\left(L(G)^{t}\right) \mid \Delta(G)=d, G \not \supset C_{\ell}\right\}$?

For each t, we settled these up to a constant factor except for finitely many ℓ.

Conclusion and open problems

What is $\chi_{t, \ell}(d):=\sup \left\{\chi_{t}(G)=\chi\left(G^{t}\right) \mid \Delta(G)=d, G \not \supset C_{\ell}\right\} ?$
What is $\chi_{t, \ell}^{\prime}(d):=\sup \left\{\chi_{t}^{\prime}(G)=\chi\left(L(G)^{t}\right) \mid \Delta(G)=d, G \not \supset C_{\ell}\right\}$?

For each t, we settled these up to a constant factor except for finitely many ℓ.

Despite no manifest monotonicity, the following are natural open questions.

1. For $t \geq 1$, is there a critical ℓ_{t}^{e} so that $\chi_{t, \ell}(d)=\Theta\left(d^{t}\right)$ if $\ell<\ell_{t}^{e}$ even, while $\chi_{t, \ell}(d)=\Theta\left(d^{t} / \log d\right)$ if $\ell \geq \ell_{t}^{e}$ even?
2. For $t \geq 1$ odd, is there a critical ℓ_{t}° so that $\chi_{t, \ell}(d)=\Theta\left(d^{t}\right)$ if $\ell<\ell_{t}^{\circ}$ odd, while $\chi_{t, \ell}(d)=\Theta\left(d^{t} / \log d\right)$ if $\ell \geq \ell_{t}^{\circ}$ odd?
3. For $t \geq 2$, is there a critical ℓ_{t}^{\prime} so that $\chi_{t, \ell}^{\prime}(d)=\Theta\left(d^{t}\right)$ if $\ell<\ell_{t}^{\prime}$ even, while $\chi_{t, \ell}^{\prime}(d)=\Theta\left(d^{t} / \log d\right)$ if $\ell \geq \ell_{t}^{\prime}$ even?

We proved these hypothetical critical values are at most linear in t.

Thank you!

[^0]: *Joint work with François Pirot.

[^1]: ${ }^{\ddagger}$ Image credit: Bela_Mulder/Wikipedia

[^2]: ${ }^{\ddagger}$ Image credit: Bela_Mulder/Wikipedia

