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4 CONTENTS0.1 PrefaeQuantum �eld theory is our desription of the basi fores between elementarypartiles. There is a lose onnetion in its methods with ondensed matterphysis, lassial and quantal. In a ompromise with the requirement of on-iseness the following approah has emerged, assuming knowledge of lassialeletrodynamis, speial relativity, quantum mehanis and some group theory:- The eletromagneti �eld is quantized anonially in the Coulomb gaugeand its quanta are interpreted in terms of partiles, the photons. Then theamplitude that the vauum persists under inuene of an external soure(vauum amplitude) is alulated and reexpressed in a general ovariantgauge. This introdues funtional tehniques, propagators and the quantumversion of the ation funtional, generally known as the e�etive ation.- Having seen that a quantized �eld gives a desription of partiles, the realsalar �eld is introdued as the simplest example. The omplex salar �eldis oupled to the eletromagneti �eld using the priniple of gauge invari-ane and the system is anonially quantized, without going into details.Instead, the '4 theory is used for showing that operator �eld equationsimply equations for the vauum amplitude and Dyson-Shwinger equationsfor the e�etive ation. Feynman diagrams provide a natural represen-tation of various mathematial expressions. The iterative solution of theDyson-Shwinger equations generates the loop expansion in powers of ~.We onentrate on the semilassial approximation (no loop diagrams), inwhih the e�etive ation has the form of a lassial ation.- Using external soures for emission and absorption of partiles, satteringamplitudes are derived in terms of orrelation funtions (onneted Greenfuntions). The resulting expressions also apply to bound states and are onthe same footing as the LSZ (Lehmann-Symanzik-Zimmermann) formulas.Appliations in salar eletrodynamis illustrate how it works.- For the desription of spin 1/2 partiles spinor �elds are introdued. Westart here from the partiles and derive the ation and �eld equations fromthe vauum amplitude. It is shown how Lorentz invariane and loality leadto Fermi-Dira statistis, the Dira equation and antiommuting variables.The presentation is initially in terms of hermitian spinor �elds (Majorana�elds). The subsequent introdution of omplex �elds (Dira �elds) and theoupling to the eletromagneti �eld follows losely the steps taken earlierfor the salar �eld.- For the derivation of Feynman rules the stage has been set already by theexample of salar eletrodynamis, and the presentation onentrates onputting minus signs in the appropriate plaes.



0.1. PREFACE 5- The path integral is a spino� giving a representation of the solution of theDyson-Shwinger equations as a funtional Fourier transform. This does notdo justie to the path integral as an independent fundamental formulationof quantum theory, but it is quik.A spae favoured metri is used, g11 = g22 = g33 = �g00 = 1, with orrespondigDira matries. This may be ompared with the onvention used by the inuen-tial books of Bjorken and Drell: g�� = �(g��)BD, i� = (�)BD. The harge ofthe eletron is �e, e = jej.The following books on quantum �eld theory are refered to in the text by nameof authors:J.D. Bjorken and S.D. Drell,I: Relativisti Quantum Mehanis, MGraw-Hill (1964);II: Relativisti Quantum Fields, MGraw-Hill (1965).C. Itzykson and J.-B. Zuber, Quantum Field Theory, MGraw-Hill (1980).B. de Wit and J. Smith, Field Theory in Partile Physis I,North-Holland (1986).L. Ryder, Quantum Field Theory, Cambridge University Press 1985.L.S. Brown, Quantum Field Theory, Cambridge University Press 1992.Furthermore mentioned areS. Weinberg, The quantum theory of massless partiles,in Letures on Partiles and Field Theory, Pentie-Hall 1965(Brandeis Summer Institute in Theoretial Physis).A. Pais, Inward Bound, Of Matter and Fores in the Physial World,Prentie-Hall 1965.The following referenes are inluded for ompleteness, they are not reommendedfor study at an introdutory level.B.S. DeWitt, Dynamial Theory of Groups and Fieldsin Relativity Groups and Topology, Les Houhes 1963, and separate bookby Gordon and Breah 1964.J. Shwinger,I: Partiles, Soures and Fields I, Addison-Wesley 1970,II: Partiles, Soures and Fields II, Addison-Wesley 1973,III: Quantum Kinematis and Dynamis, Benjamin 1970.
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Chapter 1Quantized eletromagneti �eldIn this hapter we will quantize the eletromagneti �eld by anonial methodsand derive the interpretation of the quanta as partiles, the photons. The lassial�eld is reovered as an expetation value of the quantum �eld in suitable statesin Hilbert spae. Subsequently we study the amplitude for the vauum to persistunder inuene of an external soure, as well as amplitudes for emission andabsorption of photons by the soure. These amplitudes will be basi tools in ourpresentation. An interesting appliation is the radiation of an inde�nite numberof photons by an external soure. We end with a disussion of the prinple ofloality in quantum �eld theory.1.1 Canonial quantizationSuppose we have a system desribed by oordinates qk(t) and a Lagrange funtionL(q(t); _q(t)), whih may also depend expliitly on time ( _qk � dqk=dt). A simpleexample is a partile at position q = (q1; q1; q3) in a potential V (q),L = 12m _qk _qk � V (q); (1.1)where m is the mass of the partile. We use the onvention in whih a summa-tion is implied over two repeated indies (unless otherwise idiated). The ationfuntional of the system is given byS(q) = Z t2t1 dt L(q(t); _q(t)): (1.2)Requiring the ation to be stationary under variations Æq(t) leads to the equationsof motion. Keeping only terms linear in Æq we haveÆS � S(q + Æq)� S(q) = Z t2t1 dt ÆL(q; dq=dt)7



8 CHAPTER 1. QUANTIZED ELECTROMAGNETIC FIELD= Z t2t1 dt ( �L�qk Æqk + �L�(dqk=dt) ddtÆqk)= � �L�(dqk=dt)Æqk�t2t1 + Z t2t1 dt ( �L�qk � ddt �L�(dqk=dt))Æqk (1.3)Requiring the ÆS = 0 for arbitrary Æq whih vanish at the boundaries, Æq(t1;2) = 0,thus gives the equations of motion in Lagrange form�L�qk � ddt �L� _qk = 0: (1.4)For our example these look likem�qk + �V (q)�qk = 0: (1.5)Let us introdue at this point the notion of a futional derivative ÆS=Æqk. Theation is a funtional of qk(t), i.e. it gives a number to any point in a spae offuntions qk(t). The funtional derivative is easiest to understand as a generaliza-tion of the partial derivative, viewing t as a ontinuous index. Making a variationÆqk(t) it is de�ned by writing ÆS in the formÆS = Z dt ÆSÆqk Æqk: (1.6)Hene, for the spei� form (1.2) of the ation,ÆSÆqk(t) = �L�qk(t) � ddt �L� _qk(t) : (1.7)The anonial momenta pk are de�ned aspk = �L� _qk ; (1.8)and the Hamilton funtion H(p; q) is de�ned by a Legendre transformation from_qk to pk, H(p; q) = pk _qk � L(q; _q): (1.9)To be able to express the hamiltonian H in terms of the anonial oordinatesand momenta we have to solve for _qk, _qk = _qk(q; p). The equations of motion annow be expressed in Hamilton form,�H�qk = � �L�qk + pl � _ql�qk � �L� _ql � _ql�qk= � �L�qk = � ddt �L� _qk = � _pk; (1.10)�H�pk = _qk + pl � _ql�pk � �L� _ql � _ql�pk = _qk: (1.11)



1.1. CANONICAL QUANTIZATION 9In our example pk = m _qk; (1.12)H(p; q) = pkpkm � L(q; pm) = pkpk2m + V (q); (1.13)_pk = ��V�qk ; _qk = pkm: (1.14)Hamilton's equations an be rewritten in terms of Poisson brakets, de�ned forgeneral A = A(q; p) and B = B(q; p) by(A;B) = �A�qk �B�pk � �B�qk �A�pk : (1.15)The anonial Poisson brakets are(qk; pl) = Ækl; (qk; ql) = (pk; pl) = 0; (1.16)and in braket form the Hamilton equations read_pk = (pk; H); _qk = (qk; H): (1.17)In the anonial quantization method the quantum mehanial desription ofthe system is based on the orrespondene: ommutator [A;B℄$ Poisson braket(A;B) , suh that in the formal lassial limit ~! 0:[A;B℄=i~! (A;B): (1.18)In pratise the reipe for quantization amounts to assuming pk and qk to beoperators in Hilbert spae with the anonial ommutation relations[qk; pl℄ = i~Ækl; [qk; ql℄ = [pk; pl℄ = 0: (1.19)A familiar representation is pk ! �i~�=�qk , qk ! qk, ating on wave funtions (q; t), the oordinate representation. In the Shr�odinger piture the time depen-dene is arried by the wave funtion and the anonial operators do not dependon time. In the Heisenberg piture the time dependene is arried by the opera-tors and the wave funtion is time indpendent. Then the p's and q's depend ontime and the anonial ommutators are supposed to hold only at equal times,[qk(t); pl(t0)℄ = i~Ækl; et. at t = t0: (1.20)For t 6= t0 the ommutators may be di�erent and follow from the Heisenbergequations of motion ddtpk = [pk; H℄=i~; ddtqk = [qk; H℄=i~: (1.21)



10 CHAPTER 1. QUANTIZED ELECTROMAGNETIC FIELDLet us reall �nally the speial ase of the harmoni osillator, e.g.V (q) = 12m!2qkqk; (1.22)as suh systems for whih the hamiltonian is quadrati in the anonial variablesplay an important role in the following. The hamiltonian is diagonalized by theintrodution of reation and annihilation operators, ayk and ak,ak = 1p2~m! (m!qk + ipk); ayk = 1p2~m! (m!qk � ipk); (1.23)with [ak; ayl ℄ = Ækl; [ak; al℄ = [ayk; ayl ℄ = 0; (1.24)H = ~!Xk (aykak + 12): (1.25)The eigenstates of H may be labeled by oupation numbers nk (= 0; 1; 2; : : :),jn1n2n3i = (ay1)n1pn1! (ay2)n2pn2! (ay3)n3pn3! j0i; (1.26)Hjn1n2n3i = ~!(n1 + n2 + n3 + 32)jn1n2n3i; (1.27)where j0i = j000i is the ground state (lowest energy state) whih satis�es akj0i =0.1.2 Ation for the eletromagneti �eldThe ation for the eletromagneti �eld A�(x) oupled to an external urrentJ�(x) is given by S = Z d4x [�14F��(x)F ��(x) + J�(x)A�(x)℄; (1.28)where F��(x) = ��A�(x)� ��A�(x) (1.29)is the eletromagneti �eld strength tensor and the integration is over all of spae-time. An external urrent is a urrent whih is not a dynamial variable, it inu-enes the eletromagneti �eld but does not su�er a bak reation from the �eld.It is an idealization of a real urrent produed by partile motion. By presrib-ing the urrent as we hoose we an probe the �eld and study some elementarydynamis without. We use Lorents-Heaviside eletromagneti units (rationalized



1.2. ACTION FOR THE ELECTROMAGNETIC FIELD 11Gauss units), whih is ustomary in relativisti quantum �eld theory, and theonventions x = (x1; x2; x3; x0) = (x; x0); x0 = t; (1.30)x� = g��x� ; F �� = g��g��F��; (1.31)g11 = g22 = g33 = �g00 = +1; (1.32)Fmn = �mnkBk; Fm0 = F 0m = Em; (1.33)�� = ��x� ; 2 = ����; � = �m�m; (1.34)where Greek indies run from 0 to 3 and Latin indies from 1 to 3. Notie thatx0 = �x0 and xm = xm, m = 1; 2; 3. We shall furthermore use units in whih theveloity of light  = 1.The equations of motion (Maxwell's equations) follow from the priniple ofstationary ation. Under a variation ÆA� of A� we haveÆS � S(A+ ÆA)� S(A)= Z d4x Æ(�14F��F �� + J�A�); (1.35)ÆF�� = ��(A� + ÆA�)� ��(A� + ÆA�)� F��= ��ÆA� � ��ÆA�; (1.36)Æ(F��F ��) = 2F ��ÆF�� = 4F ����ÆA� ; (1.37)ÆS = Z d4x (�F ����ÆA� + J�ÆA�)= Z d4x (��F �� + J�)ÆA� : (1.38)We made a partial integration in the last step and assumed that the surfae termis zero, whih is orret if we impose that ÆA�(x) vanishes outside some largebut �nite domain in spaetime. Requiring ÆS = 0 for arbitrary variations in thisdomain gives Maxwell's equations0 = ÆSÆA� = ��F �� + J� = (�2g�� � ����)A� + J� : (1.39)We reall at this point the gauge invariane of the theory. Under the gaugetransformation A�(x)! A�(x) + ��!(x) (1.40)the �eld strength F��(x) is invariant. The term involving the external urrent isalso invariant,Z d4x J�A� ! Z d4x J�(A� + ��!) = Z d4x (J�A� � !��J�)= Z d4x J�A�; (1.41)



12 CHAPTER 1. QUANTIZED ELECTROMAGNETIC FIELDprovided the urrent is onserved1 ��J� = 0: (1.42)Note that in making the partial integration above we also assumed that ! vanishesoutside a �nite spaetime domain. The gauge invariane implies that the solutionof the �eld equations is not unique. A unique solution for A� is obtained byimposing a gauge ondition, suh as the Lorentz ondition��A� = 0: (1.43)Another frequently used ondition is the radiation or Coulomb gauge, in whih�mAm = r �A = 0: (1.44)We reall here also the energy-momentum tensor of the eletromagneti �eld,T �� = F ��F �� � 14g��F��F ��; (1.45)whih desribes the energy densityT 00 = F 0aF 0a + 12Fa0F a0 + 14FabF ab = 12(E2 +B2) (1.46)and the momentum densityT 0n = F 0aF na = Ea�nabBb = (E�B)n; (1.47)also known as the Poynting vetor. The loal balane equation��T �� = �F ��J� (1.48)expresses the onservation of the total energy-momentum in the �eldP � = Z d3x T 0� : (1.49)If the external urrent vanishes, P � is time independent,�0P � = Z d3x �0T 0� = � Z d3x �mTm� = 0: (1.50)See the text books for the derivation of the energy-momentum tensor.The ation S an be written in the formS = Z d4xL; (1.51)L = �14F��F �� + J�A�; (1.52)1The terminology: a urrent j�(x) is `onserved', simply means: ��j�(x) = 0. It is of oursethe total harge Q = R d3x j0(x) whih is onserved.



1.3. QUANTIZATION IN THE COULOMB GAUGE 13in whih the Lagrange density L is a salar under Lorentz transformations, pro-vided that A� is a Lorentz vetor (or a vetor modulo a gauge transformation).This nie manifest Lorentz invariane is broken in the anonial formalism whihtreats the time and the time derivatives in a speial way. A manifestly ovariantdesription is possible with funtional tehniques and the path integral formalismwhih we shall introdue later. At this stage however the anonial formalism isinstrutive for a �rst exploration of the quantum properties of the eletromagneti�eld.1.3 Quantization in the Coulomb gaugeWe write the ation in the formS = Z dt L; (1.53)L = Z d3x (�14F��F �� + J�A�) (1.54)= Z d3x (12 _Am _Am � _Am�mA0+ 12�nAm�mAn � 12�mAn�mAn + 12�mA0�mA0+ J0A0 + JmAm) (1.55)We note the analogy with the quantum mehanis of a partile with oordinatesqk(t), k = 1; 2; 3: the label k is analogous to (�; x1; x2; x3) in A�(x1; x2; x3; t):A�(x; t)$ qk(t); (�;x)$ k: (1.56)Sine x an take an in�nite number of di�erent values, the �eld orresponds toan in�nite number of degrees of freedom. There are now several ompliations:- the index x is ontinuous;- _A0 is laking in L, so the anonial onjugate to A0 will vanish.The seond ompliation is typial for gauge theories suh as eletromagnetismand we shall deal with it �rst.Consider the equation of motion whih follows from varying the ation withrespet to A0, 0 = ÆS = Z d4x (��F �0 + J0)ÆA0; (1.57)whih gives Gauss's law, or Coulomb's law0 = ÆSÆA0 = �mFm0 + J0 = �r �E+ J0= ��m(��mA0 � �0Am) + J0: (1.58)



14 CHAPTER 1. QUANTIZED ELECTROMAGNETIC FIELDWe an now use the gauge invariane of the theory and impose the Coulombgauge ondition �mAm = 0, whih has the result that the time derivative dropsout of (1.58), �m�0Am = 0, suh that (1.58) takes the form��A0 = J0: (1.59)Sine this equation does not ontain time derivatives it is not a dynamial equa-tion anymore, but an equation of onstraint at every instant in time. Withsuitable boundary onditions the potential A0 is ompletely determined in termsof J0. For in�nite spaeA0(x; t) = Z d3y 14�jx� yjJ0(y; t); (1.60)where we used the fat that the Coulomb potential is a Green funtion for thelaplaian �: �� 14�jx� yj = Æ(x� y): (1.61)Hene, in this sense A0 is not a dynamial variable in the Coulomb gauge. Weshall use the Coulomb gauge for the anonial formalism and ontinue to writeA0, for simpliity, keeping in mind that it is a given funtion of J0.In the Coulomb gauge we an rewrite the lagrangian in the formL = Z d3x [12 _Am _Am � 12Am(��)Am + JmAm℄� EC ; (1.62)EC = Z d3x (�12�mA0�mA0 + J0A0) = Z d3x 12J0A0: (1.63)We used �mAm = 0, �A0 = �J0 and made partial integrations of �m assumingboundary onditions suh that surfae terms vanish. The quantity EC is theCoulomb energy; using (1.60) this an be written asEC = 12 Z d3x J0(x; t) 14�jx� yjJ0(y; t): (1.64)The lagrangian is now in the form L(q; _q) with qk(t)! Am(x; t).We now have to deal with the ontinuous nature of the index x and the on-straint �mAm(x; t) = 0. This an be done by expanding the potentials into adisrete set of basis funtions fm� (x) satisfying �mfm� (x) = 0. Let us enlose thesystem in a ubi box �L=2 � xm � L=2 with periodi boundary onditions. Fora large enough box its �niteness and the type of boundary onditions should notmatter. Periodi boundary onditions are onvenient beause with it all bound-ary terms in partial integrations vanish (the box has no boundary) and they arenatural for eigenstates of the momentum operator (f. next setion). We anthen use the disrete set of eigenfuntions of the laplaian � to onstrut the



1.3. QUANTIZATION IN THE COULOMB GAUGE 15fm� (x). The real eigenfuntions of the laplaian orrespond to produts of thestanding waves os(k1x1) os(k2x2) os(k3x3), sin(k1x1) os(k2x2) os(k3x3), . . . ,sin(k1x1) sin(k2x2) sin(k3x3), with km = 2�nm=L, nm = 0; 1; 2; : : : ; and the eigen-values are given by �� ! !2 = k2. Out of these eigenfuntions the real fm� (x)an be onstruted satisfying �mfm� (x) = 0. The details of this are tedious andnot needed in the following and we shall just reord their properties:��fm� (x) = !2�fm� (x); �mfm� (x) = 0; (1.65)Z d3x fm� (x)�fm� (x) = Æ��; (1.66)X� fm� (x)fn� (y)� = P Tmn(x;y): (1.67)We have written these equations in general omplex form and in the next se-tion we shall give an expliit set of omplex basis funtions, whih are easier toonstrut. For the moment have to keep in mind that the fm� (x) are real. Theobjet P Tmn(x;y) is a projetor on the spae of `transverse' vetor funtions, i.e.a projetor: P 2 = P , orZ d3y P Tkl(x;y)P Tlm(y; z) = P Tkm(x; z); (1.68)whih is transverse, �mP Tmn(x;y) = 0. It is the identity operator for vetorfuntions satisfying �mAm(x) = 0,Z d3y P Tmn(x;y)An(y) = Am(x): (1.69)An expliit expression for P T will be given in the next setion (f. (1.100)).In the summation P� we exlude the `zero mode' k = (0; 0; 0) (this would beautomati with Dirihlet boundary onditions). This means that we exludehere potentials Am whih are onstant in spae. Suh potentials ompliate the(otherwise interesting) mathematis and we usually do not need them in physialappliations.In terms of these basis funtions we an now expand the potentials in normalmodes, Am(x; t) = X� q�(t)fm� (x); (1.70)q�(t) = Z d3x fm� (x)Am(x; t); (1.71)and in terms of the new oordinates q� the lagrangian takes the form, for J� = 0,L =X� (12 _q� _q� � 12!2�q�q�): (1.72)



16 CHAPTER 1. QUANTIZED ELECTROMAGNETIC FIELDThis shows that the eletromagneti �eld is equivalent to an ini�nite set of har-moni osillators, with unit mass and frequenies !�. The anonial desriptionis now an obvious generalization of the ase of one harmoni osillator,p� = �L=� _q� = _q�; (1.73)H = X� (12p�p� + 12!2�q�q�); (1.74)(q�; p�) = Æ��; (q�; q�) = (p�; p�) = 0; (1.75)_p� = (p�; H); _q� = (q�; H) = p�: (1.76)Evidently the anonial onjugate to the �eld Am(x) is�m(x) = (Am(x); H) = _Am(x)= X� p�fm� (x): (1.77)The system is quantized by imposing anonial ommutation relations be-tween the p's and q's,[q�; p�℄ = i~Æ��; [q�; q�℄ = [p�; p�℄ = 0: (1.78)1.4 Fok spaeSine we have a system of harmoni osillators it is useful to work with reationand annihilation operatorsa� = 1p2~!� (!�q� + ip�); ay� = 1p2~!� (!�q� � ip�): (1.79)The Hilbert spae resulting from an in�nite number of reation and annihilationoperators is alled Fok spae. It has a no-quantum state j0i de�ned bya�j0i = 0; (1.80)and normalized basis vetors jfn�gi =Y� (ay�)n�pn�! j0i (1.81)where only a �nite number of oupation numbers n� are supposed to be nonzero.It is generally simpler to work with unnormalized basis vetors of the formj�1 � � ��ni = ay�1 � � �ay�n j0i; n = 0; 1; 2; : : : ; (1.82)



1.5. ENERGY-MOMENTUM EIGENSTATES 17in terms of whih the orthogonality and ompleteness relations readh�1 � � ��nj�1 � � ��mi = ÆnmXP Æ�1;�P1 � � � Æ�n ;�Pn; (1.83)Xn 1n! X�1;���;�n j�1 � � ��nih�1 � � ��nj = 1: (1.84)Here PP is a summation over all permutations of the indies 1; : : : ; n. Theseformulas remain valid with the appropriate modi�ations (P ! R , Kroneker-Æ ! Dira-Æ) in ase the index � is ontinuous, e.g. �! k; �, with k a momentumlabel and � a spin label.1.5 Energy-momentum eigenstatesThe quantized eletromagneti �eld is now an operator in Hilbert spae. Theommutation relations between the p� and q� imply the following relations be-tween Am and �m,[Am(x);�n(y)℄ = i~P Tmn(x;y); [Am(x); An(y)℄ = [�m(x);�n(y)℄ = 0: (1.85)For example,[Am(x);�n(y)℄ = X�� [q�; p�℄ fm� (x)fn� (y)� = i~X� fm� (x)fn� (y)�= P Tmn(x:y): (1.86)To guide our physial interpretation we shall use the energy momentum P � of the�eld, whih is now also an operator, and determine its eigenstates and eigenvalues.In the Coulomb gauge A0 vanishes when J� = 0, f. (1.60). ThenT 00 = 12(EmEm +BmBm)= 12( _Am _Am + �nAm�nAm � �nAm�mAn); (1.87)T 0n = �nmpEmBp = � _Am�nAm + _Am�mAn; (1.88)giving P 0 = Z d3x T 00 = Z d3x [12�m�m + 12Am(��)Am℄; (1.89)P n = Z d3x T 0n = Z d3x (��m�nAm); (1.90)where we used the Coulomb gauge ondition �mAm = 0 and _Am = �m. Notiethat there is no operator ordering ambiguity in Pm: we an also write �m to the



18 CHAPTER 1. QUANTIZED ELECTROMAGNETIC FIELDright of Am, the di�erene involves the derivative of the ommutator, �mÆ(x �y)jx=y = 0. Using the normal mode expansion we �ndP 0 = X� (12p�p� + 12!2�q�q�)= H: (1.91)The momentum operator is less easy to express in terms of the normal modesbeause the real mode funtions fm� (x) are not eigenfuntions of �n. Thereforewe now introdue a di�erent set fm� (x) whih are eigenfuntions of �n and �,and satisfy �mfm� (x) = 0. They are omplex and have the formfmk;�(x) = em(k; �)eikx; km = nm2�=L; nm = 0;�1;�2; : : : ; (1.92)These are learly eigenfuntions of �n and �. Reall that the nm have to beintegers to satisfy periodi boundary onditions in a box of size L3. To satisfy�mfm = 0, the em(k; �) have to be orthogonal to k (hene the terminology`transverse'), k � e(k; �) = 0: (1.93)For example for k = (0; 0; jkj) = jkj3̂, e(k; 1) = (1; 0; 0) = 1̂, e(k; 2) = (0; 1; 0) =2̂, and in general e(k; �) may be obtained from this by a rotation, a standardrotation that takes (0; 0; jkj) into k. Another set well known from lassial ele-trodynamis onsists of the right and left handed polarization vetorse(k;�) = � 1p2[e(k; 1)� ie(k; 2)℄: (1.94)The polarization vetors satisfyem(k; �)�em(k; �0) = Æ��0 ; (1.95)X� em(k; �)en(k; �)� = �Æmn � kmknk2 � � P Tmn(k): (1.96)The basis funtions are orthogonal and omplete in the sense (1.67), with� ! (k; �); (1.97)Æ��0 ! Æ��0 V Æk;k0; (1.98)X� ! 1V Xk;� ; (1.99)P Tmn(x;y) = 1V Xk e�ikx+iky �Æmn � kmknk2 � ; : (1.100)where V = L3 is the volume and the zero mode k = 0 is absent again.



1.5. ENERGY-MOMENTUM EIGENSTATES 19We now expand the Am and �m in terms of these basis funtions as follows,Am(x) = p~V Xk;� 12k0 [eikxem(k; �)a(k; �) + e�ikxem(k; �)�ay(k; �)℄; (1.101)�m(x) = p~V Xk;� 12k0 [�ik0eikxem(k; �)a(k; �) + ik0e�ikxem(k; �)�ay(k; �)℄;where k0 = jkj: (1.102)The somewhat strange looking normalization onvention involving 1=2k0 willprove useful in the following. The above expansions de�ne a(k; �) and a(k; �)y.The form of (1.101) is guided by the inverse of (1.79),q� = p~2!� p2!� (a� + ay�); (1.103)p� = p~2!� p2!� (�i!�a� + i!�ay�); (1.104)and (1.70,1.77). The relations (1.101) may be inverted as follows. We writeam(k) = X� em(k; �)a(k; �); (1.105)a(k; �) = em(k; �)�am(k): (1.106)Then Z d3x e�ikxAm(x) = p~2k0 [am(k) + aym(�k)℄; (1.107)Z d3x e�ikx�m(x) = p~2 [�iam(k) + iaym(�k)℄; (1.108)giving p~ am(k) = Z d3x e�ikx[k0Am(x) + i�m(x)℄; (1.109)p~ aym(�k) = Z d3x e�ikx[k0Am(x)� i�m(x)℄: (1.110)The ommutation relations between am(k) and aym(k) an now be alulated from(1.85) to be [am(k); ayn(l)℄ = P Tmn(k) 2k0V Æk;l;[am(k); an(l)℄ = [aym(k); ayn(l)℄ = 0: (1.111)



20 CHAPTER 1. QUANTIZED ELECTROMAGNETIC FIELDFor example,[am(k); ayn(l)℄ = 1~ Z d3xd3y e�ikx+ily [k0Am(x) + i�m(x); l0Am(y)� i�m(y)℄= (k0 + l0) Z d3xd3y e�ikx+ily P Tmn(x;y)= (k0 + l0)P Tmn(l) Z d3y ei(l�k)y= 2k0P Tmn(k)V Æk;l: (1.112)It follows that [a(k; �); ay(k0; �0)℄ = 2k0V Æk;k0Æ�;�0 ; (1.113)[a(k; �); a(l; �0)℄ = [ay(k; �); ay(l; �0)℄ = 0: (1.114)Hene, the new a and ay satisfy the ommutation relations of reation and anni-hilation operators of an in�nite set of harmoni osillators labeled by (k; �).Expressing the hamiltonian (1.89) and momentum operator (1.90) in termsof the reation and annihilation operators we �nd (f. Problems)P 0 = ~V Xk;� 12k0ay(k; �)a(k; �)k0 + E0; (1.115)Pm = ~V Xk;� 12k0ay(k; �)a(k; �)km; (1.116)E0 = ~Xk;� 12k0: (1.117)By analogy to the ordinary harmoni oillator we reognize the number operatoray(k; �)a(k; �) for eah mode (k; �). The ground state (state with lowest energy)is the no-quantum state j0i de�ned bya(k; �)j0i = 0; (1.118)with P 0j0i = E0j0i; Pj0i = 0: (1.119)The exited states are given byjk; �i = ay(k; �)j0i; (1.120)jk1�1; k2�2i = ay(k1; �1)ay(k2; �2)j0i; (1.121)jk1�1; k2�2; k3�3i = ay(k1; �1)ay(k2; �2)ay(k3; �3)j0i; (1.122)et., with[P � � Æ�;0E0℄jk1�1 : : : kn�ni = ~(k�1 + : : :+ k�n)jk1�1 : : : kn�ni; (1.123)



1.5. ENERGY-MOMENTUM EIGENSTATES 21The four-momenta k� represent zero mass, k�k� = 0. The exited states are thephotons. The symmetry of the basis vetors jk1�1 � � �kn�ni under interhange ofof labels ((ki�i)$ (kj�j) has the onsequene that photons follow Bose-Einsteinstatistis.The ground state energy E0 is the sum of the ground state energies of theindividual harmoni osillators. This sum diverges beause of the in�nite numberof modes. This in�nity is a �rst embarrassement one enounters in quantum �eldtheory, whih is due to a avalier handling of the in�nite number of degrees offreedom in a �eld. One way to avoid the problem is to start out with a �nitenumber of degrees of freedom and study the limit of letting this number approahin�nity. For instane, we an simply ut o� the number of modes by restritingjkj < K. Within the anonial formalism with its di�erent handling of time andspae and its this an lead to non-Lorentz ovariant and even non-gauge invariantexpressions. Another way is to restrit the spaetime ontinuum to a hyperubilattie with lattie distane a and study the limit a! 0. The lattie is of oursealso not Lorentz ovariant but it has usually suÆient remnant symmetry to avoidnonovariane in the ontinuum limit. Using suh regularizations would fore usekeeping trak of many more details right from the beginning. Here we followinstead the usual introdutory path and work `formally', i.e. with ill de�nedmathematial expressions, and deal with the ini�nities when they arise `alongthe way'. This approah is suÆient when we treat interating quantum �elds byperturbation theory. For nonperturbative alulations an ab inito regularizationsuh as the lattie is often neessary.The problem is physial as well as mathematial. The inlusion of arbitrarilylarge wave vetors k orresponds to arbitrarily small wavelengths in spae andwe do not know the physis at arbitrarily short distanes. Similarly, ontinuoustime suggests that we an predit what happens in arbitrary short time intervals,whih is questionable.At this point we ould appeal to the idea that only energy di�erenes havephysial relevane in our model and subtrat the ground state energy from P 0.Suh a subtration should be done with are as we may be throwing away a babywith the bath water. There may be a volume dependene in the ground stateenergy whih is physially relevant. An example of this is the Casimir e�et. Weshall do the subtration in the in�nite volume limit L!1.In the in�nite volume limit the ground state represents the vauum. In thislimit the wave vetors beome pratially ontinuous, in the sense that for aontinuous funtion F (k),1V Xk F (k)! Z d3k(2�)3 F (k) = 3Ym=1[Z 1�1 dkm2� ℄F (k): (1.124)Furthermore, in the sense of generalized funtionsV Æk;l ! (2�)3Æ(k� l): (1.125)



22 CHAPTER 1. QUANTIZED ELECTROMAGNETIC FIELDHene hk; �jk0; �0i ! 2k0(2�)3Æ(k� k0)Æ�;�0 ; (1.126)and the energy density of the ground state takes the formE0 � E0V ! ~X� Z d3k(2�)3 12k0 (k0)2: (1.127)The momentum spae volume element (integration measure)d!k � d3k(2�)3 12k0 ; k0 =p�2 + k2 (1.128)(written for general mass m2 = ~2�2), is Lorentz invariant: under a Lorentztransformation k0� = ���k� ; (1.129)k0k = kk + �k0; k0? = k?; (1.130)k00 = k0 + �kk; (1.131)� = v=;  = 1=p1� �2: (1.132)we have dk0k = (k00=k0) dkk, and d!�k = d!k: (1.133)1.6 Cosmologial onstant and the Casimir ef-fetThe energy density of the vauum (P� = 2)E0 = ~X� Z d!kk0k0 (1.134)avoids the volume divergene V !1 of E0 but it is still divergent for large jkj.It has the form of the 00 omponent of a tensor, whih is the vauum expetationvalue of the stress-energy (energy-momentum) tensor,h0jT ��(x)j0i = ~X� Z d!kk�k� (1.135)(f. Problems). Sine it is invariant under Lorentz transformations we expet theform h0jT ��j0i = ��1g��: (1.136)



1.6. COSMOLOGICAL CONSTANT AND THE CASIMIR EFFECT 23On the other hand, the energy-momentum tensor of the lassial eletromagneti�eld is traeless, T �� = 0; (1.137)whih appears to be respeted by (1.135) sine k�k� = 0. This would implythat �1 = 0. However, this is in onit with the fat that E0 is learly positive.Suh paradoxes are typial when dealing with ill de�ned divergent expressionsand we should regularize the divergent integral. Sine we have not developed thetools yet for a ovariant regularization, let us just assume the form (1.136), within�nite �1.A term of the form ��g�� in the energy-momentum tensor is not exluded onphysial grounds. We have taken it for granted that we ould use the T �� familiarfrom lassial eletrodynamis. There is a way to derive the energy momentumtensor from the lagrangian density L by the soalled Noether proedure. One then�nds that a onstant �� in L leads to a term ��g�� in T �� . However the realphysial signi�ane of T �� follows when we onsider lassial general relativity,where energy-momentum is the soure of gravity. In this theory the metri tensoris a dynamial variable and the ation for g�� oupled to the eletromagnetipotentials A� has the form S = Sg+SgA, with Sg the Einstein-Hilbert ation andSgA the ation for the eletromagneti �eld in the spaetime desribed by g��.We only need SgA, whih is just the ation we had before generalized to variablemetri tensor, SgA = � Z d4xp� det g (14g��g��F��F�� + �); (1.138)where p� det g is inluded to obtain a volume element d4xp� det g whih isinvariant under general oordinate transformations. We have inluded in SgAthe osmologial onstant � (to be more preise, the onventional osmologialonstant � = 8�G� , with G Newton's onstant). The energy momentum tensorenters in the �eld equation for g�� and is identi�ed fromÆgSgA = Z d4xp� det g 12T �� Æg��; (1.139)were g is the matrix g��. This givesT �� = F ��F �� � 14g��F��F �� � �g��: (1.140)Returning to Minkowski spae we just use g�� ! diag(�1; 1; 1; 1).The vauum expetation value ��1g�� of T �� appears in every expetationvalue of the energy momentum tensor and we now see that e�etively the osmo-logial onstant is given by the sum � + �1. This means that we an absorb thein�nite �1 in the osmologial onstant by rede�ning the parameter we startedout with in (1.138) as �0 and hoosing �0 suh that the e�etive osmologial



24 CHAPTER 1. QUANTIZED ELECTROMAGNETIC FIELDonstant � = �0 + �1 has the physial value (whih is of ourse �nite). Suh aproedure is alled `renormalization', �0 is alled the `bare' parameter and � the`dressed' (by the interation with the eletromagneti �eld) parameter, or morefrequently, � is alled the renormalized parameter. Writing �0 = � + Æ� we ansay that Æ� ounterats the in�nite �1 and for this reason the Æ� part of the ationis alled a ounterterm. The renormalized osmologial onstant is not knownvery well exept that in natural units it is very small. For all pratial purposesin quantum �eld theory without osmologial onsiderations involving gravity wean set the renormalized � = 0.Having set the vauum energy density equal to zero we an now ask meaning-ful questions about the energy of the ground state in a �nite volume. A famousexample is the Casimir e�et. Consider two parallel plates of a ondutor a dis-tane a apart, with a muh smaller than the linear size L of the plates. Thepresene of the plates is taken into aount by imposing perfet boundary ondi-tions orresponding to a perfet ondutor. This shifts the ground state energyinside and outside the plates relative to the vauum, and the result is (see e.g.Itzykson and Zuber set. 3-2-4)�E0 = �~�2L2720a3 : (1.141)It orresponds to a tiny attrative fore whih has been veri�ed by experiment.1.7 PhotonsWe have seen that the mass of the photon is zero,P�P �jk; �i = ~2(k2 � k20)jk; �i = 0: (1.142)The spin of the photon an only be understood properly after a loser look atLorentz invariane, whih we defer to a later hapter. For now we remark thatthe states jk; �i transform just like the polarization vetors e�(k; �) � (e(k; �); 0),modulo terms / k� whih orrespond to gauge transformations. We an use thisto determine the possible heliities of the photon. The heliity is de�ned as theeigenvalue of the angular momentum operator J in the diretion of motion,kjkj � Jjk; �i = ~�jk; �i: (1.143)To determine the heliities we take the momentum along the 3-axis and onsiderthe behavior of the polarization vetors e(jkj3̂; �) under rotations exp(�i!J3)about this axis. Suh rotations have the form0� os! � sin! 0sin! os! 00 0 1 1A = e�i!S3 ; (1.144)



1.7. PHOTONS 25with S3 the third omponent of the spin matrix, the spin omponent of theangular momentum operator J3. In the vetor representation the spin matriesS1, S2 and S3 are represented by(Sl)mn = �i�lmn; (1.145)whih satisfy [Sk; Sl℄ = i�klmSm and S2 = s(s+ 1) = 1(1 + 1) = 2. The right andleft handed polarization vetors were onstruted suh that they are eigenvetorsof S3 for the speial momentum k = jkj3̂, in whih ase e(k; 1) = 1̂ and e(k; 2) =2̂: (S3)mn en(k;�) = �en(k;�); k = jkj3̂; (1.146)with the usual phase relations ((S1+ iS2)mnen(k;�) = p2em(k; 3) = p23̂, (S1+iS2)mnen(k; 3) = p2em(k;+)). The eigenvetor 3̂ with eigenvalue J3 = 0 doesnot our among the polarization vetors.The photons have heliity �1 but there is no heliity zero state, as might beexpeted from the vetor representation in whih the eigenvalues of S3 are +1, 0,-1. The heliity zero polarization vetor would be the longitudinal mode e(k; 3) /k, whih is equivalent to a gauge transformation and therefore unphysial. It waseliminated by the Coulomb gauge ondition.A general one photon state has the form of a wave paketj'i =X� Z d!k '(k; �)jk; �i; (1.147)with '(k; �) a momentum spae wave funtion whih an be normalized to 1,h'j'i =X� Z d!k '(k; �)�'(k; �) = 1: (1.148)It is natural to de�ne a spaetime dependent vetor potential by'�(x) = ('m(x); 0); (1.149)'m(x) = Z d!k eikx X� '(k; �)em(k; �); (1.150)whih is a solution of Maxwell's equations in vauum. Intuitively we may thinkthat the photon an be found where '�(x) is maximal or at least nonzero. How-ever, loalizability is not an appropriate onept for massless partiles as there isno nonrelativisti limit where we an apply the usual formalism of nonrelativistiquantum mehanis. The quantization of the eletromagneti �eld did not leadnaturally to a position operator. There is also no satisfatory gauge invariantand ovariant probability urrent j�(x) whih is onserved, ��j�(x) = 0.Another way to loate a photon is by `measuring' its energy momentum tensor,and determine e.g. where the energy density is maximal:h'jT ��(x)j'i = '��(x)�'��(x)� 14g��'��(x)�'��(x) + :: ; (1.151)with '�� = ��'� � ��'� (f. Problems).



26 CHAPTER 1. QUANTIZED ELECTROMAGNETIC FIELD1.8 Time evolutionIn the Heisenberg piture the states are time independent and the operatorsarry the time dependene aording to the Heisenberg equations of motion, forexample ddtAm(x; t) = � i~ [Am(x; t); H(t)℄; (1.152)with the initial ondition Am(x; 0) = Am(x) (1.153)at time t = 0. When the external soure J� vanishes the hamiltonian is timeindependent H = ~X� Z d!kk0a(k; �)ya(k; �); (1.154)and the equations for the �eld are easily integrated in momentum spae,ddta(k; �; t) = � i~ [a(k; �; t); H℄ = �ik0a(k; �; t); (1.155)a(k; �; t) = e�ik0t a(k; �; 0) = e�ik0t a(k; �): (1.156)The resulting potentialsAm(x; t) = p~X� Z d!k[eikx�ik0tem(k; �)a(k; �) + h::℄ (1.157)satisfy the the Coulomb gauge �eld equations 2Am = 0. Note that _Am(x; 0) =�m(x). When the soure J� is not zero the hamiltonian has the formH ttot = H +H tJ ; (1.158)where H is the soure free part (1.154) andH tJ = � Z d3x Jm(x; t)Am(x) + EC(t); (1.159)with EC(t) the Coulomb energy.It is onvenient to use the interation piture in whih the `interation' refersto the external soure. The interation piture is somewhat in between theShr�odinger and the Heisenberg piture and we shall now review how this works.Let the hamiltonian be given in the formH t = H0 +H t1; (1.160)where we allow for an expliit time dependene in H t1 whih is inherited by thetotal hamiltonianH t, the expliit time dependene is indiated by the supersriptt. We asume that H0 has no expliit time dependene. In the interation piture



1.8. TIME EVOLUTION 27the operators evolve in time aording to H0 and the states aording to theresidual interations from H t1. The three pitures, Shr�odinger, Heisenberg andinteration, oinide at time t = 0. The time evolution operator is a solution ofddtU(t) = � i~H tU(t); U(0) = 1: (1.161)The evolution operator orresponding to H0 is given byddtU0(t) = � i~H0U0(t); U0(0) = 1; (1.162)whih has the usual solution U0(t) = e�iH0t=~: (1.163)The evolution operator in the interation piture is de�ned asUint(t) = U0(t)yU(t): (1.164)In the Shr�odinger piture j ; tiS = U(t)j ; 0iS; (1.165)OS(t) = OS(0) � O; (1.166)where O = O(A;�) is any operator without expliit time dependene. In theHeisenberg piture j ; tiH = j ; 0iH = j ; 0iS � j i; (1.167)OH(t) = U y(t)OU(t); (1.168)while in the interation piture the time evolution is devided between states andoperators, j ; tiint = Uint(t)j i; (1.169)Oint(t) = U0(t)yOU0(t): (1.170)Expetation values are the same in all three pitures,h ; tjSOj ; tiS = h jOH(t)j i = h ; tjintOint(t)j ; tiint: (1.171)The evolution operator Uint(t) is a solution of the equationddtUint(t) = � i~ [�U y0 (t)H0U(t) + U y0(t)(H0 +H t1)U(t)℄= � i~U y0(t)H t1U(t) = � i~U y0(t)H t1U0(t)Uint(t)� � i~H1(t)Uint(t); (1.172)



28 CHAPTER 1. QUANTIZED ELECTROMAGNETIC FIELDwith initial ondition Uint(0) = 1. HereH1(t) � H t1(t) = U y0(t)H t1U0(t) (1.173)has the normal time dependene of an operator in the interation piture, inaddition to its expliit time dependene. The evolution operator starting at anytime t0, not just at t = 0, Uint(t; t0) = Uint(t)U yint(t0) (1.174)satis�es the same di�erential equation (1.172), with initial onditionUint(t; t0) = 1; t = t0: (1.175)Furthermore it satis�es the omposition relationUint(t; t0) = Uint(t; t1)Uint(t1; t0): (1.176)For small time di�ereneUint(t; t0) � 1� i~(t� t0)H1(t0) � exp[� i~ Z tt0 dt1H1(t1)℄: (1.177)For large time di�erene the exponential form is exat if H1 ommutes with itselfat unequal times, whih is generally not true. We an use the relation (1.176) toobtain a useful series expression for Uint(t; t0). We devide the time interval (t; t0)into N segments (tj; tj�1), j = 1; : : : ; N , of length a = (t � t0)=N , tN = t, andwrite Uint(t; t0) = Uint(t; tN�1)Uint(tN�1; tN�2) � � �Uint(t1; t0)� [1� iaH1(tN�1)~ ℄ � � � [1� iaH1(t0)~ ℄: (1.178)Expanding in powers of H1 and taking the limit N !1 leads toUint(t; t0) = Xn (�i=~)nn! Z tt0 dt1 � � �dtn T H1(t1) � � �H1(tn)� T exp[�i~ Z tt0 dt0H1(t0)℄ (1.179)(the ombinatoris is the same as that of (1+ xN )N = 1+N xN + 12N(N �1)( xN )2+� � � ! exp x as N !1). Here T is the time ordering `operator', the instrutionto order the operators H1(tj) from right to left aording to inreasing time. Forinstane, TH1(t)H1(t0) = H1(t)H1(t0); t > t0;= H1(t0)H1(t); t < t0: (1.180)



1.9. CLASSICAL FIELD 29We shall use the interation piture with the identi�ation H0 ! H, thesoure-free H of eq. (1.154), and H t1 ! H tJ of eq. (1.159). It then follows from(1.173) and (1.157) thatH1(t) ! � Z d3x Jm(x; t)eiHt=~ Am(x)e�iHt=~ + EC(t)= � Z d3x Jm(x; t)Am(x; t) + EC(t) (1.181)� HJ(t): (1.182)Sine the Coulomb term is a -number at this stage we an separate its e�et inthe evolution operator into a phase, suh thatUint(t1; t2) = exp[�i~ Z t1t2 dtEC(t)℄ T exp[ i~ Z t1t2 d4x Jm(x)Am(x)℄(1.183)� UJ(t1; t2): (1.184)1.9 Classial �eldIntuitively we expet that the lassial eletromagneti �eld an be understoodas the expetation value of the quantum �eld in suitable states. For a one photonstate j'i, h'jA�(x)j'i = 0. Of ourse, we should expet lassial behavior onlyfor states with large quantum numbers, i.e. large numbers of photons. However,sine Am(x) hanges the number of photons, it expetation value in a state witha de�nite number of photons is zero.Let us assume the situation in whih the external soure J�(x) is zero initiallyand swithed on slowly at some time t�, and let j0i be the vauum for t < t�.Consider the state j0; ti whih evolves out of the vauum under the inuene ofthe external soure. We shall show that the lassial �eld A()� may be identi�edas A()m (x; t) � h0; tjAm(x; t)j0; ti: (1.185)In the interation piture j0; ti is given byj0; ti = UJ(t;�1)j0i; (1.186)UJ(t;�1) = T exp[�i~ Z t�1 dt0HJ(t0)℄; (1.187)HJ(t) = � Z d3xAm(x; t)Jm(x; t) + EC(t): (1.188)Sine HJ is linear in the reation and annihilation operators j0; ti has the formof a `oherent state'. The operator Am(x) evolves aording to the hamiltonian



30 CHAPTER 1. QUANTIZED ELECTROMAGNETIC FIELDwith J = 0. Sine A0 is already a -number in the Coulomb gauge A()0 = A0 andwe need to evaluateA()m (x; t) = h0jUJ(t;�1)yAm(x; t)UJ(t;�1)j0i: (1.189)Note that the phase fator assoiated with the Coulomb energy EC anels inthis expression. Di�erentiating with respet to time we get�tA()m (x; t) = h0jUJ(t;�1)y i~ [HJ(t); Am(x; t)℄UJ(t;�1)j0i+ h0jUJ(t;�1)y�m(x; t)UJ(t;�1)j0i= h0jUJ(t;�1)y�m(x; t)UJ(t;�1)j0i; (1.190)sine Am(x; t) ommutes with An(y; t) at equal times. A seond di�erentiationgives (f. Problems)�2tA()m (x; t) = h0jUJ(t;�1)y i~ [HJ(t);�m(x; t)℄UJ(t;�1)j0i+ h0jUJ(t;�1)y _�m(x; t)UJ(t;�1)j0i= h0; tj�i~ Z d3x0 [An(x0; t);�m(x; t)℄Jn(x0; t)j0; ti+ h0; tj i~ [H;�m(x; t)℄j0; ti= h0; tj[JTm(x; t) + �Am(x; t)℄j0; ti (1.191)= JTm(x; t) + �A()m (x; t); (1.192)where JTm(x; t) = Z d3x0 P Tmn(x;x0)Jn(x0; t): (1.193)This an be rewritten as 2A()m (x) = �JTm(x); (1.194)whih is just the lassial equation for A()m in the Coulomb gauge, sine��F ()�� = 2A()� � ����A()� = �J�; (1.195)leads to 0 = 2A()m (x; t)� �m�0A()0(x; t) + Jm(x; t)= 2A()m (x; t)� �m Z d3x0 �0J0(x0; t)4�jx� x0j + Jm(x; t)= 2A()m (x; t) + �m�n Z d3x0 Jn(x0; t)4�jx� x0j + Jm(x; t) (1.196)= 2A()m (x; t) + JTm(x; t); (1.197)



1.10. VACUUM PERSISTENCE AMPLITUDE 31where we used �0J0 = ��nJn and (1.313). The boundary onditions in timefollow fromA()m (x; t) = h0; tjAm(x; t)j0; ti ! h0jAm(x; t)j0i = 0; for t! �1; (1.198)whih are the usual retarded boundary onditions.1.10 Vauum persistene amplitudeThe amplitude for the vauum to remain unhanged under the inuene of thesoure (the vauum persistene amplitude) is given byh0jUJ(1;�1)j0i � Z(J); (1.199)and jZ(J)j2 is the orresponding probability. This amplitude plays an importantrole in the following.Expanding in J we haveZ(J) = h0j0i+ i~ Z d4x Jm(x)h0jAm(x)j0i+ i22! ~2 Z d4x d4y Jm(x)Jn(y)h0jTAm(x)An(y)j0i� i2 ~ Z d4x d4y J0(x)J0(y)Æ(x0 � y0)4�jx� yj +O(J4): (1.200)The �rst term is 1, the seond term is zero. We shall evaluate the third term byinserting intermediate states,1 =Xn 1n! X�1����n Z d!k1 � � �d!kn jk1�1 � � �kn�nihk1�1 � � �kn�nj: (1.201)Sine the free �eld Am(x) is linear in the reation and annihilation operators onlythe one partile intermediate states ontribute (this is only true for free �elds),h0jTAm(x)An(y)j0i = X� Z d!k[�(x0 � y0)h0jAm(x)jk�ihk�jAn(y)j0i+ �(y0 � x0)h0jAn(y)jk�ihk�jAm(x)j0i℄: (1.202)Using h0jAm(x)jk�i = p~em(k; �)eikx;hk�jAn(y)j0i = p~en(k; �)�e�iky; (1.203)and X� em(k; �)en(k; �)� = Æmn � kmknk2 = P Tmn(k); (1.204)



32 CHAPTER 1. QUANTIZED ELECTROMAGNETIC FIELD

Figure 1.1: Contours in the omplex k0 plane for t > 0 (a) and t < 0 (b).this gives h0jTAm(x)An(y)j0i = ~ Z d!kP Tmn(k) [�(x0 � y0)eik(x�y)+ �(y0 � x0)e�ik(x�y)℄ (1.205)= ~ Z d!k P Tmn(k) eik(x�y)�ik0jx0�y0j; (1.206)where k0 = jkj, we hanged variables k! �k in the seond term and used�(t)e�ik0t + �(�t)eik0t = e�ik0jtj: (1.207)To evaluate this further we use the identity (written for general mass ~�)�i Z 1�1 dk02� e+ik0t�2 + k2 � k20 � i� = e�ip�2+k2 jtj2p�2 + k2 ; (1.208)in whih � ! +0 (and the integration variable k0 should not be onfused withk0 = �k0 = jkj in (1.207). This identity an be heked by ontour integration, f.�g. 1.1. The poles of 1=(�2+k2� k20 � i�) are at �(p�2 + k2� i�) with residues�1=(2p�2 + k2). For t > 0 the ontour an be losed along a irle in theupperhalf plane with radius!1, and then only the pole at k0 = �(p�2 + k2�i�) ontributes; for t < 0 the ontour an be losed in the lower half plane andonly the pole at k0 = +(p�2 + k2�i�) ontributes. It follows that (k2 = k2�k20)h0jTAm(x)An(y)j0i = �i~ Z d4k(2�)4 eik(x�y) P Tmn(k)k2 � i� ; (1.209)� �i~GmnC (x� y): (1.210)



1.10. VACUUM PERSISTENCE AMPLITUDE 33Combining this with the J0J0 term the vauum persistene amplitude an bewritten asZ(J) = 1 + i2~ Z d4x d4y J�(x)J�(y)G��C (x� y) +O(J4); (1.211)with G��C (x� y) given byG��C (x� y) = Z d4k(2�)4 eik(x�y) N��C (k)k2 � i� ; (1.212)where N��C (k) = �k2k2 ; (�; �) = (0; 0); (1.213)= 0; (�; �) = (m; 0) or (0; n); (1.214)= P Tmn(k); (�; �) = (m;n): (1.215)We used Æ(x0 � y0)4�jx� yj = Z d4k(2�)4 eik(x�y) 1k2 ; (1.216)for (�; �) = (0; 0). The objet G��C (x � y) is alled the propagator (in Coulombgauge, as indiated by the subsript C; later we shall enounter propagators inother gauges).The amplitude Z(J) looks nonovariant but it is Lorenz invariant. This ismost easily shown in `momentum spae', i.e. expressing Z(J) in terms of theFourier variables k�. Inserting (1.212) into (1.211) givesZ(J) = 1 + i2~ Z d4k(2�)4 J�(�k) N��C (k)k2 � i� J�(k) +O(J4); (1.217)where J�(k) = Z d4x e�ikx J�(x): (1.218)Next we note that N��C (k) an be expressed in the formN��C (k) = g�� � k�k� + (kn)(k�n� + n�k�)k2 + (kn)2 ; (1.219)where n is the time like unit vetorn� = Æ�;0; n2 = �1: (1.220)This shows that N��C (k) is equal to g�� up to terms in volving k�, k� or both.The terms / k�, k� in the propagator are alled gauge terms, sine they dependon the hoie of gauge. Using urrent onservation ��J� = 0, or in momentumspae k�J�(k) = 0, we see that the gauge terms do not ontribute and we anexpress the vauum amplitude as a Lorentz salar,Z(J) = 1 + i2~ Z d4k(2�)4J�(�k) g��k2 � i�J�(k) +O(J4): (1.221)



34 CHAPTER 1. QUANTIZED ELECTROMAGNETIC FIELD1.11 PropagatorThe propagator is a Green funtion, it is the inverse of the Maxwell wave operator(f. (1.39)) K�� = ��2g�� + ���� ; (1.222)in the sense that a solution ofK��A�(x) = J�(x); ��J�(x) = 0; (1.223)is given by A�(x) = Z d4y G��C (x� y)J�(y): (1.224)The di�erential operator K�� has zero eigenvalues sine any vetor potential ofthe form A� = ��! (`pure gauge') gives zero, K����! = ��2��! + �2��! =0. Therefore K has no inverse on a general funtion spae. Imposing a gaugeondition suh as the Coulomb gauge there are solutions to (1.223). It is essentialthat ��J�(x) = 0 sine the left hand side has also zero divergene. The solutionis still not unique unless we impose boundary onditions in time, e.g. retardedboundary onditions for whih A(x) ! 0 as x0 ! �1. In our ase we haveso-alled Feynman boundary onditions in time.Feynman (also alled `ausal') boundary onditions are as follows:A�(x) = superposition of e�ik0x0 for x0 ! +1 (1.225)= superposition of e+ik0x0 for x0 ! �1; (1.226)where k0 > 0. In momentum spae,K�� ! k2g�� � k�k� � K��(k); (1.227)G��C (k) = N��C (k)k2 � i� ; (1.228)K��(k)G��C (k) = k2k2 � i� �Æ�� � [k� + (kn)n�℄k�k2 + (kn)2 � ; (1.229)where we used (1.212), (1.219). Note that K��(k)k� = 0. Sine k2=(k2� i�) = 1,it follows that K��G��(x� y) = Æ�� Æ4(x� y) + terms / ��: (1.230)The terms/ �� vanish when integrated with J�. As an be seen from (1.205,1.210)the propagator satis�es the Feynman boundary onditions:G��C (x� y) = i Z d!k eik(x�y) P ��C (k); x0 > y0;= i Z d!k e�ik(x�y) P ��C (k); x0 < y0; (1.231)



1.12. VACUUM AMPLITUDE TO ALL ORDERS IN J 35P ��C (k) = X� e�(k; �)e�(k; �)�; e�(k; �) � (e(k; �); 0) (1.232)= g�� � k�k� + (kn)(k�n� + n�k�)(kn)2 ; (1.233)= N��C (k); k2 = 0; (1.234)(the Coulomb part of the propagator ontributes only for x0 = y0).1.12 Vauum amplitude to all orders in JWe shall now alulate Z(J) to all orders in J . Sine UJ(1;�1) ontains aphase fator oming from the Coulomb energy we �rst separate this fator fromthe amplitude, Z(J) = exp[� i~ Z dtEC(t)℄Z 0(J); (1.235)Z 0(J) = h0jU 0J(1;�1)j0i; (1.236)U 0J(t1; t2) = T exp[ i~ Z t1t2 d4x Jm(x)Am(x)℄; (1.237)where Z 0(J) depends only on Jm. We funtionally di�erentiate Z 0(J) (f. Ap-pendix), ÆZ 0(J) = i~ Z d4x h0jU 0J(1; x0)Am(x)U 0J(x0;�1)j0iÆJm(x); (1.238)ÆZ 0(J)ÆJm(x) = i~h0jU 0J(1; x0)Am(x)U 0J(x0;�1)j0i; (1.239)� i~A()m (x)Z 0(J); (1.240)A()m (x) = h0jU 0J(1; x0)Am(x)U 0J(x0;�1)j0ih0jU 0J(1;�1)j0i : (1.241)Here A()m (x) is a -number �eld, like a lassial �eld. In the same way as forthe lassial �eld h0; x0jAm(x)j0; x0i in the previous setion we an derive theequation of motion 2A()m (x) = �JTm(x): (1.242)However, here the boundary onditions in time are di�erent (not retarded): forx0 ! �1,A()m (x) ! h0jU 0J(1;�1)Am(x)j0ih0jU 0J(1;�1)j0i= X� Z d!k em(k; �)�e�ikx h0jU 0J(1;�1)aym(k; �)j0ih0jU 0J(1;�1)j0i ; (1.243)



36 CHAPTER 1. QUANTIZED ELECTROMAGNETIC FIELDwhile for x0 ! +1A()m (x) ! h0jAm(x)U 0J(1;�1)j0ih0jU 0J(1;�1)j0i= X� Z d!k em(k; �)eikx h0jam(k; �)U 0J(1;�1)j0ih0jU 0J(1;�1)j0i : (1.244)This implies that for x0 ! �1 the �eld A()m ontains only soalled negativefrequenies / exp(+ik0x0) while for x0 ! +1 it ontains only positive frequen-ies / exp(�ik0x0) (k0 > 0). These are just the Feynman or `ausal' boundaryonditions, and A()m (x) is given byA()m (x) = Z d4xGmnC (x� y)Jn(y): (1.245)Hene, Z 0(J) satis�es the following equation inorporating the boundary ondi-tions in time, ~i ÆZ 0(J)ÆJm(x) = [Z d4xGmnC (x� y)Jn(y)℄Z 0(J): (1.246)We need the solution of this equation with the boundary ondition Z 0(J) = 1 forJ = 0. The solution is given byZ 0(J) = exp[ i2~ Z d4x d4y Jm(x)GmnC (x� y)Jn(y)℄: (1.247)Taking into aount the ontribution from the Coulomb energy we have for theomplete amplitude (f. (1.200), (1.210))Z(J) = exp[ i2~ Z d4x d4y J�(x)J�(y)G��C (x� y)℄; ; (1.248)whih reprodues the previous O(J2) result (1.211).1.13 E�etive ation and Feynman propagatorWe an reexpress this result as follows,Z(J) = exp[ i~(S(A) + Z d4x J�A�)℄; (1.249)where we rede�ned S by writing the soure ontribution separately,S(A) = � Z d4x 14F��F �� = � Z d4x 12A�K��A�; (1.250)



1.13. EFFECTIVE ACTION AND FEYNMAN PROPAGATOR 37and for notational onveniene we drop the label () on A()� in this setion, i.e.A� is not an operator �eld but a lassial �eld. This �eld is to be alulated from0 = ÆSÆA� + J� = �K��A� + J�; (1.251)with Feynman boundary onditions in time. The solution isA�(x) = Z d4y G��C (x� y)J�(y): (1.252)Substitution in (1.249) using (1.251) gives bak (1.248),S(A) + Z d4xJ�(x)A�(x) = 12 Z d4xJ�(x)A�(x) (1.253)= 12 Z d4x d4y J�(x)G��C (x� y)J�(y)℄:We an also use the ovariant Lorentz gauge��A� = 0; (1.254)and the orresponding Green funtion is the Lorentz gauge (often alled Landaugauge) propagatorG��L (x� y) = Z d4k(2�)4 eik(x�y) �g�� � k�k�k2 � i�� 1k2 � i� : (1.255)For a onserved urrent ��J� = 0 the vauum amplitudes are idential.We an also leave out all k�, k� terms fromG�� and use Feynman's propagatorG��F (k) = g��k2 � i� (1.256)in the expression for the vauum amplitude. This is usually referred to as `usingthe Feynman gauge'. However, G��F annot be obtained by a gauge ondition inthe usual sense, but by modifying the ation. Consider the ationS(A) = � Z d4x [14F��F �� + 12� (��A�)2℄: (1.257)This ation leads to the equations of motion��F �� + 1� ����A� + J� = 0; (1.258)or (��2g�� + ���� � 1� ����)A� = J�: (1.259)



38 CHAPTER 1. QUANTIZED ELECTROMAGNETIC FIELDThe added term depending on the oeÆient � breaks gauge invariane and thewave operator has no zero eigenvalue anymore (with retarded or Feynman bound-ary onditions). The propagator an now be de�ned as the inverse of the waveoperator, (��2g�� + ���� � 1� ����)G��(x� y) = Æ��Æ(x� y): (1.260)The solution with Feynman boundary onditions reads in momentum spaeG��(k) = �g�� � k�k�k2 � i�� 1k2 � i� + � k�k�(k2 � i�)2 : (1.261)For � = 1 this is the Feynman propagator (1.256).Another way to see that the vauum amplitude is unhanged with this mod-i�ed ation, is taking the divergene of the equation of motion, whih gives2��A� = 0: (1.262)The solution of this with Feynman boundary onditions is��A� = 0; (1.263)so the term / ��1 in the ation in the expression for the vauum amplitudevanishes.An alternative quantization proedure for the eletromagneti �eld is basedon the modi�ed ation with � = 1, the Gupta-Bleuler method. This leads to ad-ditional unphysial `photons' alled ghosts, and inde�nite (positive and negativemetri) in `Hilbert spae'. One then has to show that these undesirable featuresdo not matter in physial quantities. The advantage of this method is that itleads to manifestly Lorentz ovariant expressions.We shall see later that also in the general situation with interating �elds thevauum amplitude an be expressed in terms of an ation, the e�etive ation.In our simple ase the e�etive ation is just S(A).1.14 Emission and absorption of photonsSuppose the soure has the form J�(x) = J�1 (x)+J�2 (x), suh that the spaetimeregion where J1 is nonzero lies to the future of the region where J2 is nonzero, asillustrated in �g. 1.2. Let t+ be a time after J1 has ated, t� a time before J2 hasated and t0 a time in between the times where J1;2 are nonzero (e.g. t0 = 0). Theevolution operator satis�es the relation UJ(t+; t�) = UJ(t+; t0)UJ(t0; t�), and forthe above hoie of soures we an writeUJ1+J2 = UJ1UJ2; (1.264)



1.14. EMISSION AND ABSORPTION OF PHOTONS 39

Figure 1.2: Spaetime regions where J�1 (x) and J�2 (x) are nonzero.with UJ � UJ(1;�1)= T exp[ i~ Z d4xAm(x)Jm(x)� i~ Z dtEC(t)℄: (1.265)Introduing intermediate states at time t0 we haveZ(J1 + J2) = h0jUJ1UJ2 j0i (1.266)= Xn 1n! X�1����n Z d!k1 � � �d!knh0jUJ1jk1�1 � � �kn�nihk1�1 � � �kn�njUJ2j0i; (1.267)� Xn 1n! X�1����n Z d!k1 � � �d!knh0jk1�1 � � �kn�niJ1hk1�1 � � �kn�nj0iJ2; (1.268)where we introdued the amplitudes for prodution and absorption of photonsby the soures J2 and J1,hk1�1 � � �kn�nj0iJ2 = hk1�1 � � �kn�njUJ2 j0i; (1.269)h0jk1�1 � � �kn�niJ1 = h0jUJ1jk1�1 � � �kn�ni: (1.270)We an now use the expliit expression for the vauum amplitude,Z(J) = exp[ i2~ Z d4x d4y J�(x)G��(x� y)J�(y)℄; (1.271)Z(J1 + J2) = Z(J1)Z(J2) exp[ i~ Z d4x d4y J1�(x)G��(x� y)J2�(y)℄;



40 CHAPTER 1. QUANTIZED ELECTROMAGNETIC FIELD= Z(J1)Z(J2) exp[1~X� Z d!k iJ1(k; �)� iJ2(k; �)℄; (1.272)where we used (1.232) and the notationJ(k; �) = em(k; �)� Z d4x e�ikxJm(x); k0 = jkj: (1.273)Expanding the J1 { J2 ross term as a series in J1 and J2 an omparing with theright hand side of (1:268) we see that the emission and absorption amplitudesare given by hk1�1 � � �kn�nj0iJ2 = Z(J2)~�n=2 nYl=1 iJ2(kl; �l); (1.274)h0jk1�1 � � �kn�niJ1 = Z(J1)~�n=2 nYl=1 iJ1(kl; �l)�: (1.275)For a weak soure we have to leading order in J ,hk; �j0iJ2 = iJ2(k; �)=p~; (1.276)h0jk; �iJ1 = iJ1(k; �)�=p~; (1.277)and we see for instane that the momentum spae wave funtion of a singlyprodued photon is given by'(k; �) = iJ2(k; �)=p~: (1.278)1.15 Radiation by a soureThe probability Pn for produing n photons in momentum range R by a soureJ (we drop the subsript 2 on J2),PRn = 1n! X�1����n ZR d!k1 � � �d!knjhk1�1 � � �kn�nj0iJ j2 (1.279)is given by PRn = P0(J) ~�nn! [X� ZR d!kjJ(k; �)j2℄n; (1.280)where P0 is the probability that no photon is radiated,P0(J) = jZ(J)j2 = exp[�1~ImZ d4x d4y J2�(x)G��C (x� y)J2�(y)℄: (1.281)



1.15. RADIATION BY A SOURCE 41One way to evaluate this expression is in momentum spae,P0(J) = exp[�1~ImZ d4k(2�)4J2�(�k)G��C (k)J2�(k)℄; (1.282)= exp[�1~ImZ d4k(2�)4J2�(�k)g��J2�(k) 1k2 � i� ℄; (1.283)using the representation (written for general mass �)1�2 + k2 � i� = P 1�2 + k2 + i�Æ(�2 + k2); (1.284)where P denotes the prinipal value andÆ(�2 + k2) = Æ(k0 �p�2 + k2)2p�2 + k2 + Æ(k0 +p�2 + k2)2p�2 + k2 ; (1.285)with the orollary for an arbitrary funtion f(k),Z d4k(2�)4 �Æ(�2 + k2)f(k) = Z d!k 12[f(k; k0) + f(k;�k0)℄: (1.286)In our ase f(k) = �J0(k)J0(�k) + Jm(k)Jm(�k) and using the hange of vari-ables k! �k the vauum persistene probability an be written asP0(J) = exp[�1~X� Z d!kjJ(k; �)j2: (1.287)Note that the Coulomb term in Z(J) is a phase fator and does not ontributein P0.If the region R is hosen to be all of momentum spae, then Pn follows aPoisson distribution, Pn = e��n�nnn! ; (1.288)where �n = 1~X� Z d!kjJ(k; �)j2 = 1Xn=0 nPn: (1.289)If R is the region R = fk; jkj < �g, then the total probability for emission intoR is given by Xn PRn = P0 exp[1~X� ZR d!kjJ(k; �)j2℄ (1.290)= exp[�1~X� Zjkj>� d3k(2�)32jkj jJ(k; �)j2℄: (1.291)



42 CHAPTER 1. QUANTIZED ELECTROMAGNETIC FIELDFor a urrent for whihP� jJ(k; �)j2 = O(k�2) as k! 0, the vauum probabilityP0 and more generally the probability to emit any �nite number of photonsvanishes, beause in the expression (1.287) for P0 the integral Rjkj<� d!k divergesat k = 0 (a so-alled infrared divergene). Suh urrents are realisti, theytypially our in Bremsstrahlung (hene the name `infrared atastrophe' for theinfrared divergene). However, the expression (1.291) for the probability to emitany number of photons is still �nite. In partiular, this is the relevant expressionif we do not observe any photon with energy greater than � and do not try tomeasure photons with energy smaller than �. More information an be found inItzykson and Zuber sets. 1-3-2 and 4-1-2, Bjorken and Drell set. 17.10.1.16 LoalityWe started from an ation S whih has nie invariane properties and is loal: ithas the form S = R d4xL(x) where L(x) is a Lorentz salar whih depends on the�elds at x and in the immediate neighborhood of x (through the derivatives). Thisleads to ovariant and loal lassial equations equations of motion. No signalsan travel faster than the veloity of light. Upon quantization we have endedup with non-Lorentz and nongauge invariant expressions whih furthermore lookterribly nonloal: the projetorP Tmn(x� y) = ÆmnÆ(x� y) + �m�n 14�jx� yj (1.292)drops o� very slowly for large separation jx � yj. This nonovariane and non-loality is due to the hoie of gauge, the Coulomb gauge. The advantage ofthe Coulomb gauge is that it fouses on the physial degrees of freedom of theeletromagneti �eld, rather than gauge degrees of freedom, and leads quikly toresults in the simple situation we are dealing with, in whih the �eld is oupledonly to an external urrent. We shall disuss Lorentz invariane more fully ina later hapter and ontent ourselves for the moment with the fat that gaugeinvariant quantities turned out to be Lorentz invariant. For instane, the vauumamplitude is Lorentz invariant.An important expression of loality and Lorentz invariane is the following.Two observables O1;2 assoiated with ompat spaetime regions R1;2 (`loal ob-servables') ommute, when all points x1 2 R1 are spaelike to all points x2 2 R2.In the standard lore of quantum mehanis observables orrespond to measure-ments, and measurements in spaelike separated regions should not be able toinuene eah other. Observables have to be gauge invariant. An example isgiven by the �eld strength F��(x). Loality is expressed by[F��(x); F��(y)℄ = 0; (x� y)2 > 0: (1.293)This is indeed the ase as will now be shown for the ase of vanishing externalurrent.



1.16. LOCALITY 43Using the expansion (reall e�(k; �) = (e(k; �); 0)A�(x; t) = p~X� Z d!k[eikx e�(k; �)a(k; �) + h::℄; (1.294)gives [A�(x); A�(y)℄ = ~ Z d!k (eik(x�y) � e�ik(x�y))P ��C (k); (1.295)where (reall n� = Æ�;0)P ��C = X� e�(k; �)e�(k; �)�= g�� � k�k� + (kn)(k�n� + n�k�)(kn)2 : (1.296)Working out the derivatives in F�� = ��A� � ��A� we get[F ��(x); F ��(y)℄ = ~ Z d!k feik(x�y)[k�k�P ��C (k)� k�k�P ��C (k)� k�k�P ��C (k) + k�k�P ��C (k)℄� (k! �k)g: (1.297)Now the operation of the url in F �� projets to zero any `longitudinal' part / k�in P ��C , suh that only the g�� part of P ��C ontributes. In position spae we anthen write [F��(x); F��(y)℄ = �~(����g�� � ����g��� ����g�� + ����g��) i�(x� y); (1.298)�(x� y) = �i Z d!k (eik(x�y) � e�ik(x�y)): (1.299)The (generalized) funtion �(x) has the following properties:- �(x) is Lorentz invariant, �(�x) = �(x),- �(x) = 0 for x0 = 0, x 6= 0.Sine x = (x; 0) is spaelike and �(x) is Lorentz invariant it follows that itvanishes for general spaelike distanes,�(x� y) = 0; (x� y)2 > 0: (1.300)It is also interesting to note that �(x) is the solution of �2�(x) = 0 with initialonditions �(x) = 0, �0�(x) = �Æ(x) at x0 = 0.)Consequently the �eld strengths and all loal observables that an be madeout of these have the loality property (1.293).



44 CHAPTER 1. QUANTIZED ELECTROMAGNETIC FIELD1.17 AppendixEq. (1.238) is intuitively lear from the representation of the interation pitureevolution operator in terms of time ordered produts of HJ . We elaborate herefurther on this. For larity we set ~ = 1. We haveZ 0(J) = h0jT ei R1�1 d4x Jm(x)Am(x)j0i: (1.301)The time ordered produt T Am1(x1) � � �Amn(xn) (1.302)is ompletely symmetri in the interhange of labels xi; mi $ xj; mj. Hene,Z 0(J) is given byZ 0 = 1Xn=0 inn! Z d4x1 � � �d4xn h0jT Am1(x1) � � �Amn(xn)j0i Jm1(x1) � � �Jmn(xn):(1.303)Then Æ Z 0 = 1Xn=0 inn! Z d4x1 � � �d4xn h0jT Am1(x1) � � �Amn(xn)j0iJm1(x1) � � �Jmn�1(xn�1)n ÆJmn(xmn): (1.304)Relabeling n� 1! n and using the ombinatoris of ea+b = ea eb we an rewritethis in various waysÆ Z 0 = Z d4x iÆJm(x) 1Xn=0 inn! Z d4y1 � � �d4ynh0jT Am(x)Ak1(y1) � � �Akn(yn)j0i Jk1(y1) � � �Jkn(yn) (1.305)= Z d4x iÆJm(x) h0jT [ei R1x0 d4y Jk(y)Ak(y) Am(x)ei R x0�1 d4z Jl(z)Al(z)℄j0i (1.306)= Z d4x iÆJm(x) h0jU 0J(1; x0)Am(x)U 0J(x0;�1)j0i: (1.307)From (1.305) we get furthermore the useful formulaÆZ 0iÆJm(x) = h0jT Am(x) ei R1�1 d4y Jn(y)An(y)j0i; (1.308)and repeating the di�erentiations,ÆnZ 0iÆJm1(x1) � � � iÆJmn(xn) = h0jT Am1(x1) � � �Amn(xn) ei R1�1 d4y Jn(y)An(y)j0i:(1.309)



1.18. PROBLEMS 451.18 Problems1. The identity ����� ��F�� = 2����� ����A� = 0 (1.310)implies the homogeneous Maxwell equations��F� + ��F� + �F�� = 0: (1.311)Use the homogeneous and inhomogenous Maxwell equations to derive thedivergene relation for the energy-momentum tensor (1.48).2. The formulas (1.84) also apply to a �nite number of degrees of freedom.Chek expliitly the ase n = 2 (e.g. for two degrees of freedom � = 1; 2).3. Verify 14�jx� yj = Z d3k(2�)3 eik(x�y) 1k2 ; (1.312)by applying the laplaian � to left and right hand side and using (1.61).4. Verify that in the in�nite volume limit the formula (1.100) for the transverseprojetor goes over inP Tmn(x;y) = Z d3k(2�)3 eik(x�y) �Æmn � kmknk2 �= ÆmnÆ(x� y) + �m�n 14�jx� yj : (1.313)Notie that P Tmn(x;y) = P Tnm(y;x).5. Verify the other ommutation relations in (1.111).6. To obtain the expressions (1.115) for the hamiltonian, we insert (1.101) into(1.89), using (1.105):H = 1V 2 Xk;l 14k0l0 Z d3x 12 [(�ik0eikx am(k) + ik0e�ikx am(k)y)(�il0eilx am(l) + il0e�ilx am(l)y)+ (eikx am(k) + e�ikx am(k)y) l2 (eilx am(l) + e�ilx am(l)y)℄: (1.314)The integration sets l = �k and the aa and ayay terms anel (k0 = jkj),leaving H = 1V Xk 12k0 k0 12 [am(k)am(k)y + am(k)yam(k)℄: (1.315)



46 CHAPTER 1. QUANTIZED ELECTROMAGNETIC FIELDWe an now onvert to a(k; �) or use the ommutation relation (1.111)diretly with (sum over m) P Tmm(k) = 2 =P� to put ay to the left of a,am(k)am(k)y = am(k)yam(k) + 2k0V X� : (1.316)This gives (1.89) after onverting to a(k; �). This alulation of the hamil-tonian is basially the same as for the one dimensional harmoni osillator.The alulation of the momentum operator (1.90) proeeds in similar fash-ion,P = � 1V 2 Xk;l 14k0l0 Z d3x [(�ik0eikx am(k) + ik0e�ikx am(k)y) il (eilx am(l)� e�ilx am(l)y)= 1V Xk 12k0 12k [am(k)am(�k) + am(k)yam(�k)y+ am(k)am(k)y + am(k)yam(k)℄; (1.317)= 1V Xk 12k0 k am(k)yam(k) (1.318)(k is odd under k ! �k, suh that aompanying fators even underk! �k do not ontribute). Expressing the result in terms of a(k; �) gives(1.90).7. Derive (1.135) by normal ordering, i.e. interhanging the reation and an-nihilation operators (using their ommutation relations) suh that all a'sstand to the right of all ay's, and the fat that any a gives zero on j0i andand any ay gives zero on h0j.8. Calulate h'jAm(x)An(y)j'i, for example by inserting intermediate states,and verify the expression (1.151) for the expetation value h'jT ��(x)j'i.9. Reall that (g�1)�� = g�� and verifygg�1 = 1! Ægg�1 + gÆg�1 = 0 =) Æg�1 = �g�1Æg g�1; (1.319)or Æg�� = �g��g�� Æg��; (1.320)and det g = 14!��1����4��1����4g�1�1 : : : g�4�4 ; (1.321)Æ det g = 13!��1����4��1����4g�1�1 : : : g�3�3 Æg�4�4= (det g)(g�1)�4�4 Æg�4�4 = (det g)g�� Æg��; (1.322)



1.18. PROBLEMS 47and Æp� det g = 12p� det g g��Æg��; (1.323)and �nally (1.140).10. To verify the step leading to (1.191), evaluate the ommutator [H;�m(x; t)℄using the form (1.89) for H; reall [ab; ℄ = a[b; ℄+ [a; ℄b. This also veri�esthat the operator �eld equations2Am(x) = 0 (1.324)follow from the anonial quantization proedure.11. Consider Green funtions of the operator �2 + �2,(�2 + �2)G(x� y) = Æ(x� y): (1.325)The Feynman propagatorG(x� y) = Z d4 k(2�)4 eik(x�y) 1�2 + k2 � i� (1.326)is a solution to (1.325) with Feynman boundary onditions. Using ontourintegration verify that 1�2 + k2 � i� ! 1�2 + k2 � (k0 + i�)2 (1.327)orresponds to retarded boundary onditions.



48 CHAPTER 1. QUANTIZED ELECTROMAGNETIC FIELD



Chapter 2Interations with salar �eldsWe introdue salar �elds in this hapter and oupled these to the eletromagneti�eld. The resulting �eld theory desribes the interation of photons with hargedpartiles of spin zero. The vauum amplitude is elegantly summarized in termsof the e�etive ation and the formalism leads naturally to Feynman diagrams.The equations of motion are translated into the Dyson-Shwinger equations forthe e�etive ation, and the perturbative solution of these equations leads to thediagrammati loop expansion, the semilassial expansion in powers of ~. Fromthe vauum amplitude we obtain the sattering amplitude and the diagrams givean intuitive piture of sattering in terms of virtual partile exhange.From now on we use units in whih Plank's onstant ~ = 1 and the veloity oflight  = 1. Then the dimensions of various quantities are like [mass℄ = [energy℄= [momentum℄ = [A�℄ = [length�1℄ = [time�1℄. The ation is dimensionless. Toonvert to ordinary units we use appropriate powers of ~ and . A partiularlyuseful ombination is ~ = 197:3 � 200 MeV fm, where fm (femto meter orFermi) denotes the unit of length 10�13 m. For example a mass m of 200 MeVorresponds to a length 1=m of about 1 fm. The the unit of eletromagneti hargee � 0:30, whih follows from the �ne struture onstant � = e2=(4�) � 1=137.2.1 Free salar �eldWe have seen that the quanta of the eletromagneti �eld an be interpreted aspartiles, the photons, whih an our in two spin states orresponding to thetwo independent polarization vetors e(k; �). It is now natural to look for other�eld systems for the desription of other kinds of partiles. The simplest is thesalar �eld, the quantization of whih leads to spinless partiles. Having gonethrough the quantization of the more ompliated ase of the eletromagneti�eld, the orresponding formulas for the salar �eld are a pleasant simpli�ation.We urge the reader to go through the formulas in the preeding hapter, dropthe polarization vetors and vetor index m on Am, and obtain the orrespondingformulas for the salar �eld. We summarize here some of the relevant formulas.49



50 CHAPTER 2. INTERACTIONS WITH SCALAR FIELDSThe ation for the free salar �eld '(x) is given byS = Z d4xL(x) = Z dx0 L; (2.1)L(x) = �12��'(x)��'(x)� 12m2'(x)2 � �0; (2.2)L('; _') = Z d3x [12 _'2 � 12 (r')2 � 12 m2'2 � �0℄; (2.3)where we have inluded a bare osmologial onstant �0. The equation of motioninluding an external salar soure J(x) is given by0 = ÆÆ'(x) (S + Z d4x0 J(x0)'(x0))= (2�m2)'(x) + J(x): (2.4)For J = 0 this equation is known as the Klein-Gordon equation. The energy-momentum tensor T �� = ��'��'+ g��L (2.5)is onserved for vanishing soure J = 0 as a onsequene of the equation ofmotion, ��T �� = 0.The anonial onjugate of the �eld '(x) is denoted by �(x) and an be foundby making a mode expansion, as done for the eletromagneti �eld. It an alsobe de�ned by generalizing the partial derivative (1.8) to a funtional derivative,�(x) = ÆÆ _'(x)L('; _') = _'(x); (2.6)where the time dependene is left impliit. The hamiltonian with soure J takesthe form Htot = H � Z d3xJ'; (2.7)where H = Z d3x ��0'� L = Z d3x T 00 (2.8)= Z d3x [12�2 + 12(r')2 + 12m2'2 + �0℄ (2.9)is the hamiltonian for J = 0.After quantization the anonial ommutation relations at time x0 = 0 aregiven by ['(x); �(y)℄ = iÆ(x� y); (2.10)[�(x); �(y)℄ = ['(x); '(y)℄ = 0: (2.11)



2.1. FREE SCALAR FIELD 51The reation and annihilation operators appear in the anonial variables aord-ing to '(x) = Z d!p [eipxa(p) + e�ipxa(p)y℄; (2.12)�(x) = Z d!p [�ip0eipxa(p) + ip0e�ipxa(p)y℄; (2.13)d!p = d3p(2�)32p0 ; p0 =pm2 + p2; (2.14)and satisfy the ommutation relations[a(p); a(p0)y℄ = 2p0(2�)3Æ(p� p0); (2.15)[a(p); a(p0)℄ = [a(p)y; a(p0)y℄ = 0: (2.16)The energy momentum operator of the soure free �eld an be written asP � = Z d!p a(p)ya(p) p� (2.17)where we adjusted the bare osmologial onstant �0 suh that the renormalizedosmologial onstant is zero and the energy of the vauum is zero. The reationoperators reate spin zero partiles out of the vauum j0i with four-momentump, P �jpi = p�jpi; jpi = a(p)yj0i; (2.18)and similar for multi partile states. The mass of the partiles is m, as an beseen from p�p� = �m2.The vauum amplitude is given byZ(J) = exp[i12 Z d4xd4y J(x)G(x� y)J(y)℄; (2.19)= exp[iS('()) + i Z d4x J(x)'()(x)℄; (2.20)with the propagatorG(x� y) = Z d4p(2�)4 eip(x�y) 1m2 + p2 � i� (2.21)implementing Feynman boundary onditions in time for the lassial �eld'()(x) = Z d4y G(x� y)J(y): (2.22)Finally, the amplitudes for emission and absorption of partiles by the soure aregiven by hpj0iJ = iJ(p); h0jpiJ = iJ(p)�; (2.23)to leading order in J .



52 CHAPTER 2. INTERACTIONS WITH SCALAR FIELDS2.2 Yukawa potentialThe Coulomb potential deribes the interation energy of two stati (time inde-pendent) harge distributions. The analogue in salar �eld theory is the Yukawapotential. The stati lassial �eld is the solution of the equation(��+m2)'()(x) = J(x); (2.24)whih an be solved with the help of the stati Green funtion'()(x) = Z d3y Gstat(x� y)J(y); (2.25)(��+m2)Gstat(x� y) = Æ(x� y); (2.26)Gstat(x� y) = Z d3p(2�)3 eip(x�y)m2 + p2= e�mjx�yj4�jx� yj : (2.27)The last line follows by using spherial oordinates with p(x � y) = pr os �,integrating �rst over angles,G(x� y) = 1(2�)2 Z 10 dp p2m2 + p2 2 sin prpr ; (2.28)= 14�rReZ 1�1 dp2�i 2p eiprm2 + p2 ; (2.29)and then over p using ontour integration by losing the ontour in the upperhalf of the omplex p-plane. With a soure of the form J(x) = J1(x) + J2(x),substitution of '() into (2.7) gives the energyE = E11 + E22 + 2E12; (2.30)Eij = �12 Z d3xd3y Ji(x) e�mjx�yj4�jx� yjJj(y): (2.31)Notie that the interation energy 2E12 is negative when both J1 and J2 arepositive.The expression e�mr4�r (2.32)is known as the Yukawa potential. It has the form of a sreened Coulomb potentialwith sreening length 1=m. For distanes r � 1=m the interation beomesnegligible and 1=m is a measure of the range of the interation. For m ! 0 weget the in�nite range Coulomb potential. Other ommon names for 1=m are:the Compton wave length and the orrelation length (by analogy with Statistial



2.3. COMPLEX SCALAR FIELD 53Physis). The parameter m in the free salar �eld ation plays the dual role ofpartile mass and interation range. Yukawa introdued the salar �eld in thethirties to explain the nulear fores. After some initial onfusion (see e.g. Paisfor a historial aount) the spinless partiles orresponding to this �eld wereidenti�ed with the pions. The pion mass m� � 140 MeV orresponds to aninteration range of 1=m� � 200=140 = 1:4 fermi.2.3 Complex salar �eldTwo �elds '�(x), � = 1; 2, desribe two types of spinless partiles. If they havethe same mass, then the ationS = � Z d4x (12��'���'� + 12m2'�'�) (2.33)(where a summation is implied over repeated �) has a ontinous symmetry: it isinvariant under SO(2) transformations, orthogonal rotations in two dimensions,� '01'02 � = � os! � sin!sin! os! �� '1'2 � ; '0(x) = R'(x): (2.34)We may think of '� as a vetor in `internal' spae (` �-spae' { as opposed toordinary spaetime), whih gets rotated by the matrix R. WritingR = e�i!q = os! � iq sin! = 1� i!q + � � � ; (2.35)q = � 0 �ii 0 � ; qT = �q; RT = R�1; (2.36)we see that q is the generator of these transformations.The invariane of S under the ontinous SO(2) symmetry implies a loalonservation law (Noether's theorem), whih an be derived as follows. We makea small variation of ' that has the form of a spaetime dependent symmetrytransformation, Æ'�(x) = �iq��'�(x) Æ!(x): (2.37)If ' satis�es the equations of motion, then the ation is stationary (we assumehere J = 0):0 = ÆS = � Z d4x [��'� (�iq��) ��('�Æ!) +m2'� (�iq��)'�Æ!℄= Z d4x ��'� iq�� '� ��Æ! (2.38)� Z d4x j���Æ! = � Z d4x (��j�) Æ!: (2.39)



54 CHAPTER 2. INTERACTIONS WITH SCALAR FIELDSSine the variations Æ! are arbitrary we have the onservation of a urrent,j� = i��'� q�� '�; ��j� = 0: (2.40)The harge Q orresponding to the urrent is onserved,Q = Z d3x j0(x); �0Q = 0: (2.41)In the quantum theory '�(x) and ��(x) satisfy the equal time ommutationrelations ['�(x; t); ��(y; t)℄ = iÆ�� Æ(x� y); (2.42)with the other ommutators vanishing. Then Q beomes an operator in Hilbertspae, Q = Z d3x (�i�0'� q�� '�) = �i Z d3x �� q�� '�; (2.43)and it is a generator of SO(2) transformations in the following sense[Q;'(y)℄ = �qÆ 'Æ(y); (2.44)ei!Q '� e�i!Q = �e�i!q��� '� = R�� '�: (2.45)The seond line an be heked by di�erentiating with respet to ! and integratingagain, F�(!) = ei!Q '� e�i!Q; F�(0) = '�; (2.46)dd!F�(!) = �iq�� F�(!)) F�(!) = �e�i!q��� F�(0): (2.47)The eigenvetors of q de�ne a basis in internal spae,e1(�) = 1p2 ; e2(�) = � ip2 ; q�� e�(�) = �e�(�); (2.48)and we an expand the lassial '� in terms of harge eigen�elds ' and '�,'� = ' e�(+) + '� e�(�); ' = e�(+)� '�; '� = e�(�)� '�: (2.49)In terms of the omplex �eld ' the ation takes the formS = � Z d4x (��'���'+m2'�'): (2.50)In the omplex formalism we treat ' and '� as independent variables. For ex-ample, the equation of motion for ' is obtained by varying '� only,0 = � Z d4x (�����' +m2') Æ'�; (2.51)0 = ÆSÆ'�(x) = (2�m2)'(x): (2.52)



2.3. COMPLEX SCALAR FIELD 55The SO(2) transformations now take the U(1) form (U(1) = group of unitarytransformations in 1 dimension)'0 = e�i! '; '0� = ei! '�; (2.53)under whih the ation (2.50) is learly invariant.In the quantum theory� � �' = �0'y; �y � �'� = �0'; (2.54)and we have ['(x; t); �(y; t)℄ = ['y(x; t); �y(y; t)℄ = iÆ(x� y); (2.55)with the other ommutators vanishing. The urrent takes the formj� = i��[' e�(+) + 'y e�(�)℄ q�� [' e�(+) + 'y e�(�)℄= �i��''y + i��'y '; (2.56)where we have been areful about the ordering of operators, using the real formu-lation as a starting point. In the real formulation there is no ordering ambiguityin the sense that e.g. for the harge density,j0(x) = �iq�� ��(x)'�(x) = �iq�� '�(x) ��(x); (2.57)where we used Æ(0)q�� Æ�� = Æ(0)Tr q = 0. The ommutation relations of Q with' and 'y read [Q;'(x)℄ = �'(x); [Q;'(x)y℄ = '(x)y: (2.58)In more detail we have '(x) = 1p2 ['1(x)� i'2(x)℄; (2.59)and we an write'(x) = Z d!p [eipx a(p;+) + e�ipx a(p;�)y℄; (2.60)a(p;�) = 1p2 [a1(p)� ia2(p)℄; (2.61)Q = Z d!p [a(p;+)ya(p;+)� a(p;�)ya(p;�)℄: (2.62)We see that Q ounts the number of `+' quanta minus the number of `�' quanta.By onvention we all the `+' quanta partiles and the `�' quanta antipartiles,i.e. the one partile harge eigenstates jp�i of Q are interpreted as partiles(Q = +1) and antipartiles (Q = �1),a(p;�)yj0i � jp�i; (2.63)Qjp�i = �jp�i: (2.64)



56 CHAPTER 2. INTERACTIONS WITH SCALAR FIELDS2.4 Coupling to the eletromagneti �eldThe omplex salar �eld system has a global U(1)'SO(2) invariane, by whihwe mean that the angle ! in the transformation'0(x) = ei!'(x); '0(x)� = e�i! '0(x)�; (2.65)does not depend on the spaetime oordinate x. We an interpret these trans-formations also as passive transformations of the oordinate system in internalspae. It is natural to ask if the referene system that piks out the real andimaginary parts of ', or equivalently its 1 and 2 omponents, has to be globallyde�ned. For example do we have to hoose it the same here in Amsterdam nowas on the Moon �ve years later? It is possible to allow for arbitrary loal trans-formations of the internal oordinate frame, with an ation invariant under U(1)transformations with angle !(x) depending on spaetime. To ahieve this weneed to ompensate the noninvariane of the derivative terms in the lagrangian,L(x) = ���'(x)���'(x)�m2'(x)�'(x); (2.66)beause under a loal transformation'0(x) = ei!(x) '(x); (2.67)the term m2'(x)�'(x) is invariant but the derivative transforms in an inhomoge-nous and nonovariant way��'0(x) = ��[ei!(x) '(x)℄ = ei!(x) [��'(x) + i��!(x)'(x)℄: (2.68)Instead, a ovariant derivative D�' transforming asD0�(x)'0(x) = ei!(x)D�(x)'(x) (2.69)would allow for the onstrution of an invariant lagrangianL(x) = �[D�(x)'(x)℄�D�(x)'(x)�m2'(x)�'(x); (2.70)The well known onstrution of the ovariant derivative uses the invariane ofthe eletromagneti �eld system under the gauge transformationA0�(x) = A�(x) + 1e��!(x); (2.71)where e is an arbitrary onstant. The formD�(x) = �� � ieA�(x); (2.72)



2.4. COUPLING TO THE ELECTROMAGNETIC FIELD 57has the required property: under the ombined gauge transformation (2.67),(2.71), D0�(x)'0(x) = [�� � ieA0�(x)℄'0(x)= [�� � ieA�(x)� i��!(x)℄ ei!(x) '(x)= ei!(x) [�� � ieA�(x)℄'(x)= ei!(x)D�(x)'(x): (2.73)A derivative involves the omparison of �elds at in�nitesimally lose points inspaetime. The eletromagneti potentials play the role of a onnetion, whih isused in omparing (`onneting') the orientations of the internal spaes at thesein�nitesimally lose points.The lassial ation for the ombined eletromagneti and salar �eld systemis now given by S = SA + SA'; (2.74)SA = � Z d4x 14F��F ��; (2.75)SA' = � Z d4x [(D� ')�D� '+m2'�'℄ (2.76)= � Z d4x [��'���'+m2'�'+ e(i'� ��'� i��'� ')A� + e2'�'A�A�℄: (2.77)In the formalism using real �elds the ation SA' readsSA' = � Z d4x [12(D�')T D�'+ 12m2'T'℄; (2.78)' = � '1'2 � ; D�' = (�� � ieqA�)': (2.79)We see in (2.77) the appearene of terms of ubi and quarti order in the �elds.These are alled interation terms, sine free �eld systems (inluding externalsoures) have only terms at most quadrati in the �elds. The parameter e is alleda oupling onstant, sine it governs the strength of the interations. We an usethis theory for the desription of harged pions �� in an external eletromagnetipotential A�. Then it an be shown that e is the elementary unit of harge, assuggested by the notation. This identi�ation will be made on the basis of asattering experiment (f. (2.251)).The theory is still invariant under the global U(1) transformation (2.65) im-plying the gauge invariant onserved urrentj� = i(D�')�'� i'�D�': (2.80)



58 CHAPTER 2. INTERACTIONS WITH SCALAR FIELDSIt is furthermore invariant under the disrete transformation'0 = '�; '0� = '; A0� = �A�; (2.81)whih hanges the sign of the harge Q = R d3x j0 and is therefore alled hargeonjugation. In the real �eld formalism this transformation is a reetion ininternal spae, '01 = '1; '02 = �'2; or '0 = � 1 00 �1 �': (2.82)As far as ' is onerned this transformation ompletes SO(2) into O(2), theorthogonal group in two dimensions inluding reetions.The quantization of the omplete oupled '{A �eld theory in the Coulombgauge is straightforward but umbersome. We shall not go through the details(see e.g. Bjorken & Drell II for quantization in the Coulomb gauge), but list anumber of noteworthy points:1. Similar to the ase of the osmologial onstant, it turns out that the pa-rameters we start out with in the formulation of the theory { the bareparameters { are not equal to the parameters we measure { the renormal-ized parameters. We therefore make the replaement in the atione! e0; m2 ! �20: (2.83)Furthermore, it turns out that we need a gauge invariant bare self ouplingof the form �0('�')2 in order to be able to anel a type of in�nities. Therenormalized and parameters e, m and � are then funtions of the bare e0,�20 and �0 and the hoie of regularization.So the quantum theory will be based on the A{' ationSA' = � Z d4x f[(�� � ie0A�)'℄� (�� � ie0A�)'+ �20'�'+ �0('�')2 + �0g;(2.84)where we have put the bare osmologial onstant in SA'; the ation SAremains unhanged.2. The anonial onjugate of ' involves A0,� = ÆLÆ�0' = [D0'℄� = �0'� + ie0A0'�; (2.85)and similar for ��. In the anonial formalism we have to express �0' and�0'� in terms of � and ��.



2.5. EQUATION FOR THE VACUUM AMPLITUDE IN '4 THEORY 593. The anonial equal time ommutation relations in the quantum theory areunhanged, e.g. at t = 0,['(y); �(x)℄ = ['(y)y; �(x)y℄ = iÆ(x� y); (2.86)[Am(x);�n(y)℄ = iP Tmn(x� y); (2.87)[�(x); Am(y)℄ = ['(x); Am(y)℄ = [�(x);�m(y)℄ = ['(x);�m(y)℄= � � � = 0: (2.88)The equal time ommutators between anonial salar �eld and eletromag-neti variables vanish aording to the anonial rules.4. The urrent in Maxwell's equations ontributed by the salar �eld is givenby e0j� = ie0[(D�')y '� 'yD�'℄: (2.89)The orresponding harge densitye0j0 = �ie0(�'� �y'y) (2.90)is now an operator and therefore alsoA0(x; t) = e0 Z d3y 14�jx� yj j0(y; t); (2.91)and the Coulomb energyHC(t) = e20 12 Z d3xd3y j0(x; t) j0(y; t)4�jx� yj : (2.92)5. Charge onjugation interhanges partiles and antipartiles, as an be seenfrom (2.81), (2.60).2.5 Equation for the vauum amplitude in '4theoryIn the following we shall illustrate some derivations with a system that is simplerthan salar eletrodynamis, the '4 theory. Its lassial ation is given byS(') = � Z d4x (12��'��'+ 12�2'2 + 14�'4 + �); (2.93)where ' is a real salar �eld. The hamiltonianH = Z d3x (12�2 + 12(r')2 + 12�2'2 + 14�'4 + �); (2.94)



60 CHAPTER 2. INTERACTIONS WITH SCALAR FIELDS

Figure 2.1: Classial energy density of the '4 theory, for �2 > 0 (a) and for�2 < 0 (b).an be seen as an in�nite number of oupled anharmoni osillators. There is alsoan analogy with the three dimensional Ising model, in whih ' is an average overIsing spins in a small volume d3x. The lassial ground state has �2 = (r')2 = 0and minimal energy densityU = 12�2'2 + 14�'4 + �: (2.95)The funtion U is skethed in �g. 2.1. Sine we assume the energy to be boundedfrom below, � > 0. For �2 > 0, the ground state is at ' = 0, while for �2 < 0there are two mimima at ' = �r��2� (2.96)It follows that for negative �2 the symmetry '(x) ! �'(x) is broken in theground state, and one speaks of spontaneous symmetry breaking. This is anal-ogous to the phenomenon of spontaneous magnetization in the Ising model. Tosingle out a de�nite ground state we an add a small term to the ation whihbreaks the symmetry '! ' expliitly,�S = Z d4x �'(x): (2.97)We see that � plays the role of a onstant external �eld in the Ising model. In ourpresent terminology � an be interpreted as a onstant external soure J(x) = �.In the quantum theory we antiipate renormalization and make the replae-ments �2 ! �20, � ! �0, � ! �0, � ! �0. The �eld equation with an externalsoure J 0 = (�2 � �20)'� �0'3 + J; (2.98)follows from the Heisenberg equations of motion with total hamiltonian H �R d3x J'.The �elds an still be written in terms of reation and annihilation operatorsat some time suh as t = 0, e.g.'(x) = Z d!p [eipx a(p) + e�ipx a(p)y℄; (2.99)



2.5. EQUATION FOR THE VACUUM AMPLITUDE IN '4 THEORY 61but the time dependene is now given by the nonlinear �eld equation (2.98) notsimply that of a free �eld,'(x) 6= Z d!p [eipx�ip0x0 a(p) + e�ipx+ip0x0 a(p)y℄; x0 6= 0; (2.100)The hamiltonian H is no longer of the form R d!pp0a(p)ya(p) but ontains termsof fourth order in the reation and annihilation operators, due to the '4 term�0 R d3x'4(x). Hene, the vauum state j0i, i.e. the ground state in the limitof in�nite volume, is muh more ompliated than in the free ase and and notgiven by a(p)j0i = 0. The state j;i de�ned by a(p)j;i = 0 may be alled the no-quantum state. Ordinary perturbation theory then suggests that the true vauumj0i is a superposition of j;i, a(p)yj;i, a(p1)ya(p2)yj;i, . . . . One sometimes speaksof j;i as the bare vauum and j0i as the dressed vauum. The above is alreadytrue of ourse in the simple ase of the one dimensional anharmoni osillatorwith H = 12mp2 + 12!2q2 + 14�q4.Similarly, the other eigenstates of H may be onsidered as being dressed bythe '4 interation. This holds in partiular for the one partile states, whih areassumed to be the true eigenstates of P � (P 0 = H),P �jpi = p�jpi: (2.101)Beause jpi 6= a(p)yj0i, it is also not true in general that hpj'(x)j0i = exp(�ipx).However, for ovariane reasons we may writehpj'(x)j0i =pZ' e�ipx; (2.102)where Z' is a onstant, traditionally alled the wave funtion renormalizationonstant.Although it is of interest to determine the struture of various eigenstates ofH in terms of the quanta at t = 0, it is umbersome and detrats from the mostimmediate physial quantities we wish to alulate, suh as sattering amplitudes.Over the years people have learned to onentrate on the vauum amplitude Z(J)and extrat from it the relevant physial quantities.Let us formulate the ingredients in Z(J). The vauum j0i is the state withlowest energy, adjusted to zero by and appropriate hoie of �0,Hj0i = 0: (2.103)Reall that H does not ontain the soure J and that we use the interationpiture to take J into aount. The interation hamiltonian in the interationpiture is given by HJ(x0) = � Z d3x J(x)'(x): (2.104)



62 CHAPTER 2. INTERACTIONS WITH SCALAR FIELDSThe interation piture �eld '(x) evolves in time under the inuene of H, as ifJ were zero. The vauum amplitude is given byZ(J) = h0jUJ(1;�1)j0i = h0jT e�i R1�1 dtHJ (t)j0i; (2.105)= h0jT ei R d4xJ(x)'(x)j0i: (2.106)By di�erentiating Z(J) with respet to J we `bring down' the ''s,ÆZ(J)iÆJ(x1) � � � iÆJ(xn) = h0jT ei R d4xJ(x)'(x)'(x1) � � �'(xn)j0i: (2.107)For J = 0 we get vauum expetation values of time ordered produts of �elds,sometimes alled � -funtions,h0jT '(x1) � � �'(xn)j0i; (2.108)from whih we an onstrut many quantities of interest.We now onvert the equation of motion (2.98) into an equation for Z(J),similar to what was done for eletromagneti �eld in set. 1.12. For simpliity ofnotation we denote the lassial �eld '() by �,�(x) � 1Z(J) ÆZ(J)ÆJ(x) = h0jUJ(1; x0)'(x)UJ(x0;�1)j0ih0jUJ(1;�1)j0i : (2.109)Di�erentiating twie with respet to x0 we get�0�(x) = Z(J)�1 h0jUJ(1; x0)�(x)UJ(x0;�1)j0i; (2.110)�20�(x) = Z(J)�1 h0jUJ(1; x0)fJ(x) + i[H; �(x)℄gUJ(x0;�1)j0i= Z(J)�1 h0jUJ(1; x0) [J(x) + �'(x)� �20'(x)� �0'(x)3℄UJ(x0;�1)j0i= Z(J)�1 h0jT ei R d4y J(y)'(y) [J(x) + �'(x)� �20'(x)� �0'(x)3℄j0i= Z(J)�1 "J(x) + � ÆiÆJ(x) � �20 ÆiÆJ(x) � �0� ÆiÆJ(x)�3#Z(J);(2.111)whih an be rewritten as0 = J(x) + Z(J)�1 �(�2 � �20)�(x)� �0�(x)3��(x)! ÆiÆJ(x) Z(J) (2.112)= J(x) + Z(J)�1 �ÆS(�)Æ�(x)��(x)! ÆiÆJ(x) Z(J): (2.113)This `Dyson-Shwinger equation' for Z(J) together with Feynman boundary on-ditions in time will be our starting point for a alulational sheme.



2.6. EFFECTIVE ACTION 632.6 E�etive ationWe now express the vauum amplitude Z(J) in terms of an e�etive ation �(�).In fat we will �rst de�ne �(�) in terms of Z(J), then assume �(�) to be givenand reexpress Z(J) in terms of �(�). In the next setion we will use eq. (2.113)to formulate a method for alulating �(�). It is equal to the lassial ation upto so-alled quantum orretions, �(�) = S(�) +O(~).We start by introduing W (J) de�ned byZ(J) = eiW (J): (2.114)Then �(x) = 1Z ÆZ(J)iÆJ(x) = ÆÆJ(x)W (J): (2.115)In terms ofW (J) we de�ne the onneted Green funtions, also alled orrelationfuntions, by G(x1 � � �xn) = ÆÆJ(x1) � � � ÆÆJ(xn)W: (2.116)These Green funtions are ompletely symmetri in their arguments. For n = 1,G(x) = �(x). Di�erentiating Z(J) and setting J = 0 afterwards gives�(x) = h0j'(x)j0i � �0; (2.117)(�i)G(xy) = h0jT '(x)'(y)j0i � h0j'(x)j0ih0j'(y)j0i; (2.118)We see that G(xy) is the fully dressed (i.e. inluding all e�ets of the inter-ations) propagator, and (2.118) illustrates the name `orrelation funtion' byanalogy with suh funtions in Statistial Physis. In our example of the '4 the-ory h0j'(x)j0i may be nonzero, depending on the hoie of parameters �20 and�0. In ase h0j'(x)j0i 6= 0 the symmetry '! �' is spontaneously broken in thevauum.In general J 6= 0. The �eld � depends on J , � = �(J), and we assumethat this relation may be inverted, J = J(�). In the same fashion W (J) may beonsidered a funtion of �, and we now de�ne �(�) by a Legendre transformation,�(�) =W (J)� Z d4x J(x)�(x): (2.119)To streamline the derivations below and to bring the equations into a form thatalso applies to other theories it is now very onvenient to follow DeWitt and use aondensed notation: all indies, spaetime and disrete are lumped into an indexk, �(x)! �k; x! k; (2.120)and we use a summation onvention for repeated indies, e.g.Jk�k � Z d4x J(x)�(x): (2.121)



64 CHAPTER 2. INTERACTIONS WITH SCALAR FIELDSFor the ase of the oupled salar{eletromagneti �eld system the index k alsodistinguishes various �elds,�k ! '()(x); '()(x)�; A()� (x): (2.122)Funtional di�erentiation with respet to �k is denoted by a omma,Æ�(�)Æ�(x) ! �;k (�): (2.123)For example�(�) = �(�0) + �;k (�0)(�k � �k0) + 12�;kl (�0)(�k � �k0)(�l � �l0) + � � �= Xn 1n! �;k1���kn (�0)(�k1 � �k10 ) � � � (�kn � �kn0 ) (2.124)= Xn 1n! Z d4x1 � � �d4xnÆn�(�0)Æ�(x1) � � � Æ�(xn) (�(x1)� �0) � � � (�(xn)� �0); (2.125)where1 �0 = �(J = 0). In the '4 model the derivatives of the lassial ation Saround � = 0 are given by,S;k (0) = 0; (2.126)S;kk0 (0) = � ÆSÆ�(x)Æ�(x0)��=0 � S(x; x0; 0)= � (��2 + �20 � i�) Æ(x� x0); (2.127)S;k1k2k3 (0) = � ÆSÆ�(x1)Æ�(x2)Æ�(x3)��=0 � S(x1x2x3; 0) = 0; (2.128)S;k1���k4 (0) = � ÆSÆ�(x1)Æ�(x2)Æ�(x3)Æ�(x4)��=0 � S(x1 � � �x4; 0)= � 6�0 Æ(x1 � x2) Æ(x1 � x3) Æ(x1 � x4); (2.129)where we have replaed �20 ! �20�i� to enfore the Feynman boundary onditionsin time. We haveS(�) = 4Xn=1 1n! S;k1���kn (0)�k1 � � ��kn (2.130)= 4Xn=1 1n! Z d4x1 � � �d4xn S(x1 � � �xn; 0)�(x1) � � ��(xn): (2.131)1In ase of spontaneous symmetry breaking in in�nite volume W (J) is not di�erentiablein J = 0, see e.g. Brown set. 6.5. We should keep J a little away from zero and hene �in �(�0) a little away from �0, suh that the di�erentiations make sense. After all neessarydi�erentiations have been arried out we an let J ! 0.



2.6. EFFECTIVE ACTION 65In the ondensed notation eqs. (2.116), (2.119) readGk1���kn = ÆÆJk1 � � � ÆÆJkn W; (2.132)and �(�) = W (J)� Jk�k: (2.133)Di�erentiating (2.133) with respet to Jk givesÆ�ÆJl = ÆWÆJl � �l � Jk Æ�kÆJl = �Jk Æ�kÆJl ; (2.134)and using on the left hand side of this equation the hain ruleÆÆJl = Æ�mÆJl ÆÆ�m = Glm ÆÆ�m ; (2.135)gives Glm Æ�Æ�m = �JkGkl; (2.136)or �;p= �Jp: (2.137)Here we assumed Gkl to be nonsingular, i.e. to have an inverse when onsideredas a ontinous matrix. This is assured by the Feynman boundary onditions intime, as expressed by the i� in (2.127). In eletrodynamis it requires in addition�xing the gauge or adding the (��A�)2 term to the lagrangian. Eq. (2.137) showsthat � is the solution of the stationary ation equation (Æ=Æ�p)(� + Jk�k) = 0.Di�erentiating again, Æ�;p =ÆJl, using (2.135), gives�;pqGql = �Ælp; (2.138)whih shows that Gkl is the inverse of ��;kl. Further di�erentiation Æ=Æ�r gives�;pqrGql + �;pqGql;r = 0; (2.139)and ontrating with Grm using Gmr(Æ=Æ�r) = Æ=ÆJm,�;pqrGqlGrm + �;pqGqlm = 0: (2.140)Contrating these last two equations with Gpk using (2.138) givesGkl;r = �;pqrGpkGql; (2.141)Gklm = �;pqrGpkGqlGrm: (2.142)Further di�erentiation of (2.142) with respet to Æ=ÆJn gives, using (2.141) andthe hain rule (2.135)Gklmn = �;pqrsGpkGqlGrmGsn+ �;pqr (GkaGpbGn�;abGqlGrm + 2 perm.); (2.143)
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Figure 2.2: Graphial representation. The little Æ at the end of lines indiatesthe presene of the propagator. Note that the Æ are absent in �;k1���kn.
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Figure 2.3: Vertex funtions and propagator in momentum spae.and so on. The graphial representation given in �gure 2.2 lari�es the proedure.We see that the orrelation funtions an be expressed as a sum of tree diagrams,in whih the lines represent the exat (as opposed to free) propagator Gkl andthe verties represent the exat �;p1���pm . For this reason the derivatives of �are alled vertex funtions2. In this way we obtain Gk1���kn in terms of Gkl and�;p1���pm. Sine Gkl is the inverse of ��;kl all orrelation funtions are expressedin terms of �(�).For J(x) = 0 the orrelation funtions beome translation invariant, as theyare ombinations of � -funtions (2.108): �0(x) = h0j'(x)j0i does not dependon x and G(x1; � � � ; xn) = G(x1 + z; � � � ; xn + z). Also the vertex funtions arethen translation invariant and the expressions simplify in momentum spae. Ouronventions are as follows,Z d4x1 � � �d4xn e�i(p1x1+���+pnxn) �(x1 � � �xn);� (2�)4 Æ4(p1 + � � �+ pn)�(p1 � � � pn) (2.144)Z d4x1 � � �d4xn e�i(p1x1+���+pnxn)G(x1 � � �xn);� (2�)4 Æ4(p1 + � � �+ pn)G(p1 � � � pn) (2.145)G(p;�p) � G(p); �(p;�p) � �(p): (2.146)Note the extration of a four momentum onserving delta funtion, whih ispresent beause of translation invariane. The orresponding diagrams are givenin �g. 2.3. As a onsequene, e.g. the three and four point orrelation funtionsare given byG(p1p2p3) = G(p1)G(p2)G(p3)�(p1p2p3); (2.147)G(p1 � � � p4) = G(p1)G(p2)G(p3)G(p4)[�(p1p2p3p4) (2.148)+ �(p1; p2;�p1 � p2)G(p1 + p2)�(p1 + p2; p3; p4)+ �(p1; p3;�p1 � p3)G(p1 + p3)�(p1 + p3; p2; p4)+ �(p1; p4;�p1 � p4)G(p1 + p4)�(p1 + p4; p2; p3)℄;2The fators i and (�i) in �g. 2.2 look arti�ial at this stage and an be omitted. Thesefators are introdued for onventional reasons and appear anyway in a later stage.
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Figure 2.4: Graphial representation of the three and four point orrelation fun-tions. As in the previous �gures the lines and solid dots denote the exat (fullydressed) propagators and vertex funtions.aording to the diagrams in �g. 2.42.7 Dyson-Shwinger equations and the loop ex-pansionIt is useful to restore Plank's onstant ~ temporarily. We know already theexpliit appearene of ~ in the vauum amplitude (see e.g. (1.249a)),Z(J) = e i~W (J) = e i~ [�(�)+Jk�k℄; (2.149)�k = e� i~W (J) ~ÆiÆJk e i~W (J); (2.150)where W (J) and �(�) may still depend impliitly on ~. Equation (2.113) for thevauum amplitude an be written in the ondensed notation as0 = e� i~W (J) [Jk + S;k ( ~ÆiÆJ )℄ e i~W (J); (2.151)= e� i~W (J) �Jk + S;k (0) + S;kl (0) ~ÆiÆJl + 12S;klm (0) ~ÆiÆJl ~ÆiÆJm+ 13!S;klmn (0) ~ÆiÆJl ~ÆiÆJm ~ÆiÆJn� e i~W (J): (2.152)



2.7. DYSON-SCHWINGER EQUATIONS AND THE LOOP EXPANSION 69The lassial ation S does not depend on ~.To evaluate (2.152) we insert 1 = e� i~W e i~W in between the Æ=ÆJ 's and usethe following operator identitye� i~W (J) ~ÆiÆJk e i~W (J) = �k + ~ÆiÆJk (2.153)= �k � i~Gkl ÆÆ�l (2.154)� �̂k; (2.155)where in the seond line we used the hain rule (2.135). Then eq. (2.152) an berewritten as0 = [Jk + S;k (0) + S;kl �̂l + 12S;klm (0)�̂l�̂m + 13!S;klmn �̂l�̂m�̂n℄ 1; (2.156)where the di�erential operator in [� � �℄ ats on the number 1. Using (2.141) wehave �̂l 1 = �l; (2.157)�̂l�̂m 1 = (�l � i~Glp ÆÆ�p )�m = �l�m � i~Glm; (2.158)�̂l�̂m�̂n 1 = (�l � i~Glp ÆÆ�p )(�m�n � i~Gmn)= �l�m�n � i~�lGmn � i~�mGnl � i~�nGlm+ (�i~)2GlpGmqGnr�;pqr : (2.159)Putting things together see that (2.156) an be rewritten as�J;k = S;k (�) + (�i~)12S;klm (�)Glm+ (�i~)2 13!S;klmn (�)GlpGmqGnr �;pqr ; (2.160)where the argument � in the derivatives of S is expliit. Suppressing the �dependene as usual and realling the e�etive �eld equation �;k= �J; k we�nally have our desired equationi�;k = iS;k +~12 iS;klm (�iGlm)+ ~2 13! iS;klmn (�iGlp)(�iGmq)(�iGnr) i�;pqr : (2.161)This equation is represented graphially in �gure 2.5. Di�erentiating (2.161)repeatedly and letting J ! 0 in the end we obtain an in�nite hierarhy of oupledequations, for the full propagator Gkl and the vertex funtions �k1���kn : the Dyson-Shwinger equations. This di�erentiation is most easily done graphially using
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Figure 2.5: Equation for the the e�etive ation. Dots represent fully dressed(exat) vertex funtions �;kl���, verties without the dot represent bare vertexfuntions S;kl���.

Figure 2.6: Equations for �;kl, �;klm and �;klmn (~ = 1).
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Figure 2.7: One loop approximation for �;kl and �;klmn in the '4 theory in thesymmetri phase. Here the lines denote the bare propagators.the rules in �g. 2.2. The �rst few equations following from di�erentiating aregiven in �g. 2.6, and so on.The in�nite hiearhy an usually not be solved exatly. One an trunatethe hiearhy by setting the n point funtion �(n) = 0 for n larger than somenmax, e.g. nmax = 4, and keeping only the one loop terms in the Dyson-Shwingerequations. The error in suh trunations is diÆult to assess a priori and ineletrodynamis the proedure has problems with gauge invariane. Comparisonwith numerial simulations using the lattie regularization have shown howeverthat the trunation approah may give reasonable results. A systemati approxi-mation is obtained by iteration, by inserting the left hand side into the right handside, repeatedly. This leads to an expansion of �(n) in powers of ~ (whih is gaugeovariant). The power of ~ orresponds to the number of loops in the diagrams,hene the name loop expansion. The semilassial approximation is � � S. Theone loop approximation is obtained by simply replaing the full propagators andvertex funtions on the right hand side of the Dyson-Shwinger equations by thebare ones and dropping the two loop terms. For example, the '4 theory has inthe symmetri phase only two and four point bare vertex funtions (f. (2.127) {(2.129)), and to one loop order the two and four point vertex funtions are givenby the diagrams in �g. 2.7.As announed in the previous setion, � = S +O(~). It is not diÆult to seethat eah power of ~ is aompanied by a power of the oupling onstant �0, orsome other oupling onstant in a more ompliated theory with more than oneoupling onstant. Setting ~ = 1, the semilassial expansion is an expansion inone of the ouplings, keeping ratios of the oupling onstants �xed.



72 CHAPTER 2. INTERACTIONS WITH SCALAR FIELDS2.8 Path integral representationEquation (2.151) for Z(J) has the form of a linear di�erential equation wih anbe solved by Fourier transformation. We writeZ(J) = Z D'e i~Jk'k ~Z('); D' �Yk d'k; (2.162)where the integration variables 'k should not be onfused with the quantumoperator �eld. As usual, di�erentiations beome multipliations in Fourier spae,and the equation for Z(J) gets transformed as0 = [Jk + S;k ( ~ÆiÆJ )℄Z(J) = Z D' [Jk + S;k (')℄ e i~Jk'k ~Z('): (2.163)Replaing Jk by ~Æ=iÆ'k ating on the exponential and making a partial integra-tion we disover that the solution is given byZ(J) = onst: Z D'e i~ [S(')+Jk'k℄; (2.164)whih an easily be heked diretly,Z D' [Jk + S;k (')℄ e i~ [S(')+Jl'l℄ = Z D' [ Æ'k (S(') + Jl'l)℄ e i~ [S(')+Jl'l℄= ~i Z D' ÆÆ'k e i~ [S(')+Jl'l℄= 0; (2.165)beause the surfae terms vanish due to the i� terms in the ation, see e.g. eq.(2.127). The integration onstant is �xed by the property Z(J) = 0,Z(J) = R D'e i~ [S(')+Jk'k℄R D'e i~S(') : (2.166)Eq. (2.166) is the path integral representation of the vauum amplitude.The fat that we are dealing with funtional di�erential equations and or-responding funtional Fourier transformation is helpfully hidden in the ompatnotation, but should of ourse not be forgotten. For example, the formal ontin-uous produt in Z D' = Z Yk d'k !Yx Z 1�1 d'(x); (2.167)is mathematially ill de�ned and needs to be given meaning by a regularization.We ould for instane use a disrete mode expansion, plae a uto� on the numberof modes, and remove this uto� in a later stage. An obvious hoie is the



2.8. PATH INTEGRAL REPRESENTATION 73lattie regularization, in whih the x are restrited to the points of a lattiein spaetime. Then the ontinuum limit needs areful study. This method atone gives a preise and simple de�nition to quantum �eld theory and failitatesnumerial simulations on omputers, whih have led to spetaular suesses inthe nonperturbative �eld theory, in partiular QCD, the theory of the stronginterations.For ~! 0 the stationary phase argument leads to the semilassial resultZ(J) � e i~ [S(�)+Jk�k ℄; (2.168)with �k the solution of S;k (�) + Jk = 0: (2.169)The perturbative expansion for ~! 0 is a systemati stationary phase expansion,whih an be seen as a steepest desent or saddle point expansion by ontinuing' to omplex values. Although these arguments are formal at this level, suhmanipulations of path integrals have turned out to provide a powerful tool inquantum �eld theory.As a simple example, let us write S = S0 + S1, where S0 ontains only thequadrati terms in the �elds and S1 the higher order terms. Then Z(J) an beevaluated as, setting ~ = 1 for simpliity,Z(J) = eiS1( ÆiÆJ ) Z0(J); (2.170)with Z0(J) the free �eld vauum amplitudeZ0(J) = Z D'ei[S0(')+Jk'k℄ (2.171)= Z D'e�i 12'kG�10kl'l+iJk'k ; (2.172)were we suppressed the normalizing onst: This free �eld path integral is formallyjust a multiple gaussian integral, whih an be solved by making a translation'k ! 'k +Gkl0 Jl, Z0(J) = ei 12JkGkl0 Jl Z D'e�i 12'kG�10kl'l: (2.173)The remaining integral is just a onstant (/ pdetG0), whih plays no role inthe present disussion. We have reprodued the free �eld form for the vauumamplitude, and by expansion of exp[iS1( ÆiÆJ )℄ we get an expliit formula for theperturbative expansion of Z(J). This leads to Feynman diagrams, whih maybe ordered into various onneted and irreduible parts, as seen earlier with thee�etive ation tehnique.The path integral integral is a beautiful independent formulation of quantumtheory and our brief introdution here does not do it suÆient justie.



74 CHAPTER 2. INTERACTIONS WITH SCALAR FIELDS2.9 Verties in '4 theorySetting J = 0 (or onst.) after all neessary di�erentiations have been arried out,thranslation invariane allows for transfering the equations to momentum spae.In the semilassial approximation � = S and the �eld equation S;k (�0) = �Jkis for J = 0 an equation for the vauum expetation value �0,(�20 + �0�20)�0 = 0: (2.174)Sine �0 is positive, for �20 > 0 the solution is �0 = 0 and the system is ina symmetri phase (no spontaneous symmetry breaking). The vertex funtionsS;k1���kn (0) have alsready been given in (2.129), and read in momentum spaeS(p;�p) = �(�20 + p2 � i�); (2.175)S(p1; p2; p3) = 0; (2.176)S(p1; � � � ; p4) = �6�0: (2.177)Only the two and four point bare verties are nonzero. From the propagatorG(p) = �S(p;�p)�1 we see that the bare partile mass m20 = �20.For �20 < 0 there are three solutions, �0 = 0 and�0 = �s��20�0 ; (2.178)but as we have seen already in set. 2.5 the ground state orresponds to one ofthe �0 6= 0 solutions. The system is in a broken phase. To get a unique groundstate we break the symmetry � ! �� expliitly and do not let J(x) ! 0 butin stead let J(x) ! �0, whih produes the term (2.97). We may think of �0being in�nitesimal or, and this is the ase in the appliation of '4-like modelsto low energy pions physis, �0 may have some nonzero value determined byexperiment. In the broken phase there is also three point vertex. For �0 ! 0, thevertex funtions S;k1���kn (�0) are given byS(p;�p) = �(�2�20 + p2 � i�); (2.179)S(p1; p2; p3) = �6�0�0; (2.180)S(p1; � � � ; p4) = �6�0; (2.181)where �0 has the semilassial value (2.178). We see that in the broken phasethe bare partile mass is given by m20 = �2�20 = 2�0�20, if we use for �0 itssemilassial value.In the semilassial approximation the we an drop the subsript 0 in all thesequantities, �2 = �20, � = �0, and the partile mass is m2 = m20.



2.10. VERTICES IN SCALAR ELECTRODYNAMICS 752.10 Verties in salar eletrodynamisWe add a soure for eah �eld to the ation (2.84) of salar eletrodynamis,S('; '�; A) + Z d4x ('�J + J�'+ J�A�): (2.182)The soure terms for the salar �eld break gauge invariane and the resultingorrelation funtions depend on the gauge. We �rst �x the gauge and then addthe soures. Having �xed the gauge we an also relax the ondition of urrentonservation ��J� = 0, whih allows for unonstrained funtional di�erentiation.The total urrent is no longer onserved anyhow, beause the breaking of gaugeinvariane by the salar soures auses ��j� 6= 0. We have seen before in hapter1 that the photon Green funtion depends on the gauge but that the physialresults extrated from Z(J) are gauge invariant. As we shall see later also thesattering amplitudes are gauge invariant, and this an be understood from thefat that the soures are removed to in�nity in spaetime.We have anonially quantized the system in the Coulomb gauge so let us�rst make some remarks about this ase. The hamiltonian H after quantizationhanges in two ways by the addition of the soures: in the Coulomb energyoperator (2.92): e0j0(x)! e0j0(x) + J0(x); (2.183)and we have to add to H the terms� Z d3x [('y(x)J(x) + Jy(x)'(x) + Jm(x)Am(x)℄: (2.184)The interation hamiltonianHJ in the soure-interation piture is the di�erenebetween the total hamiltonian inluding soures and the soure free hamiltonian.We shall not go through the umbersome derivation of the `equation of motionequation' for Z(J) from the anonial ommutation relations in the Coulombgauge. It will have the general form (2.151), with S the ation in Coulomb gauge.The resulting bare verties and propagators look ugly, non-Lorentz ovariant, andthe resulting expressions are awkward to work with.We therefore move quikly to a general ovariant gauge, obtained by addingthe term � Z d4x 12�0 (��A�)2 (2.185)to the non-gauge-�xed ation, as in set. 1.13, and after this we add the soures.Although we an no longer use urrent onservation to show that ��A� = 0 asa onsequene of the equations of motion with soures, as in set. 1.13, we mayexpet �0-independene of the physial results. This is an important test for theorretness of the proedure, whih we will do for sattering amplitudes in thesemilassial approximation. A proper demonstration of the equivalene of theCoulomb gauge and the ovariant gauges lies outside the sope of these leture



76 CHAPTER 2. INTERACTIONS WITH SCALAR FIELDSnotes. We assume now the validity of the `equation of motion' for Z(J) in thegeneri form (2.151), and as a onsequene all the results onerning the e�etiveation and Dyson-Shwinger equations apply.The resulting bare vertex funtions now follow from the omplete ation ofsalar eletrodynamis, whih reads in the formalism using omplex �eldsS = SA + SA�; (2.186)SA = � Z d4x 12A�[(��2 � i�)g�� + (1� ��10 )���� ℄A�; (2.187)SA� = � Z d4x [��(��2 + �20 � i�)�+ ie0(������ �����)A�+ e20���A�A� + �0(���)2 + �0℄ (2.188)We limit ourselves here to the ase �20 > 0, for whih there is no spontaneoussymmetry breaking. (The ase of negative �20 is very interesting, it desribes arelativisti superondutor.) Then �k0 = 0 and we have to evaluate the fun-tional derivatives of S at zero �elds. The only new aspet is the derivative ���Aoupling. Writing these terms asZ d4ud4vd4w��(u)�(v)A�(w)S���A�(u; v; w); (2.189)we see that S���A�(u; v; w) an be written in the formZ d4x ie0[��Æ(x� u)Æ(x� v)Æ(x� w)� ��Æ(x� v)Æ(x� u)Æ(x� w)℄; (2.190)in whih �� ats on x. The integration over x an of ourse be arried outeasily but the above form is onvenient for transformation to momentum spae,where the x integral gives the delta funtion of onservation of momentum. Inmomentum spae we have then the nonzero vertex funtionsSA�A� (k;�k) = �[(k2 � i�)g�� � (1� ��10 )k�k�℄; (2.191)S���(p;�p) = �(�20 + p2 � i�); (2.192)S���A�(p; q; k) = e0(p� � q�); (2.193)S���A�A�(p; q; k; l) = �2e20g��; (2.194)S������(p1; q1; p2; q2) = �4�0; (2.195)and the nonzero propagatorsG��(k) � GA�A�(k;�k) = g�� � (1� �0)k�k�=(k2 � i��0)k2 � i� ; (2.196)G(p) � G���(p;�p) = 1�20 + k2 � i� ; (2.197)
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Figure 2.8: Bare propagators and vertex funtions for salar eletrodynamis.The arrow on the salar �eld line points towards ��.
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Figure 2.9: Bare propagators and vertex funtions for salar eletrodynamis inthe formalism using real �elds.as represented in �g. 2.8. Note that G�� = G���� = 0 beause of global U(1)invariane. In the formalism using real salar �elds in whihSA� = � Z d4x [12��(��2 + �20 � i�)�� + ie0q��������A�+ e20 12����A�A� + 14�0(����)2 + �0℄; (2.198)the vertex funtions involving the salars are given byS��(p;�p) = �Æ��(�20 + p2 � i�); G��(p) = Æ���20 + p2 � i� (2.199)S���(p; q; k) = e0 q�� (p� � q�); (2.200)S����(p; q; k; l) = �2e20 Æ�� g��; (2.201)S��Æ(p; q; r; s) = �2�0 (Æ��ÆÆ + Æ�Æ�Æ + Æ�ÆÆ�); (2.202)and represented in �g. 2.9.2.11 Partiles and polesWe have seen in set. 2.6 that the vauum amplitude an be expressed in termsof the full vertex funtions and the two point orrelation funtion. Sine this



2.11. PARTICLES AND POLES 79funtion plays a speial role we disuss here an important property: the partile{pole onnetion. For J = 0 the orrelation funtion of the '4 theory given in(2.118) is translation invariant. Inserting intermediate states and separating theone partile ontribution using (2.102), whih we repeat here for onvenienehpj'(x)j0i =pZ' e�ipx; h0j'(x)jpi =pZ' eipx; (2.203)we get for x0 > y0�iG(x� y) � �iG(xy) = h0jT '(x)'(y)j0i � h0j'j0i2 (2.204)= Z d!p h0j'(x)jpihpj'(y)j0i+mp (2.205)= Z' Z d!p eip(x�y) +mp; (2.206)where `mp' denotes the multipartile ontribution. Note that the vauum on-tribution anels in the sum over intermediate states. For x0 < y0 there is asimilar expression and ombining these in the familiar way we get for generaltimes G(x� y) = Z d4p(2�)4 eip(x�y)G(p); (2.207)G(p) = Z'm2 + p2 � i� +mp: (2.208)This shows that the one partile intermediate states lead to a pole in the propa-gator G(p) as a funtion of p2 with residue Z'. The omplete expression inlud-ing the multi partile ontributions is alled the spetral representation, or theK�all�en-Lehmann representation. See for example Brown h. 6.For the the photon we have similarly in a ovariant gaugeG��(p) = ZA g�� + gauge termsp2 � i� +mp; (2.209)G��(x� y) x0>y0= Z d!p eip(x�y) ZA[X� e�(p; �)e�(p; �)� + gauge terms℄+ mp: (2.210)In the Coulomb gauge, however, ZA and Z' are not onstant but depend on p.For the harged partiles of salar eletrodynamis (2.203) is extended tohp� j'(x)j0i = pZ' e�ipx; h0j'(x)yjp�i =pZ' eipx;hp+ j'(x)yj0i = pZ' e�ipx; h0j'(x)jp+i =pZ' eipx; (2.211)whih takes harge onservation into aount. For example, Qj0i = 0, Q'(x)j0i =[Q;'(x)℄ j0i = �'(x)j0i, and it follows that '(x)j0i is orthogonal to jp+i whih



80 CHAPTER 2. INTERACTIONS WITH SCALAR FIELDShas positive harge. Intuitively, (2.211) an be understood from the fat the 'reates a bare antipartile (harge �) and annihilates a bare partile (harge +),and vie versa for 'y, as an be seen in (2.60).We like to stress the generality of the partile-pole onnetion. It also ap-plies to omposite �elds and bound states. For example, in eletrodynamis ofeletrons and protons we may onstrut a salar �eld 'H(x) as omposed of aneletron �eld  e and a proton �eld  p, with the quantum numbers of the groundstate of the hydrogen atom. Then we an still introdue a soure for this �eld andthe e�etive ation formalism still applies. Sine the ground state of the hydrogenatom is a spinless partile, the 'H-orrelation funtion has a pole at the positionof the mass of the hydrogen atom. Another example is Quantum Chromody-namis (QCD), the theory of the strong interations, in whih we an onstrutomposite �elds for the protons et. out of quark and gluon �elds. In numerialsimulations in QCD the bound state masses are in fat essentially omputed fromthe positions of the poles in suitable omposite �eld orrelation funtions.If a orrelation funtion of a �eld ' has no pole on the real p2 axis, thengenerially this means that there is no partile with the quantum numbers of '.However, it is possible that there is a large `bump' in G(p) near some m2, dueto a nearby pole in G(p), analytially ontinued into the omplex p2 plane. Thishappens for partiles whih are unstable but long lived on the relevant time sale.Then typially near the poleG(p)! Zp2 +m2 � im� ; (2.212)with �� m. For t > 0 this leads toG(p; t) � Z dp02� eip0t Z'p2 +m2 � im�= i Z2pp2 +m2 � im� exp[�itpp2 +m2 � im�℄; (2.213)by losing the p0 ontour in the upper half plane. For �� m we may approximatepp2 +m2 � im� = !(p)� im�=2!(p), !(p) =pp2 +m2, andG(p; t) = i Z2! e�i!t e� 12�(m=!)t; (2.214)showing an exponentially deaying time behavior. The physial interpretationis that ��1 is the life time of an unstable partile, in its rest frame, with thequantum numbers of the �eld ', and � is the orresponding deay rate. Thefator !(p)=m is a relativisti time delay fator for a moving partile. See DeWit & Smith set. 3.6 and Brown set. 6.3 for a more detailed explanation.
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Figure 2.10: Soure arrangement for determining emission and absorption ampli-tudes.2.12 Sattering and deay amplitudesFrom the vauum amplitude we determine in this setion the amplitudes forsattering of partiles and deay of unstable partiles. We have introdued theorrelation funtions G(x1 � � �xn) as the funtional derivatives of W (J). Fromnow on we assume all derivatives to be evaluated in the limit J ! 0, for whihG(x) = �(x)! �0. Sine by de�nition W (0) = 0, it follows thatW (J) = 1Xn=1 1n! Z d4x1 � � �d4xnG(x1 � � �xn)J(x1) � � �J(xn): (2.215)The diagrams for G(x1 � � �xn) up to n = 4 are already given �g, 2.2. Notie thatthere is a full propagator G(xy) at every external line.We �rst reonsider the partile emission and absorbtion amplitudes for thepresent ase of interating �elds, following the same reasoning as for the freeeletromagneti �eld. Consider a soure J(x) = J1(x) + J2(x) as shown in �g.2.10. The J1 { J2 ross term in the vauum amplitude appears asZ(J) = 1 + � � �+ Z d4xd4y iJ1(x)(�i)G(x � y)iJ2(y) + � � � ; (2.216)= Z d4xd4y iJ1(x)[Z' Z d!p eip(x�y) +mp℄ iJ2(y) + � � � ; (2.217)where we used (2.206) sine x0 > y0.It an be shown that for large time separations t � x0 � y0 ! �1 themultipartile ontribution `mp' to (2.217) is negligible. Large times mean inthis ontext times t�M�1, where M is a typial partile mass, e.g. the mass mof our salar partiles. For M of the order of 100 MeV the time sale M�1 is ofthe order of 10�23 se. See e.g. Brown, h. 6 for a disussion of these points. Thease of zero mass (photon) requires a separate study, whih is so involved that inpratise this ompliation is blissfully ignored at this stage.Performing the spaetime integrations in (2.217) the J1 { J2 ross term takes
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Figure 2.11: Emission and absorption of partiles (a) and antipartiles (b).
Figure 2.12: Causal arrangement of soures for two partile satteringthe form Z(J) = 1 + � � �+ Z d!p ipZ'J1(p)� ipZ'J2(p) + � � � ; (2.218)whih shows that in the interating ase the emission and absorption amplitudesare given by hpj0iJ = ipZ'J(p); h0jpiJ = ipZ'J(p)�; (2.219)di�ering from the free �eld ase only by the fators pZ'.The derivation above is easily extended to salar eletrodynamis. For thephotons we need to replae Z' by ZA and put in the polarization vetors e�(p; �)as in (1.273), (1.277). The harged salar �elds are oupled to the soures a-ording to S ! S + R d4x (J�' + J'y). Comparing with (2.211) or (2.60) wesee that J(x) an only emit partiles and absorb antipartiles, and vie versa forJ�(x), as illustrated in �g. 2.11.Returning to the '4 theory, onsider next a soure of the form J(x) = J1(x)+J2(x)+J3(x)+J4(x) with the various omponents arranged in spaetime as shownin �gure 2.12. The ausal relation between the soures is suh that partilesemitted by soures 3 and 4 an be absorbed by soures 1 and 2. The soures 1and 2 and also 3 and 4 are separated by marosopi spaelike distanes. The J1{ J4 ross term in the vauum amplitude is given by Æ4Z=ÆJ1(x1) � � � ÆJ4(x4), orZ(J) = 1 + � � �+ Z d4x1 � � �d4x4 [(�i)G(x1x2)(�i)G(x3x4)
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Figure 2.13: Graphial representation of (2.220).+ (�i)G(x1x3)(�i)G(x2x4) + (�i)G(x1x4)(�i)G(x2x3)+ (�i)3G(x1x2x3x4)℄ iJ(x1)iJ(x2)iJ(x3)iJ(x4) + � � � ; (2.220)whih is represented graphially in �g. 2.13. We have negleted theG(x1x2)G(x3x4)ontribution in this �gure beause for spaelike z = x1 � x2 or z = x3 � x4 theorrelation funtion G(z) drops rapidly to zero (/ exp(�mjzj) as for the Yukawapotential). With an eye on �g. 2.13 the interpretation of (2.220) is lear: thereis an amplitude in whih the partiles produed by J3 and J4 travel freely beforebeing absorbed by J2 and J1, respetively, a similar amplitude for absorbtion byJ1 and J2, and an amplitude for the possibility that the partiles satter beforebeing absorbed.In detail the sattering amplitude an be found as follows. The n-point or-relation funtions arry two-point funtions on their external legs (f. �g. 2.4).We make these external line two-point funtions expliit by writingG(x1 � � �xn) = Z d4y1 � � �d4ynG(x1y1) � � �G(xnyn)H(y1 � � � yn): (2.221)In momentum spae this an be written asG(p1 � � � pn) = G(p1) � � �G(pn)H(p1 � � � pn); (2.222)or (�i)n�1G(p1 � � � pn) = (�i)G(p1) � � � (�i)G(pn) iH(p1 � � � pn): (2.223)The funtions H(p1 � � � pn) are sometimes alled `amputated Green funtions',onneted Green funtions with external legs removed. For our ase n = 4 thisfuntion is has the generi representation in �g. 2.14. Beause of the ausalarrangement of the soures the orrelation funtions at the external lines of thefour point funtion G(x1 � � �x4) may be replaed by their large time (ordered)form, R d4p(2�)4 eip(x�y) (�i)G(p) ! Z' R d!p eip(x�y), and the sattering term in
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Figure 2.14: Diagrams for H(p1 � � � p4).(2.220) is given byZ(J) = 1 + � � �+ Z4' Z d!p1 � � �d!p4 iJ1(p1)� iJ2(p2)� iJ3(p3) iJ4(p4)(2�)4Æ4(p1 + � � �+ p4) iH(p1; p2;�p3;�p4) + � � � : (2.224)Leaving out the emission and absorption amplitudes we identify the amplitudefor sattering:i(2�)4Æ4(p1 + p2 � p3 � p4)�pZ'�4H(p1; p2;�p3;�p4): (2.225)We have to keep in mind that the time omponents p0 have a small negativeimaginary part as follows from the evaluation of G(z) for z0 > 0 (reall �g. 1.1),p0 = �p0 =pm2 + p2� i�. This is relevant sine H has in general branh pointsingularities and assoiated uts in the omplex p2 plane.The sattering of partiles from an initial state jii to a �nal state jfi anbe desribed by the sattering matrix or S-matrix hf jSjii. The onservationof probability, Pf jhf jSjiij2 = 1, is assured by the unitarity of S, SyS = 1.Separating the possibility of no sattering by writing S = 1 + iT , the �rst fewmatrix elements of S an be deomposed ashpjSjqi = hpjqi = 2p0(2�)3 Æ(p� q); (2.226)hp1p2jSjqi = hpjSjq1q2i = 0; (2.227)hp1p2jSjq1q2i = hp1jq1ihp2jq2i+ hp1jq2ihp2jq1i (2.228)+ i(2�)4 Æ4(p1 + p2 � q1 � q2)T (p1; p2; q1; q2):The J1 { J4 term in the vauum amplitude an be written in terms of the sat-tering matrix as Z(J) = Z d!p1d!p2d!q1d!q2 h0jp1iJ1h0jp2iJ2hp1p2jSjq1q2ihq1j0iJ3hq2j0iJ4 + � � � : (2.229)



2.13. CROSS SECTION AND DECAY RATE 85Comparison with (2.219), (2.228) and (2.225) shows thatT (p1; p2; q1; q2) = �pZ'�4H(p1; p2;�q1;�q2): (2.230)In general, polarization fators for spin (and harge, in the real �eld for-malism) appear naturally. The photon propagator G��(k) produes ZAg�� =ZA[P� e�(k; �)e�(k; �)� + gauge terms℄ on external photon lines, e.g.J�(x)G��0(x� y)H�0����0(y; � � � ; u)G�0�(u� v)J�(v) � � �! i2Z2AJ�(k0)�e�(k0; �0)H�����(k0; � � � ;�k)e�(k; �)J�(k); (2.231)For example, in salar eletrodynamis the amplitude for sattering of a photonon a salar partile has the formT (p0; k0�0; p; k�) = Z'ZA e�(k0; �0)�H��(p0; k0;�p;�k)e�(k; �): (2.232)The amplitude in (2.227) is zero in '4 theory due energy-momentum onser-vation: �(p1 + p2)2 > �q2 = m2. In a more general setting however we animagine an inoming partile with mass m to be di�erent from the two outgoingpartiles. If m1 + m2 < m, energy-momentum onservation allows the ingoingpartile to deay into partiles 1 and 2, i.e. the inoming partile is unstable. Ifwe approximate in the external line the unstable partile propagator by a stablepartile propagator we an still �t it into our desription. The deay amplitudeis then given by T (p1p2; q) = pZpZ1pZ2H(p1; p2;�q): (2.233)Suh a stable partile approximation is natural in the semilassial approxima-tion, in whih the propagators are simply the free �eld propagators.2.13 Cross setion and deay rateIn sattering experiments the typial measurable quantity is the di�erential rosssetion. Consider a beam of partiles hitting a target, or two olliding beams.The initial partiles have momenta p1 and p2. The di�erential ross setion d� is,loosely speaking, the number of outoming partiles of a given spei�ation, e.g. npartiles with momenta p3, . . . , pn in a momentum range d3p3, . . . , d3pn, devidedby the inoming partile ux. The ross setion is related to the satteringamplitude T by the formulad� = 1F (p1; p2) d!p3 � � �d!pn(2�)4Æ(p3 + � � � pn � p1 � p2) jT j2; (2.234)F (p1; p2) = 14p(p1p2)2 �m21m22 : (2.235)



86 CHAPTER 2. INTERACTIONS WITH SCALAR FIELDSHere jT j2 is the modulus-squared of the satering amplitude, averaged over thespin polarizations of the initial partiles and summed over the �nal spin polar-izations,jT j2 = 1(2s1 + 1)(2s2 + 1) X�1����n jhp3�3; � � � ; pn�njT jp1�1; p2�2ij2; (2.236)Where s1 and s2 are the spins of the inoming partiles. For the photon 2s+1! 2as it has only two independent polarizations. More re�ned information an ofourse be obtained by analysing the spin dependene of the ross setions. Thefator 1=F is a Lorentz invariant ux fator. When p1 and p2 are ollinear it issimply related to the relative veloity of the inoming partiles,F = p01p02vrel; vrel = ����p1p01 � p2p02 ���� : (2.237)For the derivation of the above formulas see Brown set. 3.4, De Wit & Smithh. 3, or the 1975/76 leture notes.In the ase of two partile sattering the di�erential ross setion in the entreof mass frame (p1 + p2 = 0) is given byd�d
 = 1F kf16�2W jT j2 = 164�2W 2 kfki jT j2; (2.238)where W is the total energy and ki and kf are the magnitudes of the initial and�nal three momenta,W = p01 + p02; ki = jp1j = jp2j; kf = jp3j = jp4j: (2.239)These quantities an be expressed in terms of the Mandelstam variables, s, t andu, f. �g. 2.15, s = �(p1 + p2)2 = �(p3 + p4)2; (2.240)t = �(p1 � p3)2 = �(p2 � p4)2; (2.241)u = �(p1 � p4)2 = �(p2 � p3)2; (2.242)s+ t+ u = m21 +m22 +m23 +m24: (2.243)In the entre of mass frame s = W 2 is the squared total energy. The momentumtransfer t between partile 1 and 3 is related to the sattering angle �,t = (p01 � p03)2 � (k2i + k2f � 2kikf os �); (2.244)and similar for u. Using dt = 2kikfd os �; (2.245)
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Figure 2.15: Two partile sattering.and integrating over the azimuthal angle � we haved�dt = 164�sk2i jT j2: (2.246)We an express ki, kf and jT j2 as a funtion of s and t, whih brings d�=dtinto a manifestly Lorentz invariant form. Furthermore, the invariant momentumtransfer t has more physial signi�ane than the sattering angle in some frame.The di�erential ross setion in the laboratory frame (p2 = 0) an be obtainedby expressing s and t in terms of the lab frame variables.We onlude this brief summary by giving the formula for the di�erentialdeay rate of an unstable partile of momentum p, p2 = �m2 to n outgoingpartiles, in the rest frame,d� = (Yi d!pi) (2�)4Æ(p1 + � � � pn � p) jT j22m : (2.247)For two partile deay d�d
 = k32�2m2 jT j2; (2.248)where k = jp1j = jp2j.2.14 Examples in salar eletrodynamisWe give here some examples in the semilassial approximation, also known asthe tree graph approximation, sine the relevant Feynman diagrams in terms ofthe lassial propagators and verties have a tree struture without any loops.Sine the propagators have the free �eld form, Z' = ZA = 1. Furthermore, thereis no di�erene between bare and renormalized parameters, e0 ! e et. Forde�niteness we shall all the harged salar partiles ��. The diagrams for thesattering �+ + �� ! �+ + �� are given in �g. 2.16. Notie the annihilationdiagram (seond diagram), in whih �+ and �� annihilate into a `virtual photon'and subsequently get re-emitted. It is as if the inoming and outgoing �� produe
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Figure 2.16: Diagrams for �+(p1) + ��(q1)! �+(p2) + ��(q2).e�etive soures whih emit and absorb the virtual photon. Virtual in this jargonrefers to the fat that the e�etive mass of the inoming state, �(p1 + q1)2 > 0,and not zero as for the photon. The photon is said to be `o� the mass shell' asits four momentum is timelike. In a similar intuitive language we say that the�+ and �� in the �rst diagram exhange a virtual photon. In this ase the fourmomentum of the virtual photon is spaelike.The sattering amplitude is given byT = e2(p1 + p2)� g�� � (1� �)k�k�=k2k2 (�q1 � q2)�+ (p2 � q2)� g�� � (1� �)l�l�=l2l2 (p1 � q1)�; (2.249)where k = p2 � p1 = q1 � q2 and l = p1 + q1 = p2 + q2. The gauge dependent(�-dependent) part of the photon propagator does not ontribute beause k(p1+p2) = (p1 � p2)(p1 + p2) = �m2 + m2 = 0, and similar for l(p1 � q1), whihis an expression of onservation of the eletromagneti urrent (f. Problems).In terms of the Mandelstam variables (2.243) the amplitude an be written inmanifestly Lorentz invariant formT = e2 �u� st + u� ts � : (2.250)Another example is the sattering of �� o� a di�erent positively hargedpartile with mass M . To desribe this we introdue a new salar �eld for thispartile and ouple it also to the eletromagneti �eld. The vertex funtions areidential in form, exept for the new massM , and sine the annihilation diagramis absent in this ase, T is given by the �rst term in (2.250) only. We quote thedi�erential rossetion in the laboratory frame from De Wit & Smith set. 4.3,d�d
 lab = �24E2 sin4 12� � 1 + E=M sin2 12�1 + 2E=M sin2 12�� ; (2.251)where E is the lab energy of the inoming �� and � = e2=4� is the �ne strutureonstant. For a heavy target M !1 we get Rutherford's formula.
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Figure 2.17: Diagrams for (k) + �+(p)! (k0) + �+(p0).Notie that at last we have identi�ed the oupling onstant e as the elementaryharge unit by omparison with experiment.We �nish here with pion-Compton sattering, (k)+ �+(p)! (k0)+ �+(p0).From the diagrams in �g. 2.17 we �nd the sattering amplitudeT (k0�0; p0; k�; p) = e�(k0; �0)�H��(k0; p0;�k;�p) e�(k; �); (2.252)H��(k0; p0;�k;�p) = e2 �(2p0 + k0)�(2p+ k)�(p+ k)2 +m2 + (2p� k0)�(2p0 � k)�(p� k0)2 +m2�2g�� ℄ : (2.253)The tensor H�� is transverse, k0�H�� = k�H�� = 0; (2.254)where it is essential that the pions are on-shell, p2 = p02 = �m2. This ex-presses gauge invariane, the amplitude is unhanged when we substitute e.g.e�(k0; �0)� ! e�(k0; �0)� + !k0�. The transversality of the amplitudes is also es-sential for Lorentz invariane. Averaging over initial polarizations and summingover �nal polarizations,jT j2 = 12X��0 jT j2= 12X�0 e�(k0; �0)�e�(k0; �0)X� e�(k; �)e�(k; �)�H��H���; (2.255)we use X� e�(k; �)e�(k; �)� = g�� + gauge terms; (2.256)where the gauge terms are terms / k� or k�. Then the result an be expressedas jT j2 = 12 H��H��� (2.257)= 2e4 "m4 � 1pk � 1pk0�2 � 2m2� 1pk � 1pk0� + 2# ; (2.258)



90 CHAPTER 2. INTERACTIONS WITH SCALAR FIELDSwhih is manifestly Lorentz invariant. We quote De Witt & Smith set. 4.4 forthe di�erential ross setion in the lab frame,d�d
 lab = �22m2 1 + os2 �[1 + E=m(1� os �)℄2 : (2.259)In the low energy limit this redues to the result for lassial eletromagnetiradiation, d�d
 lab = �22m2 (1 + os2 �): (2.260)Integrating over angles we get the Thompson ross setion� = 8��23m2 : (2.261)2.15 AppendixThe lassial energy (2.31) is also the expetation value of the energy operatorin the interation pitureH � Z d3x J(x)'(x); H = Z d!p a(p)ya(p) p0; (2.262)in an appropriate state with lassial properties. We have seen suh a state beforein setion 1.9 for the ase of the eletromagneti �eld, the statej0; ti = UJ(t;�1)j0i = T ei R t�1 d4x0 J(x0)'(x0)j0i: (2.263)Consider therefore a soure J(x) = J1(x) + J2(x) whih is stati for a very longtime and goes to zero in the far past. Under these onditions the lassial �eldis given by (the alulation is as in set. 1.9)'()(x) = h0; tj'(x)j0; ti = Z d4y Gret(x� y)J(y); (2.264)where Gret(x� y) is the retarded Green funtion, given in momentum spae byGret(p) = 1m2 + p2 � (p0 + i�)2 : (2.265)For times muh larger than the intial transient period in whih the soure isswithed on we an take the stati approximation J(y) ! J(y) and integrateover y0, whih leads to the stati Green funtion,Z dy0Gret(x� y) = Z d4p(2�)4 Z dy0 eip(x�y)m2 + p2 � (p0 + i�)2= Gstat(x� y): (2.266)



2.16. PROBLEMS 91Hene '()(x) ! '()(x), the stati �eld of (2.25), and h0; tj R d3x J(x)'(x)j0; tihas the orrsponding value (x0 = t). To evaluate h0; tjHj0; ti we use the fat thatj0; ti is an oherent eigenstate of a(k) in the stati approximation. This an beseen by di�erentiating UJ(t;�1)ya(k)UJ(t;�1) (2.267)with respet to t, whih gives the -numberi Z d3x e�ipx J(x) � ieip0t J(p; t): (2.268)Integrating this from �1 to t with exp(ip0t) J(p; t)! exp[(ip0 � �)t℄ J(p), �!+0, then gives UJ(t;�1)ya(p)UJ(t;�1)j0i = a(p) + eip0t J(p)p0 ; (2.269)hene a(p)j0; ti = eip0t J(p)p0 j0; ti: (2.270)It follows that we may replae the annihilation operator in H in h0; tjHj0; ti bythe above eigenvalue when ating on the ket j0; ti, and similar for the reationoperator when ating on the bra h0; tj. This gives bak the lassial expressionfor the energy in terms of'()(x) = Z d!p [eipxa()(p) + e�ipxa()(p)�℄; a()(p) = J(p)p0 : (2.271)2.16 Problems1. For the free salar �eld, verify that ��T �� = 0 as a onsequene of theequation of motion.2. Verify that j� given in (2.80) is the Noether urrent assoiated with theglobal U(1) invariane of SA'.3. Derive the equations of motion for salar eletrodynamis and verify thatej� is the eletromagneti urrent in Maxwell's equations.4. Verify that ��j� = 0 as a onsequene of the equations of motion forthe salar �elds. When the total ation ontains external soure termsR d4x (J�'+ J'�), obtain ��j�.5. Using reation and annihilation operators, alulate the expetation valuesof the urrent in the free omplex salar �eld theory, h0jj�(x)j0i and hp �jj�(x)jq�i.



92 CHAPTER 2. INTERACTIONS WITH SCALAR FIELDS6. In the '4 theory verifyh0jT'(x)'(y)'(z)j0i = �30 + (�i)G(x; y)�0 + (�i)G(y; z)�0+ (�i)G(z; x)�0 + (�i)2G(x; y; z):(2.272)Similarly, express h0jT'(w)'(x)'(y)'(z)j0i (2.273)in terms of the orrelation funtions.7. Consider U de�ned in (2.95) for the '4 theory. Verify that the mass m,as de�ned by the position of the pole in the propagator, is given in thesemilassial approximation by m2 = �2U=�'2, evaluated at the groundstate value of '.8. Let F (A) be a funtional of A�(x). From the de�nition of the funtionalderivative, ÆF = Z d4x ÆFÆA�(x) ÆA�(x); (2.274)verify that ÆA�(x)ÆA�(y) = Æ�� Æ4(x� y): (2.275)For a salar �eld '(x) the orresponding relation readsÆ'(x)Æ'(y) = Æ4(x� y): (2.276)Using this relation we an alulateS(u; v) � � ÆÆ'(u) ÆÆ'(v) Z d4x 12 ��'(x)��'(x) (2.277)= � Z d4x ��Æ4(x� u)��Æ4(x� v) (2.278)= �2 Æ4(u� v); (2.279)and its Fourier transform (from (2.278))Z d4ud4v e�ipu�iqv S(u; v) = � Z d4x ��(e�ipx)��(e�iqx) (2.280)= �p2(2�)4Æ(p+ q): (2.281)Derive along similar lines thatS��(u; v) � � ÆÆA�(u) ÆÆA�(v) Z d4x 14 F ��(x)F��(x)= (g���2 � ����)Æ4(u� v); (2.282)Z d4ud4v e�ipu�iqv S��(u; v) = �(p2g�� � p�p�)(2�)4Æ(p+ q): (2.283)



2.16. PROBLEMS 939. Verify the vertex funtions of salar eletrodynamis in the real �eld for-malism as given in eqs. (2.199) { (2.202).10. The vertex funtions an also be read o� in momentum spae, writing S as(using '4 theory as example)S = Xn 1n! Z d4p1(2�)4 � � � d4pn(2�)4 (2�)4 Æ(p1 + � � �+ pn)S(p1; � � � ; pn)�(�p1) � � ��(�pn); (2.284)�(p) = Z d4x e�ipx �(x): (2.285)Rederive the vertex funtions of salar eletrodynamis (in the real andomplex formalism) using this method.11. Rederive eqs. (2.211) fromhp�j'�(x)j0i = Æ��pZ' e�ipx (2.286)in the real �eld formalism. Reason that Æ�� in the above equation is aonsequene of global SO(2) invariane.12. In salar eletrodynamis, in the real �eld formalism, draw the semilassialdiagrams for pion-Compton sattering, indiating the relevant indies, inmomentum spae, and write the expression forH����(k0; p0;�k;�p): (2.287)Then reobtain (2.252)-(2.253) fromT (k0�0; p0; k�; p) = e�(k0; �0)� e�(+)�H����(k0; p0;�k;�p) e�(k; �) e�(+):(2.288)13. Pions and the linear sigma modelThe lagrangian of the linear � modelL = �12��'���'� � 12�2'�'� � 14�('�'�)2 (2.289)(� = 1; 2; 3; 4, � > 0), is invariant under O(4) rotations '� ! R��'�,RT = R�1. For �2 < 0 in the semilassial aproximation, the system un-dergoes spontaneous symmetry breaking, h0j'�j0i 6= 0. Adding the expliitsymmetry breaking term �L = �'4 (2.290)to L, gives h0j'�j0i = vÆ�;4: (2.291)



94 CHAPTER 2. INTERACTIONS WITH SCALAR FIELDSFor the desriptions of pions we make the identi�ation �a = 'a, a = 1; 2; 3,while '4 orresponds to the � partile. The latter may be identi�ed witha very broad spin zero, isospin zero, enhanement in �� sattering. Inthe exerises below we ompute the width of the sigma partile, the pi-pisattering amplitude and ompare with experiment.1. Express v, m� and m� in terms of �, �2 and �.For m� > 2m� the sigma partile an deay into two pions.2. Show that the ��a�b vertex funtion equals �2�vÆab, and alulate thematrix element hp1a1p2a2jT jpi for the deay �(p)! �(p1a1) + �(p2a2).The internal rotations whih transform the �a into eah other are alledisospin transformations, with generators Ia, a = 1; 2; 3. The pion statesjai, a = 1; 2; 3 (suppressing the momentum label p) transform in the vetor(adjoint) representation, in whih the isospin operators Ia are representedas hbjIaji = �i�ab. The physial pion states with well de�ned hargeare eigenstates jI; I3i of I2 and I3 with j1; 1i = j�+i, j1; 0i = j�0i andj1;�1i = j��i. Isospin polarization vetors eaI3 = haj1; I3i an be hosen asea+1 = (�1;�i; 0)=p2, ea0 = (0; 0; 1), ea�1 = (1;�i; 0)=p2.3. Chek that the above polarization vetors are onsistent with the stan-dard ation of the isospin lowering operator I�j1; 1i = p2j1; 0i, et. (I� =I1 � iI2).4. Show that h�+��jT j�i = 2�v; h�0�0jT j�i = �2�v: (2.292)The di�erential deay width in the � rest frame is given byd� = k32�2m2� jT j2 d
; (2.293)where k;
 are the spherial oordinates of the momentum of one of thepions.5. Verify that �(� ! �+��) = 2�(� ! �0�0) = k�2v22�m2� ; (2.294)keeping in mind that the two �0 partiles are idential.6. As a hek, ompute the total deay width also diretly from� = 12m� 12 Xa1a2 Z d!p1d!p2 (2�)4Æ(p� p1 � p2)jhp1a1p2a2jT jpij2: (2.295)



2.16. PROBLEMS 95The expliit fator 1=2 orresponds to 1=n! in the formula for the unitoperator (for free pions) in the n-partile subspae1 =Xn 1n! Xa1���an Z d!p1 � � �d!pn jp1a1 � � � pnanihp1a1 � � � pnanj: (2.296)7. Interpreting the � enhanement in �� sattering as an unstable �-partile, it might have a mass around 900 MeV and a width of rougly600 MeV. Given that v = f� = 93 MeV, derive� = 332� (m2� �m2�)2 (m2� � 4m2�)1=2m2�f 2� (2.297)and ompare with the above physial data. Derive an upper limit for m�from requiring �=m� < 1.The pi-pi sattering amplitude an be written ashp3a3p4a4jT jp1a1p2a2i = AÆa1a2Æa3a4 +BÆa1a3Æa2a4 + CÆa1a4Æa2a3 : (2.298)The A, B and C an be expressed in the Mandelstam variables s = �(p1+p2)2, t = �(p1�p3)2 and u = �(p1�p4)2. In the .m. frame, s = W 2, W =total energy, t = �2k2(1�os �), u = �2k2(1+os �), k = .m. momentum,� = sattering angle.8. Derive A = �2�+ (2�v)2m2� � s = 2�s�m2�m2� � s; (2.299)and �nd the orresponding expressions for B and C.9. By using the step isospin operator I� ating on j�+�+i, onstrut totalisospin eigenstates jI; I3i for I = 0; 1; 2 in terms of j�+�+i, j����i, andj�0�0i. Using the isospin polarization vetors eaI3 de�ned earlier, derive thefollowing expressions for the sattering amplitudes T I = hI; I3jT jI; I3i intotal isospin hannel I:T 0 = B + C; T 1 = B � C; T 2 = 3A+B + C: (2.300)The partial wave expansion for T an be written asT I = 8�Wk Xl (2l + 1)T Il Pl(os �): (2.301)where the Pl are the Legendre polynomials. Negleting inelastiity e�ets,the phase shift in isospin hannel I and angular momentum hannel l isgiven by exp(2iÆIl ) = 1 + iT Il ; (2.302)



96 CHAPTER 2. INTERACTIONS WITH SCALAR FIELDSand the s-wave sattering lengths are de�ned byaI0 = limk!0 ÆI0=k: (2.303)10. Negleting terms of order m2�=m2�, derive Weinberg's resultsa00 = 732� m�f 2� ; a20 = 232� m�f 2� ; (2.304)and ompare with the experimental values a00 = 0:26 � 0:05 fm (1 fm �(200MeV)�1).
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Chapter 3Lorentz invarianeWe explore in this hapter some basi aspets of Lorentz transformations andtranslations.3.1 Lorentz transformationsThe elements of the group of Lorentz transformations an be de�ned as thematries � whih leave the inner produt xy = g�� x�y� invariant:x� ! ���x�; y� ! ���y�; xy = g��x�y� ! g��������x�y� = g��x�y�: (3.1)Sine x and y are arbitrary this invariane expresses that the metri g�� is aninvariant tensor, whih is really a ondition on �,g�������� = g��: (3.2)In matrix notation we assign the matrix elements of � as(�)�� = ���; (3.3)and we order the indies � = 1; 2; 3; 0 suh that(g)�� = g�� = 0BB� 1 1 1 �1 1CCA : (3.4)Then the �'s satisfy �Tg� = g; (3.5)where T denotes transposition. It follows thatdet(�Tg�) = (det �)2 det g = det g ) det � = �1: (3.6)98



3.1. LORENTZ TRANSFORMATIONS 99For � = 0, � = 0, eq. (3.2) gives(�00)2 = 1 + 3Xm=1(�m0)2 ) �00 � 1 or �00 � 1: (3.7)Thus the full Lorentz group onsists of four disjoint sets aording to wetherdet � = �1 and �00 � 1 or � 1. Important examples are parity,P = 0BB� �1 �1 �1 1 1CCA ; (3.8)with det � = �1 and �00 = 1, and time reversalT = 0BB� 1 1 1 �1 1CCA ; (3.9)with det � = �1 and �00 = �1. The produt PT has det � = 1 and �00 = �1.Transformations with det � = 1 and �00 � 1 are elements of the properor orthohronous Lorentz group L"+. From now on we shall omit the adjetive`proper' and all the L"+ `the Lorentz group'. The elements of L"+ are ontinuouslyonneted to the identity and an be written as� = exp(F ); TrF = 0: (3.10)From (3.5) we see that the real matrix F has to satisfyF Tg = �gF; (3.11)whih yields the following solution in terms of parameters !�� and generatorsM��, F = �i12!��M��; (3.12)�i(M��)�� = �iM ��� � = �(g��g�� � g��g��); (3.13)where the somewhat arti�ial looking fator (�i) is put in for later onveniene.The Mkl are hermitian and antisymmetri matries whih are expliitly given byMkl � �klmMm; �iM1 = 0BB� 0 0 0 00 0 �1 00 1 0 00 0 0 0 1CCA ; (3.14)
�iM2 = 0BB� 0 0 1 00 0 0 0�1 0 0 00 0 0 0 1CCA ; �iM3 = 0BB� 0 �1 0 01 0 0 00 0 0 00 0 0 0 1CCA : (3.15)



100 CHAPTER 3. LORENTZ INVARIANCEThese are the generators of rotations,�(R) = exp(�i!mMm); !m � 12�klm !kl: (3.16)This an be seen more easily from the representation(Mk)�� = �i�klm; (3.17)for �; � = l; m = 1; 2; 3 and (Mk)�� = 0 zero otherwise. The �rst three rows andolumns ofMk are just the spin 1 matries Sk of (1.145). The Mk0 are symmetriantihermitian matries whih are expliitly given byMk0 � Nk; �iN1 = 0BB� 0 0 0 10 0 0 00 0 0 01 0 0 0 1CCA ; (3.18)
�iN2 = 0BB� 0 0 0 00 0 0 10 0 0 00 1 0 0 1CCA � iN3 = 0BB� 0 0 0 00 0 0 00 0 0 10 0 1 0 1CCA : (3.19)These are the generators of speial Lorentz transformations, often alled boosts,�(B) = exp(�i�kNk); �k � !k0: (3.20)A boost in the 3-diretion,= exp(�i�N3) = 0BB� 1 0 0 00 1 0 00 0 osh� sinh�0 0 sinh� osh� 1CCA ; (3.21)has the e�et x1;2 ! x1;2; x3 ! x3 + �x0; x0 ! �x3 + x0; (3.22)where � = v= ( = 1) and = 1p1� �2 = osh�; � = sinh�; (3.23)are the usual parameters in speial Lorentz transformations. The rotation ma-tries are orthogonal, �(R)T = �(R)�1 and the boosts are symmetri �(B)T =�(B).



3.2. IRREPS AND SL(2,C) 101The generators satisfy the following ommutation relations,[M��;M��℄ = i(g��M�� + g��M�� � g��M�� � g��M��; (3.24)[Mk;Ml℄ = i�klmMm; (3.25)[Mk; Nl℄ = i�klmNm; (3.26)[Nk; Nl℄ = �i�klmMm; (3.27)The rotations form a group, but the speial Lorentz transformations do not forma group, as is lear from the fat that the ommutation relations of the Nl are notlosed. The boosts generate rotations and only boosts ombined with rotationsform a group, the Lorentz group L"+.Under parity and time reversal the generators transform asP Mk P = Mk; P Nk P = �Nk;T Mk T = Mk; T Nk T = �Nk: (3.28)The e�et of T on Mk and may seem strange, sine one may expet the angularmomentum or spin to hange sign under T . This is indeed the ase in the quantumtheory, where T involves omplex onjugation: T is realized by an antiunitaryoperator in Hilbert spae.3.2 Irreps and SL(2,C)To �nd irreduible representations (irreps) of the Lorentz group we onsider thelinear ombinations I�l = 12(Ml � iNl); (3.29)whih are hermitian matries satisfying the ommutation relations,[I�k ; I�l ℄ = i�klm I�m; (3.30)[I�k ; I�l ℄ = 0: (3.31)The Lorentz group L"+ is equivalent `in the small' to two independent rotationgroups. This enables us to �nd irreps of the Lorentz group from the knowledge ofthose of the rotation group. The representations will be labeled by two angularmomenta (j+; j�), j� = 0; 1=2; 1; 3=2; : : :, with (I�)2 = I�k I�k = j�(j� + 1), andwith the eigenvalues of I�3 taking the values �j�; : : : ;+j�.Sine the parity operation hanges the sign of N but not ofM, the generatorsI� are interhanged under P , P I� P = I�: (3.32)The ation of P leads outside an irreduible representation (j+; j�) of L"+, butit an be represented in a reduible representation (j+; j�) + (j�; j+), where itinterhanges the omponents (j+; j�) and (j�; j+).



102 CHAPTER 3. LORENTZ INVARIANCEThe simplest nontrivial representations are the two dimensional representa-tions (12 ; 0) and (0; 12), realized by(12 ; 0) : Ml ! 12�l; Nl ! +i12�l; I+l ! 12�l; I�l ! 0; (3.33)(0; 12) : Ml ! 12�l; Nl ! �i12�l; I+l ! 0; I�l ! 12�l; (3.34)where �l are the Pauli matries ating in a two dimensional representation spae.The matries in the (12 ; 0) representation have the formexp[(�k � i!k)12�k℄ � L; (3.35)while for the (0; 12) representationexp[(��k � i!k)12�k℄ = (Ly)�1: (3.36)These representations are double valued beause the rotations are representeddouble valued in the j = 12 representation. The double valuedness is a nuisaneand it is onvenient to work with L diretly. The matries L are general omplex2�2 matries with detL = 1. This is the de�ning representation of the groupSL(2,C), the group of general omplex linear unimodular transformations in twodimensions. The representation L ! L� of SL(2,C) is inequivalent to L, butequivalent to L! (Ly)�1, beause��k = ��2 �k �2 (3.37)implies L� = �2 (Ly)�1 �2: (3.38)We now interpret a Lorentz transformation � to be a representation of SL(2,C),� = �(L). It orresponds to the representation (12 ; 12), L ! L � L� ' �, as fol-lows. Let us assemble the omponents of a four vetor x� into a matrix X,X = x� �� = � x0 + x3 x1 � ix2x1 + ix2 x0 � x3 � ; �0 � 11; (3.39)x� = 12Tr ��X; Tr �� �� = 2Æ��: (3.40)Then detX = (x0)2 � x2 = �g��x�x� ; (3.41)and the transformationX�� ! X 0�� = L��0 L���0 X�0�0 = (LXLy)�� (3.42)



3.3. REPRESENTATION IN HILBERT SPACE 103leaves the determinant invariant, detX 0 = detX. It has to orrespond to aLorentz transformation of x�, x0� = ��� x� (3.43)= 12Tr ��X 0 = 12Tr [��L��Ly℄ x�: (3.44)Hene, �(L)�� = 12Tr ��L��Ly (3.45)is an expliit representation of � in terms of L. We see that L and �L give thesame �.3.3 Representation in Hilbert spaeThe �nite dimensional representations of SL(2; C) are not unitary, but in�nitedimensional representations an be unitary. It has been shown that Lorentzsymmetry an be represented by a unitary operator U(L) in Hilbert spae. Thisguarantees that transition amplitudes are invariant,j ̂1;2i = U(L)j 1;2i ! h ̂1j ̂2i = h 1j 2i; (3.46)in the Heisenberg piture. Here j ̂1;2i represent atively transformed states j 1;2i,e.g. orresponding to rotated or boosted systems. (For example, j 2i an be astate representing a system of partiles onverging to a sattering region and j 1ian be a state representing partiles emerging from the same region). If Lorentzinvariane is broken, then U(L) does not exist or is time dependent.The expetation value of an observable in the state j ̂i is related to theexpetation value in j i by a Lorentz transformation. For example, for a urrentoperator j�(x), h ̂jj�(x̂)j ̂i = ��� h jj�(x)j i; (3.47)where � = �(L) and x̂ = �x (i.e. x̂� = �(L)�� x�). Instead of transforming thesystem we an also transform the observables (the passive point of view). From(3.47) we infer that the urrent operator transforms asU(L)y j�(x)U(L) = �(L)�� j�(�(L)�1x): (3.48)A salar �eld transforms asU(L)y '(x)U(L) = '(�(L)�1x): (3.49)Fields transforming as L itself or L�1y are alled spinor �elds; these will be thesubjet of the next hapter.



104 CHAPTER 3. LORENTZ INVARIANCEThe energy-momentum operators P � transform as a vetorU(L)y P � U(L) = �(L)�� P � (3.50)A (spaetime) translation by a four vetor a� is represented by a unitaryoperator U(a) = e�ia�P� = e�ia�P+ia0P 0; (3.51)with P � the energy-momentum operator. For example, a salar �eld transformsas U(a)y '(x)U(a) = '(x� a); (3.52)whih is onsistent with the solution of the Heisenberg equations of motion fora0 = �t, a = 0.Lorentz transformations ombined with translations form the Poinar�e group.The generators of Lorentz transformations are represented by hermitian operatorsJ��, M�� ! J��; (3.53)with Jl = 12�lmn Jmn the angular momentum operators and Kl = Jl0 the `kik'operators generating boosts. From (3.50) follow the ommutators of J�� with P�,and the omplete set of ommutators of the Poinar�e group is given by[J��; J��℄ = i(g��J�� + g��J�� � g��J�� � g��J��; (3.54)[J��; P�℄ = ig��P� � ig��P�; (3.55)[P�; P�℄ = 0: (3.56)We end here with the form of the transformation of a one partile state jp; �i(� is a spin index), whih is de�ned by applying a standard boost to a standardstate at a standard momentum �p (usually at rest, �p = (0; m) or some other �p inase of massless partiles):U(L)jp; �i =X�0 C�0�(L; p) j�(L)p; �0i; (3.57)where C�0� is a unitary matrix depending on L and p. Unfortunately we haveno `time' here to go into details, see e.g. Ryder set. 2.7 and Weinberg's 1964Brandeis letures. We also annot go into the disrete symmetries P and T here.See for example Bjorken & Drell II h. 15.



3.3. REPRESENTATION IN HILBERT SPACE 105



Chapter 4Spinor �elds and fermionsDira proposed in 1928 a relativisti generalization of the Shr�odinger equationfor a quantum mehanial wave funtion, his famous Dira equation. It turnedout later that this `wave funtion' should not be seen as a wave funtion in theShr�odinger piture, but as a quantum operator �eld analogous to the salarand Maxwell �elds. Hene the name `seond quantization' (quantizing the wavefuntion a seond time to get an operator �eld) whih is sometimes given toquantum �eld theory. We shall not follow this historial road, as it is tendsto be onfusing oneptually, but start from the notion that there are spin 1/2partiles whih we want to desribe by a quantum �eld transforming in a spinorrepresentation of the Lorentz group. We are then automatially led to the Diraequation. The basi priniples of quantum �eld theory { in partiular loality {lead to the onnetion between spin and statistis: the spin 1/2 partiles have tofollow Fermi-Dira statistis, they are fermions.Using the priniple of gauge invariane we ouple the Dira �eld (omplexspinor �eld) in the next hapter to the eletromagneti �eld and derive the Feyn-man rules the resulting spinor eletrodynamis.4.1 Spinors and Dira matriesFor a �eld theory of spin 1/2 partiles we need spin 1/2 �elds, i.e. �elds whihtransform in the j = 12 representation of the rotation group. This representationis embedded in the spinor representations (12 ; 0) and (0; 12) of the Lorentz group.We shall use a notation in whih the spinor �elds in the (12 ; 0) and (0; 12) irrepsare denoted by  R and  L, respetively. The meaning of L and R will beomelear later. The spinor �elds transform as R(x)! L R(�(L)�1x); L 2 (12 ; 0); (4.1) L(x)! Ly�1 L(�(L)�1x); Ly�1 2 (0; 12); (4.2)106



4.1. SPINORS AND DIRAC MATRICES 107where we should not onfuse the L 2 SL(2,C) with the subsript L of  L. Wereall that these irreps an be written asL = e�i'��=2+���=2; (4.3)Ly�1 = e�i'��=2����=2; (4.4)where ' and � are the angles orresponding to rotations and boosts, respetively.The representations (12 ; 0) and (0; 12) are omplex. Suppose we hoose a  Rfor our desription of spin 1/2 partiles. We expet that  �R will our in ourformulas essentially as often as  R. Now  �R transforms with L� ' Ly�1, i.e. ittransforms like a  L. Let us de�ne  L in terms of  R by L(x) = �2  R(x)�: (4.5)Then this  L transforms as in (4.2); reall Ly�1 = �2 L� �2. Sine we need towork with both irreps (12 ; 0) and (0; 12), it is advantageous to ombine the �elds L;R into a four omponent spinor = �  R L � ; (4.6)whih transforms in the reduible representation (12 ; 0) + (0; 12), (x) ! S(L) (�(L)�1x); (4.7)S(L) = � L 00 Ly�1 � : (4.8)The four omponents of  (x) are not independent beause of (4.5); it is alled aMajorana �eld. We shall see in the next setion that it an be turned into a real�eld by a unitary transformation.We now introdue 4�4 Dira matries �, 5, � and ��, as follows:� = i0 = �i0 = � 0 1111 0 � = �1; (4.9)k = k = � 0 i�k�i�k 0 � = ��2 �k; (4.10)5 = i0123 = � 11 00 �11 � = �3; (4.11)�� = i� �; (4.12)�k = �k = � �k 00 ��k � = �3 �k; �0 = ��0 = 1: (4.13)Here the �k are Pauli matries in blok form,�1 = � 0 1111 0 � ; �2 = � 0 �i11i11 0 � ; �3 = � 11 00 �11 � : (4.14)



108 CHAPTER 4. SPINOR FIELDS AND FERMIONSThe spei�ation in terms of tensor produt matries �k �l is very onvenient.Note that we often write 1 for the unit matrix (2�2 or 4�4) 11. The Diramatries have the following hermitiity properties0y = �0; ky = k; y5 = 5; �y = �; �yk = �k; (4.15)and � �y � = ��: (4.16)The � satisfy the algebrai relations� � + � � � f�; �g = 2g��11; f�; 5g = 0; (4.17)i.e. the � antiommute with eah other and with 5 and their square is �1,20 = �1; 2k = 1; 25 = 1; �2 = 1; �2k = 1: (4.18)It follows from (4.17), using the identities[ab; ℄ = a[b; ℄ + [a; ℄b; (4.19)[ab; ℄ = a fb; g � fa; g b; (4.20)and the ombination of these[ab; d℄ = a[b; d℄ + [a; d℄b = afb; gd� afb; dg+ fa; gdb� fa; dgb; (4.21)that the matries ��� = ���� = �i� �; � 6= �; (4.22)satisfy the ommutation relations of the generators of the Lorentz group, up toa fator 2, [���;��� ℄ = 2i(g����� + g����� � g����� � g�����): (4.23)We have a representation of the Lorentz algebra, M�� ! 12���, and in fatS = exp(�i14!�����): (4.24)To show this in detail we identify the generators of rotations and boosts,�kl = �klm �m; �m = 12�klm�kl; (4.25)�k0 = �ik0 = i0k = �i0k = ��k (4.26)= i�k = i5�k; (4.27)



4.1. SPINORS AND DIRAC MATRICES 109and (4.24) redues to S = exp(�i12'k �k � i12�k i5�k) (4.28)= exp(�i12'k �k + 12�k �3�k) (4.29)!kl = 12�klm'm; !k0 = �!0k = �k; (4.30)whih is idential to (4.8), taking into aount (4.3), (4.4).We note that� Sy � = � �e� 14!�����y � = � e� 14!��y�y�� = e� 14!���� = e+ 14!����= S�1; (4.31)whih shows that � plays the role of the metri,Sy � S = �: (4.32)For example,  y� is a Lorentz salar. It is ustomary and onvenient to hidethis `metri' into the `bar' notation,� �  y �: (4.33)Under Lorentz transformations we have ! S  ; � ! � S�1; (4.34)whih makes it obvious that �  is a Lorentz salar.Using the identity (4.20) we �nd the ommutation relations between the gen-erators ��� and �, [12���; �℄ = �i� g�� + i� g��; (4.35)whih imply that � transforms as a four vetor,S�1(L) � S(L) = �(L)�� �: (4.36)It follows that �� , � 6= � and ���, � 6= � 6= � 6= �, transform as antisym-metri tensors, while 5, whih ommutes with S,[���; 5℄ = 0; S5 = 5S; (4.37)is a Lorentz salar in this sene.We an also represent parity P and time reversal T . As mentioned in set.3.2, the parity operation an be represented in a reduible representation of the



110 CHAPTER 4. SPINOR FIELDS AND FERMIONSform (j+; j�)+(j�; j+). This is the ase here with j+ = 12 , j� = 0, and inspetionshows that P and T an be represented by the matriesP ! SP = 0; T ! ST = i05: (4.38)We have, S�1P � SP = P �� �; S�1T � ST = T �� �; (4.39)and furthermore S�1P �kl SP = �kl; S�1P �k0 SP = ��k0; (4.40)S�1T �kl ST = �kl; S�1T �k0 ST = ��k0; (4.41)form a representation of (3.28). Taking P and T into aount, � is a vetor and5 is a pseudosalar, S�1P 5 SP = �5; S�1T 5 ST = �5; (4.42)whih an also be seen from5 = i 14! ����� ����; �0123 = 1; (4.43)and the fat that the Levi-Civita tensor is a pseudotensor under P and T . Wenow have the following summary:� is a vetor; (4.44)��� is an antisymmetri tensor; (4.45)i�5 is a pseudovetor; (4.46)i5 is a pseudosalar; (4.47)when these matries are sandwihed between a � 1 and a  2.The (12 ; 0) and (0; 12) omponents of the representation L! S(L) an reov-ered with the projetorsPR = 1 + 52 ; PL = 1� 52 ; (4.48)P 2R = PR; P 2L = PL; PRPL = 0: (4.49)4.2 Majorana �eld and Majorana representa-tionThe algebrai relations among the Dira matries and their hermitiity propertiesare invariant under unitary transformations,̂� = U � U y; (4.50)



4.2. MAJORANA FIELD AND MAJORANA REPRESENTATION 111and so are all the relations whih are written in terms of the �, �, 5, ��,. . . , whih are made out of produts of the �. This is very useful if we wantto transform to another representation of the 's. The representation (4.9) {(4.13), whih is haraterized by the fat that 5 is diagonal, is alled a Weylrepresentation, or hiral representation.It is sometimes useful to use a representation in whih the � are real. Suha representation is alled a Majorana representation. The transformationU = ei�4 �2 �2 = 1p2 (1 + i�2 �2) (4.51)leads to the real matrieŝ1 = ��3; ̂2 = ��2�2; ̂3 = �1; ̂0 = i�3�2 (4.52)(e.g. U1U y = �U�2�1U y = �U2�2�1 = �i�2�2�2�1 = ��3). On the other hand̂5 = ��1�2 (4.53)is imaginary. Our Majorana �eld, whih we introdued in the Weyl representationas a �eld for whih  L = �2  �R turns into a real �eld in the above Majoranarepresentation, ̂ = U = U �  R L � = 1p2 �  R + �2 L L � �2 R � = 1p2 �  R +  �R�2( �R �  R) � ; (4.54)whih is real. Writing out the real and imaginary parts and the two omponents � of  R expliitly,  R = �  + � � = �  0+ + i 00+ 0� + i 00� � ; (4.55)we have  ̂ = p2 0BB�  0+ 0�� 00� 00+ 1CCA ; (4.56)whih gives  ̂ as a real four omponent �eld.From now on we drop the ,̂ the type of representation will be lear fromthe ontext. In a Majorana representation the matrix S representing Lorentztransformations is real,S = e�i 14!�� ��� = e� 14!�� �� = S�; (4.57)and the same is true for the matries representing P and T ,SP = 0 = S�P ; ST = i05 = S�T : (4.58)



112 CHAPTER 4. SPINOR FIELDS AND FERMIONSHene, the reality of the Majorana �eld is preserved under these transformations.In general hermitiity properties are preserved under a hange of representa-tion, in a real representation these beome symmetry properties (under transposi-tion). Let us now express the symmetry and reality properties in a representationindependent form. For this we need the so-alled harge onjugation matrix C.In any representation there is a unitary antisymmetri matrix C,CyC = 1; CT = �C; (4.59)relating � and (�)T aording to�T = �Cy �C: (4.60)In the Majorana representation �T = �y and (f. (4.16))C = � = i0 (4.61)(= ��3�2). In any other representation (indiating the Majorana representationby the^for the moment),�T = (U y ̂� U)T = UT ̂�T U� = �UT �̂̂��̂ U� (4.62)= �UTU ��� U yU�; (4.63)and we obtain C in the form C = �U yU� � � ~C: (4.64)We then also have in any representation�� = (�)yT = �(���)T = Cy���C (4.65)= ~Cy� ~C: (4.66)In the Majorana representation ~C = 1. In our Weyl representation~C = U yU� = e�i�2 �2�2 = �i�2�2; C = �3�2 = �02: (4.67)The harge onjugation matrix derives its usefulness by relating S(L)T withS(L)�1, S(L)T = Cy S(L)�1C; (4.68)and S� with S, S(L)� = S(L)yT = Cy� S(L) �C: (4.69)For example, Cy�� � � =  TCy is a salar.For general omplex spinors  and � =  y� the so-alled harge onjugatespinors  () and � () are de�ned as () = ( � C)T = �C �; � () = �(Cy )T (4.70)



4.3. POLARIZATION SPINORS 113(where the formula for � () follows from  ()). Under Lorentz transformations () transforms like  .Finally in this setion, let us express the Majorana property of a spinor �eldin representation independent form. In the Weyl representation the Majoranaproperty  L = �2 �R (4.71)implies  � = � 0 �2��2 0 �  (4.72)= ~Cy  = Cy�  ; (4.73)where the last line is a representation independent form. This an also be ex-pressed as � =  y� =  �T� =  T�TCyT� = � TCyT= �(Cy )T : (4.74)With this de�nition eq. (4.73) expresses the fat that a Majorana �eld is self(harge) onjugate  () =  ; � () = � : (4.75)4.3 Polarization spinorsIn our desription of spin 1/2 partiles we will need polarization spinors u�(p; �),the analogue of the polarization vetors e�(p; �) for the photon �eld. They areonstruted as follows.A partile at rest transforms under rotations like a two omponent spinor ��,�+ = � 10 � ; �� = � 01 � : (4.76)From these two omponent spinors we make a four omponent spinor for a partileat rest in the Weyl representation,u(�p; �) = p2m��; �� = 1p2 � ���� � ; (4.77)where m is the partile mass and�p = 0; �p0 = m: (4.78)The urious normalization fator p2m is put in for later onveniene. We anharaterize u(�p; �) by the eigenvalues of the two ommuting matries �3 and �,�3 u(�p; �) = �u(�p; �); �3 �� = ��� (4.79)�u(�p; �) = u(�p; �); ��� = ��: (4.80)



114 CHAPTER 4. SPINOR FIELDS AND FERMIONSThese relations together with u(�p;�) = 12(�1� i�2) u(�p;+) serve to haraterizeu(�p; �) in a general representation.Polarization spinors u(p; �) for arbitrary momentum p now follow by applyinga standard boost Bp whih takes �p into p:�(Bp) �p = p; (4.81)Bp = e���=2; � = � p̂; p̂ = pjpj ; tanh� = jpjp0 : (4.82)Applying this standard boost to u(�p; �) we getu(p; �) = S(Bp) u(�p; �) (4.83)= (osh �2 + sinh �2 p̂ ��5)u(�p; �) (4.84)= (pp0 +m+pp0 �m p̂ ��5)��: (4.85)We shall also need onjugate spinors related to u(p; �) by harge onjugation (f.(4.70)), v(p; �) � u()(p; �) (4.86)= �C u(p; �)� = [�u(p; �)C℄T ; (4.87)�v(p; �) = �u()(p; �) = �[Cyu(p; �)℄T : (4.88)In the Majorana representation C = �, giving simplyv(p; �) = u(p; �)�; Majorana rep. (4.89)Sine harge onjugate spinors transform under Lorentz transformations like or-dinary spinors we havev(p; �) = S(Bp) v(�p; �) (4.90)= (pp0 +m+pp0 �m p̂ ��5)�()� ; (4.91)�()� = �C ���: (4.92)Furthermore, at rest�3v(�p; �) = �� v(�p; �); �3 �()� = �� �()� ; (4.93)� v(�p; �) = �v(�p; �); � �()� = ��()� ; (4.94)and �u(�p; �) i� u(�p; �0) = 2�p� Æ��0 ; (4.95)�v(�p; �) i� v(�p; �0) = 2�p� Æ��0 ; (4.96)�u(�p; �) u(�p; �0) = 2mÆ��0 ; (4.97)�v(�p; �) v(�p; �0) = �2mÆ��0 ; (4.98)�u(�p; �) v(�p; �0) = �v(�p; �) u(�p; �0) = 0: (4.99)



4.3. POLARIZATION SPINORS 115The orthogonality of a u(�p; �) and a v(�p; �0) follow from the fat that they areeigenvetors of � with di�erent eigenvalues. From the above follow the relationsfor general p: �u(p; �) i� u(p; �0) = 2p� Æ��0 ; (4.100)�v(p; �) i� v(p; �0) = 2p� Æ��0 ; (4.101)�u(p; �) u(p; �0) = 2mÆ��0 ; (4.102)�v(p; �) v(p; �0) = �2mÆ��0 ; (4.103)�u(p; �) v(p; �0) = �v(p; �) u(p; �0) = 0: (4.104)For example,�u(p; �) i� u(p; �0) = �u(�p; �)S(Bp)�1i�S(Bp)u(�p; �) = �(Bp)�� 2�p� Æ��0= 2p� Æ��0 : (4.105)Sine �u(p; �)i0 = u(p; �)y we an interprete (4.100) and (4.101) for � = 0 asorthogonality relations. The u's are orthogonal to the v's in the senseu(p; �)y v(~p; �0) = u(�p; �)yS(Bp)y S(B~p)v(�p; �0) (4.106)= 0; ~p � (�p; p0); (4.107)where we used S(Bp)y = S(Bp) = S(B~p)�1.Similarly, we have ompleteness type relations at rest,X� u(�p; �) �u(�p; �) = 2mX� �� �y� = m(1 + �)= m� i��p�; (4.108)and for general momentumX� u(p; �) �u(p; �) = m� i�p�; (4.109)X� v(p; �) �v(p; �) = �m� i�p�: (4.110)The seond relation follows from the �rst and the de�nition of v(p; �),X� v�(p; �) �v�(p; �) = X� [�u(p; �)C℄� [�Cyu(p; �)℄� = �[Cy (m� i�p�)C℄��= �[Cy (m� i�p�)C℄T�� = �[C (m� i�p�)T Cy℄��= �(m + i�p�)��: (4.111)In the Majorana representation these relations follow more easily from the realityof the � and v = u�.



116 CHAPTER 4. SPINOR FIELDS AND FERMIONSBeause of the orthogonality relations (4.100), (4.101) and (4.107) the om-pleteness relation in four dimensional spinor spae readsX� [u(p; �)u(p; �)y + v(~p; �)v(~p; �)y℄ = 2p0: (4.112)Eqs. (4.80) and (4.94) generalize to arbitrary p as,i�p� u(p; �) = �mu(p; �); i�p� v(p; �) = mv(p; �); (4.113)whih turn out to be the free Dira equation in momentum spae.We onlude this setion with the zero mass limit of the polarization spinors,whih an also be interpreted as their approximate form for high energies. Fromeqs. (4.85) and (4.91) we see that for m! 0,u(p; �) ! pjpj (1 + p̂ ��5) ��; (4.114)v(p; �) ! pjpj (1 + p̂ ��5) �()� : (4.115)The quantity within parenthesis is essentially a projetor. Let us hange thespei�ation of the �� suh that they beome eigenvetors of the heliity matrix12 p̂ ��; (4.116)with eigenvetors �=2. This an be done by a standard rotation whih brings thethree axis along p̂, ��(�; �) = e�i� 12�3 e�i� 12�2 ��; (4.117)p̂ = (sin � os�, sin � sin�, os �): (4.118)Then � is the sign of the heliity,p̂ �� ��(�; �) = ���(�; �); p̂ �� �()� (�; �) = ���()� (�; �); (4.119)and the heliity is tied to 5,u(jpj; �; �; �) = pjpj (1 + �5) ��(�; �); (4.120)v(jpj; �; �; �) = pjpj (1� �5) �()� (�; �): (4.121)where we reognize the projetors PL;R = (1� 5)=2. Sine 5 ommutes with �we an hoose the heliity �'s to be eigenvetors of 5. The eigenvalue � of 5,whih takes values �1, is alled the hirality (`handedness'). We see that for theu-spinors � = �, whereas for the v-spinors � = ��. Then a right handed spinoruR = PR u, whih in the Weyl representation has only the upper two omponentsnonzero, has positive heliity, while a left handed spinor uL = PL u, whih in theWeyl representation has only the lower two omponents nonzero, has negativeheliity, and vie versa for vR;L.



4.4. SPIN AND STATISTICS 1174.4 Spin and statistisWe shall derive here that an operator spinor �eld has to desribe fermions. Weassume now a theory of free spin 1/2 partiles, in whih there is a vauum state j0iwith zero energy-momentum, and one partile states jp�i with energy-momentump�, P �j0i = 0; P �jp�i = p�jp�i; (4.122)where P � is the energy-momentum operator; � = � is a spin index. The onven-tions are suh that these states are obtained by the ation of standard boosts Bp(f. (4.82)) on a partile state at rest,jp�i = U(Bp)j�p�i; �p = 0; �p0 = m; (4.123)where U(Bp) is the unitary operator representing Bp in Hilbert spae. The index� = � labels the eigenvalue of the third omponent of angular momentum J3 inthe rest frame of the partile, J3j�p�i = 12� j�p�i: (4.124)Let  (x) now be an operator spinor �eld of the Majorana type, �(x)y = (Cy�)��  �(x); or � (x) = �[Cy (x)℄T : (4.125)In the Majorana representation we have a hermitian spinor �eld �(x)y =  �(x); Majorana rep. (4.126)By analogy to the salar and Maxwell �elds we assume  (x) to annihilate spin1/2 partiles to the vauum aording toh0j �(x)jp; �i = u�(p; �) eipx: (4.127)The form of this equation is ditated by translation invariane (the fator exp(ipx))and Lorentz invariane (the fator u�(p; �), beause jp; �i and u(p; �) are on-struted in exatly the same way with the boost Bp). The remaining fator (= 1)is a normalization ondition for  (x). In general we may have an additional fa-torpZ as in set. 2.11, whih we take to bepZ = 1 in ase of no interations.Taking the omplex onjugate of (4.127) and multiplying by � giveshp; �j � (x)j0i = �u(p; �) e�ipx: (4.128)On the other hand1, using the Majorana property of  (x), the .. of (4.127) anbe written as hp; �j �(x)yj0i = u�(p; �)� e�ipx (4.129)= (Cy�)�� hp; �j �(x)j0i; (4.130)1The derivations an be shortened by working onsistently in the Majorana representation.



118 CHAPTER 4. SPINOR FIELDS AND FERMIONSand using (4.87), hp; �j �(x)j0i = v�(p; �) e�ipx; (4.131)Taking the omplex onjugate of (4.131) again and multiplying by �,h0j � (x)jp; �i = �v(p; �) eipx: (4.132)In the Majorana representation for the Dira matries we have simply,hp; �j �(x)j0i = u�(p; �)� e�ipx; Majorana rep.; (4.133)We have seen that free �elds reate only single partile states out of the va-uum. If we assume this to be the ase of our free spinor �eld as well, we anderive the vauum expetation value of equal time ommutator or antiommuta-tor relations. Using ompleteness we haveh0j (x) � (y)j0i = X� Z d!p h0j (x)jp; �ihp; �j � (y)j0i (4.134)= X� Z d!p eip(x�y) u(p; �) �u(p; �) (4.135)= Z d!p eip(x�y) (m� ip��); (4.136)where we used (4.109). Similarly, we haveh0j � �(y) �(x)j0i = X� Z d!p h0j � �(y)jp; �ihp; �j �(x)j0i (4.137)= X� Z d!p eip(y�x) v�(p; �) �v�(p; �) (4.138)= � Z d!p eip(y�x) (m + ip��)��; (4.139)using (4.110).From these relations now follow the vauum expetation values of equal timeommutators or antiommutators:h0j[ �(x) � �(y)� � �(y) �(x)℄j0ix0=y0 (4.140)= Z d!p [eip(x�y) (m� ip��)� [e�ip(x�y) (m + ip��)℄�� (4.141)= Z d!p eip(x�y) [(m� ipkk)(1� 1) + ip00(1� 1)℄��: (4.142)It follows that the vauum expetation value of the ommutator [ �(x); � �(y)℄ isgiven by h0j[ �(x); � �(y)℄j0ix0=y0 = 2(m� k�k) Z d!p eip(x�y): (4.143)



4.4. SPIN AND STATISTICS 119This does not vanish for x 6= y: it is not `loal' for nonzero spaelike (x� y)2 =(x�y)2. On the other hand, the vauum expetation value of the antiommutatoris simple and loal:h0jf �(x); � �(y)gj0ix0=y0 = i0�� Æ(x� y); (4.144)h0jf �(x);  �(y)ygj0ix0=y0 = Æ�� Æ(x� y): (4.145)The spinor operators at di�erent points in spae evidently do not ommute atequal times: they antiommute!The above antiommutator looks similar to the ommutator between a �eld'(x) and its anonial momentum �(y) at equal times, apart from spinor indies.By analogy we shall assume now that not only the vauum expetation value,but the operators satisfy the antiommutation relations,f �(x; t);  �(y; t)yg = Æ�� Æ(x� y): (4.146)We have arrived at equal time antiommutation relations for the spinor �eld.Next we introdue operators a(p; �) and a(p; �)y by the expansion (x) =X� Z d!p [eipx u(p; �) a(p; �) + e�ipx v(p; �) a(p; �)y℄; (4.147)or in the Majorana representation, (x) =X� Z d!p [eipx u(p; �) a(p; �) + e�ipx u(p; �)� a(p; �)y℄: (4.148)Then a(p; �) = Z d3x eipx u(p; �)y  (x); (4.149)where we used u(p; �)y = �u(p; �)i0, (4.100) and (4.107). Using (4.101), (4.107)and the Majorana property of  we also havea(p; �)y = Z d3x e�ipx v(p; �)y (x) (4.150)= Z d3x e�ipx  (x)yu(p; �) = [a(p; �)℄y; (4.151)i.e. the `dagger' on a(p; �)y indeed means hermitian onjugation, as is obviousfrom (4.4). These expression give the following antiommutation relations for thea(p; �)y and a(p; �),fa(p; �); a(p0; �0)yg = 2p0 (2�)3 Æ(p� p0) Æ��0 ; (4.152)fa(p; �); a(p0; �0)g = fa(p; �)y; a(p0; �0)yg = 0: (4.153)



120 CHAPTER 4. SPINOR FIELDS AND FERMIONSFor example,fa(p; �); a(p0; �0)g = Z d3xd3x0 eipx+ip0x0 u�(p; �)� u�0(p0; �0)�f �(x);  �0(x0)g= (2�)3 Æ(p+ p0) u(p; �)y�Cu(p0; �0)�= (2�)3 Æ(p+ p0) u(p; �)yv(~p; �0)� = 0; (4.154)where we used f �(x);  �0(x0)g = (�C)��0 Æ(x � x0) whih follows from (4.146)and (4.125), and (4.107).It follows that a(p; �)y and a(p; �) an be interpreted as reation and annihi-lation operators, a(p; �)j0i = 0; (4.155)jp�i = a(p; �)yj0i; (4.156)jp1�1; p2�2i = a(p1; �1)y a(p2; �2)yj0i; (4.157)et. These relations plus (4.147) are onsistent with (4.127), (4.131). Further-more, it is onsistent to de�ne the energy momentum operator asP � = Z d!p a(p; �)y a(p; �) p�; (4.158)sine the antiommutation relations between the a's and ay's imply[P �; a(p; �)y℄ = p� a(p; �)y (4.159)P � a(p; �)yj0i = p� a(p; �)yj0i; (4.160)et. Beause the a(p; �)y antiommute among themselves the basis vetors jp1�1; � � � ; pn�niare totally antisymmetri: the spin 1/2 partiles follow Fermi-Dira statistis,they are fermions.Let us list the important ingredients whih went into this famous spin-statistisonnetion:- Hilbert spae (of ourse with positive metri);- a vauum state j0i and one partile states jp; �i with the expeted energymomentum eigenvalues (4.122);- translation invariane and Lorentz invariane, in (4.127){(4.133);- loality.We stress here the relevane of the loality priniple, as introdued for the aseof the eletromagneti �eld in set. 1.16. Imagine onstruting loal observables



4.5. VACUUM AMPLITUDE, PROPAGATOR AND ACTION 121O(x) out of the spinor �eld. We want these to be loal, i.e. they should ommutefor spaelike separations,[O(x); O(y)℄ = 0; (x� y)2 > 0: (4.161)The spinor �elds are not loal in this sense, beause antiommutators are notommutators, and apparently spinor �elds are not observables. However, `bilin-ears' of the type (� is some ombination of Dira matries)O(x;�) = � (x)� (x); (4.162)and generalizations thereo�, e.g. involving derivatives, do satisfy loality. Thisfollows from appliation of the identity (4.21) with the help of whih we anexpress ommutators of bilinears in terms of antiommutators. The antiommu-tators satisfy loality, and therefore also the ommutators of the bilinears,[O(x;�1); O(y;�2)℄ = 0; (x� y)2 > 0: (4.163)We shall see later that familiar observables like urrents and the energy momen-tum tensor an indeed be expressed as `bilinears'. Had we insisted on ommu-tation relations for  (x), we would have had to assume a nonloal ommutator[ �(x); � �(y)℄, as follows from its vauum expetation value (4.143), and we ouldnot have satis�ed the loality priniple.4.5 Vauum amplitude, propagator and ationAt this stage we have and operator �eld  (x) and an energy operatorH = P 0, butnot yet an ation or unambiguous �eld equation whih an be used to introdueloal interations. It is obvious from (4.147) that  (x) satis�es the Klein-Gordonequation, (m2 � �2) (x) = 0; (4.164)but it also satis�es the Dira equation:(m+ ���) (x) = X� Z d!p [eipx (m+ ip) u(p; �) a(p; �)+ e�ipx (m� ip) v(p; �) a(p; �)y℄ (4.165)= 0; (4.166)where p = �p� and we used (4.113). The Klein-Gordon equation is atually aonsequene of the Dira equation, as follows by applying m� ��� to the aboveequation and usingp�p� �� = 12p�p� f�; �g = p�p� g�� = p2; (4.167)



122 CHAPTER 4. SPINOR FIELDS AND FERMIONSand (m� i�p�) (m+ i�p�) = m2 + (p)2 = m2 + p2: (4.168)So the Dira equation seems favoured. Yet, it is not ompletely lear at this pointthat we should invent an ation based on the Dira equation rather than on theKlein-Gordon equation. To resolve this dilemma we shall introdue an externalsoure and disover the ation from the vauum amplitude. It turns out to leadto the introdution of antiommuting numbers.To streamline the presentation we shall temporarily restrit ourselves to theMajorana representation, in whih  �(x) =  �(x)y. We introdue a real externalsoure ��(x) and add a soure termH�(x0) = � Z d3x ��(x) �(x) (4.169)to the hamiltonian suh that the total hamiltonian is H + H�, where � =�T� = ��0��0� �. The vauum amplitude an then be expressed as usual in thesoure-interation piture asZ(�) = h0jT e�i R dx0H�(x0)j0i = h0jT ei R d4x��(x) �(x)j0i (4.170)= 1 + i22 Z d4xd4y h0jT �� �(x)�� �(y)j0i+ � � � : (4.171)Consider now the fermion propagatorh0jT  �(x) �(y)j0i: (4.172)We shall see shortly that we have to modify the de�nition of the time orderingoperator when fermion �elds are involved. For Bose �elds the time ordered prod-ut is symmetri in exhange of labels as if the �elds ommute, e.g. for a salar�eld T '(x)'(y) = T '(y)'(x): (4.173)Thus it is natural to de�ne the T produt for fermion �elds suh that it is anti-symmetri, as if they antiommute,T  �(x) �(y) = �T  �(y) �(x); (4.174)that isT  �(x) �(y) = �(x0 � y0) �(x) �(y)� �(y0 � x0) �(y) �(x): (4.175)With this de�nition the vauum expetation value of the time ordered produttakes the form, for x0 > y0, using (4.127), (4.128),h0jT  �(x) �(y)j0i = h0j �(x) �(y)j0i; x0 > y0 (4.176)



4.5. VACUUM AMPLITUDE, PROPAGATOR AND ACTION 123= X� Z d!p h0j �(x)jp; �ihp; �j �(x)j0i (4.177)= Z d!p eip(x�y) X� u�(p; �)u�(p; �)�; (4.178)= Z d!p eip(x�y) [(m� i�p�)�℄�� (4.179)= (m� � ����)�� Z d!p eip(x�y); (4.180)where �� ats on x, and we must not onfuse the index � with the matrix � = i0.Similarly, we have for x0 < y0,h0jT  �(x) �(y)j0i = �h0j �(y) �(x)j0i; x0 < y0 (4.181)= � Z d!p eip(y�x) [(m� i�p�)�℄�� (4.182)= Z d!p e�ip(x�y) [(m + i�p�)�℄�� (4.183)= (m� � ����)�� Z d!p e�ip(x�y); (4.184)where we used the fat that in the Majorana representation the hermitian � = i0is purely imaginary, hene antisymmetri, and the antihermitian �� and �� arealso purely imaginary, hene symmetri,�T = ��; (��)T = �� (��)T = ��: (4.185)Summarizing, we haveh0jT  (x) T (y)j0i = �(x0 � y0) (m� � ����) Z d!p eip(x�y)+ �(y0 � x0) (m� � ����) Z d!p e�ip(x�y)= (m� � ����) [�(x0 � y0) Z d!p eip(x�y)+ �(y0 � x0) Z d!p e�ip(x�y)℄; (4.186)where in the last line we pulled the time di�erentiation through the � funtions,whih is allowed beause the di�erene vanishes:�0� [Æ(x0 � y0) Z d!p eip(x�y) � Æ(x0 � y0) Z d!p e�ip(x�y)℄ = 0: (4.187)We now use the relation�(x0 � y0) Z d!p eip(x�y) + �(y0 � x0) Z d!p e�ip(x�y) (4.188)



124 CHAPTER 4. SPINOR FIELDS AND FERMIONS= �i Z d4p(2�)4 eip(x�y)m2 + p2 � i� (4.189)= �iGsal(x� y); (4.190)familiar from the salar �eld and �nd the fermion propagatorh0jT  �(x) �(y)j0i = [(m� ���)�℄��(�i)Gsal(x� y) (4.191)= �i Z d4p(2�)4 eip(x�y) [(m� i�p�)�℄��m2 + p2 � i� (4.192)� �iG��0(x� y) ��0�; (4.193)h0jT  �(x) � �(y)j0i = �iG��(x� y): (4.194)Had we used the Bose �eld de�nition of the T produt for the fermion �elds,the expression in (4.188) would have appeared with a minus sign in front of theseond � funtion and the resulting expression would not be a propagator.The vauum amplitude (4.171) is now expeted to ontain the expressionZ d4xd4y ��(x) [G(x� y)�℄�� ��(y): (4.195)However, we now have a problem: this expression is identially zero (when thesoures are ordinary numbers)! This is beause G(x�y)� is antisymmetri whenviewed as a ontinuous matrix:[G(y � x)�℄�� = Z d4p(2�)4 e�ip(x�y) [(m� � i��p�)℄��m2 + p2 � i� (4.196)= �[G(x� y)�℄��; (4.197)where we used (4.185) and hanged variables p ! �p. It follows that (4.195)vanishes identially when the � are ordinary numbers. To resolve the problem wehave to introdue soures ��(x) whih are antiommuting:��(x)��(y) = ���(y)��(x): (4.198)These are alled antiommuting numbers or Grassmann `variables'. They aregenerators of a Grassmann algebra. We will explain how to use them as we goalong. For more information see for example Brown set. 2.4. With antiommut-ing soures the expression (4.195) is algebraially nontrivial. However, it is notan ordinary omplex number but an element of a Grassmann algebra, The sameholds for the vauum amplitude, and jZ(�)j2 an no longer be interpreted as aprobability. Yet we shall see that antiommuting numbers are very onvenientand allow for a treatment of fermion �elds similar to boson �elds. They widelyused in �eld theory.The antiommuting harater of all antiommuting numbers inludes thefermion operator �elds, ��(x) �(y) = � �(y)��(x): (4.199)



4.5. VACUUM AMPLITUDE, PROPAGATOR AND ACTION 125Then there is no ambiguity in the introdution of the soure term in the hamil-tonian, � = �T� = � T�T� =  T�� = � �; (4.200)where the �rst minus sign appears beause of the antiomuting � and  . Wean now show how the de�nition of the time ordering operator for fermion �eldsappears naturally from (4.171), where T has its usual `bosoni meaning' sine itame from the evolution operator in the interation piture. The produt of twofermioni objets is ommuting, apart, of ourse, from the nonommutativity ofthe operator �elds. The T produt of pairs of fermioni objets is a ommutingT produt in exhanges of the pairs. We have for x0 > y0:T ��(x) �(x)��(y) �(y) = ��(x) �(x)��(y) �(y) (4.201)= ���(x) �(x) �(y)��(y); (4.202)while for x0 < y0,T ��(x) �(x)��(y) �(y) = ��(y) �(y)��(x) �(x) = ��(x)��(y) �(y) �(x)= ��(x) �(x) �(x)��(x): (4.203)Hene, T ��(x) �(x)��(y) �(y) = ���(x)T [ �(x) �(y)℄ ��(y); (4.204)and we �nd for the vauum amplitudeZ(�) = 1� i12 Z d4xd4y ��(x) [G(x� y)�℄�� �� + : : : (4.205)= 1 + i12 Z d4xd4y �(x)G(x� y) �(y) + : : : ; (4.206)where we used ��(y) = ��0(y) ��0� = ����0 ��0(y).We now look for the inverse (in the matrix sense) of the propagator. Using(4.168) we �nd that the inverse of the propagator is a di�erential operator,�(m+ ���)G(x� y)� = Z d4p(2�)4 eip(x�y) m2 + p2m2 + p2 � i� = Æ4(x� y); (4.207)and the propagator is the Green funtion of this di�erential operator with Feyn-man boundary onditions. By analogy with the Bose ase, minus inverse of theGreen funtion, ontrated with lassial antiommuting �elds  , is now theandidate for the ation of the free Fermi �eld,S = � Z d4x 12 � (x) [�(m+ ���)℄��  � (x) (4.208)= � Z d4x 12 � (x) (m+ ���) (x): (4.209)



126 CHAPTER 4. SPINOR FIELDS AND FERMIONSIf   were ommuting rather than antiommuting, S would vanish identially, asan be shown by interhanging the order of the   (transposition) and partialintegration.Making ~ expliit we an interpret  � (x) as a formal lassial limit of  �(x):f �(x);  �(y)g = O(~)! f � (x);  � (y)g = 0; (4.210)as ~! 0.4.6 Antiommuting variablesBeause fermion variables antiommute, the variation of the ation an be writtenin two equivalent ways but di�erent ways2,ÆS = Z d4x Æ �(x) ÆSÆ �(x) = Z d4xS  ÆÆ �(x) Æ �(x); (4.211)and orrespondingly we have to distinguish between left and right derivatives.To see this in more detail let us write the ation in the ondensed notation usedearlier for the Bose �elds, using apital letters for indies attahed to Fermi �elds,S = � Z d4x 12  T�(m+ �) � 12 SKL  K L; (4.212)where SKL = �SLK . ThenÆS = S( + Æ )� S( )= 12 SKL [( K + Æ K)( L + Æ L)�  K L℄= 12 SKL (Æ K  L +  K Æ L)= SKL Æ K  L = �SKL L Æ K : (4.213)Hene ÆÆ K S = SKL  L; S  ÆÆ K = �SKL  L: (4.214)The di�erentiations also behave like antiommuting variables, e.g.ÆÆ K  L = ÆLK; (4.215)ÆÆ K ( L M) = ÆLK  M �  L ÆMK : (4.216)2For simpliity we drop the  on the lassial  .



4.7. DIRAC FIELD 127We shall always use left derivatives. Notie that S;KL (i.e. �rst Æ=Æ K thenÆ=Æ L) equals SKL.Using ÆÆ �(x) Z d4y � = ���(x) = ���0 ��0� = ���0 ��0 ; (4.217)the �eld equation with external soure an now be derived as0 = ÆÆ �(x) (S + Z d4x � )= ���0 [�(m + �)℄ (x) + �(x)℄�0 ; (4.218)in whih we reognize the Dira equation found earlier in (4.166).We end this setion by giving the rule for omplex onjugation (or hermitianonjugation when operator �elds are involved),( K1 � � � Kn)� =  Kn � � � K1 : (4.219)Although the individual  K are real (with our present use of Majorana �elds inthe Majorana representation), the order of fermion variables gets reversed as forhermitian onjugation. With this rule the ation is real,S� = (12SKL  K L)� = 12S�KL  L K = S; (4.220)sine S�KL = �SKL.4.7 Dira �eldFrom two Majorana �elds  a, a = 1; 2, whih are real in the Majorana represen-tation for of the gamma matries, we an form a omplex fermion �eld. Suh a�eld is alled a Dira �eld. We introdue it here by analogy to the omplex salar�eld. The ation for two lassial Majorana �elds with idential mass m is givenby S = � Z d4x 12  Ta �(��� +m) a; (4.221)where there is a summation over a and with � = ��T in the Majorana represen-tation. This ation has a global SO(2) symmetry, a ! Rab  b; (4.222)Rab = (e�i!q)ab = R�1ba ; q = � 0 �ii 0 � : (4.223)



128 CHAPTER 4. SPINOR FIELDS AND FERMIONSThe orresponding Noether urrent follows in the same way as for the salar �eld,Æ a = �iqab  b Æ!; (4.224)ÆS = Z d4x j� ��Æ!; (4.225)j� = 12 � a i�qab b; (4.226)and j� is onserved as a onsequene of the �eld equations,��j� = 0: (4.227)The eigenstates of the harge matrix q de�ne the Dira �elds = 1p2 ( 1 � i 2);  � = 1p2 ( 1 + i 2); (4.228) 1 = 1p2 ( +  �);  2 = ip2 ( �  �); (4.229)and keeping in mind that the  a are antiommuting we �nd the ation for theDira �elds, S = � Z d4x � (��� +m) ; (4.230)where � =  y�. From now on we shall work almost exlusively with Dira �eldstreating  and � as independent variables, and assume no longer the Majoranarepresentation for the gamma matries. (Real fermion �elds are used for examplein Shwinger I, II, but omplex �elds are more ommon.).In the quantum theory the following free �eld expressions are now similar tothose for the salar �eld, (x) =X� Z d!p [eipx u(p; �) a(p; �;+) + e�ipx v(p; �) a(p; �;�)y℄; (4.231)� (x) =X� Z d!p [e�ipx �u(p; �) a(p; �;+)y + eipx �v(p; �) a(p; �;�)℄; (4.232)a(p; �;�) = 1p2 [a1(p; �)� ia2(p; �)℄; (4.233)a(p; �;�)y = 1p2 [a1(p; �)y � ia2(p; �)y℄: (4.234)From the antiommutation relations of the Majorana �elds  a we �nd those ofthe Dira �elds,f �(x);  �(y)ygx0=y0 = Æ�� Æ(x� y); ) (4.235)f �(x);  �(y)gx0=y0 = f �(x)y;  �(y)ygx0=y0 = 0: (4.236)



4.7. DIRAC FIELD 129The reation and annihilation operators satisfy the antiommutator relationsfa(p; �; ); a(p0; �0; 0)yg = 2p0 (2�)3 Æ(p� p0) Æ��0 Æ0; (4.237)and zero otherwise;  = + denotes a partile and  = � an antipartile.In the quantum theory we have to pay attention to the ordering of operatorsin the urrent j�, as for the salar �eld,j� = 12 � a i� qab  b= 12 [ � i�  �  T i�T � T ℄: (4.238)Then the harge operator is given byQ = Z d3x j0 = Z d3x 12 [ �y;  �℄= X� Z d!p [a(p; �;+)ya(p; �;+)� a(p; �;�)ya(p; �;�)℄; (4.239)whih is just the number operator for partiles minus the number operator forantipartiles. It has the following ommutation relations with the reation andannihilation operators,[Q; a(p; �;�)℄ = �a(p; �;�); [Q; a(p; �;�)y℄ = �a(p; �;�)y; (4.240)and with the Dira �elds [Q; ℄ = � ; [Q; � ℄ = � : (4.241)As for the salar �eld the theory is invariant under the harge onjugationtransformation (4.70), S( (); � ()) = S( ; � ). In the quantum theory hargeonjugation is represented by a unitary operator UC ,U yC  UC =  () = ( � C)T ; U yC � UC = � () = �(Cy )T : (4.242)The urrent hanges sign under C,U yC j� UC = �j� (4.243)(this would not be the ase had we ignored the operator ordening subtlety in(4.238)).



130 CHAPTER 4. SPINOR FIELDS AND FERMIONS4.8 Energy-momentum tensor and vauum en-ergyIn (4.158) we have onstruted the energy-momentum operator P � of the freefermion �eld. It is still of interest to know the form of the energy-momentumtensor T ��. Now we know the ation we an use translation invariane to �nd asuitable T �� via the `Noether proedure'. (The oupling of a spinor �eld to thegravitational �eld is muh too involved to use here for the de�nition of T �� .) Inthe ase of global U(1)'SO(2) invariane we found the onserved urrent j� bymaking a loal SO(2) rotation. We follow the same strategy here for �nding T ��.We make an in�nitesimal loal translation x! x+ Æ�(x) on the (lassial) �elds, 0(x) =  (x + Æ�(x)) =  (x) + Æ��(x)�� (x); (4.244)� 0(x) = � (x) + Æ��(x)�� � (x); (4.245)and identify T �� from the hange in the (lassial) ation,ÆS = Z d4x Æ�� ��T ��: (4.246)In the alulation of ÆS appears a derivative of �� whih is onverted to the �eldsby partial integration,ÆS = S( 0; � 0)� S( ; � )= � Z d4x [( � + Æ���� � )(m+ ���)( + Æ���� )� � (m+ ���) ℄= � Z d4x fÆ��[�� � (m+ ���) + � (m+ ���)�� ℄ + ��Æ�� � ��� g= Z d4x Æ��[��L+ ��( � ��� )℄; (4.247)where L = � � (m+�) is the lagrangian. Sine ÆS is stationary when  and � are solutions of the equations of motion, we have the loal onservation relation��T �� = 0; T �� = � ��� + Æ��L: (4.248)However, this expression for the energy-momentum tensor is not real, in fat, thelagrangian itself is not real. This an be repaired by symmetrizing the derivativein L, writing S = Z d4xL; L = � � (m+ � $��) ; (4.249)$�� � 12 (!�� �  ��); (4.250)



4.8. ENERGY-MOMENTUM TENSOR AND VACUUM ENERGY 131whih leads to the real energy-momentum tensorT �� = � � $��  + g�� L: (4.251)In the ase of the eletromagneti �eld the Noether form of the energy-momentumtensor would not be the gauge invariant expression (1.45). For a disussion seee.g. De Wit & Smith set. 1.5.The energy density is given byT 00 = � � 0 $�0  + � (m+ k $�k +0 $�0) = � (m + k $�k) : (4.252)Of ourse, we still have to hek the normalization and sign { these will turn outto be orret. The total energy is given byH = Z d3x T 00 = Z d3x yH ; (4.253)H = m� � i�k�k; (4.254)where �k = i�k and the hermitian di�erential operator H is alled the Dirahamiltonian.Consider next the quantum theory. There is no operator ordering ambiguityin H, sine � and �k are traeless matries. The operator H generates timetranslations in the way we expet for a hamiltonian,i[H; (x)℄ = i Z d3y; [ y(y)�(m+ k�k) (y);  (x)℄ (4.255)= �i�(m + k�k) (x) (4.256)= �0 (x); (4.257)where we hose y0 = x0 (whih we are free to do sine H is time independent) andin the last line used the Dira equation. Conversely, if we assume thatH generatesthe time development aording to the Heisenberg equation �0 = i[H; ℄, thenthe Dira equation follows. We see here a glimpse of a anonial formalism forantiommuting variables (see Shwinger III, for example). We do not need thishere sine we have now enough at our disposal to turn to the ovariant ation(and path integral) formalism.To express H in the reation and annihilation operators we use the fat thatin the expansion of the �elds, e.g. at time zero, (x) = Z d!p [eipx u(p; �) a(p; �;+) + e�ipx v(p; �) a(p; �;�)y℄; (4.258)appear orthogonal eigenfuntions of H:H(p) u(p; �) � (m� +� � p)u(p; �) = p0 u(p; �); (4.259)H(�p) v(p; �) = �p0 v(p; �); (4.260)



132 CHAPTER 4. SPINOR FIELDS AND FERMIONSwhere we used the Dira equation in momentum spae (4.113). We then �ndH = Z d!p [a(p; �;+)ya(p; �;+)� a(p; �;�)a(p; �;�)y℄ p0 (4.261)= Z d!p [a(p; �;+)ya(p; �;+) + a(p; �;�)ya(p; �;�)℄ p0+ E0; (4.262)with ground state energy densityE0V = �12 X�=�; =�Z d!p p0p0 = �2 Z d!p p0p0: (4.263)In obtaining this expression we replaed (2�)3 Æ(0)! V , with V !1 the totalvolume of the system (a more areful treatment giving the same result was givenin the photon ase, using a �nite periodi box).We see that this expression for for the ground state energy of free fermions issimilar to that of an in�nite set of bosoni harmoni osillators, exept that it hasopposite sign, it is negative. As before we have to anel the energy density with asuitable bare osmologial onstant. The intruiging posibility of aneling, in aninterating theory, the positive bosoni ontribution against a negative fermioniontribution is one of the aims of introduing supersymmetry.4.9 Vauum amplitude to all orders in �, �We shall now determine the exat vauum amplitude for the free Dira �eld withexternal soures. The oupling of the omplex �eld to the omplex soures � and� is desribed by the total ationS( ; � ) + Z d4x (�  + � �); (4.264)where   and �  are lassial fermion �elds andS( ; � ) = � Z d4x � (m+ ���) : (4.265)The �eld equations are given by0 = ÆSÆ � (x) = �(m+ ���) (x) + �(x); (4.266)0 = �ÆSÆ (x) = � � (x) (m� �  ��) + �(x): (4.267)



4.9. VACUUM AMPLITUDE TO ALL ORDERS IN �, � 133In the quantum theory the soure terms lead to the additional term in thehamiltonian H�(x0) = Z d3x [�(x) (x) + � (x)�(x)℄; (4.268)whih enters in the evolution operator in the soure-interation pitureU�(t1; t2) = T e�i R t1t2 dx0H�(x0): (4.269)Then the vauum amplitude is given byZ(�; �) = h0jU�(1;�1)j0i = h0jT e�i R dx0H�(x0)j0i (4.270)= h0jT ei R d4x (� + � �)j0i: (4.271)Sine the ombinations of pairs of fermioni objets � and � � are ommutingwithin the T produt, taking a funtional derivative with respet to � or � goesinitially as in the bosoni ase,ÆZ = i Z d4y h0jT [Æ�(x) (x) + � (x)Æ�(x)℄ ei R d4y (� + � �)j0i: (4.272)For the derivatives we then getÆZiÆ�(x) = h0jT  (x) ei R d4y (� + � �)j0i; (4.273)= h0jU�(1; x0) (x)U�(x0;�1)j0i (4.274)ÆZiÆ�(x) = �h0jT � (x) ei R d4y (� + � �)j0i; (4.275)where we reall that we use left derivates. Taking �0 of (4.274) and using theantiommutators (4.235), (4.236) gives�0 ÆZiÆ�(x) = h0jU�(1; x0) i[H�(x0);  (x)℄U�(x0;�1)j0i+ h0jU�(1; x0) �0 (x)U�(x0;�1)j0i (4.276)= �0�(x)h0jU�(1;�1)j0i (4.277)+ 0(m + k�k) h0jU�(1; x0) (x)U�(x0;�1)j0i:This an be rewritten in the form��(m + ���) ÆiÆ�(x) + �(x)� Z(�; �) = 0; (4.278)whih is just the �eld equation for   with   ! Æ=iÆ�, as might be expetedfrom our experiene with Bose �elds. Similarly, we have the onjugate equationorresponding to the �eld equation for � ,��m �ÆiÆ�(x) + �� �ÆiÆ�(x) � + �(x)� Z(�; �) = 0: (4.279)



134 CHAPTER 4. SPINOR FIELDS AND FERMIONSThe solution to these equations with Feynman boundary onditions in timeis easily written down by analogy with the Bose ase,Z(�; �) = ei R d4xd4y �(x)G(x�y)�(y); (4.280)with G(x� y) the fermion propagator (4.194). Let us hek this for eq. (4.278):ÆZ = i Z d4xd4y [Æ�(x)G(x� y)�(y) + �(x)G(x� y)Æ�(y)℄ei R d4ud4v �(u)G(u�v)�(v) ; (4.281)ÆZiÆ�(x) = Z d4y G(x� y)�(y)Z; (4.282)and using the fat that G(x� y) is the inverse of m+ � gives(m+ ���) ÆZiÆ�(x) = �(x)Z; (4.283)whih was to be shown.We an now use this result to express arbitrary vauum expetation values oftime ordered produts as a sum of produts of propagators. The only di�erenewith the bosoni ase are the signs orresponding to permutations of the fermionoperators  or � in the fermioni T -produt:h0jT  (x) � (y)j0i = ÆÆ�(x) �ÆÆ�(y) Zjj�=�=0 (4.284)= �iG(x � y); (4.285)h0jT  (x1) � (y1) (x2) � (y2)j0i = ÆÆ�(x1) �ÆÆ�(y1) ÆÆ�(x2) �ÆÆ�(y2) Zjj�=�=0= (�i)2 [G(x1 � y1)G(x2 � y2)�G(x1 � y2)G(x2 � y1)℄; (4.286)and so on. The reader is urged to verify the seond relation by suessive di�er-entiation of Z with respet to the soures. Notie that for a nonzero result therehave to be an equal number of  's and � 's, in aordane with harge onser-vation. Eq. (4.286) is illustrated in �g. 4.1. The generalization to an arbitrarynumber of pairs is evidentlyh0jT  (x1) � (y1) � � � (xn) � (yn)j0i = (�i)nXP �P G(x1 � yP1) � � �G(xn � yPn);(4.287)where P denotes permutations of 1, . . . , n with signature �P .The vauum amplitude an of ourse also be expressed in e�etive ation formZ(�; �) = eiW (�;�); (4.288)W (�; �) = S( ; � ) + Z d4x (�  + � �); (4.289)
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Figure 4.1: Diagrams for eq. (4.286).with   and �  solutions of the lassial �eld equations with Feynman boundaryonditions,  (x) = Z d4y G(x� y) �(y); (4.290)� (x) = Z d4y �(y)G(x� y): (4.291)4.10 Problems1. For a free Dira fermion �eld letjp1�11; � � � ; pn�nni = a(p1; �1; 1)y � � �a(pn; �n; n)yj0i; (4.292)and hp1�11; � � � ; pn�nnj � (jp1�11; � � � ; pn�nni)y; (4.293)= h0ja(pn; �n; n) � � �a(p1; �1; 1);where  = + denotes a partile and  = � an antipartile. Verifyhp0�00jp�i = 2p0 (2�)3 Æ(p0 � p) Æ�0� Æ0; (4.294)and in the two partile subspae (n = 2) at least, verify the orthogonalityand ompleteness relationshp01�0101; � � � ; p0m�0m0mjp1�11; � � � ; pn; �nni = (4.295)Æmn XP �P hp01�0101jpP1�P1P1i � � � hp0n�0n0njpPn�PnPni;Xn 1n! X�1����n X1���n Z d!p1 � � �d!pnjp1�1; � � � ; pn; �nihp1�1; � � � ; pn; �nj = 1; (4.296)where P1 � � �Pn is a permutation of 1 � � �n with signature �P .



136 CHAPTER 4. SPINOR FIELDS AND FERMIONS2. For a free Dira �eld, verify the following matrix elements of the urrentj� = � i� : h0jj�(x)j0i = 0; (4.297)hp0�0jj�(x)jp�i = �u0i�u ei(p�p0)x; (4.298)hp0�0jj�(x)jp�i = ��vi�v0 ei(p�p0)x; (4.299)hp0�0; p�jj�(x)j0i = �u0i�v e�i(p+p0)x; (4.300)h0jj�(x)jp�; p0�0i = �vi�u0 ei(p+p0)x; (4.301)where u = u(p; �), �u0 = �u(p0; �0), et., and the `bar' in p� denotes an an-tipartile. It may be onvenient to use the (onventional) notation b(p; �) =a(p; �;+), d(p; �) = a(p; �;�) for the partile and antipartile annihilationoperators in (4.231), (4.232).3. Using the harge onjugation matrix C verifyhp0�0jj�(x)jp�i = �hp0�0jj�(x)jp�i (4.302)from the expliit answers obtained above.4. Verify ��j� = 0 in the above matrix elements of the urrent j�.5. For the expliit expressions obtained above for the matrix elements of j�verify that hp0�0jQjp�i = hp0�0jp�i; (4.303)et., where Q = R d3x j0(x).6. For general � and � we have��� = �i2 [�; �℄: (4.304)Let u = u(p; �), �u0 = �u(p0; �0). Verify that(p� p0)� �u0��� u = 2m �u0�u+ i(p + p0)� �u0u; (4.305)and the Gordon deomposition�u0i�u = 12m [(p+ p0)��u0 u+ i(p� p0)� �u0��� u℄: (4.306)Compare with the expression of the matrix element of the urrent for asalar partile.
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Chapter 5Spinor eletrodynamisSpinor eletrodynamis is the theory of interating spinor and eletromagneti�elds. We disuss the Feynman rules and present some appliations.5.1 De�ning the theoryThe oupling of the Dira �eld to the eletromagneti �eld is ompletely analagousto that of the omplex salar �eld. We start withS = SA + SA ; (5.1)with SA = � Z d4x 14 F��F �� (5.2)the ation for the eletromagneti �eld and SA the ation of the fermion �eldsin whih the derivative is replaed by the ovariant derivative D�,SA = � Z d4x � (m + �D�) : (5.3)In view of the appliations to partile physis we have to deide what the hargeis of the partiles to be desribed by  . For example, in an e�etive desriptionof a proton by a spinor �eld  p we haveD�  p = (�� � ieA�) p; (5.4)D� � p = (�� + ieA�) � ; (5.5)with the onvention e = jej; (5.6)sine the proton has positive harge. On the other hand, the eletron whih hasnegative harge is desribed by an eletron �eld  e,D�  e = (�� + ieA�) e; (5.7)D� � e = (�� � ieA�) � e; (5.8)138



5.1. DEFINING THE THEORY 139So the harge of the partiles (p+ and e�) determines the sign in the ovariantderivative. The fat that antipartiles have opposite harge is taken are ofautomatially by the formalism. In the following we shall take the eletron aseas an example.In the quantum theory, in the Coulomb gauge, the bosoni operators have theusual equal time ommutation relations, the fermioni operators the antiommu-tation relations, while boson operators ommute with fermion operators. TheCoulomb gauge is awkward to work with and as in the ase of the salar �eld wereplae the Maxwell ation by the modi�ed ationSA = � Z d4x [14 F��F �� + 12� (��A�)2℄; (5.9)to be used in the equation for the vauum amplitude Z, with external souresJ�, � and �. This equation for Z follows from the lasial �eld equations for thelassial �elds A� ,   and � ,0 = [��2g�� + (1� 1� )����℄A� � e � i�  + J�; (5.10)0 = �[m + �(�� + ieA�)℄  + �; (5.11)0 = �[ � (m + ie�A�)� �� � �℄ + �; (5.12)by replaing A� ! ÆiÆJ� ;   ! ÆiÆ� ; �  ! �ÆiÆ� ; (5.13)and letting the thus obtained funtional di�erential operator at on Z(J; �; �). Inaddition we should replae the oupling onstants and masses by bare parameters,e! e0, m! m0, � ! �0, and alulate the renormalized values e, m, � in termsof the bare parameters in a given regularization. This beomes relevant beyondthe semilassial approximation.As mentioned in set. 2.8, the solution of the equations for the vauum am-plitude an be represented by a path integral,Z(J; �; �) = R DAD � D eiS(A; ; � )+i R d4x (J�A�+� + � �)R DAD � D eiS(A; ; � ) ; (5.14)where the integration variables are lassial (antiomuting for  and � ), andformally Z DA = Yx� Z 1�1 dA�(x); (5.15)Z D � D = Yx� Z d � �(x)d �(x): (5.16)



140 CHAPTER 5. SPINOR ELECTRODYNAMICSThe demonstration that (5.14) is the solution of the equations for Z uses onlytranslation invariane of the integration, as in (2.165), and the Feynman boundaryonditions in time. As for ordinary integrals, fermioni integration an be de�nedrigourously for a �nite number of variables, see e.g. Brown set. 2.4. The pathintegral an be de�ned with the lattie regularization, using a �nite number ofmodes or `along the way' in a perturbative expansion in the oupling onstant e0.Perturbation theory leads to expressions involving Z in the free theory whih weknow how to evaluate, as in (2.170). The path integral then beomes a onvenienttool in obtaining this expansion.For us, the stage has been set already by the example of salar eletrodynamisinvolving only boson �elds. The vauum amplitude Z(�; �; J) an be written interms of an e�etive ation �( ; � ; A) by making a Legendre transformationfrom W (�; �; J) = �i lnZ(�; �; J) to �( ; � ; A),Z(�; �; J) = eiW (�;�;J); (5.17)W (�; �; J) = �( ; � ; A) + Z d4x (�  + � � + J�A� ); (5.18)and funtional derivatives of W with respet to the soures give the orrelationfuntions (onneted Green funtions). The equation for Z an be onvertedinto an equation for �, whih generates the Dyson-Shwinger equations. Keepingtrak of Plank's onstant leads again to the onlusion�( ; � ; A) = S( ; � ; A) +O(~): (5.19)Sine the only terms in S of higher order in the �elds than bilinear are the � � �A�ouplings, there is only one bare vertex funtion,S � � �A�(x; y; z) = �ie0 (�)�� Æ4(x� y) Æ4(x� z); (5.20)S � � �A�(p; q; k) = �ie0 (�)��: (5.21)This is represented by the vertex in �g. 5.1, whih also shows the propagatorsG�� (p) � G � � � (p;�p) = (m� ip)��m2 + p2 � i� ; (5.22)G��A (k) � GA�A� (k;�k) = g�� � (1� �)k�k�=(k2 � i�)k2 � i� : (5.23)In priniple this is all straightforward. However, in pratise the details areumbersome beause we have to keep trak of minus signs due to the antiom-muting harater of fermion variables. In the ondensed notation it an be usefulto use apital letters to indiate fermioni variables,JK $ ��(x); ��(x); �K $  � (x); � � (x); (5.24)Jk $ J�(x); �k $ A�(x): (5.25)
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Figure 5.1: Propagators and vertexfuntions in spinor eletrodynamis.Then all objets are antisymmetri in permutations of K;L; : : :. We shall notgo into details, but observe that when we ignore the antiommuting haraterof fermion variables the �nal result will be as we have seen before with bosonvariables only, up to possible minus signs. The determination of these signs willnow be illustrated in the examples in the next setion.5.2 Sattering amplitudesAs a warm up we reapitulate the determination of the sattering amplitudes for + �� !  + ��, involving only salar partiles and photons:1. Determine the two point orrelation funtions G��� and GA�A� for largetime separations to �nd polarization vetors e�e�� and wave funtion renor-malization onstants Z�, ZA:GA1A2 x01�x02! i Z d!k eik(x1�x2) ZAX� e�1(k; �)e�2(k; �)�; (5.26)G�3��4 x03�x04! i Z d!p eip(x3�x4): (5.27)2. Determine the four point orrelation funtion GA1A2�3��4 and identify theexternal propagators and HA1A2��3�4 ; shematiallyGA1A2�3��4 = GA1A10GA20A2G�3��30G�40��4HA10A20��30�40 : (5.28)Fators pZA e1 and pZA e�2 (i.e. pZA e�1(k1; �1) et.) `belong' to the ab-sorption and emission amplitudes, while fators pZAe�10 and pZAe20 belongto the sattering amplitude.
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Figure 5.2: 2+�+4 ! 1+�+3 or 2+e�4 ! 1+e�3 sattering (a), and 2+��3 !1 + ��4 or 2 + e+3 ! 1 + e+4 sattering (b).3. The sattering amplitude for 2 + �+4 ! 1 + �+3 is shematially given byT = ZAZ� e�1HA1A2��3�4 e2; (5.29)with appropriate ingoing and outgoing momenta, while the amplitude forthe proess 2 + ��3 ! 1 + ��4 is derived from the same H-funtion, againwith appropriate momenta. Denoting the antipartiles by a `bar' in ket andbra, we have in detailhk1�1; p3jT jk2�2; p4i = ZAZ� e�1�(k1; �1)HA�1A�2���(k1;�k2; p3;�p4)e�2(k2; �2); (5.30)hk1�1; p4jT jk2�2; p3i = ZAZ� e�1�(k1; �1)HA�1A�2���(k1;�k2;�p3; p4)e�2(k2; �2); (5.31)as illustrated in �g. 5.2. Notie that e.g. G and H are ompletely symmetriunder exhange of indies, whih is a reetion of the fat that boson oper-ators behave as ommuting in time ordered produts (`onn' = onneted)h0jT A�1(x1)A�2(x2)'(x3)'(x4)yj0ionn = (�i)3GA1A2�3��4 : (5.32)Therefore, HA�1A�2���(k1;�k2;�p3; p4) appearing in (5.31) equalsHA�1�A�2��(k1; p3;�k2;�p3), whih might look more natural for proess (b)in �g. 5.2.Consider next the proesses  + e� !  + e�. We go again through the steps 1{ 3 above, in more detail for the fermion aspets:1. The fermion propagator has poles with residue modi�ed by a fator Z beause of the interations1. ThenG 3 � 4 x03�x04! i Z d!p eip(x3�x4) Z X� u�3(p; �)�u�4(p; �); (5.33)1This is true in the ovariant gauges we are using. In the Coulomb gauge this is not thewhole story and the situation is more ompliated than suggested in Bjorken & Drell II set.17.9.



5.2. SCATTERING AMPLITUDES 143x03�x04! �i Z d!p eip(x4�x3) Z X� v�3(p; �)�v�4(p; �); (5.34)whih reets the one partile ontributions for the two time orderingsh0jT  3 � 4j0i x03>x04= X� Z d!p h0j 3jp; �ihp; �j � 4j0i+mp (5.35)x03<x04= �X� Z d!p h0j � 4jp�ihp�j 3j0i+mp; (5.36)where mp denotes the multipartile ontributions. The formulas reetthe free partile expressions (4.135), (4.138), and (4.231), (4.232) whihfor larity we repeat here in a onventional notation for the reation andannihilation operators: (x) =X� Z d!p [eipx u(p; �) b(p; �) + e�ipx v(p; �) d(p; �)y℄; (5.37)� (x) =X� Z d!p [e�ipx �u(p; �) b(p; �)y + eipx �v(p; �) d(p; �)℄: (5.38)i.e. the partiles are annihiliated by b � a(+) and the antipartiles tod � a(�).2. Considerh0jT A�1(x1)A�2(x2) �3(x3) � �4(x4)j0i = (�i)2GA1A2G 3 � 4 +(�i)3GA1A2 3 � 4 : (5.39)For the time ordering orresponding to �g. 5.2a this is equal toh0jA�1(x1)A�2(x2) �3(x3) � �4(x4)j0i $ h13jSj24i; (5.40)where we indiated the resulting sattering matrix element on the righthand side (reall Sonn = iT ). The reasoning behind this is that parti-les are reated at x2 and x4, whih evolve in time and may satter, andget annihilated at x1 and x3. On the other hand, for the time orderingorresponding to �g. 5.2b the expression (5.39) is equal to�h0jA�1(x1)A�2(x2) � �4(x4) �3(x3)j0i $ �h14jSj23i; (5.41)with the reasoning that in this ase an antipartile is reated at x3 andannihilated at x4. Note again that one time ordered produt (5.39) leads toseveral sattering matrix elements (we have mentioned only two of these)and note the minus sign in (5.41).
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Figure 5.3: Diagrams for 2+ e�4 ! 1+ e�3 sattering (a), and 2+ e+3 ! 1+ e+4sattering (b).The H funtion is de�ned in terms of the onneted Green funtion withoutattention to time ordering. However, we like to keep the natural  � -typeharge ordering, sine ordering matters for fermion Green funtions,GA1A2 3 � 4 = GA1A10GA20A2 G 3 � 30HA10A20 � 30 40G 40 � 4 : (5.42)3. The sattering amplitudes for 2 + e�4 ! 1 + e�3 are now given byhk1�1; p3�3jT jk2�2; p4�4i = ZAZ e�1�(k1; �1)�u�3(p3; �3)HA�1A�2 � �3 �4 (k1;�k2; p3;�p4)u�4(p4; �4)e�2(k2; �2); (5.43)hk1�1; p4�4jT jk2�2; p3�3i = �ZAZ e�1�(k1; �1)�v�3(p3; �3)HA�1A�2 � �3 �4 (k1;�k2;�p3; p4)v�4(p4; �4)e�2(k2; �2): (5.44)Notie the �v-v struture: �v orresponds to the initial state and v to the�nal state (ompare also with (5.34)). The minus sign in (5.44) omes fromthe minus sign in (5.41).It is straightforward to write down the expliit expressions for in the semilassialapproximation, see �g. 5.3. Fig. 5.3a representsiT (13; 24) = e��(k1; �1)�u(p3; �3) [e�(�i)m� iqm2 + q2 e�+ e�(�i)m� irm2 + r2 e�℄ u(p4; �4)e�(k2; �2); (5.45)where q = p1 + p3 = p2 + p4 and r = p4 � p1 = p3 � p2. Fig. 5.3b represents�iT (14; 23) = e��(k1; �1)�v(p3; �3) [e�(�i)m� iqm2 + q2 e�+ e�(�i)m� irm2 + r2 e�℄ v(p4; �4)e�(k2; �2); (5.46)
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Figure 5.4: Disonneted and onneted ontributions to (5.47) in the semilasialapproximation.

Figure 5.5: e�2 + e�4 ! e�1 + e�3 sattering (a) and e�2 + e+3 ! e�1 + e+4 sattering(b).where q = p1 + p4 = p2 + p3 and r = p4 � p2 = p3 � p1.A seond lass of examples is given by e�+ e� ! e� + e�. These are derivedfrom h0jT  1 � 3 3 � 4j0i = (�i)2[G 1 � 2G 3 � 4 �G 1 � 4G 2 � 3 ℄+ (�i)3G 1 � 2 3 � 4 : (5.47)The minus sign in the disonneted part shows already the signs to be given tothe individual diagrams. Fig. 5.4 shows the diagrams for (5.47), with their signs,in the semilasial approximation. No hoie of time ordering is assumed. Fig.5.5 shows the diagrams for sattering. For �gure (a) we have taken the timeordering x03 > x01 � x02 > x04, for whih (5.47) takes the formh0jT  1 � 3 3 � 4j0i = +h0j 3 1 � 2 � 4j0i $ h13jSj24i; (5.48)while for (b) we have taken the time ordering x04 > x01 � x02 > x03, for whihh0jT  1 � 3 3 � 4j0i = �h0j � 4 1 � 2 3j0i $ �h14jSj23i; (5.49)
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Figure 5.6: A losed fermion loop.and the diagrams in �g. 5.5b represent �iT (14; 23). Fig. 5.5a now gives in selfevident notation iT (13; 24) = �u1e�u2 �u3e�u4 (�i)G��(k)� �u1e�u4 �u3e�u2 (�i)G��(l); (5.50)where G�� is the photon propagator and k = p1�p2 = p4�p3, l = p3�p2 = p4�p1.For the proess involving the antipartiles e+ we get from �g. 5.5b and (5.49),�iT (14; 23) = �u1e�u2 �v3e�v4 (�i)G��(k)� �u1e�v4 �v3e�u2(�i)G��(l); (5.51)with k = p1 � p2 = p3 � p4 and l = p1 + p4 = p2 + p3.The above examples show how the polarization spinors enter in sattering am-plitudes. The various minus signs reet the antisymmetry of multipoint Greenfuntions in exhange of labels of external fermion lines. We end this setion withthe rule:with eah losed fermion loop goes a minus sign,whih follows from the derivation using Dyson-Shwinger equations, and whih isalso evident in the perturbation expansion of the path integral. The rule appliesto the diagram in �g. 5.6, whih represents the expression (exluding the minussign)12 iSmKL(�i)GLM iSnMN(�i)GNK = 12 SA� � 1 2 G 2 � 3 SA� � 3 4 G 4 � 1 ;+ 12 SA� 1 � 2 G � 2 3 SA� 3 � 4 G � 4 1= SA� � 1 2 G 2 � 3 SA� � 3 4 G 4 � 1 (5.52)(there is an even number of sign hanges when onverting the  and � in theseond term to `natural order', and the two ontributions are idential).
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Figure 5.7: e�2 + e+3 ! ��1 + �+4 sattering.5.3 Example, e� + e+ ! �� + �+ satteringA simple example in fermion-fermion sattering is the proess e�+e+ ! ��+�+,for whih we shall evaluate the unpolarized di�erential ross setion. This servesto illustrate a trae tehnique for the evaluation polarization sums.We introdue fermion �elds for the muon as well as for the eletron, and sinethe two are independent there is only one relevant diagram, shown in �g. 5.7.To make the omparison with the diagrams in �g. 5.4b and the expression (5.51)easy, we use the same labeling. Thenh��(1); �+(4)jT je�(2); e+(3)i = T (14; 23)= � �u1e�v4 �v3e�u2G��(l); (5.53)= � e2�u(p1; �1)�v(p4; �4)�v(p3; �3)�u(p2; �2)g�� � (1� �)l�l�=l2l2 ; (5.54)with l = p1+ p4 = p2+ p3. If we denote the eletron and muon masses by m andM , respetively, then p22 = p23 = �m2; p23 = p24 = �M2: (5.55)The gauge terms / l�l� in the photon propagator do not ontribute beause ofurrent onservation. For example,�u(p1; �1)i�v(p4; �4) (p1 + p4)� = 0; (5.56)where we used the fat that the polarization spinors satisfy the (momentum spaeversion of the) Dira equation (f. 4.113)),�u(p1; �) ip1 = �M �u(p1; �1); ip4 v(p4; �4) =Mv(p4; �4): (5.57)To alulate the ross setion we need T �, whih leads to(�u1�v4)� = vy4y��u1 = ��v4�u1; (5.58)(�v3�u2)� = uy2y��v3 = ��u2�v3: (5.59)



148 CHAPTER 5. SPINOR ELECTRODYNAMICSAveraging over initial spins and summing over �nal spins givesjT j2 = e4 14 X�1�2�3�4 �u1�v4 �v3�u2 �v4�u1 �u2�v3 g��g��s2 ; (5.60)where s = �(p1 + p4)2 = �(p2 + p3)2 is one of the Mandelstam variables (equalto the total m energy). To evaluate the polarization sums we order the spinorfators in a suggestive way, interpreting u��u� and v��v� as matries and using forexample �u1�v4�v4�u1 = Tr [�v4�v4�u1�u1℄: (5.61)Then jT j2 = e4 g��g��s2 14 Tr [�(X�4 v4�v4)�(X�1 u1�u1)℄Tr [�(X�2 u2�u2)�(X�3 v3�v3)℄: (5.62)We now use the properties (4.109), (4.110),X�4 v(p4; �4)�v(p4; �4) = �(M + ip4); (5.63)X�2 u(p2; �2)�u(p2; �2) = m� ip2; (5.64)et. and obtain the formjT j2 = e4 g��g��s2 14 Tr [�(M + ip4)�(M � ip1)℄Tr [�(m� ip2)�(m+ ip3)℄: (5.65)To evaluate this we use the trae formulasTr �� = 4g��; (5.66)Tr ��� = 0; (5.67)Tr ���� = 4(g��g�� � g��g�� + g��g��): (5.68)These follow from the fat that (1) the trae of a produt of gamma matriesvanishes unless eah 0, . . . , 3 appears an even number of times, (2) 20 = �1,21 = 22 = 23 = 1, (3) the gamma's antiommute and (4) Tr 1 = 4. For moreinformation and derivations of trae theorems see Bjorken & Drell I, set. 7.2 andDe Wit & Smith set. E.4. The two traes in (5.65) are given by4(M2�� + p4�p1� � ��p1p4 + p1�p4�) (5.69)and 4(m2�� + p2�p3� � ��p2p3 + p3�p2�): (5.70)



5.3. EXAMPLE, E� + E+ ! �� + �+ SCATTERING 149The evaluation of jT j2 is now straightforward and results in a large number ofsalar produts of the momenta. Using the Mandelstams variabless = �(p1 + p4)2 = 2M2 � 2p1p4 = �(p2 + p3)2 = 2m2 � 2p2p3; (5.71)t = �(p1�p2)2 = �m2�M2+2p1p2 = �(p3�p4)2 = �m2�M2+2p3p4; (5.72)u = �(p1�p3)2 = �m2�M2+2p1p3 = �(p2�p4)2 = �m2�M2+2p2p4; (5.73)The result simpli�es tojT j2 = 4e4s2 [4m2M2 +M2(s� 2m2) +m2(s� 2M2)+ 12 (t +m2 +M2)2 + 12 (u+m2 +M2)2℄; (5.74)where we reall that u an be eliminated in favor of s and t by the relations+ t+ u = 2m2 + 2M2. At high energies where we an neglet the eletron andmuon masses (m � 0:511 MeV, M � 106 MeV). ThenjT j2 � 2e4s2 (t2 + u2): (5.75)Under these riumstanes t and u are related to the sattering angle in the entreof mass frame by t � �12 s (1� os �); u � �12 s (1 + os �); (5.76)and we get for the di�erential rossetion at high energiesd�d
 = 164�2s kfki jT j2 (5.77)� �24s (1 + os2 �): (5.78)The total ross setion is given by� = 2� �24s Z 1�1 d os � (1 + os2 �) = 4��23s : (5.79)It is instrutive to rederive these formulas by evaluating �rst the high energyform of T for given polarization ombinations using heliity spinors, and fromthis jT j2. For further disussion see e.g. De Wit & Smith h. 6.



150 CHAPTER 5. SPINOR ELECTRODYNAMICS5.4 Magneti moment of the eletronIn the nonrelativisti quantum mehanis, an eletron in an external eletromag-neti potential is desribed by the hamiltonianH = p2 + e[p �A(x) +A(x) � p℄2m � eA0 + eg2m S �B; (5.80)where S is the spin operator, g is the gyromagneti ratio and Bk = �klm �lAm is themagneti �eld. The terms p�A(x)+A(x)�p ome from `minimal substitution' (p+eA)2 (the harge of the eletron is negative and e > 0), and we have subtrateda term e2A2 as it plays no dynamial role for an external potential. It will beshown in this setion that in the approximation where (5.65) is valid, spinoreletrodynamis predits g = 2.We �rst derive the form of H in the momentum representation and thenidentify the same form in spinor eletrodynamis. Using momentum states withrelativisti normalization,hp0�0jp�i = 2p0 (2�)3 Æ(p0 � p) Æ�0� (5.81)(just for onveniene later), we havehx�0jp�i =p2p0 Æ�0� eipx (5.82)and the momentum representation of H takes the formhp0�0jHjp�i = p4p0p00 [p2 (2�)3 Æ(p0 � p) + e(p0 + p) � ~A(p0 � p)2m Æ�0�� e ~A0(p0 � p) Æ�0� + eg4m ��0� � ~B(p0 � p)℄; (5.83)where � are the Pauli matries and we usedhp0�0jA�(x)jp�i = X�00 Z d3x hp0�0jx�00i hx�00jp�iA�(x) (5.84)= p4p0p00 Æ�0� ~A�(p0 � p); (5.85)~A�(k) = Z d3x e�ikxA�(x): (5.86)Notie that ~Bk(k) = i�lmn km ~An(k): (5.87)In spinor eletrodynamis, the approximation where (5.83) is valid, is thenonrelativisti approximation in whih radiation e�ets due to the quantizedphoton �eld are negleted. So we onsider the spinor �eld in an external statieletromagneti potential A�(x). The hamiltonian of this system an be derived



5.5. PROBLEMS 151by the Noether argument, sine the system is translation invariant if transformthe external potential as well as the dynamial variables  and � . It is given byH = P 0 � Z d3x (�e)j�(x)A�(x): (5.88)Its matrix element in the one partile subspae is given byhp0�0jHjp�i = p0 hp0�0jp�i+ e Z d3x hp0�0jj�(x)jp�iA�(x): (5.89)Using the result derived in the problems in the previous hapter we havehp0�0jj�(x)jp�i = �u(p0; �0) i� u(p; �) ei(p�p0)x; (5.90)�u(p0; �0) i� u(p; �) = 12m �u(p0; �0) [(p+ p0)� + i(p� p0)� ��� ℄ u(p; �): (5.91)Using the expliit form (4.85) for the spinors we get in the nonrelativisti ap-proximation �u(p0; �0) u(p; �) = 2m [Æ�0� +O(p2=m2)℄;�u(p0; �0) �0n u(p; �) = 2m [O(jpj=m)℄; (5.92)�u(p0; �0) �mn u(p; �) = 2m [(�l)�0� �lmn +O(jpj=m)℄ (5.93)(sine �u0u is a salar its orretions are O(p2=m2)). Substitution in (5.89) nowgives (5.83) with g = 2, plus a rest energy m whih is omitted in the usualnonrelativisti expressions.5.5 Problems1. Trae and other identitiesIn set. 5.3 we enountered traes over produts of gamma matries. Thefollowing identities an be derived (see for example Bjorken & Drell set.7.2): Tr �1 � � ��n = 0; n = odd; (5.94)Tr 1 = 4; (5.95)Tr �� = 4g��; (5.96)Tr ���� = 4(g��g�� � g��g�� + g��g��); (5.97)Tr 5�1 � � ��n = 0; n = 0; 1; 2; 3; (5.98)= 4i��1����4 ; n = 4; (5.99)�� = 4; (5.100)��� = �2�; (5.101)���� = 4g��; (5.102)����� = �2���: (5.103)



152 CHAPTER 5. SPINOR ELECTRODYNAMICS2. Elasti eletron satteringIn set. 5.2 we derived the amplitude for the proess e� + e� ! e� + e�.In this problem we shall work out the unpolarized ross setion. Considerthe amplitude for e�1 + e�2 ! e�3 + e�4 ,T (34; 12) = �e2 [�u3�u1 �u4�u2G��(k)� �u3�u2 �u4�u1G��(l); (5.104)whih di�eres from (5.50) only by a hange in numbering the partiles.a. Show using the Dira equation in momentum spae that �u3�u1 k� = 0,�u3�u2 l� = 0, and verify that this orresponds to urrent onservation (f.Problem 4.4). Consequently the amplitude an be simplied toT = �e2 [�u3�u1 �u4�u2 1k2 � �u3�u2 �u4�u1 1l2 : (5.105)b. Derive along similar lines as in set. 5.3 thatjT j2 = e44 [ T1((p1 � p3)2)2 � T1(p1 � p3)2(p1 � p4)2 + (p3 $ p4)℄; (5.106)where, using the onvenient `slash' notation p= = p��,T1 = Tr [�(m� ip=1)�(m� ip=3)℄ Tr [�(m� ip=2)�(m� ip=4)℄; (5.107)T2 = Tr [�(m� ip=1)�(m� ip=4)�(m� ip=2)�(m� ip=3)℄: (5.108). Using the identities in Problem 1 and of ourse momentum onservationp1 + p2 = p3 + p4 and p2i = �m2, show thatT1 = 32[2m4 + 2m2p1p3 + (p1p2)2 + (p1p4)2℄; (5.109)T1 = �32[2m2p1p2 + (p1p2)2℄: (5.110)d. These expressions are to be evaluated in the enter of mass frame. Let � bethe sattering angle between partiles 1 and 3, p1p3 = �m2�jpj2(1�os �).From now on we use the notation k � jpj. Verify thatT1 = 64[m4 + 4m2k2 os2 �2 + 2k4(1 + os4 �2)℄; (5.111)T2 = �32(�m4 + 4k4); (5.112)jT j2 = e464k4 [ T1sin4 �2 � T2os2 �2 sin2 �2 + (� ! � � �)℄: (5.113)e. Under ultrarelativisti onditions we may neglet the eletron massm. Ver-ify that in the enter of mass framed�d
 jur = �28k2 [1 + os4 �2sin4 �2 + 2os2 �2 sin2 �2 + 1 + sin4 �2os4 �2 ℄: (5.114)



5.5. PROBLEMS 153f. Under nonrelativisti onditions we may neglet p ompared to m. Verifythat d�d
 jnr = �2m216k4 [ 1sin4 �2 � 1os2 �2 sin2 �2 + 1os4 �2 ℄: (5.115)The middle term is due to the interferene of the two diagrams ontributingto the amplitude. The �rst term goes over in the Rutherford formula forCoulomb sattering o� a heavy target, upon expressing it in terms of theredued mass mred = mm=(m +m) = m=2.The total ross setion is in�nite beause the integration over angles di-verges at � = 0. This an be attributed to the in�nite range of the Coulombpotential.3. The deays �� ! �� + ��� and �� ! e� + ��e. The harged pions �� areunstable and deay mainly into muons �� and muon neutrinos (���)��, witha life time of 2:60 � 10�8 s, or ��1 = 780 m. There is a orrespondingdeay into eletrons e� and eletron neutrinos (��e)�e, with a muh smallerrate. These proesses an be desribed by an e�etive ation of the formS = S0 + S1, where S1 is the interationS1 =  Z d4x [��'� � �i�(1� 5) �� + ��' � ��i�(1� 5) �+ (�! e); (5.116)and S0 is the sum of the ations for the free pions, muons, eletrons, muonneutrinos and eletron neutrinos,S0 = S� + S� + Se + S�� + S�e; (5.117)S� = � Z d4x (��'���'+m2�'�'); (5.118)S� = � Z d4x � �(��� +m�) �; (5.119)and similar for e, �� and �e with m�� = m�e = 0. The onstant  is givenby  = f�GF os �C ; (5.120)with f� the pion deay onstant, GF the Fermi weak interation onstantand �C the Cabibbo angle.Notie that the interation S1 does not onserve parity P , as it is the sumof terms odd and even under parity.a. Verify the position spae vertex funtionS'� � �e  ��e (u; v; w) =  Z d4x ��Æ(x� u) [i�(1� 5)℄�� Æ(x� v)Æ(x� w);(5.121)and derive similarly the other vertex funtions.



154 CHAPTER 5. SPINOR ELECTRODYNAMICSb. Verify the momentum spae vertex funtionS'� � �e  ��e (p; k; l) = [p(1� 5)℄��; (5.122)and derive similarly the other vertex funtions. Draw the diagrams for thesevertex funtions.. Draw the diagram for the deay ��(p) ! ��(k; �) + ���(k0; �0) and verifythat the deay amplitude is given byhk�; k0�0jT jpi = ��u(k; �)p(1� 5)v(k0; �0): (5.123)d. Verify the polarization sumjT j2 = 2Tr [p(1� 5)(ik0)p(1� 5)(m� � ik)℄: (5.124)e. Using the antiommutation relations of the gamma matries, the propertiesof the right and lefthanded projetors PR;L = (1�5)=2 (f. (4.49)) and theidentities in Problem 1 above, show thatjT j2 = 82[2(pk)(pk0)� p2kk0℄: (5.125)f. In the rest frame of the pion, verifyjkj = m2� �m2�2m� ; k0 � jkj = m2�m� ; (5.126)and jT j2 = 42(m2� �m2�)m2�; (5.127)and �(�� ! �� + ���) = 24� (m2� �m2�)2m2�m3� : (5.128)g. The masses of the partiles are given by m�� = 139:6 MeV, m� = 105:7MeV, me = 0:5110 Mev (the neutrino masses are assumed to be zero).Using GF � 1:17 � 10�5 GeV�2, �C � 13Æ, and the fat that �� deaysfor 99.988% into �� + ���, verify that f� � 93 MeV from the rate � = 780m�1.h. Calulate the branhing ratio�(�� ! e� + ��e)�(�� ! �� + ���) (5.129)and ompare this with the experimental value 1:22� 10�4.



5.5. PROBLEMS 155The striking smallness of the above branhing ratio is a onsequene of theombination �(1 � 5) in the interation S1. The interation onserveshirality: 1 � 5 projets on to hirality {1, in the neutrino �elds as wellas in the eletron or muon �elds (reall that � ontains � = i0 and 5ommutes with i0�). For the massless antineutrinos, hirality {1 meansheliity +1/2 (f. (4.121)). For the eletron and muon, hirality {1 wouldmean heliity {1/2 if these partiles were massless (f. (4.120)). However,angular momentum onservation requires that the muon or eletron havethe same heliity (+1/2) as the antineutrino, sine the pion at rest hasangular momentum zero. Hene, if m� and me would be zero, the deayamplitude would vanish (sine 1 � 5 ating on a massless heliity +1/2partile spinor gives zero). So we may expet that the deay amplitude isproportional to m�;e as m�;e goes to zero. In fat, it an be shown usingheliity spinors that the deay amplitude is given byT = 2im�pjkj (pk0 +m�pk0 �m) Æ�;�0 Æ�0;+; (5.130)with k0 = pk2 +m2 and m = m� or me. In this way we an understandwhy the above branhing ratio / m2e=m2� is so small.It is instrutive to go through the derivation of (5.130) in the Weyl repre-sentation, using heliity spinors (f. (4.85) and (4.91)),u(jkj; �; �; �) = (pk0 +m + �pk0 �m5) ��(�; �); (5.131)v(jk0j; �0; �0; �0) = pjk0j (1� �05) �()�0 (�0; �0);= pjkj (1� �05) �()�0 (� � �; �+ �) (5.132)where k0 = �k = (jkj; � � �; � + �) in spherial oordinates. Beause ofthe fator (1 � 5) in T we may replae 5 ! �1 in uy and v0, and theamplitude (5.123) redues toT = �2im�pjkj (pk0 +m� �pk0 �m) (5.133)��(�; �)y(1� 5)�()�0 (� � �; �+ �) Æ�0;+: (5.134)We now use (4.118) and (4.92), with � = �1, 5 = �3, �k = �k, �C = �i�2�2and ��� = ��, in the Weyl representation. Then�()�0 (� � �; �+ �) = e�i��3=2 e�i��3=2 e�i��2=2 ei��2=2 �C��0= e�i��3=2 e�i��2=2 (i�1)(�i�2�2) ��0; (5.135)and��(�; �)y(1� 5)�()�0 (� � �; �+ �) = �y�(i�2 � �1)�3��0 = ��0 Æ�;�0 ; (5.136)whih leads to (5.130).


