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10 colours

strong matching : set of edges that induce a matching

strong edge-colouring : edge partition into strong matchings

strong chromatic index χ′
s : least number of parts needed



A basic question

Let ∆(G) denote the maximum degree in a graph G .

What is the worst value among those G with ∆(G) = d?
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Trivial: χ′(d) ≤ 2(d − 1) + 1 = 2d − 1. Greedy.

Easy: χ′(d) ≥ d . All edges around a vertex must get different colours.

Classic: χ′(d) ≤ d + 1. Recolouring argument by Gupta and by Vizing (1960s).
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This remains wide open, except

Theorem (Molloy & Reed 1997)

χ′
s(d) ≤ (2− ε)d2 for some absolute ε > 0. (ε� 0.002.)

Theorem (Andersen 1992, Horák, He & Trotter 1993)

χ′
s(3) = 10.

Confirms first non-trivial case. Running example certifies sharpness.



Strong chromatic index

What is χ′
s(d) := sup{χ′

s(G) | ∆(G) = d}?

This remains wide open, except

Theorem (Molloy & Reed 1997)

χ′
s(d) ≤ (2− ε)d2 for some absolute ε > 0. (ε� 0.002.)

Lemma (sparse neighbourhoods colouring)

If every neighbourhood is sparse enough and degree bound is large enough,
then vertices can be coloured with < 1 factor lower than the trivial number.

Lemma (square of line graph neighbourhood sparsity)

The auxiliary graph implicit in strong edge-colouring of bounded degree graph
has sparse enough neighbourhoods.
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The line graph L(G) of a graph G has vertices corresponding to G -edges and
edges if the two corresponding G -edges have a common G -vertex.
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Colouring of claw-free graphs

edge-colouring of graph ; colouring of claw-free graph

maximum degree of graph ; clique number of claw-free graph

What is the worst χ(G) among those claw-free G with ω(G) = ω?

Gupta, Vizing (1960s): χ(G) ∈ {ω, ω + 1} if G line graph.

Chudnovsky & Ovetsky (2007): χ(G) ≤ 3ω/2 if G quasiline. Sharp.

Chudnovsky & Seymour VI (2010):
χ(G) ≤ 2ω if G connected with stable set of size 3. Sharp.

Without stable set condition, χ(G) ≤ ω2 but
χ(G) can be Ω(ω2/ logω) as ω →∞ in suitable Ramsey graphs.
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strong edge-colouring of graph ; colouring of square of claw-free graph

maximum degree of graph ; clique number of claw-free graph

What is the worst χ(G 2) among those claw-free G with ω(G) = ω?

Theorem (de Joannis de Verclos, K & Pastor 2016+)

χ(G 2) ≤ (2− ε)ω2. Same small unspecified ε > 0.

Conjecture (de Joannis de Verclos, K & Pastor 2016+)
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χ(G 2) ≤ 10 if ω = 3.



Greedy colouring

in squares

Recall “trivial” bound max degree+1, colouring greedily one by one.

What if we colour the smallest degree element last?

Lemma (double greedy)

Fix K ≥ 0 and C1, C2 graph classes. Assume every G ∈ C2 has χ(G 2) ≤ K + 1.
Assume C1 contains singleton, closed under vertex-deletion and for any G ∈ C1

• G belongs to C2, or

• there is vertex v ∈ G with square degree degG2(v) ≤ K such that
those G-neighbours x with degG2(x) > K + 2 induce a clique in (G \ v)2.

Then every G ∈ C1 has χ(G 2) ≤ K + 1.
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Theorem (de Joannis de Verclos, K & Pastor 2016+)

χ(G 2) ≤ (2− ε)ω2 for claw-free G with ω(G) = ω.

Lemma (claw-free → quasiline)

For claw-free G with ω(G) = ω, either G is quasiline or there is v ∈ G with
degG2(v) ≤ ω2 + (ω + 1)/2 s.t. neighbours induce clique in (G \ v)2.

Lemma (quasiline → line graph of multigraph)

For quasiline G with ω(G) = ω, either G is line graph of multigraph or there is
v ∈ G with degG2(v) ≤ ω2 + ω s.t. neighbours x with degG2(x) > ω2 + ω
induce clique in (G \ v)2.

Lemma (line graph of multigraph)

χ(G 2) ≤ (2− ε)ω2 if G line graph of multigraph with ω(G) = ω.
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Theorem (Cames van Batenburg & K 2016+)

χ(G 2) ≤ 10 if G claw-free with ω(G) = 3.

Lemma

If G connected claw-free with ω(G) = 3, then

• G is icosahedron;

• G is line graph of a 3-regular graph; or

• there is v ∈ G with degG2(v) ≤ 9 s.t. degG2(x) ≤ 11 for all neighbours x.

Similar techniques to achieve optimal reduction for ω(G) = 4.
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The Erdős–Nešeťril conjecture itself!

Other optimisation/extremal problems where claw-free reduces to (multi)line?

Superclasses of claw-free graphs?

For t ≥ 3, how does χ(G t) behave in terms of ω(G) for claw-free G?
(For line graph G and large fixed t this is already a difficult problem.)
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