Colouring powers of graphs with one cycle length forbidden*

Ross J. Kang

Radboud University Nijmegen

CWI Networks & Optimization seminar 1/2017

^{*} Joint work with François Pirot.

[†]Image credit: Mesoderm/Wikipedia

How many channels needed?

[†]Image credit: Mesoderm/Wikipedia

Example 2: small-world networks

Example 2: small-world networks

Example 2: small-world networks

How large can the network be?

Given a graph G,

Example 2: degree-diameter problem[‡]

With maximum degree d, how large can a network of diameter t be?

(diameter $\leq t \equiv G^t$ has all possible edges)

[‡]Image credit: Bela_Mulder/Wikipedia

Example 2: degree-diameter problem[‡]

With maximum degree d, how large can a network of diameter t be?

(diameter $\leq t \equiv G^t$ has all possible edges)

"Moore bound":

$$egin{aligned} |G| &\leq 1 + d + d(d-1) + \dots + d(d-1)^{t-1} \ &= 1 + d \sum_{i=1}^t (d-1)^{i-1} \end{aligned}$$

[‡]Image credit: Bela_Mulder/Wikipedia

With maximum degree d, how large can a network of diameter t be?

Moore bound:
$$|G| \le 1 + d \sum_{i=1}^{t} (d-1)^{i-1}$$
.

With maximum degree d, how large can a network of diameter t be?

Moore bound:
$$|G| \leq 1 + d \sum_{i=1}^{r} (d-1)^{i-1}$$
.

Theorem (Hoffmann & Singleton 1960)

For t = 2, there are three or four graphs attaining the Moore bound. For t = 3, there can be only one.

Is there a graph of diameter 2, maximum degree 57, and 3250 vertices?

With maximum degree d, how large can a network of diameter t be?

Moore bound:
$$|G| \leq 1 + d \sum_{i=1}^{t} (d-1)^{i-1}$$

With maximum degree d, how large can a network of diameter t be?

Moore bound:
$$|G| \leq 1 + d \sum_{i=1}^t (d-1)^{i-1} \sim d^t$$
 as $d \to \infty$.

With maximum degree d, how large can a network of diameter t be?

$$\text{Moore bound: } |G| \leq 1 + d \sum_{i=1}^t (d-1)^{i-1} \sim d^t \text{ as } d \to \infty.$$

Conjecture (Bollobás 1980)

Fix $t \ge 1$. Given $\varepsilon > 0$, for arbitrarily many d, there must be a graph with diameter t, maximum degree d and $\ge (1 - \varepsilon)d^t$ vertices.

With maximum degree d, how large can a network of diameter t be?

$$\text{Moore bound: } |G| \leq 1 + d \sum_{i=1}^t (d-1)^{i-1} \sim d^t \text{ as } d \to \infty.$$

Conjecture (Bollobás 1980)

Fix $t \ge 1$. Given $\varepsilon > 0$, for arbitrarily many d, there must be a graph with diameter t, maximum degree d and $\ge (1 - \varepsilon)d^t$ vertices.

- Known only for $t \in \{1, 2, 3, 5\}$.
- For other choices of t, De Bruijn graphs give 0.5^t instead of 1ε , and best known constant is 0.625^t (Canale & Gómez 2005).

If nearby transmissions interfere, how many channels needed?

If nearby transmissions interfere, how many channels needed?

Model ad hoc network with a graph. Each transmission occurs on an edge. Represent each channel by a colour. Interference at distance 2.

If nearby transmissions interfere, how many channels needed?

Model ad hoc network with a graph. Each transmission occurs on an edge. Represent each channel by a colour. Interference at distance 2.

Problem translates:

What is the least number of colours required so that edges within distance 2 must get distinct colours?

Called strong chromatic index of graph.

What is the least number of colours required so that edges within distance 2 must get distinct colours?

What is the least number of colours required so that edges within distance 2 must get distinct colours?

What is the least number of colours required so that edges within distance 2 must get distinct colours?

What is the least number of colours required so that edges within distance 2 must get distinct colours?

The *line graph* L(G) of a graph G has vertices corresponding to G-edges and edges if the two corresponding G-edges have a common G-vertex.

strong edge-colouring in G

strong chromatic index of G

What is the least number of colours required so that edges within distance 2 must get distinct colours?

strong edge-colouring in $G \equiv$ vertex-colouring in $(L(G))^2$ strong chromatic index of $G \equiv$ chromatic number of $(L(G))^2$

With maximum degree d how large can strong chromatic index be?

With maximum degree d how large can strong chromatic index be?

Must be $\leq 2d(d-1) + 1 = 2d^2 - 2d + 1$. Greedy.

With maximum degree d how large can strong chromatic index be?

Must be $\leq 2d(d-1) + 1 = 2d^2 - 2d + 1$. Greedy.

With maximum degree d how large can strong chromatic index be?

Must be $\leq 2d(d-1) + 1 = 2d^2 - 2d + 1$. Greedy.

Lower bound examples?

Better upper bound?

With maximum degree d how large can strong chromatic index be?

Can be $\geq 5d^2/4$, d even:

With maximum degree d how large can strong chromatic index be?

Conjecture (Erdős & Nešetřil 1980s) Must be $\leq 5d^2/4$.

Theorem (Molloy & Reed 1997) Must be $\leq (2 - \varepsilon)d^2$ for some absolute $\varepsilon > 0$. ($\varepsilon \ll 0.002$.)

Colouring powers / distance colouring

Let G have maximum degree d.

Chromatic number of $(L(G))^2$?

 \rightsquigarrow strong chromatic index $\chi_{s}^{\prime}({\it G})$ of ${\it G}$
Fix $t \geq 1$. Let G have maximum degree d.

Chromatic number of $(L(G))^t$? \rightsquigarrow distance-*t* chromatic index $\chi'_t(G)$ of *G*

Fix $t \ge 1$. Let G have maximum degree d. |G| if G^t is a clique? \rightsquigarrow degree-diameter problem

Chromatic number of $(L(G))^t$? \rightsquigarrow distance-t chrom

 \rightsquigarrow distance-*t* chromatic index $\chi'_t(G)$ of *G*

Fix $t \ge 1$.Let G have maximum degree d.Clique number of G^t ? \rightsquigarrow distance-t clique number of G

Chromatic number of $(L(G))^t$? \rightsquigarrow distance-t chromatic index $\chi'_t(G)$ of G

Fix $t \ge 1$. Let *G* have maximum degree *d*. Chromatic number of G^t ? \rightsquigarrow distance-*t* chromatic number $\chi_t(G)$ of *G*

Chromatic number of $(L(G))^{t}$?

 \rightsquigarrow distance-*t* chromatic index $\chi'_t(G)$ of *G*

```
Fix t \ge 1.
Let G have maximum degree d.
Chromatic number of G^t? \rightsquigarrow distance-t chromatic number \chi_t(G) of G
• Greedy: must be \le d^t + 1.
```

```
Chromatic number of (L(G))^t? \rightsquigarrow distance-t chromatic index \chi'_t(G) of G
```

Fix $t \ge 1$. Let *G* have maximum degree *d*.

Chromatic number of G^t ? \rightsquigarrow distance-*t* chromatic number $\chi_t(G)$ of G

- Greedy: must be $\leq d^t + 1$.
- Conjecture: given ε > 0, can be ≥ (1 − ε)d^t for arbitrarily many d. Known for t ∈ {1, 2, 3, 5}. Can be ≥ 0.625^t ⋅ d^t.

Chromatic number of $(L(G))^t$? \rightsquigarrow distance-*t* chromatic index $\chi'_t(G)$ of *G*

Fix $t \ge 1$. Let *G* have maximum degree *d*.

Chromatic number of G^t ? \rightsquigarrow distance-*t* chromatic number $\chi_t(G)$ of G

- Greedy: must be $\leq d^t + 1$.
- Conjecture: given ε > 0, can be ≥ (1 − ε)d^t for arbitrarily many d. Known for t ∈ {1, 2, 3, 5}. Can be ≥ 0.625^t ⋅ d^t.

Chromatic number of $(L(G))^t$? \rightsquigarrow distance-*t* chromatic index $\chi'_t(G)$ of *G*

• Greedy: must be $\leq 2d^t$.

Fix $t \ge 1$. Let *G* have maximum degree *d*.

Chromatic number of G^t ? \rightsquigarrow distance-*t* chromatic number $\chi_t(G)$ of G

- Greedy: must be $\leq d^t + 1$.
- Conjecture: given ε > 0, can be ≥ (1 − ε)d^t for arbitrarily many d. Known for t ∈ {1, 2, 3, 5}. Can be ≥ 0.625^t ⋅ d^t.

Chromatic number of $(L(G))^t$? \rightsquigarrow distance-*t* chromatic index $\chi'_t(G)$ of *G*

- Greedy: must be $\leq 2d^t$.
- Conjecture: given $\varepsilon > 0$, must be $\leq (1 + \varepsilon)d^t$ for all large d, if $t \neq 2$.
- Conjecture: given $\varepsilon > 0$, can be $\ge (1 \varepsilon)d^t$ for arbitrarily many d. Known for $t \in \{1, 2, 3, 4, 6\}$. Can be $\ge 0.5^t \cdot d^t$.

Fix $t \ge 1$. Let *G* have maximum degree *d*.

Chromatic number of G^t ? \rightsquigarrow distance-*t* chromatic number $\chi_t(G)$ of G

- Greedy: must be $\leq d^t + 1$.
- Conjecture: given ε > 0, can be ≥ (1 − ε)d^t for arbitrarily many d. Known for t ∈ {1, 2, 3, 5}. Can be ≥ 0.625^t ⋅ d^t.

Chromatic number of $(L(G))^t$? \rightsquigarrow distance-*t* chromatic index $\chi'_t(G)$ of *G*

- Greedy: must be $\leq 2d^t$.
- Conjecture: given $\varepsilon > 0$, must be $\leq (1 + \varepsilon)d^t$ for all large d, if $t \neq 2$.
- Conjecture: given $\varepsilon > 0$, can be $\ge (1 \varepsilon)d^t$ for arbitrarily many d. Known for $t \in \{1, 2, 3, 4, 6\}$. Can be $\ge 0.5^t \cdot d^t$.
- Kaiser & K (2014): must be $\leq (2 \varepsilon)d^t$ for some absolute $\varepsilon > 0$.

Fix $t \ge 1$. Let $\Delta(G)$ denote the maximum degree in a graph G.

What is the worst value among those G with $\Delta(G) = d$?

Fix $t \ge 1$. Let $\Delta(G)$ denote the maximum degree in a graph G.

What is the worst value among those G with $\Delta(G) = d$?

That is,

What is
$$\chi_t(d) := \sup\{\chi_t(G) = \chi(G^t) \mid \Delta(G) = d\}$$
?
What is $\chi'_t(d) := \sup\{\chi'_t(G) = \chi(L(G)^t) \mid \Delta(G) = d\}$?

Fix $t \ge 1$. Let $\Delta(G)$ denote the maximum degree in a graph G.

What is the worst value among those G with $\Delta(G) = d$?

That is,

What is
$$\chi_t(d) := \sup\{\chi_t(G) = \chi(G^t) \mid \Delta(G) = d\}$$
? $\Theta(d^t)$.

What is
$$\chi_t'(d) := \sup\{\chi_t'(G) = \chi(L(G)^t) \mid \Delta(G) = d\}? \qquad \Theta(d^t).$$

Fix $t \ge 1$. Let C_{ℓ} denote a cycle of length ℓ . Let $\Delta(G)$ denote the maximum degree in a graph G.

What is the worst value among those G with $\Delta(G) = d$ and no cycle C_{ℓ} as a subgraph?

That is,

What is
$$\chi_{t,\ell}(d) := \sup\{\chi_t(G) = \chi(G^t) \mid \Delta(G) = d, G \not\supseteq C_\ell\}$$
?

What is $\chi'_{t,\ell}(d) := \sup\{\chi'_t(G) = \chi(L(G)^t) \mid \Delta(G) = d, G \not\supseteq C_\ell\}$?

Fix $t \ge 1$. Let C_{ℓ} denote a cycle of length ℓ . Let $\Delta(G)$ denote the maximum degree in a graph G.

What is the worst value among those G with $\Delta(G) = d$ and no cycle C_{ℓ} as a subgraph?

That is,

What is
$$\chi_{t,\ell}(d) := \sup\{\chi_t(G) = \chi(G^t) \mid \Delta(G) = d, G \not\supset C_\ell\}$$
?
What is $\chi'_{t,\ell}(d) := \sup\{\chi'_t(G) = \chi(L(G)^t) \mid \Delta(G) = d, G \not\supset C_\ell\}$?

We're satisfied with being correct only up to a constant factor.

Chromatic number, triangle-free (χ_1 , $\ell = 3$)

What is
$$\chi_{1,3}(d) := \sup\{\chi_1(G) = \chi(G) \mid \Delta(G) = d, G \not\supseteq C_3\}$$
?

This was a question of Vizing from the 1960s (maybe motivated by Grötzsch's),

Chromatic number, triangle-free (χ_1 , $\ell = 3$)

What is
$$\chi_{1,3}(d) := \sup\{\chi_1(G) = \chi(G) \mid \Delta(G) = d, G \not\supseteq C_3\}$$
?

This was a question of Vizing from the 1960s (maybe motivated by Grötzsch's), eventually settled asymptotically with the semi-random method.

Theorem (Johansson 1996)

 $\chi_{1,3}(d) = \Theta(d/\log d)$ as $d \to \infty$.

Strong chromatic index, C_4 -free (χ'_2 , $\ell = 4$)

What is $\chi'_{2,4}(d) := \sup\{\chi'_2(G) = \chi(L(G)^2) \mid \Delta(G) = d, G \not\supseteq C_4\}$? (Note $\chi'_{1,\ell}(d) \in \{d, d+1\}$ always.)

What is
$$\chi'_{2,4}(d) := \sup\{\chi'_2(G) = \chi(L(G)^2) \mid \Delta(G) = d, G \not\supseteq C_4\}$$
?

(Note $\chi'_{1,\ell}(d) \in \{d,d+1\}$ always.)

Also with the semi-random method:

Theorem (Mahdian 2000)

 $\chi_{2,4}'(d) = \Theta(d^2/\log d) \text{ as } d o \infty.$

What is
$$\chi'_{2,4}(d) := \sup\{\chi'_2(G) = \chi(L(G)^2) \mid \Delta(G) = d, G \not\supseteq C_4\}$$
?

(Note $\chi'_{1,\ell}(d) \in \{d, d+1\}$ always.)

Also with the semi-random method:

Theorem (Mahdian 2000)

$$\chi_{2,4}'(d) = \Theta(d^2/\log d)$$
 as $d o \infty.$

- Vu (2002) extended this to hold also for $\ell > 4$ even.
- The complete *d*-regular bipartite graph satisfies χ'₂(K_{d,d}) = d², so cannot hold for any odd ℓ.

Squared chromatic number, C_6 -free (χ_2 , $\ell = 6$)

What is
$$\chi_{2,6}(d) := \sup\{\chi_2(G) = \chi(G^2) \mid \Delta(G) = d, G \not\supseteq C_6\}$$
?

Squared chromatic number, C_6 -free (χ_2 , $\ell = 6$)

What is
$$\chi_{2,6}(d) := \sup\{\chi_2(G) = \chi(G^2) \mid \Delta(G) = d, G \not\supseteq C_6\}$$
?

Theorem (K & Pirot 2016, cf. Alon & Mohar 2002) $\chi_{2,6}(d) = \Theta(d^2/\log d) \text{ as } d \to \infty.$ Squared chromatic number, C_6 -free (χ_2 , $\ell = 6$)

What is
$$\chi_{2,6}(d) := \sup\{\chi_2(G) = \chi(G^2) \mid \Delta(G) = d, G \not\supseteq C_6\}$$
?

Theorem (K & Pirot 2016, cf. Alon & Mohar 2002) $\chi_{2,6}(d) = \Theta(d^2/\log d) \text{ as } d \to \infty.$

The point-line incidence graph of a finite projective plane of order d - 1 is a d-regular, girth 6 graph whose square is covered by two $(d^2 - d + 1)$ -cliques.

So, if $\ell \leq 5$, then $\chi_{2,\ell}(d) \sim d^2$ as $d \to \infty$.

Distance vertex-colouring with one forbidden cycle length

What is
$$\chi_{t,\ell}(d) := \sup\{\chi_t(G) = \chi(G^t) \mid \Delta(G) = d, G \not\supseteq C_\ell\}$$
?

Distance vertex-colouring with one forbidden cycle length

What is
$$\chi_{t,\ell}(d) := \sup\{\chi_t(G) = \chi(G^t) \mid \Delta(G) = d, G \not\supseteq C_\ell\}$$
?

Theorem (K & Pirot 2017+)

Fix positive integers t and $\ell \geq 3$. The following hold as $d \to \infty$.

- For $\ell \geq 2t+2$ even, $\chi_{t,\ell}(d) = \Theta(d^t/\log d)$.
- For t odd and $\ell \geq 3t$ odd, $\chi_{t,\ell}(d) = \Theta(d^t/\log d)$.
- For t even and ℓ odd, $\chi_{t,\ell}(d) = \Theta(d^t)$.

What is
$$\chi_{t,\ell}(d) := \sup\{\chi_t(G) = \chi(G^t) \mid \Delta(G) = d, G \not\supseteq C_\ell\}$$
?

Theorem (K & Pirot 2017+)

Fix positive integers t and $\ell \geq 3$. The following hold as $d \to \infty$.

- For $\ell \geq 2t + 2$ even, $\chi_{t,\ell}(d) = \Theta(d^t/\log d)$.
- For t odd and $\ell \geq 3t$ odd, $\chi_{t,\ell}(d) = \Theta(d^t/\log d)$.
- For t even and ℓ odd, $\chi_{t,\ell}(d) = \Theta(d^t)$.

Last part follows from a "circular unfolding" of the De Bruijn graph.

Distance edge-colouring with one forbidden cycle length

What is $\chi'_{t,\ell}(d) := \sup\{\chi'_t(G) = \chi(L(G)^t) \mid \Delta(G) = d, G \not\supseteq C_\ell\}$?

What is
$$\chi'_{t,\ell}(d) := \sup\{\chi'_t(G) = \chi(L(G)^t) \mid \Delta(G) = d, G \not\supseteq C_\ell\}$$
?

Theorem (K & Pirot 2017+)

Fix positive integers $t \ge 2$ and $\ell \ge 3$. The following hold as $d \to \infty$.

- For $\ell \geq 2t$ even, $\chi'_{t,\ell}(d) = \Theta(d^t/\log d)$.
- For ℓ odd, $\chi'_{t,\ell}(d) = \Theta(d^t)$.

(Note $\chi'_{1,\ell}(d) \in \{d,d+1\}$ always.)

What is
$$\chi'_{t,\ell}(d) := \sup\{\chi'_t(G) = \chi(L(G)^t) \mid \Delta(G) = d, G \not\supseteq C_\ell\}$$
?

Theorem (K & Pirot 2017+)

Fix positive integers $t \ge 2$ and $\ell \ge 3$. The following hold as $d \to \infty$.

- For $\ell \geq 2t$ even, $\chi'_{t,\ell}(d) = \Theta(d^t/\log d)$.
- For ℓ odd, $\chi'_{t,\ell}(d) = \Theta(d^t)$.

(Note $\chi'_{1,\ell}(d) \in \{d, d+1\}$ always.)

Second part uses a special bipartite graph product operation.

Distance colouring with one forbidden cycle length

What is
$$\chi_{t,\ell}(d) := \sup\{\chi_t(G) = \chi(G^t) \mid \Delta(G) = d, G \not\supset C_\ell\}$$
?

What is $\chi'_{t,\ell}(d) := \sup\{\chi'_t(G) = \chi(L(G)^t) \mid \Delta(G) = d, G \not\supseteq C_\ell\}$?

Theorem (K & Pirot 2017+)

Fix positive integers t and $\ell \geq 3$. The following hold as $d \to \infty$.

- For $\ell \geq 2t + 2$ even, $\chi_{t,\ell}(d) = \Theta(d^t/\log d)$.
- For t odd and $\ell \geq 3t$ odd, $\chi_{t,\ell}(d) = \Theta(d^t/\log d)$.
- For t even and ℓ odd, $\chi_{t,\ell}(d) = \Theta(d^t)$.

If $t \geq 2$, then the following hold as $d \to \infty$.

- For $\ell \geq 2t$ even, $\chi'_{t,\ell}(d) = \Theta(d^t/\log d)$.
- For ℓ odd, $\chi'_{t,\ell}(d) = \Theta(d^t)$.

Main tool

A "sparse colouring lemma":

Theorem (Alon, Krivelevich & Sudakov 1999)

There exists c > 0 such that, if \hat{G} is a graph of maximum degree \hat{d} for which at most $\binom{\hat{d}}{2}/f$ edges span each neighbourhood, then $\chi(\hat{G}) \leq c\hat{d}/\log f$.

Main tool

A "sparse colouring lemma":

Theorem (Alon, Krivelevich & Sudakov 1999)

There exists c > 0 such that, if \hat{G} is a graph of maximum degree \hat{d} for which at most $\binom{\hat{d}}{2}/f$ edges span each neighbourhood, then $\chi(\hat{G}) \leq c\hat{d}/\log f$.

Apply it with $\hat{G} = G^t$ or $L(G)^t$, $\hat{d} = 2d^t$ and $f = \Omega(d^{\varepsilon})$ for some fixed $\varepsilon > 0$.

So it suffices to show $O(d^{2t-\varepsilon})$ edges span any neighbourhood in G^t or $L(G)^t$ (under the assumed cycle length restriction for G).

Vertex-colouring with one forbidden cycle length

What is
$$\chi_{1,\ell}(d) := \sup\{\chi_1(G) = \chi(G) \mid \Delta(G) = d, G \not\supseteq C_\ell\}$$
?

Proposition

Fix $\ell \geq 3$. Then $\chi_{1,\ell}(d) = \Theta(d/\log d)$ as $d \to \infty$.

What is
$$\chi_{1,\ell}(d) := \sup\{\chi_1(G) = \chi(G) \mid \Delta(G) = d, G \not\supseteq C_\ell\}$$
?

Fix $\ell \geq 3$. Then $\chi_{1,\ell}(d) = \Theta(d/\log d)$ as $d \to \infty$.

Theorem (Erdős & Gallai 1959)

Fix k. The maximum number of edges in a graph on n vertices with no path P_k of length k as a subgraph is at most (k - 1)n/2.

What is
$$\chi_{1,\ell}(d) := \sup\{\chi_1(G) = \chi(G) \mid \Delta(G) = d, G \not\supseteq C_\ell\}$$
?

Fix $\ell \geq 3$. Then $\chi_{1,\ell}(d) = \Theta(d/\log d)$ as $d \to \infty$.

Theorem (Erdős & Gallai 1959)

Fix k. The maximum number of edges in a graph on n vertices with no path P_k of length k as a subgraph is at most (k - 1)n/2.

Proof of Proposition.

WLOG assume $\ell > 3$. Take any G with $\Delta(G) = d$, $G \not\supseteq C_{\ell}$ and let $x \in G$.

What is
$$\chi_{1,\ell}(d) := \sup\{\chi_1(G) = \chi(G) \mid \Delta(G) = d, G \not\supseteq C_\ell\}$$
?

Fix $\ell \geq 3$. Then $\chi_{1,\ell}(d) = \Theta(d/\log d)$ as $d \to \infty$.

Theorem (Erdős & Gallai 1959)

Fix k. The maximum number of edges in a graph on n vertices with no path P_k of length k as a subgraph is at most (k - 1)n/2.

Proof of Proposition.

WLOG assume $\ell > 3$. Take any G with $\Delta(G) = d$, $G \not\supseteq C_{\ell}$ and let $x \in G$. Then $|G[N(x)]| \leq d$, $G[N(x)] \not\supseteq P_{\ell-2}$, so $|E(G[N(x)])| \leq (\ell-3)d/2$ by EG.

What is
$$\chi_{1,\ell}(d) := \sup\{\chi_1(G) = \chi(G) \mid \Delta(G) = d, G \not\supseteq C_\ell\}$$
?

Fix $\ell \geq 3$. Then $\chi_{1,\ell}(d) = \Theta(d/\log d)$ as $d \to \infty$.

Theorem (Erdős & Gallai 1959)

Fix k. The maximum number of edges in a graph on n vertices with no path P_k of length k as a subgraph is at most (k - 1)n/2.

Proof of Proposition.

WLOG assume $\ell > 3$. Take any G with $\Delta(G) = d$, $G \not\supseteq C_{\ell}$ and let $x \in G$. Then $|G[N(x)]| \le d$, $G[N(x)] \not\supseteq P_{\ell-2}$, so $|E(G[N(x)])| \le (\ell-3)d/2$ by EG. Apply AKS with $\hat{G} = G$, $\hat{d} = d$, $f = 2d/(\ell-3)$.
When excluding even C_{ℓ} , another classic Turán-type result is useful.

Theorem (Bondy & Simonovits 1974)

Fix ℓ even. The maximum number of edges in a graph on n vertices with no cycle C_{ℓ} as a subgraph is $O(n^{1+2/\ell})$ as $n \to \infty$.

We in fact also prove and apply a special version of it suited to our needs.

Circular unfolding of De Bruijn graph

One of the graph constructions from K & Pirot 2016:

- 1. Consider $[d/2]^t$, the words of length t on alphabet [d/2].
- 2. The vertex set is t copies U^0, \ldots, U^{t-1} placed around a circle.
- 3. Join $u_0^j u_1^j \dots u_{t-1}^j$ and $u_0^{i+1 \mod t} u_1^{i+1 \mod t} \dots u_{t-1}^{i+1 \mod t}$ by an edge if latter is one left cyclic shift of former, i.e. $u_i^{i+1 \mod t} = u_{i+1}^j \quad \forall j \in [t-2]$.

A full turn of the circle shifts through all t coordinates, ensuring each U^i induces a clique in t^{th} power.

Each U^i has $0.5^t \cdot d^t$ vertices.

The graph is d-regular and has no odd cycles if t is even.

Conclusion and open problems

What is
$$\chi_{t,\ell}(d) := \sup\{\chi_t(G) = \chi(G^t) \mid \Delta(G) = d, G \not\supset C_\ell\}$$
?

What is
$$\chi'_{t,\ell}(d) := \sup\{\chi'_t(G) = \chi(L(G)^t) \mid \Delta(G) = d, G \not\supseteq C_\ell\}$$
?

For each *t*, we settled these up to a constant factor except for finitely many ℓ .

Conclusion and open problems

What is
$$\chi_{t,\ell}(d) := \sup\{\chi_t(G) = \chi(G^t) \mid \Delta(G) = d, G \not\supseteq C_\ell\}$$
?

What is
$$\chi'_{t,\ell}(d) := \sup\{\chi'_t(G) = \chi(L(G)^t) \mid \Delta(G) = d, G
ot \supset C_\ell\}?$$

For each t, we settled these up to a constant factor except for finitely many ℓ .

Despite no manifest monotonicity, the following are natural open questions.

- 1. For $t \ge 1$, is there a critical ℓ_t^e so that $\chi_{t,\ell}(d) = \Theta(d^t)$ if $\ell < \ell_t^e$ even, while $\chi_{t,\ell}(d) = \Theta(d^t/\log d)$ if $\ell \ge \ell_t^e$ even?
- 2. For $t \ge 1$ odd, is there a critical ℓ_t° so that $\chi_{t,\ell}(d) = \Theta(d^t)$ if $\ell < \ell_t^\circ$ odd, while $\chi_{t,\ell}(d) = \Theta(d^t/\log d)$ if $\ell \ge \ell_t^\circ$ odd?
- 3. For $t \ge 2$, is there a critical ℓ'_t so that $\chi'_{t,\ell}(d) = \Theta(d^t)$ if $\ell < \ell'_t$ even, while $\chi'_{t,\ell}(d) = \Theta(d^t/\log d)$ if $\ell \ge \ell'_t$ even?

We proved these hypothetical critical values are at most linear in t.

Thank you!