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0.1 Preface

Quantum field theory is our description of the basic forces between elementary
particles. There is a close connection in its methods with condensed matter
physics, classical and quantal. In a compromise with the requirement of con-
ciseness the following approach has emerged, assuming knowledge of classical
electrodynamics, special relativity, quantum mechanics and some group theory:

- The electromagnetic field is quantized canonically in the Coulomb gauge
and its quanta are interpreted in terms of particles, the photons. Then the
amplitude that the vacuum persists under influence of an external source
(vacuum amplitude) is calculated and reexpressed in a general covariant
gauge. This introduces functional techniques, propagators and the quantum
version of the action functional, generally known as the effective action.

- Having seen that a quantized field gives a description of particles, the real
scalar field is introduced as the simplest example. The complex scalar field
is coupled to the electromagnetic field using the principle of gauge invari-
ance and the system is canonically quantized, without going into details.
Instead, the ¢* theory is used for showing that operator field equations
imply equations for the vacuum amplitude and Dyson-Schwinger equations
for the effective action. Feynman diagrams provide a natural represen-
tation of various mathematical expressions. The iterative solution of the
Dyson-Schwinger equations generates the loop expansion in powers of h.
We concentrate on the semiclassical approximation (no loop diagrams), in
which the effective action has the form of a classical action.

- Using external sources for emission and absorption of particles, scattering
amplitudes are derived in terms of correlation functions (connected Green
functions). The resulting expressions also apply to bound states and are on
the same footing as the LSZ (Lehmann-Symanzik-Zimmermann) formulas.
Applications in scalar electrodynamics illustrate how it works.

- For the description of spin 1/2 particles spinor fields are introduced. We
start here from the particles and derive the action and field equations from
the vacuum amplitude. It is shown how Lorentz invariance and locality lead
to Fermi-Dirac statistics, the Dirac equation and anticommuting variables.
The presentation is initially in terms of hermitian spinor fields (Majorana
fields). The subsequent introduction of complex fields (Dirac fields) and the
coupling to the electromagnetic field follows closely the steps taken earlier
for the scalar field.

- For the derivation of Feynman rules the stage has been set already by the
example of scalar electrodynamics, and the presentation concentrates on
putting minus signs in the appropriate places.



0.1.

PREFACE 3

- The path integral is a spinoff giving a representation of the solution of the

Dyson-Schwinger equations as a functional Fourier transform. This does not
do justice to the path integral as an independent fundamental formulation
of quantum theory, but it is quick.

A space favoured metric is used, g1; = ¢gao = ¢33 = —goo = 1, with correspondig
Dirac matrices. This may be compared with the convention used by the influen-
tial books of Bjorken and Drell: g,, = —(9.)BD 17" = (7*)gp- The charge of
the electron is —e, e = |e|.

The following books on quantum field theory are refered to in the text by name
of authors:

J.D. Bjorken and S.D. Drell,
[: Relativistic Quantum Mechanics, McGraw-Hill (1964);
II: Relativistic Quantum Fields, McGraw-Hill (1965).

C. Itzykson and J.-B. Zuber, Quantum Field Theory, McGraw-Hill (1980).

B. de Wit and J. Smith, Field Theory in Particle Physics I,
North-Holland (1986).

L. Ryder, Quantum Field Theory, Cambridge University Press 1985.

L.S. Brown, Quantum Field Theory, Cambridge University Press 1992.

Furthermore mentioned are

S. Weinberg, The quantum theory of massless particles,
in Lectures on Particles and Field Theory, Pentice-Hall 1965
(Brandeis Summer Institute in Theoretical Physics).

A. Pais, Inward Bound, Of Matter and Forces in the Physical World,
Prentice-Hall 1965.

The following references are included for completeness, they are not recommended
for study at an introductory level.

B.S. DeWitt, Dynamical Theory of Groups and Fields
in Relativity Groups and Topology, Les Houches 1963, and separate book
by Gordon and Breach 1964.

J. Schwinger,
I: Particles, Sources and Fields I, Addison-Wesley 1970,
II: Particles, Sources and Fields II, Addison-Wesley 1973,

ITI: Quantum Kinematics and Dynamics, Benjamin 1970.
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Chapter 1

Quantized electromagnetic field

In this chapter we will quantize the electromagnetic field by canonical methods
and derive the interpretation of the quanta as particles, the photons. The classical
field is recovered as an expectation value of the quantum field in suitable states
in Hilbert space. Subsequently we study the amplitude for the vacuum to persist
under influence of an external source, as well as amplitudes for emission and
absorption of photons by the source. These amplitudes will be basic tools in our
presentation. An interesting application is the radiation of an indefinite number
of photons by an external source. We end with a discussion of the princple of
locality in quantum field theory.

1.1 Canonical quantization

Suppose we have a system described by coordinates ¢x(t) and a Lagrange function
L(q(t),q(t)), which may also depend explicitly on time (¢, = dgx/dt). A simple
example is a particle at position q = (g1, ¢1, ¢3) in a potential V'(g),

..
L = imqqu - V(g), (1.1)

where m is the mass of the particle. We use the convention in which a summa-
tion is implied over two repeated indices (unless otherwise idicated). The action
functional of the system is given by

st = | "t Lia(t), d(1). (12)

Requiring the action to be stationary under variations d¢(t) leads to the equations
of motion. Keeping only terms linear in d¢ we have

5S = S(q+5q)—S(q) = / * 6L (g, dgdt)

t1

7
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9L oL  d
= | dt(Eeg+ 25
/tl (Bac %+ Bagejan) ar°™

oL b oL d o 0L
— 5 _|_/ dt(— — —————)¢ 1.3
{a(qu/dt) q’“} W Ju (an dt a(qu/dt)) o (13

Requiring the 6S = 0 for arbitrary d¢ which vanish at the boundaries, d¢(t;2) = 0,
thus gives the equations of motion in Lagrange form

oL d 0L
= 22 . (1.4)
Oqr,  dt gy,
For our example these look like
. 9V(qg)
=0. 1.5
Ft o (1.5)

Let us introduce at this point the notion of a fuctional derivative 65/dqy. The
action is a functional of gx(t), i.e. it gives a number to any point in a space of
functions ¢x(¢). The functional derivative is easiest to understand as a generaliza-
tion of the partial derivative, viewing ¢ as a continuous index. Making a variation
dqk(t) it is defined by writing 0.5 in the form

58
— 22 san. 1.
§S / dt Sar Sqk (1.6)

Hence, for the specific form (1.2) of the action,

08 oL d OL

= - 1.7

ogr(t)  Ogqi(t)  dt 9qx(t) (.7)
The canonical momenta p; are defined as
oL

= 1.8

and the Hamilton function H (p, ) is defined by a Legendre transformation from
k. 1O P,

H(p,q) = prdx — L(g, ) (1.9)
To be able to express the hamiltonian H in terms of the canonical coordinates
and momenta we have to solve for i, g = (¢, p). The equations of motion can
now be expressed in Hamilton form,

oH _ 0L 04 0L
Oqy gy, b dq,  Oq Ogy
oL d OL
= —— = ———— = —9 1.1
oH . dq, 0L 0q .
— = + 9 — —— = (. 1.11
Opx. P Opr, ¢, Opy, I ( )
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In our example

PkDk P PkDk
H(p,q) = e —L(q%)z—m +V(q), (1.13)
. 8\/ . Pk
P = ———, = —. 1.14
g an g m ( )

Hamilton’s equations can be rewritten in terms of Poisson brackets, defined for
general A = A(q,p) and B = B(q,p) by

0A 0B 0B 0A
A By =208 dBoA 1.15
( ) 0qr Opr,  Oqy, Opx, (1.15)

The canonical Poisson brackets are

(e, 1) = 0kt (G, @) = (Pw, 1) =0, (1.16)

and in bracket form the Hamilton equations read

pr = (px, H), qe = (q, H). (1.17)

In the canonical quantization method the quantum mechanical description of
the system is based on the correspondence: commutator [A, B] <> Poisson bracket
(A, B) , such that in the formal classical limit # — 0:

[A, B/ik — (A, B). (1.18)

In practise the recipe for quantization amounts to assuming p, and ¢ to be
operators in Hilbert space with the canonical commutation relations

[qkapl] = ih(Skl, [quQl] - [pkapl] = 0. (119)

A familiar representation is p, — —ihd/0qk, qx — qx, acting on wave functions
(g, t), the coordinate representation. In the Schrédinger picture the time depen-
dence is carried by the wave function and the canonical operators do not depend
on time. In the Heisenberg picture the time dependence is carried by the opera-
tors and the wave function is time indpendent. Then the p’s and ¢’s depend on
time and the canonical commutators are supposed to hold only at equal times,

[qk (1), p ()] = ihdg, etc. at t =1t (1.20)

For t # t' the commutators may be different and follow from the Heisenberg
equations of motion

d

—Pr = [pka H]/Zha

dt
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Let us recall finally the special case of the harmonic oscillator, e.g.

1
Vig) = 5mw”qegs, (1.22)
as such systems for which the hamiltonian is quadratic in the canonical variables
play an important role in the following. The hamiltonian is diagonalized by the
introduction of creation and annihilation operators, a,L and ay,

1 1

_ : t_ ~
ap = mwaq, +1pg), a;, = mwq, — 1Pg), 1.23
k 5 hmw( Q. + ipr) k 2hmw( Qr — k) ( )
with
[ak,a;] = O, ok, ] = [az, a}] =0, (1.24)
1
H = hw) (aax+3). (1.25)

k

The eigenstates of H may be labeled by occupation numbers n; (=0,1,2,...),

(a})™ (ap)" (ab)"”

w

— 0), 1.26

) = el it 120
3

H|n1n2n3> = hw ny + ng +nsg + §)|n1n2n3>, (127)

where |0) = |000) is the ground state (lowest energy state) which satisfies a;|0) =
0.

1.2 Action for the electromagnetic field

The action for the electromagnetic field A,(x) coupled to an external current
J,(x) is given by

5= [ sl {Fule) P @) + (@) Au(o)] (1.28)

where

Fou(2) = 8,4, (x) — 9,4,(z) (1.29)

is the electromagnetic field strength tensor and the integration is over all of space-
time. An external current is a current which is not a dynamical variable, it influ-
ences the electromagnetic field but does not suffer a back reaction from the field.
It is an idealization of a real current produced by particle motion. By prescrib-
ing the current as we choose we can probe the field and study some elementary
dynamics without. We use Lorents-Heaviside electromagnetic units (rationalized
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Gauss units), which is customary in relativistic quantum field theory, and the
conventions

v = (82?2 2% = (x,2°), 2°=ct, (1.30)
T, = gur’, F" = g“o‘g”ﬂFag, (1.31)
g = Y22 = g3z = —goo = +1, (1.32)
Fon = €uiBi, Funo=F""=E,, (1.33)
0
0, = ek 0=0,0", A=0,0n, (1.34)
where Greek indices run from 0 to 3 and Latin indices from 1 to 3. Notice that
2 = —zy and 2™ = x,,,, m = 1,2, 3. We shall furthermore use units in which the

velocity of light ¢ = 1.
The equations of motion (Maxwell’s equations) follow from the principle of
stationary action. Under a variation 04, of A, we have

5S = S(A+64)— S(A)

1
= /d43: 6(—ZFM,,F“” + JHA,), (1.35)
6F,, = 0.(A,+64,)—0,(A,+5A,) — F,,
= 0,04, —0,04,, (1.36)
§(E, F"™) = 2F"™GF,, = 4F"0,0A,, (1.37)

5S = / d*z (—F"™ 9,64, + J'SA,)
= /d% (O, F™ + JV)A,. (1.38)

We made a partial integration in the last step and assumed that the surface term
is zero, which is correct if we impose that 0A,(z) vanishes outside some large
but finite domain in spacetime. Requiring 65 = 0 for arbitrary variations in this
domain gives Maxwell’s equations

65 v v v v v
0= S = B+ T = (OPgf — 0,004 + I (1.39

We recall at this point the gauge invariance of the theory. Under the gauge
transformation

Ay (z) = Au(x) + 0,w(x) (1.40)

the field strength F),,(x) is invariant. The term involving the external current is
also invariant,

/d43: JHA, — /d4:c JH(A, + Ow) :/d43: (JFA, — w0, J")

= / d'z JMA,, (1.41)
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provided the current is conserved!
o J* = 0. (1.42)

Note that in making the partial integration above we also assumed that w vanishes
outside a finite spacetime domain. The gauge invariance implies that the solution
of the field equations is not unique. A unique solution for A, is obtained by
imposing a gauge condition, such as the Lorentz condition

0,A" = 0. (1.43)
Another frequently used condition is the radiation or Coulomb gauge, in which
OnA™" =V -A=0. (1.44)
We recall here also the energy-momentum tensor of the electromagnetic field,
T = FF* F" — %g“”FaﬂFO‘ﬂ , (1.45)
which describes the energy density
T = F° Fo + %FaOF“O + iFabF“” = %(E2 + B?) (1.46)
and the momentum density
T = F° F" = E,ep0By = (E x B),, (1.47)
also known as the Poynting vector. The local balance equation
0,T" = —F" J* (1.48)
expresses the conservation of the total energy-momentum in the field
P’ = /d% . (1.49)
If the external current vanishes, P¥ is time independent,

B P’ = / & 9T = — / &z 9, T™ = 0. (1.50)

See the text books for the derivation of the energy-momentum tensor.
The action S can be written in the form

S = /d%c, (1.51)

1
L = — FuF"™ +J"A,, (1.52)

!The terminology: a current j#(x) is ‘conserved’, simply means: 9,j*(x) = 0. It is of course
the total charge @ = [ d3z j°(z) which is conserved.
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in which the Lagrange density £ is a scalar under Lorentz transformations, pro-
vided that A, is a Lorentz vector (or a vector modulo a gauge transformation).
This nice manifest Lorentz invariance is broken in the canonical formalism which
treats the time and the time derivatives in a special way. A manifestly covariant
description is possible with functional techniques and the path integral formalism
which we shall introduce later. At this stage however the canonical formalism is
instructive for a first exploration of the quantum properties of the electromagnetic
field.

1.3 Quantization in the Coulomb gauge

We write the action in the form
S = /dt L, (1.53)
1
L = /d% (—ZFWF“” + JFAL) (1.54)
1. . .
- / & (5 AmAn — Andun Ay
1 1 1

+ J°49 + J"A) (1.55)

We note the analogy with the quantum mechanics of a particle with coordinates
q(t), kK =1,2,3: the label k is analogous to (i, z1, T2, x3) in A, (z1, v, x3,1):

Au(x,t) & qe(t), (p,x) < k. (1.56)

Since x can take an infinite number of different values, the field corresponds to
an infinite number of degrees of freedom. There are now several complications:

- the index x is continuous;

- Ay is lacking in L, so the canonical conjugate to Ay will vanish.

The second complication is typical for gauge theories such as electromagnetism
and we shall deal with it first.

Consider the equation of motion which follows from varying the action with
respect to Ay,

0=26S= /d% (0, F"° + J)6 Ay, (1.57)

which gives Gauss’s law, or Coulomb’s law

05

_ amFmO JO —_ _ -E JO
5A, + V-E+

0
= 0 (=0 A" — 9y A™) + J°. (1.58)
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We can now use the gauge invariance of the theory and impose the Coulomb
gauge condition 0,,A,, = 0, which has the result that the time derivative drops
out of (1.58), 0,,00A,, = 0, such that (1.58) takes the form

—AA" = J°, (1.59)

Since this equation does not contain time derivatives it is not a dynamical equa-
tion anymore, but an equation of constraint at every instant in time. With
suitable boundary conditions the potential A° is completely determined in terms
of J°. For infinite space

A%(x,t) :/d3y !

— J%y.t 1.60

where we used the fact that the Coulomb potential is a Green function for the

laplacian A:
1

—Am =0(x—y). (1.61)

Hence, in this sense A° is not a dynamical variable in the Coulomb gauge. We
shall use the Coulomb gauge for the canonical formalism and continue to write
A% for simplicity, keeping in mind that it is a given function of J°.

In the Coulomb gauge we can rewrite the lagrangian in the form

L = /d% [%AmAm - %Am(—A)Am + JmAn] — Ec, (1.62)
1 1
Ee = /d3:c(—§6mA°8mA°+J°A°) = /d3x§J°A°. (1.63)

We used 9,,A,, = 0, AA® = —J° and made partial integrations of 9,, assuming
boundary conditions such that surface terms vanish. The quantity E¢ is the
Coulomb energy; using (1.60) this can be written as

1 1
Eoc = - S J° — . 1.64
c Q/d‘r‘](xat)4ﬂ_|x_y|‘](yat) ( 6)

The lagrangian is now in the form L(q, ¢) with gx(t) — A, (x,1).

We now have to deal with the continuous nature of the index x and the con-
straint 0, A (x,t) = 0. This can be done by expanding the potentials into a
discrete set of basis functions f(x) satisfying 0,, fa*(x) = 0. Let us enclose the
system in a cubic box —L/2 < x,, < L/2 with periodic boundary conditions. For
a large enough box its finiteness and the type of boundary conditions should not
matter. Periodic boundary conditions are convenient because with it all bound-
ary terms in partial integrations vanish (the box has no boundary) and they are
natural for eigenstates of the momentum operator (cf. next section). We can
then use the discrete set of eigenfunctions of the laplacian A to construct the
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fi(x). The real eigenfunctions of the laplacian correspond to products of the
standing waves cos(kix1) cos(koxs) cos(ksxs), sin(kixy) cos(kaxs) cos(kszs), ...,
sin(kyz1) sin(kqzs) sin(kszs), with k,, = 27n,,/L, n,, = 0,1,2,..., and the eigen-
values are given by —A — w? = k?. Out of these eigenfunctions the real f7(x)
can be constructed satisfying 0, f7(x) = 0. The details of this are tedious and
not needed in the following and we shall just record their properties:

CAfMx) = WRfIR), Onf(x) =0, (1.65)
/ P ) X)) = dag, (1.66)
Sy = PLxy). (1.67)

We have written these equations in general complex form and in the next sec-
tion we shall give an explicit set of complex basis functions, which are easier to
construct. For the moment have to keep in mind that the f(x) are real. The
object P’ (x,y) is a projector on the space of ‘transverse’ vector functions, i.e.
a projector: P? = P, or

/ &y PL(x,y) PL(y,2) = PL. (x,2), (1.68)

which is transverse, 9, P. (x,y) = 0. It is the identity operator for vector
functions satisfying 0,,4,,(x) = 0,

/ Py PL (%,y) An(y) = Am(x). (1.69)

An explicit expression for P will be given in the next section (cf. (1.100)).
In the summation ) we exclude the ‘zero mode’ k = (0,0,0) (this would be
automatic with Dirichlet boundary conditions). This means that we exclude
here potentials A,, which are constant in space. Such potentials complicate the
(otherwise interesting) mathematics and we usually do not need them in physical
applications.

In terms of these basis functions we can now expand the potentials in normal
modes,

An(x,t) = Y qalt) fi'(x), (1.70)
W) = [ @046, (1.71)
and in terms of the new coordinates ¢, the lagrangian takes the form, for J#* =0,

1. . 1
L= Z(§QO¢QOC - 5“&‘]0#]04)- (1.72)
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This shows that the electromagnetic field is equivalent to an inifinite set of har-
monic oscillators, with unit mass and frequencies w,. The canonical description
is now an obvious generalization of the case of one harmonic oscillator,

Pa = 8L/aq.a:q.aa (173)

1 1
H = 1.74
;(QPapa + 2waqaqa) (1.74)
(¢asP8) = Oaps  (darq8) = (Pa,ps) =0, (1.75)
pa = (ponH)a q.a:(QaaH):pa- (176)

Evidently the canonical conjugate to the field A,,(x) is

M(x) = (An(x), H) = Ay(x)
= Y pafl(x). (1.77)

The system is quantized by imposing canonical commutation relations be-
tween the p’s and ¢’s,

[Gas D8] = ih0ap,  [qas 5] = [PasPs] = 0. (1.78)

1.4 Fock space

Since we have a system of harmonic oscillators it is useful to work with creation
and annihilation operators

1 )
\/ﬁ(wa% + ipa),
[0

The Hilbert space resulting from an infinite number of creation and annihilation
operators is called Fock space. It has a no-quantum state |0) defined by

1
aﬂ; = ST (WalGa — iPa)- (1.79)

Ao —

Q

aq|0) =0, (1.80)

and normalized basis vectors

{na}) = H\/—IO (1.81)

where only a finite number of occupation numbers n,, are supposed to be nonzero.
It is generally simpler to work with unnormalized basis vectors of the form

lay o) =al ---al 0), n=0,1,2,..., (1.82)

i (o 7%
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in terms of which the orthogonality and completeness relations read

(1 mlBie - Bn) = Oum ¥ Oarspr* Oanpnr  (1.83)
P

S e an o al = 1 (1.84)

Q1 Qn

Here ), is a summation over all permutations of the indices 1,...,n. These
formulas remain valid with the appropriate modifications (). — [, Kronecker-
d — Dirac-9) in case the index « is continuous, e.g. & — k, A, with k a momentum
label and A a spin label.

1.5 Energy-momentum eigenstates

The quantized electromagnetic field is now an operator in Hilbert space. The
commutation relations between the p, and ¢, imply the following relations be-
tween A, and II,,,

[An (%), Ta(y)] = P (%), [Am(x), Au(¥)] = [T (x), a(y)] = 0. (1.85)

For example,

[An (), TL(y)] = ) lga,psl £(x)f5(y)" = iR f(x) fa(y)”
af «@
= PT (x.y). (1.86)

To guide our physical interpretation we shall use the energy momentum P* of the
field, which is now also an operator, and determine its eigenstates and eigenvalues.
In the Coulomb gauge Ay vanishes when J* = 0, cf. (1.60). Then

™ %(EmEm+BmBm)
= %(Am/im + 0n A On A — O AmOmAy), (1.87)
T = €umpBmBy = —Apn0,Ap + Ao Ay, (1.88)
giving
PO / Py T = / i [%HmHm + %Am(—A)Am], (1.89)
P" = /d%TO" :/d3:c(—Hm8nAm), (1.90)

where we used the Coulomb gauge condition 0,,A,, = 0 and Am = [I,,. Notice
that there is no operator ordering ambiguity in F,,: we can also write II,, to the
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right of A,,, the difference involves the derivative of the commutator, 9,,0(x —
¥)|x=y = 0. Using the normal mode expansion we find

1

1
PO = Z(ipapa + 5(4‘)3(]04(]04)
a

— H. (1.91)

The momentum operator is less easy to express in terms of the normal modes
because the real mode functions fI(x) are not eigenfunctions of 9,. Therefore
we now introduce a different set f7*(x) which are eigenfunctions of 9, and A,
and satisfy 0,, f7"(x) = 0. They are complex and have the form

Jin(x) = €™k, A)e™™,  ky =np2m/L, ng, =0,+1,£2,.. ., (1.92)

These are clearly eigenfunctions of 0, and A. Recall that the n,, have to be
integers to satisfy periodic boundary conditions in a box of size L?. To satisfy
Om f™ = 0, the e™(k,\) have to be orthogonal to k (hence the terminology
‘transverse’),

k-e(k,\) = 0. (1.93)

For example for k = (0,0, |k|) = |k|3, e(k,1) = (1,0,0) = 1, e(k,2) = (0,1,0) =
2, and in general e(k,\) may be obtained from this by a rotation, a standard
rotation that takes (0,0, |k|) into k. Another set well known from classical elec-
trodynamics consists of the right and left handed polarization vectors

e(k, +) = $%[e(k, 1) + ie(k, 2)]. (1.94)

The polarization vectors satisfy

em(k, )\)*em(k, )\,) = (S)\/\I, (195)
. Kinkn
D eml(k, Nen(k, A" = <5mn - e ) = P! (k). (1.96)
A
The basis functions are orthogonal and complete in the sense (1.67), with
a — (k\), (1.97)
6aa’ — 6)\)\’ Vék,k’a (198)
1
> v >, (1.99)
« kA
1 et kK
T _ —ikx+ik mivn
Pl (x,y) = v zk:e y <5mn — ?> .. (1.100)

where V' = L? is the volume and the zero mode k = 0 is absent again.
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We now expand the A, and II,, in terms of these basis functions as follows,

e 1 |
An(x) = % Ssle e i Na(le, ) + e %em (e, A)al (i )], (L101)
K\
1 ) )
I, (x) = g’ ﬁ[—ikoe*xem(k,)\)a(k,)\)+ikoe’kaem(k,)\)*aT(k,)\)],
K\

where
K® = |k|. (1.102)

The somewhat strange looking normalization convention involving 1/2k° will
prove useful in the following. The above expansions define a(k, \) and a(k, \)'.
The form of (1.101) is guided by the inverse of (1.79),

Vh

G = 3 V2w, (aq + al), (1.103)
Wa
h

Pa = 2\/_\/2wa(—iwaaa+iwaalé), (1.104)
Wa

and (1.70,1.77). The relations (1.101) may be inverted as follows. We write

am(k) = > em(k,Na(k,N), (1.105)
W) = ol A am (k). (1.106)

Then
/ Pre ™A (x) = Q—ﬁ[am(k)m;(—k)], (1.107)
/ Pz e L, (x) = ;’[-mm(k)jwafn(—k)], (1.108)

giving
Vian(k) = / Bz e [0 A, () + T, ()], (1.109)
Vhd (—k) — / B e 0 A, () — Tl (%) (1.110)

The commutation relations between a,, (k) and a! (k) can now be calculated from
(1.85) to be

[am(k),al (D] = Py, (k) 2KV,
[am(k), an(M)] = [al,(k), al,(1)] = 0. (1.111)



20 CHAPTER 1. QUANTIZED ELECTROMAGNETIC FIELD

For example,

1 o
[am(k),al (1)] = 7 /d3ajd3y e IR0 A (%) + i1, (%), P A (y) — i1, ()]
— (I{IO 4 lO) /d3.’Ed3y e—ikx—l—ily Prz;n(xa y)

— (0 +)PE,) [yt

= 2k°P! (k) Viy,. (1.112)

It follows that
[a(k,\),a’(K', )] = 2k°V b, (1.113)
[a(k, A),a(L,X)] = [a(k,N),al(1,\)] =0. (1.114)

Hence, the new a and a' satisfy the commutation relations of creation and anni-
hilation operators of an infinite set of harmonic oscillators labeled by (k, ).

Expressing the hamiltonian (1.89) and momentum operator (1.90) in terms
of the creation and annihilation operators we find (cf. Problems)

P’ = —Z%O Ja(k, \)k® + Ey, (1.115)
P, = —Z%O a(k, Nk, (1.116)
Ey = hziko. (1.117)

By analogy to the ordinary harmonic ocillator we recognize the number operator
af(k, M)a(k, \) for each mode (k, \). The ground state (state with lowest energy)
is the no-quantum state |0) defined by

a(k, \)|0) = 0, (1.118)
with
P°|0) = Ey|0), P|0) = 0. (1.119)
The excited states are given by
k) = al(k,A)]0), (1.120)
|k1)\1,k2)\2> = U,T(kl,)\l)aT(kQ,)\g)|0>, (1121)
k1AL, koo, k3As) = aT(kh)\1)aT(k2,)\2)aT(k3a)\3)|0>7 (1.122)

etc., with

[P — 8,0 Eo|lki Ay - - kndn) = BOEE + . 4 K kiAr - - KA, (1.123)
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The four-momenta k* represent zero mass, k*k, = 0. The excited states are the
photons. The symmetry of the basis vectors |kiA; - - -k, A,) under interchange of
of labels ((k;\;) < (k;A;) has the consequence that photons follow Bose-Einstein
statistics.

The ground state energy FEj is the sum of the ground state energies of the
individual harmonic oscillators. This sum diverges because of the infinite number
of modes. This infinity is a first embarrassement one encounters in quantum field
theory, which is due to a cavalier handling of the infinite number of degrees of
freedom in a field. One way to avoid the problem is to start out with a finite
number of degrees of freedom and study the limit of letting this number approach
infinity. For instance, we can simply cut off the number of modes by restricting
|k| < K. Within the canonical formalism with its different handling of time and
space and its this can lead to non-Lorentz covariant and even non-gauge invariant
expressions. Another way is to restrict the spacetime continuum to a hypercubic
lattice with lattice distance a and study the limit @ — 0. The lattice is of course
also not Lorentz covariant but it has usually sufficient remnant symmetry to avoid
noncovariance in the continuum limit. Using such regularizations would force use
keeping track of many more details right from the beginning. Here we follow
instead the usual introductory path and work ‘formally’, i.e. with ill defined
mathematical expressions, and deal with the inifinities when they arise ‘along
the way’. This approach is sufficient when we treat interacting quantum fields by
perturbation theory. For nonperturbative calculations an ab inito regularization
such as the lattice is often necessary.

The problem is physical as well as mathematical. The inclusion of arbitrarily
large wave vectors k corresponds to arbitrarily small wavelengths in space and
we do not know the physics at arbitrarily short distances. Similarly, continuous
time suggests that we can predict what happens in arbitrary short time intervals,
which is questionable.

At this point we could appeal to the idea that only energy differences have
physical relevance in our model and subtract the ground state energy from P°.
Such a subtraction should be done with care as we may be throwing away a baby
with the bath water. There may be a volume dependence in the ground state
energy which is physically relevant. An example of this is the Casimir effect. We
shall do the subtraction in the infinite volume limit L — oo.

In the infinite volume limit the ground state represents the vacuum. In this
limit the wave vectors become practically continuous, in the sense that for a
continuous function F'(k),

%;F(k) %/%F(k) :g[/z CZ“—:]F(k). (1.124)

Furthermore, in the sense of generalized functions

Vi — (27)%5(k —1). (1.125)



22 CHAPTER 1. QUANTIZED ELECTROMAGNETIC FIELD

Hence
(k, MK, Ny — 2k°(2m)%6 (k — K')dy v, (1.126)
and the energy density of the ground state takes the form
dk 1
= _0 )
= hZ/ TS o0 ()% (1.127)
The momentum space volume element (integration measure)
d k1 K = \/p? + k2 (1.128)
W = —— —— = :
E= (2n) 240 a
(written for gemeral mass m? = h?u?), is Lorentz invariant: under a Lorentz
transformation
KEo= AR (1.129)
| = ky+Bk°, K=k, (1.130)
E° = ~vk° + Bk, (1.131)
B = vfe, y=1/y/1-p2 (1.132)
we have dk| = (k" /k°) dk), and
dek = dwk. (1133)

1.6 Cosmological constant and the Casimir ef-
fect

The energy density of the vacuum (), = 2)
E = hZ/dwkkoko (1.134)
A

avoids the volume divergence V' — oo of Ej but it is still divergent for large |k|.
It has the form of the 00 component of a tensor, which is the vacuum expectation
value of the stress-energy (energy-momentum) tensor,

(O[T (z)|0) = hZ/dwkk“k” (1.135)

(cf. Problems). Since it is invariant under Lorentz transformations we expect the
form
0|T""|0) = —T1g"". (1.136)
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On the other hand, the energy-momentum tensor of the classical electromagnetic
field is traceless,
T, =0, (1.137)

which appears to be respected by (1.135) since k#k, = 0. This would imply
that 7, = 0. However, this is in conflict with the fact that & is clearly positive.
Such paradoxes are typical when dealing with ill defined divergent expressions
and we should regularize the divergent integral. Since we have not developed the
tools yet for a covariant regularization, let us just assume the form (1.136), with
infinite 7.

A term of the form —7¢*” in the energy-momentum tensor is not excluded on
physical grounds. We have taken it for granted that we could use the T*” familiar
from classical electrodynamics. There is a way to derive the energy momentum
tensor from the lagrangian density £ by the socalled Noether procedure. One then
finds that a constant —7 in £ leads to a term —7¢" in T"”. However the real
physical significance of T" follows when we consider classical general relativity,
where energy-momentum is the source of gravity. In this theory the metric tensor
is a dynamical variable and the action for g,, coupled to the electromagnetic
potentials A, has the form S = S, + 5,4, with S, the Einstein-Hilbert action and
Sga the action for the electromagnetic field in the spacetime described by g,..
We only need Sg4, which is just the action we had before generalized to variable
metric tensor,

1
Sga=— [ d*z/—detg (ZQWQMFMFW +7), (1.138)

where \/— det ¢ is included to obtain a volume element d*z\/— det g which is
invariant under general coordinate transformations. We have included in Sy
the cosmological constant 7 (to be more precise, the conventional cosmological
constant A = 87GT, with G Newton’s constant). The energy momentum tensor
enters in the field equation for g,, and is identified from

1
0,9, = [ d'z/—detyg §TW Gy (1.139)
were g is the matrix g,,. This gives
1
T = FIFY, = 29" Fop P’ — 7g". (1.140)

Returning to Minkowski space we just use g, — diag(—1,1,1,1).

The vacuum expectation value —71g*” of T+ appears in every expectation
value of the energy momentum tensor and we now see that effectively the cosmo-
logical constant is given by the sum 7 + 7. This means that we can absorb the
infinite 7; in the cosmological constant by redefining the parameter we started
out with in (1.138) as 7y and choosing 7y such that the effective cosmological
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constant 7 = 75 + 71 has the physical value (which is of course finite). Such a
procedure is called ‘renormalization’, 7y is called the ‘bare’ parameter and 7 the
‘dressed’ (by the interaction with the electromagnetic field) parameter, or more
frequently, 7 is called the renormalized parameter. Writing 79 = 7 + 07 we can
say that 7 counteracts the infinite 7; and for this reason the d7 part of the action
is called a counterterm. The renormalized cosmological constant is not known
very well except that in natural units it is very small. For all practical purposes
in quantum field theory without cosmological considerations involving gravity we
can set the renormalized 7 = 0.

Having set the vacuum energy density equal to zero we can now ask meaning-
ful questions about the energy of the ground state in a finite volume. A famous
example is the Casimir effect. Consider two parallel plates of a conductor a dis-
tance a apart, with ¢ much smaller than the linear size L of the plates. The
presence of the plates is taken into account by imposing perfect boundary condi-
tions corresponding to a perfect conductor. This shifts the ground state energy
inside and outside the plates relative to the vacuum, and the result is (see e.g.
Itzykson and Zuber sect. 3-2-4)

—hm?L?
72043

It corresponds to a tiny attractive force which has been verified by experiment.

AE, = (1.141)

1.7 Photons

We have seen that the mass of the photon is zero,
P,P"|k,\) = B*(k* — k) |k, Ay = 0. (1.142)

The spin of the photon can only be understood properly after a closer look at
Lorentz invariance, which we defer to a later chapter. For now we remark that
the states |k, \) transform just like the polarization vectors e#(k, \) = (e(k, A), 0),
modulo terms o k* which correspond to gauge transformations. We can use this
to determine the possible helicities of the photon. The helicity is defined as the
eigenvalue of the angular momentum operator J in the direction of motion,

k

m ~Jlk, A) = hAk, A). (1.143)
To determine the helicities we take the momentum along the 3-axis and consider
the behavior of the polarization vectors e(|k|3, \) under rotations exp(—iw.Js)
about this axis. Such rotations have the form

cosw —sinw 0 .
sinw  cosw 0 | =e (1.144)
0 0 1
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with S3 the third component of the spin matrix, the spin component of the
angular momentum operator J;. In the vector representation the spin matrices
S1, So and S3 are represented by

(S)mn = —i€umn, (1.145)

which satisfy [Sk, S)] = i€k Sm and S? = s(s+1) = 1(1+ 1) = 2. The right and
left handed polarization vectors were constructed such that they are eigenvectors
of Sy for the special momentum k = k|3, in which case e(k, 1) = 1 and e(k,2) =
2:

(S3)mn en(k, £) = £e,(k, £), k = |k|3, (1.146)
with the usual phase relations ((S; 4+ iS5)mnen(k, =) = V26 (k, 3) = V23, (S +
i59)mnen(k,3) = V2ep(k,+)). The eigenvector 3 with eigenvalue J3 = 0 does
not occur among the polarization vectors.

The photons have helicity =1 but there is no helicity zero state, as might be
expected from the vector representation in which the eigenvalues of S3 are 41, 0,
-1. The helicity zero polarization vector would be the longitudinal mode e(k, 3)
k, which is equivalent to a gauge transformation and therefore unphysical. It was
eliminated by the Coulomb gauge condition.

A general one photon state has the form of a wave packet

o) =3 [ duolh )k, ), (1147
A
with p(k, \) a momentum space wave function which can be normalized to 1,
{ele) = Z/dwk o(k, N ok, ) = 1. (1.148)
A

It is natural to define a spacetime dependent vector potential by

eu(z) = (pm(2),0), (1.149)
oml(z) = / deog 3" o, Mem(k, ), (1.150)

which is a solution of Maxwell’s equations in vacuum. Intuitively we may think
that the photon can be found where ¢, (z) is maximal or at least nonzero. How-
ever, localizability is not an appropriate concept for massless particles as there is
no nonrelativistic limit where we can apply the usual formalism of nonrelativistic
quantum mechanics. The quantization of the electromagnetic field did not lead
naturally to a position operator. There is also no satisfactory gauge invariant
and covariant probability current j*(z) which is conserved, 0,j"(z) = 0.

Another way to locate a photon is by ‘measuring’ its energy momentum tensor,
and determine e.g. where the energy density is maximal:

(oT" (z)|@) = " ()" " (x) — ig“”soaﬂ(x)*%ﬂ(ﬂf) +ec, (1.151)

with ., = 0,0, — 0,9, (cf. Problems).
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1.8 Time evolution

In the Heisenberg picture the states are time independent and the operators
carry the time dependence according to the Heisenberg equations of motion, for
example

d 1
with the initial condition
An(x,0) = A, (x) (1.153)

at time ¢ = 0. When the external source .J, vanishes the hamiltonian is time
independent

H= hZ/dwkkoa(k, Mia(k, \), (1.154)
A
and the equations for the field are easily integrated in momentum space,

; .
—all, Xit) = —%[a(k,)\;t),H]:—z’koa(k,)\;t), (1.155)
a(k, \it) = e *ta(k,\;0) = e *ta(k, \). (1.156)

The resulting potentials

Am(x,t) =VRY / dwi[e™ "%, (k, N)a(k, \) + h.c.] (1.157)

satisfy the the Coulomb gauge field equations OA,, = 0. Note that A,,(x,0) =
I1,,(x). When the source J, is not zero the hamiltonian has the form

H!, = H+ H', (1.158)

where H is the source free part (1.154) and
HY = — / B (%, 1) A (x) + Eo(t), (1.159)

with Ec(t) the Coulomb energy.

It is convenient to use the interaction picture in which the ‘interaction’ refers
to the external source. The interaction picture is somewhat in between the
Schrodinger and the Heisenberg picture and we shall now review how this works.
Let the hamiltonian be given in the form

H' = H,+ H', (1.160)

where we allow for an explicit time dependence in H! which is inherited by the
total hamiltonian H?, the explicit time dependence is indicated by the superscript
t. We asume that H, has no explicit time dependence. In the interaction picture
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the operators evolve in time according to H, and the states according to the
residual interactions from H{. The three pictures, Schrodinger, Heisenberg and
interaction, coincide at time ¢ = 0. The time evolution operator is a solution of

d i
—U(t)=—--H'U(t), U(0)=1. 1.161
The evolution operator corresponding to Hj is given by
d .
S Uo(t) = —~HyUs(t), Up(0) = 1, (1.162)
dt h
which has the usual solution
Up(t) = e~tHot/h, (1.163)

The evolution operator in the interaction picture is defined as

Ui (t) = U (1)U (2). (1.164)
In the Schrodinger picture
Os(t) = 05(0) =0, (1.166)

where O = O(A,II) is any operator without explicit time dependence. In the
Heisenberg picture

Ox(t) = U'(H)OU(t), (1.168)

while in the interaction picture the time evolution is devided between states and
operators,

[V e = Ui (B)[9), (1.169)
Oimi(t) = Up(t) OUL(t). (1.170)

Expectation values are the same in all three pictures,

<¢7 t|SO|w7 t>S = <¢|OH(t)|w> = <d)7 t|intOint(t)|w7 t>int- (1171)

The evolution operator Uy () is a solution of the equation

CUlt) = 1 U HOU(E) + UL (1) (Hy + H)U ()

= _ng(t)HfU(t) = —%Ug(t)Hon(t)Uim(t)

Il
|
|
=
—~
~
SN—
=
=4
~—
~
N

(1.172)
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with initial condition Uiy (0) = 1. Here
Hi(t) = H{(t) = U (t) H{Uo(1) (1.173)

has the normal time dependence of an operator in the interaction picture, in
addition to its explicit time dependence. The evolution operator starting at any
time %y, not just at t =0,

Uint (ta tO) 1nt (

satisfies the same differential equation (1.172

1nt( ) (1174)

)
), with initial condition

Ut (t, o) =1, t=to. (1.175)
Furthermore it satisfies the composition relation

Uint (£, to) = Unt (t, 1) Uing (t1, o). (1.176)

For small time difference
. - t
Una(t,£) 21— (¢ — ) (1) = expl / dt Hy ()] (1.177)
t/

For large time difference the exponential form is exact if H; commutes with itself
at unequal times, which is generally not true. We can use the relation (1.176) to
obtain a useful series expression for Uiy (,tp). We devide the time interval (¢, o)
into N segments (t;,t;_1), j = 1,..., N, of length a = (¢t — ¢,)/N, ty = ¢, and
write

Ut (t,t0) = Uit (6, tn—1) Uit (tn—1,tn—2) - - - Uine (21, to)

’iCLHl (tN—l) iaHl(to)
~ 1-—— - [1 — ——=].
| BRI
(1.178)
Expanding in powers of H; and taking the limit N — oo leads to
(=i/m)" [
Uni(t, ty) = zn: w /t dty---dt, T Hy(t,) - Hy(t,)
= Texp[ / dt' Hy(t")] (1.179)
h to

(the combinatorics is the same as that of (1+£)¥ =1+ NZ +IN(N -1)(£)*+
-— expz as N — o0). Here T is the time ordering ‘operator’, the instruction
to order the operators H;(t;) from right to left according to increasing time. For

instance,

TH(O)H\(1) = H(OH(), t>1,
= H\()H\(1), t<t. (1.180)
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We shall use the interaction picture with the identification Hy — H, the
source-free H of eq. (1.154), and H! — HY of eq. (1.159). It then follows from
(1.173) and (1.157) that

H(t) — — / 3 T (x, 1) A, (x)e= M 4 Bo(t)

- - / 03 (%, 1) A (%, 1) + Ec(1) (1.181)
= H (). (1.182)

Since the Coulomb term is a c-number at this stage we can separate its effect in
the evolution operator into a phase, such that

Ui (h, 1) = exp[%i / 1thC(t)]Texp[% / L' T (1) Ay (2)](1.183)

to to

= Uy(ts,b). (1.184)

1.9 Classical field

Intuitively we expect that the classical electromagnetic field can be understood
as the expectation value of the quantum field in suitable states. For a one photon
state |¢), (p|Au(x)|e) = 0. Of course, we should expect classical behavior only
for states with large quantum numbers, i.e. large numbers of photons. However,
since A,,(z) changes the number of photons, it expectation value in a state with
a definite number of photons is zero.

Let us assume the situation in which the external source J*(z) is zero initially
and switched on slowly at some time ¢_, and let |0) be the vacuum for ¢ < ¢_.
Consider the state |0,¢) which evolves out of the vacuum under the influence of
the external source. We shall show that the classical field Agf) may be identified
as

A (x,1) = (0, t| A (x, )]0, 1). (1.185)

In the interaction picture |0,¢) is given by

0,8) = Uy(t,—00)[0), (1.186)
U (t,—o0) = Texp[% / A H () (1.187)
Hy) = — / B Ay (%, £) T (x,1) + Eo(t). (1.188)

Since Hj is linear in the creation and annihilation operators |0,¢) has the form
of a ‘coherent state’. The operator A,,(z) evolves according to the hamiltonian
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with J = 0. Since Ay is already a c-number in the Coulomb gauge Aéc) = Aj and
we need to evaluate

A (x, 1) = (0|U,(t, —o0)! Ay (x, 1)U, (t, —00)|0). (1.189)

Note that the phase factor associated with the Coulomb energy E¢ cancels in
this expression. Differentiating with respect to time we get

QAR (x,1) = (0|U;(t, —o0) % [H (), Am(x, 0)]U (2, —20)]0)

+ (0|U;(t, —00) I, (x, t) U (t, —00)|0)
= (O|UJ(t,—oo)THm(x,t)UJ(t,—oo)|O>, (1.190)

since A,,(x,t) commutes with A, (y,t) at equal times. A second differentiation
gives (cf. Problems)

A (x,t) = (0]U,(t, —o0)T % [H(t), Hm(x,t)]Us(t, —o0)|0)
+ <0|UJ(t7 _OO)T 1LIm(XJ t)UJ(tJ _OO) |0>
::mﬂ%/fﬂ&@wmm@m%u@mw

+mw§mnﬂxmmw

= {0, t|[JE(x, ) + AA,,(x,1)]]0,t) (1.191)
= JE(x,t) + AAY (x, 1), (1.192)
where
JE(x,t) = / d*z' PL (x,x')J, (X', t). (1.193)
This can be rewritten as
0AY (@) = — % (2), (1.194)

which is just the classical equation for A in the Coulomb gauge, since
O, Flvr = OAlr _ grg, AV = _ k. (1.195)
leads to

0 = OAY(x,1) — 0,0y A (x, 1) + Jin(x, 1)

D0 J° (X', )
— A _ 3,0 J04 \&~s°)
m (%, 1) 8m/d ¥ drfx — x| + Il )
Jn (X', 1)
= 0AY(x,¢ mn/d?””i’ (X, T 1.1
2 (x,t) + OO, x47r|x_x,|+J(x,) (1.196)

= 0AY(x,t) + JE(x, 1), (1.197)
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where we used 9yJ° = —0,J,, and (1.313). The boundary conditions in time
follow from

A (x, 1) = (0, t|An(x,1)]0,1) = (0| A, (x,1)|0) =0, fort — —oo0,  (1.198)

which are the usual retarded boundary conditions.

1.10 Vacuum persistence amplitude

The amplitude for the vacuum to remain unchanged under the influence of the
source (the vacuum persistence amplitude) is given by

(0]U; (00, —0)[0) = Z(J), (1.199)

and |Z(J)|? is the corresponding probability. This amplitude plays an important
role in the following.
Expanding in J we have

2() = O+ / 05 () (0] Ay (2)]0)

g [ A ) IO A () 4,00
- ;—h d*z d'y JO(@JO@)H +O(JY.  (1.200)

The first term is 1, the second term is zero. We shall evaluate the third term by
inserting intermediate states,

1
1= ~
n

Since the free field A,,(z) is linear in the creation and annihilation operators only
the one particle intermediate states contribute (this is only true for free fields),

> /dwkl R ATNN1 IO VITRY 55 W Y015 VIRRRY 55 W (1.201)
Al An

OIT A () An(y)[0) = Z/dwk[G(wo — ") (0] A () [EA) (A A () ]0)

+0(y" — 2°) (0] An () [kA) (kA A (2)]0)]. (1.202)

Using
(0] Ap(2)|kN) = Vhen(k, \)e*e,
(kA A, ()]0) = Vhe,(k,\) e v, (1.203)
and .
D em(k, Aen(k, A)* = Gn — = PT (k) (1.204)

A
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Figure 1.1: Contours in the complex ko plane for ¢ > 0 (a) and ¢t < 0 (b).

this gives

(OT A(2) An(1)|0) = h / duop P () [6(z° — )it
+0(y° — %) ] (1.205)
= h / dwy PT (k) edx=9)=k%1e?=%] (1 906)

where k° = |k|, we changed variables k — —k in the second term and used
O(t)e™* 4 0(—1)e*"t = eI, (1.207)

To evaluate this further we use the identity (written for general mass fiu)

(1.208)

oo dko e tikot e*i\/u2+k2 t]
_Z/_ooﬁuQ—l—kQ—kg—ie P N/ES

in which ¢ — +0 (and the integration variable ky should not be confused with
k® = —ko = |k| in (1.207). This identity can be checked by contour integration, cf.
fig. 1.1. The poles of 1/(u* +k? — kg — ie) are at +(y/p? + k2 — i€) with residues
F1/(2y/pn? +k?). For t > 0 the contour can be closed along a circle in the
upperhalf plane with radius — oo, and then only the pole at ko = —(/u? + k? —
i€) contributes; for ¢ < 0 the contour can be closed in the lower half plane and
only the pole at ky = +(1/p? + k? —ic) contributes. It follows that (k? = k* —k?)

O[T Ap(2) An(9)]0) = —ii / %eik@—w ]I:gl_(lz‘z (1.200)

—thGE" (x — ). (1.210)
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Combining this with the J°J° term the vacuum persistence amplitude can be
written as

Z(J)=1+ 2% /d4x d'y J,(2) ], (y) G (z — y) + O(JY), (1.211)
with G (z — y) given by
Ak e NE(F)
e (x—y) = ik(z—y) —C 1.212
GC’ (l‘ y) / (271')4 € k2 _ Z-ea ( )
where
v k?
Ne'(k) = =150 (mv) =(0,0), (1.213)
= 0, (u,v)=(m,0)or (0,n), (1.214)
= PL.(k), (uv)=(m,n). (1.215)
We used

0_,0 4
0(2° —y°) :/ d’k eil’C(ﬂv*y)i7 (1.216)
dm|x — y| (2m)4 k?

for (p,v) = (0,0). The object G (x — y) is called the propagator (in Coulomb

gauge, as indicated by the subscript C'; later we shall encounter propagators in

other gauges).

The amplitude Z(.J) looks noncovariant but it is Lorenz invariant. This is
most easily shown in ‘momentum space’, i.e. expressing Z(.J) in terms of the
Fourier variables k,. Inserting (1.212) into (1.211) gives
i d*k NE (k)
Z(7) =1+ 2n | (2m)* u(=k) k2 — ie

J, (k) +O(JY), (1.217)

where
JH(k) = /d4x e ke Jr(z). (1.218)
Next we note that N&” (k) can be expressed in the form

K'Y + (kn)(K*n” 4+ ntk")

N¥ (k) = g™ 1.219
C ( ) g L2 + (kn)2 ) ( )

where n is the time like unit vector
nt =46,9, n*=-1. (1.220)

This shows that NA“(k) is equal to g*” up to terms in volving k*, k” or both.
The terms o k*, k¥ in the propagator are called gauge terms, since they depend
on the choice of gauge. Using current conservation d,J* = 0, or in momentum
space k,J"(k) = 0, we see that the gauge terms do not contribute and we can
express the vacuum amplitude as a Lorentz scalar,

; d4k uv
' T I,(k) + O(JY. (1.221)

Z(0) =1+ 5 WJM(—k)F —
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1.11 Propagator

The propagator is a Green function, it is the inverse of the Maxwell wave operator
(cf. (1.39))
K, = —0%gu + 0,0,, (1.222)

in the sense that a solution of
K, A" (x) = J,(x), 0,J"(xz)=0, (1.223)

is given by
W) = [ dy G e - ). (1.224)

The differential operator K, has zero eigenvalues since any vector potential of
the form A, = 9w (‘pure gauge’) gives zero, K, 0w = —0%0"w + 0?°0"w =
0. Therefore K has no inverse on a general function space. Imposing a gauge
condition such as the Coulomb gauge there are solutions to (1.223). It is essential
that 0,J"(x) = 0 since the left hand side has also zero divergence. The solution
is still not unique unless we impose boundary conditions in time, e.g. retarded
boundary conditions for which A(z) — 0 as 2° — —oo. In our case we have
so-called Feynman boundary conditions in time.
Feynman (also called ‘causal’) boundary conditions are as follows:

AM(z) = superposition of e=*"*" for 20 — +o0 (1.225)

— superposition of et*° for 20 — —o0, (1.226)

where k% > 0. In momentum space,

K. — Kgu—kuk, = K,(k), (1.227)
Ng” (k)
N . C
Gek) = Fr (1.228)
” k? [k, + (kn)n,)k?
KHV(k)GC’p(k) = k2 — je (62_ Nk2+(kn)uz )7 (1.229)

where we used (1.212), (1.219). Note that K,,(k)k” = 0. Since k?/(k* — ie) = 1,
it follows that

KuG"(x —y) = 606" (z — y) + terms o< 9. (1.230)

The terms o< 0” vanish when integrated with .J,. As can be seen from (1.205,1.210)
the propagator satisfies the Feynman boundary conditions:

GY(x—y) = i/dwk @y prv (k) a0 > )0

= i/dwk e @) prY (R 2 < g (1.231)
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PE(k) = Y ek, Ne“(k, N, e(k,A) = (e(k, A),0) (1.232)

K'Y + (kn) (K"n” 4+ ntk")
(kn)? ’
= NE(k), k*=0, (1.234)

= g™

(1.233)

(the Coulomb part of the propagator contributes only for 2% = y°).

1.12 Vacuum amplitude to all orders in J

We shall now calculate Z(J) to all orders in J. Since U,;(0co, —00) contains a
phase factor coming from the Coulomb energy we first separate this factor from
the amplitude,

2()) = exp[—%/thC(t)]Z’(J), (1.235)
Z'(J) = (0|U}(?Oa—00)|0>7 (1.236)
Us( 1) = Tespl /t b T () A ()], (1.237)

where Z'(J) depends only on .J,,. We functionally differentiate Z’(.J) (cf. Ap-
pendix),

6Z'(J) = i/d4l‘<0|U}(OO,$0)Am($)U3($O,—OO)|0>(5Jm(.Z‘), (1.238)

f

6Z'(J) i , 0 o

0Jm(z) 7?<0|UJ(°O’x)Am(x)UJ(x,—OO)|0>, (1.239)
= ANWZ W) (1.240)

40 = (OUs(00.2") A (@)U 2", ~00)[0) (1.241)

(0]U} (00, =0)|0)

Here A{f) () is a c-number field, like a classical field. In the same way as for
the classical field (0,2°A,,(2)]0,2°) in the previous section we can derive the
equation of motion

OA© (z) = —JE (z). (1.242)

However, here the boundary conditions in time are different (not retarded): for
0
z’ — —o0,

(0]U} (00, =00) A ()[0)
(0]U7 (00, —00)|0)

— z}\:/dwk €m(k, )\)*efika; <0|U.II(OO=_OO)aIn(k= )‘)|0>, (1.243)

Az —

m

(0]U} (00, =0)|0)
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while for 2 — +o00
(0]A,(2) U} (00, —00)|0)
(0]U% (00, —00)|0)

_ ZA: / dwy e (K, A)ei’“<0|“7(§|1{U’;()OZI{(_O;ig>O)|O>. (1.244)

AL ()

m

This implies that for 2° — —oo the field A contains only socalled negative

frequencies o exp(+:k°2°) while for 2° — +o00 it contains only positive frequen-
cies oc exp(—ik®2%) (k® > 0). These are just the Feynman or ‘causal’ boundary

conditions, and A (x) is given by
Al () = / d'z G (x = y) Ju(y). (1.245)

Hence, Z'(J) satisfies the following equation incorporating the boundary condi-
tions in time,
hoZ'(J)
i 6 (2)

We need the solution of this equation with the boundary condition Z'(.J) =1 for
J = 0. The solution is given by

= ([ atGra - ) )2/, (1.246)

i

Z'(J) = expl>

/ diz dby J (2) G (@ — y) ()], (1.247)

Taking into account the contribution from the Coulomb energy we have for the
complete amplitude (cf. (1.200), (1.210))

0

Z(J) = expl5z

/ dhx dby J,(2) 1, ()G (z — y),, (1.248)

which reproduces the previous O(J?) result (1.211).

1.13 Effective action and Feynman propagator

We can reexpress this result as follows,

Z(J) :exp[%(S(A) + / d*z J, A", (1.249)

where we redefined S by writing the source contribution separately,

1 1
S(4) = —/d4x JEw " = —/d4:c SAN K A, (1.250)
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and for notational convenience we drop the label (¢) on Agf) in this section, i.e.
A, is not an operator field but a classical field. This field is to be calculated from

08
0: W+JN:_KHVAV+JH7 (1251)

with Feynman boundary conditions in time. The solution is
At (z) = /d4y G (z —y)J,(y). (1.252)
Substitution in (1.249) using (1.251) gives back (1.248),

S(A) + [ der,(@)AMz) = % / A, () AP () (1.253)

1

= / d'z d'y J, ()G (x — y)J,(y)).

We can also use the covariant Lorentz gauge
0,A, =0, (1.254)

and the corresponding Green function is the Lorentz gauge (often called Landau
gauge) propagator

d*k k*EY 1
W(p — ) = th(z=y) [ gm _ . 1.2
@@=y / (2m)4 ¢ (g k2 — ie) k? —ie (1.255)

For a conserved current 9,J" = 0 the vacuum amplitudes are identical.
We can also leave out all £, k¥ terms from G*” and use Feynman’s propagator

G k) = 2~
J(k) = — 1.256
¥ = (1.256)
in the expression for the vacuum amplitude. This is usually referred to as ‘using
the Feynman gauge’. However, G%" cannot be obtained by a gauge condition in
the usual sense, but by modifying the action. Consider the action

1 1
S(A) = - /d4x [ Ew " + i(a“Auﬂ' (1.257)
This action leads to the equations of motion
1
O, F" + 28”8“14“ +J" =0, (1.258)
or .
(=0 G + 0,0, — 20,0,)A” = J,u. (1.259)

§



38 CHAPTER 1. QUANTIZED ELECTROMAGNETIC FIELD

The added term depending on the coefficient & breaks gauge invariance and the
wave operator has no zero eigenvalue anymore (with retarded or Feynman bound-
ary conditions). The propagator can now be defined as the inverse of the wave
operator,

1 14
(=0 + 0,0, — gauay)a Pla—y) = 00d(x —y). (1.260)
The solution with Feynman boundary conditions reads in momentum space
krEY 1 k* kY
G*(k) = 9" — : 1.261
(k) (g k2—ie> k2—ie+§(k2—ie)2 ( )

For £ = 1 this is the Feynman propagator (1.256).
Another way to see that the vacuum amplitude is unchanged with this mod-
ified action, is taking the divergence of the equation of motion, which gives

00,A" = 0. (1.262)
The solution of this with Feynman boundary conditions is
0,A" =0, (1.263)

so the term o< ! in the action in the expression for the vacuum amplitude
vanishes.

An alternative quantization procedure for the electromagnetic field is based
on the modified action with £ = 1, the Gupta-Bleuler method. This leads to ad-
ditional unphysical ‘photons’ called ghosts, and indefinite (positive and negative
metric) in ‘Hilbert space’. One then has to show that these undesirable features
do not matter in physical quantities. The advantage of this method is that it
leads to manifestly Lorentz covariant expressions.

We shall see later that also in the general situation with interacting fields the
vacuum amplitude can be expressed in terms of an action, the effective action.
In our simple case the effective action is just S(A).

1.14 Emission and absorption of photons

Suppose the source has the form J*(x) = Ji'(z) + J'(x), such that the spacetime
region where .J; is nonzero lies to the future of the region where .J, is nonzero, as
illustrated in fig. 1.2. Let ¢, be a time after J; has acted, ¢ a time before .J, has
acted and ?( a time in between the times where .J; 5 are nonzero (e.g. ¢, = 0). The
evolution operator satisfies the relation U, (t;,t_) = U, (t4,to)U,(to, 1), and for
the above choice of sources we can write

Uy, = Uy Uy, (1.264)
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Figure 1.2: Spacetime regions where J{'(z) and J§'(x) are nonzero.

with
Uy = Uj(oo,—0)
_— exp[% / dhz Ay (2) Jon() — % / GHES)].  (1.265)
Introducing intermediate states at time ¢, we have
Z(Ji+ Jy) = (0|U,,Up|0) (1.266)
= Z% Z /dwkl"'dwkn
n AL

O[T 1k A - En A ki - - Fnda|Un]0),  (1.267)

Z% Z /dwkl---dwkn
Al An

n

Ok - - Fndn ) (Bi AL - - An]0) s, (1.268)

where we introduced the amplitudes for production and absorption of photons
by the sources .J, and J,

<k1)\1 e kn)\n|0>J2 - <I€1)\1 M kn)\n|UJ2|0>, (1269)

We can now use the explicit expression for the vacuum amplitude,
207) = exly / dhx dby T, ()G (& — )], (y), (1.271)

2000 = 20020 el [y Ju@)6 (@ - ) Jalo)
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1
= 22 esnlz Y / du iy (k, N io(k, N)],  (1.272)
A
where we used (1.232) and the notation
Tk, \) = en(k, A)’ / dze g (1), K = [K|. (1.273)

Expanding the J; — J; cross term as a series in J; and Jy an comparing with the
right hand side of (1.268) we see that the emission and absorption amplitudes
are given by

n

(Eadi -k Anl0)s, = Z(R)R? ][ ida (ke M), (1.274)

=1
n

O[kiAs - kndn)s, = Z(J)R 2T idi (ke M) (1.275)

=1

For a weak source we have to leading order in J,

(k,N0Y,, = iJy(k,\)/Vh, (1.276)
Ok, )y, = iJi(k,\)*/Vh, (1.277)

and we see for instance that the momentum space wave function of a singly
produced photon is given by

o(k,\) = iJy(k,\)/Vh. (1.278)

1.15 Radiation by a source

The probability P, for producing n photons in momentum range R by a source
J (we drop the subscript 2 on J3),

1
PR = - > /Rdwkl e dwp, |1 A - - EnAn|0) ]2 (1.279)
AL A
is given by
h—n
PE= R (S [ dd e PP (1.250)
. A R

where P, is the probability that no photon is radiated,

Py(J)=|Z(J)]? = exp[—%Im/d‘lx d'y Jo ()G (x — y) Jou(y)].  (1.281)
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One way to evaluate this expression is in momentum space,

1 ik B}
P(J) = expl—iTm / ()G (k) T (R), (1.282)
h (2m)
1 d*k ) 1
= exp[—i—ilm/WJ;gu(—k)g“ JQV(k) k2 _Z_e], (1283)
using the representation (written for general mass p)
! —p_ +imd (i + k?) (1.284)
p? 4+ k2 —de T opZ 4 k? o ’ '
where P denotes the principal value and
SO — 12+ K2) SR+ /iR + K2
52 + k2) = AR O Vit K (1.285)
2/ p? +k? 2/ p? +k?
with the corollary for an arbitrary function f(k),
d'k 2 12 1 0 0
2 wo(pu” + k%) f(k) = | dwy E[f(k’k )+ f(k,—k")]. (1.286)

In our case f(k) = —Jo(k)Jo(—k) + Jm(k)Jn(—k) and using the change of vari-
ables k — —k the vacuum persistence probability can be written as

Po(J) :exp[—%Z/dwkU(k, M. (1.287)

Note that the Coulomb term in Z(.J) is a phase factor and does not contribute
in P,.

If the region R is chosen to be all of momentum space, then P, follows a
Poisson distribution,

P, = , (1.288)

where

=

1 o0
=5 Z/dwkU(k, NP =Y nP,. (1.289)
A n=0

If R is the region R = {k; |k| < A}, then the total probability for emission into
R is given by

Sopr = Poexp[%z /R ] J (k, V)2 (1.290)

_ exp[—% z)\:/k|>A % Tk, M), (1.291)
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For a current for which )", [J(k, A)|? = O(k ?) as k — 0, the vacuum probability
Py and more generally the probability to emit any finite number of photons
vanishes, because in the expression (1.287) for P, the integral f|k‘ <a dwy diverges
at k = 0 (a so-called infrared divergence). Such currents are realistic, they
typically occur in Bremsstrahlung (hence the name ‘infrared catastrophe’ for the
infrared divergence). However, the expression (1.291) for the probability to emit
any number of photons is still finite. In particular, this is the relevant expression
if we do not observe any photon with energy greater than A and do not try to

measure photons with energy smaller than A. More information can be found in
Itzykson and Zuber sects. 1-3-2 and 4-1-2, Bjorken and Drell sect. 17.10.

1.16 Locality

We started from an action S which has nice invariance properties and is local: it
has the form S = [ d*x £(x) where £(x) is a Lorentz scalar which depends on the
fields at « and in the immediate neighborhood of  (through the derivatives). This
leads to covariant and local classical equations equations of motion. No signals
can travel faster than the velocity of light. Upon quantization we have ended
up with non-Lorentz and nongauge invariant expressions which furthermore look
terribly nonlocal: the projector

Ph(x—y) = 6mnd(x = y) + Omln (1.292)

Ar|x —y]|
drops off very slowly for large separation |x — y|. This noncovariance and non-
locality is due to the choice of gauge, the Coulomb gauge. The advantage of
the Coulomb gauge is that it focuses on the physical degrees of freedom of the
electromagnetic field, rather than gauge degrees of freedom, and leads quickly to
results in the simple situation we are dealing with, in which the field is coupled
only to an external current. We shall discuss Lorentz invariance more fully in
a later chapter and content ourselves for the moment with the fact that gauge
invariant quantities turned out to be Lorentz invariant. For instance, the vacuum
amplitude is Lorentz invariant.

An important expression of locality and Lorentz invariance is the following.
Two observables O, 5 associated with compact spacetime regions R; » (‘local ob-
servables’) commute, when all points z; € R; are spacelike to all points x5 € Rs.
In the standard lore of quantum mechanics observables correspond to measure-
ments, and measurements in spacelike separated regions should not be able to
influence each other. Observables have to be gauge invariant. An example is
given by the field strength F),,(x). Locality is expressed by

[Fur@) Fu ()] =0, (& —)* > 0. (1.293)

This is indeed the case as will now be shown for the case of vanishing external
current.
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Using the expansion (recall e*(k, \) = (e(k, A),0)

A1) = VES / duonle®® e (k, Na(k, \) + hc], (1.204)

gives
[AM2), A”(y)] = h/dwk (etk@=y) _ emikle=v)y pAv(f), (1.295)

where (recall n* = 0,,.)

PY =) etk Ner (kN
A
krEY + (kn)(kFn” + ntkY)
— g _ ) 1.296

Working out the derivatives in F),, = 0,4, — 9, A, we get

[F*X (), F*™ (y)] = T / dewy, {e™ IR RI PR (k) — KR PE (k)
— K"k PA (k) + BN PEM(K)] — (k — —k)}. (1.297)

Now the operation of the curl in F'** projects to zero any ‘longitudinal’ part oc
in P2, such that only the g* part of PA” contributes. In position space we can
then write

[Fﬁ)\ (iU), Ful/ (y)] = _h(ana,ug)\l/ - 8)\8ugn1/
- anaug/\u + a/\aug/w) ZA(I - y)7 (1'298)
Alx—y) = —i / dwy, (XY — gmik@=y)) (1.299)

The (generalized) function A(x) has the following properties:
- A(z) is Lorentz invariant, A(Az) = A(x),
- A(z) =0 for 2° =0, x # 0.

Since © = (x,0) is spacelike and A(z) is Lorentz invariant it follows that it
vanishes for general spacelike distances,

Az —y)=0, (v—y)>>0. (1.300)

It is also interesting to note that A(z) is the solution of 9*A(x) = 0 with initial
conditions A(z) =0, JpA(z) = —d(x) at 2° =0.)

Consequently the field strengths and all local observables that can be made
out of these have the locality property (1.293).
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1.17 Appendix

Eq. (1.238) is intuitively clear from the representation of the interaction picture
evolution operator in terms of time ordered products of H;. We elaborate here
further on this. For clarity we set i = 1. We have

Z'(J) = (0T ¢ "o 4@ Im(@)An(@) ) (1.301)

The time ordered product
T Ap, (1) Ap, (z3) (1.302)
is completely symmetric in the interchange of labels x;, m; <+ x;,m;. Hence,

Z'(J) is given by

2= 3 [ e O A (2) - A (510 o 02 )

(1.303)
Then
Zn' / iy dhay (O[T A, (1) - - - A, ()]0}
Jnn(xl) T (Tn-1)
n0Jm, (Tm,)- (1.304)

Relabeling n — 1 — n and using the combinatorics of e+’ = e® e’ we can rewrite

this in various ways

57 = /d‘*m’w i;,/d‘lyl
n=0
(O A () Ay (1) - Ary (90)[0) Try (1) -+ T () - (1.305)
_ / A4 86T (1) (O[T [ 15 49 @A) 4 ()
¢ I 412 )10 (1.306)
= /d4a: 10 (2) (O|U (00, 2°) A, () Ul (2°, —00)|0).  (1.307)
From (1.305) we get furthermore the useful formula

YA

i dy Jn
i@ T An()e [5 By ) ani|g), (1.308)
and repeating the differentiations,
oz -
= (O A (1) -+ A, () €= 200400 ).

16Ty (1) -+ 00T, () (1.309)
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1.18 Problems

1. The identity
M O\F,, = 26" 0,0,A, = 0 (1.310)

implies the homogeneous Maxwell equations
8aFg7 + 85F7a + 87Fa5 =0. (1.311)

Use the homogeneous and inhomogenous Maxwell equations to derive the
divergence relation for the energy-momentum tensor (1.48).

2. The formulas (1.84) also apply to a finite number of degrees of freedom.
Check explicitly the case n = 2 (e.g. for two degrees of freedom a = 1, 2).

3. Verify

1 B 1
= tk(x=y) — 1.312
ir]x — y] / (2m)3 ¢ K2’ (1312)

by applying the laplacian A to left and right hand side and using (1.61).

4. Verify that in the infinite volume limit the formula (1.100) for the transverse
projector goes over in

Pk ki
Pg;n(X, y) = / (27‘.)3 e k(x—y) <6mn — ?>

1

(1.313)

Notice that P (x,y) = P! (y,x).
5. Verify the other commutation relations in (1.111).

6. To obtain the expressions (1.115) for the hamiltonian, we insert (1.101) into
(1.89), using (1.105):

1 1 1
H = — 32
V2;4k0l0/dx2[

(—ike™ ap, (k) + ik’ ™ a,, (k) 1) (—il"e™ a,, (1) 4 il°e ™ a,, (1)T)
+ (€% a,, (k) + e ** q,,, (k) 12 (™ a,,(1) + e ™a,, (D). (1.314)

The integration sets 1 = &k and the aa and a'a’ terms cancel (k° = |k|),
leaving

1 1,1
v 2 o 5[am(k)am(k)T+am(k)Tam(k)]. (1.315)
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We can now convert to a(k,A) or use the commutation relation (1.111)
directly with (sum over m) PL (k) =2 =", to put a' to the left of a,

U (K) i (K)T = a1y, (K) T (k) + 260V ) (1.316)

This gives (1.89) after converting to a(k, A). This calculation of the hamil-
tonian is basically the same as for the one dimensional harmonic oscillator.
The calculation of the momentum operator (1.90) proceeds in similar fash-
ion,

b= _% ; 4k1010
( ik% e am(k) +ik%e ™ a,,(k)") il (e™ a,,(1) — e 7™ a,, (1))
= = Z k) K) i (—K) + apm (k) am(—k)T
+ am(k) () + (k) Tam (K)), (1.317)
- % zk: 2—; Ky, (k) (K) (1.318)

(k is odd under k — —k, such that accompanying factors even under
k — —k do not contribute). Expressing the result in terms of a(k, \) gives
(1.90).

. Derive (1.135) by normal ordering, i.e. interchanging the creation and an-

nihilation operators (using their commutation relations) such that all a’s
stand to the right of all a'’s, and the fact that any a gives zero on |0) and
and any a' gives zero on (0].

. Calculate (p|A,,(x)A,(y)|p), for example by inserting intermediate states,

and verify the expression (1.151) for the expectation value (p|T"(x)|¢).

. Recall that (¢7'),, = ¢" and verify

g0 ' =120 +g6¢g7 ' =0=6¢g7' = —g '5g¢7", (1.319)
or
59" = —g"g"? §gap, (1.320)
and
1 Mg V1t Vg
detg = IG € Guavrs - - Gpavas (1.321)
ddetg = 56’“ PG b e Guavs OGpars

= (det 9)(9 ") uavs OGuavs = (det g)g* 0g,,  (1.322)
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10.

11.

and

1
5y/—detg = 5\/— det g g"" 0, (1.323)
and finally (1.140).

To verify the step leading to (1.191), evaluate the commutator [H, I1,,(x, t)]
using the form (1.89) for H; recall [ab, ¢] = a[b, ¢] + [a, ¢|b. This also verifies
that the operator field equations

OA,,(z) =0 (1.324)
follow from the canonical quantization procedure.
Consider Green functions of the operator —O + pi2,
(~0+ 1)G(x - y) = d(a — ). (1.325)

The Feynman propagator

Gz —y) = / Ak gk 1 (1.326)
(2m)4 w? + k% — ie

is a solution to (1.325) with Feynman boundary conditions. Using contour

integration verify that

1 1
_>
P+ k?—ie  p?+ k2 — (ko +ie)?

(1.327)

corresponds to retarded boundary conditions.
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Chapter 2

Interactions with scalar fields

We introduce scalar fields in this chapter and coupled these to the electromagnetic
field. The resulting field theory describes the interaction of photons with charged
particles of spin zero. The vacuum amplitude is elegantly summarized in terms
of the effective action and the formalism leads naturally to Feynman diagrams.
The equations of motion are translated into the Dyson-Schwinger equations for
the effective action, and the perturbative solution of these equations leads to the
diagrammatic loop expansion, the semiclassical expansion in powers of h. From
the vacuum amplitude we obtain the scattering amplitude and the diagrams give
an intuitive picture of scattering in terms of virtual particle exchange.

From now on we use units in which Planck’s constant 7 = 1 and the velocity of
light ¢ = 1. Then the dimensions of various quantities are like [mass] = [energy]
= [momentum| = [4,] = [length™'] = [time™']. The action is dimensionless. To
convert to ordinary units we use appropriate powers of i and c¢. A particularly
useful combination is fic = 197.3 ~ 200 MeV fm, where fm (femto meter or
Fermi) denotes the unit of length 107'* ¢m. For example a mass m of 200 MeV
corresponds to a length 1/m of about 1 fm. The the unit of electromagnetic charge
e ~ 0.30, which follows from the fine structure constant o = €?/(4m) &~ 1/137.

2.1 Free scalar field

We have seen that the quanta of the electromagnetic field can be interpreted as
particles, the photons, which can occur in two spin states corresponding to the
two independent polarization vectors e(k, ). It is now natural to look for other
field systems for the description of other kinds of particles. The simplest is the
scalar field, the quantization of which leads to spinless particles. Having gone
through the quantization of the more complicated case of the electromagnetic
field, the corresponding formulas for the scalar field are a pleasant simplification.
We urge the reader to go through the formulas in the preceding chapter, drop
the polarization vectors and vector index m on A™, and obtain the corresponding
formulas for the scalar field. We summarize here some of the relevant formulas.

49
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The action for the free scalar field ¢(x) is given by

S = /d%c :/deL, (2.1)

L) = —5Aup@)delx) — smPp(e) — m, 2.2
Led) = [dalyed - 5(VeP - gt —m (2.3

where we have included a bare cosmological constant 75. The equation of motion
including an external scalar source J(x) is given by

0 4,1 ! /
0 = 5o02) (S+/daj J(z") ("))

= (O -me(z)+ J(z). (2.4)

For J = 0 this equation is known as the Klein-Gordon equation. The energy-

momentum tensor
T = 9"0d" o + g L (2.5)

is conserved for vanishing source J = 0 as a consequence of the equation of
motion, 0, T" = 0.

The canonical conjugate of the field p(x) is denoted by 7(x) and can be found
by making a mode expansion, as done for the electromagnetic field. It can also
be defined by generalizing the partial derivative (1.8) to a functional derivative,

m(x) = L(p, 9) = ¢(x), (2.6)

(%)

where the time dependence is left implicit. The hamiltonian with source J takes
the form

Hyw = H — / >z J o, (2.7)
where
H = /d3x7r80g0—L:/d3xT00 (2.8)
3.1 o 1 9, L 9 9
d 37[57'( +§(V<,0) +omie + 7] (2.9)

is the hamiltonian for J = 0.
After quantization the canonical commutation relations at time 2° = 0 are
given by

[p(x),m(y)] = #(x—y), (2.10)
[r(x), 7(y)] = [p(x),0(y)]=0. (2.11)
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The creation and annihilation operators appear in the canonical variables accord-
ing to

olx) = / duo, [P a(p) + e~ a(p)T], (2.12)
70 = [ duy iPealp) + e Palp)] (2.13)
dy = 7(2;1)352]90, P = P, (2.14)
and satisfy the commutation relations
[a(p), a(p))'] = 2p°(27)%(p — P'), (2.15)
[a(p), a(p)] = [a(p)’,a(p)!] =0. 2.16)

The energy momentum operator of the source free field can be written as

P = [ dsya(e)a(p) (217)

where we adjusted the bare cosmological constant 7y such that the renormalized
cosmological constant is zero and the energy of the vacuum is zero. The creation
operators create spin zero particles out of the vacuum |0) with four-momentum

p,

Ptp) = p*lp), |p) = a(p)'0), (2.18)
and similar for multi particle states. The mass of the particles is m, as can be
seen from p,p" = —m?.

The vacuum amplitude is given by

1
20) = eliz [ ded'yI@)Ga - 1)) (2.19)
= expliS(e) +i [ e I@)e e, (2.20)
with the propagator
d4p ip(z—y) 1

implementing Feynman boundary conditions in time for the classical field

o9 (z) = / 2y G — 1) (). (2.22)

Finally, the amplitudes for emission and absorption of particles by the source are
given by
pl0)" =iJ(p), (Olp)" =iJ(p)", (2.23)

to leading order in J.
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2.2 Yukawa potential

The Coulomb potential decribes the interaction energy of two static (time inde-
pendent) charge distributions. The analogue in scalar field theory is the Yukawa
potential. The static classical field is the solution of the equation

(—A 4+ m?) 9 (x) = J(x), (2.24)

which can be solved with the help of the static Green function

HI(x) = / 0y Gran(x — ) (), (2.25)

(—A + mQ)Gstat(x —y) = dx-y), (2.26)
Bp  ePE-Y)
Gsta.t (X - Y) - / (27T)3 m2 _|_ p2
€7m|x7Y|

- - 9.9
dm|x —y| (2.27)

The last line follows by using spherical coordinates with p(x —y) = prcos#f,
integrating first over angles,

1 o p?  2sinpr
G(x — = — d, 2.28
x=¥) = G [ W (2.28)
1 * dp 2pe?r
= —R T S— 2.29
At e/oo27ri m2 + p?’ (2.29)

and then over p using contour integration by closing the contour in the upper
half of the complex p-plane. With a source of the form J(x) = J;(x) + Jo(x),
substitution of p(® into (2.7) gives the energy

E = FEy+ Ey+2E,, (230)
By = 1/d3 Py I ) (2.31)
E . ylx47r|x—y|Jy' '

Notice that the interaction energy 2F5 is negative when both J; and J; are
positive.
The expression

e—mr

2.32
4rr ( )

is known as the Yukawa potential. It has the form of a screened Coulomb potential
with screening length 1/m. For distances r > 1/m the interaction becomes
negligible and 1/m is a measure of the range of the interaction. For m — 0 we
get the infinite range Coulomb potential. Other common names for 1/m are:
the Compton wave length and the correlation length (by analogy with Statistical
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Physics). The parameter m in the free scalar field action plays the dual role of
particle mass and interaction range. Yukawa introduced the scalar field in the
thirties to explain the nuclear forces. After some initial confusion (see e.g. Pais
for a historical account) the spinless particles corresponding to this field were
identified with the pions. The pion mass m, = 140 MeV corresponds to an
interaction range of 1/m, ~ 200/140 = 1.4 fermi.

2.3 Complex scalar field

Two fields (), @ = 1,2, describe two types of spinless particles. If they have
the same mass, then the action

1 1
S = — /d43: (Eau%a“goa + §m2<,0ag0a) (2.33)

(where a summation is implied over repeated «) has a continous symmetry: it is
invariant under SO(2) transformations, orthogonal rotations in two dimensions,

¢y \ [ cosw —sinw 01 roN
()= (e ey (7). vw=-nrew. @3

We may think of ¢, as a vector in ‘internal’ space (‘ a-space’ — as opposed to
ordinary spacetime), which gets rotated by the matrix R. Writing

R = e ™1 =cosw—igsinw=1—iwqg+---, (2.35)

¢ = (? _02>= ¢"=-q, R"=R", (2.36)

we see that ¢ is the generator of these transformations.

The invariance of S under the continous SO(2) symmetry implies a local
conservation law (Noether’s theorem), which can be derived as follows. We make
a small variation of ¢ that has the form of a spacetime dependent symmetry
transformation,

5pul(7) = —idapips(w) 0o (). (2.37)

If ¢ satisfies the equations of motion, then the action is stationary (we assume
here J = 0):

0=105 = —/d43? [0" 9o (—igas) Ou(ps0w) +m*@a (—igas) Psou]
= / d*z 0" P iqup pp 00w (2.38)

/d4xj“8u6w = —/d4a: (0ug") bw. (2.39)
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Since the variations dw are arbitrary we have the conservation of a current,

J* =10"pa qap s, Oug" = 0. (2.40)

The charge ) corresponding to the current is conserved,
Q= /d3xj°(x), 00Q = 0. (2.41)

In the quantum theory ¢, (z) and 7, (x) satisfy the equal time commutation
relations
[pa(x,1), T3 (¥, 1)] = ibap 0(x = y), (2.42)
with the other commutators vanishing. Then ) becomes an operator in Hilbert
space,

Q= /d3x (—i00Pa Qup Pp) = —i/d3x To QaB P8, (2.43)

and it is a generator of SO(2) transformations in the following sense
Q4] = = s(y), (2.44)
esz Ve efsz _ (efzwlI)aﬂ g = Raﬂ 8. (2.45)

The second line can be checked by differentiating with respect to w and integrating
again,

Folw) = e“?p,e™Q  F(0) = pq, (2.46)
d . — W
W) = =iy Fy(w) = Fulw) = () .5 F3(0). (2.47)
The eigenvectors of ¢ define a basis in internal space,
1 i
er(£) = ex() == Qup €(E) = Leq (L), (2.48)

V2 V2
and we can expand the classical ¢, in terms of charge eigenfields ¢ and ¢*,
Yo = pea(+) T ¢ (=), ¢ =eal+) o, ¢ =ea(=)" pa- (2.49)

In terms of the complex field ¢ the action takes the form

S = —/d4x (D" 0" + m*p* ). (2.50)

In the complex formalism we treat ¢ and ¢* as independent variables. For ex-
ample, the equation of motion for ¢ is obtained by varying ¢* only,

0 = —/d4x(—8u8“<,0+m2g0) dg*, (2.51)

68 5
0 = 5o (@) = (0 —m?)p(x). (2.52)
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The SO(2) transformations now take the U(1) form (U(1) = group of unitary
transformations in 1 dimension)

g0/ _ efiw ©, g0/>k — eiw 80*, (253)

under which the action (2.50) is clearly invariant.
In the quantum theory

T=m,= 0!, T =m, =0y, (2.54)
and we have
[QD(X, t): W(Y7 t)] = [@T(Xa t)a WT(Y7 t)] = M(X - Y)a (2'55)

with the other commutators vanishing. The current takes the form

" = i0"[pea(+) + ¢ ea(—) dap [ en(+) + @l es(-)]
= il it o, (2.56)

where we have been careful about the ordering of operators, using the real formu-
lation as a starting point. In the real formulation there is no ordering ambiguity
in the sense that e.g. for the charge density,

7°(x) = —igap ma () 03(x) = —igap s(z) Ta(), (2.57)

where we used 0(0)¢qp 0o = §(0)Trg = 0. The commutation relations of ) with
¢ and o' read

(@, ¢(2)] = —¢(2), 1Q,0(x)'] =)' (2.58)

In more detail we have
1
T)=—= x) — 1pa(T)], 2.59
p(z) \/5[301( ) — i ()] (2.59)

and we can write

o) = /dwp [eima(p,—i—)—l—e_ipxa(p,—)T], (2.60)
a(p,£) = %[aﬂ(p) + iay(p)), (2.61)
Q - / doy lalp, Dlalp, +) — alp, Yalp,—).  (262)

We see that () counts the number of ‘+’ quanta minus the number of ‘—’ quanta.
By convention we call the ‘4+’ quanta particles and the ‘=’ quanta antiparticles,
i.e. the one particle charge eigenstates |pt) of ) are interpreted as particles
(Q = +1) and antiparticles (Q = —1),

a(p,£)0) = |p¥), (2.63)
Qlpt) = =lpt). (2.64)
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2.4 Coupling to the electromagnetic field

The complex scalar field system has a global U(1)~SO(2) invariance, by which
we mean that the angle w in the transformation

p(r), ¢'(x) =e ¢ (2)", (2.65)

does not depend on the spacetime coordinate x. We can interpret these trans-
formations also as passive transformations of the coordinate system in internal
space. It is natural to ask if the reference system that picks out the real and
imaginary parts of o, or equivalently its 1 and 2 components, has to be globally
defined. For example do we have to choose it the same here in Amsterdam now
as on the Moon five years later? It is possible to allow for arbitrary local trans-
formations of the internal coordinate frame, with an action invariant under U(1)
transformations with angle w(x) depending on spacetime. To achieve this we
need to compensate the noninvariance of the derivative terms in the lagrangian,

L(x) = —up(x) 0"o(x) — m*p(z) o(x), (2.66)
because under a local transformation
¢ () = e“ W p(), (2.67)

the term m?p(x)*p(z) is invariant but the derivative transforms in an inhomoge-
nous and noncovariant way

0! () = 0™ p(2)] = €@ [Dup(x) + idw () (). (2.68)
Instead, a covariant derivative D, transforming as
D, (2)¢'(x) = ¢ Dy (2)p(x) (2.69)
would allow for the construction of an invariant lagrangian
L(z) = —[Du(@)p(@)]" D (x)o(x) — m*o(x)"o(z), (2.70)

The well known construction of the covariant derivative uses the invariance of
the electromagnetic field system under the gauge transformation

Al\(2) = Ay(z) + éauw(a;), (2.71)

where e is an arbitrary constant. The form

D,(xz) =0, —ieA,(x), (2.72)
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has the required property: under the combined gauge transformation (2.67),
(2.71),

D (z)¢'(z) = [0, —ied,(x)]¢'(x)
= [0, — ieAu(z) — iduw(2)] ¥ p(z)

[0, —ieAu ()] p(x)
@ D, () p(). (2.73)
A derivative involves the comparison of fields at infinitesimally close points in
spacetime. The electromagnetic potentials play the role of a connection, which is
used in comparing (‘connecting’) the orientations of the internal spaces at these
infinitesimally close points.

The classical action for the combined electromagnetic and scalar field system
is now given by

S = SA+SA(p7 (274)
Sy = — / d%iFWF“”, (2.75)
Sip = = [ dsl(Dapy Do+ mipyl (2.76)

= —/d4x [0, 0 0 + m*p*p
+ e(ip* Oup — i0,0" ) A" + *p*p A, A"]. (2.77)

In the formalism using real fields the action Sy, reads

1 1
Su, = = [ dal5(Due)! D+ g (2.78)
o= (7). Dw=@-ian)e (2.79)

We see in (2.77) the appearence of terms of cubic and quartic order in the fields.
These are called interaction terms, since free field systems (including external
sources) have only terms at most quadratic in the fields. The parameter e is called
a coupling constant, since it governs the strength of the interactions. We can use
this theory for the description of charged pions 7* in an external electromagnetic
potential A,. Then it can be shown that e is the elementary unit of charge, as
suggested by the notation. This identification will be made on the basis of a
scattering experiment (cf. (2.251)).

The theory is still invariant under the global U(1) transformation (2.65) im-
plying the gauge invariant conserved current

J* =i(D"p)"p —ip" Do (2.80)
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It is furthermore invariant under the discrete transformation

o =9 ¢t=9p, A, ,=-A, (2.81)

which changes the sign of the charge @ = [ d?z j° and is therefore called charge
conjugation. In the real field formalism this transformation is a reflection in
internal space,

1 0
Q) =@1, ¢h=—py, or 90’2(0 _1>90- (2.82)

As far as ¢ is concerned this transformation completes SO(2) into O(2), the
orthogonal group in two dimensions including reflections.

The quantization of the complete coupled p—A field theory in the Coulomb
gauge is straightforward but cumbersome. We shall not go through the details
(see e.g. Bjorken & Drell II for quantization in the Coulomb gauge), but list a
number of noteworthy points:

1. Similar to the case of the cosmological constant, it turns out that the pa-
rameters we start out with in the formulation of the theory — the bare
parameters — are not equal to the parameters we measure — the renormal-
ized parameters. We therefore make the replacement in the action

e — ey, m:— (2.83)

Furthermore, it turns out that we need a gauge invariant bare self coupling
of the form \¢(p*p)? in order to be able to cancel a type of infinities. The
renormalized and parameters e, m and A are then functions of the bare ¢,
pd and Ay and the choice of regularization.

So the quantum theory will be based on the A—¢ action

Sap = — /6143j {[(0" — ieg A")]" (8 — iegA) @ + 1™ + Aol(9*@)? + 70},
(2.84)

where we have put the bare cosmological constant in Sy4,; the action Sy
remains unchanged.

2. The canonical conjugate of ¢ involves Ay,

4L
" Sty

= [Dowp]" = o™ + ieg Ao, (2.85)

and similar for 7*. In the canonical formalism we have to express dyp and
Jop* in terms of 7 and 7*.
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3. The canonical equal time commutation relations in the quantum theory are
unchanged, e.g. at t =0,

[o(y), 7(x)] = [p(y)', 7(x)1] = id(x —y), (2.86)
[An(x), Lu(y)] = iPp.(x—y), (2.87)
[r(x), An(y)] = [p(x), An(y)] = [7(x), Tin(y)] = [p(x), L (y)]

= ...=0. (2.88)

The equal time commutators between canonical scalar field and electromag-
netic variables vanish according to the canonical rules.

4. The current in Maxwell’s equations contributed by the scalar field is given
by
eoj = ie[(D )T p — goTDugp]. (2.89)

The corresponding charge density
e’ = —ieg(mp — w'ph) (2.90)

is now an operator and therefore also

Ap(x,t) = Py ———— %y, t 2.91
o) = o [ dy e (r.0) (2.91)
and the Coulomb energy
1 3%, 1) 3%y, 1)
Ho(t) == | dad® ’ . 2.92
olt) =y [ ity = (2.92)

5. Charge conjugation interchanges particles and antiparticles, as can be seen
from (2.81), (2.60).

2.5 Equation for the vacuum amplitude in ¢*
theory

In the following we shall illustrate some derivations with a system that is simpler
than scalar electrodynamics, the p* theory. Its classical action is given by

1 1 1
S(p) =— / d*x (iﬁugoa“go + §u2902 + Z)\g04 +7), (2.93)

where ¢ is a real scalar field. The hamiltonian

1 1 1 1
H = /de (571'2 + §(VQ0)2 + 5/,62@2 + Z)\QO4 + T), (294)
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Figure 2.1: Classical energy density of the ¢* theory, for y? > 0 (a) and for
p? <0 (b).

can be seen as an infinite number of coupled anharmonic oscillators. There is also
an analogy with the three dimensional Ising model, in which ¢ is an average over
Ising spins in a small volume d®>z. The classical ground state has 72 = (V¢)?> = 0
and minimal energy density

1 1
U= 5/4?902 + Z)\(’O4 + 7. (2.95)

The function U is sketched in fig. 2.1. Since we assume the energy to be bounded
from below, A > 0. For p? > 0, the ground state is at ¢ = 0, while for p? < 0
there are two mimima at
_ 2
o= TM (2.96)

It follows that for negative p? the symmetry p(z) — —¢(x) is broken in the
ground state, and one speaks of spontaneous symmetry breaking. This is anal-
ogous to the phenomenon of spontaneous magnetization in the Ising model. To
single out a definite ground state we can add a small term to the action which
breaks the symmetry ¢ — ¢ explicitly,

AS = / d'z ep(x). (2.97)

We see that € plays the role of a constant external field in the Ising model. In our
present terminology € can be interpreted as a constant external source J(x) = e.
In the quantum theory we anticipate renormalization and make the replace-
ments p? — p A — Ao, T — Ty, € — €. The field equation with an external
source J
0= (0" — up)p — Ao’ + J, (2.98)
follows from the Heisenberg equations of motion with total hamiltonian H —
[ &z Jo.
The fields can still be written in terms of creation and annihilation operators
at some time such as ¢t =0, e.g.

p(x) = /dwp [e"P* a(p) + e PX a(p)T], (2.99)
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but the time dependence is now given by the nonlinear field equation (2.98) not
simply that of a free field,

SO(JS) 7£ /dwp [eipx—ipoa;o a(p) + e—ipx-i-ipoa;o a(p)T], 3;0 7£ 07 (2.100)

The hamiltonian H is no longer of the form [ dw,p’a(p)Ta(p) but contains terms
of fourth order in the creation and annihilation operators, due to the ¢* term
Mo [ d®z p*(x). Hence, the vacuum state |0), i.e. the ground state in the limit
of infinite volume, is much more complicated than in the free case and and not
given by a(p)|0) = 0. The state |() defined by a(p)|@) = 0 may be called the no-
quantum state. Ordinary perturbation theory then suggests that the true vacuum
|0) is a superposition of |0), a(p)T|0), a(p1)Ta(ps)T|0), . ... One sometimes speaks
of |() as the bare vacuum and |0) as the dressed vacuum. The above is already
true of course in the simple case of the one dimensional anharmonic oscillator
with H = 5-p? + sw?¢® + 1A%

Similarly, the other eigenstates of H may be considered as being dressed by
the ©* interaction. This holds in particular for the one particle states, which are
assumed to be the true eigenstates of P* (P° = H),

P|p) = p"|p). (2.101)

Because |p) # a(p)']0), it is also not true in general that (p|p(z)|0) = exp(—ipz).
However, for covariance reasons we may write

(ple()|0) = \/Z, e, (2.102)

where Z, is a constant, traditionally called the wave function renormalization
constant.

Although it is of interest to determine the structure of various eigenstates of
H in terms of the quanta at ¢ = 0, it is cumbersome and detracts from the most
immediate physical quantities we wish to calculate, such as scattering amplitudes.
Over the years people have learned to concentrate on the vacuum amplitude Z(.J)
and extract from it the relevant physical quantities.

Let us formulate the ingredients in Z(J). The vacuum |0) is the state with
lowest, energy, adjusted to zero by and appropriate choice of 7y,

H|0) = 0. (2.103)

Recall that H does not contain the source J and that we use the interaction
picture to take J into account. The interaction hamiltonian in the interaction
picture is given by

H;(2°) = —/d?’x J(z)p(x). (2.104)
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The interaction picture field ¢(x) evolves in time under the influence of H, as if
J were zero. The vacuum amplitude is given by

Z(J) = (0|U,(o0, oo)|o> = (0|7 e At Hs0)) ), (2.105)
— <O|T€zfd4$J |O> (2106)
By differentiating Z(.J) with respect to J we ‘bring down’ the ¢’s,

6Z(J)
i0J (1) ---i0J(zy,)

= (O[T '/ ¢+ @p(z) - o, )[0). (2.107)

For J = 0 we get vacuum expectation values of time ordered products of fields,
sometimes called T-functions,

(O] (1) - - - o) |0), (2.108)

from which we can construct many quantities of interest.

We now convert the equation of motion (2.98) into an equation for Z(.J),
similar to what was done for electromagnetic field in sect. 1.12. For simplicity of
notation we denote the classical field ¢(© by ¢,

L 02(J) _ (0[Us(00,2°%)p(x)U, (z°, —00)|0)

T 0 e (7ot 1 S )

Differentiating twice with respect to 2° we get

Qop(x) = Z(J)H0|U, (00, 2°)m(2)U, (2°, —00)|0), (2.110)
dyo(x) = Z(J)"H{0|U;(00,2"){J (x) + i[H, 7 (2)]}Us(2°, —00) |0)
= Z(J)7H0|U; (00, 2°) [ (x) + Ap(z) — mop(x) — Ao (2)°]
Uy (2°, —00)|0)
= Z(J)7 O[T e VI [J () + Ap(x) — pge(x) — Aop(x)?]]0)

5 , 0 5 \°
@)+ Ai(SJ(a:) ~ s Ty Ao (m) ] Z(J),

(2.111)

i

which can be rewritten as
0 = J(@)+Z())7" (0" — mp)b(x) — Xo(@)’] 1y, s Z(J) (2.112)

= J()+2J)" Bzgf))h() 5 Z(J). (2.113)

6J (z)

This ‘Dyson-Schwinger equation’ for Z(.J) together with Feynman boundary con-
ditions in time will be our starting point for a calculational scheme.
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2.6 Effective action

We now express the vacuum amplitude Z(.J) in terms of an effective action I'(¢).
In fact we will first define I'(¢) in terms of Z(.J), then assume I'(¢) to be given
and reexpress Z(.J) in terms of I'(¢). In the next section we will use eq. (2.113)
to formulate a method for calculating I'(¢). It is equal to the classical action up
to so-called quantum corrections, I'(¢) = S(¢) + O(h).

We start by introducing W (.J) defined by

Z(J) =", (2.114)

Hhen 1 62(0)
== = J).
@)=z 51w s Y
In terms of W (J) we define the connected Green functions, also called correlation
functions, by

(2.115)

0 )

" 0J(x1)  6J(zn)
These Green functions are completely symmetric in their arguments. For n =1,
G(z) = ¢(z). Differentiating Z(.J) and setting J = 0 afterwards gives

¢(x) = (Olp(x)|0) = do, (2.117)
(=0)G(zy) = (O[T @(2)e(y)]0) = (Ol (2)[0)(0p(y)[0),  (2.118)

We see that G(zy) is the fully dressed (i.e. including all effects of the inter-
actions) propagator, and (2.118) illustrates the name ‘correlation function’ by
analogy with such functions in Statistical Physics. In our example of the ¢* the-
ory (0]¢(x)|0) may be nonzero, depending on the choice of parameters p} and
Ao- In case (0]p(z)]0) # 0 the symmetry ¢ — —¢ is spontaneously broken in the
vacuum.

In general J # 0. The field ¢ depends on J, ¢ = ¢(J), and we assume
that this relation may be inverted, J = J(¢). In the same fashion W (.J) may be
considered a function of ¢, and we now define I'(¢) by a Legendre transformation,

G(xy---xn) w. (2.116)

T(p) =W(J)— /d% J(z)o(x). (2.119)

To streamline the derivations below and to bring the equations into a form that
also applies to other theories it is now very convenient to follow DeWitt and use a
condensed notation: all indices, spacetime and discrete are lumped into an index
ka

o(x) = ¢, = —k, (2.120)

and we use a summation convention for repeated indices, e.g.

Jro* = /d4x J(z)p(x). (2.121)
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For the case of the coupled scalar—electromagnetic field system the index & also
distinguishes various fields,

oF = 0 (x), ()", AP (2). (2.122)

Functional differentiation with respect to ¢* is denoted by a comma,

oT(¢)
5ot~ D0 (2.123)

For example

[(6) = Do)+ Dk (60) (6 — 08) + 5Tt (90)(6* — 6f) (0! — )+

1 k1 k1 kn kn
= 3 S Tk, (B) (95 = 0f) - (6 — o) (2.124)
= Z% /d4x1 d‘z,

5"1.“.(?150) (d(21) = do) -+~ (d(wn) — ¢0), (2.125)

where! ¢y = ¢(J = 0). In the p! model the derivatives of the classical action S
around ¢ = 0 are given by,

S (0) = 0, (2.126)
B R
e ® = g5, =S
= — (=0 + pg — ie) 6(z — '), (2.127)
i 3S _ oy
Sokakats (0) = _5¢($1)5¢($2)5¢(3§3)} $=0 =Sz 0) =0, (2128)
[ 65’ = T1+-Ta.
S0 = |, = S
= =6 0(11 — x2) 6(x1 — x3) 6 (11 — 4), (2.129)

where we have replaced pd — pa —ie to enforce the Feynman boundary conditions
in time. We have

4
S(p) = Z%Skk (0)gFr - - - gl (2.130)
n=1 '

‘1
= ZH/d43?1---d4xn5(x1---xn;0)¢(x1)---¢($n)- (2.131)

In case of spontaneous symmetry breaking in infinite volume W (J) is not differentiable
in J = 0, see e.g. Brown sect. 6.5. We should keep J a little away from zero and hence ¢
in T'(¢o) a little away from ¢g, such that the differentiations make sense. After all necessary
differentiations have been carried out we can let J — 0.
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In the condensed notation egs. (2.116), (2.119) read
) )

GFn = ce—W, 2.132
dJk, 6y, ( )
and
[(¢) = W(J) — Jro". (2.133)
Differentiating (2.133) with respect to Jj gives
or  ow ; Sk Sk
—=— ¢ —Jp——=—Jr — 2.134
A VALY foa (2.134)
and using on the left hand side of this equation the chain rule
) YO XA im0
=~ _—qQim___ 2.135
o0J; 0 o™ dom’ ( )
gives
or
Im ~~ — _ kl 21
G s J G*, (2.136)
or
Lyp=—J,. (2.137)

Here we assumed G*' to be nonsingular, i.e. to have an inverse when considered
as a continous matrix. This is assured by the Feynman boundary conditions in
time, as expressed by the ie in (2.127). In electrodynamics it requires in addition
fixing the gauge or adding the (9, A")? term to the lagrangian. Eq. (2.137) shows
that ¢ is the solution of the stationary action equation (§/d¢?)(I" + J,¢*) = 0.
Differentiating again, 0I',, /6.J;, using (2.135), gives

g G = =0, (2.138)
which shows that G* is the inverse of —T',;;. Further differentiation 6/5¢" gives
Fypgr G+ 1 G2 = 0, (2.139)
and contracting with G™ using G™(6/d¢") = /0T,

Tper GYG™ +T,,, G'™ = 0. (2.140)

Contracting these last two equations with GP¥ using (2.138) gives
G", = T,y GG, (2.141)
GM™ = T, GPFGIG™. (2.142)

Further differentiation of (2.142) with respect to ¢/0.J,, gives, using (2.141) and
the chain rule (2.135)

lemn — F;pqrs kaquGrmGsn
+Tpgr (GMGPG™T 4 GG™ + 2 perm.),  (2.143)
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Figure 2.2: Graphical representation. The little o at the end of lines indicates
the presence of the propagator. Note that the o are absent in 'k, ...k, .
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iTep, -

-iG(py = o—o

Figure 2.3: Vertex functions and propagator in momentum space.

and so on. The graphical representation given in figure 2.2 clarifies the procedure.
We see that the correlation functions can be expressed as a sum of tree diagrams,
in which the lines represent the exact (as opposed to free) propagator G* and
the vertices represent the exact I',, ...,,. For this reason the derivatives of I'
are called vertex functions®. In this way we obtain G***» in terms of G*' and
Lypyopn - Since G* is the inverse of —TI',j; all correlation functions are expressed
in terms of I'(¢).

For J(x) = 0 the correlation functions become translation invariant, as they
are combinations of 7-functions (2.108): ¢y(x) = (0|p(z)|0) does not depend
on z and G(xy,---,x,) = G(x1 + 2,---,x, + z). Also the vertex functions are
then translation invariant and the expressions simplify in momentum space. Our
conventions are as follows,

/d4x1 ... d4xn 6*i(p1$1+---+pn$n) F(l‘l ... ajn),

= (27‘(’)4 54(])1 + - +pn)F(p1 . -pn) (2.144)
/d4x1 .. 'd4$n e UpP1E1++Pran) Gy an),
= @2n)' 0" (pr+ - +pa)G(pL-pa) (2.145)
G(p,—p) = G(p), L(p,—p)=TL(p). (2.146)

Note the extraction of a four momentum conserving delta function, which is
present because of translation invariance. The corresponding diagrams are given
in fig. 2.3. As a consequence, e.g. the three and four point correlation functions
are given by

G(pipeps) = G(p1)G(p2)G(p3)L(p1paps), (2.147)
G(pr---ps) = G(p1)G(p2)G(p3)G(pa)[L(p1p2apspa) (2.148)
+ L(p1, p2, —p1 — P2)G(p1 + p2)(p1 + P2, p3,p4)
+ L(p1,p3, —p1 — p3)G(p1 + p3)L(p1 + p3, P2, pa)
+ T(p1,pa, =p1 — pa)G(p1 + p)T (P1 + Pa, P2, P3)],

2The factors i and (—i) in fig. 2.2 look artificial at this stage and can be omitted. These
factors are introduced for conventional reasons and appear anyway in a later stage.
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Y Glpp, b,y = AN

N
iy Glr,p. By Py ) =

Figure 2.4: Graphical representation of the three and four point correlation func-
tions. As in the previous figures the lines and solid dots denote the exact (fully
dressed) propagators and vertex functions.

according to the diagrams in fig. 2.4

2.7 Dyson-Schwinger equations and the loop ex-
pansion

It is useful to restore Planck’s constant A temporarily. We know already the
explicit appearence of /i in the vacuum amplitude (see e.g. (1.249a)),

Z(J) _= e%W(J) _= e%[r(¢)+‘lk¢k], (2149)
vy B
ko W) iw(J) 2.1
0 e S en : (2.150)

where W (J) and I'(¢) may still depend implicitly on /. Equation (2.113) for the
vacuum amplitude can be written in the condensed notation as

0 = e "W+ Sy (=) eV, (2.151)

16
i o1 CI)
W) = —
e Je + So (0) + Sim (O)i(i]l + 35 km (O)i(i]g A
W W]

i0J,i0J,, 0.,

1
+ gs,klmn (0) (2.152)
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The classical action S does not depend on 7.
To evaluate (2.152) we insert 1 = e~#" e#" in between the §/8.J’s and use
the following operator identity

. hS ho
—iw(J) W) gk Y 2.153
)
ik vkl
= ¢ —ZhG W (2'154)
. (2.155)

where in the second line we used the chain rule (2.135). Then eq. (2.152) can be
rewritten as

A 1 n A 1 JUA
0=[Jk+ Sk (0) + Sy ' + ESaklm (0)g'p™ + gS,kzmn oo 1, (2.156)

where the differential operator in [---] acts on the number 1. Using (2.141) we
have
1 = ¢, (2.157)
P )
dom1 = (¢ — ihGlPW)qsm = ¢l¢™ — ihG'™, (2.158)
A a )
[ om n _ L p ¥ m n __ s mn
FEIL = (¢ =G (6" — iG™)
+ (—=ih)2GPG™G™MT - (2.159)

Putting things together see that (2.156) can be rewritten as

Tk = Sk (0)+ (i3S ()G

o 1
+ (—zh)%s,mmn (¢)GPG™G™ Ty (2.160)
where the argument ¢ in the derivatives of S is explicit. Suppressing the ¢
dependence as usual and recalling the effective field equation I',,= —J, k we

finally have our desired equation
1
il = @Sk +h i pm (—iG'™)

1. . . -
+ hzg 1S jtmn (—IG™®) (—iG™) (—iG™ ) iT g - (2.161)
This equation is represented graphically in figure 2.5. Differentiating (2.161)
repeatedly and letting J — 0 in the end we obtain an infinite hierarchy of coupled
equations, for the full propagator G*' and the vertex functions I'y,...;, : the Dyson-
Schwinger equations. This differentiation is most easily done graphically using
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2
Ry =9, +‘K15——O -t-'h-é-__@

Figure 2.5: Equation for the the effective action. Dots represent fully dressed
(exact) vertex functions I'y,.., vertices without the dot represent bare vertex
functions S,;....
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Figure 2.6: Equations for 'z, I' g and gy (B =1).
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Figure 2.7: One loop approximation for I',;; and Iz, in the ¢? theory in the
symmetric phase. Here the lines denote the bare propagators.

the rules in fig. 2.2. The first few equations following from differentiating are
given in fig. 2.6, and so on.

The infinite hiearchy can usually not be solved exactly. One can truncate
the hiearchy by setting the n point function I'y,y = 0 for n larger than some
Nmaxs €-8- Nmax = 4, and keeping only the one loop terms in the Dyson-Schwinger
equations. The error in such truncations is difficult to assess a priori and in
electrodynamics the procedure has problems with gauge invariance. Comparison
with numerical simulations using the lattice regularization have shown however
that the truncation approach may give reasonable results. A systematic approxi-
mation is obtained by iteration, by inserting the left hand side into the right hand
side, repeatedly. This leads to an expansion of I, in powers of /i (which is gauge
covariant). The power of & corresponds to the number of loops in the diagrams,
hence the name loop expansion. The semiclassical approximation is [' & S. The
one loop approximation is obtained by simply replacing the full propagators and
vertex functions on the right hand side of the Dyson-Schwinger equations by the
bare ones and dropping the two loop terms. For example, the ¢* theory has in
the symmetric phase only two and four point bare vertex functions (cf. (2.127) —
(2.129)), and to one loop order the two and four point vertex functions are given
by the diagrams in fig. 2.7.

As announced in the previous section, I' = S+ O(f). It is not difficult to see
that each power of & is accompanied by a power of the coupling constant )y, or
some other coupling constant in a more complicated theory with more than one
coupling constant. Setting i = 1, the semiclassical expansion is an expansion in
one of the couplings, keeping ratios of the coupling constants fixed.
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2.8 Path integral representation

Equation (2.151) for Z(.J) has the form of a linear differential equation wich can
be solved by Fourier transformation. We write

= /Dgp et Z(p), Dy =]]det, (2.162)
k

where the integration variables ¢F should not be confused with the quantum
operator field. As usual, differentiations become multiplications in Fourier space,
and the equation for Z(.J) gets transformed as

ho

0_[Jk+57k(5j)]

J) = /DSD e+ Sy (@) 279" Z (). (2.163)

Replacing J; by hd/ido* acting on the exponential and making a partial integra-
tion we discover that the solution is given by

2(9) = const. [ Dp i, (2164)
which can easily be checked directly,
/DS@ [k + Sk ()] enlSOHIP] - /Dso )+ Jiph) e LS(@)+I19']

- /DSO 7 enlS@+e

= (2.165)

because the surface terms vanish due to the ie terms in the action, see e.g. eq.
(2.127). The integration constant is fixed by the property Z(.J) =0,

(2.166)

Eq. (2.166) is the path integral representation of the vacuum amplitude.

The fact that we are dealing with functional differential equations and cor-
responding functional Fourier transformation is helpfully hidden in the compact
notation, but should of course not be forgotten. For example, the formal contin-

uous product in
/Dgpz/Hdgpk —>H/ do(x), (2.167)
k z YT

is mathematically ill defined and needs to be given meaning by a regularization.
We could for instance use a discrete mode expansion, place a cutoff on the number
of modes, and remove this cutoff in a later stage. An obvious choice is the
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lattice regularization, in which the x are restricted to the points of a lattice
in spacetime. Then the continuum limit needs careful study. This method at
once gives a precise and simple definition to quantum field theory and facilitates
numerical simulations on computers, which have led to spectacular successes in
the nonperturbative field theory, in particular QCD, the theory of the strong
interactions.

For i — 0 the stationary phase argument leads to the semiclassical result

Z(J) ~ enlS@+7:0"] (2.168)

with ¢* the solution of
S () + J = 0. (2.169)

The perturbative expansion for i — 0 is a systematic stationary phase expansion,
which can be seen as a steepest descent or saddle point expansion by continuing
¢ to complex values. Although these arguments are formal at this level, such
manipulations of path integrals have turned out to provide a powerful tool in
quantum field theory.

As a simple example, let us write S = Sy + S;, where Sy contains only the
quadratic terms in the fields and S; the higher order terms. Then Z(.J) can be
evaluated as, setting 7 = 1 for simplicity,

Z(J) = €51@7) Z,(J), (2.170)

with Zy(J) the free field vacuum amplitude
Zo(J) = / Dy e!l5o(@)+7x"] (2.171)
= /Dgp e*i%ﬂkaaklzw’Jrika’“, (2.172)

were we suppressed the normalizing const. This free field path integral is formally
just a multiple gaussian integral, which can be solved by making a translation
Pt = ot + GELL,

ZO(J _elkaG L /Dcpe iz GOM‘P (2.173)

The remaining integral is just a constant (o< v/det Gp), which plays no role in
the present discussion. We have reproduced the free field form for the vacuum
amplitude, and by expansion of exp[iSl(%)] we get an explicit formula for the
perturbative expansion of Z(J). This leads to Feynman diagrams, which may
be ordered into various connected and irreducible parts, as seen earlier with the
effective action technique.

The path integral integral is a beautiful independent formulation of quantum
theory and our brief introduction here does not do it sufficient justice.
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2.9 Vertices in ¢* theory

Setting J = 0 (or const.) after all necessary differentiations have been carried out,
thranslation invariance allows for transfering the equations to momentum space.
In the semiclassical approximation I' = S and the field equation S, (¢g) = —J
is for J = 0 an equation for the vacuum expectation value ¢y,

(1 + Aogg)do = 0. (2.174)

Since )q is positive, for 2 > 0 the solution is ¢y = 0 and the system is in
a symmetric phase (no spontaneous symmetry breaking). The vertex functions
S k1 -k, (0) have alsready been given in (2.129), and read in momentum space

S(p,—p) = —(u§+p° —ie), (2.175)
S(p17p27p3) = 07 (2176)
S(p1,---.pa) = —6X. (2.177)

Only the two and four point bare vertices are nonzero. From the propagator
G(p) = —S(p, —p)~" we see that the bare particle mass m2 = pg.
For p2 < 0 there are three solutions, ¢y = 0 and

do = £ =0 (2.178)

but as we have seen already in sect. 2.5 the ground state corresponds to one of
the ¢y # 0 solutions. The system is in a broken phase. To get a unique ground
state we break the symmetry ¢ — —¢ explicitly and do not let J(x) — 0 but
in stead let J(xz) — €y, which produces the term (2.97). We may think of ¢,
being infinitesimal or, and this is the case in the application of o*-like models
to low energy pions physics, €, may have some nonzero value determined by
experiment. In the broken phase there is also three point vertex. For ¢y — 0, the
vertex functions Sy, ..k, (¢) are given by

S(p,—p) = —(—2u5+p* —ie), (2.179)
S(p1,p2,p3) = —6Agy, (2.180)
S(p1,-++,ps) = —6X, (2.181)

where ¢y has the semiclassical value (2.178). We see that in the broken phase
the bare particle mass is given by m2 = —2u2 = 2X\¢3, if we use for ¢y its
semiclassical value.

In the semiclassical approximation the we can drop the subscript 0 in all these
quantities, u? = pu2, A = A, and the particle mass is m? = m2.
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2.10 Vertices in scalar electrodynamics

We add a source for each field to the action (2.84) of scalar electrodynamics,
S(p, ", A) + / d*z (p*J + J5p + J,AM). (2.182)

The source terms for the scalar field break gauge invariance and the resulting
correlation functions depend on the gauge. We first fix the gauge and then add
the sources. Having fixed the gauge we can also relax the condition of current
conservation d,J* = 0, which allows for unconstrained functional differentiation.
The total current is no longer conserved anyhow, because the breaking of gauge
invariance by the scalar sources causes 0,7* # 0. We have seen before in chapter
1 that the photon Green function depends on the gauge but that the physical
results extracted from Z(.J) are gauge invariant. As we shall see later also the
scattering amplitudes are gauge invariant, and this can be understood from the
fact that the sources are removed to infinity in spacetime.

We have canonically quantized the system in the Coulomb gauge so let us
first make some remarks about this case. The hamiltonian H after quantization
changes in two ways by the addition of the sources: in the Coulomb energy
operator (2.92):

e0j’ (1) — eoj° () + JO (1), (2.183)

and we have to add to H the terms
—/d?’x [(e" (@) J () + T (2)p(x) + T (2) A™ (). (2.184)

The interaction hamiltonian H; in the source-interaction picture is the difference
between the total hamiltonian including sources and the source free hamiltonian.
We shall not go through the cumbersome derivation of the ‘equation of motion
equation’ for Z(J) from the canonical commutation relations in the Coulomb
gauge. It will have the general form (2.151), with S the action in Coulomb gauge.
The resulting bare vertices and propagators look ugly, non-Lorentz covariant, and
the resulting expressions are awkward to work with.
We therefore move quickly to a general covariant gauge, obtained by adding
the term
—/d‘lxi (9,A")? (2.185)
280
to the non-gauge-fixed action, as in sect. 1.13, and after this we add the sources.
Although we can no longer use current conservation to show that d,A" = 0 as
a consequence of the equations of motion with sources, as in sect. 1.13, we may
expect &-independence of the physical results. This is an important test for the
correctness of the procedure, which we will do for scattering amplitudes in the
semiclassical approximation. A proper demonstration of the equivalence of the
Coulomb gauge and the covariant gauges lies outside the scope of these lecture



76 CHAPTER 2. INTERACTIONS WITH SCALAR FIELDS

notes. We assume now the validity of the ‘equation of motion’ for Z(J) in the
generic form (2.151), and as a consequence all the results concerning the effective
action and Dyson-Schwinger equations apply.

The resulting bare vertex functions now follow from the complete action of
scalar electrodynamics, which reads in the formalism using complex fields

S = SA+SA¢, (2.186)
Sy - —/d4x A — i) + (1 &10,0)4°, (2187
Sap = —/fxww@%H@—kw+maw@¢—@wwA“

+egd" PAL A" + Xo(¢7h)” + 7o) (2.188)

We limit ourselves here to the case pd > 0, for which there is no spontaneous
symmetry breaking. (The case of negative u2 is very interesting, it describes a
relativistic superconductor.) Then ¢f = 0 and we have to evaluate the func-
tional derivatives of S at zero fields. The only new aspect is the derivative ¢*¢ A
coupling. Writing these terms as

/ dhud vd w ¢* (1) $(0) A (1) S,y 40 (1, 0, ), (2.189)
we see that Sypau(u, v, w) can be written in the form
/d4x i€9[0,0(z — u)d(x — v)d(x — w) — 0,0(x — v)o(r — u)d(x —w)], (2.190)

in which 9, acts on z. The integration over x can of course be carried out
easily but the above form is convenient for transformation to momentum space,
where the x integral gives the delta function of conservation of momentum. In
momentum space we have then the nonzero vertex functions

(R g — (1~ & k]
= —(uo +p* —ie),

S AnAv (k —k ( )
(2.192)
€0 (P — qu), (2.193)
(2.194)
(2.195)

)
Ser¢ (P, —D)
S ¢A“(p7q7 k)

)
)

—2eggu,,,
= _4)‘07

Sprgarar (D, ¢, k, 1
Spro6-6(P1, 1, D2, G2

and the nonzero propagators

G (k) = G (h, k) = L= 1= ilk_ui:/w — i), (2.196)
1

— G () =
G(p) =G" (p,—p) EN (2.197)
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Figure 2.8: Bare propagators and vertex functions for scalar electrodynamics.
The arrow on the scalar field line points towards ¢*.
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Figure 2.9: Bare propagators and vertex functions for scalar electrodynamics in
the formalism using real fields.

as represented in fig. 2.8. Note that G = G?"¢" = 0 because of global U(1)
invariance. In the formalism using real scalar fields in which

1 Naa o
Sup = —/d4a; [§¢a(—82+u§—ze)¢ + i€oqasd” 0, A"
1 1
+ €077 A A" + 2 20(676%)° + 7ol (2.198)

the vertex functions involving the scalars are given by

Sas(p,—p) = —bap(py +1p° —ic), G*(p) = % (2.199)
Sapu(P, @, k) = eodas (Pu — qu); (2.200)
Sasur (P, ¢, k,1) = —2€50ag G, (2.201)
Sapys (D, 4,7, 5) = —2X0 (0ap0ys + darydps + dasdpy), (2.202)

and represented in fig. 2.9.

2.11 Particles and poles

We have seen in sect. 2.6 that the vacuum amplitude can be expressed in terms
of the full vertex functions and the two point correlation function. Since this
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function plays a special role we discuss here an important property: the particle—
pole connection. For J = 0 the correlation function of the ¢* theory given in
(2.118) is translation invariant. Inserting intermediate states and separating the
one particle contribution using (2.102), which we repeat here for convenience

(Ple()10) = /Z, 7%, (0lp(2)|p) = \/Z, ™ (2.203)

we get for 20 > o0

LG —y) = —iGlay) = O p(@)p()|0) — 0|0 (2:204)
= [ e Qo) olol)]0) + mupe (2.205)
= Zw/dwp P(9) 4 mpc, (2.206)

where ‘mpc’ denotes the multiparticle contribution. Note that the vacuum con-
tribution cancels in the sum over intermediate states. For z° < ¢° there is a
similar expression and combining these in the familiar way we get for general
times

d4p ip(r—y
Glo—y) = /(%)46( \G(p), (2.207)
G(p) = Lﬂmec (2.208)

m? + p? — ie

This shows that the one particle intermediate states lead to a pole in the propa-
gator G(p) as a function of p? with residue Z,. The complete expression includ-
ing the multi particle contributions is called the spectral representation, or the

Kéllén-Lehmann representation. See for example Brown ch. 6.

For the the photon we have similarly in a covariant gauge

M + gauge terms
G(p) = Zn? gQ & + mpc, (2.209)
p? — i€
CL‘O 0 .
Gz —y) "2 /dwp eP(7=) ZA[Z e (p, N)e” (p, A\)* + gauge terms|
A

+ mpc. (2.210)

In the Coulomb gauge, however, Z, and Z, are not constant but depend on p.
For the charged particles of scalar electrodynamics (2.203) is extended to

D 1p@I0) = Ve, (Olo(e) o= = VT,
(p+1e(@)'0) = \/76’””, w|p+ VZ, P (2.211)

which takes charge conservation into account. For example, Q|0) = 0, Qy(x)|0) =
(@, ¢(x)] |0) = —p(x)|0), and it follows that ¢(z)|0) is orthogonal to |p+) which
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has positive charge. Intuitively, (2.211) can be understood from the fact the ¢
creates a bare antiparticle (charge —) and annihilates a bare particle (charge +),
and vice versa for (', as can be seen in (2.60).

We like to stress the generality of the particle-pole connection. It also ap-
plies to composite fields and bound states. For example, in electrodynamics of
electrons and protons we may construct a scalar field ¢y () as composed of an
electron field ¢, and a proton field 1,, with the quantum numbers of the ground
state of the hydrogen atom. Then we can still introduce a source for this field and
the effective action formalism still applies. Since the ground state of the hydrogen
atom is a spinless particle, the py-correlation function has a pole at the position
of the mass of the hydrogen atom. Another example is Quantum Chromody-
namics (QCD), the theory of the strong interactions, in which we can construct
composite fields for the protons etc. out of quark and gluon fields. In numerical
simulations in QCD the bound state masses are in fact essentially computed from
the positions of the poles in suitable composite field correlation functions.

If a correlation function of a field ¢ has no pole on the real p? axis, then
generically this means that there is no particle with the quantum numbers of .
However, it is possible that there is a large ‘bump’ in G(p) near some m?, due
to a nearby pole in G(p), analytically continued into the complex p? plane. This
happens for particles which are unstable but long lived on the relevant time scale.
Then typically near the pole

Z

p? 4+ m?2 —iml’

G(p) — (2.212)

with I' < m. For ¢t > 0 this leads to

dp() . Z
G t = TPV ipot '
(p.?) / o © p? +m? —iml

, Z
7
24/p? +m? — iml’

exp[—it\/p? + m? —iml], (2.213)

by closing the py contour in the upper half plane. For I' < m we may approximate

VP? +m? —iml = w(p) — iml'/2w(p), w(p) = /P2 + m?2, and

7
G(p.t) = ig—e ™ ¢zl (m/w)t (2.214)
w

showing an exponentially decaying time behavior. The physical interpretation
is that I'"! is the life time of an unstable particle, in its rest frame, with the
quantum numbers of the field ¢, and [' is the corresponding decay rate. The
factor w(p)/m is a relativistic time delay factor for a moving particle. See De
Wit & Smith sect. 3.6 and Brown sect. 6.3 for a more detailed explanation.
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Figure 2.10: Source arrangement for determining emission and absorption ampli-
tudes.

2.12 Scattering and decay amplitudes

From the vacuum amplitude we determine in this section the amplitudes for
scattering of particles and decay of unstable particles. We have introduced the
correlation functions G(zy ---x,) as the functional derivatives of W(J). From
now on we assume all derivatives to be evaluated in the limit J — 0, for which
G(z) = ¢(x) — ¢o. Since by definition W (0) = 0, it follows that

Wy =% %/d%l ey Gl ) T (21) -+ T (20). (2.215)

The diagrams for G(z - - - x,) up to n = 4 are already given fig, 2.2. Notice that
there is a full propagator G(zy) at every external line.

We first reconsider the particle emission and absorbtion amplitudes for the
present case of interacting fields, following the same reasoning as for the free
electromagnetic field. Consider a source J(z) = Jy(x) + Jo(x) as shown in fig.
2.10. The J; — J, cross term in the vacuum amplitude appears as

Z(J) = 1—I—---+/d4xd4yiJ1(:r)(—i)G(:c—y)iJQ(y)+---, (2.216)
= /d4xd4y iJl(x)[Zw/dwp e V) L mpclidy(y) + - - -, (2.217)

where we used (2.206) since 2 > ¢°.

It can be shown that for large time separations t = 2° — y° — £oo the
multiparticle contribution ‘mpc’ to (2.217) is negligible. Large times mean in
this context times t > M !, where M is a typical particle mass, e.g. the mass m
of our scalar particles. For M of the order of 100 MeV the time scale M ! is of
the order of 10723 sec. See e.g. Brown, ch. 6 for a discussion of these points. The
case of zero mass (photon) requires a separate study, which is so involved that in
practise this complication is blissfully ignored at this stage.

Performing the spacetime integrations in (2.217) the .J; — J; cross term takes
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Figure 2.11: Emission and absorption of particles (a) and antiparticles (b).

Figure 2.12: Causal arrangement of sources for two particle scattering

the form

Z(J)=1+ -+ /dw,,z'\/Z:Jl(p)*i\/Z:JQ(p) e (2.218)

which shows that in the interacting case the emission and absorption amplitudes

are given by
(pl0)" = i\/Z,d(p), (Olp) =i\/Z,J ()", (2.219)
differing from the free field case only by the factors \/Z.

The derivation above is easily extended to scalar electrodynamics. For the
photons we need to replace Z, by Z, and put in the polarization vectors e*(p, \)
as in (1.273), (1.277). The charged scalar fields are coupled to the sources ac-
cording to S — S + [d*z (J*p + Jo'). Comparing with (2.211) or (2.60) we
see that J(x) can only emit particles and absorb antiparticles, and vice versa for
J*(z), as illustrated in fig. 2.11.

Returning to the ¢* theory, consider next a source of the form J(x) = Jy(x) +
Jo(x)+J3(x)+ J4(x) with the various components arranged in spacetime as shown
in figure 2.12. The causal relation between the sources is such that particles
emitted by sources 3 and 4 can be absorbed by sources 1 and 2. The sources 1
and 2 and also 3 and 4 are separated by macroscopic spacelike distances. The .J;
— Jy cross term in the vacuum amplitude is given by 6*Z/§Jy(x1) - -- 6 J4(x4), or
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Figure 2.13: Graphical representation of (2.220).

+ (=) G(z123)(—0)G(x2ws) + (—0)G(2124) (—0) G (2223)
+ (=) G (w1 m9m324) 00 (21)i T (29)i T (23)i ] (24) + - -, (2.220)

which is represented graphically in fig. 2.13. We have neglected the G(x129)G(z324)
contribution in this figure because for spacelike z = x; — x5 or z = x3 — x4 the
correlation function G(z) drops rapidly to zero (o exp(—m/|z|) as for the Yukawa
potential). With an eye on fig. 2.13 the interpretation of (2.220) is clear: there
is an amplitude in which the particles produced by J3 and J; travel freely before
being absorbed by Jy and Ji, respectively, a similar amplitude for absorbtion by
J1 and Jy, and an amplitude for the possibility that the particles scatter before
being absorbed.

In detail the scattering amplitude can be found as follows. The n-point cor-
relation functions carry two-point functions on their external legs (cf. fig. 2.4).
We make these external line two-point functions explicit by writing

Gy ) = /d4y1 o d'yn Gay) - Genyn) H(yr---ya). (2:221)
In momentum space this can be written as

G(pr-pa) =G(p1) - G(pa) H(pr- - pu), (2.222)

(—=0)" ' Gpr-pn) = (=0)G(p1) -+ ()G (pn) iH (p1 -+ pn). (2.223)

The functions H(p; - - - p,) are sometimes called ‘amputated Green functions’,
connected Green functions with external legs removed. For our case n = 4 this
function is has the generic representation in fig. 2.14. Because of the causal
arrangement of the sources the correlation functions at the external lines of the
four point function G(z; ---x4) may be replaced by their large time (ordered)

form, f%ei”(“y) (—=)G(p) — Z, [ dw,e?® ¥ and the scattering term in
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Figure 2.14: Diagrams for H(p; - - - p4).
(2.220) is given by

Z(J) = 1+ -+ Z:é / dwpl Tt dwm ZJl(pl)* ZJQ(pQ)* ng(pg) ZJ4(p4)
(2m)"6" (p1 + -+ + pa) iH (p1,p2, —P3, —pa) + -+ (2.224)

Leaving out the emission and absorption amplitudes we identify the amplitude
for scattering:

4
i(2m) 6% (p1 + p2 — p3 — pa) (\/Zw) H(py,p2, —p3, —Pa)- (2.225)

We have to keep in mind that the time components p° have a small negative
imaginary part as follows from the evaluation of G(z) for z° > 0 (recall fig. 1.1),
P’ = —py = /m? + p? —ie. This is relevant since H has in general branch point
singularities and associated cuts in the complex p? plane.

The scattering of particles from an initial state |7) to a final state |f) can
be described by the scattering matrix or S-matrix (f|S|é). The conservation
of probability, 37, [(f|S]i)|> = 1, is assured by the unitarity of S, STS = 1.
Separating the possibility of no scattering by writing S = 1 4 ¢7", the first few
matrix elements of S can be decomposed as

®ISle) = (plg) =2p"(27)°6(p — @), (2.226)
(pip2|Slg) = (p|Slqrg2) =0, (2.227)
<p1p2|5|Q1(I2> = <p1|(I1><p2|(I2>+<p1|Q2><p2|Q1> (2-228)

+i(2m)* 0 (py + p2 — @1 — @2) T(p1, p2; @1, ¢2)-

The .J; — J4 term in the vacuum amplitude can be written in terms of the scat-
tering matrix as

200) = [ dipd i, di, Olp)" (Ol

(P1p2] Slarg2) (@1 ]0) (g2 0) " + - - - (2.229)
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Comparison with (2.219), (2.228) and (2.225) shows that

4
T(p1,p2; q1,42) = (\/ Z<p> H(p1,p2, —q1, —q2). (2.230)

In general, polarization factors for spin (and charge, in the real field for-
malism) appear naturally. The photon propagator G* (k) produces Z g" =
Zaly o, e'(k, N)e”(k, \)* + gauge terms| on external photon lines, e.g.

Ju ()G (1 — y)Hyrop (y, - - -, w) GV (1 — ), (v) - - -
— P23k ) e (K N VH o (Ko —k)e” (ky V) A (k), (2.231)

For example, in scalar electrodynamics the amplitude for scattering of a photon
on a scalar particle has the form

TP E'N;p, kX)) = Z,Z et (K', N Hy (', K, —p, —k)e” (k, ). (2.232)

The amplitude in (2.227) is zero in ¢* theory due energy-momentum conser-
vation: —(p; + p2)? > —¢> = m?. In a more general setting however we can
imagine an incoming particle with mass m to be different from the two outgoing
particles. If m; + my < m, energy-momentum conservation allows the ingoing
particle to decay into particles 1 and 2, i.e. the incoming particle is unstable. If
we approximate in the external line the unstable particle propagator by a stable
particle propagator we can still fit it into our description. The decay amplitude
is then given by

T(pip2;q) = \/Z\/ Z\ Zy H(p1, p2, —q). (2.233)

Such a stable particle approximation is natural in the semiclassical approxima-
tion, in which the propagators are simply the free field propagators.

2.13 Cross section and decay rate

In scattering experiments the typical measurable quantity is the differential cross
section. Consider a beam of particles hitting a target, or two colliding beams.
The initial particles have momenta p; and p,. The differential cross section do is,
loosely speaking, the number of outcoming particles of a given specification, e.g. n
particles with momenta ps, ..., p, in a momentum range dps, ..., d*p,, devided
by the incoming particle flux. The cross section is related to the scattering
amplitude 7" by the formula

1
do = ————dwp, - dw
F(pi,p2) " b
(2m)*6(ps + -+ pn — p1 — p2) [T, (2.234)
1
F(p1,p2) = : (2.235)

4\/(191]?2)2 - m%m2
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Here |T'|? is the modulus-squared of the scatering amplitude, averaged over the
spin polarizations of the initial particles and summed over the final spin polar-
izations,

— 1
TP = (251 + 1)(

A3, - D dn| T P11, D222, 2.236
252+1)A§n|<p3 3 Dol T|prds, pada) ( )

Where s; and sy are the spins of the incoming particles. For the photon 2s+1 — 2
as it has only two independent polarizations. More refined information can of
course be obtained by analysing the spin dependence of the cross sections. The
factor 1/F is a Lorentz invariant flux factor. When p; and p, are collinear it is
simply related to the relative velocity of the incoming particles,

P1 P2

- 2.237
» ( )

_ 0.0 _
F_p1p22)rela Urel =

For the derivation of the above formulas see Brown sect. 3.4, De Wit & Smith
ch. 3, or the 1975/76 lecture notes.

In the case of two particle scattering the differential cross section in the centre
of mass frame (p; + p2 = 0) is given by

Ea

dO' 1 I{If e 1

=== TR=——__"17p2 2.238
Q) F167r2W|| 642112 ki| B ( )

where W is the total energy and k; and k; are the magnitudes of the initial and
final three momenta,

W =pl+p5, ki =|pi|=p2], ky=|ps| = |pal- (2.239)

These quantities can be expressed in terms of the Mandelstam variables, s, ¢t and
u, cf. fig. 2.15,

2

s = —(p1+p2)® =—(ps + 1), (2.240)
t = —(p—ps)® =—(p2— 1), (2.241)
u = —(p1 —pa)* =—(p2 — p3)*, (2.242)
stttu = mi+my+mg+mi (2.243)

In the centre of mass frame s = W2 is the squared total energy. The momentum
transfer ¢t between particle 1 and 3 is related to the scattering angle 6,

t=(p) — pS)? — (k? + k% — 2kiky cos9), (2.244)

and similar for u. Using
dt = 2k;kd cos 0, (2.245)
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Figure 2.15: Two particle scattering.

and integrating over the azimuthal angle ¢ we have

do 1 —
i 6Imsi? T2 (2.246)

We can express k;, k¢ and W as a function of s and ¢, which brings do/dt
into a manifestly Lorentz invariant form. Furthermore, the invariant momentum
transfer ¢ has more physical significance than the scattering angle in some frame.
The differential cross section in the laboratory frame (p; = 0) can be obtained
by expressing s and ¢ in terms of the lab frame variables.

We conclude this brief summary by giving the formula for the differential
decay rate of an unstable particle of momentum p, p* = —m? to n outgoing
particles, in the rest frame,

7|
dl' = (]iI duop,) (2m)'6(py +pu —p) - (2.247)
For two particle decay
dar k
-5 = T 2.24
0~ 32z 11 (2.248)

where k = [p:1| = [pa2|.

2.14 Examples in scalar electrodynamics

We give here some examples in the semiclassical approximation, also known as
the tree graph approximation, since the relevant Feynman diagrams in terms of
the classical propagators and vertices have a tree structure without any loops.
Since the propagators have the free field form, Z, = Z, = 1. Furthermore, there
is no difference between bare and renormalized parameters, e, — e etc. For
definiteness we shall call the charged scalar particles 7. The diagrams for the
scattering 7 + 7~ — «t + 7~ are given in fig. 2.16. Notice the annihilation
diagram (second diagram), in which 7% and 7~ annihilate into a ‘virtual photon’
and subsequently get re-emitted. It is as if the incoming and outgoing 7+ produce
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Figure 2.16: Diagrams for 77 (p;) + 7 (¢1) = 71 (p2) + 7 (g2)-

effective sources which emit and absorb the virtual photon. Virtual in this jargon
refers to the fact that the effective mass of the incoming state, —(p; + ¢1)* > 0,
and not zero as for the photon. The photon is said to be ‘off the mass shell’” as
its four momentum is timelike. In a similar intuitive language we say that the
7t and 7 in the first diagram exchange a virtual photon. In this case the four
momentum of the virtual photon is spacelike.
The scattering amplitude is given by
J7 72 _ w1y /1.2
T = € (p1+p2)u J u kf)k K/k (—¢1 — q2)v
g — (1= &)1
12

where k = py —p1 = ¢4 — ¢ and [ = p; + ¢¢ = p2 + ¢2. The gauge dependent
(&-dependent) part of the photon propagator does not contribute because k(p; +
p2) = (p1 — p2)(p1 + p2) = —m? +m? = 0, and similar for {(p; — ¢;), which
is an expression of conservation of the electromagnetic current (cf. Problems).
In terms of the Mandelstam variables (2.243) the amplitude can be written in
manifestly Lorentz invariant form

- —t
T = ¢ (“ 4l ) (2.250)

t S

(P1 - Ch)zu (2-249)

Another example is the scattering of 7~ off a different positively charged
particle with mass M. To describe this we introduce a new scalar field for this
particle and couple it also to the electromagnetic field. The vertex functions are
identical in form, except for the new mass M, and since the annihilation diagram
is absent in this case, T" is given by the first term in (2.250) only. We quote the
differential crossection in the laboratory frame from De Wit & Smith sect. 4.3,

do a? 1+ E/M sin® 10
dQus  4E2sin' 10 \1+2E/Msin® 16 )’

(2.251)

where E is the lab energy of the incoming 7~ and « = e*/4r is the fine structure
constant. For a heavy target M — oo we get Rutherford’s formula.
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Figure 2.17: Diagrams for v(k) + 7% (p) = (k') + 7+ (p').

Notice that at last we have identified the coupling constant e as the elementary
charge unit by comparison with experiment.

We finish here with pion-Compton scattering, v(k) + 7+ (p) — v(k') + 7= (p').
From the diagrams in fig. 2.17 we find the scattering amplitude

TEN,p' kN, p) = e(K',N) Hy (K, p',—k,—p) e’ (k, ), (2.252)

2p" + k'), (2 k), 2p — k'), (20" — k),

Hy (K 1k, —p) 2 |+ K)u@p+ k), (20— K)u(2p' — k)

(p+ k)2 +m? (p — k)2 + m?
—20u] - (2.253)
The tensor H,, is transverse,

K'H,, = k' H,, =0, (2.254)
where it is essential that the pions are on-shell, p?> = p'* = —m?. This ex-

presses gauge invariance, the amplitude is unchanged when we substitute e.g.
et (k' N — et (k' N)* + wk'™. The transversality of the amplitudes is also es-
sential for Lorentz invariance. Averaging over initial polarizations and summing
over final polarizations,

— 1
e = 5 > oITP
AN
1
= 3 D e N e (K N)D e (k, Ne (k, ) H Hy,, o (2.255)
N A
wWe use
Z e’(k,A\)e’ (k,\)* = ¢g"? + gauge terms, (2.256)
A

where the gauge terms are terms o k£” or k. Then the result can be expressed
as

—_— 1
TP = - H,H"* (2.257)

. (2.258)
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which is manifestly Lorentz invariant. We quote De Witt & Smith sect. 4.4 for
the differential cross section in the lab frame,

do  o? 1+ cos* 6
dQuab  2m?2 [1+ E/m(1 — cos )]

(2.259)

In the low energy limit this reduces to the result for classical electromagnetic
radiation,

do a?
— =—1 20). 2.260
dQiab  2m? (14 cos™0) ( )
Integrating over angles we get the Thompson cross section
8ra?
= ) 2.261
0= 2 (2.261)

2.15 Appendix

The classical energy (2.31) is also the expectation value of the energy operator
in the interaction picture

H- / B J(x)p(z), H= / dw, a(p)ia(p) (2.262)

in an appropriate state with classical properties. We have seen such a state before
in section 1.9 for the case of the electromagnetic field, the state

10,) = Uy (t, —00)|0) = T et~ 42" J&)0() ). (2.263)

Consider therefore a source J(x) = Ji(x) + Jo(x) which is static for a very long
time and goes to zero in the far past. Under these conditions the classical field
is given by (the calculation is as in sect. 1.9)

o9 () = (0, t ()]0, £) = / 0y ol — 1) (1), (2.264)

where Ge(x — y) is the retarded Green function, given in momentum space by

1

Graa(p) = —5— i (2.265)

For times much larger than the intial transient period in which the source is
switched on we can take the static approximation J(y) — J(y) and integrate
over y°, which leads to the static Green function,

Y d*p o eP(z—y)
/ Y ret(l' - Z/) - / (27_‘_)4 / Y m2 n p2 — (p() n 7:6)2

= Gsat(xX—y)- (2.266)
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Hence ¢(9)(z) — ¢(“)(x), the static field of (2.25), and (0,t| [ dz J(z)p(x)]0,t)
has the corrsponding value (z° = ). To evaluate (0, ¢|H|0,t) we use the fact that
|0,%) is an coherent eigenstate of a(k) in the static approximation. This can be
seen by differentiating

U (t, —oo) a(k) U (t, —o0) (2.267)

with respect to £, which gives the c-number
i / Px e J(z) = it J(p, ). (2.268)

Integrating this from —oo to ¢ with exp(ip°t) J(p,t) — exp[(ip® — €)t] J(p), € —
+0, then gives

e?’t J(p)

Uy (t, —o0)ta(p)U, (t, —00)|0) = a(p) + 0

, (2.269)

hence J
a(p)[0. ) = " %m, 1), (2.270)

It follows that we may replace the annihilation operator in H in (0, ¢|H|0,t) by
the above eigenvalue when acting on the ket |0,¢), and similar for the creation
operator when acting on the bra (0,¢|. This gives back the classical expression
for the energy in terms of

PO0) = [ day [0 p) + )], ap) =P (227)

2.16 Problems

1. For the free scalar field, verify that 0,7" = 0 as a consequence of the
equation of motion.

2. Verify that j* given in (2.80) is the Noether current associated with the
global U(1) invariance of S4,.

3. Derive the equations of motion for scalar electrodynamics and verify that
ej" is the electromagnetic current in Maxwell’s equations.

4. Verify that 0,7* = 0 as a consequence of the equations of motion for
the scalar fields. When the total action contains external source terms
[ d*z (J*¢ + Jo*), obtain 0,5

5. Using creation and annihilation operators, calculate the expectation values
of the current in the free complex scalar field theory, (0|j#(x)|0) and (p £

|7 (2) g %)
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6. In the ©? theory verify

o w

OTp(x)p(y)e(2)0) = b5+ (=1)G(z,y)do + (=) G (Y, 2)do
(—0)G(2,2)do + (—0)*G(z,y, 2).

(2.272)

_|_

Similarly, express
(01T p(w)e(x)e(y)e(2)]0) (2.273)

in terms of the correlation functions.

. Consider U defined in (2.95) for the ¢* theory. Verify that the mass m,

as defined by the position of the pole in the propagator, is given in the
semiclassical approximation by m? = 9°U/dy?, evaluated at the ground
state value of .

. Let F(A) be a functional of A#(z). From the definition of the functional

derivative,
5F = / FUMELLIY JTn (2.274)
dAH(x) ’
verify that
0 A" () 4
=0r o (x —vy). 2.275
S =t —) (2.27)
For a scalar field ¢(x) the corresponding relation reads
op(x) 4
=6(xr —vy). 2.276
50) (z —y) (2.276)
Using this relation we can calculate
_ ) J ! "
S(u,v) = 5o) 30() /d z3 Oup(2)0"¢(z) (2.277)
— / A 0,5 (1 — w) "5 (& — v) (2.278)
= 9?6 (u—v), (2.279)
and its Fourier transform (from (2.278))
/d4ud4v eI Sy, v) = — /d4x 0, (e~P*) 9" (e7%) (2.280)
= —p*(2m)*o(p+ q). (2.281)
Derive along similar lines that
— 0 0 4 1 n%
Sup(.0) = 5 Ty | 2o @E@)
= (gap0® — 0405)0" (u — v), (2.282)

/ dtud've™ ™ Sop(u,v) = —(pgas — Papp) (2m)'0(p +q).  (2.283)
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10.

11.

12.

13.

. Verify the vertex functions of scalar electrodynamics in the real field for-

malism as given in egs. (2.199) — (2.202).

The vertex functions can also be read off in momentum space, writing S as
(using o* theory as example)

5(291, s ,pn) ¢(—p1) - -¢(—pn), (2.284)
bo(p) = / diz e (). (2.285)

Rederive the vertex functions of scalar electrodynamics (in the real and
complex formalism) using this method.

Rederive eqs. (2.211) from
(palps(2)|0) = bag \/Zye™P" (2.286)

in the real field formalism. Reason that d,s in the above equation is a
consequence of global SO(2) invariance.

In scalar electrodynamics, in the real field formalism, draw the semiclassical
diagrams for pion-Compton scattering, indicating the relevant indices, in
momentum space, and write the expression for

Hyuovs (K P, —k, —p). (2.287)
Then reobtain (2.252)-(2.253) from

T(kl)‘lapla k)\ap) = eu(kla )‘I)* €a (+)* HHC!Vﬂ (klapla _k7 _p) ey(k7 )\) €s (+)

(2.288)
Pions and the linear sigma model
The lagrangian of the linear o model
1 " 1, 1 9
‘C = _5 u(paa Pa — 5” PaPa — Z)‘(Qoa(pa) (2289)

(@ = 1,2,3,4, A > 0), is invariant under O(4) rotations p, — Ras¥s,
RT = R™'. For pu? < 0 in the semiclassical aproximation, the system un-
dergoes spontaneous symmetry breaking, (0]¢,|0) # 0. Adding the explicit
symmetry breaking term

AL = epy (2.290)

to L, gives
(0]¢a|0) = vda,a. (2.291)
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For the descriptions of pions we make the identification 7, = ., a = 1,2, 3,
while ¢, corresponds to the o particle. The latter may be identified with
a very broad spin zero, isospin zero, enhancement in 77 scattering. In
the excercises below we compute the width of the sigma particle, the pi-pi
scattering amplitude and compare with experiment.

1. Express v, m, and m, in terms of \, y? and e.
For m, > 2m, the sigma particle can decay into two pions.

2. Show that the o7m®r® vertex function equals —2\vd,,, and calculate the
matrix element (pja;paq|T|p) for the decay o(p) — m(p1a;y) + m(paas).

The internal rotations which transform the m, into each other are called
isospin transformations, with generators I,, a = 1,2,3. The pion states
la), a = 1,2, 3 (suppressing the momentum label p) transform in the vector
(adjoint) representation, in which the isospin operators I, are represented
as (b|I,l¢) = —i€we. The physical pion states with well defined charge
are eigenstates |I,I3) of I? and I3 with |1,1) = |7 *), |1,0) = |7°) and
|1, =1) = |x~). Isospin polarization vectors e}, = (a|l, I5) can be chosen as

e, = (—=1,-14,0)/v2, e = (0,0,1), e*; = (1, —i,0)/V2.

3. Check that the above polarization vectors are consistent with the stan-
dard action of the isospin lowering operator I_|1,1) = v/2|1,0), etc. (I_ =
I —ily).

4. Show that

(rt7n|T|o) =2\, (7°7°|T|o) = —2\v. (2.292)

The differential decay width in the o rest frame is given by

ar=—"*__ T|? dS2, (2.293)

327m2m2

where k, ) are the spherical coordinates of the momentum of one of the
pions.

5. Verify that

Do — 7t ) =2T(0c — 7°n°) = X (2.294)
2rm2’ '
keeping in mind that the two 7° particles are identical.
6. As a check, compute the total decay width also directly from
1 1 B 9
= 9m. 2 > | dwy,dw,, (27)*6(p — p1 — po)[(prawpaas| TIp) >, (2.295)

a1a2
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The explicit factor 1/2 corresponds to 1/n! in the formula for the unit
operator (for free pions) in the n-particle subspace

1
1225 > /dwm'--dwpn [P1a1 - Pran) (Pray - - poan|.  (2.296)

a1--Qpn

7. Interpreting the o enhancement in 77 scattering as an unstable o-
particle, it might have a mass around 900 MeV and a width of rougly
600 MeV. Given that v = f; = 93 MeV, derive

3 (mg —m3)? (mg — 4m3)'/?
32w m2f2

I = (2.297)

and compare with the above physical data. Derive an upper limit for m,
from requiring I'/m, < 1.

The pi-pi scattering amplitude can be written as
<p3a3p4a4|T|p1a1p2a2> = A6a1a25a3a4 + Béa1a35a2a4 + 06a1a46a2a3- (2298)

The A, B and C can be expressed in the Mandelstam variables s = —(p; +
p2)%, t = —(p1—p3)? and u = —(p; —p4)?. In the c.m. frame, s = W2 W =
total energy, t = —2k*(1—cos#), u = —2k*(1+cos ), k = c.m. momentum,
f = scattering angle.

8. Derive o2 )
2 _
Az oy g P gy s (2.299)
mZ —s mZ —s

and find the corresponding expressions for B and C'.

9. By using the step isospin operator I_ acting on |7t7), construct total
isospin eigenstates |I,I3) for I = 0,1,2 in terms of |7 77 ), |7*7F), and
|7%7°). Using the isospin polarization vectors ef, defined earlier, derive the
following expressions for the scattering amplitudes 77 = (I, I3|T|I, I3) in
total isospin channel I:

T'=B+C, T'=B-C, T*=3A+B+C. (2.300)

The partial wave expansion for 7" can be written as

B 8nW

T! — (20 + 1)T} P(cos ). (2.301)

where the P, are the Legendre polynomials. Neglecting inelasticity effects,
the phase shift in isospin channel I and angular momentum channel [ is

given by
exp(2i6]) = 1+ T}, (2.302)
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and the s-wave scattering lengths are defined by

ap = lim 6, /k. (2.303)
k—0

10. Neglecting terms of order m?2/m?, derive Weinberg’s results

0 7 mg 9 2 m,

= —_—— = —— 2.304

and compare with the experimental values a) = 0.26 £+ 0.05 fm (1 fm =~
(200MeV)~h).
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Chapter 3

Lorentz invariance

We explore in this chapter some basic aspects of Lorentz transformations and
translations.

3.1 Lorentz transformations

The elements of the group of Lorentz transformations can be defined as the
matrices A which leave the inner product zy = g, 2*y” invariant:

ot — Mty = Ny’ oy = guaty — gu AN 1%y = gagz®yP. (3.1)

Since x and y are arbitrary this invariance expresses that the metric g,, is an
invariant tensor, which is really a condition on A,

9N A5 = gap. (3.2)
In matrix notation we assign the matrix elements of A as
(A);w = AH]/) (3.3)

and we order the indices p = 1,2, 3,0 such that

1
1
(g)/w =G = 1 . (3.4)
-1
Then the A’s satisty

Mg =g, (3.5)

where T" denotes transposition. It follows that
det(ATgA) = (det A)? det g = det g = det A = +1. (3.6)

98
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For a =0, 8 =0, eq. (3.2) gives
3
(A%)? =1+ (A%)* =A% >1 or A% <1, (3.7)
m=1
Thus the full Lorentz group consists of four disjoint sets according to wether
det A = +1 and A% > 1 or < 1. Important examples are parity,

-1
P= -1 . : (3.8)
1
with det A = —1 and A% = 1, and time reversal
1
T— L ) , (3.9)
-1

with det A = —1 and A% = —1. The product PT has det A =1 and A% = —1.

Transformations with det A = 1 and A% > 1 are elements of the proper
or orthochronous Lorentz group LL. From now on we shall omit the adjective
‘proper’ and call the Ll ‘the Lorentz group’. The elements of LL are continuously
connected to the identity and can be written as

A=exp(F), TrF =0. (3.10)
From (3.5) we see that the real matrix F" has to satisfy
F'g=—gF, (3.11)

which yields the following solution in terms of parameters w® and generators
MH/\J

1
F = —i§w”AMm, (3.12)
—i(Mex)w = —iM, = —(g590w — 939), (3.13)

where the somewhat artificial looking factor (—i) is put in for later convenience.
The My, are hermitian and antisymmetric matrices which are explicitly given by

00 0 0
_ oo =10
M = eumMnp, —idh=1| o 1 4 o |- (3.14)
00 0 0
0 010 0 -1 00
0 00 0 1 0 00
M=l 000 M= 0 0 00 (3:15)
0 000 0 0 00
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These are the generators of rotations,

A(R) = exp(—imem), Wm = Z€kim wh. (3.16)

This can be seen more easily from the representation

(Mg)nu = —i€kim, (3.17)

for \,p=1,m =1,2,3 and (M), = 0 zero otherwise. The first three rows and
columns of My, are just the spin 1 matrices Sy of (1.145). The My, are symmetric
antihermitian matrices which are explicitly given by

0001
B . _loooo
ng = Nk; —’LNl— 000 0 y (318)
1000
0000 0000
. 0001 . 0000
TN =g g 00| T T 00 001 (3.19)
0100 0010

These are the generators of special Lorentz transformations, often called boosts,
A(B) = exp(—ixxNi), X = Wro- (3.20)

A boost in the 3-direction,

10 0 0
. 01 0 0
= exp(—ixNs) = 0 0 coshyx sinhy |’ (3:21)
0 0 sinhyx coshy
has the effect
oh? = b 23— 2 B0, 2% = B+ ya?, (3.22)
where = wv/c (¢ =1) and
1 .
=coshy, 78 =sinhy, (3.23)

T A

are the usual parameters in special Lorentz transformations. The rotation ma-
trices are orthogonal, A(R)T = A(R) ! and the boosts are symmetric A(B)T =
A(B).
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The generators satisfy the following commutation relations,

[Mn)\a ] = i(gﬁuM)\I/ + g)\uMn,u - gm/M)\u - g)\,uan (324)
[ M, Ml] = €kim M, (3.25)
[Mi, Ni| = i€gim N, (3.26)
[Nes Ni] = —i€pim M, (3.27)

The rotations form a group, but the special Lorentz transformations do not form
a group, as is clear from the fact that the commutation relations of the N; are not
closed. The boosts generate rotations and only boosts combined with rotations
form a group, the Lorentz group Ll.

Under parity and time reversal the generators transform as

PM,P = My, PNpP=—Ny,

TM,T = My, TN,T=—Nj. (3.28)
The effect of T on M), and may seem strange, since one may expect the angular
momentum or spin to change sign under 7". This is indeed the case in the quantum

theory, where 7" involves complex conjugation: 7' is realized by an antiunitary
operator in Hilbert space.

3.2 Irreps and SL(2,C)

To find irreducible representations (irreps) of the Lorentz group we consider the
linear combinations

1
I = i(Ml FilN), (3.29)
which are hermitian matrices satisfying the commutation relations,
L5 IF) = e Iy, (3.30)
15, 1F] = 0. (3.31)

The Lorentz group L1 is equivalent ‘in the small’ to two independent rotation
groups. This enables us to find irreps of the Lorentz group from the knowledge of
those of the rotation group. The representations will be labeled by two angular
momenta (5%,57), 75 =0,1/2,1,3/2,..., with (I*)? = [7 [ = j*(j* + 1), and
with the eigenvalues of I taking the values —j%, ... +j*.

Since the parity operation changes the sign of N but not of M, the generators
I* are interchanged under P,

PIFP =17, (3.32)

The action of P leads outside an irreducible representation (j,j7) of LL but
it can be represented in a reducible representation (j*,57) + (5,77), where it
interchanges the components (j%,77) and (j7,j7).
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The simplest nontrivial representations are the two dimensional representa-
tions (3,0) and (0, ), realized by

1 1 1 1
(5, 0) : Ml — 50’[, Nl — +’i50'l, Il+ — 50’[, Il_ — 0, (333)
1 1 1 1
(0, 5) : Ml — 50}, Nl — _iio—l’ Il+ — O, [f — §O'l, (334)

where o; are the Pauli matrices acting in a two dimensional representation space.

The matrices in the (3, 0) representation have the form

1

exp|(xe — iwy)50x] = L, (3.35)
while for the (0, 1) representation
1 N
exp(—xx — dwe)5ou] = (L) . (3.36)

These representations are double valued because the rotations are represented
double valued in the j = % representation. The double valuedness is a nuisance
and it is convenient to work with L directly. The matrices L are general complex
2x2 matrices with det L = 1. This is the defining representation of the group
SL(2,C), the group of general complex linear unimodular transformations in two
dimensions. The representation L — L* of SL(2,C) is inequivalent to L, but

equivalent to L — (LT)~!, because
Of = —02 0409 (3.37)
implies
L* = oy (LY oy (3.38)
We now interpret a Lorentz transformation A to be a representation of SL(2,C),

A = A(L). It corresponds to the representation (%, %), L — L x L* ~ A, as fol-

lows. Let us assemble the components of a four vector z* into a matrix X,

e R A e F
1
= §Tr o, X, Tro,o, =26,. (3.40)
Then
det X = (2°)* —x* = —g, a"z", (3.41)

and the transformation

Xaog = Xbs = Law Ly Xarpr = (LX L) (3.42)



3.3. REPRESENTATION IN HILBERT SPACE 103

leaves the determinant invariant, det X’ = det X. It has to correspond to a
Lorentz transformation of z*,

I\ U (3.43)
1 1
=5 Tro, X' = 5 Ir [0, Lo, LT 2", (3.44)
Hence,
1
A(L), =5Tr o,Lo, LT (3.45)

is an explicit representation of A in terms of L. We see that L and —L give the
same A.

3.3 Representation in Hilbert space

The finite dimensional representations of SL(2,C) are not unitary, but infinite
dimensional representations can be unitary. It has been shown that Lorentz
symmetry can be represented by a unitary operator U(L) in Hilbert space. This
guarantees that transition amplitudes are invariant,

|12) = U(L)|th12) = (W1[tho) = (vh1]¢bn), (3.46)

in the Heisenberg picture. Here |t} 5) represent actively transformed states |1/, 5),
e.g. corresponding to rotated or boosted systems. (For example, |1)s) can be a
state representing a system of particles converging to a scattering region and |¢;)
can be a state representing particles emerging from the same region). If Lorentz
invariance is broken, then U(L) does not exist or is time dependent.

The expectation value of an observable in the state |} is related to the
expectation value in |¢)) by a Lorentz transformation. For example, for a current
operator j*(x),

(W17 (@) ) = A%, (15" (@) ), (3.47)

where A = A(L) and & = Az (i.e. 2* = A(L)*, z¥). Instead of transforming the
system we can also transform the observables (the passive point of view). From
(3.47) we infer that the current operator transforms as

U(L)! () U(L) = ALY, §*(A(L) 'a). (3.48)

U(L) (2) U(L) = (A(L) "), (3.49)

Fields transforming as L itself or L™ are called spinor fields; these will be the
subject of the next chapter.
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The energy-momentum operators P* transform as a vector
UL P*U(L) = A(L)*, P” (3.50)

A (spacetime) translation by a four vector a* is represented by a unitary
operator

Ula) = e~ Fe = gmiaPriaP? (3.51)

with P* the energy-momentum operator. For example, a scalar field transforms
as

Ua)' () Ula) = ¢(z — a), (3.52)

which is consistent with the solution of the Heisenberg equations of motion for
a’ = —t,a=0.

Lorentz transformations combined with translations form the Poincaré group.
The generators of Lorentz transformations are represented by hermitian operators
Jn/\a

Mx = Jix, (3.53)

with J; = %Glmn Jmn the angular momentum operators and K; = Jjy the ‘kick’
operators generating boosts. From (3.50) follow the commutators of J with P,
and the complete set of commutators of the Poincaré group is given by

[Jn)\y J;U/] - i(gnuj)\u + g)\VJn,u - inVJ)\u - g)\anw (354)
[Jm\a Pu] = ignuP)\ - igAqu (355)
[P,,P,)] = 0. (3.56)

We end here with the form of the transformation of a one particle state |p, A)
(X is a spin index), which is defined by applying a standard boost to a standard
state at a standard momentum p (usually at rest, p = (0,m) or some other p in
case of massless particles):

U(L)|p, \) = Cua(L,p) [A(L)p, ), (3.57)

A/

where Cy, is a unitary matrix depending on L and p. Unfortunately we have
no ‘time’ here to go into details, see e.g. Ryder sect. 2.7 and Weinberg’s 1964
Brandeis lectures. We also cannot go into the discrete symmetries P and 7" here.
See for example Bjorken & Drell II ch. 15.
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Chapter 4

Spinor fields and fermions

Dirac proposed in 1928 a relativistic generalization of the Schrodinger equation
for a quantum mechanical wave function, his famous Dirac equation. It turned
out later that this ‘wave function’ should not be seen as a wave function in the
Schrodinger picture, but as a quantum operator field analogous to the scalar
and Maxwell fields. Hence the name ‘second quantization’ (quantizing the wave
function a second time to get an operator field) which is sometimes given to
quantum field theory. We shall not follow this historical road, as it is tends
to be confusing conceptually, but start from the notion that there are spin 1/2
particles which we want to describe by a quantum field transforming in a spinor
representation of the Lorentz group. We are then automatically led to the Dirac
equation. The basic principles of quantum field theory — in particular locality —
lead to the connection between spin and statistics: the spin 1/2 particles have to
follow Fermi-Dirac statistics, they are fermions.

Using the principle of gauge invariance we couple the Dirac field (complex
spinor field) in the next chapter to the electromagnetic field and derive the Feyn-
man rules the resulting spinor electrodynamics.

4.1 Spinors and Dirac matrices

For a field theory of spin 1/2 particles we need spin 1/2 fields, i.e. fields which
transform in the j = % representation of the rotation group. This representation
is embedded in the spinor representations (%, 0) and (0, %) of the Lorentz group.
We shall use a notation in which the spinor fields in the (3,0) and (0, 3) irreps
are denoted by g and v, respectively. The meaning of L and R will become
clear later. The spinor fields transform as

1

Ula) = Len(M(D) M0), L (3,0) (4.1)
(@) — L=, (AD) "), L1 € (0, %), (4.2)
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where we should not confuse the L € SL(2,C) with the subscript L of 1. We
recall that these irreps can be written as

_ —ip-o/2+x-0/2
L e~ po/2xo/2

Li-1 — e—in-a'/Q—x-a-/Z,

where ¢ and x are the angles corresponding to rotations and boosts, respectively.

The representations (%, 0) and (0, %) are complex. Suppose we choose a g
for our description of spin 1/2 particles. We expect that ¢} will occur in our
formulas essentially as often as ¢p. Now 9% transforms with L* ~ LT=! ie. it

transforms like a vr. Let us define v, in terms of ¢i by

Yr(x) = ogpr(x)”. (4.5)

Then this 1, transforms as in (4.2); recall L'=! = o, L* 05. Since we need to
work with both irreps (3,0) and (0, 3), it is advantageous to combine the fields
Y r into a four component spinor

w=(§jjf>, (4.6)

which transforms in the reducible representation (3,0) + (0, 3),

P(x) — S(L) (ML) ), (4.7)
S(L) = (ﬁ L?1>. (4.8)

The four components of 1)(x) are not independent because of (4.5); it is called a
Majorana field. We shall see in the next section that it can be turned into a real
field by a unitary transformation.

We now introduce 4x4 Dirac matrices v*, v5, 8 and o, as follows:

. . 0 1
B = woz—w[):(ﬂ 0)2/)1, (4.9)
F_ L (4.10)
/Y _/Yk - _Zo_k 0 - p2 k> .
. T 0
o= Yy = ( 0 _1 ) = ps, (4.11)
ot = ipAH, (4.12)
o 0
of = = < Ok o > =pso, o =—ap=1. (4.13)

Here the p;, are Pauli matrices in block form,

0 1 0 —il 1 0
pl_(n 0)”’2_(@']1 0 >”’3_<0—]1>‘ (4.14)
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The specification in terms of tensor product matrices pg o; is very convenient.
Note that we often write 1 for the unit matrix (2x2 or 4x4) 1. The Dirac
matrices have the following hermiticity properties

P =" A =of Al=m, B =8 af =, (4.15)
and
BA B = -, (4.16)
The «* satisty the algebraic relations
Y = =200, {9 s} =0, (4.17)
i.e. the y* anticommute with each other and with 5 and their square is £1,
YVo=-1, vi=1, =1, p*=1, ai=1. (4.18)
It follows from (4.17), using the identities

l[ab,c] = alb,c] + [a,c]b, (4.19)
[ab,c] = a{b,c} —{a,c}b, (4.20)

and the combination of these
[ab, cd] = alb, cd] + [a, cd]b = a{b, c}d — a{b,d}c + {a, c}db — c{a,d}b, (4.21)

that the matrices
Yr ==X = — 1V Yn, KFE N (4.22)

satisfy the commutation relations of the generators of the Lorentz group, up to
a factor 2,

[En/\; Eul/] = 2i(gnuEAu + g/\usz - gmuz/\u - g)\uzfiu)- (423)

We have a representation of the Lorentz algebra, My, — %Em, and in fact
1 KA
S = exp(—zzw Yir)- (4.24)

To show this in detail we identify the generators of rotations and boosts,

1
Xkl = €kim 2m, Emziﬁkmzkb (4.25)

Yo = —imY0 = ok = —iY" 7 = — B (4.26)
= iak = 2’75 Ek, (427)
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and (4.24) reduces to

1 1
S = exp(—zigok Sk — 15Xk iV52 k) (4.28)
1 1
= exp(—zigok o, + Xk P30%) (4.29)
1
wkl = Z€kim®Pm; wkU = _MOk = Xk (430)

2

which is identical to (4.8), taking into account (4.3), (4.4).
We note that

BSts = B (e—%wwﬂu)TB _ g bbb g = oo — gt
= 57 (4.31)
which shows that [ plays the role of the metric,
STBS = . (4.32)

For example, 1f3% is a Lorentz scalar. It is customary and convenient to hide
this ‘metric’ into the ‘bar’ notation,

=B, (4.33)
Under Lorentz transformations we have
v — Sy, p—PpST (4.34)

which makes it obvious that 11 is a Lorentz scalar.
Using the identity (4.20) we find the commutation relations between the gen-
erators Y,y and ,,
1 ) .
[izn)\a 7;1] = =1k Grp + VYX Gk (435)

which imply that v* transforms as a four vector,
STHL) " S(L) = A(L)", 7" (4.36)

It follows that v*~", u # v and Y*v"v*, u # v # p # p, transform as antisym-
metric tensors, while 75, which commutes with S,

[El’i)\af)%] = 07 575 = 755’7 (437)

is a Lorentz scalar in this sence.
We can also represent parity P and time reversal 1. As mentioned in sect.
3.2, the parity operation can be represented in a reducible representation of the
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form (j*,77)+(;j~,77). This is the case here with j© = 1, ;= = 0, and inspection

shows that P and 71" can be represented by the matrices

P—Sp=9" T = Sp=iy";. (4.38)
We have,
Sp' ' Sp = Pha", Sptyt Sr =149, (4.39)
and furthermore
5'131 Ekl Sp = Ekl; SI;I Ekg Sp - —Ekg, (440)
S{vl Ekl ST — Ekl; S{wl Ekg ST — —Eko, (441)

form a representation of (3.28). Taking P and 7 into account, ¥ is a vector and
s is a pseudoscalar,

SplvsSp = —7v, S;p'vsSr=—s, (4.42)

which can also be seen from
1

- ZI €uvpo V'V VYT, €023 = 1, (4.43)

Vs

and the fact that the Levi-Civita tensor is a pseudotensor under P and 7. We
now have the following summary:

ol is a vector, (4.44)
DI is an antisymmetric tensor, (4.45)
iy s is a pseudovector, (4.46)
s is a pseudoscalar, (4.47)

when these matrices are sandwiched between a v and a .

The (3,0) and (0, %) components of the representation L — S(L) can recov-

ered with the projectors

L+

L=
P, = P = 4.48
R 9 ) L 9 ) ( )

P: = Py, P}=P, PrP,=0. (4.49)

4.2 Majorana field and Majorana representa-
tion

The algebraic relations among the Dirac matrices and their hermiticity properties
are invariant under unitary transformations,

A = U~ UT, (4.50)
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and so are all the relations which are written in terms of the ~*, 3, s, a*,
.., which are made out of products of the v*. This is very useful if we want
to transform to another representation of the +’s. The representation (4.9) —
(4.13), which is characterized by the fact that +5 is diagonal, is called a Weyl
representation, or chiral representation.
It is sometimes useful to use a representation in which the +* are real. Such
a representation is called a Majorana representation. The transformation

1
U=¢4P%2 = — (]. + Zpg 0'2) (451)

V2
leads to the real matrices

At = —03, 42 = —paoa, 7P =01, 7 =ip3oy (4.52)

(e.g. UnUt = —Upyo Ut = —U?pyoy = —ipaoopeoy = —o03). On the other hand

’3/5 = —pP102 (453)

is imaginary. Our Majorana field, which we introduced in the Weyl representation
as a field for which v, = 097} turns into a real field in the above Majorana
representation,

T _ Yr\ _ 1 (ptoypr \ 1 Yr + Yy,
1/)—U1/)—U<¢L>_\/§ (¢L—02¢R>_\/§ (02(1?73—11;1%))’ (454)

which is real. Writing out the real and imaginary parts and the two components
4 of Yr explicitly,

we(9)-(378).
we have
W
12) = \/§ _7/),,” ) (456)
e

which gives ¥ as a real four component field.

From now on we drop the 7, the type of representation will be clear from
the context. In a Majorana representation the matrix S representing Lorentz
transformations is real,

S — e—i%wl“’ Suv — e—%wulf TV _ ka7 (457)
and the same is true for the matrices representing P and 7',

Sp=9"=8% Sr=1iy"y = S;. (4.58)
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Hence, the reality of the Majorana field is preserved under these transformations.

In general hermiticity properties are preserved under a change of representa-
tion, in a real representation these become symmetry properties (under transposi-
tion). Let us now express the symmetry and reality properties in a representation
independent form. For this we need the so-called charge conjugation matrix C'.
In any representation there is a unitary antisymmetric matrix C,

cic=1, ct=-c, (4.59)
relating v* and (v*)”" according to
T = —CTyk O, (4.60)

In the Majorana representation v*7" = 4#T and (cf. (4.16))

C=p=i (4.61)
(= —p303). In any other representation (indicating the Majorana representation
by the " for the moment),
W = (Utar )T = U AT U = U BB U (4.62)
= —UTU pypUTU*, (4.63)
and we obtain C' in the form
C = pUTU* = BC. (4.64)

We then also have in any representation
o= (T = —(ByB)" = OTpytBC (4.65)
ClyrC. (4.66)
In the Majorana representation C' = 1. In our Weyl representation
C=UU*=e 2% = —jpygy, C = p3oy = 742 (4.67)

The charge conjugation matrix derives its usefulness by relating S(L)T with
S(L),
s(nf=cts)tc, (4.68)
and S* with S,
S(L)* = S(I)"" =B S(L) BC. (4.69)
For example, C’lﬂz/)awﬂ = pTCT is a scalar.
For general complex spinors ¢ and Y = YB3 the so-called charge conjugate
spinors 1(®) and () are defined as

9O = (JOY = BCy?, §19 = —(Cly)" (4.70)
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(where the formula for 1(® follows from (9). Under Lorentz transformations
() transforms like 1.

Finally in this section, let us express the Majorana property of a spinor field
in representation independent form. In the Weyl representation the Majorana

property

wL = O’Qd)}k_z (471)
implies
. 0 o
Yt = (_02 0 ) 0 (4.72)
= Cly=Clgy, (4.73)

where the last line is a representation independent form. This can also be ex-
pressed as

v o= PIp=yTp=ytpCE =yt
—(CTy)T, (4.74)
With this definition eq. (4.73) expresses the fact that a Majorana field is self

(charge) conjugate

YO =y, P =14 (4.75)

4.3 Polarization spinors

In our description of spin 1/2 particles we will need polarization spinors u*(p, A),
the analogue of the polarization vectors e*(p, ) for the photon field. They are
constructed as follows.

A particle at rest transforms under rotations like a two component spinor X,

X+=<(1)>, x—=<(1)>- (4.76)

From these two component spinors we make a four component spinor for a particle
at rest in the Weyl representation,

L 1 (xa
u(@, A) = V2mé, & = 7 ( “ ) , (4.77)

where m is the particle mass and
p=0, p°=m. (4.78)

The curious normalization factor v/2m is put in for later convenience. We can
characterize u(p, A) by the eigenvalues of the two commuting matrices ¥3 and 3,

23u(ﬁa)‘) = )\U(ﬁ;)\); 235/\:)‘5/\ (479)
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These relations together with u(p, —) = £(21 — iXs) u(p, +) serve to characterize
u(p, A) in a general representation.

Polarization spinors u(p, A) for arbitrary momentum p now follow by applying
a standard boost B, which takes p into p:

ABB)p = 1. (4.81)

B, = X2 x =P, f):%, tanh y = —. (4.82)
p

u(p,A) = S(By)u(p, ) (4.83)
— (cosh g +sinh g B - Sys)u(p, \) (4.84)
= (VP"+m+Vp"—mp- )k (4.85)

We shall also need conjugate spinors related to u(p, \) by charge conjugation (cf.
(4.70)),

v(p,\) = u(c)(p,)\) (4.86)
= BCu(p, )" = [u(p, \)C]", (4.87)
o(p, ) = @9(p,\) = —[CTu(p, V)]". (4.88)

In the Majorana representation C' = /3, giving simply
v(p, \) = u(p, )", Majorana rep. (4.89)

Since charge conjugate spinors transform under Lorentz transformations like or-
dinary spinors we have

o(p ) = S(B,)v(p N (4.90)
= (VP +m+ D —mp-Ty)€), (4.91)
&) = pog. (4.92)

Furthermore, at rest
S0(p,A) = —Av(p,)), B =-xel?, (4.93)
BupA) = —v(p.N), BE7=-¢7, (4.94)

and

u(p, A) iy u(p, \') = 2p" S, (4.95)
o(p,\) iv*u(p, N') = 2p" G, (4.96)
a@, N ulp,N) = 2mdyy, (4.97)
o(p, \)v(p,N') = —=2mdy, (4.98)
a(@, N v(p,N) = o(p,\)u(p, ) =0. (4.99)
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The orthogonality of a u(p, ) and a v(p, \') follow from the fact that they are
eigenvectors of § with different eigenvalues. From the above follow the relations
for general p:

W) i ulp, X) = %S, (1100)
v(p, A)iv*o(p, N) = 2p" (4.101)
u(p, ) u(p,\N') = 2moyy, (4.102)
o(p, \)v(p, N) = —2mdy, (4.103)
u(p, A) v(p, \') o(p, ) u(p, \') = 0. (4.104)

For example,

a(p, \) v ulp, N) = a(p,\)S(B,) 'iv*S(B,)u(p, \) = A(B,)", 25" dax
== 2pu5)\)\/. (4105)

Since @(p, \)iv° = u(p, )T we can interprete (4.100) and (4.101) for p = 0 as
orthogonality relations. The u’s are orthogonal to the v’s in the sense

up, V'o(p,N) = u(p,\)'S(B,)" S(By)v(p, X) (4.106)
= 0, p=(-p,p"), (4.107)

where we used S(B,)' = S(B,) = S(B;) .
Similarly, we have completeness type relations at rest,

STu@Na@ ) = 2m Y & =m(l+p)

A
= m—iv"p,, (4.108)
and for general momentum
Z u(p, A) a(p,A) = m—iy'p,, (4.109)
A
> v, N olp,A) = —m—iy"py. (4.110)
A

The second relation follows from the first and the definition of v(p, \),

@A, N) = Y [alp, NCT [Clu(p, V)]’ = ~[CF (m — iv"p,) Clsa

A
= —[CT(m —in"p) Clhs = —[C (m — in"pu)" CMag
= —(m+i7"py)as- (4.111)

In the Majorana representation these relations follow more easily from the reality
of the v* and v = u*.
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Because of the orthogonality relations (4.100), (4.101) and (4.107) the com-
pleteness relation in four dimensional spinor space reads

> Tu(p, Nulp, N +v(p, \)o(p, )T = 2p°. (4.112)

Eqs. (4.80) and (4.94) generalize to arbitrary p as,

ivpuu(p, A) = —mu(p, A), iy"'puv(p, ) = mo(p, A), (4.113)

which turn out to be the free Dirac equation in momentum space.

We conclude this section with the zero mass limit of the polarization spinors,
which can also be interpreted as their approximate form for high energies. From
eqs. (4.85) and (4.91) we see that for m — 0,

ulp, ) = Ip|(1+D- )&, (4.114)
v(p,A) = VIpl(L+D-By) &7 (4.115)

The quantity within parenthesis is essentially a projector. Let us change the

specification of the &, such that they become eigenvectors of the helicity matrix
1.
b=, (4.116)

with eigenvectors A/2. This can be done by a standard rotation which brings the
three axis along p,

60,9) = e e ihiSg (4.117)
p = (sinfcos ¢, sinfsin ¢, cosb). (4.118)

Then A is the sign of the helicity,

D-T6(0,0) = Ar(0,0), D-ZEV(0,0) = -1 (0, 9), (4.119)
and the helicity is tied to s,
v(lpl,0,6,0) = VIpl(1— M) €76, 9). (4.121)

where we recognize the projectors P, p = (1 F 75)/2. Since 75 commutes with 3
we can choose the helicity &’s to be eigenvectors of v5. The eigenvalue x of s,
which takes values 1, is called the chirality (‘handedness’). We see that for the
u-spinors x = A, whereas for the v-spinors y = —\. Then a right handed spinor
ur = Pgu, which in the Weyl representation has only the upper two components
nonzero, has positive helicity, while a left handed spinor u;, = Pj, u, which in the
Weyl representation has only the lower two components nonzero, has negative
helicity, and vice versa for vg .
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4.4 Spin and statistics

We shall derive here that an operator spinor field has to describe fermions. We
assume now a theory of free spin 1/2 particles, in which there is a vacuum state |0)
with zero energy-momentum, and one particle states [pA) with energy-momentum

P,
POy =0, PHpA) = p"|pA), (4.122)

where P* is the energy-momentum operator; A = =+ is a spin index. The conven-
tions are such that these states are obtained by the action of standard boosts B,
(cf. (4.82)) on a particle state at rest,

IpA) = U(B,)[pA), p=0, p’=m, (4.123)

where U(B,) is the unitary operator representing B, in Hilbert space. The index
A = = labels the eigenvalue of the third component of angular momentum .J;3 in
the rest frame of the particle,

1
JslpA) = SA[p). (4.124)

Let ¢ (x) now be an operator spinor field of the Majorana type,
(@) = (CTB)as ¥’ (x), or P(z) = ~[CTy(a)]". (4.125)
In the Majorana representation we have a hermitian spinor field
Y*(z)" = ¢%(x), Majorana rep. (4.126)

By analogy to the scalar and Maxwell fields we assume t(z) to annihilate spin
1/2 particles to the vacuum according to

0l (x)[p, A) = u®(p, A) ™. (4.127)

The form of this equation is dictated by translation invariance (the factor exp(ipz))
and Lorentz invariance (the factor u®(p,\), because |p, \) and u(p, \) are con-
structed in exactly the same way with the boost B,). The remaining factor (= 1)
is a normalization condition for ¢ (z). In general we may have an additional fac-
tor \/Z as in sect. 2.11, which we take to be \/Z = 1 in case of no interactions.
Taking the complex conjugate of (4.127) and multiplying by (3 gives

(p, A9(2)[0) = a(p, A) e~ 7. (4.128)

On the other hand!, using the Majorana property of ¢)(z), the c.c. of (4.127) can
be written as

(p, AN (@)10) = u®(p,\)* e (4.129)
= (C'B)ap (p, Al (2)[0), (4.130)

!The derivations can be shortened by working consistently in the Majorana representation.
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and using (4.87),

(p, A[p*(2)[0) = v*(p, A) e, (4.131)
Taking the complex conjugate of (4.131) again and multiplying by S,
(019 (z)|p, ) = B(p, A) €. (4.132)

In the Majorana representation for the Dirac matrices we have simply,
{p, M\[w*(2)]0) = u®(p,\)* e~ Majorana rep., (4.133)

We have seen that free fields create only single particle states out of the vac-
uum. If we assume this to be the case of our free spinor field as well, we can
derive the vacuum expectation value of equal time commutator or anticommuta-
tor relations. Using completeness we have

Ol(z) $(y)|0) = Z/dwp<0|1/)(33)|p,)\>(p,)\|1/_)(y)|0> (4.134)
=D / dey, " u(p, ) u(p, A) (4.135)

= /dwp @Y (m — iphy,), (4.136)

where we used (4.109). Similarly, we have

;/dwp (014 (y)p, A){(p, Al™(x)|0)  (4.137)

(019" (y) v° () 0)
= > / dey, €= 0% (p, X) 07 (p, ) (4.138)

= = [ iy ) (ki) (4.139)

using (4.110).
From these relations now follow the vacuum expectation values of equal time
commutators or anticommutators:

(011 (@) 97 (y) £ 07 (y) ¥ (2)]]0)g0—y0 (4.140)
= /dwp [eip(x_y) (m —ip"y,) F [e_ip(x_y) (m+ip'y)]as  (4.141)

_ / duy P [(m — ipFy) (1 1) +ip" 01 £ D]g. (4.142)

It follows that the vacuum expectation value of the commutator [1)*(x), ¥? (y)] is
given by

(O0][6° (), 5 (1)]0)20-y0 = 2(m — 73 / duo, PO, (4.143)
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This does not vanish for x # y: it is not ‘local’ for nonzero spacelike (z — y)? =
(x—y)?. On the other hand, the vacuum expectation value of the anticommutator
is simple and local:

(O™ (@), ¥ (1) }O)so—yo = 1705 6(x — ¥), (4.144)
OH{y*(@), 9% (1) HO0)somyp = dapd(x — ). (4.145)

The spinor operators at different points in space evidently do not commute at
equal times: they anticommute!

The above anticommutator looks similar to the commutator between a field
©(x) and its canonical momentum 7(y) at equal times, apart from spinor indices.
By analogy we shall assume now that not only the vacuum expectation value,
but the operators satisfy the anticommutation relations,

{(x,1), 9 (y,8)1} = Gup (x — y). (4.146)

We have arrived at equal time anticommutation relations for the spinor field.
Next we introduce operators a(p, \) and a(p, A)! by the expansion

0(0) = 3 [ dap [ up. V) alp, ) + o N alp N, (4147
A
or in the Majorana representation,
P(z) = Z / dw, [e7 u(p, \) a(p, ) + e P u(p, \)* a(p, \)1]. (4.148)
y
Then

a(p, )) = / B P u(p, N (), (4.149)

where we used u(p, )T = u(p, \)iv°, (4.100) and (4.107). Using (4.101), (4.107)
and the Majorana property of 1) we also have

a(p, \)! = /d:"xeiva(p,)\)%(x) (4.150)

_ / & =P () u(p, A) = [a(p, M), (4.151)

i.e. the ‘dagger’ on a(p,\)" indeed means hermitian conjugation, as is obvious
from (4.4). These expression give the following anticommutation relations for the
a(p,\)" and a(p, M),

{a(p,A\),a(p’, \)T} = 2p°(27)%6(p — P') dav, (4.152)
{a(p, A),a(@, X))} = {a(, M) a(p’, )1} = 0. (4.153)
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For example,

{a(p, A))@(p/) )\/)} — /dede/ eipx+ip'xl ua(p, )\)*ua' (p/7 )\/)*

{y*(x), v (x')}
= (27)*6(p + P') ulp, V)1 BCu(p, N)*
(27)% 6(p + p') u(p, \)w(p, N)* =0, (4.154)

where we used {1/%(x),%* (x)} = (3C)aw 6(x — x') which follows from (4.146)
and (4.125), and (4.107).

It follows that a(p, A\)' and a(p, \) can be interpreted as creation and annihi-
lation operators,

a(p,A)[0) = 0, (4.155)
IpA) = a(p,\)'|0), (4.156)
PiALp2A2) = a(pr, M) a(pa, A2)T10), (4.157)

etc. These relations plus (4.147) are consistent with (4.127), (4.131). Further-
more, it is consistent to define the energy momentum operator as

P = [ diyalp, ) alp, ) (4.158)

since the anticommutation relations between the a’s and af’s imply

[P a(p,\)T] = p"a(p, V) (4.159)
Pra(p,)10) = p"a(p,N)'|0), (4.160)

etc. Because the a(p, \)T anticommute among themselves the basis vectors [p; Ay, - -

are totally antisymmetric: the spin 1/2 particles follow Fermi-Dirac statistics,
they are fermions.

Let us list the important ingredients which went into this famous spin-statistics
connection:

Hilbert space (of course with positive metric);

a vacuum state |0) and one particle states |p, A) with the expected energy
momentum eigenvalues (4.122);

translation invariance and Lorentz invariance, in (4.127)-(4.133);
- locality.

We stress here the relevance of the locality principle, as introduced for the case
of the electromagnetic field in sect. 1.16. Imagine constructing local observables

' 7pn)\n>



4.5. VACUUM AMPLITUDE, PROPAGATOR AND ACTION 121

O(z) out of the spinor field. We want these to be local, i.e. they should commute
for spacelike separations,

[O(:L’),O(y)] =0, (:L' - y)

The spinor fields are not local in this sense, because anticommutators are not
commutators, and apparently spinor fields are not observables. However, ‘bilin-
ears’ of the type (' is some combination of Dirac matrices)

2> 0. (4.161)

Oz, 1) = ()T (x), (4.162)

and generalizations thereoff, e.g. involving derivatives, do satisfy locality. This
follows from application of the identity (4.21) with the help of which we can
express commutators of bilinears in terms of anticommutators. The anticommu-
tators satisfy locality, and therefore also the commutators of the bilinears,

[O(z,T1),0(y,T2)] =0, (z—1y)*>0. (4.163)

We shall see later that familiar observables like currents and the energy momen-
tum tensor can indeed be expressed as ‘bilinears’. Had we insisted on commu-
tation relations for ¢(x), we would have had to assume a nonlocal commutator
[(z),? (y)], as follows from its vacuum expectation value (4.143), and we could
not have satisfied the locality principle.

4.5 Vacuum amplitude, propagator and action

At this stage we have and operator field ¢)(z) and an energy operator H = P°, but
not yet an action or unambiguous field equation which can be used to introduce
local interactions. It is obvious from (4.147) that ¢(x) satisfies the Klein-Gordon
equation,

(m? — %) ¢(z) =0, (4.164)

but it also satisfies the Dirac equation:

(m+~*0,) Y(x) = Z / dw, [e7* (m + iyp) u(p, A) a(p, \)

+e P (m — iyp) v(p, A) a(p, )] (4.165)
= 0, (4.166)
where yp = v*p, and we used (4.113). The Klein-Gordon equation is actually a

consequence of the Dirac equation, as follows by applying m — "0, to the above
equation and using

14 1 v 14
pup 1"y = 5P {77} = e ¢ = 17, (4.167)



122 CHAPTER 4. SPINOR FIELDS AND FERMIONS

and
(m —iv'p,) (m+1iv"p,) = m? + (yp)? = m? + p*. (4.168)

So the Dirac equation seems favoured. Yet, it is not completely clear at this point
that we should invent an action based on the Dirac equation rather than on the
Klein-Gordon equation. To resolve this dilemma we shall introduce an external
source and discover the action from the vacuum amplitude. It turns out to lead
to the introduction of anticommuting numbers.

To streamline the presentation we shall temporarily restrict ourselves to the
Majorana representation, in which ®(z) = 1*(x)". We introduce a real external
source 7, () and add a source term

(o) = - [ om0 @) (4.169)

to the hamiltonian such that the total hamiltonian is H + H,, where mi =
0t B = Nu Bara®®. The vacuum amplitude can then be expressed as usual in the
source-interaction picture as

Z(n) = <0|T6—ifdx0 Hn(aro)|0> — <0|T€ifd4a:ﬁa(a:)w°‘(a:)|0> (4.170)
2
l

= 1+3 /d4xd4y (O|T 7,0 ()T (y)|0) + -+ (4.171)
Consider now the fermion propagator

(01T ¢ ()9 (y)]0). (4.172)

We shall see shortly that we have to modify the definition of the time ordering
operator when fermion fields are involved. For Bose fields the time ordered prod-
uct is symmetric in exchange of labels as if the fields commute, e.g. for a scalar
field

To(x)e(y) =T e(y)p(z). (4.173)

Thus it is natural to define the 1" product for fermion fields such that it is anti-
symmetric, as if they anticommute,

T ™ (x)y" (y) = =T 47 (y)* (), (4.174)
that is
T *(x)” (y) = 0(z° — y°) v (2)” (y) — 0(y° — 2°) VP (y)y*(z).  (4.175)

With this definition the vacuum expectation value of the time ordered product
takes the form, for z° > y° using (4.127), (4.128),

OIT ¢ (@) (y)0) = (0w (x)v?(y)]0), a* >y’ (4.176)
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= Z/dwp (0™ () p, A)(p, A" ()]0)  (4.177)
= /dwp pi=y) Zu p, NP (p, ), (4.178)

_ / dus, @) [(m = iy"p,) Blas (4.179)

= (mf —"B0u)as /dwp ey, (4.180)
where 9, acts on z, and we must not confuse the index § with the matrix 3 = iy".
Similarly, we have for 2° < 3°,

OIT v ()0 (»)]0) = —(0[¢"(y)p*(x)|0), ° <y° (4.181)
_ / dus, P [(m — in"p,) Blse (4.182)

_ / dy e~ P@D [(m + iv'p)Blas  (4.183)
= (mﬂ—y“ﬂ@u)w/dwp e PlEy) (4.184)

where we used the fact that in the Majorana representation the hermitian 8 = i7°

is purely imaginary, hence antisymmetric, and the antihermitian S+* and v* are
also purely imaginary, hence symmetric,

B = =B, (By")" =8y (B)" ="B. (4.185)

Summarizing, we have
OIT (@) (1)) = 0(z° —y°) (mB — +"58,) / o, €75
+0(y° — 2°) (mB — 480, / dus, e~ i7)
— (mB — 1B0,) [0(z° — 4°) / s €5)
+0(y° — a) / duwy eV, (4.186)

where in the last line we pulled the time differentiation through the 6 functions,
which is allowed because the difference vanishes:

—°B16(z° — 4°) /dwp eP@=y) _ 5(z0 — 4% / dw,e PV =0,  (4.187)
We now use the relation

0(z° — o) / duy €717V +0(y" — 2°) / dupe "0 (4.188)
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d*p eP(z—y)

= — 4.1
Z/ (2m)* m? + p? — ie (4.189)
= —iGsa(r —v), (4.190)

familiar from the scalar field and find the fermion propagator
OITy*(@)¢? (»)[0) = [(m —7"0.)Blas(—1)Gscal(w — y) (4.191)
AP ey (M = iv"p) B]

= - ip(@=y) Pl (4192
2/(27r)4€ m? + p? — ie ( )
= —iG™ (x — y) By, (4.193)
OIT (@) (y)|0) = —iG(z —y). (4.194)

Had we used the Bose field definition of the 71" product for the fermion fields,
the expression in (4.188) would have appeared with a minus sign in front of the
second f function and the resulting expression would not be a propagator.

The vacuum amplitude (4.171) is now expected to contain the expression

[ 'y n@ 6 - B ns(0). (4.195)

However, we now have a problem: this expression is identically zero (when the
sources are ordinary numbers)! This is because G(x —y)f is antisymmetric when
viewed as a continuous matrix:

d4 —ip(z— B —1 Nﬁ o
Gy —)Blsa = /(2734@ p(e=y) [(mm2 :;2 _p‘lfe)]ﬂ (4.196)

= _[G(x - y)ﬁ]ocﬂv (4'197)

where we used (4.185) and changed variables p — —p. It follows that (4.195)
vanishes identically when the 7 are ordinary numbers. To resolve the problem we
have to introduce sources 7, (x) which are anticommuting:

N (@) (y) = =0 (¥) 1 (). (4.198)

These are called anticommuting numbers or Grassmann ‘variables’. They are
generators of a Grassmann algebra. We will explain how to use them as we go
along. For more information see for example Brown sect. 2.4. With anticommut-
ing sources the expression (4.195) is algebraically nontrivial. However, it is not
an ordinary complex number but an element of a Grassmann algebra, The same
holds for the vacuum amplitude, and |Z(n)|* can no longer be interpreted as a
probability. Yet we shall see that anticommuting numbers are very convenient
and allow for a treatment of fermion fields similar to boson fields. They widely
used in field theory.

The anticommuting character of all anticommuting numbers includes the
fermion operator fields,

e (2)0" (y) = =0 (y)na (). (4.199)
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Then there is no ambiguity in the introduction of the source term in the hamil-
tonian,

=" By = —¢' BTy =T s =y, (4.200)
where the first minus sign appears because of the anticomuting 7 and . We
can now show how the definition of the time ordering operator for fermion fields
appears naturally from (4.171), where T has its usual ‘bosonic meaning’ since it
came from the evolution operator in the interaction picture. The product of two
fermionic objects is commuting, apart, of course, from the noncommutativity of
the operator fields. The T product of pairs of fermionic objects is a commuting
T product in exchanges of the pairs. We have for 20 > ¢

T (2)0* (@) )¢ (y) = Tal2)9™ (@) (y) 0" (y) (4.201)
= —Ta(0)V (@)Y (Y)Ts(y),  (4.202)

while for 20 < ¢/°,

T () (@) ()¢ (y) = M) e" (W) 7a (@) (2) = Ta(2)75 ()¥" (y) 1" (@)

Hence,

T1a ()0 (@)1 ()¢ (y) = ~Ta(2) T [ (2)0° (9)] 5 (y), (4.204)

and we find for the vacuum amplitude
1 _ 0B —
Z(n) = 1-— is / d'zd'y7,(z) [G(z — y)B1* s + ... (4.205)
1
= 1+ ii/d‘lxd‘lyﬁ(x) Glx—y)nly) +..., (4.206)

where we used 7 (y) = np (y) Berg = —Bss np (y)-

We now look for the inverse (in the matrix sense) of the propagator. Using
(4.168) we find that the inverse of the propagator is a differential operator,
m? + p?

e N et A Sz —y), (4.207)
(2m)* m? + p? — ie A

Blm+"0,) Gl — )5 = [
and the propagator is the Green function of this differential operator with Feyn-
man boundary conditions. By analogy with the Bose case, minus inverse of the

Green function, contracted with classical anticommuting fields )., is now the
candidate for the action of the free Fermi field,

s = - [t 5ue(a) B + 0] v (o) (4.208)

= [ ) m 4170 bela). (4.209)
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If 9. were commuting rather than anticommuting, S would vanish identically, as
can be shown by interchanging the order of the v, (transposition) and partial
integration.

Making 7 explicit we can interpret 1% (z) as a formal classical limit of ®(x):

{v*(2), v ()} = O(h) — {¥¢(2), ¥l ()} =0, (4.210)

as h — 0.

4.6 Anticommuting variables

Because fermion variables anticommute, the variation of the action can be written
in two equivalent ways but different ways?,

55 = /d4x 5% () W(STS(I) _ /d%S 51/;5(95) 50 (x), (4.211)

and correspondingly we have to distinguish between left and right derivatives.
To see this in more detail let us write the action in the condensed notation used
earlier for the Bose fields, using capital letters for indices attached to Fermi fields,

Skr ™ yr, (4.212)

S:—/d%%wTﬁ(qu'y@)wE%

where SKL == _SLK- Then

55 = S+ 6v) — S(v)
- % Sk (W% + 695 (" + 69") — ]

= 5 Swn (YR H 4 9K o)

= Sk oSt = =Syt sk, (4.213)
Hence -
O S= St L = st 4.214
&/)—K—KLw, M—K——Kﬂﬂ- (4.214)
The differentiations also behave like anticommuting variables, e.g.
LY 55 (4.215)
677bK K> .
o
50K (Wr™) = oM — 9t oy, (4.216)

2For simplicity we drop the ¢ on the classical .
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We shall always use left derivatives. Notice that S,k (i.e. first 6/6¢X then
§/09%) equals Skr.

Using
@/
d4 m = __O: Tr) = — 1% Ba/a = /8(105’ ol 4217
50 (2) Yy = =Ty (z) = —n U] (4.217)
the field equation with external source can now be derived as
0 = g (S+ / d*z )
597 (2) !
= faar [=(m +70)]¥(2) + n(2)], (4.218)

in which we recognize the Dirac equation found earlier in (4.166).
We end this section by giving the rule for complex conjugation (or hermitian
conjugation when operator fields are involved),

(le . 77bKn)* — ZDK" .. -ZbKl. (4.219)

Although the individual ¢/¥ are real (with our present use of Majorana fields in
the Majorana representation), the order of fermion variables gets reversed as for
hermitian conjugation. With this rule the action is real,

1 1
S = (5Skp P ) =SS vt = S, (4.220)

since Sip = —Skr.

4.7 Dirac field

From two Majorana fields 1,, a = 1, 2, which are real in the Majorana represen-
tation for of the gamma matrices, we can form a complex fermion field. Such a
field is called a Dirac field. We introduce it here by analogy to the complex scalar
field. The action for two classical Majorana fields with idential mass m is given
by

S == [ dw g vt 540, + m) v (4.221)

where there is a summation over a and with 3 = —37 in the Majorana represen-
tation. This action has a global SO(2) symmetry,

Yo — Rap i, (4.222)

— W — 0 —
Ry = (e™a =R, q=<i OZ>. (4.223)
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The corresponding Noether current follows in the same way as for the scalar field,

0Ya = —iqab s 0w, (4.224)
§S = / d'z j* 0,0w, (4.225)
. 1- .

7" = 5 qatds, (4.226)

and j* is conserved as a consequence of the field equations,
dug" = 0. (4.227)

The eigenstates of the charge matrix ¢ define the Dirac fields
1 1

Y = NG (Y1 —inhg), ¥ = 7 (Y1 + i), (4.228)
P = ﬁ (¥ + %), = NG (Y —97), (4.229)

and keeping in mind that the 1), are anticommuting we find the action for the
Dirac fields,

S =- /d4x1/_) (V"0 +m) 1b, (4.230)

where ¢ = 1'3. From now on we shall work almost exclusively with Dirac fields
treating ¢ and 1 as independent variables, and assume no longer the Majorana
representation for the gamma matrices. (Real fermion fields are used for example
in Schwinger I, II, but complex fields are more common.).

In the quantum theory the following free field expressions are now similar to
those for the scalar field,

U(x) = Z/dwp [ u(p,A) a(p, A, +) + e P v(p,A) a(p, A, —)T],  (4.231)
() = Z/dwp e u(p, A) a(p, A, +)' + P o(p, A) a(p, A, -], (4.232)

a(p,\,£) = la1(p, A) Fiax(p, N)], (4.233)

[\

a(p, \, £) = ﬁ[al(p,)\)Tiiag(p,)\)T]. (4.234)

From the anticommutation relations of the Majorana fields ¢, we find those of
the Dirac fields,

{0%(@), 07 (1) }ar—gp = dapd(x—¥),) (4.235)
(0(@), P (N oy = {0 (@)1, 0P (1) }aoyo = 0. (4.236)
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The creation and annihilation operators satisfy the anticommutator relations
{a(p, A, ¢),a(p’, N, )} = 2p" (27)® 5(p — P') daw Oeer (4.237)

and zero otherwise; ¢ = + denotes a particle and ¢ = — an antiparticle.
In the quantum theory we have to pay attention to the ordering of operators
in the current j#, as for the scalar field,

i Qap Vb

j/i - a
[y o — T iyt T, (4.238)

N — Do —

Then the charge operator is given by

1
@ = [@ap = [@ngpete
= 3 [ duplate. ) alp A +) — alp A ) a(p A, <), (4239
A
which is just the number operator for particles minus the number operator for

antiparticles. It has the following commutation relations with the creation and
annihilation operators,

[@,a(p, A\, )] = Fa(p, A ), [Q,a(p, )\, £)'] = £a(p, A, £)T, (4.240)

and with the Dirac fields

Q.0] =~ [Q.9] =4 (4.241)

As for the scalar field the theory is invariant under the charge conjugation
transformation (4.70), S(1)(9, ) = S(3,4)). In the quantum theory charge
conjugation is represented by a unitary operator Ug,

Ul yUc =49 = @O, ULdpUs =9l =—(Cly)T, (4.242)
The current changes sign under C,
Ul j#Us = —j* (4.243)

(this would not be the case had we ignored the operator ordening subtlety in
(4.238)).
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4.8 Energy-momentum tensor and vacuum en-
ergy

In (4.158) we have constructed the energy-momentum operator P* of the free
fermion field. It is still of interest to know the form of the energy-momentum
tensor T*”. Now we know the action we can use translation invariance to find a
suitable T via the ‘Noether procedure’. (The coupling of a spinor field to the
gravitational field is much too involved to use here for the definition of 7#”.) In
the case of global U(1)~SO(2) invariance we found the conserved current j* by
making a local SO(2) rotation. We follow the same strategy here for finding 7.
We make an infinitesimal local translation x — x + d&(x) on the (classical) fields,

(x) = ¢z +08(x) = o(x) + 08" (2)0x1) (x), (4.244)
Vi(r) = ¥()+ 08" (2)0c(w), (4.245)

and identify 7" from the change in the (classical) action,
68 = / d'z 6¢" 0, T". (4.246)

In the calculation of §.S appears a derivative of £* which is converted to the fields
by partial integration,

5‘9 = S(wlalﬁ,) - S(i/)ﬂ;)
- / d*z [(V + 670, 0) (m + 4#9,) (¢ + 6£°0x1p) — th(m + +"9,) Y]
_ / 04 {SEX0D(m + 1#0,)b + B + 7D,) D] + DuOE" PP D)

— / d'z 0" (0. L + 0, (V"0 (4.247)

where £ = —1)(m+ ~0) is the lagrangian. Since 6.5 is stationary when ¢ and 1)
are solutions of the equations of motion, we have the local conservation relation

9, T =0, T =y 9.0 + 6 L. (4.248)

However, this expression for the energy-momentum tensor is not real, in fact, the
lagrangian itself is not real. This can be repaired by symmetrizing the derivative
in £, writing

S = /d4:c L, L=—¢(m+* 5;)1/), (4.249)
R 1 = —
O = 5(0u— 0y, (4.250)
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which leads to the real energy-momentum tensor
_ —
T =y~" 0" v+ g" L. (4.251)

In the case of the electromagnetic field the Noether form of the energy-momentum
tensor would not be the gauge invariant expression (1.45). For a discussion see
e.g. De Wit & Smith sect. 1.5.

The energy density is given by

T = =70 0y + D + 7 O +9° 00}
= B(m+ ). (4.252)

Of course, we still have to check the normalization and sign — these will turn out
to be correct. The total energy is given by

H = /d%T“O = /d%zpmw, (4.253)

where o = 7, and the hermitian differential operator H is called the Dirac
hamiltonian.

Consider next the quantum theory. There is no operator ordering ambiguity
in H, since § and «y are traceless matrices. The operator H generates time
translations in the way we expect for a hamiltonian,

@) = i [ Py @8m+ FoNE) v@] (1255)

= —iB(m +7*0k)y(2) (4.256)
= Oy(x), (4.257)

where we chose y° = 2° (which we are free to do since H is time independent) and
in the last line used the Dirac equation. Conversely, if we assume that H generates
the time development according to the Heisenberg equation dyy) = i[H, 1], then
the Dirac equation follows. We see here a glimpse of a canonical formalism for
anticommuting variables (see Schwinger III, for example). We do not need this
here since we have now enough at our disposal to turn to the covariant action
(and path integral) formalism.

To express H in the creation and annihilation operators we use the fact that
in the expansion of the fields, e.g. at time zero,

0) = [ day [P u(p,N) DA 4) + P N alp, ) )] (4259
appear orthogonal eigenfunctions of H:

H(p)u(p,N) = (mB+a-plulp,\) =p"ulp,N), (4.259)
H(—p)v(p,A) = —p’v(p, ), (4.260)
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where we used the Dirac equation in momentum space (4.113). We then find

H = /dwp [a(pa )\7 +)Ta(p7 )‘7 +) - a(pa )\7 _)a(pa )‘7 _)T] pO (4261)

= /dwp [a(p, A\, +)a(p, A, +) + a(p, A\, —)alp, A, =)] P°
+ By, (4.262)

with ground state energy density

E 1
70 = —5 Z /dwppopo = —Q/dwppopo. (4263)
A=, =+

In obtaining this expression we replaced (27)35(0) — V, with V' — oo the total
volume of the system (a more careful treatment giving the same result was given
in the photon case, using a finite periodic box).

We see that this expression for for the ground state energy of free fermions is
similar to that of an infinite set of bosonic harmonic oscillators, except that it has
opposite sign, it is negative. As before we have to cancel the energy density with a
suitable bare cosmological constant. The intruiging posibility of canceling, in an
interacting theory, the positive bosonic contribution against a negative fermionic
contribution is one of the aims of introducing supersymmetry.

4.9 Vacuum amplitude to all orders in n, iy

We shall now determine the exact vacuum amplitude for the free Dirac field with
external sources. The coupling of the complex field to the complex sources n and
7 is described by the total action

S (Wes Pe) + / d'x (e + ven), (4.264)
where 1), and 1), are classical fermion fields and
S(Wer the) = — / d*z Pe(m + 748,) . (4.265)
The field equations are given by
0 = 2o (mt ) bule) + i) (4.260)
0be() S ’ '
-34S - L5y -
0 = = —.(x) (m —~" 0,) +7(x). (4.267)

3t ()



4.9. VACUUM AMPLITUDE TO ALL ORDERS IN n, i 133

In the quantum theory the source terms lead to the additional term in the
hamiltonian

H,@") = [ @ lia)i) + b, (4.268)
which enters in the evolution operator in the source-interaction picture
U, (t, t) = T e iz 42° Hn(a®), (4.269)
Then the vacuum amplitude is given by
Z.m) = (0]Uy(00, —00)[0) = (O[T ¢/ 4" 1010y (4.270)
(O[T ¢ &= m+vm gy, (4.271)

Since the combinations of pairs of fermionic objects 7y and 7 are commuting
within the T product, taking a functional derivative with respect to 1 or n goes
initially as in the bosonic case,

0Z =i / d'y (O [57()y () + P(w)dn(x)] '] v T+ 0), (4.272)
For the derivatives we then get
7; 5%) = (0T p(x) et Sy mo+vm) o), (4.273)
= (0|U,(o00,2°) ¢(z) U, (2°, —0)|0) (4.274)
i&fiv) = (0T g(w) et CrE|0), (4.275)

where we recall that we use left derivates. Taking 0y of (4.274) and using the
anticommutators (4.235), (4.236) gives

b 26(;?33) = (0|U, (o0, z?) i[Hn(xO), ()] Un(xo, —00)|0)
+ (0|U, (00, 2°) dptp(z) U,y (2°, —00)|0) (4.276)
= —7°n(2)(0]U, (00, —0)|0) (4.277)

+°(m + *0%) (0]U, (00, 2°) ¢ () Uy, (2°, —00)|0).

This can be rewritten in the form

[4m+wm> +mwﬂzmm=m (4.278)

4]
i0m(x)
which is just the field equation for ¢, with ¢, — 0/id7, as might be expected
from our experience with Bose fields. Similarly, we have the conjugate equation
corresponding to the field equation for .,

-0 -0, - o
{_mién(x) +3“Z_577(x)’y +7( )] Z(n,m) =0. (4.279)



134 CHAPTER 4. SPINOR FIELDS AND FERMIONS

The solution to these equations with Feynman boundary conditions in time
is easily written down by analogy with the Bose case,

Z(n, ) = & ety @G @) (4.280)

with G(x — y) the fermion propagator (4.194). Let us check this for eq. (4.278):

57 = i / d'zd'y [57(x)G (x — y)n(y) + 7(x)G (x — y)on(y)]

eifd4ud4vﬁ(u)G(u7v)n(u), (4281)
°Z /d4 Gle — y)nly) Z (4.282)
and using the fact that G(x — y) is the inverse of m + v0 gives
57
H = A 4.2

which was to be shown.

We can now use this result to express arbitrary vacuum expectation values of
time ordered products as a sum of products of propagators. The only difference
with the bosonic case are the signs corresponding to permutations of the fermion
operators v or ¢ in the fermionic T-product:

OT VN0 = sz (1.281)
= —iG(z —y), (4.285)
O ()b () b)) = —— 2 0 0 4

on(x1) on(yr) on(za) on(y2)  jy=n=0
= (=) [G(z1 — 1) Glaz2 — y2)
- G(xl - y2) G(372 - yl)]a (4-286)

and so on. The reader is urged to verify the second relation by successive differ-
entiation of Z with respect to the sources. Notice that for a nonzero result there
have to be an equal number of ¥’s and ’s, in accordance with charge conser-
vation. Eq. (4.286) is illustrated in fig. 4.1. The generalization to an arbitrary
number of pairs is evidently

OIT (@) (yr) -+ ¥ (@a) () 0) = ()" Y ep Gla1 = yp1) -+ Gl — ypn),

P

(4.287)

where P denotes permutations of 1, ..., n with signature ep.
The vacuum amplitude can of course also be expressed in effective action form
Z@n,m) = V0, (4.288)

Wmnm) = Sete) + / d'x (e + Pen), (4.289)
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Figure 4.1: Diagrams for eq. (4.286).

with 1, and v, solutions of the classical field equations with Feynman boundary
conditions,

Ye(z) = / d'y G(z — y) n(y), (4.290)
Jolz) = / dy () G(x — y). (4.291)

4.10 Problems

1. For a free Dirac fermion field let

IPLALCL, - s PudnCn) = a(P1, A, c) -+ a(Pr, Ans ¢)1]0), (4.292)
and
(prAict, -+, ppAnca|l = (Iprdicy, - - 7pn)\ncn>)T7 (4.293)
(Ola(pn, Ay cn) -+ - a(p1, Aty 1),
where ¢ = + denotes a particle and ¢ = — an antiparticle. Verify

(PN |pAe) = 2p° (27)2 6(p' — P) Sra e (4.294)

and in the two particle subspace (n = 2) at least, verify the orthogonality
and completeness relations

<p,1)\,10,17 T 7p;n)\:710:n|p1)\lcla “ "y Pn, )\ncn> = (4295)
Omn Z ep (PiALCLIPPIAPICEL) * (DR AL CL [PPRAPRCPR),

.
S XY [y,
n D\

Lo An €1 Cn

|p1)\17"'Jpna)‘n><p1)\1;"';pn;)\n| = ]-, (4296)

where P1---Pn is a permutation of 1---n with signature ep.
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2. For a free Dirac field, verify the following matrix elements of the current

J* = Piyty:
(0[5(2)[0) = 0, (4.297)
PN]"@)|pAy = @iytuee )T (4.298)
(PN|"(@)|pA) = —piyt el (4.299)
(PN A ()|0) = aliytv e T (4.300)
O (@)[pA, PNy = Binu' P, (4.301)

where u = u(p, \), @' = u(p', \'), etc., and the ‘bar’ in pA denotes an an-
tiparticle. It may be convenient to use the (conventional) notation b(p, A) =
a(p, A, +), d(p, \) = a(p, A, —) for the particle and antiparticle annihilation
operators in (4.231), (4.232).

Using the charge conjugation matrix C' verify

(N3 (@)pA) = = (@' N 5" () [pA) (4.302)

from the explicit answers obtained above.

. Verify 0,7* = 0 in the above matrix elements of the current j*.

. For the explicit expressions obtained above for the matrix elements of j*

verify that
P'NQIpA) = (PN |pA), (4.303)
etc., where Q = [ &z j°(x).

For general p and v we have

—i
S = < [V Wl (4.304)

2
Let u = u(p, ), u’ = u(p’, \'). Verify that
(p—p)VuSu=2muyu+ilp+p),tdu, (4.305)
and the Gordon decomposition

1
a'iytu = . (p+p)'a' u+i(p—p'), o' " ul. (4.306)
m

Compare with the expression of the matrix element of the current for a
scalar particle.
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Chapter 5

Spinor electrodynamics

Spinor electrodynamics is the theory of interacting spinor and electromagnetic
fields. We discuss the Feynman rules and present some applications.

5.1 Defining the theory

The coupling of the Dirac field to the electromagnetic field is completely analagous
to that of the complex scalar field. We start with

S:SA+SA¢, (5.1)
with X
Sy=— /d% 1 E, F" (5.2)

the action for the electromagnetic field and S4, the action of the fermion fields
in which the derivative is replaced by the covariant derivative D,

Say = —/d4xz/3(m+7”Du)zp. (5.3)

In view of the applications to particle physics we have to decide what the charge
is of the particles to be described by . For example, in an effective description
of a proton by a spinor field 1, we have

Dl”/jp = (Ou —ieA,) by,

Dy, = (0,+1eA,) ¥,
with the convention
e = lel, (5.6)

since the proton has positive charge. On the other hand, the electron which has
negative charge is described by an electron field 1.,

D, 1@8 = (0, +ieA,) 1[56,
Dytpe = (0, —ieAy) e,
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So the charge of the particles (p* and e~) determines the sign in the covariant
derivative. The fact that antiparticles have opposite charge is taken care of
automatically by the formalism. In the following we shall take the electron case
as an example.

In the quantum theory, in the Coulomb gauge, the bosonic operators have the
usual equal time commutation relations, the fermionic operators the anticommu-
tation relations, while boson operators commute with fermion operators. The
Coulomb gauge is awkward to work with and as in the case of the scalar field we
replace the Maxwell action by the modified action

1 1

Sy / Az [ Fo F™ 4 — (9,497, (5.9)
4 2¢

to be used in the equation for the vacuum amplitude Z, with external sources

J#, n and 7. This equation for Z follows from the clasical field equations for the
classical fields A¥, 1. and .,

0 = [—0%" +(1— %)auay] A — i+ T (5.10)
0 = —[m+"(0, +ieA.) Y.+, (5.11)
= —[e(m +ier Ac) — 00" + T, (5.12)

by replacing
- —0

- —, 5.13
and letting the thus obtained functional differential operator act on Z(.J,7,7). In
addition we should replace the coupling constants and masses by bare parameters,
e — ey, m — mg, & — &), and calculate the renormalized values e, m, £ in terms
of the bare parameters in a given regularization. This becomes relevant beyond
the semiclassical approximation.

As mentioned in sect. 2.8, the solution of the equations for the vacuum am-
plitude can be represented by a path integral,

5 5
14 - -
A¢ i0J,’ Ve o7

[ DA Dy D ¢S +i [ d'a (JuAtib+dm)

Z(J,n,m) = [ DADIDY 5 , (5.14)

where the integration variables are classical (anticomuting for ¢ and 1), and
formally

/DA = H/ZdAu(a:), (5.15)
/ DDy = 1;[ / A () A (x). (5.16)
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The demonstration that (5.14) is the solution of the equations for Z uses only
translation invariance of the integration, as in (2.165), and the Feynman boundary
conditions in time. As for ordinary integrals, fermionic integration can be defined
rigourously for a finite number of variables, see e.g. Brown sect. 2.4. The path
integral can be defined with the lattice regularization, using a finite number of
modes or ‘along the way’ in a perturbative expansion in the coupling constant ey.
Perturbation theory leads to expressions involving Z in the free theory which we
know how to evaluate, as in (2.170). The path integral then becomes a convenient
tool in obtaining this expansion.

For us, the stage has been set already by the example of scalar electrodynamics
involving only boson fields. The vacuum amplitude Z(n,7, J) can be written in
terms of an effective action I'(t,, ., A) by making a Legendre transformation
from W (1,7, J) = —iln Z(n, 7, J) to T (e, e, Ac),

205, 7) = ), (5.17)
W) = Tlebedd+ [ dol+ g+ L0, (19
and functional derivatives of W with respect to the sources give the correlation
functions (connected Green functions). The equation for Z can be converted

into an equation for I', which generates the Dyson-Schwinger equations. Keeping
track of Planck’s constant leads again to the conclusion

T (they Bes Ae) = S (e By Ae) + O(R). (5.19)

Since the only terms in S of higher order in the fields than bilinear are the %% A#
couplings, there is only one bare vertex function,

Sgoysan(®,y,2) = —ieo (Yu)ag 0 (v — y) 8 (2 — 2), (5.20)

Sq/}awﬁAu (p, q, k) = —ieg (7;1)04[3- (521)

This is represented by the vertex in fig. 5.1, which also shows the propagators

B _ Wty (m_i7p)aﬂ 29
Gy(p) = G"" (p,—p) T i (5.22)

g — (1= O/ — ie)

k2 — e

GW (k) = GYY(k,—k) = (5.23)

In principle this is all straightforward. However, in practise the details are
cumbersome because we have to keep track of minus signs due to the anticom-
muting character of fermion variables. In the condensed notation it can be useful
to use capital letters to indicate fermionic variables,

Jk < 7704(3:)7 ﬁa(l‘)v ¢K A w?(x)v 1[_)3(37), (524)
Je < Ju(z), ¢ < A¥(2). (5.25)



5.2. SCATTERING AMPLITUDES 141

Figure 5.1: Propagators and vertexfunctions in spinor electrodynamics.

Then all objects are antisymmetric in permutations of K, L,.... We shall not
go into details, but observe that when we ignore the anticommuting character
of fermion variables the final result will be as we have seen before with boson
variables only, up to possible minus signs. The determination of these signs will
now be illustrated in the examples in the next section.

5.2 Scattering amplitudes

As a warm up we recapitulate the determination of the scattering amplitudes for
v+ 7F — v+ 7%, involving only scalar particles and photons:

1. Determine the two point correlation functions G%¢" and G4"4” for large
time separations to find polarization vectors e#e”* and wave function renor-
malization constants Zg, Za:

w(l’>>zg

Gadz P i/dwk M=) Z, % et (ke (k, A), (5.26)
A

« x>l . : _
G P4 Z/dwp eP@s—wa) (5.27)
2. Determine the four point correlation function G4142#3%: and identify the
external propagators and H 4, a,434,; schematically
G0t — G QAT GRS GO gy (5.28)
Factors VZae; and VZ4eh (i.e. /Zae! (k1, A1) ete.) ‘belong’ to the ab-

sorption and emission amplitudes, while factors \/Z e}, and \/Z 4eo belong
to the scattering amplitude.
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Figure 5.2: vo+m) — y1+74 or 92 +e, — 71 +e; scattering (a), and v, +m5 —
Y1+ T or y2 +es — y1 + e scattering (b).

3. The scattering amplitude for v, + 7; — v + 75 is schematically given by

T= ZAZ¢ 61( HA1A2¢§¢4 €2, (529)

with appropriate ingoing and outgoing momenta, while the amplitude for
the process vo + 73 — 71 + 7, is derived from the same H-function, again
with appropriate momenta. Denoting the antiparticles by a ‘bar’ in ket and
bra, we have in detail

(k1A1, p3| T kare, pa) = ZaZye ™ (ki, M) Harsarzgg(k1, —ka, p3, —pa)

el (kg, )\2), (530)
(k1A1, 02| T\ koAe, P3) = ZaZye (ki, M) Hansarzgeg(k1, —ko, —ps3, ps)
6“2(1{72,)\2), (531)

as illustrated in fig. 5.2. Notice that e.g. G and H are completely symmetric
under exchange of indices, which is a reflection of the fact that boson oper-
ators behave as commuting in time ordered products (‘conn’ = connected)

(O] A" (1) A™ (22) p (w3)p(4) T[0)conn = (—1)*G142029%, (5.32)

Therefore, H u anzg¢(k1, —k2, —p3, p4) appearing in (5.31) equals
H puy g ana g+ (K1, p3, —k2, —p3), which might look more natural for process (b)
in fig. 5.2.

Consider next the processes v+ e — v+ et. We go again through the steps 1
— 3 above, in more detail for the fermion aspects:

1.

The fermion propagator has poles with residue modified by a factor Z,
because of the interactions'. Then

_ CL‘O :EO .
GBS Z/ dw, €37 7,3 " u® (p, \)u™ (p, A),  (5.33)
A

IThis is true in the covariant gauges we are using. In the Coulomb gauge this is not the
whole story and the situation is more complicated than suggested in Bjorken & Drell II sect.

17.9.
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CL‘O :EO .
S / duy €715 Zy N 0 (p, N (p, A), - (5.34)
A

which reflects the one particle contributions for the two time orderings
_ 20520 _
O wsnlo) S [ dy (010l A MGl0) + mpe - (5.35)
A
0 - -
=t 2 [y QR A0s]0) + e, (530
A

where mpc denotes the multiparticle contributions. The formulas reflect
the free particle expressions (4.135), (4.138), and (4.231), (4.232) which
for clarity we repeat here in a conventional notation for the creation and
annihilation operators:

0(e) = 3 [ day [P ulp. N bE.N) + e P olp N dip N (53)

0) = 3 [ dep [ alp. ) 6D N + €7 0l ) dp. N (539)
A
i.e. the particles are annihiliated by b = a(+) and the antiparticles to
d=a(-).
2. Consider

(O[T A™ (1) A" ()1 (23) D (24) 0) = (—i)2GHA2GV3% 4
(—i)3@AAevste - (5.39)

For the time ordering corresponding to fig. 5.2a this is equal to
(O] A" (1) A" (w2)1h** (w3) ™ (24)]0) > (13]5]24), (5.40)

where we indicated the resulting scattering matrix element on the right
hand side (recall Seonn = 7). The reasoning behind this is that parti-
cles are created at xy and x4, which evolve in time and may scatter, and
get annihilated at x; and x3. On the other hand, for the time ordering
corresponding to fig. 5.2b the expression (5.39) is equal to

— (0] APt (1) A#2 ()™ (4) 1 (23)]0) > —(14]S|23), (5.41)

with the reasoning that in this case an antiparticle is created at x3 and
annihilated at z4. Note again that one time ordered product (5.39) leads to
several scattering matrix elements (we have mentioned only two of these)
and note the minus sign in (5.41).
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Figure 5.3: Diagrams for v, +e, — 7, + €5 scattering (a), and v, +e5 — 7, +ef
scattering (b).

The H function is defined in terms of the connected Green function without
attention to time ordering. However, we like to keep the natural ¢ i-type
charge ordering, since ordering matters for fermion Green functions,

GA1A2¢37’Z]4 = GAIAI, GA2,A2 G¢3’l/;3/ HA1/A2/1/;3/¢4/ G¢4"‘/;4. (542)

3. The scattering amplitudes for v, + ef — v, + e are now given by

(k1A p3As| T koda, pada) = ZaZy " (ki, A)u® (ps, As)
H ju AR25O3qhq (K1, —ko, p3, —pa)

u® (pa, A)er (ka, A2), (5.43)
(k1A pada| Tlkoda, psds) = —ZaZy e (ky, M)v™ (ps, As)

H ym Ar2po31pe4 (k1, —ke, —p3, pa)

v (pay Aa)e (K2, Az). (5.44)

Notice the v-v structure: v corresponds to the initial state and v to the
final state (compare also with (5.34)). The minus sign in (5.44) comes from
the minus sign in (5.41).

It is straightforward to write down the explicit expressions for in the semiclassical
approximation, see fig. 5.3. Fig. 5.3a represents

. _ e _ M — g
iT(13;24) = e (hy, M)ulps, As) [evu(—1) 5= 5 e
mo— iy y
+€%(—2)7m2+r2 Yu] u(pa; Aa)e” (k2, Az), (5.45)

where ¢ = p; + p3 = pa + py and r = pg — p; = p3 — p2. Fig. 5.3b represents

m — iyq

—iT(14;23) = e (ky, M\)0(ps, As) eV (—0) e+

Yy
m — iyr

oz Wl v(Pa A)e” (ke o), (5.46)

+ ey, (—1)
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Figure 5.4: Disconnected and connected contributions to (5.47) in the semiclasical
approximation.

Figure 5.5: e, +e; — e; + e scattering (a) and e, +ej — e] + e] scattering

(b).

where ¢ = p, + ps = p2 +ps and r = py — p2 = p3 — p1.

A second class of examples is given by e~ +e* — e~ +e*. These are derived
from

<0|T¢11l33¢31ﬁ4|0> = (—i)2[G1/}11/;2G1/’3'Z’4 _ G1/11TZJ4G¢21/33]
+ (_Z‘)3G¢11/72¢31/74‘ (5.47)

The minus sign in the disconnected part shows already the signs to be given to
the individual diagrams. Fig. 5.4 shows the diagrams for (5.47), with their signs,
in the semiclasical approximation. No choice of time ordering is assumed. Fig.
5.5 shows the diagrams for scattering. For figure (a) we have taken the time
ordering 73 > ¥ > 2§ > 29, for which (5.47) takes the form

(OIT Y19b3103104]0) = +(0th31019914]0) ¢ (13[S24), (5.48)
while for (b) we have taken the time ordering z9 > z¥ > x5 > 3, for which

(01T 143103904 |0) = —(0|parp19pa¢i3|0) <> —(14]S|23), (5.49)
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Figure 5.6: A closed fermion loop.

and the diagrams in fig. 5.5b represent —iT'(14;23). Fig. 5.5a now gives in self
evident notation

iT(13;24) = wey,ugusey,uyg (—i)GH (k)
— yey,ug Uzey,ug (—1)G* (1), (5.50)

where G* is the photon propagator and k = p;—ps = ps—p3, | = p3—p2 = ps—p1.
For the process involving the antiparticles e™ we get from fig. 5.5b and (5.49),

—iT(14;23) = ujey us vzey,vq (—1)G* (k)
— Uyey, vy Uzey,ug(—i)GH (1), (5.51)

with k = p1 — p2 = ps — ps and [ = p1 + ps = p2 + ps.

The above examples show how the polarization spinors enter in scattering am-
plitudes. The various minus signs reflect the antisymmetry of multipoint Green
functions in exchange of labels of external fermion lines. We end this section with
the rule:

with each closed fermion loop goes a minus sign,

which follows from the derivation using Dyson-Schwinger equations, and which is
also evident in the perturbation expansion of the path integral. The rule applies
to the diagram in fig. 5.6, which represents the expression (excluding the minus

sign)

1. . . : 1 5 5
5 1Smicr (=G M iSuun (=GN = = Sangipy G Savgap, G

1 . -
+ 5 SA”‘/M/;z GYevs SA”¢31/;4 G

= Sandivs GV Saugay, GV (5.52)

(there is an even number of sign changes when converting the 1) and i in the
second term to ‘natural order’, and the two contributions are identical).
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Figure 5.7: e, +e1 — pu; + puj scattering.

5.3 Example, e- +et — pu~ + p* scattering

A simple example in fermion-fermion scattering is the process e +et — = +pu™,
for which we shall evaluate the unpolarized differential cross section. This serves
to illustrate a trace technique for the evaluation polarization sums.

We introduce fermion fields for the muon as well as for the electron, and since
the two are independent there is only one relevant diagram, shown in fig. 5.7.
To make the comparison with the diagrams in fig. 5.4b and the expression (5.51)
easy, we use the same labeling. Then

(W= (1), p"(4)[T]e™(2),e7(3)) = T(14;23)
= — Uyey,vs Tzey,u GM (1), (5.53)
= — e u(p1, M)uv(pa, A1)
v(p3, A3) Vo u(p2, A2)
g — (1 =MV /12
[? ’
with [ = p; +ps = po + p3. If we denote the electron and muon masses by m and
M, respectively, then

(5.54)

P =ps=—-m? p3=p;=—M>. (5.55)

The gauge terms o< [#” in the photon propagator do not contribute because of
current conservation. For example,

u(p1, A1)iv,0(pa, A1) (P14 pa)* =0, (5.56)

where we used the fact that the polarization spinors satisfy the (momentum space
version of the) Dirac equation (cf. 4.113)),

u(p1, A) iypr = —Ma(p1, A1),  ©ypav(Pa, A1) = Mv(pa, As). (5.57)

To calculate the cross section we need 7™, which leads to

(U17,04)" = Uh},ﬂm = —U47Ypl1, (5.58)

(B370u)* = ubylBvs = —Ta7,0s. (5.59)
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Averaging over initial spins and summing over final spins gives

_ Uy po
T2 = 4 Z U1 7Y, Vs U3y U Vg7YpUy Uz YpU3 —— g , (5.60)
A Az Az s?

where s = —(p; + p4)? = —(p2 + p3)? is one of the Mandelstam variables (equal
to the total cm energy). To evaluate the polarization sums we order the spinor
factors in a suggestive way, interpreting u®a® and v®o” as matrices and using for
example

U1 7Y, 04047Ypu1 = Tr [y, 040477,u1 Ty . (5.61)
Then

5 g“”g""

| |2 = —TI' 7;1 ZU4U4 Yp Zulul
Tr [, Zugﬂg Yo ZUg'l_Jg ) (5.62)
)\2 )\3

We now use the properties (4.109), (4.110),

S 0pe M)o(pa, M) = —(M + iypa), (5.63)
> ulpa, X)i(pa, Aa) = m — iypa, (5.64)

etc. and obtain the form

= 499 1 _ .
T]? = e 2 ZTT[%(MWLWM)%(M_Wpl)]

Tr [y, (m — ivp2)ve(m + ivps)]. (5.65)

To evaluate this we use the trace formulas

Try.ya = 4., (5.66)
Tryeny, = 0, (5.67)
Tr VeV Vv = 4(9m\9uu — kpYrw + gnug)\u)- (568)

These follow from the fact that (1) the trace of a product of gamma matrices
vanishes unless each vy, ..., 73 appears an even number of times, (2) 72 = —1,
v¥ =2 =2 = 1, (3) the gamma’s anticommute and (4) Tr1 = 4. For more
information and derivations of trace theorems see Bjorken & Drell I, sect. 7.2 and
De Wit & Smith sect. E.4. The two traces in (5.65) are given by

4(M27up + PapP1p — YupP1P4 + p1up4p) (569)

and
4(m27110 + P2vP3ec — YvoDP2P3 + p3up2a)- (570)
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The evaluation of |T'|? is now straightforward and results in a large number of
scalar products of the momenta. Using the Mandelstams variables

s=—(p1 +p1)° =2M? = 2pips = —(p2 + p3)*> = 2m*> — 2paps, (5.71)

t=—(p1—p2)> = —m>— M*+2p1py = —(p3 —ps)® = —m*> — M*+2p3ps, (5.72)

u=—(p1—p3)’=—m’—M>+2pips = —(p2—pa)* = —m> — M*+2pops, (5.73)

The result simplifies to

S 4et
TP = — [4m>M> + M>(s — 2m?) + m?(s — 2M?)
S
1 1
+§(t+m2+M2)2+§(u+m2+M2)2], (5.74)

where we recall that v can be eliminated in favor of s and ¢ by the relation
s+t +u = 2m? + 2M?. At high energies where we can neglect the electron and
muon masses (m ~ 0.511 MeV, M ~ 106 MeV). Then
— 2¢t
TP ~ = (£ +u?). (5.75)
s
Under these cricumstances ¢ and u are related to the scattering angle in the centre
of mass frame by

1 1
t =~ —55(1—(3080), u%—53(1+0050), (5.76)

and we get for the differential crossection at high energies

do 1 kf 5
0 = it T |T|? (5.77)
o? 5
5 (14 cos®0). (5.78)

The total cross section is given by

4o’

3s

o2 [l
o=27 4—5/ dcosf (1 + cos® ) = (5.79)
-1

It is instructive to rederive these formulas by evaluating first the high energy
form of T for given polarization combinations using helicity spinors, and from
this |T'|2. For further discussion see e.g. De Wit & Smith ch. 6.
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5.4 Magnetic moment of the electron

In the nonrelativistic quantum mechanics, an electron in an external electromag-
netic potential is described by the hamiltonian

:p2+€[pA(X)+A(X)p] —BAO —|—QSB, (580)

2m 2m

H

where S is the spin operator, g is the gyromagnetic ratio and By = €x,,, 0, A, is the
magnetic field. The terms p-A(x)+A(x)-p come from ‘minimal substitution’ (p+
eA)? (the charge of the electron is negative and e > 0), and we have subtracted
a term e?A? as it plays no dynamical role for an external potential. It will be
shown in this section that in the approximation where (5.65) is valid, spinor
electrodynamics predicts g = 2.

We first derive the form of H in the momentum representation and then
identify the same form in spinor electrodynamics. Using momentum states with
relativistic normalization,

(p'N'|pA) = 2p" (2m) 6(p" — p) dxa (5.81)
(just for convenience later), we have
(xN|pA) = 1/2p° Oy eP* (5.82)

and the momentum representation of H takes the form

WN|HpY = ape [P0 ~p) z:fp’+p)-A(p’—p)

. . o
—eA’(p' — p) dyx + ﬁ ovr - B — D), (5.83)

5/\’ A

where o are the Pauli matrices and we used

PNA“ ) pA) = Y / d*x (p'NxX") (xX"[pA) A*(x) (5.84)

AII
= \/4p°p" by \ A*(p' — p), (5.85)
Ark) = / B e 4B (x). (5.86)
Notice that 3 B
Bi(K) = i€t kmAn (k). (5.87)

In spinor electrodynamics, the approximation where (5.83) is valid, is the
nonrelativistic approximation in which radiation effects due to the quantized
photon field are neglected. So we consider the spinor field in an external static
electromagnetic potential A*(x). The hamiltonian of this system can be derived
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by the Noether argument, since the system is translation invariant if transform
the external potential as well as the dynamical variables ) and . It is given by

H=p'— / @ (=€) (2) A (x). (5.88)
Its matrix element in the one particle subspace is given by
(PN[HIpA) = p° (PN pA) +e / Ca (PN (2)|pA) Au(x).  (5.89)
Using the result derived in the problems in the previous chapter we have
PN [7#(@)|pA) = a(p, N) ir* u(p, A) @77, (5.90)

a(p, X) i ulp, A) = o—a(p’, X) [(p+ )" +ilp = 9 BTulp, A). - (5.91)

Using the explicit form (4.85) for the spinors we get in the nonrelativistic ap-
proximation

a(p, N)ulp,A) = 2m[onx+O(p*/m?)],
a(p’, X) S u(p,A) = 2m[O(pl/m)], (5.92)
a(p', )™ ulp, A) = 2m[(o1)xx émn + O(|p|/m)] (5.93)
(since @'u is a scalar its corrections are O(p?/m?)). Substitution in (5.89) now

gives (5.83) with ¢ = 2, plus a rest energy m which is omitted in the usual
nonrelativistic expressions.

5.5 Problems

1. Trace and other identities

In sect. 5.3 we encountered traces over products of gamma matrices. The
following identities can be derived (see for example Bjorken & Drell sect.

7.2):
Trytt..oqkm =0, n=odd, (5.94)
Trl =4, (5.95)
TrAHy" = 4g", (5.96)
Tey iy = Ag™g" — g™ g™ + g™ "), (5.97)
Trasy -y = 0, n=0,1,23, (5.98)
= 4ieMM p =4, (5.99)
Yt = 4, (5.100)
VY = =29, (5.101)
VYA = 4g™, (5.102)
7u7a7n7ﬂ7u = —2Prqe (5.103)



152 CHAPTER 5. SPINOR ELECTRODYNAMICS

2. FElastic electron scattering

In sect. 5.2 we derived the amplitude for the process e~ + e~ — e~ +¢e™.
In this problem we shall work out the unpolarized cross section. Consider
the amplitude for e +e5, — e; + e,

T(34;12) = —¢? [ugy,uy tgy,ug G (k) — ugyug tay,un G (1), (5.104)
which differes from (5.50) only by a change in numbering the particles.

a. Show using the Dirac equation in momentum space that uzy,u; k* = 0,
Usy,us ¥ = 0, and verify that this corresponds to current conservation (cf.
Problem 4.4). Consequently the amplitude can be simplied to

1
T =—¢? [U37y,u1 TayH ug i U3y, U Uyy” Uy 7k (5.105)

b. Derive along similar lines as in sect. 5.3 that
—d 64 T1 Tl
TP?=— — + (p3 <> pa)l, 5.106
I 4 [((Pl —p3)?)?  (p1— p3)*(p1 — pa)? (ps ) ( )
where, using the convenient ‘slash’ notation p = p,*,
Ty = Tr [yu(m — ipo)y (m — ips) Te [y* (m — ipa)y" (m — ipps)],  (5.107)
Ty = Tr [yu(m — ip1) v (m — 1)y (m — ipe)y" (m — ips)]. (5.108)

c. Using the identities in Problem 1 and of course momentum conservation
p1+ p2 = p3 + py and p? = —m?, show that

Ty = 322m" + 2m*pips + (pip2)? + (p1pa)?], (5.109)
T, = =322m*pips + (p1p2)?). (5.110)

d. These expressions are to be evaluated in the center of mass frame. Let 6 be
the scattering angle between particles 1 and 3, pyps = —m?*—|p|*(1 —cos ).
From now on we use the notation k& = |p|. Verify that

0 0
Ty = 64[m* + 4m?k? cos? 5T 2k*(1 + cos* 5)], (5.111)
T, = —32(—m*+4k"), (5.112)
— 4T T
TR = — [~ - L4 (@—m—0) (5.113)

64k% sin4% COSQ% sin® &

e. Under ultrarelativistic conditions we may neglect the electron mass m. Ver-

ify that in the center of mass frame

do a? [1+Cos4g+ 2 +1+sin4g
dQur 8k?" sin? g cos? g sin? g cos? g

. (5.114)
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f. Under nonrelativistic conditions we may neglect p compared to m. Verify
that
do o?m? 1 1 1
dQmr  16k% sin4g Cos2g sinQS * cos? %]
The middle term is due to the interference of the two diagrams contributing
to the amplitude. The first term goes over in the Rutherford formula for
Coulomb scattering off a heavy target, upon expressing it in terms of the
reduced mass myeq = mm/(m +m) = m/2.

(5.115)

The total cross section is infinite because the integration over angles di-
verges at @ = 0. This can be attributed to the infinite range of the Coulomb
potential.

3. The decays 7= — p~ + v, and 7 — e + /.. The charged pions 77 are
unstable and decay mainly into muons xF and muon neutrinos (7,,)v,,, with
a life time of 2.60 x 1078 s, or !¢ = 780 c¢m. There is a corresponding
decay into electrons eT and electron neutrinos (7,)ve, with a much smaller
rate. These processes can be described by an effective action of the form
S =5y + 51, where S; is the interaction

Sl - C/d4:L' [8530* iuivﬁ(l - 75)7/)1/“ + 8/%0 Zzuuifyn(l - 75)%1
L (e, (5.116)

and Sy is the sum of the actions for the free pions, muons, electrons, muon
neutrinos and electron neutrinos,

So = Se+S,+Se+ S, + S, (5.117)

S, = —/d4x (00" 0" + m2*p), (5.118)

S, = —/d4x1/_)u('y”8n+mu)zbu, (5.119)

and similar for e, v, and v, with m,, = m,, = 0. The constant c is given
by

¢ = fr Gp cosfc, (5.120)

with f; the pion decay constant, G the Fermi weak interaction constant
and O¢ the Cabibbo angle.

Notice that the interaction S; does not conserve parity P, as it is the sum
of terms odd and even under parity.

a. Verify the position space vertex function
S et (U U, W) = c/d4x 0x0(z — u) 17" (L — ¥5)]ap 0 (x — v)d(z — w),

(5.121)
and derive similarly the other vertex functions.
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. Verify the momentum space vertex function

Spegayl, (0 K1) = clp(1 = 75)]as, (5.122)

and derive similarly the other vertex functions. Draw the diagrams for these
vertex functions.

. Draw the diagram for the decay 7= (p) — p (k,A) + v, (k', \') and verify

that the decay amplitude is given by

(kX E'N|T|p) = —ci(k, \)yp(1 — vs5)v(k', \). (5.123)

. Verify the polarization sum

T2 = ATr [yp(1 — 5) (ivk ) yp(1 — v5) (my, — ivk)]. (5.124)

. Using the anticommutation relations of the gamma matrices, the properties

of the right and lefthanded projectors Pr = (145)/2 (cf. (4.49)) and the
identities in Problem 1 above, show that

T2 = 8c*[2(pk) (pk') — p*kK'). (5.125)

In the rest frame of the pion, verify

mZ —m? m?
k| = THJ K — k| = m—ua (5.126)
and o
T]? = 4c*(mZ —m’)m, (5.127)
and

~ oy ¢ (mp —mi)tm
L™ — p —|—Z/H)ZE m3“

2
iy (5.128)

The masses of the particles are given by m,+ = 139.6 MeV, m, = 105.7
MeV, me = 0.5110 Mev (the neutrino masses are assumed to be zero).
Using Gp ~ 1.17 x 107° GeV~2, . ~ 13°, and the fact that 7= decays
for 99.988% into p~ + 7, verify that fr ~ 93 MeV from the rate I' = 780
cm™ L.

. Calculate the branching ratio

L(r~ —e + 1)
I(r= = p= +v,)

(5.129)

and compare this with the experimental value 1.22 x 10=%.
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The striking smallness of the above branching ratio is a consequence of the
combination 7*(1 — 5) in the interaction S;. The interaction conserves
chirality: 1 — 75 projects on to chirality —1, in the neutrino fields as well
as in the electron or muon fields (recall that ¢ contains 8 = i7" and s
commutes with :7°y%). For the massless antineutrinos, chirality —1 means
helicity +1/2 (cf. (4.121)). For the electron and muon, chirality -1 would
mean helicity —1/2 if these particles were massless (cf. (4.120)). However,
angular momentum conservation requires that the muon or electron have
the same helicity (4+1/2) as the antineutrino, since the pion at rest has
angular momentum zero. Hence, if m, and m, would be zero, the decay
amplitude would vanish (since 1 — 75 acting on a massless helicity +1/2
particle spinor gives zero). So we may expect that the decay amplitude is
proportional to my,,. as m,. goes to zero. In fact, it can be shown using
helicity spinors that the decay amplitude is given by

T = 2iemg/ |k (VEO + m — VKO —m) 6y Oy (5.130)

with £° = vk? + m? and m = m,, or m,. In this way we can understand
why the above branching ratio oc mZ/m’, is so small.

It is instructive to go through the derivation of (5.130) in the Weyl repre-
sentation, using helicity spinors (cf. (4.85) and (4.91)),
u(lk|,0,6,\) = (VKO +m+ MWK —mys) &,(0,6), (5.131)
oK1 0LX) = VKT = N9) €00, ),
= VK1 -V (r—0,0+7)  (5132)
where k' = —k = (|k|,7 — 6, ¢ + 7) in spherical coordinates. Because of

the factor (1 — 75) in T we may replace 75 — —1 in u' and ¢’, and the
amplitude (5.123) reduces to

T = —2icm /|k| (VE +m — AWEO —m) (5.133)
Ex(0, ) (1 = 45)E (= 0,0+ 7) Oxr - (5.134)

We now use (4.118) and (4.92), with 5 = p1, 75 = p3, X = 0, BC = —ips0s
and &} = &), in the Weyl representation. Then

6&5) (r—0,¢+7) = p—i003/2 ,—inos /2 —ino2/2 002 /2 BCE
e~ 1093/2 = 1092/2 (5 ) (—ipyon) Exy,  (5.135)

and
&0, 0)' (1 - 75)5&9(7? — 0,6+ ) =EL(ip2 — p1)osén = —N dan, (5.136)
which leads to (5.130).



