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Example 1: ad hoc frequency assignment!

How many channels needed?

fIlmage credit: Mesoderm/Wikipedia
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Example 2: small-world networks

How large can the network be?
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Example 2: degree—diameter problem?

With maximum degree d, how large can a network of diameter t be?

(diameter < t = G' has all possible edges)
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Example 2: degree—diameter problem?

With maximum degree d, how large can a network of diameter t be?

(diameter < t = G' has all possible edges)

“Moore bound”:

|G| <14+d+d(d—1)4---+d(d—1)""

t
=1+d) (d-1)"
i=1

*Image credit: Bela_Mulder/Wikipedia
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Example 2: degree—diameter problem

With maximum degree d, how large can a network of diameter t be?

t
Moore bound: |G| <1+d>» (d—1)""
i=1

Theorem (Hoffmann & Singleton 1960)

For t = 2, there are three or four graphs attaining the Moore bound.
For t = 3, there can be only one.

Is there a graph of diameter 2, maximum degree 57, and 3250 vertices?
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Moore bound: |G| <1+ dZ(d —1)"'~d"as d — .
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Conjecture (Bollobds 1980)

Fix t > 1. Given ¢ > 0, for arbitrarily many d, there must be a graph
with diameter t, maximum degree d and > (1 — €)d" vertices.



Example 2: degree—diameter problem

With maximum degree d, how large can a network of diameter t be?

t
Moore bound: |G| <1+ dZ(d —1)"'~d"as d — .
i=1

Conjecture (Bollobds 1980)

Fix t > 1. Given ¢ > 0, for arbitrarily many d, there must be a graph
with diameter t, maximum degree d and > (1 — €)d" vertices.

e Known only for t € {1,2,3,5}.

e For other choices of t, De Bruijn graphs give 0.5" instead of 1 — ¢,
and best known constant is 0.625° (Canale & Gémez 2005).
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Example 1: strong edge-colouring

If nearby transmissions interfere, how many channels needed?

alm

Model ad hoc network with a graph.
Each transmission occurs on an edge.
Represent each channel by a colour.

Interference at distance 2.



Example 1: strong edge-colouring

If nearby transmissions interfere, how many channels needed?

L

- & ' R Model ad hoc network with a graph.

ff @€ L.

. NS - Each transmission occurs on an edge.
~ 2 _ Represent each channel by a colour.
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@\ ) . Interference at distance 2.
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Problem translates:

What is the least number of colours required so that
edges within distance 2 must get distinct colours?

Called strong chromatic index of graph.



Example 1: strong edge-colouring

What is the least number of colours required so that
edges within distance 2 must get distinct colours?

The line graph L(G) of a graph G has vertices corresponding to G-edges and
edges if the two corresponding G-edges have a common G-vertex.
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Example 1: strong edge-colouring

What is the least number of colours required so that
edges within distance 2 must get distinct colours?

The line graph L(G) of a graph G has vertices corresponding to G-edges and
edges if the two corresponding G-edges have a common G-vertex.

strong edge-colouring in G

strong chromatic index of G



Example 1: strong edge-colouring

What is the least number of colours required so that
edges within distance 2 must get distinct colours?

The line graph L(G) of a graph G has vertices corresponding to G-edges and
edges if the two corresponding G-edges have a common G-vertex.

e
)’A_\.\x\i\z/;.'r,'.A
NN\ =

V-

strong edge-colouring in G = vertex-colouring in (L(G))?

strong chromatic index of G = chromatic number of (L(G))?
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Erd6s—NesetFil conjecture

With maximum degree d how large can strong chromatic index be?

Must be < 2d(d — 1) + 1 = 2d*> — 2d + 1. Greedy.

Lower bound examples?

Better upper bound?
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Erd6s—Neset¥il conjecture

With maximum degree d how large can strong chromatic index be?

d/2
d/2 ' d/2
Can be > 5d°%/4, d even: '
d/2

Conjecture (Erdés & Nesetfil 1980s)

Must be < 5d°/4.

Theorem (Molloy & Reed 1997)

Must be < (2 — €)d? for some absolute € > 0. (¢ < 0.002.)
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Colouring powers / distance colouring

Fix t > 1.
Let G have maximum degree d.

|G| if G' is a clique? ~> degree—diameter problem

Chromatic number of (L(G))? ~> distance-t chromatic index x;(G) of G



Colouring powers / distance colouring

Fix t > 1.
Let G have maximum degree d.

Clique number of G'? ~ distance-t clique number of G

Chromatic number of (L(G))? ~> distance-t chromatic index x;(G) of G



Colouring powers / distance colouring

Fix t > 1.
Let G have maximum degree d.

Chromatic number of G'? ~ distance-t chromatic number x¢(G) of G
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Colouring powers / distance colouring

Fix t > 1.

Let G have maximum degree d.

Chromatic number of G'?

e Greedy: must be < d' + 1.

Chromatic number of (L(G))"?

~» distance-t chromatic number x:(G) of G

~> distance-t chromatic index x;(G) of G
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Fix t > 1.
Let G have maximum degree d.

Chromatic number of G'? ~ distance-t chromatic number x¢(G) of G

e Greedy: must be < d' + 1.
e Conjecture: given € > 0, can be > (1 — £)d" for arbitrarily many d.
Known for t € {1,2,3,5}. Can be > 0.625" - d".
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Colouring powers / distance colouring

Fix t > 1.
Let G have maximum degree d.

Chromatic number of G'? ~ distance-t chromatic number x¢(G) of G

e Greedy: must be < d' + 1.

e Conjecture: given € > 0, can be > (1 — £)d" for arbitrarily many d.
Known for t € {1,2,3,5}. Can be > 0.625 - d".

Chromatic number of (L(G))? ~> distance-t chromatic index x;(G) of G

e Greedy: must be < 2d".
e Conjecture: given £ > 0, must be < (1 + ¢€)d* for all large d, if t # 2.

e Conjecture: given £ > 0, can be > (1 — £)d" for arbitrarily many d.
Known for t € {1,2,3,4,6}. Can be > 0.5"- d".

Kaiser & K (2014): must be < (2 — ¢)d" for some absolute £ > 0.
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The main questions

Fix t > 1. Let C; denote a cycle of length £.
Let A(G) denote the maximum degree in a graph G.

What is the worst value among those G with A(G) = d
and no cycle C; as a subgraph?

That is,
What is xt,e(d) := sup{x:(G) = x(G") | A(G) =d, G 5 C;}?

What is x,.(d) := sup{x¢(G) = x(L(G)") | A(G) =d, G 2 C;}7?

We're satisfied with being correct only up to a constant factor.
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This was a question of Vizing from the 1960s (maybe motivated by Grétzsch’s),



Chromatic number, triangle-free (x1, £ = 3)

What is x1,3(d) := sup{x1(G) = x(G) | A(G) =d, G 7 G}?

This was a question of Vizing from the 1960s (maybe motivated by Grétzsch’s),
eventually settled asymptotically with the semi-random method.

Theorem (Johansson 1996)

x1,3(d) = ©(d/log d) as d — .



Strong chromatic index, Ca-free (x5, £ = 4)

What is x5 4(d) := sup{x2(G) = x(L(G)*) | A(G) = d, G % Ca}?

(Note x; ,(d) € {d,d + 1} always.)
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Strong chromatic index, Ca-free (x5, £ = 4)

What is x5 4(d) := sup{x2(G) = x(L(G)*) | A(G) = d, G % Ca}?
(Note x} ,(d) € {d,d + 1} always.)
Also with the semi-random method:
Theorem (Mahdian 2000)
X2.4(d) = ©(d*/log d) as d — occ.

e Vu (2002) extended this to hold also for £ > 4 even.

e The complete d-regular bipartite graph satisfies x5(Ky.q4) = d?,
so cannot hold for any odd /.
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Squared chromatic number, Cs-free (x2, £ = 6)

What is x2,6(d) := sup{x2(G) = x(G?) | A(G) =d, G 2 Gs}?

Theorem (K & Pirot 2016, cf. Alon & Mohar 2002)

x2.6(d) = ©(d*/logd) as d — co.

The point-line incidence graph of a finite projective plane of order d — 1 is a
d-regular, girth 6 graph whose square is covered by two (d2 — d + 1)-cliques.

So, if £ < 5, then x2,¢(d) ~ d* as d — oo.
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Theorem (K & Pirot 2017+)
Fix positive integers t and £ > 3. The following hold as d — oo.

e For £ >2t+2 even, xr,(d) = ©(d"/logd).
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Distance vertex-colouring with one forbidden cycle length

What is x+t,e(d) := sup{x:(G) = x(G") | A(G) =d, G 2 C;}?

Theorem (K & Pirot 2017+)
Fix positive integers t and £ > 3. The following hold as d — oo.

e For £ >2t+2 even, xr,(d) = ©(d"/logd).
e Fort odd and £ > 3t odd, x:.¢(d) = ©(d"/log d).
e For t even and £ odd, x:.(d) = ©(d").

Last part follows from a “circular unfolding” of the De Bruijn graph.
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Distance edge-colouring with one forbidden cycle length

What is x,.(d) := sup{x¢(G) = x(L(G)") | A(G) =d, G 2 C;}?

Theorem (K & Pirot 2017+)
Fix positive integers t > 2 and £ > 3. The following hold as d — ~c.

e For £ > 2t even, X ,(d) = ©(d"/logd).
e For (L odd, x; ,(d) = ©(d*).

(Note x; ,(d) € {d,d + 1} always.)

Second part uses a special bipartite graph product operation.



Distance colouring with one forbidden cycle length

What is xt,e(d) := sup{x:(G) = x(G*) | A(G) =d,G b C;}?

What is x1,¢(d) := sup{x¢(G) = x(L(G)") | A(G) = d, G 5 C;}?

Theorem (K & Pirot 2017+)
Fix positive integers t and £ > 3. The following hold as d — oc.

e For £ >2t+2 even, x+(d) = ©(d*/logd).
e For t odd and £ > 3t odd, x:(d) = ©(d*/logd).
e For t even and £ odd, x:.¢(d) = ©(d*).

If t > 2, then the following hold as d — 0.

e For £ > 2t even, x:,(d) = ©(d"/log d).
e For (L odd, x; ,(d) = ©(d*).



Main tool

A “sparse colouring lemma":

Theorem (Alon, Krivelevich & Sudakov 1999)

There exists ¢ > 0 such that, if Gisa graph of maximum degree d for which
at most (g)/f edges span each neighbourhood, then x(G) < cd/log f.



Main tool

A “sparse colouring lemma":

Theorem (Alon, Krivelevich & Sudakov 1999)

There exists ¢ > 0 such that, if Gisa graph of maximum degree d for which
at most (g)/f edges span each neighbourhood, then x(G) < cd/log f.

Apply it with G = G* or L(G)*, d = 2d* and f = Q(d®) for some fixed & > 0.

So it suffices to show O(d?*~¢) edges span any neighbourhood in G* or L(G)*
(under the assumed cycle length restriction for G).



Vertex-colouring with one forbidden cycle length

What is x1,¢(d) := sup{x1(G) = x(G) | A(G) =d,G % C¢}?

Proposition

Fix £ > 3. Then x1,:(d) = ©(d/logd) as d — .
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What is x1,¢(d) := sup{x1(G) = x(G) | A(G) =d,G % C¢}?
Proposition

Fix £ > 3. Then x1,:(d) = ©(d/logd) as d — .

Theorem (Erdés & Gallai 1959)

Fix k. The maximum number of edges in a graph on n vertices with
no path Py of length k as a subgraph is at most (k — 1)n/2.



Vertex-colouring with one forbidden cycle length

What is x1,¢(d) := sup{x1(G) = x(G) | A(G) =d,G % C¢}?

Proposition

Fix £ > 3. Then x1,:(d) = ©(d/logd) as d — .

Theorem (Erdés & Gallai 1959)

Fix k. The maximum number of edges in a graph on n vertices with
no path Py of length k as a subgraph is at most (k — 1)n/2.

Proof of Proposition.

WLOG assume £ > 3. Take any G with A(G) =d, G 2 C; and let x € G.



Vertex-colouring with one forbidden cycle length

What is x1,¢(d) := sup{x1(G) = x(G) | A(G) =d,G % C¢}?

Proposition

Fix £ > 3. Then x1,:(d) = ©(d/logd) as d — .

Theorem (Erdés & Gallai 1959)

Fix k. The maximum number of edges in a graph on n vertices with
no path Py of length k as a subgraph is at most (k — 1)n/2.

Proof of Proposition.

WLOG assume £ > 3. Take any G with A(G) =d, G 2 C; and let x € G.
Then [GING]]| < d. GIN(x)] 7 Pr-2, so |E(GIN(x)])| < (¢ — 3)d/2 by EG.



Vertex-colouring with one forbidden cycle length

What is x1,¢(d) := sup{x1(G) = x(G) | A(G) =d,G % C¢}?

Proposition

Fix £ > 3. Then x1,:(d) = ©(d/logd) as d — .

Theorem (Erdés & Gallai 1959)

Fix k. The maximum number of edges in a graph on n vertices with
no path Py of length k as a subgraph is at most (k — 1)n/2.

Proof of Proposition.

WLOG assume £ > 3. Take any G with A(G) =d, G 2 C; and let x € G.
Then [G[N(x)]]| < d, G[N(x)] 2 Pe—2, so |E(G[N(x)])| < (¢ —3)d/2 by EG.
Apply AKS with G = G, d = d, f = 2d/(¢ — 3). O



Proving sparsity without even cycles

When excluding even Cy, another classic Turan-type result is useful.

Theorem (Bondy & Simonovits 1974)

Fix £ even. The maximum number of edges in a graph on n vertices with
no cycle C; as a subgraph is O(n**¥*) as n — co.

We in fact also prove and apply a special version of it suited to our needs.



Circular unfolding of De Bruijn graph

One of the graph constructions from K & Pirot 2016:

1. Consider [d/2]", the words of length t on alphabet [d/2].
2. The vertex set is t copies U°,..., U™ placed around a circle.

Couitimdt by an edge if

H i i i+1 mod t, i+1 mod t
3. Join wouy ... up_; and g up .

latter is one left cyclic shift of former, i.e. uj’-'+1 mod ¢ uj’:+1 vj e [t—2].

A full turn of the circle shifts through all t coordinates,
ensuring each U’ induces a clique in t™ power.

Each U’ has 0.5° - d* vertices.

The graph is d-regular and has no odd cycles if t is even.



Conclusion and open problems

What is xt,e(d) := sup{x:(G) = x(G*) | A(G) =d,G b C;}?
What is x1,¢(d) := sup{x¢(G) = x(L(G)") | A(G) = d, G 5 C;}?

For each t, we settled these up to a constant factor except for finitely many /.



Conclusion and open problems

What is xt,e(d) := sup{x:(G) = x(G*) | A(G) =d,G b C;}?
What is x1,¢(d) := sup{x¢(G) = x(L(G)") | A(G) = d, G 5 C;}?

For each t, we settled these up to a constant factor except for finitely many /.

Despite no manifest monotonicity, the following are natural open questions.

1. For t > 1, is there a critical £5 so that x:¢(d) = ©(d") if £ < £; even,
while xt,¢(d) = ©(d*/log d) if £ > {5 even?

2. For t > 1 odd, is there a critical £ so that x:.(d) = ©(d") if £ < £3 odd,
while ye.o(d) = O(d*/ log d) if £ > 2 odd?

3. For t > 2, is there a critical ¢; so that x; ,(d) = ©(d") if £ < ¢} even,
while X} ((d) = ©(d*/ log d) if £ > {; even?

We proved these hypothetical critical values are at most linear in t.



Thank you!



