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1. Introduction. Recall that a colouring is acyclic if each bipartite subgraph
consisting of the edges between two colour classes is acyclic. In other words, a
colouring is acyclic if it contains no alternating cycle (that is, a cycle which alter-
nates between two distinct colours). The starting point of our study is the work
of Boiron, Sopena and Vignal [3, 4]. These authors considered acyclic colourings
whose colour classes satisfy certain hereditary properties (their main motivation be-
ing the connection of such colourings with oriented colourings). The property we
are predominantly concerned with here is the following: given an integer t ≥ 0, a
set of vertices is t-dependent if it induces a subgraph of maximum degree at most
t. A colouring is t-improper if its colour classes are t-dependent. Given a graph
G, we let χt

a(G) denote the acyclic t-improper chromatic number of G, that is,
the least number of colours in an acyclic colouring of the vertices of G such that
each colour class is t-dependent. Note χ0

a(G) is just the usual acyclic chromatic
number χa(G), since a 0-dependent set is an independent set. Let χt

a(d) denote
the maximum possible value of χt

a(G) over all graphs G with maximum degree d.

We observe that χa(G) = χ0
a(G) ≥ χ1

a(G) ≥ · · · ≥ χ
∆(G)
a (G) = 1 and also that

χa(d) = χ0
a(d) ≥ χ1

a(d) ≥ · · · ≥ χd
a(d) = 1. We will investigate the behaviour of χt

a(d)
viewed as a function of t.

In [3], Boiron et al. considered the problem of acyclically improperly colouring
subcubic graphs, i.e. graphs of maximum degree at most three. In particular, they
proved that χ1

a(3) = 3 and conjectured that χ2
a(3) = 2. The list colouring variant

of this problem is our first main topic. Given a graph G, a list assignment L is a
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mapping that assigns to every vertex v a list L(v) of colours. We say G is L-colourable
if there exists a proper colouring such that each vertex v is assigned a colour chosen
from L(v). Given an integer ℓ > 0, G is ℓ-choosable if, for any list assignment L
such that |L(v)| ≥ ℓ for each vertex v, the graph is L-colourable. The choice number
ch(G) of G is the smallest ℓ such that G is ℓ-choosable. As well as being interesting
in its own right, studying the choice number is rewarding because (a) for all graphs
G, ch(G) ≥ χ(G), so upper bounds on the choice number yield upper bounds on the
chromatic number, and (b) inductive proofs often succeed in bounding ch(G) where
similar approaches to bounding χ(G) directly fail. The choice number has been well-
studied since it was introduced by Erdős, Rubin and Taylor [6]. In parallel with the
definition of χt

a(G) and χt
a(d), we define cht

a(G) and cht
a(d) in the natural way. Note

that, for any graph G and any integers t, d with 0 ≤ t < d, cht
a(G) ≥ cht+1

a (G),
cht

a(d) ≥ cht+1
a (d), cht

a(G) ≥ χt
a(G) and cht

a(d) ≥ χt
a(d) for any t ≥ 0.

Consider the complete bipartite graph G = Kd,d. Suppose each vertex from one
stable set is assigned the list {1, 2, . . . , d − 1} and each vertex from the other stable
set is assigned the list {d, d + 1, . . . , 2d − 2}. Then, in any colouring of G using
colours from these lists, some colour must be repeated in each stable set, so there is
an alternating cycle. It follows that chd

a(d) ≥ chd
a(Kd,d) ≥ d and, in particular, that

ch1
a(3) ≥ ch2

a(3) ≥ ch3
a(3) ≥ 3, so no list colouring analogue of the above-mentioned

conjecture of Boiron et al. that χ2
a(3) = 2 can hold. On the other hand, as our first

main result, we prove the following strengthening of their upper bound:

Theorem 1. Every subcubic graph is acyclically 1-improperly 3-choosable.

In other words, ch1
a(3) ≤ 3. We note that Montassier, Ochem and Raspaud [12]

showed cha(3) = 4 and cha(4) = 5.

Our second main topic is to look at bounds on χt
a(d) for large values of d and t.

For some intuition, note that χt
a(d) ≤ χa(d) ≤ d2 + 1: we can greedily colour each

vertex v by picking a colour different from those already assigned at distance two from
v, thus guaranteeing that no alternating cycles shall arise. In 1976 (cf. [1]), Erdős
conjectured that it would be possible to do asymptotically better, that χa(d) = o(d2).
Fifteen years later, Alon, McDiarmid and Reed [2] proved this conjecture by showing
that χa(d) ≤ cd4/3, for some fixed constant c ≤ 50, using the Lovász Local Lemma;
hence, χt

a(d) = O(d4/3). They also showed that χa(d) = Ω
(

d4/3/(ln d)1/3
)

using
probabilistic methods.

We begin by considering lower bounds on χt
a(d). Observe that, for any graph G,

χt
a(G) ≥ χa(G)

ct4/3
: given an acyclic t-improper colouring, we can acyclically colour each

colour class with at most ct4/3 new colours to obtain an acyclic colouring of the entire
graph. Hence, χt

a(d) = Ω
(

(d/t)4/3/(ln d)1/3
)

. Our second main result is to show that
this basic lower bound on χt

a(d) can be much improved upon asymptotically, as long
as d− t ≥ 10

√
d ln d. More fully,

Theorem 2. If t ≤ d− 10
√
d ln d, then χt

a(d) = Ω
(

(d− t)4/3/(ln d)1/3
)

.

In particular, if t = (1 − ε)d for any fixed constant ε, 0 < ε ≤ 1, then we obtain
the same asymptotic lower bound as Alon et al. Comparing this lower bound with the
upper bound χt

a(d) = O(d4/3), we see the surprising fact that even allowing t = Ω(d)
does not greatly reduce the number of colours needed for improper acyclic colourings
of graphs with large maximum degree.

Lastly, we consider bounds on χt
a(d) when d− t = O(d1/2). At some point, χt

a(d)
must drop significantly as t increases, because χd

a(d) = 1. Although we are unable to
pin down the behaviour of χt

a(d) viewed as a function of t, we can improve upon the
upper bound of Alon et al. when t is very close to d. More precisely, our third main
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result is the following:
Theorem 3. χt

a(d) = O(d ln d+ (d− t)d).
As for lower bounds in the regime d − t = O(d1/2), first note that Boiron et

al. showed χd−2
a (d) ≥ 3; we can straightforwardly generalise this result by showing

that χt
a(d) ≥ d − t + 1. This is done as follows: if Kd+1 is the complete graph on

d + 1 vertices, then χt
a(Kd+1) ≥ d − t+ 1, since, in any acyclic t-improper colouring

of Kd+1, at most one colour class has more than one vertex and no colour class has
more than t+1 vertices. We can, however, improve upon this further and, in the final
section, we exhibit a set of examples showing the following lower bound.

Theorem 4. χd−1
a (d) = Ω(d2/3).

We would like to reduce the gaps between the lower and upper bounds on χt
a(d).

For t = d − 1, the problem is particularly tantalising, and, in this case, the lower
bound of Theorem 4 and the upper bound of Theorem 3 differ by a factor of d1/3 ln d.
For this choice of t, the problem also includes the conjecture of Boiron et al. that
every subcubic graph is acyclically 2-improperly 2-colourable.

In the rest of the paper, we use the following notation. The degree of a given
vertex v is denoted by d(v). A k-vertex (resp. a ≤k-vertex ) is a vertex of degree k
(resp. degree at most k). We denote by N(v) the set of the neighbours of v. A k-cycle
(resp. a ≥k-cycle) is a cycle containing k vertices (resp. at least k vertices). For a
graph G and a vertex v ∈ V (G), we denote by G \ {v} the graph obtained from G
by removing v and its incident edges; for an edge uv of E(G), G \ {uv} denotes the
graph obtained from G by removing the edge uv. These notions are extended to sets
of vertices and edges in an obvious way. Let G be a graph and f be a colouring of G.
For a given vertex v of G, we denote by imf (v), or simply im(v) when the colouring
is clear from the context, the number of neighbours of v having the same colour as
v and call this quantity the impropriety of the vertex v. In all the figures depicting
configurations, we use the following drawing convention: a vertex whose neighbours
are totally specified is white, whereas a vertex whose neighbours are partially specified
is black. For notation not defined here, we refer the reader to [13].

2. Upper bound for ch1
a(3). In this section, we prove Theorem 1, i.e. we show

that ch1
a(3) ≤ 3. Our approach is to consider a minimal counterexample H to the

theorem, i.e. H has maximum degree three and list assignment L such that |L(v)| ≥ 3
for any v ∈ V (H), H is not acyclically 1-improperly L-colourable and, subject to these
conditions, H is minimal with respect to |V (H)|. We first show in Subsection 2.1 that
H is a 2-connected cubic graph. Then, in Subsection 2.2, we provide an inductive
approach to give an acyclic 1-improper L-colouring of H . This contradiction gives us
the theorem. We remark that this proof technique was also used in [8].

2.1. H is a 2-connected cubic graph. The aim here is Lemma 6 below, by
using the following lemma.

Lemma 5. Let G be a connected subcubic graph with list assignment L such that
each list size is at least three.

(a) Suppose that v ∈ V (G) is a ≤2-vertex and that G \ {v} has an acyclic 1-
improper L-colouring f . Then there is an acyclic 1-improper L-colouring f ′ of G
such that every vertex v′ at distance at least three from v satisfies f ′(v′) = f(v′).

(b) Suppose that uv ∈ E(G) is a cut-edge and that G \ {uv} has an acyclic
1-improper L-colouring f . Then there is an acyclic 1-improper L-colouring f ′ of G.

Before proving Lemma 5, let us use it to prove the following.
Lemma 6. Suppose H, together with list assignment L, is a minimal counterex-

ample to Theorem 1. Then H is a 2-connected cubic graph.
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Proof. H is clearly connected; suppose H has a cut-vertex u. Since H is subcubic,
there is a cut-edge uv. Let H1 and H2 be the connected components of H \ {uv}.
By minimality of H , there is an acyclic 1-improper L-colouring f1 (resp. f2) of H1

(resp. H2). Now, f = f1 ∪ f2 is an acyclic 1-improper L-colouring of H \ {uv} and
thus, by Lemma 5(b), there is an acyclic 1-improper L-colouring of H , contradicting
that H is a counterexample.

The fact that H is cubic follows from Lemma 5(a). 2

Proof of Lemma 5(a). If d(v) = 1, then f can be extended to G by selecting any
colour f ′(v) ∈ L(v) for v that is different from its neighbour’s. So we may suppose
that v has exactly two neighbours u and w. If f(u) 6= f(w), then we can just choose a
colour f ′(v) from L(v)\{f(u), f(w)}; thus, from now on we assume f(u) = f(w) = a.

Let S be the set of colours appearing on vertices of {u} ∪N(u) \ {v}. If |S| < 2,
then we may choose f ′(v) from L(v) \ S; this prevents a new alternating cycle and
does not increase the impropriety of u or w. We may thus assume that |S| = 3, so u
has two neighbours u1, u2 aside from v, and u1 6= w 6= u2. Symmetrically, we may
assume that w has neighbours w1 and w2 aside from v, and w1 6= u 6= w2. This is
depicted in Figure 2.1.

Note that possibly u1 ∈ {w1, w2} or u2 ∈ {w1, w2}, but this does not affect
our arguments. If there is no colour from L(v) that would extend f to G, then
w.l.o.g. the following holds: L(v) = {a, b, c} and assigning b (resp. c) to v would
create an alternating cycle through u1uvww1 (resp. u2uvww2); in particular, f(u1) =
f(w1) = b, f(u2) = f(w2) = c, and the colour a appears at least twice in N(u1),
N(u2), N(w1), and N(w2).

u

w1

w2u2

u1

v w

Fig. 2.1. A worst configuration for Lemma 5(a)

Assume u cannot be recoloured to obtain an acyclic 1-improper L-colouring f ′

of G \ {v} with f ′(u) 6= f ′(w); otherwise, this could be easily extended to a valid
colouring of G. Then we have that L(u) = {a, b, c} and im(u1) = im(u2) = 1. By
recolouring u1 with a colour chosen from L(u1) \ {a, b} we obtain a colouring with
im(u1) = 0. Since we possibly created an alternating cycle containing u, we also
recolour u with the colour b. This new partial colouring f ′ of G \ {v} is acyclic and
1-improper with f ′(u) 6= f ′(w) and so is easily extended to G. Since we recoloured
only vertices at distance at most two from v, we are done. 2

Proof of Lemma 5(b). Let G1 and G2 be the two connected components of
G \ {uv} with u ∈ G1 and v ∈ G2. If we have f(u) 6= f(v), or if we have f(u) = f(v)
with im(u) = 0 in G1 and im(v) = 0 in G2, then f is also an acyclic 1-improper L-
colouring of G. So suppose f(u) = f(v) = a with im(u) = 1 in G1. Let u1, u2 be the
two neighbours of u in G1 and assume f(u1) = f(u) = a. Clearly, f(u2) 6= a and we
can recolour u with a colour from L(u) \ {a, f(u2)} without creating any alternating
cycle in G1. The resulting acyclic 1-improper L-colouring f ′ of G \ {uv} is a valid
L-colouring of G, since f ′(u) 6= f ′(v). 2

2.2. Inductive colouring of H. Here, we will complete the proof of the theo-
rem by using the following lemma.
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Lemma 7. Let G be a 2-connected cubic graph with list assignment L such that
each list size is at least three. Suppose G contains two adjacent vertices u∗ and v∗

such that L(u∗) 6= L(v∗).

(a) There exists a vertex order x1, x2, . . . , xn for G such that x1 = u∗, xn = v∗

and for every 1 ≤ i < n, the vertex xi is adjacent to some vertex xj with j > i.

Let Gi = G \ {xi+1, . . . , xn} for 1 ≤ i ≤ n.

(b) If 2 ≤ i ≤ n− 1 and fi−1 is an acyclic 1-improper L-colouring of Gi−1, then
there is an acyclic 1-improper L-colouring fi of Gi such that fi(x1) = fi−1(x1).

(c) If fn−1 is an acyclic 1-improper L-colouring of Gn−1 such that fn−1(x1) /∈
L(xn), then there is an acyclic 1-improper L-colouring f of G.

Before we prove the lemma, we first show how it is used to prove the theorem.

Proof of Theorem 1. Let H , together with list assignment L, be a minimal coun-
terexample to the theorem. By Lemma 6, H is 2-connected and cubic. Recall that
every subcubic graph is acyclically 1-improperly 3-colourable [3]. We can therefore
assume that H contains two adjacent vertices u∗ and v∗ such that L(u∗) 6= L(v∗).

Therefore, Lemma 7 applies and we inductively colour H as follows. At Step 1,
set f1(x1) = c for some c ∈ L(x1) \ L(xn). Then, at each Step i, 2 ≤ i ≤ n − 1,
extend the colouring without changing the colour of x1, by Lemma 7(b). At Step
n, use Lemma 7(c). The resulting L-colouring f of H is acyclic and 1-improper, a
contradiction. 2

Proof of Lemma 7(a). Such an ordering is used in a standard proof of Brooks’
Theorem; the proof can be found in a standard reference, e.g. [13]. 2

Proof of Lemma 7(b). All vertices of Gi except xi are coloured by fi−1. Notice
that xi is a ≤2-vertex in Gi by definition of the order x1, . . . , xn. The vertex x1 is also
a ≤2-vertex in Gi since it is adjacent to xn in G. If x1 and xi are distance at least
three apart, then Lemma 5(a) applies with v = xi and we are done. Furthermore, by
closely examining the arguments in Lemma 5(a), we see that the only case in which
we might recolour any vertex (as opposed to an extension of fi−1 to v = xi) is when
the neighbours of v are as in Figure 2.1, i.e. they both have degree 3 and are not
adjacent. Since xi has degree 2, we may thus assume that x1 and xi are not adjacent.
By symmetry, we need only consider the case that x1 = u1 (see Figure 2.2(a)).
As before, we can assume the following: L(v) = {a, b, c}, fi−1(u) = fi−1(w) = a,
fi−1(u1) = fi−1(w1) = b, fi−1(u2) = fi−1(w2) = c, and the colour a appears at
least twice in N(u1), N(u2), N(w1), and N(w2). Since x1 is a 2-vertex, it follows
that im(x1) = 0, and we can recolour u with a colour from L(u) \ {a, c}. We then
obtain an acyclic 1-improper colouring fi which can be easily extended to G since
fi(u) 6= fi(w). 2

Proof of Lemma 7(c). Let y and z be the neighbours of xn distinct from x1 and
let y1 and y2 (resp. z1 and z2) be the neighbours of y (resp. z) distinct from xn (see
Figure 2.2(b)). Let a = fn−1(x1). We consider some cases depending on the colours
appearing in the neighbourhood of xn.

1. If y, z, x1 have pairwise distinct colours, then fn−1 easily extends to G since
a /∈ L(xn).

2. Now suppose that exactly one colour distinct from a, say b, appears in the
neighbourhood of xn. We consider two cases depending on the colours of y and z.

(a) Suppose that fn−1(y) = fn−1(z) = b. If we can choose a colour in L(xn)
for xn without creating an alternating cycle or having im(v) > 1 for some v, then we
are done. Otherwise, we may assume w.l.o.g. that L(xn) = {b, c, d} with fn−1(y1) =
fn−1(z1) = c, fn−1(y2) = fn−1(z2) = d, and the colour b appears at least twice in
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u1 = x1

u2

wu xi

w1

w2

(a) For Lemma 7(b)

y1

z1

y2

z2

z

y

xn x1

(b) For Lemma 7(c)

Fig. 2.2. Configurations for Lemma 7

N(y1), N(y2), N(z1), and N(z2). We first try to recolour y with a suitable colour dis-
tinct from b. (This would not create an alternating cycle since fn−1(y1) 6= fn−1(y2).)
If this colouring succeeds, then we assign xn the colour b. Otherwise, L(y) = {b, c, d}
and im(y1) = im(y2) = 1. In this case, we recolour y1 with a colour from L(y1)\{b, c}
and recolour y with the colour c. As the neighbours of y2 all now have distinct colours,
there is no alternating cycle through y2 nor through y1, and so we have not created
an alternating cycle. Furthermore, y, z, x1 have three distinct colours and we are
back in Case 1.

(b) Now suppose that fn−1(y) = a and fn−1(z) = b. If we can choose a colour
for xn without creating an alternating cycle or having im(v) > 1 for some v, then we
are done. Otherwise, we may assume w.l.o.g. that L(xn) = {b, c, d} with im(z) = 1,
fn−1(y1) = c, fn−1(y2) = d, and the colour a appears at least twice in N(y1) and
N(y2). We first try to recolour y with a colour distinct from a. If this is possible,
we are in the situation of Case 1 or of Case 2(a). Otherwise, L(y) = {a, c, d} and
im(y1) = im(y2) = 1, so we recolour y1 with a colour from L(y1) \ {a, c} and recolour
y with the colour c; we are back in Case 1.

3. Finally, suppose that fn−1(y) = fn−1(z) = fn−1(x1) = a. Let L(xn) =
{b, c, d} (and recall that a /∈ L(xn)). If no colour from L(xn) can be used to colour
xn, then each colour could create an alternating cycle containing xn. We may assume
w.l.o.g. that fn−1(y1) = b, fn−1(y2) = c and the colour a appears at least twice in
N(y1) and N(y2). As usual, we first try to recolour y with a colour distinct from a.
If successful, then we return to one of the previous cases. Otherwise, L(y) = {a, b, c}
and im(y1) = im(y2) = 1, so we recolour y1 with a colour in L(y1)\{a, b} and recolour
y with the colour b; we then return to Case 2.
2

The analysis above can be easily adapted to give an algorithm to acyclically 1-
improperly list colour any subcubic graph from lists of size at least three in time
O(|V (G)|2). Indeed, our arguments, those of Boiron et al., and a well-known linear
algorithm for finding cut-vertices may be straightforwardly combined to yield a linear-
time algorithm, but we decline to give the details here.

3. A probabilistic lower bound for χt
a(d). In this section, we prove Propo-

sition 10 below, a more explicit version of Theorem 2. Our argument mirrors that
of Alon et al. but uses upper bounds on the t-dependence number αt, the size of a
largest t-dependent set, in the random graph Gn,p. For more precise upper bounds
on αt(Gn,p), consult [10].
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Lemma 8. Fix an integer n ≥ 1 and p ∈ R with 4(lnn/n)1/4 ≤ p ≤ 1. Let
m = ⌊n − 128 lnn/p4⌋. Then asymptotically almost surely and uniformly over p in
the above range, any colouring of Gn,p with k ≤ (n−m)/4 colours and in which each
colour class contains at most m vertices contains an alternating 4-cycle.

Proof. As there are at most kn ≤ nn possible k-colourings of Gn,p, to prove
the lemma it suffices to show that for any fixed k-colouring of the vertices of Gn,p

(which we denote {v1, . . . , vn}) with colour classes C1, . . . , Ck in which |Ci| ≤ m for
all 1 ≤ i ≤ k, the probability that Gn,p does not contain an alternating 4-cycle is
o(n−n).

Fix a colouring as above, and let q be minimal such that |C1∪. . .∪Cq| ≥ (n−m)/2.
Let A = C1 ∪ . . .∪Cq and let B = Cq+1 ∪ . . .∪Ck. As no colour class has size greater
than m, |A| ≤ (n+m)/2 and so |B| ≥ (n−m)/2. By symmetry, we may also assume
that |A| ≥ n/2.

Next, let P = {{x1, x
′
1}, . . . , {xr, x

′
r}} be a maximal collection of pairs of elements

of A such that for 1 ≤ i ≤ r, xi and x′i have the same colour, and for 1 ≤ i < j ≤ r,
{xi, x

′
i} and {xj , x

′
j} are disjoint. As we may place all but perhaps one vertex from

each colour class Ci in some such pair (with one vertex left over precisely if |Ci| is
odd), it follows that

r ≥ 1

2
(|A| − q) ≥ 1

2

(n

2
− k
)

≥ n

8
.

Similarly, let Q = {{y1, y′1}, . . . , {ys, y
′
s}} be a maximal collection of pairs of elements

of B satisfying identical conditions; by an identical argument to that above, it follows
that s ≥ (n−m)/8.

Let E be the event that for all 1 ≤ i ≤ r, 1 ≤ j ≤ s, {xi, yj , x
′
i, y

′
j} is not an

alternating 4-cycle, and let E′ be the event that Gn,p contains no alternating 4-cycle;
clearly E′ ⊆ E. For fixed 1 ≤ i ≤ r and 1 ≤ j ≤ s, the probability that {xi, yj , x

′
i, y

′
j}

is not an alternating 4-cycle is (1 − p4) and this event is independent from all other
such events. As (n−m) ≥ 128 lnn/p4 it follows that

Pr (E′) ≤ Pr (E) ≤ (1 − p4)rs ≤ e−p4rs

≤ exp

{

−p
4n(n−m)

64

}

≤ e−2n ln n = o(n−n),

as required. 2

Using this lemma, we next bound the acyclic t-improper chromatic number of
Gn,p for p in the range allowed in Lemma 8.

Lemma 9. Fix an integer n ≥ 1 and p ∈ R with 4(lnn/n)1/4 ≤ p ≤ 1. Let
m = ⌊n−128 lnn/p4⌋ and let t(n, p) = p(m−1)−2

√
np. Then asymptotically almost

surely, for all integers t ≤ t(n, p), χt
a(Gn,p) ≥ 32 lnn/p4, uniformly over p and t in

the above ranges.
Proof. Fix n and p as above, and choose t ≤ t(n, p). We will show that asymp-

totically almost surely Gn,p contains no t-dependent set of size greater than m, from
which the claim follows immediately by applying Lemma 8 as (n−m)/4 ≥ 32 lnn/p4.
Let G[m] represent the subgraph of Gn,p induced by {v1, . . . , vm}. By a union bound
and symmetry, we have

Pr
(

αt(Gn,p) ≥ m
)

≤
(

n

m

)

Pr (∆(G[m]) ≤ t) ≤ 2mPr (∆(G[m]) ≤ t) .
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Since, if ∆(G[m]) ≤ t then G[m] has at most tm/2 edges, it follows that

Pr
(

αt(Gn,p) ≥ m
)

≤ 2nPr

(

E(G[m]) ≤ tm

2

)

≤ 2nPr

(

E(G[m]) − p

(

m

2

)

≤ tm

2
− p

(

m

2

))

Finally, by a Chernoff bound and by the definition of t(n, p), we conclude that

Pr
(

αt(Gn,p) ≥ m
)

≤ 2n exp

{

−
(

tm

2
− p

(

m

2

))2

·
(

2p

(

m

2

))−1
}

≤ 2n exp

{

− (t− p(m− 1))2

4p

}

≤ (2/e)n = o(1),

as claimed. 2

Using Lemma 9, it is a straightforward calculation to bound χt
a(d) for d sufficiently

large and t sufficiently far from d.
Proposition 10. For all sufficiently large integers d and all non-negative integers

t ≤ d− 10
√
d ln d,

χt
a(d) ≥ (d− t)4/3

214(ln d)1/3
.

Proof. Choose n so that

213n3 lnn ≤ d3(d− t) ≤ 214n3 lnn; (3.1)

such a choice of n clearly exists as long as d is large enough. Let p = (d−4
√
d ln d)/n;

we first check that p and t satisfy the requirements of Lemma 9. Presuming d is large
enough that np ≥ d/2, by the lower bound in (3.1) and the fact that d(d− t) ≤ d2 we
have

p ≥ d

2n
≥ (d3(d− t))1/4

2n
≥ 8n3/4(lnn)1/4

2n
= 4

(

lnn

n

)1/4

. (3.2)

Furthermore, letting m = ⌊n− 128 lnn/p4⌋, we have

p(m− 1) − 2
√
np ≥ np− 128 lnn

p3
− 2

√
np− 2 = d− 4

√
d ln d− 2

√
np− 2 − 128 lnn

p3

≥ d− 8
√
d ln d− 128 lnn

p3
. (3.3)

Since p > d/2n and by the lower bound in (3.1),

128 lnn

p3
<

210n3 lnn

d3
≤ d− t

8
,

which combined with (3.3) yields

p(m− 1) − 2
√
np > d− 8

√
d ln d− (d− t)

8

= t+
7(d− t)

8
− 8

√
d ln d > t, (3.4)
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the last inequality holding since t ≤ d − 10
√
d ln d. As (3.2) and (3.4) hold we may

apply Lemma 9 to bound χt
a(Gn,p) with this choice of t and p; as n > d, it follows

that as long as d is sufficiently large,

Pr

(

χt
a(Gn,p) ≥

32 lnn

p4

)

≥ 3

4
, (3.5)

say. Furthermore, by a union bound and a Chernoff bound,

Pr (∆(Gn,p) > d) ≤ nPr

(

BIN

(

n,
d− 4

√
d ln d

n

)

> d

)

≤ ne−16 ln d/3 ≤ 1

n
, (3.6)

the last inequality holding as ln d ≥ lnn/2 (which is an easy consequence of (3.1)).
Combining (3.5) and (3.6), we obtain that

Pr

(

χt
a(Gn,p) ≥

32 lnn

p4
,∆(Gn,p) ≤ d

)

≥ 3

4
− 1

n
≥ 1

2

as long as n ≥ 4, so there is some graph G with maximum degree at most d and with
χt

a(G) ≥ 32 lnn/p4. Since χt
a is monotonically increasing in d, it follows that

χt
a(d) ≥ 32 lnn

p4
>

32n4 lnn

d4
. (3.7)

An easy calculation using the upper bound in (3.1) and the fact that lnn < 2 ln d
gives the bound

d4 <
219n4(ln d)4/3

(d− t)4/3
,

so 32n4 lnn/d4 > (d− t)4/3/214(ln d)1/3. By (3.7), it follows that

χt
a(d) ≥ (d− t)4/3

214(ln d)1/3
,

as claimed. 2

4. A probabilistic upper bound for χt
a(d). In this section, we study the

situation when t is even closer to d, when d− t = o(d1/2) in particular. Theorem 3 is
a corollary of our main result here.

We analyse a different parameter from, but one that is closely related to, the
acyclic t-improper chromatic number. A star colouring of G is a colouring such that
no path of length three (i.e. with four vertices) is alternating; in other words, each
bipartite subgraph consisting of the edges between two colour classes is a disjoint union
of stars. The star chromatic number χs(G) is the least number of colours needed in
a proper star colouring of G. We analogously define the parameters χt

s(G) and χt
s(d)

in the natural way. The star chromatic number was one of the main motivations for
the original study of acyclic colouring [9]. Clearly, any star colouring is acyclic; thus,
χt

a(d) ≤ χt
s(d). Fertin, Raspaud and Reed [7] showed that χs(d) = O(d3/2) and that

χs(d) = Ω
(

d3/2/(lnd)1/2
)

. We note that a natural adaptation to star colouring of
the argument given in the last section gives the following:
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Theorem 11. There exists a fixed constant C > 0 such that, if t ≤ d−C
√
d ln d,

then χt
s(d) = Ω

(

(d− t)3/2/(ln d)1/2
)

.

Given a graph G of maximum degree d, the idea behind our method for improved
upper bounds is to find a dominating set D and a function g = g(d) = o(d3/2) such
that

∣

∣

(

N(v) ∪N2(v)
)

∩ D
∣

∣ ≤ g for all v ∈ V (G). Given such a set D in G, we assign
colours to the vertices in D by greedily colouring D in the square of G (i.e. vertices in
D at distance at most two in G receive different colours) with at most g + 1 colours;
then we give the vertices of G \ D the colour g + 2. It can be verified that this
colouring prevents any alternating paths of length three (and so prevents alternating
cycles) and ensures that every vertex has at least one neighbour of a different colour.
Furthermore, we can generalise this idea by prescribing that our set D is k-dominating
— each vertex outside of D has at least k neighbours in D — to give a bound on
χd−k

s (d).

Theorem 12. χt
s(d) = O(d ln d+ (d− t)d).

This result provides an asymptotically better upper bound than χt
s(d) = O(d3/2)

when d − t = o(d1/2). It also provides a better bound than χt
a(d) = O(d4/3) when

d− t = o(d1/3). Theorem 12 is an easy consequence of the following lemma:

Lemma 13. Given a d-regular graph G and an integer k ≥ 1, let ψ(G, k) be the
least integer k′ ≥ k such that there exists a k-dominating set D for which, for all
v ∈ V (G), |N(v) ∩ D| ≤ k′. Let ψ(d, k) be the maximum over all d-regular graphs G
of ψ(G, k). Then, for all d sufficiently large, ψ(d, k) ≤ max{3k, 31 lnd}.

We postpone the proof of this lemma, first using it to prove Theorem 12:

Proof of Theorem 12. We first remark that the function χt
s is monotonic with

respect to graph inclusion in the following sense: if G and G′ are graphs with V (G) =
V (G′), ∆(G) = ∆(G′) and E(G) ⊂ E(G′), then χt

s(G) ≤ χt
s(G

′). As any graph
G of maximum degree d is contained in a d-regular graph, to prove that χt

s(d) =
O(d ln d + (d − t)d) it therefore suffices to show that χt

s(G) = O(d ln d + (d − t)d)
for d-regular graphs G. We hereafter assume G is d-regular and d is large enough to
apply Lemma 13. Let k = d − t. We will show that χt

s(G) ≤ dψ(d, k) + 2, which
proves the theorem.

By Lemma 13, there is a k-dominating set D such that |N(v) ∩ D| ≤ ψ(d, k) for
all v ∈ V (G). Fix such a dominating set D and form the auxiliary graph H as follows:
let H have vertex set D and let uv be an edge of H precisely if u and v have graph
distance at most two in G. As |N(v)∩D| ≤ ψ(d, k) for all v ∈ V (G), H has maximum
degree at most dψ(d, k).

To colour G, we first greedily colour H using at most dψ(d, k) + 1 colours, and
assign each vertex v of D the colour it received in H . We next choose a new colour not
used on the vertices of D, and assign this colour to all vertices of V (G)\D. We remind
the reader that im(v) denotes the number of neighbours of v of the same colour as v.
If v ∈ D then im(v) = 0, and if v ∈ V \ D then im(v) ≤ d− |N(v) ∩ D| ≤ d− k = t,
so the resulting colouring is t-improper.

Furthermore, given any path P = v1v2v3v4 of length three in G, either two
consecutive vertices vi, vi+1 of P are not in D (in which case c(vi) = c(vi+1) and P is
not alternating), or two vertices vi, vi+2 are in D (in which case c(vi) 6= c(vi+2) and P
is not alternating). Thus, the above colouring is a star colouring G of impropriety at
most t and using at most d(3k + 31 lnd) + 2 colours; as G was an arbitrary d-regular
graph, it follows that χt

s(d) ≤ dψ(d, k) + 2, as claimed. 2

We next prove Lemma 13 with the aid of the following symmetric version of the
Lovász Local Lemma:
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Lemma 14 ([5], cf. [11], page 40). Let A be a set of bad events such that for each
A ∈ A

1. Pr (A) ≤ p < 1, and
2. A is mutually independent of a set of all but at most δ of the other events.

If 4pδ ≤ 1, then with positive probability, none of the events in A occur.
Proof of Lemma 13. We may clearly assume that k is at least (31/3) lnd, since, if

the claim of the lemma holds for such k, then it also holds for smaller k. Let p = 2k/d
and let D be a random set obtained by independently choosing each vertex v with
probability p. We claim that, with positive probability, D is a k-dominating set such
that |N(v)∩D| ≤ 3k for all v ∈ V (G); we will prove our claim using the local lemma.

For v ∈ V (G), let Av be the event that either |N(v)∩D| < k or |N(v)∩D| > 3k.
By the mutual independence principle, cf. [11], page 41, Av is mutually independent
of all but at most d2 events Aw (with w 6= v). Furthermore, since |N(v) ∩ D| has a
binomial distribution with parameters d and p, we have by a Chernoff bound that

Pr (Av) = Pr (||N(v) ∩ D| − E(|N(v) ∩ D|)| > k) ≤ 2e−k/5 = o(d−2)

so 4Pr (Av) d2 < 1 for d large enough. By applying Lemma 14 with A = {Av | v ∈ V },
it follows that with positive probability none of the events Av occur, i.e. D has the
desired properties. 2

5. A deterministic lower bound for χd−1
a (d). In this section, we concentrate

on the case t = d − 1 and exhibit an example Gn which gives the asymptotic lower
bound of Theorem 4. Given a positive integer n, we construct the graph Gn as follows:
Gn has vertex set {vij : i, j ∈ {1, . . . n}}∪{wij : i, j ∈ {1, . . . , n}}. For i, j ∈ {1, . . . , n}
we let Vij = {vij , wij}. We can think of the set of vertices as an n-by-n matrix, each
entry of which has been “doubled”. Within each column Ci =

⋃n
j=1 Vij and within

each row Rj =
⋃n

i=1 Vij we add all possible edges. The graph Gn has 2n2 vertices
and is regular with degree d = 4n− 3. We will prove the following proposition, which
directly implies Theorem 4:

Proposition 15. χd−1
a (Gn) ≥ n

n1/3+1
+ 1.

Proof. Let f : Gn → {1, . . . , k} be an acyclic (d − 1)-improper colouring of Gn;
we will show that necessarily k ≥ n

n1/3+1
. Since n ≥ 1 it follows that n/2 ≥ n

n1/3+1

and thus we may assume that k < n/2. Clearly, some colour – say a1 – appears on
two vertices x, x′ of C1. We call the colour a1 “black” and refer to vertices receiving
colour a1 as black vertices. If y, y′ ∈ C1 both receive colour i 6= a1, then xyx′y′ forms
an alternating cycle, so a1 is the only colour appearing twice in C1. It follows that at
most k − 1 vertices in C1 are not black.

Applying the same logic to any column Ci, we see that all but k − 1 vertices in
Ci must receive the same colour, say ai. Since k < n/2, it is easily seen, then, that
there must be a row Rk such that vk1 and wk1 are both black, and vki and wki are
both coloured ai. This implies that ai = a1, since otherwise vk1vkiwk1wkj would be
an alternating cycle. It follows that in all columns, at most k − 1 vertices receive a
colour other than a1. Symmetrically, there is a colour b such that in all rows, at most
k − 1 vertices receive a colour other than b; clearly, it must the case that b = a1.

If there are i, j ∈ {1, . . . , n} such that both Ri and Cj are entirely coloured black,
then all the neighbours of vij , wij are coloured with a1 and the colouring is not (d−1)-
improper; therefore, it must be the case that either all rows, or all columns, contain
a non-black vertex. Without loss of generality, we may assume that all rows contain
a non-black vertex.
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Let x1, . . . , xr be non-black vertices receiving the same colour, say a, and let
xi ∈ Vℓi,mi , for 1 ≤ i ≤ r. As previously noted, no two of x1, . . . , xr may lie in the
same row or column; i.e., for i 6= j, ℓi 6= ℓj and mi 6= mj .

Claim 1. At least 3
(

r
2

)

vertices of
⋃

1≤i<j≤r Vℓi,mj receive a non-black colour
other than a.

Proof. No vertices in
⋃

1≤i<j≤r Vℓi,mj receive colour a as each such vertex is in the
same row as one of x1, . . . , xr. On the other hand, for each pair i, j with 1 ≤ i < j ≤ r,
at least three of the vertices in Vℓi,mj ∪ Vℓj ,mi must receive a colour other than a1.
For if y, y′ ∈ Vℓi,mj ∪Vℓj ,mi both receive colour a1, then xiyxjy

′ forms an alternating
cycle. The result follows as there are

(

r
2

)

pairs i, j with 1 ≤ i < j ≤ r. 2

Claim 2. At least r distinct non-black colours appear on
⋃

1≤i<j≤r Vℓi,mj .
Proof. By an argument just as above, each of Vℓ1,m2

, . . . ,Vℓ1,mr must contain a
vertex receiving a colour other than a1 or a. These colours must all be distinct as
Vℓ1,m2

, . . . ,Vℓ1,mr are all contained within Rℓ1 . 2

Let {a2, a3, . . . , ak} be the set of non-black colours. Let x2
1, . . . , x

2
r2

be the vertices
receiving colour a2, and for i = 3, . . . , k let xi

1, . . . , x
i
ri

be the vertices receiving colour
ai which are in a different row from all vertices in

⋃

j<i

⋃

s≤rj
xj

s. As every row

contains a non-black vertex,
∑k

i=2 ri = n; it is possible that ri = 0 for certain i, if
there is a vertex coloured with one of a2, . . . , ai in every row.

For i ∈ {2, . . . , k} and s ∈ {1, . . . , ri}, say vertex xi
s ∈ Vℓi

s,mi
s
, and let

Ai =
⋃

1≤s<t≤ri

Vℓi
s,mi

t
∪ Vℓi

t,mi
s
.

By Claim 1, at least 3
(

ri

2

)

vertices of Ai are non-black. Furthermore, if i 6= i′ then for

any s ∈ {1, . . . , ri}, s′ ∈ {1, . . . , ri′}, xi
s and xi′

s′ are in different rows – so Ai and Ai′

are disjoint. It follows that in
⋃k

i=2 Ai ∪ {xi
1, . . . , x

i
ri
}, at least

k
∑

i=2

(

3

(

ri
2

)

+ ri

)

≥
k
∑

i=2

r2i (5.1)

vertices are non-black. As
∑k

i=2 ri = n, it is easily seen that

k
∑

i=2

r2i ≥ (k − 1)

(⌊

n

k − 1

⌋)2

.

As there are only k − 1 non-black colours, it follows that some non-black colour –
say a2 – appears at least (⌊n/(k − 1)⌋)2 times. If (⌊n/(k − 1)⌋)2 ≥ n2/3, then by
Claim 2, at least n2/3 + 1 > n

n1/3+1
+ 1 colours appear on Gn, so we may assume that

n2/3 > (⌊n/(k − 1)⌋)2 ≥ (n/(k − 1) − 1)2. But then k > n
n1/3+1

+ 1, as claimed. 2

Since d = 4n− 3, the above proposition yields χd−1
a (Gn) ≥ (1 + o(1))2−4/3d2/3.

It is worth noting that the correct asymptotic order of χd−1
a (Gn) is unknown; it is

even conceivable that χd−1
a (Gn) = Θ(d). For improper star colouring, a construction

and accompanying argument that are similar to the above gives χd−1
s (d) ≥ (1 +

o(1))2−1/6d2/3.

6. Conclusion. In this paper, we studied the problem of acyclically t-improperly
colouring graphs with maximum degree at most d. We first considered the list colour-
ing variant of the problem for d = 3 and showed that every subcubic graph is acycli-
cally 1-improperly 3-choosable. This strengthens a result of Boiron et al. A natural
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question is to consider the case of d = 4; however, it seems unlikely that the method
used in this paper easily extends. In light of [12], it might be fruitful to study the
relationship between acyclic t-improper colourings and maximum average degree.

We next considered the behaviour of the acyclic t-improper chromatic number in
the case of large d. We showed that the same asymptotic lower bound for ordinary
acyclic chromatic number by Alon et al. could also be established for the acyclic t-
improper chromatic number for any t = t(d) satisfying d− t = Θ(d). We remark that,
in this case, the upper bound χa(d) ≤ cd4/3 can be easily adapted to list colouring,
i.e. cha(d) ≤ c′d4/3 for some absolute constant c′. This means that, for d− t = Θ(d),
Theorem 2 is asymptotically tight up to a factor of (ln d)1/3, even for list colouring.

Lastly, we studied the case of large d and t very close to d. For this case, we
showed Theorem 12 using the Lovász Local Lemma. This theorem improves upon
upper bounds for χt

a(d) and χt
s(d) implied by the results of Alon et al. and Fertin et

al., respectively, giving for instance that χt
s(d) = O(d ln d) for d− t = O(ln d). On the

other hand, we showed that χd−1
a (d) = Ω(d2/3) by a deterministic construction.

χt
a(d) χt

s(d)
d− t lower upper lower upper

Θ(d) Ω
(

d4/3

(ln d)1/3

)

O(d4/3)

Ω
(

d3/2

(ln d)1/2

)

O(d3/2)
ω(

√
d ln d) Ω

(

(d−t)4/3

(ln d)1/3

)

Ω
(

(d−t)3/2

(ln d)1/2

)

Ω
(

d2/3
)

Ω
(

d2/3
)O(d1/2)

O((d − t)d)
O(d1/3) O((d − t)d)
O(ln d) O(d ln d) O(d ln d)

0 1 1 1 1
Table 1

Asymptotic bounds for χt

a
(d) and χt

s
(d).

There is much remaining work in the case d − t = o(d). Table 1 is a rough
summary of the current bounds on χt

a(d) and χt
s(d) when d is large. Of particular

interest, it is unknown if χd−1
a (d) is Θ(d2/3), Θ(d ln d) or somewhere strictly between

these extremes.
Conjecture 16. χd−1

a (d) = Θ(d) and χd−1
s (d) = Θ(d).

Another line of enquiry would be to consider the list colouring analogue of this
problem. For instance, the first question one might consider is whether chd

a(d) is closer
to Θ(d) or Θ(d4/3). To our knowledge, there has been no progress on this question to
date.
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