
Guide to the course Particles and Fields (2007)

PM = ‘Introduction to Quantum Field Theory’, lecture notes by Piet Mulders.

JS = ‘Introduction to Relativistic Quantum Fields’, lecture notes by Jan Smit.

The book by Peskin & Schroeder appears to be not entirely consistent in its
use of the electron charge. According to p. xxi e is negative, but in the bulk of
the book it appears to be positive, as far as I can judge from the application of
Feynman rule on p. 123 and eq. (6.38), which are correct in the convention e > 0,
with −e the charge of the of the electron. We will use this convention.

The correct Feynman rule for the vertex in QED is then given in (A.6), but on
p. 124 there is then a sign error in the Feynman rule for the vertex: −iQ|e|γµ →
+iQeγµ, with e > 0 and Q = −1 for the electron.

Course Material covered so far:

Without further specification, ch. 5 or (6.39) means chapter 5 or equation (6.39)
in the book by Peskin & Schroeder, etc.

• Chapter 5

Sects. 5.1 and 5.5 .

Supporting the material for the summary given in the first lecture can also
be found in JS sects. 4.1, 4.2, 4.3, 4.6, 6.6, and Problem 2 in sect. 8.7.

• Chapter 6

Sects. 6.1, 6.2, 6.3, 6.4. plus conclusion of 6.5, eq. (6.84) and further.

Note for p. 186: the Ward identity is valid only between spinors ū(p′) and
u(p), so qµΓµ = 0 → qµū

′Γµu = 0. Similarly, (6.33) holds only between
spinors.

For the interpretation of the form factors F1(0) and F2(0) a reasoning was
given along the lines of JS sect. 8.4 may also be useful.

A derivation of ‘Feynman parameter formulas’ like (6.39) is given in JS sect.
4.8 .

• Chapter 7

Sect. 7.1 and the material in sect. 9.3 of JS. In discussion the position of
the pole and residue in the electron propagator an alternative presentation
was given as follows:
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The diagram for the free electron propagator was denoted by −iS0; in
momentum space

S0(p) = (m0 − p/ − iε)−1.

The sum of diagrams for the electron two-point function was denoted
by −iS, and the sum of all 1PI self-energy diagrams −iΣ, such that
(suppressing the iε)

S(p) = (S−1
0 + Σ)−1 = (m0 + Σ − p/)−1.

Writing
Σ(p) = A(p2) − B(p2)p/,

we have

S = (1 + B)−1 M + p/

M2 − p2
, M(p2) ≡ m0 + A(p2)

1 + B(p2)
.

The position of the pole in p2 then satisfies the equation

m2 = M2(m2).

and expansion around p2 = m2 gives

M2(p2)−p2 = m2−p2+

[

2(m0 + A)A′

(1 + B)2
− (m0 + A)22B′

(1 + B)3

]

(p2−m2)+O((p2−m2)2),

where A′ = dA/dp2 etc. and the expression in aquare brackets is to be
evaluated at p2 = m2. Near the pole

S ≈ Z2
m + p/

m2 − p2

with the so-called ‘wave-function renormalization-constant’ Z2 given by

Z−1
2 = 1 + B(m2) − 2mA′(m2) + 2m2B′(m2).

Writing formally Σ as a function of p/ one gets the same results from

(7.24) and (7.26) in Peskin and Schroeder.

The LSZ formula (sect. 7.2 ) was derived along the lines of sects. 9.3 and 9.4
of JS. See also Piet Mulders’ lecture notes, the text leading to eq. (10.66).

Read through sect. 7.2; the end of this section is important for the course.
Note that (7.46), the equation below it and (7.47) are only valid between
spinors ū′ and u.

We skipped section 7.3.

Read through section 7.4 (W.T. identity). In class we applied (7.65) to
(6.38) and showed that (7.69) is correct to one-loop order. We also derived
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(7.70).

Section 7.5

The Final Project ‘Radation of Gluon Jets’ is to be handed in.

• Chapter 8: read through

• Chapter 9

The path integral has aleady been introduced in PM, and we skipped sec-
tions 9.1, 9.2, 9.3, 9.5.

Section 9.4. (See also sects. 7.5 – 7.7 and the beginning of sect. 8.2 in JS,
which I more or less followed in my lectures.)

Sect. 9.6 was essentially covered in class (skipped equations of motion,
but will mentioned them as leading to the Dyson-Schwinger hierachy in
connection with the effective action – the generating functional of 1PI vertex
functions in sect. 11.5).

• Chapter 10

Sect. 10.1, read sect. 10.2, sect. 10.3, read sect. 10.4

Skipped sect. 10.5.

Problem 10.2 is to be handed in.

• Chapter 11

Sect. 11.1 (covered already in PM), beginning of 11.2, read 11.3, 11.5
Skipped rest of 11.2, 11.4, 11.6.

We skipped the material of section 11.5, which is an important subject,
so reading is strongly encouraged. A convenient notation (due to Bryce
DeWitt) is useful here, see my lecture notes ‘Quantum Field Theory (1995)’,
section 2.6. I also recommend reading sect. 2.7 of these notes, on the
hierarchy of Dyson-Schwinger equations.

Note some (to my eyes) confusing notation in sect. 11.4: functional deriva-
tives of Lagrange densities (as in (11.55), 11.58) etc.) are expected to give
Dirac delta functions. What is meant is presumably L1 → S1 =

∫

d4xL1.

• Chapter 12. Read sect. 12.1.

Sect. 12.2.

Note: to make sense out of the eqs. directly above (12.31), replace it by:
∫

d4x d4x′ eipx−ip′x′ 〈0|Tφ(x)φ(x′)|0〉 = (2π)4δ(4)(p−p′) i/(p2 + iε). Similarly
for the equation below (12.31).

Note: In eqs. (12.53) and (12.58), the ∂/∂M does not act on g or e.
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Read sect. 12.3; in class we covered (12.81), (12.82) (using a different
notation: M →M1, p→M), and some of the ‘Alternatives for the running
coupling constants’.

Skipped sects. 12.4, 12.5.

• Chapter 13: Skipped.

• Chapter 14: Read.

• Chapter 15: Read. The Yang-Mills and QCD actions were derived ‘in class’.

• Chapter 16.

Section 16.1. Know how to derive the Feynman rules of QCD as given on
p. 507. We skipped the equality of coupling constants and the flaw in the
argument (worth reading).

Section 16.2. The material was covered ‘in class’.

Section 16.3: Read.

Section 16.4: Skipped.

Section 16.5: Read.

Section 16.6: Skipped.

Section 16.7: Read.

• Chapter 17.

Sections 17.1 - 17.3 sketched in the lectures.

Sections 17.4 - 17.5: Skipped, except figures 17.22.

Section 17.6: Read. Note that αs has also been postdicted from hadron-
spectrum computations using the lattice regularization. This can be un-
derstood from an equation of the form mhadron = Chadron Λ, in which the
coefficient Chadron is computed using non-perturbative methods and Λ is
fitted by comparing with the actual hadron mass; then αs is determined by
(17.17) and its more accurate analogs.

• Chapter 18: Skipped.

• Chapter 19

Read the introduction up to section 19.1.

We skipped section 19.1 and and the beginning of section 19.2 (but not
equation (19.45)), and ‘joined P & S with de subsection ‘Triangle Diagrams’
on page 661. However, we used the euclidean cutoff method to analyse the
polar- and axial-vector Ward-Takahashi Identities. See below where we
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derive (19.60). The rest of section 19.2 (Fujikawa’s method) was skipped
again.

Section 19.3. We went into somewhat more detail on chiral symmetry and
the relation with the pseudosalar mass spectrum, the extension of (19.94) to
three flavors and effect of the chiral anomaly through the Witten-Veneziano
relation. The material was taken from chapter 8 of J. Smit, Introduction to
quantum fields on a lattice, Lecture Notes in Physics, Cambridge University
Press 2002. See below for a shorter summary.

Read also the presentation of the Goldberger-Treiman relation (19.102),
that starts above (19.95) (which we had to skip because of lack of time),
and the ‘Anomalies of Chiral Currents’ in the rest of section 19.2 (which
was only sketched in the last lecture). See below for the pion-nucleon sigma
model.

Note: a factor τ a needs to be inserted on the right-hand-side of (19.95); a
factor (2π)4δ(4)(p+ k− q) is lacking on the right-hand-side of (19.109); the
polarization vectors epsilon in (19.109) are in general not the same.

Section 19.4: read.

Section 19.5: skipped.

Problem 19.2 is to be handed in.

• Chapter 20: Much of this was already treated in PM. We mentioned the
Anomaly Cancellation (pages 705-707).

The triangle anomaly

We start with the expression (19.47) in Peskin & Schroeder, to which we add its
permutation (p, ν) ↔ (k, λ) and denote the sum by Γµνλ

5 :

Γµνλ
5 (p, k) = −(−ie)2i3

∫

d4`

(2π)4
tr
[

γµγ5S(`− k)γλS(`)γνS(`+ p)

γµγ5S(`− p)γνS(`)γλS(`+ k)
]

norm
,

where the subscript ‘norm’ means ‘normalized’, i.e. it has to be regularized and
the resulting arbitrariness fixed by imposing renormalization conditions. Above,
S is the electron propagator

S(`) = γµ`µ/(`
2 + iε) = (γµ`µ)−1.

The vertex function Γµνλ
5 (p, k) appears in the correlation function

〈0|Tjµ
5 (x)Aν(y)Aλ(z)|0〉, jµ

5 (x) = ψ̄(x)γµγ5ψ(x),
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in one-loop order (after removal of the external-line photon-propagators). On-
shell we get the matrix element of the axial current between the vacuum and a
two-photon state:

∫

d4x e−iqx 〈pε, kε′|jµ
5 (x)|0〉 = (2π)4δ(4)(p+ k − q) ε∗ν(p)ε

′∗
λ (k)Γµνλ

5 (p, k). (1)

The vertex function Γµνλ
5 is linearly divergent. Dimensional regularization

leads to problems with the extension of γ5 and the Levy-Civita tensor εκλµν

to arbitrary dimensions. Pauli-Villars regularization introduces chiral-symmetry
breaking by heavy fermion masses. Therefore we use a euclidean cutoff Λ to
define the vertex function. This leads to some details in the following calculation
that are instructive about the way renormalized perturbation theory works.1

Because of its linear divergence, Γµνλ
5 is ambiguous by a polynomial of first

degree in the momenta, a polynomial of mass dimension one, depending on the
details of the regularization. Due to the presence of γ5, Γµνλ

5 is a pseudo tensor
under parity and contains the Levy-Civita tensor. By Lorentz invariance and
Bose symmetry the polynomial ambiguity can only be of the form

ce2εµνλρ(p− k)ρ, (2)

where c is a dimension-less numerical constant. Because of the linear divergence
of Γµνλ

5 one might expect a term linear in Λ in (2), but this would lead to a
polynomial of mass dimension two, whereas Γµνλ

5 has dimension one.
The constant c is to be specified by renormalization conditions. In QED

there is no counterterm for Γµνλ
5 and the only renormalization conditions are the

Ward-Takahashi-Identities (WTIs)

pνΓ
µνλ
5 (p, k) = 0, kλΓ

µνλ
5 (p, k) = 0. (3)

Because of the Bose symmetry, if one of these conditions is satisfied, then also
is the other. The axial WTI that is suggested by the Noether theorem following
from the chiral symmetry of the classical action (with fermion mass equal to
zero),

(p+ k)µΓµνλ
5 (p, k) = 0,

will turn out to be violated by ‘anomalous’ terms in the quantum theory. This
is not a problem, because the axial-vector current ψ̄γµγ5ψ is not a dynamical
current such as the electromagnetic current in QED.

The euclidean cutoff method can be formulated as follows:
(i) choose the external momenta such (e.g. space-like), that a Wick rotation
can be made for the integral over `0. This amounts to making the substitution

1Actually, the Pauli-Villars method is also useful for the case of the triangle anomaly. For
a discussion of dimensional regularization in this context, see F. Jegerlehner, Facts of life with

γ5, hep-th/0005255.
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`0 = i`0E, and
∫∞
−∞ d`0 f(`0) → i

∫∞
−∞ d`0E f(i`0E)

(ii) use a spherical cutoff for the four-dimensional integral over `0E, `1, `1, `3.
So

−i
∫

d4`

(2π)4
f(l) →

∫

√
(`0

E
)2+`·` <Λ

d`0Ed
3`

(2π)4
[f(l)]`0=i`0

E

≡
∫

|`E|<Λ
f(l).

The vertex function is now defined as

Γµνλ
5 (p, k) = Γµνλ

5Λ (p, k) + ce2εµνλρ(p− k)ρ,

Γµνλ
5Λ (p, k) = −e2

∫

|`E|<Λ
tr
[

γµγ5S(`− k)γλS(`)γνS(`+ p)

γµγ5S(`− p)γνS(`)γλS(`+ k)
]

, (4)

where contributions vanishing as Λ → ∞ are to be dropped and the constant c
is to be chosen to satisfy the WTIs (3).

Consider these vector WTIs. Using the tree-graph WTIs

kλγ
λ = /̀− ( /̀− k/) = ( /̀+ k/) − /̀

= S(`)−1 − S(`− k)−1 = S(`+ k)−1 − S(`)−1,

we find

kλΓ
µνλ
5Λ (p, k) = −e2

∫

|`E|<Λ
tr {γµγ5 [S(`− k)γνS(`+ p) − S(`)γνS(`+ p)

+S(`− p)γνS(`) − S(`− p)γνS(`+ k)]} .

We see that this has the form

−e2
∫

|`E|<Λ
[fµν

1 (`+ p− k, p, k) − fµν
1 (`, p, k)]

−e2
∫

|`E|<Λ
[fµν

2 (`− p, p) − fµν
2 (`, p)] ,

with

fµν
1 (`, p, k) = tr [γµγ5S(`− p)γνS(`+ k)]

fµν
2 (`, p) = tr [γµγ5S(`)γνS(`+ p)] .

If the integral representing kλΓ
µνλ
5Λ were convergent we could shift the integration

variable and find zero in the limit Λ → ∞. However, the integral is linearly
divergent (the individual integrals over f1 and f2 are even quadratically divergent)
and this leads to a non-vanishing contribution from the surface of the integration
region, the sphere with radius Λ, as Λ → ∞.

Consider the f1 integral. We use the Taylor expansion

fµν
1 (`+ p− k, p, k) − fµν

1 (`, p, k) = (p− k)α ∂

∂`α
f1(`, p, k)

+
1

2
(p− k)α(p− k)β ∂

∂`α
∂

∂`β
f1(l, p, k) + · · ·

7



and the Gauss formula

∫

|`E|<Λ

∂

∂`α
f(`) =

Λ3

(2π)4

∫

dΩ4 n
αf(Λn).

Here
∫

dΩ4 is the integral over angles in four-dimensional spherical coordinates,
∫

dΩ4 = 2π2, and nα is the outward pointing unit vector, except that its ‘time’
component n0 has an extra factor i coming from `0 = i`0E. Symmetry arguments
lead to

〈nαnβ〉 = −1

4
gαβ, 〈nαnβnγ〉 = 0, 〈nαnβnγnδ〉 =

1

24
(gαβgγδ + gαγgβδ + gαδgβγ),

etc., where

〈F 〉 =

∫

dΩ4 F
∫

dΩ4

.

The function f1 is given by

fµν
1 (`, p, k) =

tr [γµγ5( /̀− p/)γν( /̀+ k/)]

(`− k)2(`+ k)2
= 4iεµρνσ(`−p)ρ(`+k)σ

1

(`− k)2(`+ k)2
.

We expand its values for ` = Λn in descending powers of Λ,

fµν
1 (Λn, p, k) = 4iεµρνσ

[

Λ−2nρnσ + Λ−3(nρkσ − nσpρ + 2nρnσnβ(pβ − kβ)) + · · ·
]

,

and similar for the second order terms in the Taylor expansion that involve
∂f1/∂`

β. The second order terms actually do not contribute because they turn
out to depend only on one four-vector (the combination p − k), which give zero
upon contraction with the indices ρ and σ of the ε tensor. For the same reason the
f2 contribution vanishes as it depends only on the one four-vector p. Applying
the results for 〈nα · · ·〉 we find

ikλΓ
µνλ
5Λ (p, k) =

e2

4π2
εµρνσkρpσ +O(Λ−1).

Note that the terms linear in Λ vanished upon angular integration.
It follows that we have to choose the constant

c = −i 1

4π2

in order to satisfy the vector WTI for the complete vertex function Γµνλ
5 (p, k) =

Γµνλ
5Λ (p, k) + c e2εµνλρ(p− k)ρ.

Having determined the constant c, we turn to the axial-vector WTI. The axial
WTI at the tree-graph level (19.48) is (q = p+ k)

qµγ
µγ5 = S(`+ p)−1γ5 + γ5S(`− k)−1 = S(`+ k)−1γ5S(`− p)−1.
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Using this identity gives

qµΓµνλ
5Λ (p, k) = −e2

∫

|`E|<Λ

{

tr γ5γ
ν
[

S(`)γλS(`+ k) − S(`− k)γλS(`)
]

+tr γ5γ
λ [S(`)γνS(`+ p) − S(`− p)γνS(`)]

}

.

This is clearly zero, since the integration over ` yields a sum of terms, each
involving only one four-vector that is twice contracted with the Levi-Civita tensor.
For the complete vertex function this implies the celebrated anomaly in the axial
WTI:

i(p+ k)µΓµνλ
5 (p, k) = i(p+ k)µc e

2εµνλρ(p− k)ρ = − e2

2π2
εανβλkαpβ,

which is eq. (19.59) in P & S. The right-hand-side is called the anomaly. It is
equal to the matrix element

− e2

16π2
εανβλ〈pε, kε′|Fαν(0)Fβλ(0)|0〉,

and comparing with (1) we can write

∫

d4x e−iqx 〈pε, kε′|
[

∂µj
µ
5 (x) − e2

16π2
εκλµνFκλ(x)Fνν(x)

]

|0〉 = 0.

Studying other vertex functions and other matrix elements of ∂µj
µ
5 and εκλµνFκλFµν ,

and also using other methods mentioned in chapter 19 of P & S, has led to the
conclusion that the situation may be summarized by the operator equation, for
non-zero fermion mass m,

∂µ(ψ̄γµγ5ψ) = 2mψ̄iγ5ψ − e2

16π2
εκλµνFκλFνν .

Further remarks:

• The calculation described above brings to the fore the arbitrariness of dia-
grams that are divergent, and how this can eliminated by imposing physical
conditions.

• With the transformation of variable ` → −` and using γµ = −CγµTC†,
where C is the charge-conjugation matrix, the second line in (4) can be
shown to be equal to the first line after integration. This is important when
there are non-abelian generators involved and it leads to the symmetric
combination for the anomaly coefficient A in (19.132) in P & S.

• With the spherical cutoff method, the coefficient c depends on the choice of
loop momentum in the loop integral. The total Γµνλ

5 is unambiguous after
imposing the QED WTIs.
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• It is evidently advantageous to use a regularization that allows shifts of in-
tegration variables in loop integrals. For comments on using the convenient
dimensional regularization in case of anomalies, see F. Jegerlehner, Facts
of life with γ5, hep-th/0005255.

• A regularization of non-abelian chiral gauge theories to all orders in per-
turbation theory does not (yet?) exist ‘in the continuum’. A perturba-
tive lattice definition has recently been achieved in M. Lüscher, Lattice
regularization of chiral gauge theories to all orders of perturbation the-
ory, JHEP 006 (2000) 028, hep-lat/0006014. A non-perturbative definition
using the lattice regularization has long been sought; for reviews see M.
Golterman, Lattice chiral gauge theories, Nucl. Phys. Porc. Supll. 94 (2001)
189, hep-lat/0011027, and M. Lüscher, Chiral gauge theories revisited, hep-
th/0102028. See also the publications by H. Neuberger mentioned in e.g.
H. Neuberger, An introduction to lattice chiral fermions, hep-lat/0301040,
and M. Golterman and Y. Shamir, SU(N) chiral gauge theories on the lat-
tice, Phys. Rev. D70 (2004) 09506. Work in chiral gauge theories is still in
progress, which is usually posted in the hep-lat archive.

Some more on chiral symmetry in QCD

The r.h.s. of eq. (19.91) lacks a γ5, it should read

∂µj
µ5a = Q̄iγ5{m, τ a}Q. (5)

The analogue of this equation for the vector current is

∂µj
µa = Q̄i[m, τ a]Q. (6)

The one-particle states |π±〉 and |π0〉 for the charged and neutral pi-mesons
can be created out of the vacuum by application of the composite field operators
Q̄iγ5τ

±Q and Q̄iγ5τ
3, where τ± = τ 1 ± iτ 2. Note that Q̄iγ5τ

−Q = Q̄diγ5Qu,
which contains a creation operator for a an anti-u-quark and a creation operator
for a d-quark. Q̄iγ5τ

−Q|0〉 is a state with charge −1, with the internal quantum
numbers of the π− particle, and in addition it has also multi-particle components
with these quantum numbers. We have by arguments similar to those leading to
the spectral representation (7.9) (Källén-Lehmann representation)

∫

d4x eipx 〈0|Q̄(x)iγ5τ
+Q(x)Q̄(0)iγ5τ

−Q(0)|0〉 =
iZπ−

p2 −m2
π−

+ . . . (7)

where . . . denotes the contribution of multiparticle states. Here Zπ− is a constant
with dimension mass4, which may be called the wave function renormalization
constant for the composite ‘π− field’ Q̄iγ5τ

−Q. For small quark masses m we
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have approximate chiral SU(2) × SU(2) symmetry and then it is convenient to
work with Q̄iγ5τ

aQ, a = 1, 2, 3 and call the corresponding particles πa.
A derivation of (19.93) and (19.94) goes as follows. We start from (19.92), or

equivalently
−p2fπδab = 〈πb(p)|Q̄iγ5τ

aQ|0〉. (8)

By isospin symmetry (i.e. SU(2) × SU(2) transformations with UL = UR, which
are a symmetry for m = 0) we have

〈πb(p)|Q̄iγ5τ
cQ|0〉 =

√

Zπ δab + O(m). (9)

Isospin invariance also tells us that

〈πb|Q̄iγ5Q|0〉 = 0 + O(m), (10)

because Q̄iγ5Q|0〉 is an isoscalar and |πb〉 is an isovector when m = 0. Let f and
g be flavor labels (= u, d) and let us write,

〈πb|Q̄f iγ5Qg|0〉 = 2
√

Zπ (Xb)gf . (11)

The matrix Xb can be determined from (9) and (10). We expand X b in terms of
the complete set of matrices τ 0 ≡ 1

2
11 and τ c,

Xb =
3
∑

γ=0

Cb
γτ

γ , Cb
γ = 2tr (Xbτγ). (12)

Eqs. (9) and (10) imply

(Xb)gfτ
c
fg = tr (Xbτ c) =

1

2
δbc, tr (Xb) = 0, (13)

and it follows that
Cb

0 = 0, Cb
c = δbc, Xb = τ b. (14)

Using this knowledge we now find for the r.h.s. of (8):

Q̄iγ5{m, τ a}Q = 2
√

Zπ (τ b)gf{m, τa}fg + O(m2) = 2
√

Zπ tr (τ b{m, τ a}) + O(m2)

= 2
√

Zπ tr (m{τ a, τ b}) + O(m2) =
√

Zπ δab tr (m) + O(m2)

=
√

Zπ (mu +md) + O(m2). (15)

It follows that

m2
π = B(mu +md), B = −

√
Zπ

fπ

(16)
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We can generalize this derivation to the case of the three light flavors u, d
and s, as follows. The squared-mass of the pseudo Nambu-Goldstone (NG) boson
with (‘valence-quark’) quantum numbers of f̄ , g is approximately given by

m2
fg = B(mf +mg) + O(m2), (17)

where f 6= g. The case f = g is more complicated because the axial current with
f = g is anomalous:

∂µ(Q̄fγ
µγ5Qg) = (mf +mg)Q̄f iγ5Qg + δfg 2q, (18)

q = − g2

64π2
εκλµνF a

κλF
a
µν (19)

(this is a version of (19.103) that includes case of non-zero quark masses). The
candidate Nambu–Goldstone (NG) bosons and their masses are

π± : m2
π+ = m2

ud = 0.0195 GeV2

K± : m2
K+ = m2

us = 0.244 GeV2

K0, K̄0 : m2
K0 = m2

ds = 0.248 GeV2

π0 : m2
π0 = 0.0182 GeV2

η : m2
η = 0.301 GeV2

η′ : m2
η′ = 0.917 GeV2 (20)

For the unequal-flavor particles (f 6= g) we have indicated the quark labels. For
the neutral π0, η and η′ the quark assignment turns out to be less straightforward.

Consider two light flavors, nf = 2. The mass formula (17) with f = u, d and
g = u, d predicts four NG bosons in this case. The obvious candidates are π±, π0

and η, with
m2

π+ = m2
ud = B(mu +md). (21)

According to (17), the other eigenstates are ūu and d̄d. If we try to assign
π0 ↔ ūu, η ↔ d̄d, the relation

m2
ud =

1

2
(m2

uu +m2
dd) (22)

cannot be fulfilled at all. If we assume that mu ≈ md and π0 an equal mixture of
ūu and d̄d to get m2

π0 ≈ m2
π+, the orthogonal combination of ūu and d̄d should

have approximately the same mass as π0: the η does not fit in.
Consider next three light flavors, n = 3. The mass formulas now predict nine

NG bosons. We find

mu +md

mu +ms

=
m2

π+

m2
K+

≡ R1,
mu +ms

md +ms

=
m2

K+

m2
K0

≡ R2, (23)
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and from this

ms

mu

=
R2(R1 − 1)

1 − R2 −R1R2
= 31,

ms

md

=
R2

1 −R2 +mu/ms

= 20. (24)

Hence mu : md : ms ≈ 1 : 1.5 : 30. The effective action furthermore predicts
particles with masses

m2
uu =

2mu

mu +md

m2
π+ = 0.0155 GeV2, (25)

m2
dd =

2md

mu +md

m2
π+ = 0.0235 GeV2, (26)

m2
ss =

2ms

mu +ms

m2
K+ = 0.473 GeV2. (27)

The candidates π0, η and η′ do not fit into the n = 3 formulas either. The
effective action obtained so far must be wrong.

This is an aspect of the notorious U(1) problem. The problem is the chiral
U(1) invariance contained in U(nf) × U(nf). These are the transformations of
the type UL = U †

R = exp(iω) 11, or more generally, transformations UL = U †
R

with detUL 6= 1. We know that this invariance of the classical QCD action
is broken in the quantum theory by ‘anomalies’: QCD has only approximate
SU(nf) × SU(nf) chiral symmetry, plus the flavor U(1) symmetry UL = UR =
exp(iω) 11 corresponding to quark number conservation.

For the neutral (f = g) pseudoscalars the following mass formula can be
derived (see e.g. Smit, op. cit.)

m2
ff,gg = 2Bmfδfg + λ, (28)

or

m2 = 2B







mu 0 0
0 md 0
0 0 ms





+ λ







1 1 1
1 1 1
1 1 1





 . (29)

We shall treat the quark-mass term as a perturbation to the λ term. For mf = 0
we have the eigenvectors and eigenvalues

φ0 =
1√
3
(1, 1, 1), m2 = 3λ, (30)

φ3 =
1√
2
(1,−1, 0), m2 = 0, (31)

φ8 =
1√
6
(1, 1,−2), m2 = 0. (32)

Using mu,d,s as a perturbation (in the way familiar from quantum mechanics)
leads to the following mass formulas

m2
η′ = 3λ+B(2

3
mu + 2

3
md + 2

3
ms), (33)
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m2
π0 = B(mu +md), (34)

m2
η = B(

1

3
mu +

1

3
md + 4

3
ms), (35)

which hold for the mass ratios (24) up to tiny corrections. The eigenvectors are
also interesting, but here we merely mention that π0 and η are mainly φ3 and φ8,
whereas the η′ is predominantly φ0. From (33) we can determine the chiral U(1)
breaking strength λ,

3λ = m2
η′ − 1

2
(m2

π0 +m2
η) = 3(0.252) GeV2. (36)

The mass terms in the effective action depend on four parameters, Bmu, Bmd,
Bms and λ. Hence we have two predictions for the five pseudoscalar masses:

m2
π0 = m2

π+, (37)

m2
η = 1

6
(m2

uu +m2
dd) + 2

3
m2

ss = 0.322 GeV2, (38)

which agree reasonably well with experiment. It should be kept in mind that
electromagnetic corrections, which affect in particular the electrically charged
particles, are neglected.

In the early days the near equality of mπ0 and mπ+ was interpreted as an
aspect of approximate flavor symmetry, mu ≈ md. Now we know that md is
substantially larger than mu and that the approximate flavor symmetry is due to
approximate chiral symmetry, Bmu,d � 3λ, the spontaneous-symmetry breaking
pattern U(nf)×U(nf) → U(nf)flavor, and the flavor-singlet character of the chiral-
anomaly.

The Witten-Veneziano relation

The Noether argument tells us that to each continuous symmetry of the action
corresponds a ‘conserved current’ jµ, ∂µj

µ = 0, and a conserved ‘charge’ Q =
∫

d3x j0(x), ∂0Q = 0. This is true in the classical theory but not necessarily
in the quantum theory, which needs more specification than merely giving the
action, such as the precise definition of the path integral. In case the quantum
analog of jµ is not conserved, one speaks of an anomaly A ≡ ∂µj

µ. In four space-
time dimensions A is typically ∝ εκλµν Tr (GκλGµν), where Gµν is a gauge-field
tensor. Relations like ∂µj

µ = A can be found in perturbation theory by studying
correlation functions of jµ and A with other fields.

Chiral anomalies correspond to triangle diagrams, and related diagrams, in
which one vertex corresponds to a (polar) vector current, ψ̄iγµψ, or an axial vector
current, ψ̄iγµγ5ψ, and the other two vertices to gauge fields. There must be an
odd number of γ5’s in the trace over the Dirac indices (Tr (γ5γκγλγµγν) = 4iεκλµν),
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hence the name ‘chiral anomalies’. These γ5 may come from the gauge field
vertices or from the current.

In QCD there is no γ5 associated with the gauge field vertices and only axial
vector currents can have an anomaly. In the Euclidean formulation their diver-
gence reads

∂µ(ψ̄f iγµγ5ψg) = (mf +mg)ψ̄f iγ5ψg + δfg 2iq, (39)

q =
g2

32π2
εκλµν Tr (GκλGµν). (40)

For zero quark masses the right hand side of (39) is the anomaly. The vector
currents have no such anomaly. Their divergence reads

∂µ(ψ̄f iγµψg) = i(mf −mg)ψ̄fψg, (41)

which is zero in the symmetry limit mf = mg, hence also in the chiral limit
mf = mg = 0. The right-hand sides of the divergence equations (39) and (41)
are zero for the currents corresponding to SU(nf) × SU(nf) symmetry, obtained
by contraction of ψ̄f iγ

µPL,Rψg with the n2
f −1 flavor SU(nf) generators (λk)fg/2,

Trλk = 0. Hence, the anomaly in (39) breaks only chiral U(1) invariance corre-
sponding to λ0 ∝ 11 with ∂µ

∑

f ψ̄f iγµγ5ψf = 2nfiq.
The quantity q is called the topological charge density. Continuum gauge fields

on topologically non-trivial manifolds (such as the torus T 4 which corresponds to
periodic boundary conditions) fall into so-called Chern classes characterized by
an integer, the Pontryagin index or topological charge Qtop:

Qtop =
∫

d4x q(x). (42)

An important example of configurations with topological charge is given by su-
perpositions of (anti)instantons. The latter are solutions of the Euclidean field
equations (hence they are saddle points in the path integral) with localized action
density, non-perturbative action S = 8π2/g2 and topological charge ±1. In this
context we mention also the Atiyah–Singer index theorem:

Qtop = n+ − n−, (43)

where n± are the number of zero modes (eigenvectors with zero eigenvalue) of
the Dirac operator γµDµ with chirality γ5 = ±1.

The significance of all this for our pseudoscalar particle mass spectrum is
that the phenomenologically required chiral U(1) breaking is present indeed in
quantum chromodynamics, provided that gauge-field configurations with topolog-
ical charge density give sufficiently important contributions to the path integral.
The analysis of this is complicated [1] but fortunately there is a simple approx-
imate formula which expresses the effect of the chiral anomaly on the neutral
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pseudoscalar masses, the Witten–Veneziano formula [2, 3]:

λ ≈ 1

2f 2
π

χtop, no quarks. (44)

Here λ is the U(1)-breaking mass term introduced in (28) and χtop is the topo-
logical susceptibility,

χtop =
∫

d4x 〈q(x)q(0)〉. (45)

Note that in (44) χtop is to be computed in the pure gauge theory without quarks,
although it can of course also be evaluated in the full theory with dynamical
fermions. From (36) we have χtop ≈ (180 MeV)4.

Pion-nucleon σ model

Consider an effective nucleon field N that is a doublet in terms of Dirac proton
(p) and neutron (n) fields

N(x) =

(

p(x)
n(x)

)

. (46)

The effective action of the pion–nucleon sigma model is given by

Seff = −
∫

d4x [N̄γµ∂µN +GN̄(φPR + φ†PL)N ] + SO(4), (47)

where SO(4) is the scalar field action of the O(4) model (section 11.1), with an
explicit symmetry-breaking term

∆SO(4) =
∫

d4x εϕ0 (48)

added to give the NG bosons (the pions) a mass (∝ √
ε), and φ is a matrix field

constructed out of the scalar fields,

φ = ϕ011 + i
3
∑

k=1

ϕkσk. (49)

The σk are the three Pauli matrices, which act on the p and n components of N
and G is the pion–nucleon coupling constant.

The action is invariant under SU(2) × SU(2) transformations

N → UN, N̄ → N̄ V̄ , φ→ ULφU
†
R, UL,R ∈ SU(2). (50)

This follows from the fact that the transformation on the matrix scalar field φ
is equivalent to an SO(4) rotation on the ϕα. Hint: check that φ†φ = ϕ211,
detφ = ϕ2; and hence that φ may be written as φ =

√
ϕ2 V , V ∈ SU(2).
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This chiral invariance of the sigma-model action is a nice expression of the
symmetry properties of the underlying quark–gluon theory. When the symmetry
is spontaneously broken, such that the ground-state value of the scalar field is
φg = f11, f = ϕ0

g, the action acquires a mass term GfN̄N : the nucleon gets its
mass from spontaneous breaking of chiral symmetry, mN = Gf . This relation
is in fair agreement with experiment. On introducing the weak interactions into
the model one finds that f equals the pion decay constant, f = fπ ≈ 93 MeV,
while G = gπNN ≈ 13 is the pion-nucleon coupling constant that is known from
pion-nucleon-scattering experiments, so with mN = 940 MeV we have to compare
mN/f ≈ 10 with 13.

The field ϕ0 is often denoted by σ, and ϕk by πk, the sigma and pion fields.
The pions are stable within the strong interactions but the σ is a very unstable
particle with mass mσ in the range 600–1200 MeV. Given mπ = 140 MeV and
mσ = 900 MeV, the other parameters in the action can be determined.

In this model the Goldberger-Treiman relation (19.102) is simply the nucleon
mass relation mentioned above, since gA = 1:

gA =
fπ

mN

gπNN , (51)

satisfied to about 30%. As mentioned in P & S, the actual Goldberger-Treiman
relation, which reflects the physics of QCD and does not make the simplications
implied by the sigma model, is satisfied to the much higher accuracy of about
5%.
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