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4 CONTENTS0.1 Prefa
eQuantum �eld theory is our des
ription of the basi
 for
es between elementaryparti
les. There is a 
lose 
onne
tion in its methods with 
ondensed matterphysi
s, 
lassi
al and quantal. In a 
ompromise with the requirement of 
on-
iseness the following approa
h has emerged, assuming knowledge of 
lassi
alele
trodynami
s, spe
ial relativity, quantum me
hani
s and some group theory:- The ele
tromagneti
 �eld is quantized 
anoni
ally in the Coulomb gaugeand its quanta are interpreted in terms of parti
les, the photons. Then theamplitude that the va
uum persists under in
uen
e of an external sour
e(va
uum amplitude) is 
al
ulated and reexpressed in a general 
ovariantgauge. This introdu
es fun
tional te
hniques, propagators and the quantumversion of the a
tion fun
tional, generally known as the e�e
tive a
tion.- Having seen that a quantized �eld gives a des
ription of parti
les, the reals
alar �eld is introdu
ed as the simplest example. The 
omplex s
alar �eldis 
oupled to the ele
tromagneti
 �eld using the prin
iple of gauge invari-an
e and the system is 
anoni
ally quantized, without going into details.Instead, the '4 theory is used for showing that operator �eld equationsimply equations for the va
uum amplitude and Dyson-S
hwinger equationsfor the e�e
tive a
tion. Feynman diagrams provide a natural represen-tation of various mathemati
al expressions. The iterative solution of theDyson-S
hwinger equations generates the loop expansion in powers of ~.We 
on
entrate on the semi
lassi
al approximation (no loop diagrams), inwhi
h the e�e
tive a
tion has the form of a 
lassi
al a
tion.- Using external sour
es for emission and absorption of parti
les, s
atteringamplitudes are derived in terms of 
orrelation fun
tions (
onne
ted Greenfun
tions). The resulting expressions also apply to bound states and are onthe same footing as the LSZ (Lehmann-Symanzik-Zimmermann) formulas.Appli
ations in s
alar ele
trodynami
s illustrate how it works.- For the des
ription of spin 1/2 parti
les spinor �elds are introdu
ed. Westart here from the parti
les and derive the a
tion and �eld equations fromthe va
uum amplitude. It is shown how Lorentz invarian
e and lo
ality leadto Fermi-Dira
 statisti
s, the Dira
 equation and anti
ommuting variables.The presentation is initially in terms of hermitian spinor �elds (Majorana�elds). The subsequent introdu
tion of 
omplex �elds (Dira
 �elds) and the
oupling to the ele
tromagneti
 �eld follows 
losely the steps taken earlierfor the s
alar �eld.- For the derivation of Feynman rules the stage has been set already by theexample of s
alar ele
trodynami
s, and the presentation 
on
entrates onputting minus signs in the appropriate pla
es.



0.1. PREFACE 5- The path integral is a spino� giving a representation of the solution of theDyson-S
hwinger equations as a fun
tional Fourier transform. This does notdo justi
e to the path integral as an independent fundamental formulationof quantum theory, but it is qui
k.A spa
e favoured metri
 is used, g11 = g22 = g33 = �g00 = 1, with 
orrespondigDira
 matri
es. This may be 
ompared with the 
onvention used by the in
uen-tial books of Bjorken and Drell: g�� = �(g��)BD, i
� = (
�)BD. The 
harge ofthe ele
tron is �e, e = jej.The following books on quantum �eld theory are refered to in the text by nameof authors:J.D. Bjorken and S.D. Drell,I: Relativisti
 Quantum Me
hani
s, M
Graw-Hill (1964);II: Relativisti
 Quantum Fields, M
Graw-Hill (1965).C. Itzykson and J.-B. Zuber, Quantum Field Theory, M
Graw-Hill (1980).B. de Wit and J. Smith, Field Theory in Parti
le Physi
s I,North-Holland (1986).L. Ryder, Quantum Field Theory, Cambridge University Press 1985.L.S. Brown, Quantum Field Theory, Cambridge University Press 1992.Furthermore mentioned areS. Weinberg, The quantum theory of massless parti
les,in Le
tures on Parti
les and Field Theory, Penti
e-Hall 1965(Brandeis Summer Institute in Theoreti
al Physi
s).A. Pais, Inward Bound, Of Matter and For
es in the Physi
al World,Prenti
e-Hall 1965.The following referen
es are in
luded for 
ompleteness, they are not re
ommendedfor study at an introdu
tory level.B.S. DeWitt, Dynami
al Theory of Groups and Fieldsin Relativity Groups and Topology, Les Hou
hes 1963, and separate bookby Gordon and Brea
h 1964.J. S
hwinger,I: Parti
les, Sour
es and Fields I, Addison-Wesley 1970,II: Parti
les, Sour
es and Fields II, Addison-Wesley 1973,III: Quantum Kinemati
s and Dynami
s, Benjamin 1970.
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Chapter 1Quantized ele
tromagneti
 �eldIn this 
hapter we will quantize the ele
tromagneti
 �eld by 
anoni
al methodsand derive the interpretation of the quanta as parti
les, the photons. The 
lassi
al�eld is re
overed as an expe
tation value of the quantum �eld in suitable statesin Hilbert spa
e. Subsequently we study the amplitude for the va
uum to persistunder in
uen
e of an external sour
e, as well as amplitudes for emission andabsorption of photons by the sour
e. These amplitudes will be basi
 tools in ourpresentation. An interesting appli
ation is the radiation of an inde�nite numberof photons by an external sour
e. We end with a dis
ussion of the prin
ple oflo
ality in quantum �eld theory.1.1 Canoni
al quantizationSuppose we have a system des
ribed by 
oordinates qk(t) and a Lagrange fun
tionL(q(t); _q(t)), whi
h may also depend expli
itly on time ( _qk � dqk=dt). A simpleexample is a parti
le at position q = (q1; q1; q3) in a potential V (q),L = 12m _qk _qk � V (q); (1.1)where m is the mass of the parti
le. We use the 
onvention in whi
h a summa-tion is implied over two repeated indi
es (unless otherwise idi
ated). The a
tionfun
tional of the system is given byS(q) = Z t2t1 dt L(q(t); _q(t)): (1.2)Requiring the a
tion to be stationary under variations Æq(t) leads to the equationsof motion. Keeping only terms linear in Æq we haveÆS � S(q + Æq)� S(q) = Z t2t1 dt ÆL(q; dq=dt)7



8 CHAPTER 1. QUANTIZED ELECTROMAGNETIC FIELD= Z t2t1 dt ( �L�qk Æqk + �L�(dqk=dt) ddtÆqk)= � �L�(dqk=dt)Æqk�t2t1 + Z t2t1 dt ( �L�qk � ddt �L�(dqk=dt))Æqk (1.3)Requiring the ÆS = 0 for arbitrary Æq whi
h vanish at the boundaries, Æq(t1;2) = 0,thus gives the equations of motion in Lagrange form�L�qk � ddt �L� _qk = 0: (1.4)For our example these look likem�qk + �V (q)�qk = 0: (1.5)Let us introdu
e at this point the notion of a fu
tional derivative ÆS=Æqk. Thea
tion is a fun
tional of qk(t), i.e. it gives a number to any point in a spa
e offun
tions qk(t). The fun
tional derivative is easiest to understand as a generaliza-tion of the partial derivative, viewing t as a 
ontinuous index. Making a variationÆqk(t) it is de�ned by writing ÆS in the formÆS = Z dt ÆSÆqk Æqk: (1.6)Hen
e, for the spe
i�
 form (1.2) of the a
tion,ÆSÆqk(t) = �L�qk(t) � ddt �L� _qk(t) : (1.7)The 
anoni
al momenta pk are de�ned aspk = �L� _qk ; (1.8)and the Hamilton fun
tion H(p; q) is de�ned by a Legendre transformation from_qk to pk, H(p; q) = pk _qk � L(q; _q): (1.9)To be able to express the hamiltonian H in terms of the 
anoni
al 
oordinatesand momenta we have to solve for _qk, _qk = _qk(q; p). The equations of motion 
annow be expressed in Hamilton form,�H�qk = � �L�qk + pl � _ql�qk � �L� _ql � _ql�qk= � �L�qk = � ddt �L� _qk = � _pk; (1.10)�H�pk = _qk + pl � _ql�pk � �L� _ql � _ql�pk = _qk: (1.11)



1.1. CANONICAL QUANTIZATION 9In our example pk = m _qk; (1.12)H(p; q) = pkpkm � L(q; pm) = pkpk2m + V (q); (1.13)_pk = ��V�qk ; _qk = pkm: (1.14)Hamilton's equations 
an be rewritten in terms of Poisson bra
kets, de�ned forgeneral A = A(q; p) and B = B(q; p) by(A;B) = �A�qk �B�pk � �B�qk �A�pk : (1.15)The 
anoni
al Poisson bra
kets are(qk; pl) = Ækl; (qk; ql) = (pk; pl) = 0; (1.16)and in bra
ket form the Hamilton equations read_pk = (pk; H); _qk = (qk; H): (1.17)In the 
anoni
al quantization method the quantum me
hani
al des
ription ofthe system is based on the 
orresponden
e: 
ommutator [A;B℄$ Poisson bra
ket(A;B) , su
h that in the formal 
lassi
al limit ~! 0:[A;B℄=i~! (A;B): (1.18)In pra
tise the re
ipe for quantization amounts to assuming pk and qk to beoperators in Hilbert spa
e with the 
anoni
al 
ommutation relations[qk; pl℄ = i~Ækl; [qk; ql℄ = [pk; pl℄ = 0: (1.19)A familiar representation is pk ! �i~�=�qk , qk ! qk, a
ting on wave fun
tions (q; t), the 
oordinate representation. In the S
hr�odinger pi
ture the time depen-den
e is 
arried by the wave fun
tion and the 
anoni
al operators do not dependon time. In the Heisenberg pi
ture the time dependen
e is 
arried by the opera-tors and the wave fun
tion is time indpendent. Then the p's and q's depend ontime and the 
anoni
al 
ommutators are supposed to hold only at equal times,[qk(t); pl(t0)℄ = i~Ækl; et
. at t = t0: (1.20)For t 6= t0 the 
ommutators may be di�erent and follow from the Heisenbergequations of motion ddtpk = [pk; H℄=i~; ddtqk = [qk; H℄=i~: (1.21)



10 CHAPTER 1. QUANTIZED ELECTROMAGNETIC FIELDLet us re
all �nally the spe
ial 
ase of the harmoni
 os
illator, e.g.V (q) = 12m!2qkqk; (1.22)as su
h systems for whi
h the hamiltonian is quadrati
 in the 
anoni
al variablesplay an important role in the following. The hamiltonian is diagonalized by theintrodu
tion of 
reation and annihilation operators, ayk and ak,ak = 1p2~m! (m!qk + ipk); ayk = 1p2~m! (m!qk � ipk); (1.23)with [ak; ayl ℄ = Ækl; [ak; al℄ = [ayk; ayl ℄ = 0; (1.24)H = ~!Xk (aykak + 12): (1.25)The eigenstates of H may be labeled by o

upation numbers nk (= 0; 1; 2; : : :),jn1n2n3i = (ay1)n1pn1! (ay2)n2pn2! (ay3)n3pn3! j0i; (1.26)Hjn1n2n3i = ~!(n1 + n2 + n3 + 32)jn1n2n3i; (1.27)where j0i = j000i is the ground state (lowest energy state) whi
h satis�es akj0i =0.1.2 A
tion for the ele
tromagneti
 �eldThe a
tion for the ele
tromagneti
 �eld A�(x) 
oupled to an external 
urrentJ�(x) is given by S = Z d4x [�14F��(x)F ��(x) + J�(x)A�(x)℄; (1.28)where F��(x) = ��A�(x)� ��A�(x) (1.29)is the ele
tromagneti
 �eld strength tensor and the integration is over all of spa
e-time. An external 
urrent is a 
urrent whi
h is not a dynami
al variable, it in
u-en
es the ele
tromagneti
 �eld but does not su�er a ba
k rea
tion from the �eld.It is an idealization of a real 
urrent produ
ed by parti
le motion. By pres
rib-ing the 
urrent as we 
hoose we 
an probe the �eld and study some elementarydynami
s without. We use Lorents-Heaviside ele
tromagneti
 units (rationalized



1.2. ACTION FOR THE ELECTROMAGNETIC FIELD 11Gauss units), whi
h is 
ustomary in relativisti
 quantum �eld theory, and the
onventions x = (x1; x2; x3; x0) = (x; x0); x0 = 
t; (1.30)x� = g��x� ; F �� = g��g��F��; (1.31)g11 = g22 = g33 = �g00 = +1; (1.32)Fmn = �mnkBk; Fm0 = F 0m = Em; (1.33)�� = ��x� ; 2 = ����; � = �m�m; (1.34)where Greek indi
es run from 0 to 3 and Latin indi
es from 1 to 3. Noti
e thatx0 = �x0 and xm = xm, m = 1; 2; 3. We shall furthermore use units in whi
h thevelo
ity of light 
 = 1.The equations of motion (Maxwell's equations) follow from the prin
iple ofstationary a
tion. Under a variation ÆA� of A� we haveÆS � S(A+ ÆA)� S(A)= Z d4x Æ(�14F��F �� + J�A�); (1.35)ÆF�� = ��(A� + ÆA�)� ��(A� + ÆA�)� F��= ��ÆA� � ��ÆA�; (1.36)Æ(F��F ��) = 2F ��ÆF�� = 4F ����ÆA� ; (1.37)ÆS = Z d4x (�F ����ÆA� + J�ÆA�)= Z d4x (��F �� + J�)ÆA� : (1.38)We made a partial integration in the last step and assumed that the surfa
e termis zero, whi
h is 
orre
t if we impose that ÆA�(x) vanishes outside some largebut �nite domain in spa
etime. Requiring ÆS = 0 for arbitrary variations in thisdomain gives Maxwell's equations0 = ÆSÆA� = ��F �� + J� = (�2g�� � ����)A� + J� : (1.39)We re
all at this point the gauge invarian
e of the theory. Under the gaugetransformation A�(x)! A�(x) + ��!(x) (1.40)the �eld strength F��(x) is invariant. The term involving the external 
urrent isalso invariant,Z d4x J�A� ! Z d4x J�(A� + ��!) = Z d4x (J�A� � !��J�)= Z d4x J�A�; (1.41)



12 CHAPTER 1. QUANTIZED ELECTROMAGNETIC FIELDprovided the 
urrent is 
onserved1 ��J� = 0: (1.42)Note that in making the partial integration above we also assumed that ! vanishesoutside a �nite spa
etime domain. The gauge invarian
e implies that the solutionof the �eld equations is not unique. A unique solution for A� is obtained byimposing a gauge 
ondition, su
h as the Lorentz 
ondition��A� = 0: (1.43)Another frequently used 
ondition is the radiation or Coulomb gauge, in whi
h�mAm = r �A = 0: (1.44)We re
all here also the energy-momentum tensor of the ele
tromagneti
 �eld,T �� = F ��F �� � 14g��F��F ��; (1.45)whi
h des
ribes the energy densityT 00 = F 0aF 0a + 12Fa0F a0 + 14FabF ab = 12(E2 +B2) (1.46)and the momentum densityT 0n = F 0aF na = Ea�nabBb = (E�B)n; (1.47)also known as the Poynting ve
tor. The lo
al balan
e equation��T �� = �F ��J� (1.48)expresses the 
onservation of the total energy-momentum in the �eldP � = Z d3x T 0� : (1.49)If the external 
urrent vanishes, P � is time independent,�0P � = Z d3x �0T 0� = � Z d3x �mTm� = 0: (1.50)See the text books for the derivation of the energy-momentum tensor.The a
tion S 
an be written in the formS = Z d4xL; (1.51)L = �14F��F �� + J�A�; (1.52)1The terminology: a 
urrent j�(x) is `
onserved', simply means: ��j�(x) = 0. It is of 
oursethe total 
harge Q = R d3x j0(x) whi
h is 
onserved.



1.3. QUANTIZATION IN THE COULOMB GAUGE 13in whi
h the Lagrange density L is a s
alar under Lorentz transformations, pro-vided that A� is a Lorentz ve
tor (or a ve
tor modulo a gauge transformation).This ni
e manifest Lorentz invarian
e is broken in the 
anoni
al formalism whi
htreats the time and the time derivatives in a spe
ial way. A manifestly 
ovariantdes
ription is possible with fun
tional te
hniques and the path integral formalismwhi
h we shall introdu
e later. At this stage however the 
anoni
al formalism isinstru
tive for a �rst exploration of the quantum properties of the ele
tromagneti
�eld.1.3 Quantization in the Coulomb gaugeWe write the a
tion in the formS = Z dt L; (1.53)L = Z d3x (�14F��F �� + J�A�) (1.54)= Z d3x (12 _Am _Am � _Am�mA0+ 12�nAm�mAn � 12�mAn�mAn + 12�mA0�mA0+ J0A0 + JmAm) (1.55)We note the analogy with the quantum me
hani
s of a parti
le with 
oordinatesqk(t), k = 1; 2; 3: the label k is analogous to (�; x1; x2; x3) in A�(x1; x2; x3; t):A�(x; t)$ qk(t); (�;x)$ k: (1.56)Sin
e x 
an take an in�nite number of di�erent values, the �eld 
orresponds toan in�nite number of degrees of freedom. There are now several 
ompli
ations:- the index x is 
ontinuous;- _A0 is la
king in L, so the 
anoni
al 
onjugate to A0 will vanish.The se
ond 
ompli
ation is typi
al for gauge theories su
h as ele
tromagnetismand we shall deal with it �rst.Consider the equation of motion whi
h follows from varying the a
tion withrespe
t to A0, 0 = ÆS = Z d4x (��F �0 + J0)ÆA0; (1.57)whi
h gives Gauss's law, or Coulomb's law0 = ÆSÆA0 = �mFm0 + J0 = �r �E+ J0= ��m(��mA0 � �0Am) + J0: (1.58)



14 CHAPTER 1. QUANTIZED ELECTROMAGNETIC FIELDWe 
an now use the gauge invarian
e of the theory and impose the Coulombgauge 
ondition �mAm = 0, whi
h has the result that the time derivative dropsout of (1.58), �m�0Am = 0, su
h that (1.58) takes the form��A0 = J0: (1.59)Sin
e this equation does not 
ontain time derivatives it is not a dynami
al equa-tion anymore, but an equation of 
onstraint at every instant in time. Withsuitable boundary 
onditions the potential A0 is 
ompletely determined in termsof J0. For in�nite spa
eA0(x; t) = Z d3y 14�jx� yjJ0(y; t); (1.60)where we used the fa
t that the Coulomb potential is a Green fun
tion for thelapla
ian �: �� 14�jx� yj = Æ(x� y): (1.61)Hen
e, in this sense A0 is not a dynami
al variable in the Coulomb gauge. Weshall use the Coulomb gauge for the 
anoni
al formalism and 
ontinue to writeA0, for simpli
ity, keeping in mind that it is a given fun
tion of J0.In the Coulomb gauge we 
an rewrite the lagrangian in the formL = Z d3x [12 _Am _Am � 12Am(��)Am + JmAm℄� EC ; (1.62)EC = Z d3x (�12�mA0�mA0 + J0A0) = Z d3x 12J0A0: (1.63)We used �mAm = 0, �A0 = �J0 and made partial integrations of �m assumingboundary 
onditions su
h that surfa
e terms vanish. The quantity EC is theCoulomb energy; using (1.60) this 
an be written asEC = 12 Z d3x J0(x; t) 14�jx� yjJ0(y; t): (1.64)The lagrangian is now in the form L(q; _q) with qk(t)! Am(x; t).We now have to deal with the 
ontinuous nature of the index x and the 
on-straint �mAm(x; t) = 0. This 
an be done by expanding the potentials into adis
rete set of basis fun
tions fm� (x) satisfying �mfm� (x) = 0. Let us en
lose thesystem in a 
ubi
 box �L=2 � xm � L=2 with periodi
 boundary 
onditions. Fora large enough box its �niteness and the type of boundary 
onditions should notmatter. Periodi
 boundary 
onditions are 
onvenient be
ause with it all bound-ary terms in partial integrations vanish (the box has no boundary) and they arenatural for eigenstates of the momentum operator (
f. next se
tion). We 
anthen use the dis
rete set of eigenfun
tions of the lapla
ian � to 
onstru
t the



1.3. QUANTIZATION IN THE COULOMB GAUGE 15fm� (x). The real eigenfun
tions of the lapla
ian 
orrespond to produ
ts of thestanding waves 
os(k1x1) 
os(k2x2) 
os(k3x3), sin(k1x1) 
os(k2x2) 
os(k3x3), . . . ,sin(k1x1) sin(k2x2) sin(k3x3), with km = 2�nm=L, nm = 0; 1; 2; : : : ; and the eigen-values are given by �� ! !2 = k2. Out of these eigenfun
tions the real fm� (x)
an be 
onstru
ted satisfying �mfm� (x) = 0. The details of this are tedious andnot needed in the following and we shall just re
ord their properties:��fm� (x) = !2�fm� (x); �mfm� (x) = 0; (1.65)Z d3x fm� (x)�fm� (x) = Æ��; (1.66)X� fm� (x)fn� (y)� = P Tmn(x;y): (1.67)We have written these equations in general 
omplex form and in the next se
-tion we shall give an expli
it set of 
omplex basis fun
tions, whi
h are easier to
onstru
t. For the moment have to keep in mind that the fm� (x) are real. Theobje
t P Tmn(x;y) is a proje
tor on the spa
e of `transverse' ve
tor fun
tions, i.e.a proje
tor: P 2 = P , orZ d3y P Tkl(x;y)P Tlm(y; z) = P Tkm(x; z); (1.68)whi
h is transverse, �mP Tmn(x;y) = 0. It is the identity operator for ve
torfun
tions satisfying �mAm(x) = 0,Z d3y P Tmn(x;y)An(y) = Am(x): (1.69)An expli
it expression for P T will be given in the next se
tion (
f. (1.100)).In the summation P� we ex
lude the `zero mode' k = (0; 0; 0) (this would beautomati
 with Diri
hlet boundary 
onditions). This means that we ex
ludehere potentials Am whi
h are 
onstant in spa
e. Su
h potentials 
ompli
ate the(otherwise interesting) mathemati
s and we usually do not need them in physi
alappli
ations.In terms of these basis fun
tions we 
an now expand the potentials in normalmodes, Am(x; t) = X� q�(t)fm� (x); (1.70)q�(t) = Z d3x fm� (x)Am(x; t); (1.71)and in terms of the new 
oordinates q� the lagrangian takes the form, for J� = 0,L =X� (12 _q� _q� � 12!2�q�q�): (1.72)



16 CHAPTER 1. QUANTIZED ELECTROMAGNETIC FIELDThis shows that the ele
tromagneti
 �eld is equivalent to an ini�nite set of har-moni
 os
illators, with unit mass and frequen
ies !�. The 
anoni
al des
riptionis now an obvious generalization of the 
ase of one harmoni
 os
illator,p� = �L=� _q� = _q�; (1.73)H = X� (12p�p� + 12!2�q�q�); (1.74)(q�; p�) = Æ��; (q�; q�) = (p�; p�) = 0; (1.75)_p� = (p�; H); _q� = (q�; H) = p�: (1.76)Evidently the 
anoni
al 
onjugate to the �eld Am(x) is�m(x) = (Am(x); H) = _Am(x)= X� p�fm� (x): (1.77)The system is quantized by imposing 
anoni
al 
ommutation relations be-tween the p's and q's,[q�; p�℄ = i~Æ��; [q�; q�℄ = [p�; p�℄ = 0: (1.78)1.4 Fo
k spa
eSin
e we have a system of harmoni
 os
illators it is useful to work with 
reationand annihilation operatorsa� = 1p2~!� (!�q� + ip�); ay� = 1p2~!� (!�q� � ip�): (1.79)The Hilbert spa
e resulting from an in�nite number of 
reation and annihilationoperators is 
alled Fo
k spa
e. It has a no-quantum state j0i de�ned bya�j0i = 0; (1.80)and normalized basis ve
tors jfn�gi =Y� (ay�)n�pn�! j0i (1.81)where only a �nite number of o

upation numbers n� are supposed to be nonzero.It is generally simpler to work with unnormalized basis ve
tors of the formj�1 � � ��ni = ay�1 � � �ay�n j0i; n = 0; 1; 2; : : : ; (1.82)



1.5. ENERGY-MOMENTUM EIGENSTATES 17in terms of whi
h the orthogonality and 
ompleteness relations readh�1 � � ��nj�1 � � ��mi = ÆnmXP Æ�1;�P1 � � � Æ�n ;�Pn; (1.83)Xn 1n! X�1;���;�n j�1 � � ��nih�1 � � ��nj = 1: (1.84)Here PP is a summation over all permutations of the indi
es 1; : : : ; n. Theseformulas remain valid with the appropriate modi�
ations (P ! R , Krone
ker-Æ ! Dira
-Æ) in 
ase the index � is 
ontinuous, e.g. �! k; �, with k a momentumlabel and � a spin label.1.5 Energy-momentum eigenstatesThe quantized ele
tromagneti
 �eld is now an operator in Hilbert spa
e. The
ommutation relations between the p� and q� imply the following relations be-tween Am and �m,[Am(x);�n(y)℄ = i~P Tmn(x;y); [Am(x); An(y)℄ = [�m(x);�n(y)℄ = 0: (1.85)For example,[Am(x);�n(y)℄ = X�� [q�; p�℄ fm� (x)fn� (y)� = i~X� fm� (x)fn� (y)�= P Tmn(x:y): (1.86)To guide our physi
al interpretation we shall use the energy momentum P � of the�eld, whi
h is now also an operator, and determine its eigenstates and eigenvalues.In the Coulomb gauge A0 vanishes when J� = 0, 
f. (1.60). ThenT 00 = 12(EmEm +BmBm)= 12( _Am _Am + �nAm�nAm � �nAm�mAn); (1.87)T 0n = �nmpEmBp = � _Am�nAm + _Am�mAn; (1.88)giving P 0 = Z d3x T 00 = Z d3x [12�m�m + 12Am(��)Am℄; (1.89)P n = Z d3x T 0n = Z d3x (��m�nAm); (1.90)where we used the Coulomb gauge 
ondition �mAm = 0 and _Am = �m. Noti
ethat there is no operator ordering ambiguity in Pm: we 
an also write �m to the



18 CHAPTER 1. QUANTIZED ELECTROMAGNETIC FIELDright of Am, the di�eren
e involves the derivative of the 
ommutator, �mÆ(x �y)jx=y = 0. Using the normal mode expansion we �ndP 0 = X� (12p�p� + 12!2�q�q�)= H: (1.91)The momentum operator is less easy to express in terms of the normal modesbe
ause the real mode fun
tions fm� (x) are not eigenfun
tions of �n. Thereforewe now introdu
e a di�erent set fm� (x) whi
h are eigenfun
tions of �n and �,and satisfy �mfm� (x) = 0. They are 
omplex and have the formfmk;�(x) = em(k; �)eikx; km = nm2�=L; nm = 0;�1;�2; : : : ; (1.92)These are 
learly eigenfun
tions of �n and �. Re
all that the nm have to beintegers to satisfy periodi
 boundary 
onditions in a box of size L3. To satisfy�mfm = 0, the em(k; �) have to be orthogonal to k (hen
e the terminology`transverse'), k � e(k; �) = 0: (1.93)For example for k = (0; 0; jkj) = jkj3̂, e(k; 1) = (1; 0; 0) = 1̂, e(k; 2) = (0; 1; 0) =2̂, and in general e(k; �) may be obtained from this by a rotation, a standardrotation that takes (0; 0; jkj) into k. Another set well known from 
lassi
al ele
-trodynami
s 
onsists of the right and left handed polarization ve
torse(k;�) = � 1p2[e(k; 1)� ie(k; 2)℄: (1.94)The polarization ve
tors satisfyem(k; �)�em(k; �0) = Æ��0 ; (1.95)X� em(k; �)en(k; �)� = �Æmn � kmknk2 � � P Tmn(k): (1.96)The basis fun
tions are orthogonal and 
omplete in the sense (1.67), with� ! (k; �); (1.97)Æ��0 ! Æ��0 V Æk;k0; (1.98)X� ! 1V Xk;� ; (1.99)P Tmn(x;y) = 1V Xk e�ikx+iky �Æmn � kmknk2 � ; : (1.100)where V = L3 is the volume and the zero mode k = 0 is absent again.



1.5. ENERGY-MOMENTUM EIGENSTATES 19We now expand the Am and �m in terms of these basis fun
tions as follows,Am(x) = p~V Xk;� 12k0 [eikxem(k; �)a(k; �) + e�ikxem(k; �)�ay(k; �)℄; (1.101)�m(x) = p~V Xk;� 12k0 [�ik0eikxem(k; �)a(k; �) + ik0e�ikxem(k; �)�ay(k; �)℄;where k0 = jkj: (1.102)The somewhat strange looking normalization 
onvention involving 1=2k0 willprove useful in the following. The above expansions de�ne a(k; �) and a(k; �)y.The form of (1.101) is guided by the inverse of (1.79),q� = p~2!� p2!� (a� + ay�); (1.103)p� = p~2!� p2!� (�i!�a� + i!�ay�); (1.104)and (1.70,1.77). The relations (1.101) may be inverted as follows. We writeam(k) = X� em(k; �)a(k; �); (1.105)a(k; �) = em(k; �)�am(k): (1.106)Then Z d3x e�ikxAm(x) = p~2k0 [am(k) + aym(�k)℄; (1.107)Z d3x e�ikx�m(x) = p~2 [�iam(k) + iaym(�k)℄; (1.108)giving p~ am(k) = Z d3x e�ikx[k0Am(x) + i�m(x)℄; (1.109)p~ aym(�k) = Z d3x e�ikx[k0Am(x)� i�m(x)℄: (1.110)The 
ommutation relations between am(k) and aym(k) 
an now be 
al
ulated from(1.85) to be [am(k); ayn(l)℄ = P Tmn(k) 2k0V Æk;l;[am(k); an(l)℄ = [aym(k); ayn(l)℄ = 0: (1.111)



20 CHAPTER 1. QUANTIZED ELECTROMAGNETIC FIELDFor example,[am(k); ayn(l)℄ = 1~ Z d3xd3y e�ikx+ily [k0Am(x) + i�m(x); l0Am(y)� i�m(y)℄= (k0 + l0) Z d3xd3y e�ikx+ily P Tmn(x;y)= (k0 + l0)P Tmn(l) Z d3y ei(l�k)y= 2k0P Tmn(k)V Æk;l: (1.112)It follows that [a(k; �); ay(k0; �0)℄ = 2k0V Æk;k0Æ�;�0 ; (1.113)[a(k; �); a(l; �0)℄ = [ay(k; �); ay(l; �0)℄ = 0: (1.114)Hen
e, the new a and ay satisfy the 
ommutation relations of 
reation and anni-hilation operators of an in�nite set of harmoni
 os
illators labeled by (k; �).Expressing the hamiltonian (1.89) and momentum operator (1.90) in termsof the 
reation and annihilation operators we �nd (
f. Problems)P 0 = ~V Xk;� 12k0ay(k; �)a(k; �)k0 + E0; (1.115)Pm = ~V Xk;� 12k0ay(k; �)a(k; �)km; (1.116)E0 = ~Xk;� 12k0: (1.117)By analogy to the ordinary harmoni
 o
illator we re
ognize the number operatoray(k; �)a(k; �) for ea
h mode (k; �). The ground state (state with lowest energy)is the no-quantum state j0i de�ned bya(k; �)j0i = 0; (1.118)with P 0j0i = E0j0i; Pj0i = 0: (1.119)The ex
ited states are given byjk; �i = ay(k; �)j0i; (1.120)jk1�1; k2�2i = ay(k1; �1)ay(k2; �2)j0i; (1.121)jk1�1; k2�2; k3�3i = ay(k1; �1)ay(k2; �2)ay(k3; �3)j0i; (1.122)et
., with[P � � Æ�;0E0℄jk1�1 : : : kn�ni = ~(k�1 + : : :+ k�n)jk1�1 : : : kn�ni; (1.123)



1.5. ENERGY-MOMENTUM EIGENSTATES 21The four-momenta k� represent zero mass, k�k� = 0. The ex
ited states are thephotons. The symmetry of the basis ve
tors jk1�1 � � �kn�ni under inter
hange ofof labels ((ki�i)$ (kj�j) has the 
onsequen
e that photons follow Bose-Einsteinstatisti
s.The ground state energy E0 is the sum of the ground state energies of theindividual harmoni
 os
illators. This sum diverges be
ause of the in�nite numberof modes. This in�nity is a �rst embarrassement one en
ounters in quantum �eldtheory, whi
h is due to a 
avalier handling of the in�nite number of degrees offreedom in a �eld. One way to avoid the problem is to start out with a �nitenumber of degrees of freedom and study the limit of letting this number approa
hin�nity. For instan
e, we 
an simply 
ut o� the number of modes by restri
tingjkj < K. Within the 
anoni
al formalism with its di�erent handling of time andspa
e and its this 
an lead to non-Lorentz 
ovariant and even non-gauge invariantexpressions. Another way is to restri
t the spa
etime 
ontinuum to a hyper
ubi
latti
e with latti
e distan
e a and study the limit a! 0. The latti
e is of 
oursealso not Lorentz 
ovariant but it has usually suÆ
ient remnant symmetry to avoidnon
ovarian
e in the 
ontinuum limit. Using su
h regularizations would for
e usekeeping tra
k of many more details right from the beginning. Here we followinstead the usual introdu
tory path and work `formally', i.e. with ill de�nedmathemati
al expressions, and deal with the ini�nities when they arise `alongthe way'. This approa
h is suÆ
ient when we treat intera
ting quantum �elds byperturbation theory. For nonperturbative 
al
ulations an ab inito regularizationsu
h as the latti
e is often ne
essary.The problem is physi
al as well as mathemati
al. The in
lusion of arbitrarilylarge wave ve
tors k 
orresponds to arbitrarily small wavelengths in spa
e andwe do not know the physi
s at arbitrarily short distan
es. Similarly, 
ontinuoustime suggests that we 
an predi
t what happens in arbitrary short time intervals,whi
h is questionable.At this point we 
ould appeal to the idea that only energy di�eren
es havephysi
al relevan
e in our model and subtra
t the ground state energy from P 0.Su
h a subtra
tion should be done with 
are as we may be throwing away a babywith the bath water. There may be a volume dependen
e in the ground stateenergy whi
h is physi
ally relevant. An example of this is the Casimir e�e
t. Weshall do the subtra
tion in the in�nite volume limit L!1.In the in�nite volume limit the ground state represents the va
uum. In thislimit the wave ve
tors be
ome pra
ti
ally 
ontinuous, in the sense that for a
ontinuous fun
tion F (k),1V Xk F (k)! Z d3k(2�)3 F (k) = 3Ym=1[Z 1�1 dkm2� ℄F (k): (1.124)Furthermore, in the sense of generalized fun
tionsV Æk;l ! (2�)3Æ(k� l): (1.125)



22 CHAPTER 1. QUANTIZED ELECTROMAGNETIC FIELDHen
e hk; �jk0; �0i ! 2k0(2�)3Æ(k� k0)Æ�;�0 ; (1.126)and the energy density of the ground state takes the formE0 � E0V ! ~X� Z d3k(2�)3 12k0 (k0)2: (1.127)The momentum spa
e volume element (integration measure)d!k � d3k(2�)3 12k0 ; k0 =p�2 + k2 (1.128)(written for general mass m2 = ~2�2), is Lorentz invariant: under a Lorentztransformation k0� = ���k� ; (1.129)k0k = 
kk + 
�k0; k0? = k?; (1.130)k00 = 
k0 + 
�kk; (1.131)� = v=
; 
 = 1=p1� �2: (1.132)we have dk0k = (k00=k0) dkk, and d!�k = d!k: (1.133)1.6 Cosmologi
al 
onstant and the Casimir ef-fe
tThe energy density of the va
uum (P� = 2)E0 = ~X� Z d!kk0k0 (1.134)avoids the volume divergen
e V !1 of E0 but it is still divergent for large jkj.It has the form of the 00 
omponent of a tensor, whi
h is the va
uum expe
tationvalue of the stress-energy (energy-momentum) tensor,h0jT ��(x)j0i = ~X� Z d!kk�k� (1.135)(
f. Problems). Sin
e it is invariant under Lorentz transformations we expe
t theform h0jT ��j0i = ��1g��: (1.136)



1.6. COSMOLOGICAL CONSTANT AND THE CASIMIR EFFECT 23On the other hand, the energy-momentum tensor of the 
lassi
al ele
tromagneti
�eld is tra
eless, T �� = 0; (1.137)whi
h appears to be respe
ted by (1.135) sin
e k�k� = 0. This would implythat �1 = 0. However, this is in 
on
i
t with the fa
t that E0 is 
learly positive.Su
h paradoxes are typi
al when dealing with ill de�ned divergent expressionsand we should regularize the divergent integral. Sin
e we have not developed thetools yet for a 
ovariant regularization, let us just assume the form (1.136), within�nite �1.A term of the form ��g�� in the energy-momentum tensor is not ex
luded onphysi
al grounds. We have taken it for granted that we 
ould use the T �� familiarfrom 
lassi
al ele
trodynami
s. There is a way to derive the energy momentumtensor from the lagrangian density L by the so
alled Noether pro
edure. One then�nds that a 
onstant �� in L leads to a term ��g�� in T �� . However the realphysi
al signi�
an
e of T �� follows when we 
onsider 
lassi
al general relativity,where energy-momentum is the sour
e of gravity. In this theory the metri
 tensoris a dynami
al variable and the a
tion for g�� 
oupled to the ele
tromagneti
potentials A� has the form S = Sg+SgA, with Sg the Einstein-Hilbert a
tion andSgA the a
tion for the ele
tromagneti
 �eld in the spa
etime des
ribed by g��.We only need SgA, whi
h is just the a
tion we had before generalized to variablemetri
 tensor, SgA = � Z d4xp� det g (14g��g��F��F�� + �); (1.138)where p� det g is in
luded to obtain a volume element d4xp� det g whi
h isinvariant under general 
oordinate transformations. We have in
luded in SgAthe 
osmologi
al 
onstant � (to be more pre
ise, the 
onventional 
osmologi
al
onstant � = 8�G� , with G Newton's 
onstant). The energy momentum tensorenters in the �eld equation for g�� and is identi�ed fromÆgSgA = Z d4xp� det g 12T �� Æg��; (1.139)were g is the matrix g��. This givesT �� = F ��F �� � 14g��F��F �� � �g��: (1.140)Returning to Minkowski spa
e we just use g�� ! diag(�1; 1; 1; 1).The va
uum expe
tation value ��1g�� of T �� appears in every expe
tationvalue of the energy momentum tensor and we now see that e�e
tively the 
osmo-logi
al 
onstant is given by the sum � + �1. This means that we 
an absorb thein�nite �1 in the 
osmologi
al 
onstant by rede�ning the parameter we startedout with in (1.138) as �0 and 
hoosing �0 su
h that the e�e
tive 
osmologi
al
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onstant � = �0 + �1 has the physi
al value (whi
h is of 
ourse �nite). Su
h apro
edure is 
alled `renormalization', �0 is 
alled the `bare' parameter and � the`dressed' (by the intera
tion with the ele
tromagneti
 �eld) parameter, or morefrequently, � is 
alled the renormalized parameter. Writing �0 = � + Æ� we 
ansay that Æ� 
ountera
ts the in�nite �1 and for this reason the Æ� part of the a
tionis 
alled a 
ounterterm. The renormalized 
osmologi
al 
onstant is not knownvery well ex
ept that in natural units it is very small. For all pra
ti
al purposesin quantum �eld theory without 
osmologi
al 
onsiderations involving gravity we
an set the renormalized � = 0.Having set the va
uum energy density equal to zero we 
an now ask meaning-ful questions about the energy of the ground state in a �nite volume. A famousexample is the Casimir e�e
t. Consider two parallel plates of a 
ondu
tor a dis-tan
e a apart, with a mu
h smaller than the linear size L of the plates. Thepresen
e of the plates is taken into a

ount by imposing perfe
t boundary 
ondi-tions 
orresponding to a perfe
t 
ondu
tor. This shifts the ground state energyinside and outside the plates relative to the va
uum, and the result is (see e.g.Itzykson and Zuber se
t. 3-2-4)�E0 = �~�2L2720a3 : (1.141)It 
orresponds to a tiny attra
tive for
e whi
h has been veri�ed by experiment.1.7 PhotonsWe have seen that the mass of the photon is zero,P�P �jk; �i = ~2(k2 � k20)jk; �i = 0: (1.142)The spin of the photon 
an only be understood properly after a 
loser look atLorentz invarian
e, whi
h we defer to a later 
hapter. For now we remark thatthe states jk; �i transform just like the polarization ve
tors e�(k; �) � (e(k; �); 0),modulo terms / k� whi
h 
orrespond to gauge transformations. We 
an use thisto determine the possible heli
ities of the photon. The heli
ity is de�ned as theeigenvalue of the angular momentum operator J in the dire
tion of motion,kjkj � Jjk; �i = ~�jk; �i: (1.143)To determine the heli
ities we take the momentum along the 3-axis and 
onsiderthe behavior of the polarization ve
tors e(jkj3̂; �) under rotations exp(�i!J3)about this axis. Su
h rotations have the form0� 
os! � sin! 0sin! 
os! 00 0 1 1A = e�i!S3 ; (1.144)



1.7. PHOTONS 25with S3 the third 
omponent of the spin matrix, the spin 
omponent of theangular momentum operator J3. In the ve
tor representation the spin matri
esS1, S2 and S3 are represented by(Sl)mn = �i�lmn; (1.145)whi
h satisfy [Sk; Sl℄ = i�klmSm and S2 = s(s+ 1) = 1(1 + 1) = 2. The right andleft handed polarization ve
tors were 
onstru
ted su
h that they are eigenve
torsof S3 for the spe
ial momentum k = jkj3̂, in whi
h 
ase e(k; 1) = 1̂ and e(k; 2) =2̂: (S3)mn en(k;�) = �en(k;�); k = jkj3̂; (1.146)with the usual phase relations ((S1+ iS2)mnen(k;�) = p2em(k; 3) = p23̂, (S1+iS2)mnen(k; 3) = p2em(k;+)). The eigenve
tor 3̂ with eigenvalue J3 = 0 doesnot o

ur among the polarization ve
tors.The photons have heli
ity �1 but there is no heli
ity zero state, as might beexpe
ted from the ve
tor representation in whi
h the eigenvalues of S3 are +1, 0,-1. The heli
ity zero polarization ve
tor would be the longitudinal mode e(k; 3) /k, whi
h is equivalent to a gauge transformation and therefore unphysi
al. It waseliminated by the Coulomb gauge 
ondition.A general one photon state has the form of a wave pa
ketj'i =X� Z d!k '(k; �)jk; �i; (1.147)with '(k; �) a momentum spa
e wave fun
tion whi
h 
an be normalized to 1,h'j'i =X� Z d!k '(k; �)�'(k; �) = 1: (1.148)It is natural to de�ne a spa
etime dependent ve
tor potential by'�(x) = ('m(x); 0); (1.149)'m(x) = Z d!k eikx X� '(k; �)em(k; �); (1.150)whi
h is a solution of Maxwell's equations in va
uum. Intuitively we may thinkthat the photon 
an be found where '�(x) is maximal or at least nonzero. How-ever, lo
alizability is not an appropriate 
on
ept for massless parti
les as there isno nonrelativisti
 limit where we 
an apply the usual formalism of nonrelativisti
quantum me
hani
s. The quantization of the ele
tromagneti
 �eld did not leadnaturally to a position operator. There is also no satisfa
tory gauge invariantand 
ovariant probability 
urrent j�(x) whi
h is 
onserved, ��j�(x) = 0.Another way to lo
ate a photon is by `measuring' its energy momentum tensor,and determine e.g. where the energy density is maximal:h'jT ��(x)j'i = '��(x)�'��(x)� 14g��'��(x)�'��(x) + 
:
: ; (1.151)with '�� = ��'� � ��'� (
f. Problems).



26 CHAPTER 1. QUANTIZED ELECTROMAGNETIC FIELD1.8 Time evolutionIn the Heisenberg pi
ture the states are time independent and the operators
arry the time dependen
e a

ording to the Heisenberg equations of motion, forexample ddtAm(x; t) = � i~ [Am(x; t); H(t)℄; (1.152)with the initial 
ondition Am(x; 0) = Am(x) (1.153)at time t = 0. When the external sour
e J� vanishes the hamiltonian is timeindependent H = ~X� Z d!kk0a(k; �)ya(k; �); (1.154)and the equations for the �eld are easily integrated in momentum spa
e,ddta(k; �; t) = � i~ [a(k; �; t); H℄ = �ik0a(k; �; t); (1.155)a(k; �; t) = e�ik0t a(k; �; 0) = e�ik0t a(k; �): (1.156)The resulting potentialsAm(x; t) = p~X� Z d!k[eikx�ik0tem(k; �)a(k; �) + h:
:℄ (1.157)satisfy the the Coulomb gauge �eld equations 2Am = 0. Note that _Am(x; 0) =�m(x). When the sour
e J� is not zero the hamiltonian has the formH ttot = H +H tJ ; (1.158)where H is the sour
e free part (1.154) andH tJ = � Z d3x Jm(x; t)Am(x) + EC(t); (1.159)with EC(t) the Coulomb energy.It is 
onvenient to use the intera
tion pi
ture in whi
h the `intera
tion' refersto the external sour
e. The intera
tion pi
ture is somewhat in between theS
hr�odinger and the Heisenberg pi
ture and we shall now review how this works.Let the hamiltonian be given in the formH t = H0 +H t1; (1.160)where we allow for an expli
it time dependen
e in H t1 whi
h is inherited by thetotal hamiltonianH t, the expli
it time dependen
e is indi
ated by the supers
riptt. We asume that H0 has no expli
it time dependen
e. In the intera
tion pi
ture



1.8. TIME EVOLUTION 27the operators evolve in time a

ording to H0 and the states a

ording to theresidual intera
tions from H t1. The three pi
tures, S
hr�odinger, Heisenberg andintera
tion, 
oin
ide at time t = 0. The time evolution operator is a solution ofddtU(t) = � i~H tU(t); U(0) = 1: (1.161)The evolution operator 
orresponding to H0 is given byddtU0(t) = � i~H0U0(t); U0(0) = 1; (1.162)whi
h has the usual solution U0(t) = e�iH0t=~: (1.163)The evolution operator in the intera
tion pi
ture is de�ned asUint(t) = U0(t)yU(t): (1.164)In the S
hr�odinger pi
ture j ; tiS = U(t)j ; 0iS; (1.165)OS(t) = OS(0) � O; (1.166)where O = O(A;�) is any operator without expli
it time dependen
e. In theHeisenberg pi
ture j ; tiH = j ; 0iH = j ; 0iS � j i; (1.167)OH(t) = U y(t)OU(t); (1.168)while in the intera
tion pi
ture the time evolution is devided between states andoperators, j ; tiint = Uint(t)j i; (1.169)Oint(t) = U0(t)yOU0(t): (1.170)Expe
tation values are the same in all three pi
tures,h ; tjSOj ; tiS = h jOH(t)j i = h ; tjintOint(t)j ; tiint: (1.171)The evolution operator Uint(t) is a solution of the equationddtUint(t) = � i~ [�U y0 (t)H0U(t) + U y0(t)(H0 +H t1)U(t)℄= � i~U y0(t)H t1U(t) = � i~U y0(t)H t1U0(t)Uint(t)� � i~H1(t)Uint(t); (1.172)



28 CHAPTER 1. QUANTIZED ELECTROMAGNETIC FIELDwith initial 
ondition Uint(0) = 1. HereH1(t) � H t1(t) = U y0(t)H t1U0(t) (1.173)has the normal time dependen
e of an operator in the intera
tion pi
ture, inaddition to its expli
it time dependen
e. The evolution operator starting at anytime t0, not just at t = 0, Uint(t; t0) = Uint(t)U yint(t0) (1.174)satis�es the same di�erential equation (1.172), with initial 
onditionUint(t; t0) = 1; t = t0: (1.175)Furthermore it satis�es the 
omposition relationUint(t; t0) = Uint(t; t1)Uint(t1; t0): (1.176)For small time di�eren
eUint(t; t0) � 1� i~(t� t0)H1(t0) � exp[� i~ Z tt0 dt1H1(t1)℄: (1.177)For large time di�eren
e the exponential form is exa
t if H1 
ommutes with itselfat unequal times, whi
h is generally not true. We 
an use the relation (1.176) toobtain a useful series expression for Uint(t; t0). We devide the time interval (t; t0)into N segments (tj; tj�1), j = 1; : : : ; N , of length a = (t � t0)=N , tN = t, andwrite Uint(t; t0) = Uint(t; tN�1)Uint(tN�1; tN�2) � � �Uint(t1; t0)� [1� iaH1(tN�1)~ ℄ � � � [1� iaH1(t0)~ ℄: (1.178)Expanding in powers of H1 and taking the limit N !1 leads toUint(t; t0) = Xn (�i=~)nn! Z tt0 dt1 � � �dtn T H1(t1) � � �H1(tn)� T exp[�i~ Z tt0 dt0H1(t0)℄ (1.179)(the 
ombinatori
s is the same as that of (1+ xN )N = 1+N xN + 12N(N �1)( xN )2+� � � ! exp x as N !1). Here T is the time ordering `operator', the instru
tionto order the operators H1(tj) from right to left a

ording to in
reasing time. Forinstan
e, TH1(t)H1(t0) = H1(t)H1(t0); t > t0;= H1(t0)H1(t); t < t0: (1.180)



1.9. CLASSICAL FIELD 29We shall use the intera
tion pi
ture with the identi�
ation H0 ! H, thesour
e-free H of eq. (1.154), and H t1 ! H tJ of eq. (1.159). It then follows from(1.173) and (1.157) thatH1(t) ! � Z d3x Jm(x; t)eiHt=~ Am(x)e�iHt=~ + EC(t)= � Z d3x Jm(x; t)Am(x; t) + EC(t) (1.181)� HJ(t): (1.182)Sin
e the Coulomb term is a 
-number at this stage we 
an separate its e�e
t inthe evolution operator into a phase, su
h thatUint(t1; t2) = exp[�i~ Z t1t2 dtEC(t)℄ T exp[ i~ Z t1t2 d4x Jm(x)Am(x)℄(1.183)� UJ(t1; t2): (1.184)1.9 Classi
al �eldIntuitively we expe
t that the 
lassi
al ele
tromagneti
 �eld 
an be understoodas the expe
tation value of the quantum �eld in suitable states. For a one photonstate j'i, h'jA�(x)j'i = 0. Of 
ourse, we should expe
t 
lassi
al behavior onlyfor states with large quantum numbers, i.e. large numbers of photons. However,sin
e Am(x) 
hanges the number of photons, it expe
tation value in a state witha de�nite number of photons is zero.Let us assume the situation in whi
h the external sour
e J�(x) is zero initiallyand swit
hed on slowly at some time t�, and let j0i be the va
uum for t < t�.Consider the state j0; ti whi
h evolves out of the va
uum under the in
uen
e ofthe external sour
e. We shall show that the 
lassi
al �eld A(
)� may be identi�edas A(
)m (x; t) � h0; tjAm(x; t)j0; ti: (1.185)In the intera
tion pi
ture j0; ti is given byj0; ti = UJ(t;�1)j0i; (1.186)UJ(t;�1) = T exp[�i~ Z t�1 dt0HJ(t0)℄; (1.187)HJ(t) = � Z d3xAm(x; t)Jm(x; t) + EC(t): (1.188)Sin
e HJ is linear in the 
reation and annihilation operators j0; ti has the formof a `
oherent state'. The operator Am(x) evolves a

ording to the hamiltonian



30 CHAPTER 1. QUANTIZED ELECTROMAGNETIC FIELDwith J = 0. Sin
e A0 is already a 
-number in the Coulomb gauge A(
)0 = A0 andwe need to evaluateA(
)m (x; t) = h0jUJ(t;�1)yAm(x; t)UJ(t;�1)j0i: (1.189)Note that the phase fa
tor asso
iated with the Coulomb energy EC 
an
els inthis expression. Di�erentiating with respe
t to time we get�tA(
)m (x; t) = h0jUJ(t;�1)y i~ [HJ(t); Am(x; t)℄UJ(t;�1)j0i+ h0jUJ(t;�1)y�m(x; t)UJ(t;�1)j0i= h0jUJ(t;�1)y�m(x; t)UJ(t;�1)j0i; (1.190)sin
e Am(x; t) 
ommutes with An(y; t) at equal times. A se
ond di�erentiationgives (
f. Problems)�2tA(
)m (x; t) = h0jUJ(t;�1)y i~ [HJ(t);�m(x; t)℄UJ(t;�1)j0i+ h0jUJ(t;�1)y _�m(x; t)UJ(t;�1)j0i= h0; tj�i~ Z d3x0 [An(x0; t);�m(x; t)℄Jn(x0; t)j0; ti+ h0; tj i~ [H;�m(x; t)℄j0; ti= h0; tj[JTm(x; t) + �Am(x; t)℄j0; ti (1.191)= JTm(x; t) + �A(
)m (x; t); (1.192)where JTm(x; t) = Z d3x0 P Tmn(x;x0)Jn(x0; t): (1.193)This 
an be rewritten as 2A(
)m (x) = �JTm(x); (1.194)whi
h is just the 
lassi
al equation for A(
)m in the Coulomb gauge, sin
e��F (
)�� = 2A(
)� � ����A(
)� = �J�; (1.195)leads to 0 = 2A(
)m (x; t)� �m�0A(
)0(x; t) + Jm(x; t)= 2A(
)m (x; t)� �m Z d3x0 �0J0(x0; t)4�jx� x0j + Jm(x; t)= 2A(
)m (x; t) + �m�n Z d3x0 Jn(x0; t)4�jx� x0j + Jm(x; t) (1.196)= 2A(
)m (x; t) + JTm(x; t); (1.197)



1.10. VACUUM PERSISTENCE AMPLITUDE 31where we used �0J0 = ��nJn and (1.313). The boundary 
onditions in timefollow fromA(
)m (x; t) = h0; tjAm(x; t)j0; ti ! h0jAm(x; t)j0i = 0; for t! �1; (1.198)whi
h are the usual retarded boundary 
onditions.1.10 Va
uum persisten
e amplitudeThe amplitude for the va
uum to remain un
hanged under the in
uen
e of thesour
e (the va
uum persisten
e amplitude) is given byh0jUJ(1;�1)j0i � Z(J); (1.199)and jZ(J)j2 is the 
orresponding probability. This amplitude plays an importantrole in the following.Expanding in J we haveZ(J) = h0j0i+ i~ Z d4x Jm(x)h0jAm(x)j0i+ i22! ~2 Z d4x d4y Jm(x)Jn(y)h0jTAm(x)An(y)j0i� i2 ~ Z d4x d4y J0(x)J0(y)Æ(x0 � y0)4�jx� yj +O(J4): (1.200)The �rst term is 1, the se
ond term is zero. We shall evaluate the third term byinserting intermediate states,1 =Xn 1n! X�1����n Z d!k1 � � �d!kn jk1�1 � � �kn�nihk1�1 � � �kn�nj: (1.201)Sin
e the free �eld Am(x) is linear in the 
reation and annihilation operators onlythe one parti
le intermediate states 
ontribute (this is only true for free �elds),h0jTAm(x)An(y)j0i = X� Z d!k[�(x0 � y0)h0jAm(x)jk�ihk�jAn(y)j0i+ �(y0 � x0)h0jAn(y)jk�ihk�jAm(x)j0i℄: (1.202)Using h0jAm(x)jk�i = p~em(k; �)eikx;hk�jAn(y)j0i = p~en(k; �)�e�iky; (1.203)and X� em(k; �)en(k; �)� = Æmn � kmknk2 = P Tmn(k); (1.204)
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Figure 1.1: Contours in the 
omplex k0 plane for t > 0 (a) and t < 0 (b).this gives h0jTAm(x)An(y)j0i = ~ Z d!kP Tmn(k) [�(x0 � y0)eik(x�y)+ �(y0 � x0)e�ik(x�y)℄ (1.205)= ~ Z d!k P Tmn(k) eik(x�y)�ik0jx0�y0j; (1.206)where k0 = jkj, we 
hanged variables k! �k in the se
ond term and used�(t)e�ik0t + �(�t)eik0t = e�ik0jtj: (1.207)To evaluate this further we use the identity (written for general mass ~�)�i Z 1�1 dk02� e+ik0t�2 + k2 � k20 � i� = e�ip�2+k2 jtj2p�2 + k2 ; (1.208)in whi
h � ! +0 (and the integration variable k0 should not be 
onfused withk0 = �k0 = jkj in (1.207). This identity 
an be 
he
ked by 
ontour integration, 
f.�g. 1.1. The poles of 1=(�2+k2� k20 � i�) are at �(p�2 + k2� i�) with residues�1=(2p�2 + k2). For t > 0 the 
ontour 
an be 
losed along a 
ir
le in theupperhalf plane with radius!1, and then only the pole at k0 = �(p�2 + k2�i�) 
ontributes; for t < 0 the 
ontour 
an be 
losed in the lower half plane andonly the pole at k0 = +(p�2 + k2�i�) 
ontributes. It follows that (k2 = k2�k20)h0jTAm(x)An(y)j0i = �i~ Z d4k(2�)4 eik(x�y) P Tmn(k)k2 � i� ; (1.209)� �i~GmnC (x� y): (1.210)



1.10. VACUUM PERSISTENCE AMPLITUDE 33Combining this with the J0J0 term the va
uum persisten
e amplitude 
an bewritten asZ(J) = 1 + i2~ Z d4x d4y J�(x)J�(y)G��C (x� y) +O(J4); (1.211)with G��C (x� y) given byG��C (x� y) = Z d4k(2�)4 eik(x�y) N��C (k)k2 � i� ; (1.212)where N��C (k) = �k2k2 ; (�; �) = (0; 0); (1.213)= 0; (�; �) = (m; 0) or (0; n); (1.214)= P Tmn(k); (�; �) = (m;n): (1.215)We used Æ(x0 � y0)4�jx� yj = Z d4k(2�)4 eik(x�y) 1k2 ; (1.216)for (�; �) = (0; 0). The obje
t G��C (x � y) is 
alled the propagator (in Coulombgauge, as indi
ated by the subs
ript C; later we shall en
ounter propagators inother gauges).The amplitude Z(J) looks non
ovariant but it is Lorenz invariant. This ismost easily shown in `momentum spa
e', i.e. expressing Z(J) in terms of theFourier variables k�. Inserting (1.212) into (1.211) givesZ(J) = 1 + i2~ Z d4k(2�)4 J�(�k) N��C (k)k2 � i� J�(k) +O(J4); (1.217)where J�(k) = Z d4x e�ikx J�(x): (1.218)Next we note that N��C (k) 
an be expressed in the formN��C (k) = g�� � k�k� + (kn)(k�n� + n�k�)k2 + (kn)2 ; (1.219)where n is the time like unit ve
torn� = Æ�;0; n2 = �1: (1.220)This shows that N��C (k) is equal to g�� up to terms in volving k�, k� or both.The terms / k�, k� in the propagator are 
alled gauge terms, sin
e they dependon the 
hoi
e of gauge. Using 
urrent 
onservation ��J� = 0, or in momentumspa
e k�J�(k) = 0, we see that the gauge terms do not 
ontribute and we 
anexpress the va
uum amplitude as a Lorentz s
alar,Z(J) = 1 + i2~ Z d4k(2�)4J�(�k) g��k2 � i�J�(k) +O(J4): (1.221)



34 CHAPTER 1. QUANTIZED ELECTROMAGNETIC FIELD1.11 PropagatorThe propagator is a Green fun
tion, it is the inverse of the Maxwell wave operator(
f. (1.39)) K�� = ��2g�� + ���� ; (1.222)in the sense that a solution ofK��A�(x) = J�(x); ��J�(x) = 0; (1.223)is given by A�(x) = Z d4y G��C (x� y)J�(y): (1.224)The di�erential operator K�� has zero eigenvalues sin
e any ve
tor potential ofthe form A� = ��! (`pure gauge') gives zero, K����! = ��2��! + �2��! =0. Therefore K has no inverse on a general fun
tion spa
e. Imposing a gauge
ondition su
h as the Coulomb gauge there are solutions to (1.223). It is essentialthat ��J�(x) = 0 sin
e the left hand side has also zero divergen
e. The solutionis still not unique unless we impose boundary 
onditions in time, e.g. retardedboundary 
onditions for whi
h A(x) ! 0 as x0 ! �1. In our 
ase we haveso-
alled Feynman boundary 
onditions in time.Feynman (also 
alled `
ausal') boundary 
onditions are as follows:A�(x) = superposition of e�ik0x0 for x0 ! +1 (1.225)= superposition of e+ik0x0 for x0 ! �1; (1.226)where k0 > 0. In momentum spa
e,K�� ! k2g�� � k�k� � K��(k); (1.227)G��C (k) = N��C (k)k2 � i� ; (1.228)K��(k)G��C (k) = k2k2 � i� �Æ�� � [k� + (kn)n�℄k�k2 + (kn)2 � ; (1.229)where we used (1.212), (1.219). Note that K��(k)k� = 0. Sin
e k2=(k2� i�) = 1,it follows that K��G��(x� y) = Æ�� Æ4(x� y) + terms / ��: (1.230)The terms/ �� vanish when integrated with J�. As 
an be seen from (1.205,1.210)the propagator satis�es the Feynman boundary 
onditions:G��C (x� y) = i Z d!k eik(x�y) P ��C (k); x0 > y0;= i Z d!k e�ik(x�y) P ��C (k); x0 < y0; (1.231)



1.12. VACUUM AMPLITUDE TO ALL ORDERS IN J 35P ��C (k) = X� e�(k; �)e�(k; �)�; e�(k; �) � (e(k; �); 0) (1.232)= g�� � k�k� + (kn)(k�n� + n�k�)(kn)2 ; (1.233)= N��C (k); k2 = 0; (1.234)(the Coulomb part of the propagator 
ontributes only for x0 = y0).1.12 Va
uum amplitude to all orders in JWe shall now 
al
ulate Z(J) to all orders in J . Sin
e UJ(1;�1) 
ontains aphase fa
tor 
oming from the Coulomb energy we �rst separate this fa
tor fromthe amplitude, Z(J) = exp[� i~ Z dtEC(t)℄Z 0(J); (1.235)Z 0(J) = h0jU 0J(1;�1)j0i; (1.236)U 0J(t1; t2) = T exp[ i~ Z t1t2 d4x Jm(x)Am(x)℄; (1.237)where Z 0(J) depends only on Jm. We fun
tionally di�erentiate Z 0(J) (
f. Ap-pendix), ÆZ 0(J) = i~ Z d4x h0jU 0J(1; x0)Am(x)U 0J(x0;�1)j0iÆJm(x); (1.238)ÆZ 0(J)ÆJm(x) = i~h0jU 0J(1; x0)Am(x)U 0J(x0;�1)j0i; (1.239)� i~A(
)m (x)Z 0(J); (1.240)A(
)m (x) = h0jU 0J(1; x0)Am(x)U 0J(x0;�1)j0ih0jU 0J(1;�1)j0i : (1.241)Here A(
)m (x) is a 
-number �eld, like a 
lassi
al �eld. In the same way as forthe 
lassi
al �eld h0; x0jAm(x)j0; x0i in the previous se
tion we 
an derive theequation of motion 2A(
)m (x) = �JTm(x): (1.242)However, here the boundary 
onditions in time are di�erent (not retarded): forx0 ! �1,A(
)m (x) ! h0jU 0J(1;�1)Am(x)j0ih0jU 0J(1;�1)j0i= X� Z d!k em(k; �)�e�ikx h0jU 0J(1;�1)aym(k; �)j0ih0jU 0J(1;�1)j0i ; (1.243)



36 CHAPTER 1. QUANTIZED ELECTROMAGNETIC FIELDwhile for x0 ! +1A(
)m (x) ! h0jAm(x)U 0J(1;�1)j0ih0jU 0J(1;�1)j0i= X� Z d!k em(k; �)eikx h0jam(k; �)U 0J(1;�1)j0ih0jU 0J(1;�1)j0i : (1.244)This implies that for x0 ! �1 the �eld A(
)m 
ontains only so
alled negativefrequen
ies / exp(+ik0x0) while for x0 ! +1 it 
ontains only positive frequen-
ies / exp(�ik0x0) (k0 > 0). These are just the Feynman or `
ausal' boundary
onditions, and A(
)m (x) is given byA(
)m (x) = Z d4xGmnC (x� y)Jn(y): (1.245)Hen
e, Z 0(J) satis�es the following equation in
orporating the boundary 
ondi-tions in time, ~i ÆZ 0(J)ÆJm(x) = [Z d4xGmnC (x� y)Jn(y)℄Z 0(J): (1.246)We need the solution of this equation with the boundary 
ondition Z 0(J) = 1 forJ = 0. The solution is given byZ 0(J) = exp[ i2~ Z d4x d4y Jm(x)GmnC (x� y)Jn(y)℄: (1.247)Taking into a

ount the 
ontribution from the Coulomb energy we have for the
omplete amplitude (
f. (1.200), (1.210))Z(J) = exp[ i2~ Z d4x d4y J�(x)J�(y)G��C (x� y)℄; ; (1.248)whi
h reprodu
es the previous O(J2) result (1.211).1.13 E�e
tive a
tion and Feynman propagatorWe 
an reexpress this result as follows,Z(J) = exp[ i~(S(A) + Z d4x J�A�)℄; (1.249)where we rede�ned S by writing the sour
e 
ontribution separately,S(A) = � Z d4x 14F��F �� = � Z d4x 12A�K��A�; (1.250)



1.13. EFFECTIVE ACTION AND FEYNMAN PROPAGATOR 37and for notational 
onvenien
e we drop the label (
) on A(
)� in this se
tion, i.e.A� is not an operator �eld but a 
lassi
al �eld. This �eld is to be 
al
ulated from0 = ÆSÆA� + J� = �K��A� + J�; (1.251)with Feynman boundary 
onditions in time. The solution isA�(x) = Z d4y G��C (x� y)J�(y): (1.252)Substitution in (1.249) using (1.251) gives ba
k (1.248),S(A) + Z d4xJ�(x)A�(x) = 12 Z d4xJ�(x)A�(x) (1.253)= 12 Z d4x d4y J�(x)G��C (x� y)J�(y)℄:We 
an also use the 
ovariant Lorentz gauge��A� = 0; (1.254)and the 
orresponding Green fun
tion is the Lorentz gauge (often 
alled Landaugauge) propagatorG��L (x� y) = Z d4k(2�)4 eik(x�y) �g�� � k�k�k2 � i�� 1k2 � i� : (1.255)For a 
onserved 
urrent ��J� = 0 the va
uum amplitudes are identi
al.We 
an also leave out all k�, k� terms fromG�� and use Feynman's propagatorG��F (k) = g��k2 � i� (1.256)in the expression for the va
uum amplitude. This is usually referred to as `usingthe Feynman gauge'. However, G��F 
annot be obtained by a gauge 
ondition inthe usual sense, but by modifying the a
tion. Consider the a
tionS(A) = � Z d4x [14F��F �� + 12� (��A�)2℄: (1.257)This a
tion leads to the equations of motion��F �� + 1� ����A� + J� = 0; (1.258)or (��2g�� + ���� � 1� ����)A� = J�: (1.259)



38 CHAPTER 1. QUANTIZED ELECTROMAGNETIC FIELDThe added term depending on the 
oeÆ
ient � breaks gauge invarian
e and thewave operator has no zero eigenvalue anymore (with retarded or Feynman bound-ary 
onditions). The propagator 
an now be de�ned as the inverse of the waveoperator, (��2g�� + ���� � 1� ����)G��(x� y) = Æ��Æ(x� y): (1.260)The solution with Feynman boundary 
onditions reads in momentum spa
eG��(k) = �g�� � k�k�k2 � i�� 1k2 � i� + � k�k�(k2 � i�)2 : (1.261)For � = 1 this is the Feynman propagator (1.256).Another way to see that the va
uum amplitude is un
hanged with this mod-i�ed a
tion, is taking the divergen
e of the equation of motion, whi
h gives2��A� = 0: (1.262)The solution of this with Feynman boundary 
onditions is��A� = 0; (1.263)so the term / ��1 in the a
tion in the expression for the va
uum amplitudevanishes.An alternative quantization pro
edure for the ele
tromagneti
 �eld is basedon the modi�ed a
tion with � = 1, the Gupta-Bleuler method. This leads to ad-ditional unphysi
al `photons' 
alled ghosts, and inde�nite (positive and negativemetri
) in `Hilbert spa
e'. One then has to show that these undesirable featuresdo not matter in physi
al quantities. The advantage of this method is that itleads to manifestly Lorentz 
ovariant expressions.We shall see later that also in the general situation with intera
ting �elds theva
uum amplitude 
an be expressed in terms of an a
tion, the e�e
tive a
tion.In our simple 
ase the e�e
tive a
tion is just S(A).1.14 Emission and absorption of photonsSuppose the sour
e has the form J�(x) = J�1 (x)+J�2 (x), su
h that the spa
etimeregion where J1 is nonzero lies to the future of the region where J2 is nonzero, asillustrated in �g. 1.2. Let t+ be a time after J1 has a
ted, t� a time before J2 hasa
ted and t0 a time in between the times where J1;2 are nonzero (e.g. t0 = 0). Theevolution operator satis�es the relation UJ(t+; t�) = UJ(t+; t0)UJ(t0; t�), and forthe above 
hoi
e of sour
es we 
an writeUJ1+J2 = UJ1UJ2; (1.264)



1.14. EMISSION AND ABSORPTION OF PHOTONS 39

Figure 1.2: Spa
etime regions where J�1 (x) and J�2 (x) are nonzero.with UJ � UJ(1;�1)= T exp[ i~ Z d4xAm(x)Jm(x)� i~ Z dtEC(t)℄: (1.265)Introdu
ing intermediate states at time t0 we haveZ(J1 + J2) = h0jUJ1UJ2 j0i (1.266)= Xn 1n! X�1����n Z d!k1 � � �d!knh0jUJ1jk1�1 � � �kn�nihk1�1 � � �kn�njUJ2j0i; (1.267)� Xn 1n! X�1����n Z d!k1 � � �d!knh0jk1�1 � � �kn�niJ1hk1�1 � � �kn�nj0iJ2; (1.268)where we introdu
ed the amplitudes for produ
tion and absorption of photonsby the sour
es J2 and J1,hk1�1 � � �kn�nj0iJ2 = hk1�1 � � �kn�njUJ2 j0i; (1.269)h0jk1�1 � � �kn�niJ1 = h0jUJ1jk1�1 � � �kn�ni: (1.270)We 
an now use the expli
it expression for the va
uum amplitude,Z(J) = exp[ i2~ Z d4x d4y J�(x)G��(x� y)J�(y)℄; (1.271)Z(J1 + J2) = Z(J1)Z(J2) exp[ i~ Z d4x d4y J1�(x)G��(x� y)J2�(y)℄;



40 CHAPTER 1. QUANTIZED ELECTROMAGNETIC FIELD= Z(J1)Z(J2) exp[1~X� Z d!k iJ1(k; �)� iJ2(k; �)℄; (1.272)where we used (1.232) and the notationJ(k; �) = em(k; �)� Z d4x e�ikxJm(x); k0 = jkj: (1.273)Expanding the J1 { J2 
ross term as a series in J1 and J2 an 
omparing with theright hand side of (1:268) we see that the emission and absorption amplitudesare given by hk1�1 � � �kn�nj0iJ2 = Z(J2)~�n=2 nYl=1 iJ2(kl; �l); (1.274)h0jk1�1 � � �kn�niJ1 = Z(J1)~�n=2 nYl=1 iJ1(kl; �l)�: (1.275)For a weak sour
e we have to leading order in J ,hk; �j0iJ2 = iJ2(k; �)=p~; (1.276)h0jk; �iJ1 = iJ1(k; �)�=p~; (1.277)and we see for instan
e that the momentum spa
e wave fun
tion of a singlyprodu
ed photon is given by'(k; �) = iJ2(k; �)=p~: (1.278)1.15 Radiation by a sour
eThe probability Pn for produ
ing n photons in momentum range R by a sour
eJ (we drop the subs
ript 2 on J2),PRn = 1n! X�1����n ZR d!k1 � � �d!knjhk1�1 � � �kn�nj0iJ j2 (1.279)is given by PRn = P0(J) ~�nn! [X� ZR d!kjJ(k; �)j2℄n; (1.280)where P0 is the probability that no photon is radiated,P0(J) = jZ(J)j2 = exp[�1~ImZ d4x d4y J2�(x)G��C (x� y)J2�(y)℄: (1.281)



1.15. RADIATION BY A SOURCE 41One way to evaluate this expression is in momentum spa
e,P0(J) = exp[�1~ImZ d4k(2�)4J2�(�k)G��C (k)J2�(k)℄; (1.282)= exp[�1~ImZ d4k(2�)4J2�(�k)g��J2�(k) 1k2 � i� ℄; (1.283)using the representation (written for general mass �)1�2 + k2 � i� = P 1�2 + k2 + i�Æ(�2 + k2); (1.284)where P denotes the prin
ipal value andÆ(�2 + k2) = Æ(k0 �p�2 + k2)2p�2 + k2 + Æ(k0 +p�2 + k2)2p�2 + k2 ; (1.285)with the 
orollary for an arbitrary fun
tion f(k),Z d4k(2�)4 �Æ(�2 + k2)f(k) = Z d!k 12[f(k; k0) + f(k;�k0)℄: (1.286)In our 
ase f(k) = �J0(k)J0(�k) + Jm(k)Jm(�k) and using the 
hange of vari-ables k! �k the va
uum persisten
e probability 
an be written asP0(J) = exp[�1~X� Z d!kjJ(k; �)j2: (1.287)Note that the Coulomb term in Z(J) is a phase fa
tor and does not 
ontributein P0.If the region R is 
hosen to be all of momentum spa
e, then Pn follows aPoisson distribution, Pn = e��n�nnn! ; (1.288)where �n = 1~X� Z d!kjJ(k; �)j2 = 1Xn=0 nPn: (1.289)If R is the region R = fk; jkj < �g, then the total probability for emission intoR is given by Xn PRn = P0 exp[1~X� ZR d!kjJ(k; �)j2℄ (1.290)= exp[�1~X� Zjkj>� d3k(2�)32jkj jJ(k; �)j2℄: (1.291)



42 CHAPTER 1. QUANTIZED ELECTROMAGNETIC FIELDFor a 
urrent for whi
hP� jJ(k; �)j2 = O(k�2) as k! 0, the va
uum probabilityP0 and more generally the probability to emit any �nite number of photonsvanishes, be
ause in the expression (1.287) for P0 the integral Rjkj<� d!k divergesat k = 0 (a so-
alled infrared divergen
e). Su
h 
urrents are realisti
, theytypi
ally o

ur in Bremsstrahlung (hen
e the name `infrared 
atastrophe' for theinfrared divergen
e). However, the expression (1.291) for the probability to emitany number of photons is still �nite. In parti
ular, this is the relevant expressionif we do not observe any photon with energy greater than � and do not try tomeasure photons with energy smaller than �. More information 
an be found inItzykson and Zuber se
ts. 1-3-2 and 4-1-2, Bjorken and Drell se
t. 17.10.1.16 Lo
alityWe started from an a
tion S whi
h has ni
e invarian
e properties and is lo
al: ithas the form S = R d4xL(x) where L(x) is a Lorentz s
alar whi
h depends on the�elds at x and in the immediate neighborhood of x (through the derivatives). Thisleads to 
ovariant and lo
al 
lassi
al equations equations of motion. No signals
an travel faster than the velo
ity of light. Upon quantization we have endedup with non-Lorentz and nongauge invariant expressions whi
h furthermore lookterribly nonlo
al: the proje
torP Tmn(x� y) = ÆmnÆ(x� y) + �m�n 14�jx� yj (1.292)drops o� very slowly for large separation jx � yj. This non
ovarian
e and non-lo
ality is due to the 
hoi
e of gauge, the Coulomb gauge. The advantage ofthe Coulomb gauge is that it fo
uses on the physi
al degrees of freedom of theele
tromagneti
 �eld, rather than gauge degrees of freedom, and leads qui
kly toresults in the simple situation we are dealing with, in whi
h the �eld is 
oupledonly to an external 
urrent. We shall dis
uss Lorentz invarian
e more fully ina later 
hapter and 
ontent ourselves for the moment with the fa
t that gaugeinvariant quantities turned out to be Lorentz invariant. For instan
e, the va
uumamplitude is Lorentz invariant.An important expression of lo
ality and Lorentz invarian
e is the following.Two observables O1;2 asso
iated with 
ompa
t spa
etime regions R1;2 (`lo
al ob-servables') 
ommute, when all points x1 2 R1 are spa
elike to all points x2 2 R2.In the standard lore of quantum me
hani
s observables 
orrespond to measure-ments, and measurements in spa
elike separated regions should not be able toin
uen
e ea
h other. Observables have to be gauge invariant. An example isgiven by the �eld strength F��(x). Lo
ality is expressed by[F��(x); F��(y)℄ = 0; (x� y)2 > 0: (1.293)This is indeed the 
ase as will now be shown for the 
ase of vanishing external
urrent.



1.16. LOCALITY 43Using the expansion (re
all e�(k; �) = (e(k; �); 0)A�(x; t) = p~X� Z d!k[eikx e�(k; �)a(k; �) + h:
:℄; (1.294)gives [A�(x); A�(y)℄ = ~ Z d!k (eik(x�y) � e�ik(x�y))P ��C (k); (1.295)where (re
all n� = Æ�;0)P ��C = X� e�(k; �)e�(k; �)�= g�� � k�k� + (kn)(k�n� + n�k�)(kn)2 : (1.296)Working out the derivatives in F�� = ��A� � ��A� we get[F ��(x); F ��(y)℄ = ~ Z d!k feik(x�y)[k�k�P ��C (k)� k�k�P ��C (k)� k�k�P ��C (k) + k�k�P ��C (k)℄� (k! �k)g: (1.297)Now the operation of the 
url in F �� proje
ts to zero any `longitudinal' part / k�in P ��C , su
h that only the g�� part of P ��C 
ontributes. In position spa
e we 
anthen write [F��(x); F��(y)℄ = �~(����g�� � ����g��� ����g�� + ����g��) i�(x� y); (1.298)�(x� y) = �i Z d!k (eik(x�y) � e�ik(x�y)): (1.299)The (generalized) fun
tion �(x) has the following properties:- �(x) is Lorentz invariant, �(�x) = �(x),- �(x) = 0 for x0 = 0, x 6= 0.Sin
e x = (x; 0) is spa
elike and �(x) is Lorentz invariant it follows that itvanishes for general spa
elike distan
es,�(x� y) = 0; (x� y)2 > 0: (1.300)It is also interesting to note that �(x) is the solution of �2�(x) = 0 with initial
onditions �(x) = 0, �0�(x) = �Æ(x) at x0 = 0.)Consequently the �eld strengths and all lo
al observables that 
an be madeout of these have the lo
ality property (1.293).



44 CHAPTER 1. QUANTIZED ELECTROMAGNETIC FIELD1.17 AppendixEq. (1.238) is intuitively 
lear from the representation of the intera
tion pi
tureevolution operator in terms of time ordered produ
ts of HJ . We elaborate herefurther on this. For 
larity we set ~ = 1. We haveZ 0(J) = h0jT ei R1�1 d4x Jm(x)Am(x)j0i: (1.301)The time ordered produ
t T Am1(x1) � � �Amn(xn) (1.302)is 
ompletely symmetri
 in the inter
hange of labels xi; mi $ xj; mj. Hen
e,Z 0(J) is given byZ 0 = 1Xn=0 inn! Z d4x1 � � �d4xn h0jT Am1(x1) � � �Amn(xn)j0i Jm1(x1) � � �Jmn(xn):(1.303)Then Æ Z 0 = 1Xn=0 inn! Z d4x1 � � �d4xn h0jT Am1(x1) � � �Amn(xn)j0iJm1(x1) � � �Jmn�1(xn�1)n ÆJmn(xmn): (1.304)Relabeling n� 1! n and using the 
ombinatori
s of ea+b = ea eb we 
an rewritethis in various waysÆ Z 0 = Z d4x iÆJm(x) 1Xn=0 inn! Z d4y1 � � �d4ynh0jT Am(x)Ak1(y1) � � �Akn(yn)j0i Jk1(y1) � � �Jkn(yn) (1.305)= Z d4x iÆJm(x) h0jT [ei R1x0 d4y Jk(y)Ak(y) Am(x)ei R x0�1 d4z Jl(z)Al(z)℄j0i (1.306)= Z d4x iÆJm(x) h0jU 0J(1; x0)Am(x)U 0J(x0;�1)j0i: (1.307)From (1.305) we get furthermore the useful formulaÆZ 0iÆJm(x) = h0jT Am(x) ei R1�1 d4y Jn(y)An(y)j0i; (1.308)and repeating the di�erentiations,ÆnZ 0iÆJm1(x1) � � � iÆJmn(xn) = h0jT Am1(x1) � � �Amn(xn) ei R1�1 d4y Jn(y)An(y)j0i:(1.309)



1.18. PROBLEMS 451.18 Problems1. The identity ����� ��F�� = 2����� ����A� = 0 (1.310)implies the homogeneous Maxwell equations��F�
 + ��F
� + �
F�� = 0: (1.311)Use the homogeneous and inhomogenous Maxwell equations to derive thedivergen
e relation for the energy-momentum tensor (1.48).2. The formulas (1.84) also apply to a �nite number of degrees of freedom.Che
k expli
itly the 
ase n = 2 (e.g. for two degrees of freedom � = 1; 2).3. Verify 14�jx� yj = Z d3k(2�)3 eik(x�y) 1k2 ; (1.312)by applying the lapla
ian � to left and right hand side and using (1.61).4. Verify that in the in�nite volume limit the formula (1.100) for the transverseproje
tor goes over inP Tmn(x;y) = Z d3k(2�)3 eik(x�y) �Æmn � kmknk2 �= ÆmnÆ(x� y) + �m�n 14�jx� yj : (1.313)Noti
e that P Tmn(x;y) = P Tnm(y;x).5. Verify the other 
ommutation relations in (1.111).6. To obtain the expressions (1.115) for the hamiltonian, we insert (1.101) into(1.89), using (1.105):H = 1V 2 Xk;l 14k0l0 Z d3x 12 [(�ik0eikx am(k) + ik0e�ikx am(k)y)(�il0eilx am(l) + il0e�ilx am(l)y)+ (eikx am(k) + e�ikx am(k)y) l2 (eilx am(l) + e�ilx am(l)y)℄: (1.314)The integration sets l = �k and the aa and ayay terms 
an
el (k0 = jkj),leaving H = 1V Xk 12k0 k0 12 [am(k)am(k)y + am(k)yam(k)℄: (1.315)



46 CHAPTER 1. QUANTIZED ELECTROMAGNETIC FIELDWe 
an now 
onvert to a(k; �) or use the 
ommutation relation (1.111)dire
tly with (sum over m) P Tmm(k) = 2 =P� to put ay to the left of a,am(k)am(k)y = am(k)yam(k) + 2k0V X� : (1.316)This gives (1.89) after 
onverting to a(k; �). This 
al
ulation of the hamil-tonian is basi
ally the same as for the one dimensional harmoni
 os
illator.The 
al
ulation of the momentum operator (1.90) pro
eeds in similar fash-ion,P = � 1V 2 Xk;l 14k0l0 Z d3x [(�ik0eikx am(k) + ik0e�ikx am(k)y) il (eilx am(l)� e�ilx am(l)y)= 1V Xk 12k0 12k [am(k)am(�k) + am(k)yam(�k)y+ am(k)am(k)y + am(k)yam(k)℄; (1.317)= 1V Xk 12k0 k am(k)yam(k) (1.318)(k is odd under k ! �k, su
h that a

ompanying fa
tors even underk! �k do not 
ontribute). Expressing the result in terms of a(k; �) gives(1.90).7. Derive (1.135) by normal ordering, i.e. inter
hanging the 
reation and an-nihilation operators (using their 
ommutation relations) su
h that all a'sstand to the right of all ay's, and the fa
t that any a gives zero on j0i andand any ay gives zero on h0j.8. Cal
ulate h'jAm(x)An(y)j'i, for example by inserting intermediate states,and verify the expression (1.151) for the expe
tation value h'jT ��(x)j'i.9. Re
all that (g�1)�� = g�� and verifygg�1 = 1! Ægg�1 + gÆg�1 = 0 =) Æg�1 = �g�1Æg g�1; (1.319)or Æg�� = �g��g�� Æg��; (1.320)and det g = 14!��1����4��1����4g�1�1 : : : g�4�4 ; (1.321)Æ det g = 13!��1����4��1����4g�1�1 : : : g�3�3 Æg�4�4= (det g)(g�1)�4�4 Æg�4�4 = (det g)g�� Æg��; (1.322)



1.18. PROBLEMS 47and Æp� det g = 12p� det g g��Æg��; (1.323)and �nally (1.140).10. To verify the step leading to (1.191), evaluate the 
ommutator [H;�m(x; t)℄using the form (1.89) for H; re
all [ab; 
℄ = a[b; 
℄+ [a; 
℄b. This also veri�esthat the operator �eld equations2Am(x) = 0 (1.324)follow from the 
anoni
al quantization pro
edure.11. Consider Green fun
tions of the operator �2 + �2,(�2 + �2)G(x� y) = Æ(x� y): (1.325)The Feynman propagatorG(x� y) = Z d4 k(2�)4 eik(x�y) 1�2 + k2 � i� (1.326)is a solution to (1.325) with Feynman boundary 
onditions. Using 
ontourintegration verify that 1�2 + k2 � i� ! 1�2 + k2 � (k0 + i�)2 (1.327)
orresponds to retarded boundary 
onditions.
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Chapter 2Intera
tions with s
alar �eldsWe introdu
e s
alar �elds in this 
hapter and 
oupled these to the ele
tromagneti
�eld. The resulting �eld theory des
ribes the intera
tion of photons with 
hargedparti
les of spin zero. The va
uum amplitude is elegantly summarized in termsof the e�e
tive a
tion and the formalism leads naturally to Feynman diagrams.The equations of motion are translated into the Dyson-S
hwinger equations forthe e�e
tive a
tion, and the perturbative solution of these equations leads to thediagrammati
 loop expansion, the semi
lassi
al expansion in powers of ~. Fromthe va
uum amplitude we obtain the s
attering amplitude and the diagrams givean intuitive pi
ture of s
attering in terms of virtual parti
le ex
hange.From now on we use units in whi
h Plan
k's 
onstant ~ = 1 and the velo
ity oflight 
 = 1. Then the dimensions of various quantities are like [mass℄ = [energy℄= [momentum℄ = [A�℄ = [length�1℄ = [time�1℄. The a
tion is dimensionless. To
onvert to ordinary units we use appropriate powers of ~ and 
. A parti
ularlyuseful 
ombination is ~
 = 197:3 � 200 MeV fm, where fm (femto meter orFermi) denotes the unit of length 10�13 
m. For example a mass m of 200 MeV
orresponds to a length 1=m of about 1 fm. The the unit of ele
tromagneti
 
hargee � 0:30, whi
h follows from the �ne stru
ture 
onstant � = e2=(4�) � 1=137.2.1 Free s
alar �eldWe have seen that the quanta of the ele
tromagneti
 �eld 
an be interpreted asparti
les, the photons, whi
h 
an o

ur in two spin states 
orresponding to thetwo independent polarization ve
tors e(k; �). It is now natural to look for other�eld systems for the des
ription of other kinds of parti
les. The simplest is thes
alar �eld, the quantization of whi
h leads to spinless parti
les. Having gonethrough the quantization of the more 
ompli
ated 
ase of the ele
tromagneti
�eld, the 
orresponding formulas for the s
alar �eld are a pleasant simpli�
ation.We urge the reader to go through the formulas in the pre
eding 
hapter, dropthe polarization ve
tors and ve
tor index m on Am, and obtain the 
orrespondingformulas for the s
alar �eld. We summarize here some of the relevant formulas.49



50 CHAPTER 2. INTERACTIONS WITH SCALAR FIELDSThe a
tion for the free s
alar �eld '(x) is given byS = Z d4xL(x) = Z dx0 L; (2.1)L(x) = �12��'(x)��'(x)� 12m2'(x)2 � �0; (2.2)L('; _') = Z d3x [12 _'2 � 12 (r')2 � 12 m2'2 � �0℄; (2.3)where we have in
luded a bare 
osmologi
al 
onstant �0. The equation of motionin
luding an external s
alar sour
e J(x) is given by0 = ÆÆ'(x) (S + Z d4x0 J(x0)'(x0))= (2�m2)'(x) + J(x): (2.4)For J = 0 this equation is known as the Klein-Gordon equation. The energy-momentum tensor T �� = ��'��'+ g��L (2.5)is 
onserved for vanishing sour
e J = 0 as a 
onsequen
e of the equation ofmotion, ��T �� = 0.The 
anoni
al 
onjugate of the �eld '(x) is denoted by �(x) and 
an be foundby making a mode expansion, as done for the ele
tromagneti
 �eld. It 
an alsobe de�ned by generalizing the partial derivative (1.8) to a fun
tional derivative,�(x) = ÆÆ _'(x)L('; _') = _'(x); (2.6)where the time dependen
e is left impli
it. The hamiltonian with sour
e J takesthe form Htot = H � Z d3xJ'; (2.7)where H = Z d3x ��0'� L = Z d3x T 00 (2.8)= Z d3x [12�2 + 12(r')2 + 12m2'2 + �0℄ (2.9)is the hamiltonian for J = 0.After quantization the 
anoni
al 
ommutation relations at time x0 = 0 aregiven by ['(x); �(y)℄ = iÆ(x� y); (2.10)[�(x); �(y)℄ = ['(x); '(y)℄ = 0: (2.11)



2.1. FREE SCALAR FIELD 51The 
reation and annihilation operators appear in the 
anoni
al variables a

ord-ing to '(x) = Z d!p [eipxa(p) + e�ipxa(p)y℄; (2.12)�(x) = Z d!p [�ip0eipxa(p) + ip0e�ipxa(p)y℄; (2.13)d!p = d3p(2�)32p0 ; p0 =pm2 + p2; (2.14)and satisfy the 
ommutation relations[a(p); a(p0)y℄ = 2p0(2�)3Æ(p� p0); (2.15)[a(p); a(p0)℄ = [a(p)y; a(p0)y℄ = 0: (2.16)The energy momentum operator of the sour
e free �eld 
an be written asP � = Z d!p a(p)ya(p) p� (2.17)where we adjusted the bare 
osmologi
al 
onstant �0 su
h that the renormalized
osmologi
al 
onstant is zero and the energy of the va
uum is zero. The 
reationoperators 
reate spin zero parti
les out of the va
uum j0i with four-momentump, P �jpi = p�jpi; jpi = a(p)yj0i; (2.18)and similar for multi parti
le states. The mass of the parti
les is m, as 
an beseen from p�p� = �m2.The va
uum amplitude is given byZ(J) = exp[i12 Z d4xd4y J(x)G(x� y)J(y)℄; (2.19)= exp[iS('(
)) + i Z d4x J(x)'(
)(x)℄; (2.20)with the propagatorG(x� y) = Z d4p(2�)4 eip(x�y) 1m2 + p2 � i� (2.21)implementing Feynman boundary 
onditions in time for the 
lassi
al �eld'(
)(x) = Z d4y G(x� y)J(y): (2.22)Finally, the amplitudes for emission and absorption of parti
les by the sour
e aregiven by hpj0iJ = iJ(p); h0jpiJ = iJ(p)�; (2.23)to leading order in J .



52 CHAPTER 2. INTERACTIONS WITH SCALAR FIELDS2.2 Yukawa potentialThe Coulomb potential de
ribes the intera
tion energy of two stati
 (time inde-pendent) 
harge distributions. The analogue in s
alar �eld theory is the Yukawapotential. The stati
 
lassi
al �eld is the solution of the equation(��+m2)'(
)(x) = J(x); (2.24)whi
h 
an be solved with the help of the stati
 Green fun
tion'(
)(x) = Z d3y Gstat(x� y)J(y); (2.25)(��+m2)Gstat(x� y) = Æ(x� y); (2.26)Gstat(x� y) = Z d3p(2�)3 eip(x�y)m2 + p2= e�mjx�yj4�jx� yj : (2.27)The last line follows by using spheri
al 
oordinates with p(x � y) = pr 
os �,integrating �rst over angles,G(x� y) = 1(2�)2 Z 10 dp p2m2 + p2 2 sin prpr ; (2.28)= 14�rReZ 1�1 dp2�i 2p eiprm2 + p2 ; (2.29)and then over p using 
ontour integration by 
losing the 
ontour in the upperhalf of the 
omplex p-plane. With a sour
e of the form J(x) = J1(x) + J2(x),substitution of '(
) into (2.7) gives the energyE = E11 + E22 + 2E12; (2.30)Eij = �12 Z d3xd3y Ji(x) e�mjx�yj4�jx� yjJj(y): (2.31)Noti
e that the intera
tion energy 2E12 is negative when both J1 and J2 arepositive.The expression e�mr4�r (2.32)is known as the Yukawa potential. It has the form of a s
reened Coulomb potentialwith s
reening length 1=m. For distan
es r � 1=m the intera
tion be
omesnegligible and 1=m is a measure of the range of the intera
tion. For m ! 0 weget the in�nite range Coulomb potential. Other 
ommon names for 1=m are:the Compton wave length and the 
orrelation length (by analogy with Statisti
al
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s). The parameter m in the free s
alar �eld a
tion plays the dual role ofparti
le mass and intera
tion range. Yukawa introdu
ed the s
alar �eld in thethirties to explain the nu
lear for
es. After some initial 
onfusion (see e.g. Paisfor a histori
al a

ount) the spinless parti
les 
orresponding to this �eld wereidenti�ed with the pions. The pion mass m� � 140 MeV 
orresponds to anintera
tion range of 1=m� � 200=140 = 1:4 fermi.2.3 Complex s
alar �eldTwo �elds '�(x), � = 1; 2, des
ribe two types of spinless parti
les. If they havethe same mass, then the a
tionS = � Z d4x (12��'���'� + 12m2'�'�) (2.33)(where a summation is implied over repeated �) has a 
ontinous symmetry: it isinvariant under SO(2) transformations, orthogonal rotations in two dimensions,� '01'02 � = � 
os! � sin!sin! 
os! �� '1'2 � ; '0(x) = R'(x): (2.34)We may think of '� as a ve
tor in `internal' spa
e (` �-spa
e' { as opposed toordinary spa
etime), whi
h gets rotated by the matrix R. WritingR = e�i!q = 
os! � iq sin! = 1� i!q + � � � ; (2.35)q = � 0 �ii 0 � ; qT = �q; RT = R�1; (2.36)we see that q is the generator of these transformations.The invarian
e of S under the 
ontinous SO(2) symmetry implies a lo
al
onservation law (Noether's theorem), whi
h 
an be derived as follows. We makea small variation of ' that has the form of a spa
etime dependent symmetrytransformation, Æ'�(x) = �iq��'�(x) Æ!(x): (2.37)If ' satis�es the equations of motion, then the a
tion is stationary (we assumehere J = 0):0 = ÆS = � Z d4x [��'� (�iq��) ��('�Æ!) +m2'� (�iq��)'�Æ!℄= Z d4x ��'� iq�� '� ��Æ! (2.38)� Z d4x j���Æ! = � Z d4x (��j�) Æ!: (2.39)



54 CHAPTER 2. INTERACTIONS WITH SCALAR FIELDSSin
e the variations Æ! are arbitrary we have the 
onservation of a 
urrent,j� = i��'� q�� '�; ��j� = 0: (2.40)The 
harge Q 
orresponding to the 
urrent is 
onserved,Q = Z d3x j0(x); �0Q = 0: (2.41)In the quantum theory '�(x) and ��(x) satisfy the equal time 
ommutationrelations ['�(x; t); ��(y; t)℄ = iÆ�� Æ(x� y); (2.42)with the other 
ommutators vanishing. Then Q be
omes an operator in Hilbertspa
e, Q = Z d3x (�i�0'� q�� '�) = �i Z d3x �� q�� '�; (2.43)and it is a generator of SO(2) transformations in the following sense[Q;'
(y)℄ = �q
Æ 'Æ(y); (2.44)ei!Q '� e�i!Q = �e�i!q��� '� = R�� '�: (2.45)The se
ond line 
an be 
he
ked by di�erentiating with respe
t to ! and integratingagain, F�(!) = ei!Q '� e�i!Q; F�(0) = '�; (2.46)dd!F�(!) = �iq�� F�(!)) F�(!) = �e�i!q��� F�(0): (2.47)The eigenve
tors of q de�ne a basis in internal spa
e,e1(�) = 1p2 ; e2(�) = � ip2 ; q�� e�(�) = �e�(�); (2.48)and we 
an expand the 
lassi
al '� in terms of 
harge eigen�elds ' and '�,'� = ' e�(+) + '� e�(�); ' = e�(+)� '�; '� = e�(�)� '�: (2.49)In terms of the 
omplex �eld ' the a
tion takes the formS = � Z d4x (��'���'+m2'�'): (2.50)In the 
omplex formalism we treat ' and '� as independent variables. For ex-ample, the equation of motion for ' is obtained by varying '� only,0 = � Z d4x (�����' +m2') Æ'�; (2.51)0 = ÆSÆ'�(x) = (2�m2)'(x): (2.52)



2.3. COMPLEX SCALAR FIELD 55The SO(2) transformations now take the U(1) form (U(1) = group of unitarytransformations in 1 dimension)'0 = e�i! '; '0� = ei! '�; (2.53)under whi
h the a
tion (2.50) is 
learly invariant.In the quantum theory� � �' = �0'y; �y � �'� = �0'; (2.54)and we have ['(x; t); �(y; t)℄ = ['y(x; t); �y(y; t)℄ = iÆ(x� y); (2.55)with the other 
ommutators vanishing. The 
urrent takes the formj� = i��[' e�(+) + 'y e�(�)℄ q�� [' e�(+) + 'y e�(�)℄= �i��''y + i��'y '; (2.56)where we have been 
areful about the ordering of operators, using the real formu-lation as a starting point. In the real formulation there is no ordering ambiguityin the sense that e.g. for the 
harge density,j0(x) = �iq�� ��(x)'�(x) = �iq�� '�(x) ��(x); (2.57)where we used Æ(0)q�� Æ�� = Æ(0)Tr q = 0. The 
ommutation relations of Q with' and 'y read [Q;'(x)℄ = �'(x); [Q;'(x)y℄ = '(x)y: (2.58)In more detail we have '(x) = 1p2 ['1(x)� i'2(x)℄; (2.59)and we 
an write'(x) = Z d!p [eipx a(p;+) + e�ipx a(p;�)y℄; (2.60)a(p;�) = 1p2 [a1(p)� ia2(p)℄; (2.61)Q = Z d!p [a(p;+)ya(p;+)� a(p;�)ya(p;�)℄: (2.62)We see that Q 
ounts the number of `+' quanta minus the number of `�' quanta.By 
onvention we 
all the `+' quanta parti
les and the `�' quanta antiparti
les,i.e. the one parti
le 
harge eigenstates jp�i of Q are interpreted as parti
les(Q = +1) and antiparti
les (Q = �1),a(p;�)yj0i � jp�i; (2.63)Qjp�i = �jp�i: (2.64)



56 CHAPTER 2. INTERACTIONS WITH SCALAR FIELDS2.4 Coupling to the ele
tromagneti
 �eldThe 
omplex s
alar �eld system has a global U(1)'SO(2) invarian
e, by whi
hwe mean that the angle ! in the transformation'0(x) = ei!'(x); '0(x)� = e�i! '0(x)�; (2.65)does not depend on the spa
etime 
oordinate x. We 
an interpret these trans-formations also as passive transformations of the 
oordinate system in internalspa
e. It is natural to ask if the referen
e system that pi
ks out the real andimaginary parts of ', or equivalently its 1 and 2 
omponents, has to be globallyde�ned. For example do we have to 
hoose it the same here in Amsterdam nowas on the Moon �ve years later? It is possible to allow for arbitrary lo
al trans-formations of the internal 
oordinate frame, with an a
tion invariant under U(1)transformations with angle !(x) depending on spa
etime. To a
hieve this weneed to 
ompensate the noninvarian
e of the derivative terms in the lagrangian,L(x) = ���'(x)���'(x)�m2'(x)�'(x); (2.66)be
ause under a lo
al transformation'0(x) = ei!(x) '(x); (2.67)the term m2'(x)�'(x) is invariant but the derivative transforms in an inhomoge-nous and non
ovariant way��'0(x) = ��[ei!(x) '(x)℄ = ei!(x) [��'(x) + i��!(x)'(x)℄: (2.68)Instead, a 
ovariant derivative D�' transforming asD0�(x)'0(x) = ei!(x)D�(x)'(x) (2.69)would allow for the 
onstru
tion of an invariant lagrangianL(x) = �[D�(x)'(x)℄�D�(x)'(x)�m2'(x)�'(x); (2.70)The well known 
onstru
tion of the 
ovariant derivative uses the invarian
e ofthe ele
tromagneti
 �eld system under the gauge transformationA0�(x) = A�(x) + 1e��!(x); (2.71)where e is an arbitrary 
onstant. The formD�(x) = �� � ieA�(x); (2.72)



2.4. COUPLING TO THE ELECTROMAGNETIC FIELD 57has the required property: under the 
ombined gauge transformation (2.67),(2.71), D0�(x)'0(x) = [�� � ieA0�(x)℄'0(x)= [�� � ieA�(x)� i��!(x)℄ ei!(x) '(x)= ei!(x) [�� � ieA�(x)℄'(x)= ei!(x)D�(x)'(x): (2.73)A derivative involves the 
omparison of �elds at in�nitesimally 
lose points inspa
etime. The ele
tromagneti
 potentials play the role of a 
onne
tion, whi
h isused in 
omparing (`
onne
ting') the orientations of the internal spa
es at thesein�nitesimally 
lose points.The 
lassi
al a
tion for the 
ombined ele
tromagneti
 and s
alar �eld systemis now given by S = SA + SA'; (2.74)SA = � Z d4x 14F��F ��; (2.75)SA' = � Z d4x [(D� ')�D� '+m2'�'℄ (2.76)= � Z d4x [��'���'+m2'�'+ e(i'� ��'� i��'� ')A� + e2'�'A�A�℄: (2.77)In the formalism using real �elds the a
tion SA' readsSA' = � Z d4x [12(D�')T D�'+ 12m2'T'℄; (2.78)' = � '1'2 � ; D�' = (�� � ieqA�)': (2.79)We see in (2.77) the appearen
e of terms of 
ubi
 and quarti
 order in the �elds.These are 
alled intera
tion terms, sin
e free �eld systems (in
luding externalsour
es) have only terms at most quadrati
 in the �elds. The parameter e is 
alleda 
oupling 
onstant, sin
e it governs the strength of the intera
tions. We 
an usethis theory for the des
ription of 
harged pions �� in an external ele
tromagneti
potential A�. Then it 
an be shown that e is the elementary unit of 
harge, assuggested by the notation. This identi�
ation will be made on the basis of as
attering experiment (
f. (2.251)).The theory is still invariant under the global U(1) transformation (2.65) im-plying the gauge invariant 
onserved 
urrentj� = i(D�')�'� i'�D�': (2.80)



58 CHAPTER 2. INTERACTIONS WITH SCALAR FIELDSIt is furthermore invariant under the dis
rete transformation'0 = '�; '0� = '; A0� = �A�; (2.81)whi
h 
hanges the sign of the 
harge Q = R d3x j0 and is therefore 
alled 
harge
onjugation. In the real �eld formalism this transformation is a re
e
tion ininternal spa
e, '01 = '1; '02 = �'2; or '0 = � 1 00 �1 �': (2.82)As far as ' is 
on
erned this transformation 
ompletes SO(2) into O(2), theorthogonal group in two dimensions in
luding re
e
tions.The quantization of the 
omplete 
oupled '{A �eld theory in the Coulombgauge is straightforward but 
umbersome. We shall not go through the details(see e.g. Bjorken & Drell II for quantization in the Coulomb gauge), but list anumber of noteworthy points:1. Similar to the 
ase of the 
osmologi
al 
onstant, it turns out that the pa-rameters we start out with in the formulation of the theory { the bareparameters { are not equal to the parameters we measure { the renormal-ized parameters. We therefore make the repla
ement in the a
tione! e0; m2 ! �20: (2.83)Furthermore, it turns out that we need a gauge invariant bare self 
ouplingof the form �0('�')2 in order to be able to 
an
el a type of in�nities. Therenormalized and parameters e, m and � are then fun
tions of the bare e0,�20 and �0 and the 
hoi
e of regularization.So the quantum theory will be based on the A{' a
tionSA' = � Z d4x f[(�� � ie0A�)'℄� (�� � ie0A�)'+ �20'�'+ �0('�')2 + �0g;(2.84)where we have put the bare 
osmologi
al 
onstant in SA'; the a
tion SAremains un
hanged.2. The 
anoni
al 
onjugate of ' involves A0,� = ÆLÆ�0' = [D0'℄� = �0'� + ie0A0'�; (2.85)and similar for ��. In the 
anoni
al formalism we have to express �0' and�0'� in terms of � and ��.
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anoni
al equal time 
ommutation relations in the quantum theory areun
hanged, e.g. at t = 0,['(y); �(x)℄ = ['(y)y; �(x)y℄ = iÆ(x� y); (2.86)[Am(x);�n(y)℄ = iP Tmn(x� y); (2.87)[�(x); Am(y)℄ = ['(x); Am(y)℄ = [�(x);�m(y)℄ = ['(x);�m(y)℄= � � � = 0: (2.88)The equal time 
ommutators between 
anoni
al s
alar �eld and ele
tromag-neti
 variables vanish a

ording to the 
anoni
al rules.4. The 
urrent in Maxwell's equations 
ontributed by the s
alar �eld is givenby e0j� = ie0[(D�')y '� 'yD�'℄: (2.89)The 
orresponding 
harge densitye0j0 = �ie0(�'� �y'y) (2.90)is now an operator and therefore alsoA0(x; t) = e0 Z d3y 14�jx� yj j0(y; t); (2.91)and the Coulomb energyHC(t) = e20 12 Z d3xd3y j0(x; t) j0(y; t)4�jx� yj : (2.92)5. Charge 
onjugation inter
hanges parti
les and antiparti
les, as 
an be seenfrom (2.81), (2.60).2.5 Equation for the va
uum amplitude in '4theoryIn the following we shall illustrate some derivations with a system that is simplerthan s
alar ele
trodynami
s, the '4 theory. Its 
lassi
al a
tion is given byS(') = � Z d4x (12��'��'+ 12�2'2 + 14�'4 + �); (2.93)where ' is a real s
alar �eld. The hamiltonianH = Z d3x (12�2 + 12(r')2 + 12�2'2 + 14�'4 + �); (2.94)
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Figure 2.1: Classi
al energy density of the '4 theory, for �2 > 0 (a) and for�2 < 0 (b).
an be seen as an in�nite number of 
oupled anharmoni
 os
illators. There is alsoan analogy with the three dimensional Ising model, in whi
h ' is an average overIsing spins in a small volume d3x. The 
lassi
al ground state has �2 = (r')2 = 0and minimal energy densityU = 12�2'2 + 14�'4 + �: (2.95)The fun
tion U is sket
hed in �g. 2.1. Sin
e we assume the energy to be boundedfrom below, � > 0. For �2 > 0, the ground state is at ' = 0, while for �2 < 0there are two mimima at ' = �r��2� (2.96)It follows that for negative �2 the symmetry '(x) ! �'(x) is broken in theground state, and one speaks of spontaneous symmetry breaking. This is anal-ogous to the phenomenon of spontaneous magnetization in the Ising model. Tosingle out a de�nite ground state we 
an add a small term to the a
tion whi
hbreaks the symmetry '! ' expli
itly,�S = Z d4x �'(x): (2.97)We see that � plays the role of a 
onstant external �eld in the Ising model. In ourpresent terminology � 
an be interpreted as a 
onstant external sour
e J(x) = �.In the quantum theory we anti
ipate renormalization and make the repla
e-ments �2 ! �20, � ! �0, � ! �0, � ! �0. The �eld equation with an externalsour
e J 0 = (�2 � �20)'� �0'3 + J; (2.98)follows from the Heisenberg equations of motion with total hamiltonian H �R d3x J'.The �elds 
an still be written in terms of 
reation and annihilation operatorsat some time su
h as t = 0, e.g.'(x) = Z d!p [eipx a(p) + e�ipx a(p)y℄; (2.99)



2.5. EQUATION FOR THE VACUUM AMPLITUDE IN '4 THEORY 61but the time dependen
e is now given by the nonlinear �eld equation (2.98) notsimply that of a free �eld,'(x) 6= Z d!p [eipx�ip0x0 a(p) + e�ipx+ip0x0 a(p)y℄; x0 6= 0; (2.100)The hamiltonian H is no longer of the form R d!pp0a(p)ya(p) but 
ontains termsof fourth order in the 
reation and annihilation operators, due to the '4 term�0 R d3x'4(x). Hen
e, the va
uum state j0i, i.e. the ground state in the limitof in�nite volume, is mu
h more 
ompli
ated than in the free 
ase and and notgiven by a(p)j0i = 0. The state j;i de�ned by a(p)j;i = 0 may be 
alled the no-quantum state. Ordinary perturbation theory then suggests that the true va
uumj0i is a superposition of j;i, a(p)yj;i, a(p1)ya(p2)yj;i, . . . . One sometimes speaksof j;i as the bare va
uum and j0i as the dressed va
uum. The above is alreadytrue of 
ourse in the simple 
ase of the one dimensional anharmoni
 os
illatorwith H = 12mp2 + 12!2q2 + 14�q4.Similarly, the other eigenstates of H may be 
onsidered as being dressed bythe '4 intera
tion. This holds in parti
ular for the one parti
le states, whi
h areassumed to be the true eigenstates of P � (P 0 = H),P �jpi = p�jpi: (2.101)Be
ause jpi 6= a(p)yj0i, it is also not true in general that hpj'(x)j0i = exp(�ipx).However, for 
ovarian
e reasons we may writehpj'(x)j0i =pZ' e�ipx; (2.102)where Z' is a 
onstant, traditionally 
alled the wave fun
tion renormalization
onstant.Although it is of interest to determine the stru
ture of various eigenstates ofH in terms of the quanta at t = 0, it is 
umbersome and detra
ts from the mostimmediate physi
al quantities we wish to 
al
ulate, su
h as s
attering amplitudes.Over the years people have learned to 
on
entrate on the va
uum amplitude Z(J)and extra
t from it the relevant physi
al quantities.Let us formulate the ingredients in Z(J). The va
uum j0i is the state withlowest energy, adjusted to zero by and appropriate 
hoi
e of �0,Hj0i = 0: (2.103)Re
all that H does not 
ontain the sour
e J and that we use the intera
tionpi
ture to take J into a

ount. The intera
tion hamiltonian in the intera
tionpi
ture is given by HJ(x0) = � Z d3x J(x)'(x): (2.104)
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tion pi
ture �eld '(x) evolves in time under the in
uen
e of H, as ifJ were zero. The va
uum amplitude is given byZ(J) = h0jUJ(1;�1)j0i = h0jT e�i R1�1 dtHJ (t)j0i; (2.105)= h0jT ei R d4xJ(x)'(x)j0i: (2.106)By di�erentiating Z(J) with respe
t to J we `bring down' the ''s,ÆZ(J)iÆJ(x1) � � � iÆJ(xn) = h0jT ei R d4xJ(x)'(x)'(x1) � � �'(xn)j0i: (2.107)For J = 0 we get va
uum expe
tation values of time ordered produ
ts of �elds,sometimes 
alled � -fun
tions,h0jT '(x1) � � �'(xn)j0i; (2.108)from whi
h we 
an 
onstru
t many quantities of interest.We now 
onvert the equation of motion (2.98) into an equation for Z(J),similar to what was done for ele
tromagneti
 �eld in se
t. 1.12. For simpli
ity ofnotation we denote the 
lassi
al �eld '(
) by �,�(x) � 1Z(J) ÆZ(J)ÆJ(x) = h0jUJ(1; x0)'(x)UJ(x0;�1)j0ih0jUJ(1;�1)j0i : (2.109)Di�erentiating twi
e with respe
t to x0 we get�0�(x) = Z(J)�1 h0jUJ(1; x0)�(x)UJ(x0;�1)j0i; (2.110)�20�(x) = Z(J)�1 h0jUJ(1; x0)fJ(x) + i[H; �(x)℄gUJ(x0;�1)j0i= Z(J)�1 h0jUJ(1; x0) [J(x) + �'(x)� �20'(x)� �0'(x)3℄UJ(x0;�1)j0i= Z(J)�1 h0jT ei R d4y J(y)'(y) [J(x) + �'(x)� �20'(x)� �0'(x)3℄j0i= Z(J)�1 "J(x) + � ÆiÆJ(x) � �20 ÆiÆJ(x) � �0� ÆiÆJ(x)�3#Z(J);(2.111)whi
h 
an be rewritten as0 = J(x) + Z(J)�1 �(�2 � �20)�(x)� �0�(x)3��(x)! ÆiÆJ(x) Z(J) (2.112)= J(x) + Z(J)�1 �ÆS(�)Æ�(x)��(x)! ÆiÆJ(x) Z(J): (2.113)This `Dyson-S
hwinger equation' for Z(J) together with Feynman boundary 
on-ditions in time will be our starting point for a 
al
ulational s
heme.



2.6. EFFECTIVE ACTION 632.6 E�e
tive a
tionWe now express the va
uum amplitude Z(J) in terms of an e�e
tive a
tion �(�).In fa
t we will �rst de�ne �(�) in terms of Z(J), then assume �(�) to be givenand reexpress Z(J) in terms of �(�). In the next se
tion we will use eq. (2.113)to formulate a method for 
al
ulating �(�). It is equal to the 
lassi
al a
tion upto so-
alled quantum 
orre
tions, �(�) = S(�) +O(~).We start by introdu
ing W (J) de�ned byZ(J) = eiW (J): (2.114)Then �(x) = 1Z ÆZ(J)iÆJ(x) = ÆÆJ(x)W (J): (2.115)In terms ofW (J) we de�ne the 
onne
ted Green fun
tions, also 
alled 
orrelationfun
tions, by G(x1 � � �xn) = ÆÆJ(x1) � � � ÆÆJ(xn)W: (2.116)These Green fun
tions are 
ompletely symmetri
 in their arguments. For n = 1,G(x) = �(x). Di�erentiating Z(J) and setting J = 0 afterwards gives�(x) = h0j'(x)j0i � �0; (2.117)(�i)G(xy) = h0jT '(x)'(y)j0i � h0j'(x)j0ih0j'(y)j0i; (2.118)We see that G(xy) is the fully dressed (i.e. in
luding all e�e
ts of the inter-a
tions) propagator, and (2.118) illustrates the name `
orrelation fun
tion' byanalogy with su
h fun
tions in Statisti
al Physi
s. In our example of the '4 the-ory h0j'(x)j0i may be nonzero, depending on the 
hoi
e of parameters �20 and�0. In 
ase h0j'(x)j0i 6= 0 the symmetry '! �' is spontaneously broken in theva
uum.In general J 6= 0. The �eld � depends on J , � = �(J), and we assumethat this relation may be inverted, J = J(�). In the same fashion W (J) may be
onsidered a fun
tion of �, and we now de�ne �(�) by a Legendre transformation,�(�) =W (J)� Z d4x J(x)�(x): (2.119)To streamline the derivations below and to bring the equations into a form thatalso applies to other theories it is now very 
onvenient to follow DeWitt and use a
ondensed notation: all indi
es, spa
etime and dis
rete are lumped into an indexk, �(x)! �k; x! k; (2.120)and we use a summation 
onvention for repeated indi
es, e.g.Jk�k � Z d4x J(x)�(x): (2.121)



64 CHAPTER 2. INTERACTIONS WITH SCALAR FIELDSFor the 
ase of the 
oupled s
alar{ele
tromagneti
 �eld system the index k alsodistinguishes various �elds,�k ! '(
)(x); '(
)(x)�; A(
)� (x): (2.122)Fun
tional di�erentiation with respe
t to �k is denoted by a 
omma,Æ�(�)Æ�(x) ! �;k (�): (2.123)For example�(�) = �(�0) + �;k (�0)(�k � �k0) + 12�;kl (�0)(�k � �k0)(�l � �l0) + � � �= Xn 1n! �;k1���kn (�0)(�k1 � �k10 ) � � � (�kn � �kn0 ) (2.124)= Xn 1n! Z d4x1 � � �d4xnÆn�(�0)Æ�(x1) � � � Æ�(xn) (�(x1)� �0) � � � (�(xn)� �0); (2.125)where1 �0 = �(J = 0). In the '4 model the derivatives of the 
lassi
al a
tion Saround � = 0 are given by,S;k (0) = 0; (2.126)S;kk0 (0) = � ÆSÆ�(x)Æ�(x0)��=0 � S(x; x0; 0)= � (��2 + �20 � i�) Æ(x� x0); (2.127)S;k1k2k3 (0) = � ÆSÆ�(x1)Æ�(x2)Æ�(x3)��=0 � S(x1x2x3; 0) = 0; (2.128)S;k1���k4 (0) = � ÆSÆ�(x1)Æ�(x2)Æ�(x3)Æ�(x4)��=0 � S(x1 � � �x4; 0)= � 6�0 Æ(x1 � x2) Æ(x1 � x3) Æ(x1 � x4); (2.129)where we have repla
ed �20 ! �20�i� to enfor
e the Feynman boundary 
onditionsin time. We haveS(�) = 4Xn=1 1n! S;k1���kn (0)�k1 � � ��kn (2.130)= 4Xn=1 1n! Z d4x1 � � �d4xn S(x1 � � �xn; 0)�(x1) � � ��(xn): (2.131)1In 
ase of spontaneous symmetry breaking in in�nite volume W (J) is not di�erentiablein J = 0, see e.g. Brown se
t. 6.5. We should keep J a little away from zero and hen
e �in �(�0) a little away from �0, su
h that the di�erentiations make sense. After all ne
essarydi�erentiations have been 
arried out we 
an let J ! 0.



2.6. EFFECTIVE ACTION 65In the 
ondensed notation eqs. (2.116), (2.119) readGk1���kn = ÆÆJk1 � � � ÆÆJkn W; (2.132)and �(�) = W (J)� Jk�k: (2.133)Di�erentiating (2.133) with respe
t to Jk givesÆ�ÆJl = ÆWÆJl � �l � Jk Æ�kÆJl = �Jk Æ�kÆJl ; (2.134)and using on the left hand side of this equation the 
hain ruleÆÆJl = Æ�mÆJl ÆÆ�m = Glm ÆÆ�m ; (2.135)gives Glm Æ�Æ�m = �JkGkl; (2.136)or �;p= �Jp: (2.137)Here we assumed Gkl to be nonsingular, i.e. to have an inverse when 
onsideredas a 
ontinous matrix. This is assured by the Feynman boundary 
onditions intime, as expressed by the i� in (2.127). In ele
trodynami
s it requires in addition�xing the gauge or adding the (��A�)2 term to the lagrangian. Eq. (2.137) showsthat � is the solution of the stationary a
tion equation (Æ=Æ�p)(� + Jk�k) = 0.Di�erentiating again, Æ�;p =ÆJl, using (2.135), gives�;pqGql = �Ælp; (2.138)whi
h shows that Gkl is the inverse of ��;kl. Further di�erentiation Æ=Æ�r gives�;pqrGql + �;pqGql;r = 0; (2.139)and 
ontra
ting with Grm using Gmr(Æ=Æ�r) = Æ=ÆJm,�;pqrGqlGrm + �;pqGqlm = 0: (2.140)Contra
ting these last two equations with Gpk using (2.138) givesGkl;r = �;pqrGpkGql; (2.141)Gklm = �;pqrGpkGqlGrm: (2.142)Further di�erentiation of (2.142) with respe
t to Æ=ÆJn gives, using (2.141) andthe 
hain rule (2.135)Gklmn = �;pqrsGpkGqlGrmGsn+ �;pqr (GkaGpbGn
�;ab
GqlGrm + 2 perm.); (2.143)
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Figure 2.2: Graphi
al representation. The little Æ at the end of lines indi
atesthe presen
e of the propagator. Note that the Æ are absent in �;k1���kn.
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Figure 2.3: Vertex fun
tions and propagator in momentum spa
e.and so on. The graphi
al representation given in �gure 2.2 
lari�es the pro
edure.We see that the 
orrelation fun
tions 
an be expressed as a sum of tree diagrams,in whi
h the lines represent the exa
t (as opposed to free) propagator Gkl andthe verti
es represent the exa
t �;p1���pm . For this reason the derivatives of �are 
alled vertex fun
tions2. In this way we obtain Gk1���kn in terms of Gkl and�;p1���pm. Sin
e Gkl is the inverse of ��;kl all 
orrelation fun
tions are expressedin terms of �(�).For J(x) = 0 the 
orrelation fun
tions be
ome translation invariant, as theyare 
ombinations of � -fun
tions (2.108): �0(x) = h0j'(x)j0i does not dependon x and G(x1; � � � ; xn) = G(x1 + z; � � � ; xn + z). Also the vertex fun
tions arethen translation invariant and the expressions simplify in momentum spa
e. Our
onventions are as follows,Z d4x1 � � �d4xn e�i(p1x1+���+pnxn) �(x1 � � �xn);� (2�)4 Æ4(p1 + � � �+ pn)�(p1 � � � pn) (2.144)Z d4x1 � � �d4xn e�i(p1x1+���+pnxn)G(x1 � � �xn);� (2�)4 Æ4(p1 + � � �+ pn)G(p1 � � � pn) (2.145)G(p;�p) � G(p); �(p;�p) � �(p): (2.146)Note the extra
tion of a four momentum 
onserving delta fun
tion, whi
h ispresent be
ause of translation invarian
e. The 
orresponding diagrams are givenin �g. 2.3. As a 
onsequen
e, e.g. the three and four point 
orrelation fun
tionsare given byG(p1p2p3) = G(p1)G(p2)G(p3)�(p1p2p3); (2.147)G(p1 � � � p4) = G(p1)G(p2)G(p3)G(p4)[�(p1p2p3p4) (2.148)+ �(p1; p2;�p1 � p2)G(p1 + p2)�(p1 + p2; p3; p4)+ �(p1; p3;�p1 � p3)G(p1 + p3)�(p1 + p3; p2; p4)+ �(p1; p4;�p1 � p4)G(p1 + p4)�(p1 + p4; p2; p3)℄;2The fa
tors i and (�i) in �g. 2.2 look arti�
ial at this stage and 
an be omitted. Thesefa
tors are introdu
ed for 
onventional reasons and appear anyway in a later stage.
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Figure 2.4: Graphi
al representation of the three and four point 
orrelation fun
-tions. As in the previous �gures the lines and solid dots denote the exa
t (fullydressed) propagators and vertex fun
tions.a

ording to the diagrams in �g. 2.42.7 Dyson-S
hwinger equations and the loop ex-pansionIt is useful to restore Plan
k's 
onstant ~ temporarily. We know already theexpli
it appearen
e of ~ in the va
uum amplitude (see e.g. (1.249a)),Z(J) = e i~W (J) = e i~ [�(�)+Jk�k℄; (2.149)�k = e� i~W (J) ~ÆiÆJk e i~W (J); (2.150)where W (J) and �(�) may still depend impli
itly on ~. Equation (2.113) for theva
uum amplitude 
an be written in the 
ondensed notation as0 = e� i~W (J) [Jk + S;k ( ~ÆiÆJ )℄ e i~W (J); (2.151)= e� i~W (J) �Jk + S;k (0) + S;kl (0) ~ÆiÆJl + 12S;klm (0) ~ÆiÆJl ~ÆiÆJm+ 13!S;klmn (0) ~ÆiÆJl ~ÆiÆJm ~ÆiÆJn� e i~W (J): (2.152)



2.7. DYSON-SCHWINGER EQUATIONS AND THE LOOP EXPANSION 69The 
lassi
al a
tion S does not depend on ~.To evaluate (2.152) we insert 1 = e� i~W e i~W in between the Æ=ÆJ 's and usethe following operator identitye� i~W (J) ~ÆiÆJk e i~W (J) = �k + ~ÆiÆJk (2.153)= �k � i~Gkl ÆÆ�l (2.154)� �̂k; (2.155)where in the se
ond line we used the 
hain rule (2.135). Then eq. (2.152) 
an berewritten as0 = [Jk + S;k (0) + S;kl �̂l + 12S;klm (0)�̂l�̂m + 13!S;klmn �̂l�̂m�̂n℄ 1; (2.156)where the di�erential operator in [� � �℄ a
ts on the number 1. Using (2.141) wehave �̂l 1 = �l; (2.157)�̂l�̂m 1 = (�l � i~Glp ÆÆ�p )�m = �l�m � i~Glm; (2.158)�̂l�̂m�̂n 1 = (�l � i~Glp ÆÆ�p )(�m�n � i~Gmn)= �l�m�n � i~�lGmn � i~�mGnl � i~�nGlm+ (�i~)2GlpGmqGnr�;pqr : (2.159)Putting things together see that (2.156) 
an be rewritten as�J;k = S;k (�) + (�i~)12S;klm (�)Glm+ (�i~)2 13!S;klmn (�)GlpGmqGnr �;pqr ; (2.160)where the argument � in the derivatives of S is expli
it. Suppressing the �dependen
e as usual and re
alling the e�e
tive �eld equation �;k= �J; k we�nally have our desired equationi�;k = iS;k +~12 iS;klm (�iGlm)+ ~2 13! iS;klmn (�iGlp)(�iGmq)(�iGnr) i�;pqr : (2.161)This equation is represented graphi
ally in �gure 2.5. Di�erentiating (2.161)repeatedly and letting J ! 0 in the end we obtain an in�nite hierar
hy of 
oupledequations, for the full propagator Gkl and the vertex fun
tions �k1���kn : the Dyson-S
hwinger equations. This di�erentiation is most easily done graphi
ally using
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Figure 2.5: Equation for the the e�e
tive a
tion. Dots represent fully dressed(exa
t) vertex fun
tions �;kl���, verti
es without the dot represent bare vertexfun
tions S;kl���.

Figure 2.6: Equations for �;kl, �;klm and �;klmn (~ = 1).
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Figure 2.7: One loop approximation for �;kl and �;klmn in the '4 theory in thesymmetri
 phase. Here the lines denote the bare propagators.the rules in �g. 2.2. The �rst few equations following from di�erentiating aregiven in �g. 2.6, and so on.The in�nite hiear
hy 
an usually not be solved exa
tly. One 
an trun
atethe hiear
hy by setting the n point fun
tion �(n) = 0 for n larger than somenmax, e.g. nmax = 4, and keeping only the one loop terms in the Dyson-S
hwingerequations. The error in su
h trun
ations is diÆ
ult to assess a priori and inele
trodynami
s the pro
edure has problems with gauge invarian
e. Comparisonwith numeri
al simulations using the latti
e regularization have shown howeverthat the trun
ation approa
h may give reasonable results. A systemati
 approxi-mation is obtained by iteration, by inserting the left hand side into the right handside, repeatedly. This leads to an expansion of �(n) in powers of ~ (whi
h is gauge
ovariant). The power of ~ 
orresponds to the number of loops in the diagrams,hen
e the name loop expansion. The semi
lassi
al approximation is � � S. Theone loop approximation is obtained by simply repla
ing the full propagators andvertex fun
tions on the right hand side of the Dyson-S
hwinger equations by thebare ones and dropping the two loop terms. For example, the '4 theory has inthe symmetri
 phase only two and four point bare vertex fun
tions (
f. (2.127) {(2.129)), and to one loop order the two and four point vertex fun
tions are givenby the diagrams in �g. 2.7.As announ
ed in the previous se
tion, � = S +O(~). It is not diÆ
ult to seethat ea
h power of ~ is a

ompanied by a power of the 
oupling 
onstant �0, orsome other 
oupling 
onstant in a more 
ompli
ated theory with more than one
oupling 
onstant. Setting ~ = 1, the semi
lassi
al expansion is an expansion inone of the 
ouplings, keeping ratios of the 
oupling 
onstants �xed.



72 CHAPTER 2. INTERACTIONS WITH SCALAR FIELDS2.8 Path integral representationEquation (2.151) for Z(J) has the form of a linear di�erential equation wi
h 
anbe solved by Fourier transformation. We writeZ(J) = Z D'e i~Jk'k ~Z('); D' �Yk d'k; (2.162)where the integration variables 'k should not be 
onfused with the quantumoperator �eld. As usual, di�erentiations be
ome multipli
ations in Fourier spa
e,and the equation for Z(J) gets transformed as0 = [Jk + S;k ( ~ÆiÆJ )℄Z(J) = Z D' [Jk + S;k (')℄ e i~Jk'k ~Z('): (2.163)Repla
ing Jk by ~Æ=iÆ'k a
ting on the exponential and making a partial integra-tion we dis
over that the solution is given byZ(J) = 
onst: Z D'e i~ [S(')+Jk'k℄; (2.164)whi
h 
an easily be 
he
ked dire
tly,Z D' [Jk + S;k (')℄ e i~ [S(')+Jl'l℄ = Z D' [ Æ'k (S(') + Jl'l)℄ e i~ [S(')+Jl'l℄= ~i Z D' ÆÆ'k e i~ [S(')+Jl'l℄= 0; (2.165)be
ause the surfa
e terms vanish due to the i� terms in the a
tion, see e.g. eq.(2.127). The integration 
onstant is �xed by the property Z(J) = 0,Z(J) = R D'e i~ [S(')+Jk'k℄R D'e i~S(') : (2.166)Eq. (2.166) is the path integral representation of the va
uum amplitude.The fa
t that we are dealing with fun
tional di�erential equations and 
or-responding fun
tional Fourier transformation is helpfully hidden in the 
ompa
tnotation, but should of 
ourse not be forgotten. For example, the formal 
ontin-uous produ
t in Z D' = Z Yk d'k !Yx Z 1�1 d'(x); (2.167)is mathemati
ally ill de�ned and needs to be given meaning by a regularization.We 
ould for instan
e use a dis
rete mode expansion, pla
e a 
uto� on the numberof modes, and remove this 
uto� in a later stage. An obvious 
hoi
e is the



2.8. PATH INTEGRAL REPRESENTATION 73latti
e regularization, in whi
h the x are restri
ted to the points of a latti
ein spa
etime. Then the 
ontinuum limit needs 
areful study. This method aton
e gives a pre
ise and simple de�nition to quantum �eld theory and fa
ilitatesnumeri
al simulations on 
omputers, whi
h have led to spe
ta
ular su

esses inthe nonperturbative �eld theory, in parti
ular QCD, the theory of the strongintera
tions.For ~! 0 the stationary phase argument leads to the semi
lassi
al resultZ(J) � e i~ [S(�)+Jk�k ℄; (2.168)with �k the solution of S;k (�) + Jk = 0: (2.169)The perturbative expansion for ~! 0 is a systemati
 stationary phase expansion,whi
h 
an be seen as a steepest des
ent or saddle point expansion by 
ontinuing' to 
omplex values. Although these arguments are formal at this level, su
hmanipulations of path integrals have turned out to provide a powerful tool inquantum �eld theory.As a simple example, let us write S = S0 + S1, where S0 
ontains only thequadrati
 terms in the �elds and S1 the higher order terms. Then Z(J) 
an beevaluated as, setting ~ = 1 for simpli
ity,Z(J) = eiS1( ÆiÆJ ) Z0(J); (2.170)with Z0(J) the free �eld va
uum amplitudeZ0(J) = Z D'ei[S0(')+Jk'k℄ (2.171)= Z D'e�i 12'kG�10kl'l+iJk'k ; (2.172)were we suppressed the normalizing 
onst: This free �eld path integral is formallyjust a multiple gaussian integral, whi
h 
an be solved by making a translation'k ! 'k +Gkl0 Jl, Z0(J) = ei 12JkGkl0 Jl Z D'e�i 12'kG�10kl'l: (2.173)The remaining integral is just a 
onstant (/ pdetG0), whi
h plays no role inthe present dis
ussion. We have reprodu
ed the free �eld form for the va
uumamplitude, and by expansion of exp[iS1( ÆiÆJ )℄ we get an expli
it formula for theperturbative expansion of Z(J). This leads to Feynman diagrams, whi
h maybe ordered into various 
onne
ted and irredu
ible parts, as seen earlier with thee�e
tive a
tion te
hnique.The path integral integral is a beautiful independent formulation of quantumtheory and our brief introdu
tion here does not do it suÆ
ient justi
e.
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es in '4 theorySetting J = 0 (or 
onst.) after all ne
essary di�erentiations have been 
arried out,thranslation invarian
e allows for transfering the equations to momentum spa
e.In the semi
lassi
al approximation � = S and the �eld equation S;k (�0) = �Jkis for J = 0 an equation for the va
uum expe
tation value �0,(�20 + �0�20)�0 = 0: (2.174)Sin
e �0 is positive, for �20 > 0 the solution is �0 = 0 and the system is ina symmetri
 phase (no spontaneous symmetry breaking). The vertex fun
tionsS;k1���kn (0) have alsready been given in (2.129), and read in momentum spa
eS(p;�p) = �(�20 + p2 � i�); (2.175)S(p1; p2; p3) = 0; (2.176)S(p1; � � � ; p4) = �6�0: (2.177)Only the two and four point bare verti
es are nonzero. From the propagatorG(p) = �S(p;�p)�1 we see that the bare parti
le mass m20 = �20.For �20 < 0 there are three solutions, �0 = 0 and�0 = �s��20�0 ; (2.178)but as we have seen already in se
t. 2.5 the ground state 
orresponds to one ofthe �0 6= 0 solutions. The system is in a broken phase. To get a unique groundstate we break the symmetry � ! �� expli
itly and do not let J(x) ! 0 butin stead let J(x) ! �0, whi
h produ
es the term (2.97). We may think of �0being in�nitesimal or, and this is the 
ase in the appli
ation of '4-like modelsto low energy pions physi
s, �0 may have some nonzero value determined byexperiment. In the broken phase there is also three point vertex. For �0 ! 0, thevertex fun
tions S;k1���kn (�0) are given byS(p;�p) = �(�2�20 + p2 � i�); (2.179)S(p1; p2; p3) = �6�0�0; (2.180)S(p1; � � � ; p4) = �6�0; (2.181)where �0 has the semi
lassi
al value (2.178). We see that in the broken phasethe bare parti
le mass is given by m20 = �2�20 = 2�0�20, if we use for �0 itssemi
lassi
al value.In the semi
lassi
al approximation the we 
an drop the subs
ript 0 in all thesequantities, �2 = �20, � = �0, and the parti
le mass is m2 = m20.
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es in s
alar ele
trodynami
sWe add a sour
e for ea
h �eld to the a
tion (2.84) of s
alar ele
trodynami
s,S('; '�; A) + Z d4x ('�J + J�'+ J�A�): (2.182)The sour
e terms for the s
alar �eld break gauge invarian
e and the resulting
orrelation fun
tions depend on the gauge. We �rst �x the gauge and then addthe sour
es. Having �xed the gauge we 
an also relax the 
ondition of 
urrent
onservation ��J� = 0, whi
h allows for un
onstrained fun
tional di�erentiation.The total 
urrent is no longer 
onserved anyhow, be
ause the breaking of gaugeinvarian
e by the s
alar sour
es 
auses ��j� 6= 0. We have seen before in 
hapter1 that the photon Green fun
tion depends on the gauge but that the physi
alresults extra
ted from Z(J) are gauge invariant. As we shall see later also thes
attering amplitudes are gauge invariant, and this 
an be understood from thefa
t that the sour
es are removed to in�nity in spa
etime.We have 
anoni
ally quantized the system in the Coulomb gauge so let us�rst make some remarks about this 
ase. The hamiltonian H after quantization
hanges in two ways by the addition of the sour
es: in the Coulomb energyoperator (2.92): e0j0(x)! e0j0(x) + J0(x); (2.183)and we have to add to H the terms� Z d3x [('y(x)J(x) + Jy(x)'(x) + Jm(x)Am(x)℄: (2.184)The intera
tion hamiltonianHJ in the sour
e-intera
tion pi
ture is the di�eren
ebetween the total hamiltonian in
luding sour
es and the sour
e free hamiltonian.We shall not go through the 
umbersome derivation of the `equation of motionequation' for Z(J) from the 
anoni
al 
ommutation relations in the Coulombgauge. It will have the general form (2.151), with S the a
tion in Coulomb gauge.The resulting bare verti
es and propagators look ugly, non-Lorentz 
ovariant, andthe resulting expressions are awkward to work with.We therefore move qui
kly to a general 
ovariant gauge, obtained by addingthe term � Z d4x 12�0 (��A�)2 (2.185)to the non-gauge-�xed a
tion, as in se
t. 1.13, and after this we add the sour
es.Although we 
an no longer use 
urrent 
onservation to show that ��A� = 0 asa 
onsequen
e of the equations of motion with sour
es, as in se
t. 1.13, we mayexpe
t �0-independen
e of the physi
al results. This is an important test for the
orre
tness of the pro
edure, whi
h we will do for s
attering amplitudes in thesemi
lassi
al approximation. A proper demonstration of the equivalen
e of theCoulomb gauge and the 
ovariant gauges lies outside the s
ope of these le
ture



76 CHAPTER 2. INTERACTIONS WITH SCALAR FIELDSnotes. We assume now the validity of the `equation of motion' for Z(J) in thegeneri
 form (2.151), and as a 
onsequen
e all the results 
on
erning the e�e
tivea
tion and Dyson-S
hwinger equations apply.The resulting bare vertex fun
tions now follow from the 
omplete a
tion ofs
alar ele
trodynami
s, whi
h reads in the formalism using 
omplex �eldsS = SA + SA�; (2.186)SA = � Z d4x 12A�[(��2 � i�)g�� + (1� ��10 )���� ℄A�; (2.187)SA� = � Z d4x [��(��2 + �20 � i�)�+ ie0(������ �����)A�+ e20���A�A� + �0(���)2 + �0℄ (2.188)We limit ourselves here to the 
ase �20 > 0, for whi
h there is no spontaneoussymmetry breaking. (The 
ase of negative �20 is very interesting, it des
ribes arelativisti
 super
ondu
tor.) Then �k0 = 0 and we have to evaluate the fun
-tional derivatives of S at zero �elds. The only new aspe
t is the derivative ���A
oupling. Writing these terms asZ d4ud4vd4w��(u)�(v)A�(w)S���A�(u; v; w); (2.189)we see that S���A�(u; v; w) 
an be written in the formZ d4x ie0[��Æ(x� u)Æ(x� v)Æ(x� w)� ��Æ(x� v)Æ(x� u)Æ(x� w)℄; (2.190)in whi
h �� a
ts on x. The integration over x 
an of 
ourse be 
arried outeasily but the above form is 
onvenient for transformation to momentum spa
e,where the x integral gives the delta fun
tion of 
onservation of momentum. Inmomentum spa
e we have then the nonzero vertex fun
tionsSA�A� (k;�k) = �[(k2 � i�)g�� � (1� ��10 )k�k�℄; (2.191)S���(p;�p) = �(�20 + p2 � i�); (2.192)S���A�(p; q; k) = e0(p� � q�); (2.193)S���A�A�(p; q; k; l) = �2e20g��; (2.194)S������(p1; q1; p2; q2) = �4�0; (2.195)and the nonzero propagatorsG��(k) � GA�A�(k;�k) = g�� � (1� �0)k�k�=(k2 � i��0)k2 � i� ; (2.196)G(p) � G���(p;�p) = 1�20 + k2 � i� ; (2.197)
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Figure 2.8: Bare propagators and vertex fun
tions for s
alar ele
trodynami
s.The arrow on the s
alar �eld line points towards ��.
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Figure 2.9: Bare propagators and vertex fun
tions for s
alar ele
trodynami
s inthe formalism using real �elds.as represented in �g. 2.8. Note that G�� = G���� = 0 be
ause of global U(1)invarian
e. In the formalism using real s
alar �elds in whi
hSA� = � Z d4x [12��(��2 + �20 � i�)�� + ie0q��������A�+ e20 12����A�A� + 14�0(����)2 + �0℄; (2.198)the vertex fun
tions involving the s
alars are given byS��(p;�p) = �Æ��(�20 + p2 � i�); G��(p) = Æ���20 + p2 � i� (2.199)S���(p; q; k) = e0 q�� (p� � q�); (2.200)S����(p; q; k; l) = �2e20 Æ�� g��; (2.201)S��
Æ(p; q; r; s) = �2�0 (Æ��Æ
Æ + Æ�
Æ�Æ + Æ�ÆÆ�
); (2.202)and represented in �g. 2.9.2.11 Parti
les and polesWe have seen in se
t. 2.6 that the va
uum amplitude 
an be expressed in termsof the full vertex fun
tions and the two point 
orrelation fun
tion. Sin
e this
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tion plays a spe
ial role we dis
uss here an important property: the parti
le{pole 
onne
tion. For J = 0 the 
orrelation fun
tion of the '4 theory given in(2.118) is translation invariant. Inserting intermediate states and separating theone parti
le 
ontribution using (2.102), whi
h we repeat here for 
onvenien
ehpj'(x)j0i =pZ' e�ipx; h0j'(x)jpi =pZ' eipx; (2.203)we get for x0 > y0�iG(x� y) � �iG(xy) = h0jT '(x)'(y)j0i � h0j'j0i2 (2.204)= Z d!p h0j'(x)jpihpj'(y)j0i+mp
 (2.205)= Z' Z d!p eip(x�y) +mp
; (2.206)where `mp
' denotes the multiparti
le 
ontribution. Note that the va
uum 
on-tribution 
an
els in the sum over intermediate states. For x0 < y0 there is asimilar expression and 
ombining these in the familiar way we get for generaltimes G(x� y) = Z d4p(2�)4 eip(x�y)G(p); (2.207)G(p) = Z'm2 + p2 � i� +mp
: (2.208)This shows that the one parti
le intermediate states lead to a pole in the propa-gator G(p) as a fun
tion of p2 with residue Z'. The 
omplete expression in
lud-ing the multi parti
le 
ontributions is 
alled the spe
tral representation, or theK�all�en-Lehmann representation. See for example Brown 
h. 6.For the the photon we have similarly in a 
ovariant gaugeG��(p) = ZA g�� + gauge termsp2 � i� +mp
; (2.209)G��(x� y) x0>y0= Z d!p eip(x�y) ZA[X� e�(p; �)e�(p; �)� + gauge terms℄+ mp
: (2.210)In the Coulomb gauge, however, ZA and Z' are not 
onstant but depend on p.For the 
harged parti
les of s
alar ele
trodynami
s (2.203) is extended tohp� j'(x)j0i = pZ' e�ipx; h0j'(x)yjp�i =pZ' eipx;hp+ j'(x)yj0i = pZ' e�ipx; h0j'(x)jp+i =pZ' eipx; (2.211)whi
h takes 
harge 
onservation into a

ount. For example, Qj0i = 0, Q'(x)j0i =[Q;'(x)℄ j0i = �'(x)j0i, and it follows that '(x)j0i is orthogonal to jp+i whi
h



80 CHAPTER 2. INTERACTIONS WITH SCALAR FIELDShas positive 
harge. Intuitively, (2.211) 
an be understood from the fa
t the '
reates a bare antiparti
le (
harge �) and annihilates a bare parti
le (
harge +),and vi
e versa for 'y, as 
an be seen in (2.60).We like to stress the generality of the parti
le-pole 
onne
tion. It also ap-plies to 
omposite �elds and bound states. For example, in ele
trodynami
s ofele
trons and protons we may 
onstru
t a s
alar �eld 'H(x) as 
omposed of anele
tron �eld  e and a proton �eld  p, with the quantum numbers of the groundstate of the hydrogen atom. Then we 
an still introdu
e a sour
e for this �eld andthe e�e
tive a
tion formalism still applies. Sin
e the ground state of the hydrogenatom is a spinless parti
le, the 'H-
orrelation fun
tion has a pole at the positionof the mass of the hydrogen atom. Another example is Quantum Chromody-nami
s (QCD), the theory of the strong intera
tions, in whi
h we 
an 
onstru
t
omposite �elds for the protons et
. out of quark and gluon �elds. In numeri
alsimulations in QCD the bound state masses are in fa
t essentially 
omputed fromthe positions of the poles in suitable 
omposite �eld 
orrelation fun
tions.If a 
orrelation fun
tion of a �eld ' has no pole on the real p2 axis, thengeneri
ally this means that there is no parti
le with the quantum numbers of '.However, it is possible that there is a large `bump' in G(p) near some m2, dueto a nearby pole in G(p), analyti
ally 
ontinued into the 
omplex p2 plane. Thishappens for parti
les whi
h are unstable but long lived on the relevant time s
ale.Then typi
ally near the poleG(p)! Zp2 +m2 � im� ; (2.212)with �� m. For t > 0 this leads toG(p; t) � Z dp02� eip0t Z'p2 +m2 � im�= i Z2pp2 +m2 � im� exp[�itpp2 +m2 � im�℄; (2.213)by 
losing the p0 
ontour in the upper half plane. For �� m we may approximatepp2 +m2 � im� = !(p)� im�=2!(p), !(p) =pp2 +m2, andG(p; t) = i Z2! e�i!t e� 12�(m=!)t; (2.214)showing an exponentially de
aying time behavior. The physi
al interpretationis that ��1 is the life time of an unstable parti
le, in its rest frame, with thequantum numbers of the �eld ', and � is the 
orresponding de
ay rate. Thefa
tor !(p)=m is a relativisti
 time delay fa
tor for a moving parti
le. See DeWit & Smith se
t. 3.6 and Brown se
t. 6.3 for a more detailed explanation.
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Figure 2.10: Sour
e arrangement for determining emission and absorption ampli-tudes.2.12 S
attering and de
ay amplitudesFrom the va
uum amplitude we determine in this se
tion the amplitudes fors
attering of parti
les and de
ay of unstable parti
les. We have introdu
ed the
orrelation fun
tions G(x1 � � �xn) as the fun
tional derivatives of W (J). Fromnow on we assume all derivatives to be evaluated in the limit J ! 0, for whi
hG(x) = �(x)! �0. Sin
e by de�nition W (0) = 0, it follows thatW (J) = 1Xn=1 1n! Z d4x1 � � �d4xnG(x1 � � �xn)J(x1) � � �J(xn): (2.215)The diagrams for G(x1 � � �xn) up to n = 4 are already given �g, 2.2. Noti
e thatthere is a full propagator G(xy) at every external line.We �rst re
onsider the parti
le emission and absorbtion amplitudes for thepresent 
ase of intera
ting �elds, following the same reasoning as for the freeele
tromagneti
 �eld. Consider a sour
e J(x) = J1(x) + J2(x) as shown in �g.2.10. The J1 { J2 
ross term in the va
uum amplitude appears asZ(J) = 1 + � � �+ Z d4xd4y iJ1(x)(�i)G(x � y)iJ2(y) + � � � ; (2.216)= Z d4xd4y iJ1(x)[Z' Z d!p eip(x�y) +mp
℄ iJ2(y) + � � � ; (2.217)where we used (2.206) sin
e x0 > y0.It 
an be shown that for large time separations t � x0 � y0 ! �1 themultiparti
le 
ontribution `mp
' to (2.217) is negligible. Large times mean inthis 
ontext times t�M�1, where M is a typi
al parti
le mass, e.g. the mass mof our s
alar parti
les. For M of the order of 100 MeV the time s
ale M�1 is ofthe order of 10�23 se
. See e.g. Brown, 
h. 6 for a dis
ussion of these points. The
ase of zero mass (photon) requires a separate study, whi
h is so involved that inpra
tise this 
ompli
ation is blissfully ignored at this stage.Performing the spa
etime integrations in (2.217) the J1 { J2 
ross term takes
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Figure 2.11: Emission and absorption of parti
les (a) and antiparti
les (b).
Figure 2.12: Causal arrangement of sour
es for two parti
le s
atteringthe form Z(J) = 1 + � � �+ Z d!p ipZ'J1(p)� ipZ'J2(p) + � � � ; (2.218)whi
h shows that in the intera
ting 
ase the emission and absorption amplitudesare given by hpj0iJ = ipZ'J(p); h0jpiJ = ipZ'J(p)�; (2.219)di�ering from the free �eld 
ase only by the fa
tors pZ'.The derivation above is easily extended to s
alar ele
trodynami
s. For thephotons we need to repla
e Z' by ZA and put in the polarization ve
tors e�(p; �)as in (1.273), (1.277). The 
harged s
alar �elds are 
oupled to the sour
es a
-
ording to S ! S + R d4x (J�' + J'y). Comparing with (2.211) or (2.60) wesee that J(x) 
an only emit parti
les and absorb antiparti
les, and vi
e versa forJ�(x), as illustrated in �g. 2.11.Returning to the '4 theory, 
onsider next a sour
e of the form J(x) = J1(x)+J2(x)+J3(x)+J4(x) with the various 
omponents arranged in spa
etime as shownin �gure 2.12. The 
ausal relation between the sour
es is su
h that parti
lesemitted by sour
es 3 and 4 
an be absorbed by sour
es 1 and 2. The sour
es 1and 2 and also 3 and 4 are separated by ma
ros
opi
 spa
elike distan
es. The J1{ J4 
ross term in the va
uum amplitude is given by Æ4Z=ÆJ1(x1) � � � ÆJ4(x4), orZ(J) = 1 + � � �+ Z d4x1 � � �d4x4 [(�i)G(x1x2)(�i)G(x3x4)
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Figure 2.13: Graphi
al representation of (2.220).+ (�i)G(x1x3)(�i)G(x2x4) + (�i)G(x1x4)(�i)G(x2x3)+ (�i)3G(x1x2x3x4)℄ iJ(x1)iJ(x2)iJ(x3)iJ(x4) + � � � ; (2.220)whi
h is represented graphi
ally in �g. 2.13. We have negle
ted theG(x1x2)G(x3x4)
ontribution in this �gure be
ause for spa
elike z = x1 � x2 or z = x3 � x4 the
orrelation fun
tion G(z) drops rapidly to zero (/ exp(�mjzj) as for the Yukawapotential). With an eye on �g. 2.13 the interpretation of (2.220) is 
lear: thereis an amplitude in whi
h the parti
les produ
ed by J3 and J4 travel freely beforebeing absorbed by J2 and J1, respe
tively, a similar amplitude for absorbtion byJ1 and J2, and an amplitude for the possibility that the parti
les s
atter beforebeing absorbed.In detail the s
attering amplitude 
an be found as follows. The n-point 
or-relation fun
tions 
arry two-point fun
tions on their external legs (
f. �g. 2.4).We make these external line two-point fun
tions expli
it by writingG(x1 � � �xn) = Z d4y1 � � �d4ynG(x1y1) � � �G(xnyn)H(y1 � � � yn): (2.221)In momentum spa
e this 
an be written asG(p1 � � � pn) = G(p1) � � �G(pn)H(p1 � � � pn); (2.222)or (�i)n�1G(p1 � � � pn) = (�i)G(p1) � � � (�i)G(pn) iH(p1 � � � pn): (2.223)The fun
tions H(p1 � � � pn) are sometimes 
alled `amputated Green fun
tions',
onne
ted Green fun
tions with external legs removed. For our 
ase n = 4 thisfun
tion is has the generi
 representation in �g. 2.14. Be
ause of the 
ausalarrangement of the sour
es the 
orrelation fun
tions at the external lines of thefour point fun
tion G(x1 � � �x4) may be repla
ed by their large time (ordered)form, R d4p(2�)4 eip(x�y) (�i)G(p) ! Z' R d!p eip(x�y), and the s
attering term in
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Figure 2.14: Diagrams for H(p1 � � � p4).(2.220) is given byZ(J) = 1 + � � �+ Z4' Z d!p1 � � �d!p4 iJ1(p1)� iJ2(p2)� iJ3(p3) iJ4(p4)(2�)4Æ4(p1 + � � �+ p4) iH(p1; p2;�p3;�p4) + � � � : (2.224)Leaving out the emission and absorption amplitudes we identify the amplitudefor s
attering:i(2�)4Æ4(p1 + p2 � p3 � p4)�pZ'�4H(p1; p2;�p3;�p4): (2.225)We have to keep in mind that the time 
omponents p0 have a small negativeimaginary part as follows from the evaluation of G(z) for z0 > 0 (re
all �g. 1.1),p0 = �p0 =pm2 + p2� i�. This is relevant sin
e H has in general bran
h pointsingularities and asso
iated 
uts in the 
omplex p2 plane.The s
attering of parti
les from an initial state jii to a �nal state jfi 
anbe des
ribed by the s
attering matrix or S-matrix hf jSjii. The 
onservationof probability, Pf jhf jSjiij2 = 1, is assured by the unitarity of S, SyS = 1.Separating the possibility of no s
attering by writing S = 1 + iT , the �rst fewmatrix elements of S 
an be de
omposed ashpjSjqi = hpjqi = 2p0(2�)3 Æ(p� q); (2.226)hp1p2jSjqi = hpjSjq1q2i = 0; (2.227)hp1p2jSjq1q2i = hp1jq1ihp2jq2i+ hp1jq2ihp2jq1i (2.228)+ i(2�)4 Æ4(p1 + p2 � q1 � q2)T (p1; p2; q1; q2):The J1 { J4 term in the va
uum amplitude 
an be written in terms of the s
at-tering matrix as Z(J) = Z d!p1d!p2d!q1d!q2 h0jp1iJ1h0jp2iJ2hp1p2jSjq1q2ihq1j0iJ3hq2j0iJ4 + � � � : (2.229)



2.13. CROSS SECTION AND DECAY RATE 85Comparison with (2.219), (2.228) and (2.225) shows thatT (p1; p2; q1; q2) = �pZ'�4H(p1; p2;�q1;�q2): (2.230)In general, polarization fa
tors for spin (and 
harge, in the real �eld for-malism) appear naturally. The photon propagator G��(k) produ
es ZAg�� =ZA[P� e�(k; �)e�(k; �)� + gauge terms℄ on external photon lines, e.g.J�(x)G��0(x� y)H�0����0(y; � � � ; u)G�0�(u� v)J�(v) � � �! i2Z2AJ�(k0)�e�(k0; �0)H�����(k0; � � � ;�k)e�(k; �)J�(k); (2.231)For example, in s
alar ele
trodynami
s the amplitude for s
attering of a photonon a s
alar parti
le has the formT (p0; k0�0; p; k�) = Z'ZA e�(k0; �0)�H��(p0; k0;�p;�k)e�(k; �): (2.232)The amplitude in (2.227) is zero in '4 theory due energy-momentum 
onser-vation: �(p1 + p2)2 > �q2 = m2. In a more general setting however we 
animagine an in
oming parti
le with mass m to be di�erent from the two outgoingparti
les. If m1 + m2 < m, energy-momentum 
onservation allows the ingoingparti
le to de
ay into parti
les 1 and 2, i.e. the in
oming parti
le is unstable. Ifwe approximate in the external line the unstable parti
le propagator by a stableparti
le propagator we 
an still �t it into our des
ription. The de
ay amplitudeis then given by T (p1p2; q) = pZpZ1pZ2H(p1; p2;�q): (2.233)Su
h a stable parti
le approximation is natural in the semi
lassi
al approxima-tion, in whi
h the propagators are simply the free �eld propagators.2.13 Cross se
tion and de
ay rateIn s
attering experiments the typi
al measurable quantity is the di�erential 
rossse
tion. Consider a beam of parti
les hitting a target, or two 
olliding beams.The initial parti
les have momenta p1 and p2. The di�erential 
ross se
tion d� is,loosely speaking, the number of out
oming parti
les of a given spe
i�
ation, e.g. nparti
les with momenta p3, . . . , pn in a momentum range d3p3, . . . , d3pn, devidedby the in
oming parti
le 
ux. The 
ross se
tion is related to the s
atteringamplitude T by the formulad� = 1F (p1; p2) d!p3 � � �d!pn(2�)4Æ(p3 + � � � pn � p1 � p2) jT j2; (2.234)F (p1; p2) = 14p(p1p2)2 �m21m22 : (2.235)



86 CHAPTER 2. INTERACTIONS WITH SCALAR FIELDSHere jT j2 is the modulus-squared of the s
atering amplitude, averaged over thespin polarizations of the initial parti
les and summed over the �nal spin polar-izations,jT j2 = 1(2s1 + 1)(2s2 + 1) X�1����n jhp3�3; � � � ; pn�njT jp1�1; p2�2ij2; (2.236)Where s1 and s2 are the spins of the in
oming parti
les. For the photon 2s+1! 2as it has only two independent polarizations. More re�ned information 
an of
ourse be obtained by analysing the spin dependen
e of the 
ross se
tions. Thefa
tor 1=F is a Lorentz invariant 
ux fa
tor. When p1 and p2 are 
ollinear it issimply related to the relative velo
ity of the in
oming parti
les,F = p01p02vrel; vrel = ����p1p01 � p2p02 ���� : (2.237)For the derivation of the above formulas see Brown se
t. 3.4, De Wit & Smith
h. 3, or the 1975/76 le
ture notes.In the 
ase of two parti
le s
attering the di�erential 
ross se
tion in the 
entreof mass frame (p1 + p2 = 0) is given byd�d
 = 1F kf16�2W jT j2 = 164�2W 2 kfki jT j2; (2.238)where W is the total energy and ki and kf are the magnitudes of the initial and�nal three momenta,W = p01 + p02; ki = jp1j = jp2j; kf = jp3j = jp4j: (2.239)These quantities 
an be expressed in terms of the Mandelstam variables, s, t andu, 
f. �g. 2.15, s = �(p1 + p2)2 = �(p3 + p4)2; (2.240)t = �(p1 � p3)2 = �(p2 � p4)2; (2.241)u = �(p1 � p4)2 = �(p2 � p3)2; (2.242)s+ t+ u = m21 +m22 +m23 +m24: (2.243)In the 
entre of mass frame s = W 2 is the squared total energy. The momentumtransfer t between parti
le 1 and 3 is related to the s
attering angle �,t = (p01 � p03)2 � (k2i + k2f � 2kikf 
os �); (2.244)and similar for u. Using dt = 2kikfd 
os �; (2.245)
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Figure 2.15: Two parti
le s
attering.and integrating over the azimuthal angle � we haved�dt = 164�sk2i jT j2: (2.246)We 
an express ki, kf and jT j2 as a fun
tion of s and t, whi
h brings d�=dtinto a manifestly Lorentz invariant form. Furthermore, the invariant momentumtransfer t has more physi
al signi�
an
e than the s
attering angle in some frame.The di�erential 
ross se
tion in the laboratory frame (p2 = 0) 
an be obtainedby expressing s and t in terms of the lab frame variables.We 
on
lude this brief summary by giving the formula for the di�erentialde
ay rate of an unstable parti
le of momentum p, p2 = �m2 to n outgoingparti
les, in the rest frame,d� = (Yi d!pi) (2�)4Æ(p1 + � � � pn � p) jT j22m : (2.247)For two parti
le de
ay d�d
 = k32�2m2 jT j2; (2.248)where k = jp1j = jp2j.2.14 Examples in s
alar ele
trodynami
sWe give here some examples in the semi
lassi
al approximation, also known asthe tree graph approximation, sin
e the relevant Feynman diagrams in terms ofthe 
lassi
al propagators and verti
es have a tree stru
ture without any loops.Sin
e the propagators have the free �eld form, Z' = ZA = 1. Furthermore, thereis no di�eren
e between bare and renormalized parameters, e0 ! e et
. Forde�niteness we shall 
all the 
harged s
alar parti
les ��. The diagrams for thes
attering �+ + �� ! �+ + �� are given in �g. 2.16. Noti
e the annihilationdiagram (se
ond diagram), in whi
h �+ and �� annihilate into a `virtual photon'and subsequently get re-emitted. It is as if the in
oming and outgoing �� produ
e
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Figure 2.16: Diagrams for �+(p1) + ��(q1)! �+(p2) + ��(q2).e�e
tive sour
es whi
h emit and absorb the virtual photon. Virtual in this jargonrefers to the fa
t that the e�e
tive mass of the in
oming state, �(p1 + q1)2 > 0,and not zero as for the photon. The photon is said to be `o� the mass shell' asits four momentum is timelike. In a similar intuitive language we say that the�+ and �� in the �rst diagram ex
hange a virtual photon. In this 
ase the fourmomentum of the virtual photon is spa
elike.The s
attering amplitude is given byT = e2(p1 + p2)� g�� � (1� �)k�k�=k2k2 (�q1 � q2)�+ (p2 � q2)� g�� � (1� �)l�l�=l2l2 (p1 � q1)�; (2.249)where k = p2 � p1 = q1 � q2 and l = p1 + q1 = p2 + q2. The gauge dependent(�-dependent) part of the photon propagator does not 
ontribute be
ause k(p1+p2) = (p1 � p2)(p1 + p2) = �m2 + m2 = 0, and similar for l(p1 � q1), whi
his an expression of 
onservation of the ele
tromagneti
 
urrent (
f. Problems).In terms of the Mandelstam variables (2.243) the amplitude 
an be written inmanifestly Lorentz invariant formT = e2 �u� st + u� ts � : (2.250)Another example is the s
attering of �� o� a di�erent positively 
hargedparti
le with mass M . To des
ribe this we introdu
e a new s
alar �eld for thisparti
le and 
ouple it also to the ele
tromagneti
 �eld. The vertex fun
tions areidenti
al in form, ex
ept for the new massM , and sin
e the annihilation diagramis absent in this 
ase, T is given by the �rst term in (2.250) only. We quote thedi�erential 
rosse
tion in the laboratory frame from De Wit & Smith se
t. 4.3,d�d
 lab = �24E2 sin4 12� � 1 + E=M sin2 12�1 + 2E=M sin2 12�� ; (2.251)where E is the lab energy of the in
oming �� and � = e2=4� is the �ne stru
ture
onstant. For a heavy target M !1 we get Rutherford's formula.
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Figure 2.17: Diagrams for 
(k) + �+(p)! 
(k0) + �+(p0).Noti
e that at last we have identi�ed the 
oupling 
onstant e as the elementary
harge unit by 
omparison with experiment.We �nish here with pion-Compton s
attering, 
(k)+ �+(p)! 
(k0)+ �+(p0).From the diagrams in �g. 2.17 we �nd the s
attering amplitudeT (k0�0; p0; k�; p) = e�(k0; �0)�H��(k0; p0;�k;�p) e�(k; �); (2.252)H��(k0; p0;�k;�p) = e2 �(2p0 + k0)�(2p+ k)�(p+ k)2 +m2 + (2p� k0)�(2p0 � k)�(p� k0)2 +m2�2g�� ℄ : (2.253)The tensor H�� is transverse, k0�H�� = k�H�� = 0; (2.254)where it is essential that the pions are on-shell, p2 = p02 = �m2. This ex-presses gauge invarian
e, the amplitude is un
hanged when we substitute e.g.e�(k0; �0)� ! e�(k0; �0)� + !k0�. The transversality of the amplitudes is also es-sential for Lorentz invarian
e. Averaging over initial polarizations and summingover �nal polarizations,jT j2 = 12X��0 jT j2= 12X�0 e�(k0; �0)�e�(k0; �0)X� e�(k; �)e�(k; �)�H��H���; (2.255)we use X� e�(k; �)e�(k; �)� = g�� + gauge terms; (2.256)where the gauge terms are terms / k� or k�. Then the result 
an be expressedas jT j2 = 12 H��H��� (2.257)= 2e4 "m4 � 1pk � 1pk0�2 � 2m2� 1pk � 1pk0� + 2# ; (2.258)
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h is manifestly Lorentz invariant. We quote De Witt & Smith se
t. 4.4 forthe di�erential 
ross se
tion in the lab frame,d�d
 lab = �22m2 1 + 
os2 �[1 + E=m(1� 
os �)℄2 : (2.259)In the low energy limit this redu
es to the result for 
lassi
al ele
tromagneti
radiation, d�d
 lab = �22m2 (1 + 
os2 �): (2.260)Integrating over angles we get the Thompson 
ross se
tion� = 8��23m2 : (2.261)2.15 AppendixThe 
lassi
al energy (2.31) is also the expe
tation value of the energy operatorin the intera
tion pi
tureH � Z d3x J(x)'(x); H = Z d!p a(p)ya(p) p0; (2.262)in an appropriate state with 
lassi
al properties. We have seen su
h a state beforein se
tion 1.9 for the 
ase of the ele
tromagneti
 �eld, the statej0; ti = UJ(t;�1)j0i = T ei R t�1 d4x0 J(x0)'(x0)j0i: (2.263)Consider therefore a sour
e J(x) = J1(x) + J2(x) whi
h is stati
 for a very longtime and goes to zero in the far past. Under these 
onditions the 
lassi
al �eldis given by (the 
al
ulation is as in se
t. 1.9)'(
)(x) = h0; tj'(x)j0; ti = Z d4y Gret(x� y)J(y); (2.264)where Gret(x� y) is the retarded Green fun
tion, given in momentum spa
e byGret(p) = 1m2 + p2 � (p0 + i�)2 : (2.265)For times mu
h larger than the intial transient period in whi
h the sour
e isswit
hed on we 
an take the stati
 approximation J(y) ! J(y) and integrateover y0, whi
h leads to the stati
 Green fun
tion,Z dy0Gret(x� y) = Z d4p(2�)4 Z dy0 eip(x�y)m2 + p2 � (p0 + i�)2= Gstat(x� y): (2.266)
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e '(
)(x) ! '(
)(x), the stati
 �eld of (2.25), and h0; tj R d3x J(x)'(x)j0; tihas the 
orrsponding value (x0 = t). To evaluate h0; tjHj0; ti we use the fa
t thatj0; ti is an 
oherent eigenstate of a(k) in the stati
 approximation. This 
an beseen by di�erentiating UJ(t;�1)ya(k)UJ(t;�1) (2.267)with respe
t to t, whi
h gives the 
-numberi Z d3x e�ipx J(x) � ieip0t J(p; t): (2.268)Integrating this from �1 to t with exp(ip0t) J(p; t)! exp[(ip0 � �)t℄ J(p), �!+0, then gives UJ(t;�1)ya(p)UJ(t;�1)j0i = a(p) + eip0t J(p)p0 ; (2.269)hen
e a(p)j0; ti = eip0t J(p)p0 j0; ti: (2.270)It follows that we may repla
e the annihilation operator in H in h0; tjHj0; ti bythe above eigenvalue when a
ting on the ket j0; ti, and similar for the 
reationoperator when a
ting on the bra h0; tj. This gives ba
k the 
lassi
al expressionfor the energy in terms of'(
)(x) = Z d!p [eipxa(
)(p) + e�ipxa(
)(p)�℄; a(
)(p) = J(p)p0 : (2.271)2.16 Problems1. For the free s
alar �eld, verify that ��T �� = 0 as a 
onsequen
e of theequation of motion.2. Verify that j� given in (2.80) is the Noether 
urrent asso
iated with theglobal U(1) invarian
e of SA'.3. Derive the equations of motion for s
alar ele
trodynami
s and verify thatej� is the ele
tromagneti
 
urrent in Maxwell's equations.4. Verify that ��j� = 0 as a 
onsequen
e of the equations of motion forthe s
alar �elds. When the total a
tion 
ontains external sour
e termsR d4x (J�'+ J'�), obtain ��j�.5. Using 
reation and annihilation operators, 
al
ulate the expe
tation valuesof the 
urrent in the free 
omplex s
alar �eld theory, h0jj�(x)j0i and hp �jj�(x)jq�i.



92 CHAPTER 2. INTERACTIONS WITH SCALAR FIELDS6. In the '4 theory verifyh0jT'(x)'(y)'(z)j0i = �30 + (�i)G(x; y)�0 + (�i)G(y; z)�0+ (�i)G(z; x)�0 + (�i)2G(x; y; z):(2.272)Similarly, express h0jT'(w)'(x)'(y)'(z)j0i (2.273)in terms of the 
orrelation fun
tions.7. Consider U de�ned in (2.95) for the '4 theory. Verify that the mass m,as de�ned by the position of the pole in the propagator, is given in thesemi
lassi
al approximation by m2 = �2U=�'2, evaluated at the groundstate value of '.8. Let F (A) be a fun
tional of A�(x). From the de�nition of the fun
tionalderivative, ÆF = Z d4x ÆFÆA�(x) ÆA�(x); (2.274)verify that ÆA�(x)ÆA�(y) = Æ�� Æ4(x� y): (2.275)For a s
alar �eld '(x) the 
orresponding relation readsÆ'(x)Æ'(y) = Æ4(x� y): (2.276)Using this relation we 
an 
al
ulateS(u; v) � � ÆÆ'(u) ÆÆ'(v) Z d4x 12 ��'(x)��'(x) (2.277)= � Z d4x ��Æ4(x� u)��Æ4(x� v) (2.278)= �2 Æ4(u� v); (2.279)and its Fourier transform (from (2.278))Z d4ud4v e�ipu�iqv S(u; v) = � Z d4x ��(e�ipx)��(e�iqx) (2.280)= �p2(2�)4Æ(p+ q): (2.281)Derive along similar lines thatS��(u; v) � � ÆÆA�(u) ÆÆA�(v) Z d4x 14 F ��(x)F��(x)= (g���2 � ����)Æ4(u� v); (2.282)Z d4ud4v e�ipu�iqv S��(u; v) = �(p2g�� � p�p�)(2�)4Æ(p+ q): (2.283)



2.16. PROBLEMS 939. Verify the vertex fun
tions of s
alar ele
trodynami
s in the real �eld for-malism as given in eqs. (2.199) { (2.202).10. The vertex fun
tions 
an also be read o� in momentum spa
e, writing S as(using '4 theory as example)S = Xn 1n! Z d4p1(2�)4 � � � d4pn(2�)4 (2�)4 Æ(p1 + � � �+ pn)S(p1; � � � ; pn)�(�p1) � � ��(�pn); (2.284)�(p) = Z d4x e�ipx �(x): (2.285)Rederive the vertex fun
tions of s
alar ele
trodynami
s (in the real and
omplex formalism) using this method.11. Rederive eqs. (2.211) fromhp�j'�(x)j0i = Æ��pZ' e�ipx (2.286)in the real �eld formalism. Reason that Æ�� in the above equation is a
onsequen
e of global SO(2) invarian
e.12. In s
alar ele
trodynami
s, in the real �eld formalism, draw the semi
lassi
aldiagrams for pion-Compton s
attering, indi
ating the relevant indi
es, inmomentum spa
e, and write the expression forH����(k0; p0;�k;�p): (2.287)Then reobtain (2.252)-(2.253) fromT (k0�0; p0; k�; p) = e�(k0; �0)� e�(+)�H����(k0; p0;�k;�p) e�(k; �) e�(+):(2.288)13. Pions and the linear sigma modelThe lagrangian of the linear � modelL = �12��'���'� � 12�2'�'� � 14�('�'�)2 (2.289)(� = 1; 2; 3; 4, � > 0), is invariant under O(4) rotations '� ! R��'�,RT = R�1. For �2 < 0 in the semi
lassi
al aproximation, the system un-dergoes spontaneous symmetry breaking, h0j'�j0i 6= 0. Adding the expli
itsymmetry breaking term �L = �'4 (2.290)to L, gives h0j'�j0i = vÆ�;4: (2.291)
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riptions of pions we make the identi�
ation �a = 'a, a = 1; 2; 3,while '4 
orresponds to the � parti
le. The latter may be identi�ed witha very broad spin zero, isospin zero, enhan
ement in �� s
attering. Inthe ex
er
ises below we 
ompute the width of the sigma parti
le, the pi-pis
attering amplitude and 
ompare with experiment.1. Express v, m� and m� in terms of �, �2 and �.For m� > 2m� the sigma parti
le 
an de
ay into two pions.2. Show that the ��a�b vertex fun
tion equals �2�vÆab, and 
al
ulate thematrix element hp1a1p2a2jT jpi for the de
ay �(p)! �(p1a1) + �(p2a2).The internal rotations whi
h transform the �a into ea
h other are 
alledisospin transformations, with generators Ia, a = 1; 2; 3. The pion statesjai, a = 1; 2; 3 (suppressing the momentum label p) transform in the ve
tor(adjoint) representation, in whi
h the isospin operators Ia are representedas hbjIaj
i = �i�ab
. The physi
al pion states with well de�ned 
hargeare eigenstates jI; I3i of I2 and I3 with j1; 1i = j�+i, j1; 0i = j�0i andj1;�1i = j��i. Isospin polarization ve
tors eaI3 = haj1; I3i 
an be 
hosen asea+1 = (�1;�i; 0)=p2, ea0 = (0; 0; 1), ea�1 = (1;�i; 0)=p2.3. Che
k that the above polarization ve
tors are 
onsistent with the stan-dard a
tion of the isospin lowering operator I�j1; 1i = p2j1; 0i, et
. (I� =I1 � iI2).4. Show that h�+��jT j�i = 2�v; h�0�0jT j�i = �2�v: (2.292)The di�erential de
ay width in the � rest frame is given byd� = k32�2m2� jT j2 d
; (2.293)where k;
 are the spheri
al 
oordinates of the momentum of one of thepions.5. Verify that �(� ! �+��) = 2�(� ! �0�0) = k�2v22�m2� ; (2.294)keeping in mind that the two �0 parti
les are identi
al.6. As a 
he
k, 
ompute the total de
ay width also dire
tly from� = 12m� 12 Xa1a2 Z d!p1d!p2 (2�)4Æ(p� p1 � p2)jhp1a1p2a2jT jpij2: (2.295)



2.16. PROBLEMS 95The expli
it fa
tor 1=2 
orresponds to 1=n! in the formula for the unitoperator (for free pions) in the n-parti
le subspa
e1 =Xn 1n! Xa1���an Z d!p1 � � �d!pn jp1a1 � � � pnanihp1a1 � � � pnanj: (2.296)7. Interpreting the � enhan
ement in �� s
attering as an unstable �-parti
le, it might have a mass around 900 MeV and a width of rougly600 MeV. Given that v = f� = 93 MeV, derive� = 332� (m2� �m2�)2 (m2� � 4m2�)1=2m2�f 2� (2.297)and 
ompare with the above physi
al data. Derive an upper limit for m�from requiring �=m� < 1.The pi-pi s
attering amplitude 
an be written ashp3a3p4a4jT jp1a1p2a2i = AÆa1a2Æa3a4 +BÆa1a3Æa2a4 + CÆa1a4Æa2a3 : (2.298)The A, B and C 
an be expressed in the Mandelstam variables s = �(p1+p2)2, t = �(p1�p3)2 and u = �(p1�p4)2. In the 
.m. frame, s = W 2, W =total energy, t = �2k2(1�
os �), u = �2k2(1+
os �), k = 
.m. momentum,� = s
attering angle.8. Derive A = �2�+ (2�v)2m2� � s = 2�s�m2�m2� � s; (2.299)and �nd the 
orresponding expressions for B and C.9. By using the step isospin operator I� a
ting on j�+�+i, 
onstru
t totalisospin eigenstates jI; I3i for I = 0; 1; 2 in terms of j�+�+i, j����i, andj�0�0i. Using the isospin polarization ve
tors eaI3 de�ned earlier, derive thefollowing expressions for the s
attering amplitudes T I = hI; I3jT jI; I3i intotal isospin 
hannel I:T 0 = B + C; T 1 = B � C; T 2 = 3A+B + C: (2.300)The partial wave expansion for T 
an be written asT I = 8�Wk Xl (2l + 1)T Il Pl(
os �): (2.301)where the Pl are the Legendre polynomials. Negle
ting inelasti
ity e�e
ts,the phase shift in isospin 
hannel I and angular momentum 
hannel l isgiven by exp(2iÆIl ) = 1 + iT Il ; (2.302)
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attering lengths are de�ned byaI0 = limk!0 ÆI0=k: (2.303)10. Negle
ting terms of order m2�=m2�, derive Weinberg's resultsa00 = 732� m�f 2� ; a20 = 232� m�f 2� ; (2.304)and 
ompare with the experimental values a00 = 0:26 � 0:05 fm (1 fm �(200MeV)�1).
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Chapter 3Lorentz invarian
eWe explore in this 
hapter some basi
 aspe
ts of Lorentz transformations andtranslations.3.1 Lorentz transformationsThe elements of the group of Lorentz transformations 
an be de�ned as thematri
es � whi
h leave the inner produ
t xy = g�� x�y� invariant:x� ! ���x�; y� ! ���y�; xy = g��x�y� ! g��������x�y� = g��x�y�: (3.1)Sin
e x and y are arbitrary this invarian
e expresses that the metri
 g�� is aninvariant tensor, whi
h is really a 
ondition on �,g�������� = g��: (3.2)In matrix notation we assign the matrix elements of � as(�)�� = ���; (3.3)and we order the indi
es � = 1; 2; 3; 0 su
h that(g)�� = g�� = 0BB� 1 1 1 �1 1CCA : (3.4)Then the �'s satisfy �Tg� = g; (3.5)where T denotes transposition. It follows thatdet(�Tg�) = (det �)2 det g = det g ) det � = �1: (3.6)98



3.1. LORENTZ TRANSFORMATIONS 99For � = 0, � = 0, eq. (3.2) gives(�00)2 = 1 + 3Xm=1(�m0)2 ) �00 � 1 or �00 � 1: (3.7)Thus the full Lorentz group 
onsists of four disjoint sets a

ording to wetherdet � = �1 and �00 � 1 or � 1. Important examples are parity,P = 0BB� �1 �1 �1 1 1CCA ; (3.8)with det � = �1 and �00 = 1, and time reversalT = 0BB� 1 1 1 �1 1CCA ; (3.9)with det � = �1 and �00 = �1. The produ
t PT has det � = 1 and �00 = �1.Transformations with det � = 1 and �00 � 1 are elements of the properor ortho
hronous Lorentz group L"+. From now on we shall omit the adje
tive`proper' and 
all the L"+ `the Lorentz group'. The elements of L"+ are 
ontinuously
onne
ted to the identity and 
an be written as� = exp(F ); TrF = 0: (3.10)From (3.5) we see that the real matrix F has to satisfyF Tg = �gF; (3.11)whi
h yields the following solution in terms of parameters !�� and generatorsM��, F = �i12!��M��; (3.12)�i(M��)�� = �iM ��� � = �(g��g�� � g��g��); (3.13)where the somewhat arti�
ial looking fa
tor (�i) is put in for later 
onvenien
e.The Mkl are hermitian and antisymmetri
 matri
es whi
h are expli
itly given byMkl � �klmMm; �iM1 = 0BB� 0 0 0 00 0 �1 00 1 0 00 0 0 0 1CCA ; (3.14)
�iM2 = 0BB� 0 0 1 00 0 0 0�1 0 0 00 0 0 0 1CCA ; �iM3 = 0BB� 0 �1 0 01 0 0 00 0 0 00 0 0 0 1CCA : (3.15)



100 CHAPTER 3. LORENTZ INVARIANCEThese are the generators of rotations,�(R) = exp(�i!mMm); !m � 12�klm !kl: (3.16)This 
an be seen more easily from the representation(Mk)�� = �i�klm; (3.17)for �; � = l; m = 1; 2; 3 and (Mk)�� = 0 zero otherwise. The �rst three rows and
olumns ofMk are just the spin 1 matri
es Sk of (1.145). The Mk0 are symmetri
antihermitian matri
es whi
h are expli
itly given byMk0 � Nk; �iN1 = 0BB� 0 0 0 10 0 0 00 0 0 01 0 0 0 1CCA ; (3.18)
�iN2 = 0BB� 0 0 0 00 0 0 10 0 0 00 1 0 0 1CCA � iN3 = 0BB� 0 0 0 00 0 0 00 0 0 10 0 1 0 1CCA : (3.19)These are the generators of spe
ial Lorentz transformations, often 
alled boosts,�(B) = exp(�i�kNk); �k � !k0: (3.20)A boost in the 3-dire
tion,= exp(�i�N3) = 0BB� 1 0 0 00 1 0 00 0 
osh� sinh�0 0 sinh� 
osh� 1CCA ; (3.21)has the e�e
t x1;2 ! x1;2; x3 ! 
x3 + 
�x0; x0 ! 
�x3 + 
x0; (3.22)where � = v=
 (
 = 1) and
 = 1p1� �2 = 
osh�; 
� = sinh�; (3.23)are the usual parameters in spe
ial Lorentz transformations. The rotation ma-tri
es are orthogonal, �(R)T = �(R)�1 and the boosts are symmetri
 �(B)T =�(B).



3.2. IRREPS AND SL(2,C) 101The generators satisfy the following 
ommutation relations,[M��;M��℄ = i(g��M�� + g��M�� � g��M�� � g��M��; (3.24)[Mk;Ml℄ = i�klmMm; (3.25)[Mk; Nl℄ = i�klmNm; (3.26)[Nk; Nl℄ = �i�klmMm; (3.27)The rotations form a group, but the spe
ial Lorentz transformations do not forma group, as is 
lear from the fa
t that the 
ommutation relations of the Nl are not
losed. The boosts generate rotations and only boosts 
ombined with rotationsform a group, the Lorentz group L"+.Under parity and time reversal the generators transform asP Mk P = Mk; P Nk P = �Nk;T Mk T = Mk; T Nk T = �Nk: (3.28)The e�e
t of T on Mk and may seem strange, sin
e one may expe
t the angularmomentum or spin to 
hange sign under T . This is indeed the 
ase in the quantumtheory, where T involves 
omplex 
onjugation: T is realized by an antiunitaryoperator in Hilbert spa
e.3.2 Irreps and SL(2,C)To �nd irredu
ible representations (irreps) of the Lorentz group we 
onsider thelinear 
ombinations I�l = 12(Ml � iNl); (3.29)whi
h are hermitian matri
es satisfying the 
ommutation relations,[I�k ; I�l ℄ = i�klm I�m; (3.30)[I�k ; I�l ℄ = 0: (3.31)The Lorentz group L"+ is equivalent `in the small' to two independent rotationgroups. This enables us to �nd irreps of the Lorentz group from the knowledge ofthose of the rotation group. The representations will be labeled by two angularmomenta (j+; j�), j� = 0; 1=2; 1; 3=2; : : :, with (I�)2 = I�k I�k = j�(j� + 1), andwith the eigenvalues of I�3 taking the values �j�; : : : ;+j�.Sin
e the parity operation 
hanges the sign of N but not ofM, the generatorsI� are inter
hanged under P , P I� P = I�: (3.32)The a
tion of P leads outside an irredu
ible representation (j+; j�) of L"+, butit 
an be represented in a redu
ible representation (j+; j�) + (j�; j+), where itinter
hanges the 
omponents (j+; j�) and (j�; j+).



102 CHAPTER 3. LORENTZ INVARIANCEThe simplest nontrivial representations are the two dimensional representa-tions (12 ; 0) and (0; 12), realized by(12 ; 0) : Ml ! 12�l; Nl ! +i12�l; I+l ! 12�l; I�l ! 0; (3.33)(0; 12) : Ml ! 12�l; Nl ! �i12�l; I+l ! 0; I�l ! 12�l; (3.34)where �l are the Pauli matri
es a
ting in a two dimensional representation spa
e.The matri
es in the (12 ; 0) representation have the formexp[(�k � i!k)12�k℄ � L; (3.35)while for the (0; 12) representationexp[(��k � i!k)12�k℄ = (Ly)�1: (3.36)These representations are double valued be
ause the rotations are representeddouble valued in the j = 12 representation. The double valuedness is a nuisan
eand it is 
onvenient to work with L dire
tly. The matri
es L are general 
omplex2�2 matri
es with detL = 1. This is the de�ning representation of the groupSL(2,C), the group of general 
omplex linear unimodular transformations in twodimensions. The representation L ! L� of SL(2,C) is inequivalent to L, butequivalent to L! (Ly)�1, be
ause��k = ��2 �k �2 (3.37)implies L� = �2 (Ly)�1 �2: (3.38)We now interpret a Lorentz transformation � to be a representation of SL(2,C),� = �(L). It 
orresponds to the representation (12 ; 12), L ! L � L� ' �, as fol-lows. Let us assemble the 
omponents of a four ve
tor x� into a matrix X,X = x� �� = � x0 + x3 x1 � ix2x1 + ix2 x0 � x3 � ; �0 � 11; (3.39)x� = 12Tr ��X; Tr �� �� = 2Æ��: (3.40)Then detX = (x0)2 � x2 = �g��x�x� ; (3.41)and the transformationX�� ! X 0�� = L��0 L���0 X�0�0 = (LXLy)�� (3.42)



3.3. REPRESENTATION IN HILBERT SPACE 103leaves the determinant invariant, detX 0 = detX. It has to 
orrespond to aLorentz transformation of x�, x0� = ��� x� (3.43)= 12Tr ��X 0 = 12Tr [��L��Ly℄ x�: (3.44)Hen
e, �(L)�� = 12Tr ��L��Ly (3.45)is an expli
it representation of � in terms of L. We see that L and �L give thesame �.3.3 Representation in Hilbert spa
eThe �nite dimensional representations of SL(2; C) are not unitary, but in�nitedimensional representations 
an be unitary. It has been shown that Lorentzsymmetry 
an be represented by a unitary operator U(L) in Hilbert spa
e. Thisguarantees that transition amplitudes are invariant,j ̂1;2i = U(L)j 1;2i ! h ̂1j ̂2i = h 1j 2i; (3.46)in the Heisenberg pi
ture. Here j ̂1;2i represent a
tively transformed states j 1;2i,e.g. 
orresponding to rotated or boosted systems. (For example, j 2i 
an be astate representing a system of parti
les 
onverging to a s
attering region and j 1i
an be a state representing parti
les emerging from the same region). If Lorentzinvarian
e is broken, then U(L) does not exist or is time dependent.The expe
tation value of an observable in the state j ̂i is related to theexpe
tation value in j i by a Lorentz transformation. For example, for a 
urrentoperator j�(x), h ̂jj�(x̂)j ̂i = ��� h jj�(x)j i; (3.47)where � = �(L) and x̂ = �x (i.e. x̂� = �(L)�� x�). Instead of transforming thesystem we 
an also transform the observables (the passive point of view). From(3.47) we infer that the 
urrent operator transforms asU(L)y j�(x)U(L) = �(L)�� j�(�(L)�1x): (3.48)A s
alar �eld transforms asU(L)y '(x)U(L) = '(�(L)�1x): (3.49)Fields transforming as L itself or L�1y are 
alled spinor �elds; these will be thesubje
t of the next 
hapter.



104 CHAPTER 3. LORENTZ INVARIANCEThe energy-momentum operators P � transform as a ve
torU(L)y P � U(L) = �(L)�� P � (3.50)A (spa
etime) translation by a four ve
tor a� is represented by a unitaryoperator U(a) = e�ia�P� = e�ia�P+ia0P 0; (3.51)with P � the energy-momentum operator. For example, a s
alar �eld transformsas U(a)y '(x)U(a) = '(x� a); (3.52)whi
h is 
onsistent with the solution of the Heisenberg equations of motion fora0 = �t, a = 0.Lorentz transformations 
ombined with translations form the Poin
ar�e group.The generators of Lorentz transformations are represented by hermitian operatorsJ��, M�� ! J��; (3.53)with Jl = 12�lmn Jmn the angular momentum operators and Kl = Jl0 the `ki
k'operators generating boosts. From (3.50) follow the 
ommutators of J�� with P�,and the 
omplete set of 
ommutators of the Poin
ar�e group is given by[J��; J��℄ = i(g��J�� + g��J�� � g��J�� � g��J��; (3.54)[J��; P�℄ = ig��P� � ig��P�; (3.55)[P�; P�℄ = 0: (3.56)We end here with the form of the transformation of a one parti
le state jp; �i(� is a spin index), whi
h is de�ned by applying a standard boost to a standardstate at a standard momentum �p (usually at rest, �p = (0; m) or some other �p in
ase of massless parti
les):U(L)jp; �i =X�0 C�0�(L; p) j�(L)p; �0i; (3.57)where C�0� is a unitary matrix depending on L and p. Unfortunately we haveno `time' here to go into details, see e.g. Ryder se
t. 2.7 and Weinberg's 1964Brandeis le
tures. We also 
annot go into the dis
rete symmetries P and T here.See for example Bjorken & Drell II 
h. 15.
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Chapter 4Spinor �elds and fermionsDira
 proposed in 1928 a relativisti
 generalization of the S
hr�odinger equationfor a quantum me
hani
al wave fun
tion, his famous Dira
 equation. It turnedout later that this `wave fun
tion' should not be seen as a wave fun
tion in theS
hr�odinger pi
ture, but as a quantum operator �eld analogous to the s
alarand Maxwell �elds. Hen
e the name `se
ond quantization' (quantizing the wavefun
tion a se
ond time to get an operator �eld) whi
h is sometimes given toquantum �eld theory. We shall not follow this histori
al road, as it is tendsto be 
onfusing 
on
eptually, but start from the notion that there are spin 1/2parti
les whi
h we want to des
ribe by a quantum �eld transforming in a spinorrepresentation of the Lorentz group. We are then automati
ally led to the Dira
equation. The basi
 prin
iples of quantum �eld theory { in parti
ular lo
ality {lead to the 
onne
tion between spin and statisti
s: the spin 1/2 parti
les have tofollow Fermi-Dira
 statisti
s, they are fermions.Using the prin
iple of gauge invarian
e we 
ouple the Dira
 �eld (
omplexspinor �eld) in the next 
hapter to the ele
tromagneti
 �eld and derive the Feyn-man rules the resulting spinor ele
trodynami
s.4.1 Spinors and Dira
 matri
esFor a �eld theory of spin 1/2 parti
les we need spin 1/2 �elds, i.e. �elds whi
htransform in the j = 12 representation of the rotation group. This representationis embedded in the spinor representations (12 ; 0) and (0; 12) of the Lorentz group.We shall use a notation in whi
h the spinor �elds in the (12 ; 0) and (0; 12) irrepsare denoted by  R and  L, respe
tively. The meaning of L and R will be
ome
lear later. The spinor �elds transform as R(x)! L R(�(L)�1x); L 2 (12 ; 0); (4.1) L(x)! Ly�1 L(�(L)�1x); Ly�1 2 (0; 12); (4.2)106



4.1. SPINORS AND DIRAC MATRICES 107where we should not 
onfuse the L 2 SL(2,C) with the subs
ript L of  L. Were
all that these irreps 
an be written asL = e�i'��=2+���=2; (4.3)Ly�1 = e�i'��=2����=2; (4.4)where ' and � are the angles 
orresponding to rotations and boosts, respe
tively.The representations (12 ; 0) and (0; 12) are 
omplex. Suppose we 
hoose a  Rfor our des
ription of spin 1/2 parti
les. We expe
t that  �R will o

ur in ourformulas essentially as often as  R. Now  �R transforms with L� ' Ly�1, i.e. ittransforms like a  L. Let us de�ne  L in terms of  R by L(x) = �2  R(x)�: (4.5)Then this  L transforms as in (4.2); re
all Ly�1 = �2 L� �2. Sin
e we need towork with both irreps (12 ; 0) and (0; 12), it is advantageous to 
ombine the �elds L;R into a four 
omponent spinor = �  R L � ; (4.6)whi
h transforms in the redu
ible representation (12 ; 0) + (0; 12), (x) ! S(L) (�(L)�1x); (4.7)S(L) = � L 00 Ly�1 � : (4.8)The four 
omponents of  (x) are not independent be
ause of (4.5); it is 
alled aMajorana �eld. We shall see in the next se
tion that it 
an be turned into a real�eld by a unitary transformation.We now introdu
e 4�4 Dira
 matri
es 
�, 
5, � and ��, as follows:� = i
0 = �i
0 = � 0 1111 0 � = �1; (4.9)
k = 
k = � 0 i�k�i�k 0 � = ��2 �k; (4.10)
5 = i
0
1
2
3 = � 11 00 �11 � = �3; (4.11)�� = i� 
�; (4.12)�k = �k = � �k 00 ��k � = �3 �k; �0 = ��0 = 1: (4.13)Here the �k are Pauli matri
es in blo
k form,�1 = � 0 1111 0 � ; �2 = � 0 �i11i11 0 � ; �3 = � 11 00 �11 � : (4.14)



108 CHAPTER 4. SPINOR FIELDS AND FERMIONSThe spe
i�
ation in terms of tensor produ
t matri
es �k �l is very 
onvenient.Note that we often write 1 for the unit matrix (2�2 or 4�4) 11. The Dira
matri
es have the following hermiti
ity properties
0y = �
0; 
ky = 
k; 
y5 = 
5; �y = �; �yk = �k; (4.15)and � 
�y � = �
�: (4.16)The 
� satisfy the algebrai
 relations
� 
� + 
� 
� � f
�; 
�g = 2g��11; f
�; 
5g = 0; (4.17)i.e. the 
� anti
ommute with ea
h other and with 
5 and their square is �1,
20 = �1; 
2k = 1; 
25 = 1; �2 = 1; �2k = 1: (4.18)It follows from (4.17), using the identities[ab; 
℄ = a[b; 
℄ + [a; 
℄b; (4.19)[ab; 
℄ = a fb; 
g � fa; 
g b; (4.20)and the 
ombination of these[ab; 
d℄ = a[b; 
d℄ + [a; 
d℄b = afb; 
gd� afb; dg
+ fa; 
gdb� 
fa; dgb; (4.21)that the matri
es ��� = ���� = �i
� 
�; � 6= �; (4.22)satisfy the 
ommutation relations of the generators of the Lorentz group, up toa fa
tor 2, [���;��� ℄ = 2i(g����� + g����� � g����� � g�����): (4.23)We have a representation of the Lorentz algebra, M�� ! 12���, and in fa
tS = exp(�i14!�����): (4.24)To show this in detail we identify the generators of rotations and boosts,�kl = �klm �m; �m = 12�klm�kl; (4.25)�k0 = �i
k
0 = i
0
k = �i
0
k = ��
k (4.26)= i�k = i
5�k; (4.27)



4.1. SPINORS AND DIRAC MATRICES 109and (4.24) redu
es to S = exp(�i12'k �k � i12�k i
5�k) (4.28)= exp(�i12'k �k + 12�k �3�k) (4.29)!kl = 12�klm'm; !k0 = �!0k = �k; (4.30)whi
h is identi
al to (4.8), taking into a

ount (4.3), (4.4).We note that� Sy � = � �e� 14!��
�
��y � = � e� 14!��
y�
y�� = e� 14!��
�
� = e+ 14!��
�
�= S�1; (4.31)whi
h shows that � plays the role of the metri
,Sy � S = �: (4.32)For example,  y� is a Lorentz s
alar. It is 
ustomary and 
onvenient to hidethis `metri
' into the `bar' notation,� �  y �: (4.33)Under Lorentz transformations we have ! S  ; � ! � S�1; (4.34)whi
h makes it obvious that �  is a Lorentz s
alar.Using the identity (4.20) we �nd the 
ommutation relations between the gen-erators ��� and 
�, [12���; 
�℄ = �i
� g�� + i
� g��; (4.35)whi
h imply that 
� transforms as a four ve
tor,S�1(L) 
� S(L) = �(L)�� 
�: (4.36)It follows that 
�
� , � 6= � and 
�
�
�, � 6= � 6= � 6= �, transform as antisym-metri
 tensors, while 
5, whi
h 
ommutes with S,[���; 
5℄ = 0; S
5 = 
5S; (4.37)is a Lorentz s
alar in this sen
e.We 
an also represent parity P and time reversal T . As mentioned in se
t.3.2, the parity operation 
an be represented in a redu
ible representation of the



110 CHAPTER 4. SPINOR FIELDS AND FERMIONSform (j+; j�)+(j�; j+). This is the 
ase here with j+ = 12 , j� = 0, and inspe
tionshows that P and T 
an be represented by the matri
esP ! SP = 
0; T ! ST = i
0
5: (4.38)We have, S�1P 
� SP = P �� 
�; S�1T 
� ST = T �� 
�; (4.39)and furthermore S�1P �kl SP = �kl; S�1P �k0 SP = ��k0; (4.40)S�1T �kl ST = �kl; S�1T �k0 ST = ��k0; (4.41)form a representation of (3.28). Taking P and T into a

ount, 
� is a ve
tor and
5 is a pseudos
alar, S�1P 
5 SP = �
5; S�1T 
5 ST = �
5; (4.42)whi
h 
an also be seen from
5 = i 14! ����� 
�
�
�
�; �0123 = 1; (4.43)and the fa
t that the Levi-Civita tensor is a pseudotensor under P and T . Wenow have the following summary:
� is a ve
tor; (4.44)��� is an antisymmetri
 tensor; (4.45)i
�
5 is a pseudove
tor; (4.46)i
5 is a pseudos
alar; (4.47)when these matri
es are sandwi
hed between a � 1 and a  2.The (12 ; 0) and (0; 12) 
omponents of the representation L! S(L) 
an re
ov-ered with the proje
torsPR = 1 + 
52 ; PL = 1� 
52 ; (4.48)P 2R = PR; P 2L = PL; PRPL = 0: (4.49)4.2 Majorana �eld and Majorana representa-tionThe algebrai
 relations among the Dira
 matri
es and their hermiti
ity propertiesare invariant under unitary transformations,
̂� = U 
� U y; (4.50)



4.2. MAJORANA FIELD AND MAJORANA REPRESENTATION 111and so are all the relations whi
h are written in terms of the 
�, �, 
5, ��,. . . , whi
h are made out of produ
ts of the 
�. This is very useful if we wantto transform to another representation of the 
's. The representation (4.9) {(4.13), whi
h is 
hara
terized by the fa
t that 
5 is diagonal, is 
alled a Weylrepresentation, or 
hiral representation.It is sometimes useful to use a representation in whi
h the 
� are real. Su
ha representation is 
alled a Majorana representation. The transformationU = ei�4 �2 �2 = 1p2 (1 + i�2 �2) (4.51)leads to the real matri
es
̂1 = ��3; 
̂2 = ��2�2; 
̂3 = �1; 
̂0 = i�3�2 (4.52)(e.g. U
1U y = �U�2�1U y = �U2�2�1 = �i�2�2�2�1 = ��3). On the other hand
̂5 = ��1�2 (4.53)is imaginary. Our Majorana �eld, whi
h we introdu
ed in the Weyl representationas a �eld for whi
h  L = �2  �R turns into a real �eld in the above Majoranarepresentation, ̂ = U = U �  R L � = 1p2 �  R + �2 L L � �2 R � = 1p2 �  R +  �R�2( �R �  R) � ; (4.54)whi
h is real. Writing out the real and imaginary parts and the two 
omponents � of  R expli
itly,  R = �  + � � = �  0+ + i 00+ 0� + i 00� � ; (4.55)we have  ̂ = p2 0BB�  0+ 0�� 00� 00+ 1CCA ; (4.56)whi
h gives  ̂ as a real four 
omponent �eld.From now on we drop the ,̂ the type of representation will be 
lear fromthe 
ontext. In a Majorana representation the matrix S representing Lorentztransformations is real,S = e�i 14!�� ��� = e� 14!�� 
�
� = S�; (4.57)and the same is true for the matri
es representing P and T ,SP = 
0 = S�P ; ST = i
0
5 = S�T : (4.58)
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e, the reality of the Majorana �eld is preserved under these transformations.In general hermiti
ity properties are preserved under a 
hange of representa-tion, in a real representation these be
ome symmetry properties (under transposi-tion). Let us now express the symmetry and reality properties in a representationindependent form. For this we need the so-
alled 
harge 
onjugation matrix C.In any representation there is a unitary antisymmetri
 matrix C,CyC = 1; CT = �C; (4.59)relating 
� and (
�)T a

ording to
�T = �Cy 
�C: (4.60)In the Majorana representation 
�T = 
�y and (
f. (4.16))C = � = i
0 (4.61)(= ��3�2). In any other representation (indi
ating the Majorana representationby the^for the moment),
�T = (U y 
̂� U)T = UT 
̂�T U� = �UT �̂
̂��̂ U� (4.62)= �UTU �
�� U yU�; (4.63)and we obtain C in the form C = �U yU� � � ~C: (4.64)We then also have in any representation
�� = (
�)yT = �(�
��)T = Cy�
��C (4.65)= ~Cy
� ~C: (4.66)In the Majorana representation ~C = 1. In our Weyl representation~C = U yU� = e�i�2 �2�2 = �i�2�2; C = �3�2 = �
0
2: (4.67)The 
harge 
onjugation matrix derives its usefulness by relating S(L)T withS(L)�1, S(L)T = Cy S(L)�1C; (4.68)and S� with S, S(L)� = S(L)yT = Cy� S(L) �C: (4.69)For example, Cy�� � � =  TCy is a s
alar.For general 
omplex spinors  and � =  y� the so-
alled 
harge 
onjugatespinors  (
) and � (
) are de�ned as (
) = ( � C)T = �C �; � (
) = �(Cy )T (4.70)
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) follows from  (
)). Under Lorentz transformations (
) transforms like  .Finally in this se
tion, let us express the Majorana property of a spinor �eldin representation independent form. In the Weyl representation the Majoranaproperty  L = �2 �R (4.71)implies  � = � 0 �2��2 0 �  (4.72)= ~Cy  = Cy�  ; (4.73)where the last line is a representation independent form. This 
an also be ex-pressed as � =  y� =  �T� =  T�TCyT� = � TCyT= �(Cy )T : (4.74)With this de�nition eq. (4.73) expresses the fa
t that a Majorana �eld is self(
harge) 
onjugate  (
) =  ; � (
) = � : (4.75)4.3 Polarization spinorsIn our des
ription of spin 1/2 parti
les we will need polarization spinors u�(p; �),the analogue of the polarization ve
tors e�(p; �) for the photon �eld. They are
onstru
ted as follows.A parti
le at rest transforms under rotations like a two 
omponent spinor ��,�+ = � 10 � ; �� = � 01 � : (4.76)From these two 
omponent spinors we make a four 
omponent spinor for a parti
leat rest in the Weyl representation,u(�p; �) = p2m��; �� = 1p2 � ���� � ; (4.77)where m is the parti
le mass and�p = 0; �p0 = m: (4.78)The 
urious normalization fa
tor p2m is put in for later 
onvenien
e. We 
an
hara
terize u(�p; �) by the eigenvalues of the two 
ommuting matri
es �3 and �,�3 u(�p; �) = �u(�p; �); �3 �� = ��� (4.79)�u(�p; �) = u(�p; �); ��� = ��: (4.80)



114 CHAPTER 4. SPINOR FIELDS AND FERMIONSThese relations together with u(�p;�) = 12(�1� i�2) u(�p;+) serve to 
hara
terizeu(�p; �) in a general representation.Polarization spinors u(p; �) for arbitrary momentum p now follow by applyinga standard boost Bp whi
h takes �p into p:�(Bp) �p = p; (4.81)Bp = e���=2; � = � p̂; p̂ = pjpj ; tanh� = jpjp0 : (4.82)Applying this standard boost to u(�p; �) we getu(p; �) = S(Bp) u(�p; �) (4.83)= (
osh �2 + sinh �2 p̂ ��
5)u(�p; �) (4.84)= (pp0 +m+pp0 �m p̂ ��
5)��: (4.85)We shall also need 
onjugate spinors related to u(p; �) by 
harge 
onjugation (
f.(4.70)), v(p; �) � u(
)(p; �) (4.86)= �C u(p; �)� = [�u(p; �)C℄T ; (4.87)�v(p; �) = �u(
)(p; �) = �[Cyu(p; �)℄T : (4.88)In the Majorana representation C = �, giving simplyv(p; �) = u(p; �)�; Majorana rep. (4.89)Sin
e 
harge 
onjugate spinors transform under Lorentz transformations like or-dinary spinors we havev(p; �) = S(Bp) v(�p; �) (4.90)= (pp0 +m+pp0 �m p̂ ��
5)�(
)� ; (4.91)�(
)� = �C ���: (4.92)Furthermore, at rest�3v(�p; �) = �� v(�p; �); �3 �(
)� = �� �(
)� ; (4.93)� v(�p; �) = �v(�p; �); � �(
)� = ��(
)� ; (4.94)and �u(�p; �) i
� u(�p; �0) = 2�p� Æ��0 ; (4.95)�v(�p; �) i
� v(�p; �0) = 2�p� Æ��0 ; (4.96)�u(�p; �) u(�p; �0) = 2mÆ��0 ; (4.97)�v(�p; �) v(�p; �0) = �2mÆ��0 ; (4.98)�u(�p; �) v(�p; �0) = �v(�p; �) u(�p; �0) = 0: (4.99)



4.3. POLARIZATION SPINORS 115The orthogonality of a u(�p; �) and a v(�p; �0) follow from the fa
t that they areeigenve
tors of � with di�erent eigenvalues. From the above follow the relationsfor general p: �u(p; �) i
� u(p; �0) = 2p� Æ��0 ; (4.100)�v(p; �) i
� v(p; �0) = 2p� Æ��0 ; (4.101)�u(p; �) u(p; �0) = 2mÆ��0 ; (4.102)�v(p; �) v(p; �0) = �2mÆ��0 ; (4.103)�u(p; �) v(p; �0) = �v(p; �) u(p; �0) = 0: (4.104)For example,�u(p; �) i
� u(p; �0) = �u(�p; �)S(Bp)�1i
�S(Bp)u(�p; �) = �(Bp)�� 2�p� Æ��0= 2p� Æ��0 : (4.105)Sin
e �u(p; �)i
0 = u(p; �)y we 
an interprete (4.100) and (4.101) for � = 0 asorthogonality relations. The u's are orthogonal to the v's in the senseu(p; �)y v(~p; �0) = u(�p; �)yS(Bp)y S(B~p)v(�p; �0) (4.106)= 0; ~p � (�p; p0); (4.107)where we used S(Bp)y = S(Bp) = S(B~p)�1.Similarly, we have 
ompleteness type relations at rest,X� u(�p; �) �u(�p; �) = 2mX� �� �y� = m(1 + �)= m� i
��p�; (4.108)and for general momentumX� u(p; �) �u(p; �) = m� i
�p�; (4.109)X� v(p; �) �v(p; �) = �m� i
�p�: (4.110)The se
ond relation follows from the �rst and the de�nition of v(p; �),X� v�(p; �) �v�(p; �) = X� [�u(p; �)C℄� [�Cyu(p; �)℄� = �[Cy (m� i
�p�)C℄��= �[Cy (m� i
�p�)C℄T�� = �[C (m� i
�p�)T Cy℄��= �(m + i
�p�)��: (4.111)In the Majorana representation these relations follow more easily from the realityof the 
� and v = u�.



116 CHAPTER 4. SPINOR FIELDS AND FERMIONSBe
ause of the orthogonality relations (4.100), (4.101) and (4.107) the 
om-pleteness relation in four dimensional spinor spa
e readsX� [u(p; �)u(p; �)y + v(~p; �)v(~p; �)y℄ = 2p0: (4.112)Eqs. (4.80) and (4.94) generalize to arbitrary p as,i
�p� u(p; �) = �mu(p; �); i
�p� v(p; �) = mv(p; �); (4.113)whi
h turn out to be the free Dira
 equation in momentum spa
e.We 
on
lude this se
tion with the zero mass limit of the polarization spinors,whi
h 
an also be interpreted as their approximate form for high energies. Fromeqs. (4.85) and (4.91) we see that for m! 0,u(p; �) ! pjpj (1 + p̂ ��
5) ��; (4.114)v(p; �) ! pjpj (1 + p̂ ��
5) �(
)� : (4.115)The quantity within parenthesis is essentially a proje
tor. Let us 
hange thespe
i�
ation of the �� su
h that they be
ome eigenve
tors of the heli
ity matrix12 p̂ ��; (4.116)with eigenve
tors �=2. This 
an be done by a standard rotation whi
h brings thethree axis along p̂, ��(�; �) = e�i� 12�3 e�i� 12�2 ��; (4.117)p̂ = (sin � 
os�, sin � sin�, 
os �): (4.118)Then � is the sign of the heli
ity,p̂ �� ��(�; �) = ���(�; �); p̂ �� �(
)� (�; �) = ���(
)� (�; �); (4.119)and the heli
ity is tied to 
5,u(jpj; �; �; �) = pjpj (1 + �
5) ��(�; �); (4.120)v(jpj; �; �; �) = pjpj (1� �
5) �(
)� (�; �): (4.121)where we re
ognize the proje
tors PL;R = (1� 
5)=2. Sin
e 
5 
ommutes with �we 
an 
hoose the heli
ity �'s to be eigenve
tors of 
5. The eigenvalue � of 
5,whi
h takes values �1, is 
alled the 
hirality (`handedness'). We see that for theu-spinors � = �, whereas for the v-spinors � = ��. Then a right handed spinoruR = PR u, whi
h in the Weyl representation has only the upper two 
omponentsnonzero, has positive heli
ity, while a left handed spinor uL = PL u, whi
h in theWeyl representation has only the lower two 
omponents nonzero, has negativeheli
ity, and vi
e versa for vR;L.
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sWe shall derive here that an operator spinor �eld has to des
ribe fermions. Weassume now a theory of free spin 1/2 parti
les, in whi
h there is a va
uum state j0iwith zero energy-momentum, and one parti
le states jp�i with energy-momentump�, P �j0i = 0; P �jp�i = p�jp�i; (4.122)where P � is the energy-momentum operator; � = � is a spin index. The 
onven-tions are su
h that these states are obtained by the a
tion of standard boosts Bp(
f. (4.82)) on a parti
le state at rest,jp�i = U(Bp)j�p�i; �p = 0; �p0 = m; (4.123)where U(Bp) is the unitary operator representing Bp in Hilbert spa
e. The index� = � labels the eigenvalue of the third 
omponent of angular momentum J3 inthe rest frame of the parti
le, J3j�p�i = 12� j�p�i: (4.124)Let  (x) now be an operator spinor �eld of the Majorana type, �(x)y = (Cy�)��  �(x); or � (x) = �[Cy (x)℄T : (4.125)In the Majorana representation we have a hermitian spinor �eld �(x)y =  �(x); Majorana rep. (4.126)By analogy to the s
alar and Maxwell �elds we assume  (x) to annihilate spin1/2 parti
les to the va
uum a

ording toh0j �(x)jp; �i = u�(p; �) eipx: (4.127)The form of this equation is di
tated by translation invarian
e (the fa
tor exp(ipx))and Lorentz invarian
e (the fa
tor u�(p; �), be
ause jp; �i and u(p; �) are 
on-stru
ted in exa
tly the same way with the boost Bp). The remaining fa
tor (= 1)is a normalization 
ondition for  (x). In general we may have an additional fa
-torpZ as in se
t. 2.11, whi
h we take to bepZ = 1 in 
ase of no intera
tions.Taking the 
omplex 
onjugate of (4.127) and multiplying by � giveshp; �j � (x)j0i = �u(p; �) e�ipx: (4.128)On the other hand1, using the Majorana property of  (x), the 
.
. of (4.127) 
anbe written as hp; �j �(x)yj0i = u�(p; �)� e�ipx (4.129)= (Cy�)�� hp; �j �(x)j0i; (4.130)1The derivations 
an be shortened by working 
onsistently in the Majorana representation.



118 CHAPTER 4. SPINOR FIELDS AND FERMIONSand using (4.87), hp; �j �(x)j0i = v�(p; �) e�ipx; (4.131)Taking the 
omplex 
onjugate of (4.131) again and multiplying by �,h0j � (x)jp; �i = �v(p; �) eipx: (4.132)In the Majorana representation for the Dira
 matri
es we have simply,hp; �j �(x)j0i = u�(p; �)� e�ipx; Majorana rep.; (4.133)We have seen that free �elds 
reate only single parti
le states out of the va
-uum. If we assume this to be the 
ase of our free spinor �eld as well, we 
anderive the va
uum expe
tation value of equal time 
ommutator or anti
ommuta-tor relations. Using 
ompleteness we haveh0j (x) � (y)j0i = X� Z d!p h0j (x)jp; �ihp; �j � (y)j0i (4.134)= X� Z d!p eip(x�y) u(p; �) �u(p; �) (4.135)= Z d!p eip(x�y) (m� ip�
�); (4.136)where we used (4.109). Similarly, we haveh0j � �(y) �(x)j0i = X� Z d!p h0j � �(y)jp; �ihp; �j �(x)j0i (4.137)= X� Z d!p eip(y�x) v�(p; �) �v�(p; �) (4.138)= � Z d!p eip(y�x) (m + ip�
�)��; (4.139)using (4.110).From these relations now follow the va
uum expe
tation values of equal time
ommutators or anti
ommutators:h0j[ �(x) � �(y)� � �(y) �(x)℄j0ix0=y0 (4.140)= Z d!p [eip(x�y) (m� ip�
�)� [e�ip(x�y) (m + ip�
�)℄�� (4.141)= Z d!p eip(x�y) [(m� ipk
k)(1� 1) + ip0
0(1� 1)℄��: (4.142)It follows that the va
uum expe
tation value of the 
ommutator [ �(x); � �(y)℄ isgiven by h0j[ �(x); � �(y)℄j0ix0=y0 = 2(m� 
k�k) Z d!p eip(x�y): (4.143)



4.4. SPIN AND STATISTICS 119This does not vanish for x 6= y: it is not `lo
al' for nonzero spa
elike (x� y)2 =(x�y)2. On the other hand, the va
uum expe
tation value of the anti
ommutatoris simple and lo
al:h0jf �(x); � �(y)gj0ix0=y0 = i
0�� Æ(x� y); (4.144)h0jf �(x);  �(y)ygj0ix0=y0 = Æ�� Æ(x� y): (4.145)The spinor operators at di�erent points in spa
e evidently do not 
ommute atequal times: they anti
ommute!The above anti
ommutator looks similar to the 
ommutator between a �eld'(x) and its 
anoni
al momentum �(y) at equal times, apart from spinor indi
es.By analogy we shall assume now that not only the va
uum expe
tation value,but the operators satisfy the anti
ommutation relations,f �(x; t);  �(y; t)yg = Æ�� Æ(x� y): (4.146)We have arrived at equal time anti
ommutation relations for the spinor �eld.Next we introdu
e operators a(p; �) and a(p; �)y by the expansion (x) =X� Z d!p [eipx u(p; �) a(p; �) + e�ipx v(p; �) a(p; �)y℄; (4.147)or in the Majorana representation, (x) =X� Z d!p [eipx u(p; �) a(p; �) + e�ipx u(p; �)� a(p; �)y℄: (4.148)Then a(p; �) = Z d3x eipx u(p; �)y  (x); (4.149)where we used u(p; �)y = �u(p; �)i
0, (4.100) and (4.107). Using (4.101), (4.107)and the Majorana property of  we also havea(p; �)y = Z d3x e�ipx v(p; �)y (x) (4.150)= Z d3x e�ipx  (x)yu(p; �) = [a(p; �)℄y; (4.151)i.e. the `dagger' on a(p; �)y indeed means hermitian 
onjugation, as is obviousfrom (4.4). These expression give the following anti
ommutation relations for thea(p; �)y and a(p; �),fa(p; �); a(p0; �0)yg = 2p0 (2�)3 Æ(p� p0) Æ��0 ; (4.152)fa(p; �); a(p0; �0)g = fa(p; �)y; a(p0; �0)yg = 0: (4.153)



120 CHAPTER 4. SPINOR FIELDS AND FERMIONSFor example,fa(p; �); a(p0; �0)g = Z d3xd3x0 eipx+ip0x0 u�(p; �)� u�0(p0; �0)�f �(x);  �0(x0)g= (2�)3 Æ(p+ p0) u(p; �)y�Cu(p0; �0)�= (2�)3 Æ(p+ p0) u(p; �)yv(~p; �0)� = 0; (4.154)where we used f �(x);  �0(x0)g = (�C)��0 Æ(x � x0) whi
h follows from (4.146)and (4.125), and (4.107).It follows that a(p; �)y and a(p; �) 
an be interpreted as 
reation and annihi-lation operators, a(p; �)j0i = 0; (4.155)jp�i = a(p; �)yj0i; (4.156)jp1�1; p2�2i = a(p1; �1)y a(p2; �2)yj0i; (4.157)et
. These relations plus (4.147) are 
onsistent with (4.127), (4.131). Further-more, it is 
onsistent to de�ne the energy momentum operator asP � = Z d!p a(p; �)y a(p; �) p�; (4.158)sin
e the anti
ommutation relations between the a's and ay's imply[P �; a(p; �)y℄ = p� a(p; �)y (4.159)P � a(p; �)yj0i = p� a(p; �)yj0i; (4.160)et
. Be
ause the a(p; �)y anti
ommute among themselves the basis ve
tors jp1�1; � � � ; pn�niare totally antisymmetri
: the spin 1/2 parti
les follow Fermi-Dira
 statisti
s,they are fermions.Let us list the important ingredients whi
h went into this famous spin-statisti
s
onne
tion:- Hilbert spa
e (of 
ourse with positive metri
);- a va
uum state j0i and one parti
le states jp; �i with the expe
ted energymomentum eigenvalues (4.122);- translation invarian
e and Lorentz invarian
e, in (4.127){(4.133);- lo
ality.We stress here the relevan
e of the lo
ality prin
iple, as introdu
ed for the 
aseof the ele
tromagneti
 �eld in se
t. 1.16. Imagine 
onstru
ting lo
al observables



4.5. VACUUM AMPLITUDE, PROPAGATOR AND ACTION 121O(x) out of the spinor �eld. We want these to be lo
al, i.e. they should 
ommutefor spa
elike separations,[O(x); O(y)℄ = 0; (x� y)2 > 0: (4.161)The spinor �elds are not lo
al in this sense, be
ause anti
ommutators are not
ommutators, and apparently spinor �elds are not observables. However, `bilin-ears' of the type (� is some 
ombination of Dira
 matri
es)O(x;�) = � (x)� (x); (4.162)and generalizations thereo�, e.g. involving derivatives, do satisfy lo
ality. Thisfollows from appli
ation of the identity (4.21) with the help of whi
h we 
anexpress 
ommutators of bilinears in terms of anti
ommutators. The anti
ommu-tators satisfy lo
ality, and therefore also the 
ommutators of the bilinears,[O(x;�1); O(y;�2)℄ = 0; (x� y)2 > 0: (4.163)We shall see later that familiar observables like 
urrents and the energy momen-tum tensor 
an indeed be expressed as `bilinears'. Had we insisted on 
ommu-tation relations for  (x), we would have had to assume a nonlo
al 
ommutator[ �(x); � �(y)℄, as follows from its va
uum expe
tation value (4.143), and we 
ouldnot have satis�ed the lo
ality prin
iple.4.5 Va
uum amplitude, propagator and a
tionAt this stage we have and operator �eld  (x) and an energy operatorH = P 0, butnot yet an a
tion or unambiguous �eld equation whi
h 
an be used to introdu
elo
al intera
tions. It is obvious from (4.147) that  (x) satis�es the Klein-Gordonequation, (m2 � �2) (x) = 0; (4.164)but it also satis�es the Dira
 equation:(m+ 
���) (x) = X� Z d!p [eipx (m+ i
p) u(p; �) a(p; �)+ e�ipx (m� i
p) v(p; �) a(p; �)y℄ (4.165)= 0; (4.166)where 
p = 
�p� and we used (4.113). The Klein-Gordon equation is a
tually a
onsequen
e of the Dira
 equation, as follows by applying m� 
��� to the aboveequation and usingp�p� 
�
� = 12p�p� f
�; 
�g = p�p� g�� = p2; (4.167)



122 CHAPTER 4. SPINOR FIELDS AND FERMIONSand (m� i
�p�) (m+ i
�p�) = m2 + (
p)2 = m2 + p2: (4.168)So the Dira
 equation seems favoured. Yet, it is not 
ompletely 
lear at this pointthat we should invent an a
tion based on the Dira
 equation rather than on theKlein-Gordon equation. To resolve this dilemma we shall introdu
e an externalsour
e and dis
over the a
tion from the va
uum amplitude. It turns out to leadto the introdu
tion of anti
ommuting numbers.To streamline the presentation we shall temporarily restri
t ourselves to theMajorana representation, in whi
h  �(x) =  �(x)y. We introdu
e a real externalsour
e ��(x) and add a sour
e termH�(x0) = � Z d3x ��(x) �(x) (4.169)to the hamiltonian su
h that the total hamiltonian is H + H�, where � =�T� = ��0��0� �. The va
uum amplitude 
an then be expressed as usual in thesour
e-intera
tion pi
ture asZ(�) = h0jT e�i R dx0H�(x0)j0i = h0jT ei R d4x��(x) �(x)j0i (4.170)= 1 + i22 Z d4xd4y h0jT �� �(x)�� �(y)j0i+ � � � : (4.171)Consider now the fermion propagatorh0jT  �(x) �(y)j0i: (4.172)We shall see shortly that we have to modify the de�nition of the time orderingoperator when fermion �elds are involved. For Bose �elds the time ordered prod-u
t is symmetri
 in ex
hange of labels as if the �elds 
ommute, e.g. for a s
alar�eld T '(x)'(y) = T '(y)'(x): (4.173)Thus it is natural to de�ne the T produ
t for fermion �elds su
h that it is anti-symmetri
, as if they anti
ommute,T  �(x) �(y) = �T  �(y) �(x); (4.174)that isT  �(x) �(y) = �(x0 � y0) �(x) �(y)� �(y0 � x0) �(y) �(x): (4.175)With this de�nition the va
uum expe
tation value of the time ordered produ
ttakes the form, for x0 > y0, using (4.127), (4.128),h0jT  �(x) �(y)j0i = h0j �(x) �(y)j0i; x0 > y0 (4.176)



4.5. VACUUM AMPLITUDE, PROPAGATOR AND ACTION 123= X� Z d!p h0j �(x)jp; �ihp; �j �(x)j0i (4.177)= Z d!p eip(x�y) X� u�(p; �)u�(p; �)�; (4.178)= Z d!p eip(x�y) [(m� i
�p�)�℄�� (4.179)= (m� � 
����)�� Z d!p eip(x�y); (4.180)where �� a
ts on x, and we must not 
onfuse the index � with the matrix � = i
0.Similarly, we have for x0 < y0,h0jT  �(x) �(y)j0i = �h0j �(y) �(x)j0i; x0 < y0 (4.181)= � Z d!p eip(y�x) [(m� i
�p�)�℄�� (4.182)= Z d!p e�ip(x�y) [(m + i
�p�)�℄�� (4.183)= (m� � 
����)�� Z d!p e�ip(x�y); (4.184)where we used the fa
t that in the Majorana representation the hermitian � = i
0is purely imaginary, hen
e antisymmetri
, and the antihermitian �
� and 
�� arealso purely imaginary, hen
e symmetri
,�T = ��; (�
�)T = �
� (
��)T = 
��: (4.185)Summarizing, we haveh0jT  (x) T (y)j0i = �(x0 � y0) (m� � 
����) Z d!p eip(x�y)+ �(y0 � x0) (m� � 
����) Z d!p e�ip(x�y)= (m� � 
����) [�(x0 � y0) Z d!p eip(x�y)+ �(y0 � x0) Z d!p e�ip(x�y)℄; (4.186)where in the last line we pulled the time di�erentiation through the � fun
tions,whi
h is allowed be
ause the di�eren
e vanishes:�
0� [Æ(x0 � y0) Z d!p eip(x�y) � Æ(x0 � y0) Z d!p e�ip(x�y)℄ = 0: (4.187)We now use the relation�(x0 � y0) Z d!p eip(x�y) + �(y0 � x0) Z d!p e�ip(x�y) (4.188)



124 CHAPTER 4. SPINOR FIELDS AND FERMIONS= �i Z d4p(2�)4 eip(x�y)m2 + p2 � i� (4.189)= �iGs
al(x� y); (4.190)familiar from the s
alar �eld and �nd the fermion propagatorh0jT  �(x) �(y)j0i = [(m� 
���)�℄��(�i)Gs
al(x� y) (4.191)= �i Z d4p(2�)4 eip(x�y) [(m� i
�p�)�℄��m2 + p2 � i� (4.192)� �iG��0(x� y) ��0�; (4.193)h0jT  �(x) � �(y)j0i = �iG��(x� y): (4.194)Had we used the Bose �eld de�nition of the T produ
t for the fermion �elds,the expression in (4.188) would have appeared with a minus sign in front of these
ond � fun
tion and the resulting expression would not be a propagator.The va
uum amplitude (4.171) is now expe
ted to 
ontain the expressionZ d4xd4y ��(x) [G(x� y)�℄�� ��(y): (4.195)However, we now have a problem: this expression is identi
ally zero (when thesour
es are ordinary numbers)! This is be
ause G(x�y)� is antisymmetri
 whenviewed as a 
ontinuous matrix:[G(y � x)�℄�� = Z d4p(2�)4 e�ip(x�y) [(m� � i
��p�)℄��m2 + p2 � i� (4.196)= �[G(x� y)�℄��; (4.197)where we used (4.185) and 
hanged variables p ! �p. It follows that (4.195)vanishes identi
ally when the � are ordinary numbers. To resolve the problem wehave to introdu
e sour
es ��(x) whi
h are anti
ommuting:��(x)��(y) = ���(y)��(x): (4.198)These are 
alled anti
ommuting numbers or Grassmann `variables'. They aregenerators of a Grassmann algebra. We will explain how to use them as we goalong. For more information see for example Brown se
t. 2.4. With anti
ommut-ing sour
es the expression (4.195) is algebrai
ally nontrivial. However, it is notan ordinary 
omplex number but an element of a Grassmann algebra, The sameholds for the va
uum amplitude, and jZ(�)j2 
an no longer be interpreted as aprobability. Yet we shall see that anti
ommuting numbers are very 
onvenientand allow for a treatment of fermion �elds similar to boson �elds. They widelyused in �eld theory.The anti
ommuting 
hara
ter of all anti
ommuting numbers in
ludes thefermion operator �elds, ��(x) �(y) = � �(y)��(x): (4.199)



4.5. VACUUM AMPLITUDE, PROPAGATOR AND ACTION 125Then there is no ambiguity in the introdu
tion of the sour
e term in the hamil-tonian, � = �T� = � T�T� =  T�� = � �; (4.200)where the �rst minus sign appears be
ause of the anti
omuting � and  . We
an now show how the de�nition of the time ordering operator for fermion �eldsappears naturally from (4.171), where T has its usual `bosoni
 meaning' sin
e it
ame from the evolution operator in the intera
tion pi
ture. The produ
t of twofermioni
 obje
ts is 
ommuting, apart, of 
ourse, from the non
ommutativity ofthe operator �elds. The T produ
t of pairs of fermioni
 obje
ts is a 
ommutingT produ
t in ex
hanges of the pairs. We have for x0 > y0:T ��(x) �(x)��(y) �(y) = ��(x) �(x)��(y) �(y) (4.201)= ���(x) �(x) �(y)��(y); (4.202)while for x0 < y0,T ��(x) �(x)��(y) �(y) = ��(y) �(y)��(x) �(x) = ��(x)��(y) �(y) �(x)= ��(x) �(x) �(x)��(x): (4.203)Hen
e, T ��(x) �(x)��(y) �(y) = ���(x)T [ �(x) �(y)℄ ��(y); (4.204)and we �nd for the va
uum amplitudeZ(�) = 1� i12 Z d4xd4y ��(x) [G(x� y)�℄�� �� + : : : (4.205)= 1 + i12 Z d4xd4y �(x)G(x� y) �(y) + : : : ; (4.206)where we used ��(y) = ��0(y) ��0� = ����0 ��0(y).We now look for the inverse (in the matrix sense) of the propagator. Using(4.168) we �nd that the inverse of the propagator is a di�erential operator,�(m+ 
���)G(x� y)� = Z d4p(2�)4 eip(x�y) m2 + p2m2 + p2 � i� = Æ4(x� y); (4.207)and the propagator is the Green fun
tion of this di�erential operator with Feyn-man boundary 
onditions. By analogy with the Bose 
ase, minus inverse of theGreen fun
tion, 
ontra
ted with 
lassi
al anti
ommuting �elds  
, is now the
andidate for the a
tion of the free Fermi �eld,S = � Z d4x 12 �
 (x) [�(m+ 
���)℄��  �
 (x) (4.208)= � Z d4x 12 � 
(x) (m+ 
���) 
(x): (4.209)



126 CHAPTER 4. SPINOR FIELDS AND FERMIONSIf  
 were 
ommuting rather than anti
ommuting, S would vanish identi
ally, as
an be shown by inter
hanging the order of the  
 (transposition) and partialintegration.Making ~ expli
it we 
an interpret  �
 (x) as a formal 
lassi
al limit of  �(x):f �(x);  �(y)g = O(~)! f �
 (x);  �
 (y)g = 0; (4.210)as ~! 0.4.6 Anti
ommuting variablesBe
ause fermion variables anti
ommute, the variation of the a
tion 
an be writtenin two equivalent ways but di�erent ways2,ÆS = Z d4x Æ �(x) ÆSÆ �(x) = Z d4xS  ÆÆ �(x) Æ �(x); (4.211)and 
orrespondingly we have to distinguish between left and right derivatives.To see this in more detail let us write the a
tion in the 
ondensed notation usedearlier for the Bose �elds, using 
apital letters for indi
es atta
hed to Fermi �elds,S = � Z d4x 12  T�(m+ 
�) � 12 SKL  K L; (4.212)where SKL = �SLK . ThenÆS = S( + Æ )� S( )= 12 SKL [( K + Æ K)( L + Æ L)�  K L℄= 12 SKL (Æ K  L +  K Æ L)= SKL Æ K  L = �SKL L Æ K : (4.213)Hen
e ÆÆ K S = SKL  L; S  ÆÆ K = �SKL  L: (4.214)The di�erentiations also behave like anti
ommuting variables, e.g.ÆÆ K  L = ÆLK; (4.215)ÆÆ K ( L M) = ÆLK  M �  L ÆMK : (4.216)2For simpli
ity we drop the 
 on the 
lassi
al  
.



4.7. DIRAC FIELD 127We shall always use left derivatives. Noti
e that S;KL (i.e. �rst Æ=Æ K thenÆ=Æ L) equals SKL.Using ÆÆ �(x) Z d4y � = ���(x) = ���0 ��0� = ���0 ��0 ; (4.217)the �eld equation with external sour
e 
an now be derived as0 = ÆÆ �(x) (S + Z d4x � )= ���0 [�(m + 
�)℄ (x) + �(x)℄�0 ; (4.218)in whi
h we re
ognize the Dira
 equation found earlier in (4.166).We end this se
tion by giving the rule for 
omplex 
onjugation (or hermitian
onjugation when operator �elds are involved),( K1 � � � Kn)� =  Kn � � � K1 : (4.219)Although the individual  K are real (with our present use of Majorana �elds inthe Majorana representation), the order of fermion variables gets reversed as forhermitian 
onjugation. With this rule the a
tion is real,S� = (12SKL  K L)� = 12S�KL  L K = S; (4.220)sin
e S�KL = �SKL.4.7 Dira
 �eldFrom two Majorana �elds  a, a = 1; 2, whi
h are real in the Majorana represen-tation for of the gamma matri
es, we 
an form a 
omplex fermion �eld. Su
h a�eld is 
alled a Dira
 �eld. We introdu
e it here by analogy to the 
omplex s
alar�eld. The a
tion for two 
lassi
al Majorana �elds with idential mass m is givenby S = � Z d4x 12  Ta �(
��� +m) a; (4.221)where there is a summation over a and with � = ��T in the Majorana represen-tation. This a
tion has a global SO(2) symmetry, a ! Rab  b; (4.222)Rab = (e�i!q)ab = R�1ba ; q = � 0 �ii 0 � : (4.223)



128 CHAPTER 4. SPINOR FIELDS AND FERMIONSThe 
orresponding Noether 
urrent follows in the same way as for the s
alar �eld,Æ a = �iqab  b Æ!; (4.224)ÆS = Z d4x j� ��Æ!; (4.225)j� = 12 � a i
�qab b; (4.226)and j� is 
onserved as a 
onsequen
e of the �eld equations,��j� = 0: (4.227)The eigenstates of the 
harge matrix q de�ne the Dira
 �elds = 1p2 ( 1 � i 2);  � = 1p2 ( 1 + i 2); (4.228) 1 = 1p2 ( +  �);  2 = ip2 ( �  �); (4.229)and keeping in mind that the  a are anti
ommuting we �nd the a
tion for theDira
 �elds, S = � Z d4x � (
��� +m) ; (4.230)where � =  y�. From now on we shall work almost ex
lusively with Dira
 �eldstreating  and � as independent variables, and assume no longer the Majoranarepresentation for the gamma matri
es. (Real fermion �elds are used for examplein S
hwinger I, II, but 
omplex �elds are more 
ommon.).In the quantum theory the following free �eld expressions are now similar tothose for the s
alar �eld, (x) =X� Z d!p [eipx u(p; �) a(p; �;+) + e�ipx v(p; �) a(p; �;�)y℄; (4.231)� (x) =X� Z d!p [e�ipx �u(p; �) a(p; �;+)y + eipx �v(p; �) a(p; �;�)℄; (4.232)a(p; �;�) = 1p2 [a1(p; �)� ia2(p; �)℄; (4.233)a(p; �;�)y = 1p2 [a1(p; �)y � ia2(p; �)y℄: (4.234)From the anti
ommutation relations of the Majorana �elds  a we �nd those ofthe Dira
 �elds,f �(x);  �(y)ygx0=y0 = Æ�� Æ(x� y); ) (4.235)f �(x);  �(y)gx0=y0 = f �(x)y;  �(y)ygx0=y0 = 0: (4.236)
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reation and annihilation operators satisfy the anti
ommutator relationsfa(p; �; 
); a(p0; �0; 
0)yg = 2p0 (2�)3 Æ(p� p0) Æ��0 Æ

0; (4.237)and zero otherwise; 
 = + denotes a parti
le and 
 = � an antiparti
le.In the quantum theory we have to pay attention to the ordering of operatorsin the 
urrent j�, as for the s
alar �eld,j� = 12 � a i
� qab  b= 12 [ � i
�  �  T i
�T � T ℄: (4.238)Then the 
harge operator is given byQ = Z d3x j0 = Z d3x 12 [ �y;  �℄= X� Z d!p [a(p; �;+)ya(p; �;+)� a(p; �;�)ya(p; �;�)℄; (4.239)whi
h is just the number operator for parti
les minus the number operator forantiparti
les. It has the following 
ommutation relations with the 
reation andannihilation operators,[Q; a(p; �;�)℄ = �a(p; �;�); [Q; a(p; �;�)y℄ = �a(p; �;�)y; (4.240)and with the Dira
 �elds [Q; ℄ = � ; [Q; � ℄ = � : (4.241)As for the s
alar �eld the theory is invariant under the 
harge 
onjugationtransformation (4.70), S( (
); � (
)) = S( ; � ). In the quantum theory 
harge
onjugation is represented by a unitary operator UC ,U yC  UC =  (
) = ( � C)T ; U yC � UC = � (
) = �(Cy )T : (4.242)The 
urrent 
hanges sign under C,U yC j� UC = �j� (4.243)(this would not be the 
ase had we ignored the operator ordening subtlety in(4.238)).



130 CHAPTER 4. SPINOR FIELDS AND FERMIONS4.8 Energy-momentum tensor and va
uum en-ergyIn (4.158) we have 
onstru
ted the energy-momentum operator P � of the freefermion �eld. It is still of interest to know the form of the energy-momentumtensor T ��. Now we know the a
tion we 
an use translation invarian
e to �nd asuitable T �� via the `Noether pro
edure'. (The 
oupling of a spinor �eld to thegravitational �eld is mu
h too involved to use here for the de�nition of T �� .) Inthe 
ase of global U(1)'SO(2) invarian
e we found the 
onserved 
urrent j� bymaking a lo
al SO(2) rotation. We follow the same strategy here for �nding T ��.We make an in�nitesimal lo
al translation x! x+ Æ�(x) on the (
lassi
al) �elds, 0(x) =  (x + Æ�(x)) =  (x) + Æ��(x)�� (x); (4.244)� 0(x) = � (x) + Æ��(x)�� � (x); (4.245)and identify T �� from the 
hange in the (
lassi
al) a
tion,ÆS = Z d4x Æ�� ��T ��: (4.246)In the 
al
ulation of ÆS appears a derivative of �� whi
h is 
onverted to the �eldsby partial integration,ÆS = S( 0; � 0)� S( ; � )= � Z d4x [( � + Æ���� � )(m+ 
���)( + Æ���� )� � (m+ 
���) ℄= � Z d4x fÆ��[�� � (m+ 
���) + � (m+ 
���)�� ℄ + ��Æ�� � 
��� g= Z d4x Æ��[��L+ ��( � 
��� )℄; (4.247)where L = � � (m+
�) is the lagrangian. Sin
e ÆS is stationary when  and � are solutions of the equations of motion, we have the lo
al 
onservation relation��T �� = 0; T �� = � 
��� + Æ��L: (4.248)However, this expression for the energy-momentum tensor is not real, in fa
t, thelagrangian itself is not real. This 
an be repaired by symmetrizing the derivativein L, writing S = Z d4xL; L = � � (m+ 
� $��) ; (4.249)$�� � 12 (!�� �  ��); (4.250)
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h leads to the real energy-momentum tensorT �� = � 
� $��  + g�� L: (4.251)In the 
ase of the ele
tromagneti
 �eld the Noether form of the energy-momentumtensor would not be the gauge invariant expression (1.45). For a dis
ussion seee.g. De Wit & Smith se
t. 1.5.The energy density is given byT 00 = � � 
0 $�0  + � (m+ 
k $�k +
0 $�0) = � (m + 
k $�k) : (4.252)Of 
ourse, we still have to 
he
k the normalization and sign { these will turn outto be 
orre
t. The total energy is given byH = Z d3x T 00 = Z d3x yH ; (4.253)H = m� � i�k�k; (4.254)where �k = i�
k and the hermitian di�erential operator H is 
alled the Dira
hamiltonian.Consider next the quantum theory. There is no operator ordering ambiguityin H, sin
e � and �k are tra
eless matri
es. The operator H generates timetranslations in the way we expe
t for a hamiltonian,i[H; (x)℄ = i Z d3y; [ y(y)�(m+ 
k�k) (y);  (x)℄ (4.255)= �i�(m + 
k�k) (x) (4.256)= �0 (x); (4.257)where we 
hose y0 = x0 (whi
h we are free to do sin
e H is time independent) andin the last line used the Dira
 equation. Conversely, if we assume thatH generatesthe time development a

ording to the Heisenberg equation �0 = i[H; ℄, thenthe Dira
 equation follows. We see here a glimpse of a 
anoni
al formalism foranti
ommuting variables (see S
hwinger III, for example). We do not need thishere sin
e we have now enough at our disposal to turn to the 
ovariant a
tion(and path integral) formalism.To express H in the 
reation and annihilation operators we use the fa
t thatin the expansion of the �elds, e.g. at time zero, (x) = Z d!p [eipx u(p; �) a(p; �;+) + e�ipx v(p; �) a(p; �;�)y℄; (4.258)appear orthogonal eigenfun
tions of H:H(p) u(p; �) � (m� +� � p)u(p; �) = p0 u(p; �); (4.259)H(�p) v(p; �) = �p0 v(p; �); (4.260)



132 CHAPTER 4. SPINOR FIELDS AND FERMIONSwhere we used the Dira
 equation in momentum spa
e (4.113). We then �ndH = Z d!p [a(p; �;+)ya(p; �;+)� a(p; �;�)a(p; �;�)y℄ p0 (4.261)= Z d!p [a(p; �;+)ya(p; �;+) + a(p; �;�)ya(p; �;�)℄ p0+ E0; (4.262)with ground state energy densityE0V = �12 X�=�; 
=�Z d!p p0p0 = �2 Z d!p p0p0: (4.263)In obtaining this expression we repla
ed (2�)3 Æ(0)! V , with V !1 the totalvolume of the system (a more 
areful treatment giving the same result was givenin the photon 
ase, using a �nite periodi
 box).We see that this expression for for the ground state energy of free fermions issimilar to that of an in�nite set of bosoni
 harmoni
 os
illators, ex
ept that it hasopposite sign, it is negative. As before we have to 
an
el the energy density with asuitable bare 
osmologi
al 
onstant. The intruiging posibility of 
an
eling, in anintera
ting theory, the positive bosoni
 
ontribution against a negative fermioni

ontribution is one of the aims of introdu
ing supersymmetry.4.9 Va
uum amplitude to all orders in �, �We shall now determine the exa
t va
uum amplitude for the free Dira
 �eld withexternal sour
es. The 
oupling of the 
omplex �eld to the 
omplex sour
es � and� is des
ribed by the total a
tionS( 
; � 
) + Z d4x (� 
 + � 
�); (4.264)where  
 and � 
 are 
lassi
al fermion �elds andS( 
; � 
) = � Z d4x � 
(m+ 
���) 
: (4.265)The �eld equations are given by0 = ÆSÆ � 
(x) = �(m+ 
���) 
(x) + �(x); (4.266)0 = �ÆSÆ 
(x) = � � 
(x) (m� 
�  ��) + �(x): (4.267)
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e terms lead to the additional term in thehamiltonian H�(x0) = Z d3x [�(x) (x) + � (x)�(x)℄; (4.268)whi
h enters in the evolution operator in the sour
e-intera
tion pi
tureU�(t1; t2) = T e�i R t1t2 dx0H�(x0): (4.269)Then the va
uum amplitude is given byZ(�; �) = h0jU�(1;�1)j0i = h0jT e�i R dx0H�(x0)j0i (4.270)= h0jT ei R d4x (� + � �)j0i: (4.271)Sin
e the 
ombinations of pairs of fermioni
 obje
ts � and � � are 
ommutingwithin the T produ
t, taking a fun
tional derivative with respe
t to � or � goesinitially as in the bosoni
 
ase,ÆZ = i Z d4y h0jT [Æ�(x) (x) + � (x)Æ�(x)℄ ei R d4y (� + � �)j0i: (4.272)For the derivatives we then getÆZiÆ�(x) = h0jT  (x) ei R d4y (� + � �)j0i; (4.273)= h0jU�(1; x0) (x)U�(x0;�1)j0i (4.274)ÆZiÆ�(x) = �h0jT � (x) ei R d4y (� + � �)j0i; (4.275)where we re
all that we use left derivates. Taking �0 of (4.274) and using theanti
ommutators (4.235), (4.236) gives�0 ÆZiÆ�(x) = h0jU�(1; x0) i[H�(x0);  (x)℄U�(x0;�1)j0i+ h0jU�(1; x0) �0 (x)U�(x0;�1)j0i (4.276)= �
0�(x)h0jU�(1;�1)j0i (4.277)+ 
0(m + 
k�k) h0jU�(1; x0) (x)U�(x0;�1)j0i:This 
an be rewritten in the form��(m + 
���) ÆiÆ�(x) + �(x)� Z(�; �) = 0; (4.278)whi
h is just the �eld equation for  
 with  
 ! Æ=iÆ�, as might be expe
tedfrom our experien
e with Bose �elds. Similarly, we have the 
onjugate equation
orresponding to the �eld equation for � 
,��m �ÆiÆ�(x) + �� �ÆiÆ�(x) 
� + �(x)� Z(�; �) = 0: (4.279)



134 CHAPTER 4. SPINOR FIELDS AND FERMIONSThe solution to these equations with Feynman boundary 
onditions in timeis easily written down by analogy with the Bose 
ase,Z(�; �) = ei R d4xd4y �(x)G(x�y)�(y); (4.280)with G(x� y) the fermion propagator (4.194). Let us 
he
k this for eq. (4.278):ÆZ = i Z d4xd4y [Æ�(x)G(x� y)�(y) + �(x)G(x� y)Æ�(y)℄ei R d4ud4v �(u)G(u�v)�(v) ; (4.281)ÆZiÆ�(x) = Z d4y G(x� y)�(y)Z; (4.282)and using the fa
t that G(x� y) is the inverse of m+ 
� gives(m+ 
���) ÆZiÆ�(x) = �(x)Z; (4.283)whi
h was to be shown.We 
an now use this result to express arbitrary va
uum expe
tation values oftime ordered produ
ts as a sum of produ
ts of propagators. The only di�eren
ewith the bosoni
 
ase are the signs 
orresponding to permutations of the fermionoperators  or � in the fermioni
 T -produ
t:h0jT  (x) � (y)j0i = ÆÆ�(x) �ÆÆ�(y) Zjj�=�=0 (4.284)= �iG(x � y); (4.285)h0jT  (x1) � (y1) (x2) � (y2)j0i = ÆÆ�(x1) �ÆÆ�(y1) ÆÆ�(x2) �ÆÆ�(y2) Zjj�=�=0= (�i)2 [G(x1 � y1)G(x2 � y2)�G(x1 � y2)G(x2 � y1)℄; (4.286)and so on. The reader is urged to verify the se
ond relation by su

essive di�er-entiation of Z with respe
t to the sour
es. Noti
e that for a nonzero result therehave to be an equal number of  's and � 's, in a

ordan
e with 
harge 
onser-vation. Eq. (4.286) is illustrated in �g. 4.1. The generalization to an arbitrarynumber of pairs is evidentlyh0jT  (x1) � (y1) � � � (xn) � (yn)j0i = (�i)nXP �P G(x1 � yP1) � � �G(xn � yPn);(4.287)where P denotes permutations of 1, . . . , n with signature �P .The va
uum amplitude 
an of 
ourse also be expressed in e�e
tive a
tion formZ(�; �) = eiW (�;�); (4.288)W (�; �) = S( 
; � 
) + Z d4x (� 
 + � 
�); (4.289)
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Figure 4.1: Diagrams for eq. (4.286).with  
 and � 
 solutions of the 
lassi
al �eld equations with Feynman boundary
onditions,  
(x) = Z d4y G(x� y) �(y); (4.290)� 
(x) = Z d4y �(y)G(x� y): (4.291)4.10 Problems1. For a free Dira
 fermion �eld letjp1�1
1; � � � ; pn�n
ni = a(p1; �1; 
1)y � � �a(pn; �n; 
n)yj0i; (4.292)and hp1�1
1; � � � ; pn�n
nj � (jp1�1
1; � � � ; pn�n
ni)y; (4.293)= h0ja(pn; �n; 
n) � � �a(p1; �1; 
1);where 
 = + denotes a parti
le and 
 = � an antiparti
le. Verifyhp0�0
0jp�
i = 2p0 (2�)3 Æ(p0 � p) Æ�0� Æ
0
; (4.294)and in the two parti
le subspa
e (n = 2) at least, verify the orthogonalityand 
ompleteness relationshp01�01
01; � � � ; p0m�0m
0mjp1�1
1; � � � ; pn; �n
ni = (4.295)Æmn XP �P hp01�01
01jpP1�P1
P1i � � � hp0n�0n
0njpPn�Pn
Pni;Xn 1n! X�1����n X
1���
n Z d!p1 � � �d!pnjp1�1; � � � ; pn; �nihp1�1; � � � ; pn; �nj = 1; (4.296)where P1 � � �Pn is a permutation of 1 � � �n with signature �P .
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 �eld, verify the following matrix elements of the 
urrentj� = � i
� : h0jj�(x)j0i = 0; (4.297)hp0�0jj�(x)jp�i = �u0i
�u ei(p�p0)x; (4.298)hp0�0jj�(x)jp�i = ��vi
�v0 ei(p�p0)x; (4.299)hp0�0; p�jj�(x)j0i = �u0i
�v e�i(p+p0)x; (4.300)h0jj�(x)jp�; p0�0i = �vi
�u0 ei(p+p0)x; (4.301)where u = u(p; �), �u0 = �u(p0; �0), et
., and the `bar' in p� denotes an an-tiparti
le. It may be 
onvenient to use the (
onventional) notation b(p; �) =a(p; �;+), d(p; �) = a(p; �;�) for the parti
le and antiparti
le annihilationoperators in (4.231), (4.232).3. Using the 
harge 
onjugation matrix C verifyhp0�0jj�(x)jp�i = �hp0�0jj�(x)jp�i (4.302)from the expli
it answers obtained above.4. Verify ��j� = 0 in the above matrix elements of the 
urrent j�.5. For the expli
it expressions obtained above for the matrix elements of j�verify that hp0�0jQjp�i = hp0�0jp�i; (4.303)et
., where Q = R d3x j0(x).6. For general � and � we have��� = �i2 [
�; 
�℄: (4.304)Let u = u(p; �), �u0 = �u(p0; �0). Verify that(p� p0)� �u0��� u = 2m �u0
�u+ i(p + p0)� �u0u; (4.305)and the Gordon de
omposition�u0i
�u = 12m [(p+ p0)��u0 u+ i(p� p0)� �u0��� u℄: (4.306)Compare with the expression of the matrix element of the 
urrent for as
alar parti
le.
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Chapter 5Spinor ele
trodynami
sSpinor ele
trodynami
s is the theory of intera
ting spinor and ele
tromagneti
�elds. We dis
uss the Feynman rules and present some appli
ations.5.1 De�ning the theoryThe 
oupling of the Dira
 �eld to the ele
tromagneti
 �eld is 
ompletely analagousto that of the 
omplex s
alar �eld. We start withS = SA + SA ; (5.1)with SA = � Z d4x 14 F��F �� (5.2)the a
tion for the ele
tromagneti
 �eld and SA the a
tion of the fermion �eldsin whi
h the derivative is repla
ed by the 
ovariant derivative D�,SA = � Z d4x � (m + 
�D�) : (5.3)In view of the appli
ations to parti
le physi
s we have to de
ide what the 
hargeis of the parti
les to be des
ribed by  . For example, in an e�e
tive des
riptionof a proton by a spinor �eld  p we haveD�  p = (�� � ieA�) p; (5.4)D� � p = (�� + ieA�) � ; (5.5)with the 
onvention e = jej; (5.6)sin
e the proton has positive 
harge. On the other hand, the ele
tron whi
h hasnegative 
harge is des
ribed by an ele
tron �eld  e,D�  e = (�� + ieA�) e; (5.7)D� � e = (�� � ieA�) � e; (5.8)138
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harge of the parti
les (p+ and e�) determines the sign in the 
ovariantderivative. The fa
t that antiparti
les have opposite 
harge is taken 
are ofautomati
ally by the formalism. In the following we shall take the ele
tron 
aseas an example.In the quantum theory, in the Coulomb gauge, the bosoni
 operators have theusual equal time 
ommutation relations, the fermioni
 operators the anti
ommu-tation relations, while boson operators 
ommute with fermion operators. TheCoulomb gauge is awkward to work with and as in the 
ase of the s
alar �eld werepla
e the Maxwell a
tion by the modi�ed a
tionSA = � Z d4x [14 F��F �� + 12� (��A�)2℄; (5.9)to be used in the equation for the va
uum amplitude Z, with external sour
esJ�, � and �. This equation for Z follows from the 
lasi
al �eld equations for the
lassi
al �elds A�
 ,  
 and � 
,0 = [��2g�� + (1� 1� )����℄A�
 � e � 
i
� 
 + J�; (5.10)0 = �[m + 
�(�� + ieA
�)℄ 
 + �; (5.11)0 = �[ � 
(m + ie
�A
�)� �� � 

�℄ + �; (5.12)by repla
ing A�
 ! ÆiÆJ� ;  
 ! ÆiÆ� ; � 
 ! �ÆiÆ� ; (5.13)and letting the thus obtained fun
tional di�erential operator a
t on Z(J; �; �). Inaddition we should repla
e the 
oupling 
onstants and masses by bare parameters,e! e0, m! m0, � ! �0, and 
al
ulate the renormalized values e, m, � in termsof the bare parameters in a given regularization. This be
omes relevant beyondthe semi
lassi
al approximation.As mentioned in se
t. 2.8, the solution of the equations for the va
uum am-plitude 
an be represented by a path integral,Z(J; �; �) = R DAD � D eiS(A; ; � )+i R d4x (J�A�+� + � �)R DAD � D eiS(A; ; � ) ; (5.14)where the integration variables are 
lassi
al (anti
omuting for  and � ), andformally Z DA = Yx� Z 1�1 dA�(x); (5.15)Z D � D = Yx� Z d � �(x)d �(x): (5.16)



140 CHAPTER 5. SPINOR ELECTRODYNAMICSThe demonstration that (5.14) is the solution of the equations for Z uses onlytranslation invarian
e of the integration, as in (2.165), and the Feynman boundary
onditions in time. As for ordinary integrals, fermioni
 integration 
an be de�nedrigourously for a �nite number of variables, see e.g. Brown se
t. 2.4. The pathintegral 
an be de�ned with the latti
e regularization, using a �nite number ofmodes or `along the way' in a perturbative expansion in the 
oupling 
onstant e0.Perturbation theory leads to expressions involving Z in the free theory whi
h weknow how to evaluate, as in (2.170). The path integral then be
omes a 
onvenienttool in obtaining this expansion.For us, the stage has been set already by the example of s
alar ele
trodynami
sinvolving only boson �elds. The va
uum amplitude Z(�; �; J) 
an be written interms of an e�e
tive a
tion �( 
; � 
; A) by making a Legendre transformationfrom W (�; �; J) = �i lnZ(�; �; J) to �( 
; � 
; A
),Z(�; �; J) = eiW (�;�;J); (5.17)W (�; �; J) = �( 
; � 
; A
) + Z d4x (� 
 + � 
� + J�A�
 ); (5.18)and fun
tional derivatives of W with respe
t to the sour
es give the 
orrelationfun
tions (
onne
ted Green fun
tions). The equation for Z 
an be 
onvertedinto an equation for �, whi
h generates the Dyson-S
hwinger equations. Keepingtra
k of Plan
k's 
onstant leads again to the 
on
lusion�( 
; � 
; A
) = S( 
; � 
; A
) +O(~): (5.19)Sin
e the only terms in S of higher order in the �elds than bilinear are the � � �A�
ouplings, there is only one bare vertex fun
tion,S � � �A�(x; y; z) = �ie0 (
�)�� Æ4(x� y) Æ4(x� z); (5.20)S � � �A�(p; q; k) = �ie0 (
�)��: (5.21)This is represented by the vertex in �g. 5.1, whi
h also shows the propagatorsG�� (p) � G � � � (p;�p) = (m� i
p)��m2 + p2 � i� ; (5.22)G��A (k) � GA�A� (k;�k) = g�� � (1� �)k�k�=(k2 � i�)k2 � i� : (5.23)In prin
iple this is all straightforward. However, in pra
tise the details are
umbersome be
ause we have to keep tra
k of minus signs due to the anti
om-muting 
hara
ter of fermion variables. In the 
ondensed notation it 
an be usefulto use 
apital letters to indi
ate fermioni
 variables,JK $ ��(x); ��(x); �K $  �
 (x); � �
 (x); (5.24)Jk $ J�(x); �k $ A�(x): (5.25)



5.2. SCATTERING AMPLITUDES 141

Figure 5.1: Propagators and vertexfun
tions in spinor ele
trodynami
s.Then all obje
ts are antisymmetri
 in permutations of K;L; : : :. We shall notgo into details, but observe that when we ignore the anti
ommuting 
hara
terof fermion variables the �nal result will be as we have seen before with bosonvariables only, up to possible minus signs. The determination of these signs willnow be illustrated in the examples in the next se
tion.5.2 S
attering amplitudesAs a warm up we re
apitulate the determination of the s
attering amplitudes for
 + �� ! 
 + ��, involving only s
alar parti
les and photons:1. Determine the two point 
orrelation fun
tions G��� and GA�A� for largetime separations to �nd polarization ve
tors e�e�� and wave fun
tion renor-malization 
onstants Z�, ZA:GA1A2 x01�x02! i Z d!k eik(x1�x2) ZAX� e�1(k; �)e�2(k; �)�; (5.26)G�3��4 x03�x04! i Z d!p eip(x3�x4): (5.27)2. Determine the four point 
orrelation fun
tion GA1A2�3��4 and identify theexternal propagators and HA1A2��3�4 ; s
hemati
allyGA1A2�3��4 = GA1A10GA20A2G�3��30G�40��4HA10A20��30�40 : (5.28)Fa
tors pZA e1 and pZA e�2 (i.e. pZA e�1(k1; �1) et
.) `belong' to the ab-sorption and emission amplitudes, while fa
tors pZAe�10 and pZAe20 belongto the s
attering amplitude.
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Figure 5.2: 
2+�+4 ! 
1+�+3 or 
2+e�4 ! 
1+e�3 s
attering (a), and 
2+��3 !
1 + ��4 or 
2 + e+3 ! 
1 + e+4 s
attering (b).3. The s
attering amplitude for 
2 + �+4 ! 
1 + �+3 is s
hemati
ally given byT = ZAZ� e�1HA1A2��3�4 e2; (5.29)with appropriate ingoing and outgoing momenta, while the amplitude forthe pro
ess 
2 + ��3 ! 
1 + ��4 is derived from the same H-fun
tion, againwith appropriate momenta. Denoting the antiparti
les by a `bar' in ket andbra, we have in detailhk1�1; p3jT jk2�2; p4i = ZAZ� e�1�(k1; �1)HA�1A�2���(k1;�k2; p3;�p4)e�2(k2; �2); (5.30)hk1�1; p4jT jk2�2; p3i = ZAZ� e�1�(k1; �1)HA�1A�2���(k1;�k2;�p3; p4)e�2(k2; �2); (5.31)as illustrated in �g. 5.2. Noti
e that e.g. G and H are 
ompletely symmetri
under ex
hange of indi
es, whi
h is a re
e
tion of the fa
t that boson oper-ators behave as 
ommuting in time ordered produ
ts (`
onn' = 
onne
ted)h0jT A�1(x1)A�2(x2)'(x3)'(x4)yj0i
onn = (�i)3GA1A2�3��4 : (5.32)Therefore, HA�1A�2���(k1;�k2;�p3; p4) appearing in (5.31) equalsHA�1�A�2��(k1; p3;�k2;�p3), whi
h might look more natural for pro
ess (b)in �g. 5.2.Consider next the pro
esses 
 + e� ! 
 + e�. We go again through the steps 1{ 3 above, in more detail for the fermion aspe
ts:1. The fermion propagator has poles with residue modi�ed by a fa
tor Z be
ause of the intera
tions1. ThenG 3 � 4 x03�x04! i Z d!p eip(x3�x4) Z X� u�3(p; �)�u�4(p; �); (5.33)1This is true in the 
ovariant gauges we are using. In the Coulomb gauge this is not thewhole story and the situation is more 
ompli
ated than suggested in Bjorken & Drell II se
t.17.9.



5.2. SCATTERING AMPLITUDES 143x03�x04! �i Z d!p eip(x4�x3) Z X� v�3(p; �)�v�4(p; �); (5.34)whi
h re
e
ts the one parti
le 
ontributions for the two time orderingsh0jT  3 � 4j0i x03>x04= X� Z d!p h0j 3jp; �ihp; �j � 4j0i+mp
 (5.35)x03<x04= �X� Z d!p h0j � 4jp�ihp�j 3j0i+mp
; (5.36)where mp
 denotes the multiparti
le 
ontributions. The formulas re
e
tthe free parti
le expressions (4.135), (4.138), and (4.231), (4.232) whi
hfor 
larity we repeat here in a 
onventional notation for the 
reation andannihilation operators: (x) =X� Z d!p [eipx u(p; �) b(p; �) + e�ipx v(p; �) d(p; �)y℄; (5.37)� (x) =X� Z d!p [e�ipx �u(p; �) b(p; �)y + eipx �v(p; �) d(p; �)℄: (5.38)i.e. the parti
les are annihiliated by b � a(+) and the antiparti
les tod � a(�).2. Considerh0jT A�1(x1)A�2(x2) �3(x3) � �4(x4)j0i = (�i)2GA1A2G 3 � 4 +(�i)3GA1A2 3 � 4 : (5.39)For the time ordering 
orresponding to �g. 5.2a this is equal toh0jA�1(x1)A�2(x2) �3(x3) � �4(x4)j0i $ h13jSj24i; (5.40)where we indi
ated the resulting s
attering matrix element on the righthand side (re
all S
onn = iT ). The reasoning behind this is that parti-
les are 
reated at x2 and x4, whi
h evolve in time and may s
atter, andget annihilated at x1 and x3. On the other hand, for the time ordering
orresponding to �g. 5.2b the expression (5.39) is equal to�h0jA�1(x1)A�2(x2) � �4(x4) �3(x3)j0i $ �h14jSj23i; (5.41)with the reasoning that in this 
ase an antiparti
le is 
reated at x3 andannihilated at x4. Note again that one time ordered produ
t (5.39) leads toseveral s
attering matrix elements (we have mentioned only two of these)and note the minus sign in (5.41).
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Figure 5.3: Diagrams for 
2+ e�4 ! 
1+ e�3 s
attering (a), and 
2+ e+3 ! 
1+ e+4s
attering (b).The H fun
tion is de�ned in terms of the 
onne
ted Green fun
tion withoutattention to time ordering. However, we like to keep the natural  � -type
harge ordering, sin
e ordering matters for fermion Green fun
tions,GA1A2 3 � 4 = GA1A10GA20A2 G 3 � 30HA10A20 � 30 40G 40 � 4 : (5.42)3. The s
attering amplitudes for 
2 + e�4 ! 
1 + e�3 are now given byhk1�1; p3�3jT jk2�2; p4�4i = ZAZ e�1�(k1; �1)�u�3(p3; �3)HA�1A�2 � �3 �4 (k1;�k2; p3;�p4)u�4(p4; �4)e�2(k2; �2); (5.43)hk1�1; p4�4jT jk2�2; p3�3i = �ZAZ e�1�(k1; �1)�v�3(p3; �3)HA�1A�2 � �3 �4 (k1;�k2;�p3; p4)v�4(p4; �4)e�2(k2; �2): (5.44)Noti
e the �v-v stru
ture: �v 
orresponds to the initial state and v to the�nal state (
ompare also with (5.34)). The minus sign in (5.44) 
omes fromthe minus sign in (5.41).It is straightforward to write down the expli
it expressions for in the semi
lassi
alapproximation, see �g. 5.3. Fig. 5.3a representsiT (13; 24) = e��(k1; �1)�u(p3; �3) [e
�(�i)m� i
qm2 + q2 e
�+ e
�(�i)m� i
rm2 + r2 e
�℄ u(p4; �4)e�(k2; �2); (5.45)where q = p1 + p3 = p2 + p4 and r = p4 � p1 = p3 � p2. Fig. 5.3b represents�iT (14; 23) = e��(k1; �1)�v(p3; �3) [e
�(�i)m� i
qm2 + q2 e
�+ e
�(�i)m� i
rm2 + r2 e
�℄ v(p4; �4)e�(k2; �2); (5.46)
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Figure 5.4: Dis
onne
ted and 
onne
ted 
ontributions to (5.47) in the semi
lasi
alapproximation.

Figure 5.5: e�2 + e�4 ! e�1 + e�3 s
attering (a) and e�2 + e+3 ! e�1 + e+4 s
attering(b).where q = p1 + p4 = p2 + p3 and r = p4 � p2 = p3 � p1.A se
ond 
lass of examples is given by e�+ e� ! e� + e�. These are derivedfrom h0jT  1 � 3 3 � 4j0i = (�i)2[G 1 � 2G 3 � 4 �G 1 � 4G 2 � 3 ℄+ (�i)3G 1 � 2 3 � 4 : (5.47)The minus sign in the dis
onne
ted part shows already the signs to be given tothe individual diagrams. Fig. 5.4 shows the diagrams for (5.47), with their signs,in the semi
lasi
al approximation. No 
hoi
e of time ordering is assumed. Fig.5.5 shows the diagrams for s
attering. For �gure (a) we have taken the timeordering x03 > x01 � x02 > x04, for whi
h (5.47) takes the formh0jT  1 � 3 3 � 4j0i = +h0j 3 1 � 2 � 4j0i $ h13jSj24i; (5.48)while for (b) we have taken the time ordering x04 > x01 � x02 > x03, for whi
hh0jT  1 � 3 3 � 4j0i = �h0j � 4 1 � 2 3j0i $ �h14jSj23i; (5.49)
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Figure 5.6: A 
losed fermion loop.and the diagrams in �g. 5.5b represent �iT (14; 23). Fig. 5.5a now gives in selfevident notation iT (13; 24) = �u1e
�u2 �u3e
�u4 (�i)G��(k)� �u1e
�u4 �u3e
�u2 (�i)G��(l); (5.50)where G�� is the photon propagator and k = p1�p2 = p4�p3, l = p3�p2 = p4�p1.For the pro
ess involving the antiparti
les e+ we get from �g. 5.5b and (5.49),�iT (14; 23) = �u1e
�u2 �v3e
�v4 (�i)G��(k)� �u1e
�v4 �v3e
�u2(�i)G��(l); (5.51)with k = p1 � p2 = p3 � p4 and l = p1 + p4 = p2 + p3.The above examples show how the polarization spinors enter in s
attering am-plitudes. The various minus signs re
e
t the antisymmetry of multipoint Greenfun
tions in ex
hange of labels of external fermion lines. We end this se
tion withthe rule:with ea
h 
losed fermion loop goes a minus sign,whi
h follows from the derivation using Dyson-S
hwinger equations, and whi
h isalso evident in the perturbation expansion of the path integral. The rule appliesto the diagram in �g. 5.6, whi
h represents the expression (ex
luding the minussign)12 iSmKL(�i)GLM iSnMN(�i)GNK = 12 SA� � 1 2 G 2 � 3 SA� � 3 4 G 4 � 1 ;+ 12 SA� 1 � 2 G � 2 3 SA� 3 � 4 G � 4 1= SA� � 1 2 G 2 � 3 SA� � 3 4 G 4 � 1 (5.52)(there is an even number of sign 
hanges when 
onverting the  and � in these
ond term to `natural order', and the two 
ontributions are identi
al).
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Figure 5.7: e�2 + e+3 ! ��1 + �+4 s
attering.5.3 Example, e� + e+ ! �� + �+ s
atteringA simple example in fermion-fermion s
attering is the pro
ess e�+e+ ! ��+�+,for whi
h we shall evaluate the unpolarized di�erential 
ross se
tion. This servesto illustrate a tra
e te
hnique for the evaluation polarization sums.We introdu
e fermion �elds for the muon as well as for the ele
tron, and sin
ethe two are independent there is only one relevant diagram, shown in �g. 5.7.To make the 
omparison with the diagrams in �g. 5.4b and the expression (5.51)easy, we use the same labeling. Thenh��(1); �+(4)jT je�(2); e+(3)i = T (14; 23)= � �u1e
�v4 �v3e
�u2G��(l); (5.53)= � e2�u(p1; �1)
�v(p4; �4)�v(p3; �3)
�u(p2; �2)g�� � (1� �)l�l�=l2l2 ; (5.54)with l = p1+ p4 = p2+ p3. If we denote the ele
tron and muon masses by m andM , respe
tively, then p22 = p23 = �m2; p23 = p24 = �M2: (5.55)The gauge terms / l�l� in the photon propagator do not 
ontribute be
ause of
urrent 
onservation. For example,�u(p1; �1)i
�v(p4; �4) (p1 + p4)� = 0; (5.56)where we used the fa
t that the polarization spinors satisfy the (momentum spa
eversion of the) Dira
 equation (
f. 4.113)),�u(p1; �) i
p1 = �M �u(p1; �1); i
p4 v(p4; �4) =Mv(p4; �4): (5.57)To 
al
ulate the 
ross se
tion we need T �, whi
h leads to(�u1
�v4)� = vy4
y��u1 = ��v4
�u1; (5.58)(�v3
�u2)� = uy2
y��v3 = ��u2
�v3: (5.59)



148 CHAPTER 5. SPINOR ELECTRODYNAMICSAveraging over initial spins and summing over �nal spins givesjT j2 = e4 14 X�1�2�3�4 �u1
�v4 �v3
�u2 �v4
�u1 �u2
�v3 g��g��s2 ; (5.60)where s = �(p1 + p4)2 = �(p2 + p3)2 is one of the Mandelstam variables (equalto the total 
m energy). To evaluate the polarization sums we order the spinorfa
tors in a suggestive way, interpreting u��u� and v��v� as matri
es and using forexample �u1
�v4�v4
�u1 = Tr [
�v4�v4
�u1�u1℄: (5.61)Then jT j2 = e4 g��g��s2 14 Tr [
�(X�4 v4�v4)
�(X�1 u1�u1)℄Tr [
�(X�2 u2�u2)
�(X�3 v3�v3)℄: (5.62)We now use the properties (4.109), (4.110),X�4 v(p4; �4)�v(p4; �4) = �(M + i
p4); (5.63)X�2 u(p2; �2)�u(p2; �2) = m� i
p2; (5.64)et
. and obtain the formjT j2 = e4 g��g��s2 14 Tr [
�(M + i
p4)
�(M � i
p1)℄Tr [
�(m� i
p2)
�(m+ i
p3)℄: (5.65)To evaluate this we use the tra
e formulasTr 
�
� = 4g��; (5.66)Tr 
�
�
� = 0; (5.67)Tr 
�
�
�
� = 4(g��g�� � g��g�� + g��g��): (5.68)These follow from the fa
t that (1) the tra
e of a produ
t of gamma matri
esvanishes unless ea
h 
0, . . . , 
3 appears an even number of times, (2) 
20 = �1,
21 = 
22 = 
23 = 1, (3) the gamma's anti
ommute and (4) Tr 1 = 4. For moreinformation and derivations of tra
e theorems see Bjorken & Drell I, se
t. 7.2 andDe Wit & Smith se
t. E.4. The two tra
es in (5.65) are given by4(M2
�� + p4�p1� � 
��p1p4 + p1�p4�) (5.69)and 4(m2
�� + p2�p3� � 
��p2p3 + p3�p2�): (5.70)



5.3. EXAMPLE, E� + E+ ! �� + �+ SCATTERING 149The evaluation of jT j2 is now straightforward and results in a large number ofs
alar produ
ts of the momenta. Using the Mandelstams variabless = �(p1 + p4)2 = 2M2 � 2p1p4 = �(p2 + p3)2 = 2m2 � 2p2p3; (5.71)t = �(p1�p2)2 = �m2�M2+2p1p2 = �(p3�p4)2 = �m2�M2+2p3p4; (5.72)u = �(p1�p3)2 = �m2�M2+2p1p3 = �(p2�p4)2 = �m2�M2+2p2p4; (5.73)The result simpli�es tojT j2 = 4e4s2 [4m2M2 +M2(s� 2m2) +m2(s� 2M2)+ 12 (t +m2 +M2)2 + 12 (u+m2 +M2)2℄; (5.74)where we re
all that u 
an be eliminated in favor of s and t by the relations+ t+ u = 2m2 + 2M2. At high energies where we 
an negle
t the ele
tron andmuon masses (m � 0:511 MeV, M � 106 MeV). ThenjT j2 � 2e4s2 (t2 + u2): (5.75)Under these 
ri
umstan
es t and u are related to the s
attering angle in the 
entreof mass frame by t � �12 s (1� 
os �); u � �12 s (1 + 
os �); (5.76)and we get for the di�erential 
rosse
tion at high energiesd�d
 = 164�2s kfki jT j2 (5.77)� �24s (1 + 
os2 �): (5.78)The total 
ross se
tion is given by� = 2� �24s Z 1�1 d 
os � (1 + 
os2 �) = 4��23s : (5.79)It is instru
tive to rederive these formulas by evaluating �rst the high energyform of T for given polarization 
ombinations using heli
ity spinors, and fromthis jT j2. For further dis
ussion see e.g. De Wit & Smith 
h. 6.
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 moment of the ele
tronIn the nonrelativisti
 quantum me
hani
s, an ele
tron in an external ele
tromag-neti
 potential is des
ribed by the hamiltonianH = p2 + e[p �A(x) +A(x) � p℄2m � eA0 + eg2m S �B; (5.80)where S is the spin operator, g is the gyromagneti
 ratio and Bk = �klm �lAm is themagneti
 �eld. The terms p�A(x)+A(x)�p 
ome from `minimal substitution' (p+eA)2 (the 
harge of the ele
tron is negative and e > 0), and we have subtra
teda term e2A2 as it plays no dynami
al role for an external potential. It will beshown in this se
tion that in the approximation where (5.65) is valid, spinorele
trodynami
s predi
ts g = 2.We �rst derive the form of H in the momentum representation and thenidentify the same form in spinor ele
trodynami
s. Using momentum states withrelativisti
 normalization,hp0�0jp�i = 2p0 (2�)3 Æ(p0 � p) Æ�0� (5.81)(just for 
onvenien
e later), we havehx�0jp�i =p2p0 Æ�0� eipx (5.82)and the momentum representation of H takes the formhp0�0jHjp�i = p4p0p00 [p2 (2�)3 Æ(p0 � p) + e(p0 + p) � ~A(p0 � p)2m Æ�0�� e ~A0(p0 � p) Æ�0� + eg4m ��0� � ~B(p0 � p)℄; (5.83)where � are the Pauli matri
es and we usedhp0�0jA�(x)jp�i = X�00 Z d3x hp0�0jx�00i hx�00jp�iA�(x) (5.84)= p4p0p00 Æ�0� ~A�(p0 � p); (5.85)~A�(k) = Z d3x e�ikxA�(x): (5.86)Noti
e that ~Bk(k) = i�lmn km ~An(k): (5.87)In spinor ele
trodynami
s, the approximation where (5.83) is valid, is thenonrelativisti
 approximation in whi
h radiation e�e
ts due to the quantizedphoton �eld are negle
ted. So we 
onsider the spinor �eld in an external stati
ele
tromagneti
 potential A�(x). The hamiltonian of this system 
an be derived



5.5. PROBLEMS 151by the Noether argument, sin
e the system is translation invariant if transformthe external potential as well as the dynami
al variables  and � . It is given byH = P 0 � Z d3x (�e)j�(x)A�(x): (5.88)Its matrix element in the one parti
le subspa
e is given byhp0�0jHjp�i = p0 hp0�0jp�i+ e Z d3x hp0�0jj�(x)jp�iA�(x): (5.89)Using the result derived in the problems in the previous 
hapter we havehp0�0jj�(x)jp�i = �u(p0; �0) i
� u(p; �) ei(p�p0)x; (5.90)�u(p0; �0) i
� u(p; �) = 12m �u(p0; �0) [(p+ p0)� + i(p� p0)� ��� ℄ u(p; �): (5.91)Using the expli
it form (4.85) for the spinors we get in the nonrelativisti
 ap-proximation �u(p0; �0) u(p; �) = 2m [Æ�0� +O(p2=m2)℄;�u(p0; �0) �0n u(p; �) = 2m [O(jpj=m)℄; (5.92)�u(p0; �0) �mn u(p; �) = 2m [(�l)�0� �lmn +O(jpj=m)℄ (5.93)(sin
e �u0u is a s
alar its 
orre
tions are O(p2=m2)). Substitution in (5.89) nowgives (5.83) with g = 2, plus a rest energy m whi
h is omitted in the usualnonrelativisti
 expressions.5.5 Problems1. Tra
e and other identitiesIn se
t. 5.3 we en
ountered tra
es over produ
ts of gamma matri
es. Thefollowing identities 
an be derived (see for example Bjorken & Drell se
t.7.2): Tr 
�1 � � �
�n = 0; n = odd; (5.94)Tr 1 = 4; (5.95)Tr 
�
� = 4g��; (5.96)Tr 
�
�
�
� = 4(g��g�� � g��g�� + g��g��); (5.97)Tr 
5
�1 � � �
�n = 0; n = 0; 1; 2; 3; (5.98)= 4i��1����4 ; n = 4; (5.99)
�
� = 4; (5.100)
�
�
� = �2
�; (5.101)
�
�
�
� = 4g��; (5.102)
�
�
�
�
� = �2
�
�
�: (5.103)



152 CHAPTER 5. SPINOR ELECTRODYNAMICS2. Elasti
 ele
tron s
atteringIn se
t. 5.2 we derived the amplitude for the pro
ess e� + e� ! e� + e�.In this problem we shall work out the unpolarized 
ross se
tion. Considerthe amplitude for e�1 + e�2 ! e�3 + e�4 ,T (34; 12) = �e2 [�u3
�u1 �u4
�u2G��(k)� �u3
�u2 �u4
�u1G��(l); (5.104)whi
h di�eres from (5.50) only by a 
hange in numbering the parti
les.a. Show using the Dira
 equation in momentum spa
e that �u3
�u1 k� = 0,�u3
�u2 l� = 0, and verify that this 
orresponds to 
urrent 
onservation (
f.Problem 4.4). Consequently the amplitude 
an be simplied toT = �e2 [�u3
�u1 �u4
�u2 1k2 � �u3
�u2 �u4
�u1 1l2 : (5.105)b. Derive along similar lines as in se
t. 5.3 thatjT j2 = e44 [ T1((p1 � p3)2)2 � T1(p1 � p3)2(p1 � p4)2 + (p3 $ p4)℄; (5.106)where, using the 
onvenient `slash' notation p= = p�
�,T1 = Tr [
�(m� ip=1)
�(m� ip=3)℄ Tr [
�(m� ip=2)
�(m� ip=4)℄; (5.107)T2 = Tr [
�(m� ip=1)
�(m� ip=4)
�(m� ip=2)
�(m� ip=3)℄: (5.108)
. Using the identities in Problem 1 and of 
ourse momentum 
onservationp1 + p2 = p3 + p4 and p2i = �m2, show thatT1 = 32[2m4 + 2m2p1p3 + (p1p2)2 + (p1p4)2℄; (5.109)T1 = �32[2m2p1p2 + (p1p2)2℄: (5.110)d. These expressions are to be evaluated in the 
enter of mass frame. Let � bethe s
attering angle between parti
les 1 and 3, p1p3 = �m2�jpj2(1�
os �).From now on we use the notation k � jpj. Verify thatT1 = 64[m4 + 4m2k2 
os2 �2 + 2k4(1 + 
os4 �2)℄; (5.111)T2 = �32(�m4 + 4k4); (5.112)jT j2 = e464k4 [ T1sin4 �2 � T2
os2 �2 sin2 �2 + (� ! � � �)℄: (5.113)e. Under ultrarelativisti
 
onditions we may negle
t the ele
tron massm. Ver-ify that in the 
enter of mass framed�d
 jur = �28k2 [1 + 
os4 �2sin4 �2 + 2
os2 �2 sin2 �2 + 1 + sin4 �2
os4 �2 ℄: (5.114)



5.5. PROBLEMS 153f. Under nonrelativisti
 
onditions we may negle
t p 
ompared to m. Verifythat d�d
 jnr = �2m216k4 [ 1sin4 �2 � 1
os2 �2 sin2 �2 + 1
os4 �2 ℄: (5.115)The middle term is due to the interferen
e of the two diagrams 
ontributingto the amplitude. The �rst term goes over in the Rutherford formula forCoulomb s
attering o� a heavy target, upon expressing it in terms of theredu
ed mass mred = mm=(m +m) = m=2.The total 
ross se
tion is in�nite be
ause the integration over angles di-verges at � = 0. This 
an be attributed to the in�nite range of the Coulombpotential.3. The de
ays �� ! �� + ��� and �� ! e� + ��e. The 
harged pions �� areunstable and de
ay mainly into muons �� and muon neutrinos (���)��, witha life time of 2:60 � 10�8 s, or ��1
 = 780 
m. There is a 
orrespondingde
ay into ele
trons e� and ele
tron neutrinos (��e)�e, with a mu
h smallerrate. These pro
esses 
an be des
ribed by an e�e
tive a
tion of the formS = S0 + S1, where S1 is the intera
tionS1 = 
 Z d4x [��'� � �i
�(1� 
5) �� + ��' � ��i
�(1� 
5) �+ (�! e); (5.116)and S0 is the sum of the a
tions for the free pions, muons, ele
trons, muonneutrinos and ele
tron neutrinos,S0 = S� + S� + Se + S�� + S�e; (5.117)S� = � Z d4x (��'���'+m2�'�'); (5.118)S� = � Z d4x � �(
��� +m�) �; (5.119)and similar for e, �� and �e with m�� = m�e = 0. The 
onstant 
 is givenby 
 = f�GF 
os �C ; (5.120)with f� the pion de
ay 
onstant, GF the Fermi weak intera
tion 
onstantand �C the Cabibbo angle.Noti
e that the intera
tion S1 does not 
onserve parity P , as it is the sumof terms odd and even under parity.a. Verify the position spa
e vertex fun
tionS'� � �e  ��e (u; v; w) = 
 Z d4x ��Æ(x� u) [i
�(1� 
5)℄�� Æ(x� v)Æ(x� w);(5.121)and derive similarly the other vertex fun
tions.



154 CHAPTER 5. SPINOR ELECTRODYNAMICSb. Verify the momentum spa
e vertex fun
tionS'� � �e  ��e (p; k; l) = 
[
p(1� 
5)℄��; (5.122)and derive similarly the other vertex fun
tions. Draw the diagrams for thesevertex fun
tions.
. Draw the diagram for the de
ay ��(p) ! ��(k; �) + ���(k0; �0) and verifythat the de
ay amplitude is given byhk�; k0�0jT jpi = �
�u(k; �)
p(1� 
5)v(k0; �0): (5.123)d. Verify the polarization sumjT j2 = 
2Tr [
p(1� 
5)(i
k0)
p(1� 
5)(m� � i
k)℄: (5.124)e. Using the anti
ommutation relations of the gamma matri
es, the propertiesof the right and lefthanded proje
tors PR;L = (1�
5)=2 (
f. (4.49)) and theidentities in Problem 1 above, show thatjT j2 = 8
2[2(pk)(pk0)� p2kk0℄: (5.125)f. In the rest frame of the pion, verifyjkj = m2� �m2�2m� ; k0 � jkj = m2�m� ; (5.126)and jT j2 = 4
2(m2� �m2�)m2�; (5.127)and �(�� ! �� + ���) = 
24� (m2� �m2�)2m2�m3� : (5.128)g. The masses of the parti
les are given by m�� = 139:6 MeV, m� = 105:7MeV, me = 0:5110 Mev (the neutrino masses are assumed to be zero).Using GF � 1:17 � 10�5 GeV�2, �C � 13Æ, and the fa
t that �� de
aysfor 99.988% into �� + ���, verify that f� � 93 MeV from the rate � = 780
m�1.h. Cal
ulate the bran
hing ratio�(�� ! e� + ��e)�(�� ! �� + ���) (5.129)and 
ompare this with the experimental value 1:22� 10�4.



5.5. PROBLEMS 155The striking smallness of the above bran
hing ratio is a 
onsequen
e of the
ombination 
�(1 � 
5) in the intera
tion S1. The intera
tion 
onserves
hirality: 1 � 
5 proje
ts on to 
hirality {1, in the neutrino �elds as wellas in the ele
tron or muon �elds (re
all that � 
ontains � = i
0 and 
5
ommutes with i
0
�). For the massless antineutrinos, 
hirality {1 meansheli
ity +1/2 (
f. (4.121)). For the ele
tron and muon, 
hirality {1 wouldmean heli
ity {1/2 if these parti
les were massless (
f. (4.120)). However,angular momentum 
onservation requires that the muon or ele
tron havethe same heli
ity (+1/2) as the antineutrino, sin
e the pion at rest hasangular momentum zero. Hen
e, if m� and me would be zero, the de
ayamplitude would vanish (sin
e 1 � 
5 a
ting on a massless heli
ity +1/2parti
le spinor gives zero). So we may expe
t that the de
ay amplitude isproportional to m�;e as m�;e goes to zero. In fa
t, it 
an be shown usingheli
ity spinors that the de
ay amplitude is given byT = 2i
m�pjkj (pk0 +m�pk0 �m) Æ�;�0 Æ�0;+; (5.130)with k0 = pk2 +m2 and m = m� or me. In this way we 
an understandwhy the above bran
hing ratio / m2e=m2� is so small.It is instru
tive to go through the derivation of (5.130) in the Weyl repre-sentation, using heli
ity spinors (
f. (4.85) and (4.91)),u(jkj; �; �; �) = (pk0 +m + �pk0 �m
5) ��(�; �); (5.131)v(jk0j; �0; �0; �0) = pjk0j (1� �0
5) �(
)�0 (�0; �0);= pjkj (1� �0
5) �(
)�0 (� � �; �+ �) (5.132)where k0 = �k = (jkj; � � �; � + �) in spheri
al 
oordinates. Be
ause ofthe fa
tor (1 � 
5) in T we may repla
e 
5 ! �1 in uy and v0, and theamplitude (5.123) redu
es toT = �2i
m�pjkj (pk0 +m� �pk0 �m) (5.133)��(�; �)y(1� 
5)�(
)�0 (� � �; �+ �) Æ�0;+: (5.134)We now use (4.118) and (4.92), with � = �1, 
5 = �3, �k = �k, �C = �i�2�2and ��� = ��, in the Weyl representation. Then�(
)�0 (� � �; �+ �) = e�i��3=2 e�i��3=2 e�i��2=2 ei��2=2 �C��0= e�i��3=2 e�i��2=2 (i�1)(�i�2�2) ��0; (5.135)and��(�; �)y(1� 
5)�(
)�0 (� � �; �+ �) = �y�(i�2 � �1)�3��0 = ��0 Æ�;�0 ; (5.136)whi
h leads to (5.130).


