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Hydrodynamic behavior in expanding thermal clouds of 87Rb
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We study hydrodynamic behavior in expanding thermal clouds of87Rb released from an elongated trap. At
our highest densities the mean free path is smaller than the radial size of the cloud. After release the clouds
expand anisotropically. The cloud temperature drops by as much as 30%. This is attributed to isentropic
cooling during the early stages of the expansion. We present an analytical model to describe the expansion and
to estimate the cooling. Important consequences for time-of-flight thermometry are discussed.
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I. INTRODUCTION

The anisotropic expansion of a condensate after rele
from a trap is one of the best known features of the Bo
Einstein condensed state@1,2#. The anisotropy arises becau
the condensate expands most rapidly in directions whe
was originally most confined. The interest in this pheno
enon is further growing, in particular since the observation
anisotropic expansions in noncondensed Bose gases@3,4#
and in degenerate Fermi gases@5,6#.

Anisotropic expansions are indicative for hydrodynam
behavior. It is well known that Thomas-Fermi condensa
can be described by the classical Euler equation for pote
flow of a nonviscous gas@7#. Therefore, they behave hydro
dynamically even at very low densities. For classical clou
the situation is density dependent. At low densities, wh
the mean free path is large compared to the size of the c
~collisionless regime!, the expansion proceeds under fr
flow conditions ~free expansion!. The motion of the indi-
vidual atoms is described by a single-particle Hamilton
and the expansion is isotropic. Reducing the mean free
to a value smaller than the dimension of the cloud allows
introduction of a hydrodynamic field and leads to a crosso
to hydrodynamic behavior~hydrodynamic expansion!. Little
difference is to be expected between the expansion of a
densate and that of a fully hydrodynamic thermal cloud@8#.
Both the collisionless and the hydrodynamic regimes w
studied theoretically~see Refs. @8–11#, and references
therein!. Also the influence of mean-field effects@12# and the
crossover between the two regimes were analyzed theo
cally @13# and numerically@14#.

It is important to understand the crossover to hydro
namic behavior in thermal clouds. From the fundamen
point of view it is important to quantify the hydrodynam
properties as these affect the coupling between conden
and thermal clouds. From the experimental point of view i
vital for the correct interpretation of time-of-flight absorptio
images of dense atomic clouds. Previously the crossove
gime in thermal clouds was probed in experiments at M
with a dense gas of23Na atoms@15# and at ENS using cold
metastable triplet4He @16#. In Amsterdam the crossover re
gime was observed in experiments with87Rb @3#. Very pro-
nounced hydrodynamic conditions were recently reached
exploiting a Feschbach resonance in fermionic ga
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@5,6,17–19#. Hydrodynamic behavior as observed in colle
tive excitations is reviewed in Refs.@7,20#.

In this paper we focus on hydrodynamic behavior as
served in the expansion of dense thermal clouds of87Rb,
extending a brief analysis presented earlier in the contex
the Bose-Einstein condensation formation experiments
Amsterdam@3#. The clouds are prepared in an elongated t
at a temperatureT0 , just above the critical temperature fo
Bose-Einstein condensation. At the highest densities
mean free path is less than the radial size of the cloud. A
release from the trap the clouds expand anisotropically
their temperature drops by as much as 30%. The behavi
intermediate between that expected for collisionless clou
where cooling is absent, and pure hydrodynamic behav
where the gas cools to vanishing temperatures.

We show that the expansion in axial direction is similar
that of a collisionless cloud at a temperatureTz,T0. This
‘‘axial’’ temperature can be identified with the temperatu
T* reached at the moment when the expansion ceases
hydrodynamic and the cooling stops. Radially, the expans
proceeds faster than that expected for a collisionless cl
and can be characterized by a ‘‘radial’’ temperatureTr

.T0. For our conditions, the mean field of elastic interacti
contributes;20% to the total energy in the trap center. W
show that this only has a minor effect(3%) on theexpansion
behavior. The consequences for time-of-flight thermome
are discussed.

II. EXPERIMENT

In our experiments we load a magneto-optical trap w
approximately 1010 atoms from the source described in Re
@21#. After optical pumping to theuS1/2,F52,mF52& state
typically 43109 atoms are captured in a Ioffe-Pritcha
quadrupole magnetic trap. Then the gas is compressed
evaporatively cooled to a temperature just aboveTC . The
radio-frequency~rf! evaporation is forced at a final rate o
ṅ52433 kHz/s down to a valuen15740 kHz, that is, 120
kHz above the trap minimumB0588.6(1) mT as calibrated
using atom laser output coupling@22#. As the final ramp
down rate is2 ṅ/(n12n0)'4 s21, i.e., slow compared to
both axial and radial trap frequencies vz
52p320.8(1) s21 andvr52p3477(2) s21, the evapora-
©2003 The American Physical Society03-1
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tion proceeds quasistatically and yields a sample chara
ized by a single uniform temperature and an equilibriu
shape@23#. The preparation procedure is completed by 20
of plain evaporation at rf frequencyn1. This procedure
leaves us with N53.5(3)3106 atoms at densityn0
53.6(6)31014 cm23 in the trap center and temperatureT0
51.17(5) mK.

A. Knudsen criterion

To establish the collisional regime we calculate the me
free path and the atomic collision rate. The mean free pat
the trap center is given by the usual expression for a unifo
gas@25# at densityn0,

l05
1

A2n0s
'3 mm, ~1!

wheres58pa2 is the elastic-scattering cross section in t
s-wave limit with a598.98(4)a0 the scattering length@26#.
The atomic collision rate in the trap center is@25#

tc
215A2n0ȳ ths'6000 s21, ~2!

with ȳ th5(8kBT0 /pm)1/2 as the thermal velocity.
The gas behaves as a hydrodynamic fluid if the mean

path is much smaller than the relevant sample size~Knudsen
criterion!. Defining the axial (l z) and the radial (l r) size
parameters of the density profile in a harmonic trap, see
~7!, the Knudsen criterion can be expressed as

l0

l i
.v itc!1, ~3!

with i P$r,z%. For the axial direction the Knudsen criterio
is very well satisfied,vztc'0.02. For the radial direction we
calculate vrtc'0.5. In this direction we operate in th
middle of the crossover range between the collisionless
hydrodynamic regimes.

B. Time-of-flight analysis

In the crossover between hydrodynamic and collisionl
conditions the time-of-flight analysis is nontrivial. Unlike i
fully collisionless clouds, the velocity of the individual a
oms is not conserved because the gas cools as it expa
Unlike in fully hydrodynamic clouds, cooling will only pro
ceed during a finite period. Obviously, if the temperatu
drops during the expansion the question arises how to p
erly extract the temperature of the cloud from a time-of-flig
absorption measurement.

In Fig. 1 we plot the measured axial and radial cloud si
l z(t) and l r(t), as a function of expansion timet. All data
were collected during a single run within 2.5 h, keeping tra
of some drift in the offset field@27#. Each data point corre
sponds to the average of about 20 measurements, with
error bars representing the standard deviation, typically
of the average value. The cloud sizes were determined
the usual procedure~see for instance Ref.@28#!, i.e., the ex-
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pression for the column density of an ideal Bose gas trap
in a harmonic potential

n2~z,r!5n20g2@De2[z/ l z(t)]
22[r/ l r(t)] 2

#/g2@D# ~4!

is fitted, after transformation to optical density, to the imag
@29#. With this procedure we obtain values for the sizesl z(t)
and l r(t), the degeneracy parameter~fugacity! D, and the
peak column densityn20 @30#. We use the notationga@x#
5( l 51

` xl / l a. The fugacity provides together with the initia
sizes a self-calibrating method for the total atom num
provided the average trap frequencyv̄5(vr

2vz)
1/3 is known,

N5g3@D#S m v̄

2\
D 3

l z
2~0!l r

4~0!. ~5!

In practice only the axial sizel z(0) is used because the a
pect ratio is accurately known. The measured peak colu
densityn20 is not used in our analysis@31#.

Due to the presence of the elastic interactions between
atoms the density distribution will be slightly broadened a
deformed@12,32#. Calculating the variance of the distribu
tion ^z2& using the recursive expression for the density
first order in mean fieldUmf(r )52gn(r ) leads to

FIG. 1. Expansion measurements for~a! axial and ~b! radial
directions. The error bars represent two standard deviations.
solid lines represent Eqs.~9! and ~10! with l z(t* )5116 mm, Tz

50.83mK, andTr51.35mK. Note the difference in vertical scale
for the two panels. The dashed line represents the asymptotic
pansion behavior in axial direction. As the initial radial size is ve
small the radial expansion is already asymptotic by the time the
data point is taken.
3-2
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HYDRODYNAMIC BEHAVIOR IN EXPANDING THERMAL . . . PHYSICAL REVIEW A 68, 063603 ~2003!
1
2 mvz

2l z
2~0!.kT01Emf , ~6!

whereEmf5g*n2(r )dr /*n(r )dr is the trap averaged inter
action energy withg5(4p\2/m)a the interaction coupling
constant@33#. The variance was related to the size parame
using^z2&5 1

2 l z
2(0)g4@D#/g3@D# @34#. Equivalently, treating

the mean field as an effective potential we may write

1
2 mṽz

2l z
2~0!5kT0 , ~7!

whereṽz represents a ‘‘dressed’’ trap frequency that rep
duces, for an ideal gas at temperatureT0, the same cloud
size,

ṽ i
25v i

2~12j!, ~8!

wherej5Emf /(kT01Emf)'0.03 @33#.
To describe the expansion behavior analytically we int

duce a schematic model in which the expansion is treate
purely hydrodynamic up to timet5t* and as purely colli-
sionless beyond this point. Att* the density has dropped t
the level that no further collisions take place and the ato
velocities remain frozen. The axial expansion is represen
by

l z~ t !.@ l z
2~ t* !1~2kBTz /m!~ t2t* !2#1/2. ~9!

The presence oft* slightly shifts the asymptote of the ex
pansion curve. The radial expansion is asymptotic for
times relevant in the experiment,

l r~ t !.@2kBTr /m#1/2t. ~10!

In this case the shift of the asymptote is negligible. T
parametersTz and Tr represent apparent axial and rad
temperatures corresponding to the asymptotic expansion
locities of the cloud in both directions,

si5 lim
t→`

l̇ i~ t !5~2kBTi /m!1/2, ~11!

with i P$r,z%. Note that Eqs.~9! and~10! reduce to the usua
expressions for isotropic expansion of fully collisionle
thermal clouds in the absence of a mean field whent* →0
with Tz5Tr5T0 ~see, e.g., Ref.@28#!.

III. RESULTS

Fitting Eq. ~4! to our data, the degeneracy parameter w
verified to be constant during the expansion to within exp
mental errorD50.95(4). Once this was established we d
termined the cloud sizes by refitting all data with a fix
valueD50.95. The results are shown in Fig. 1~solid bars!.
Fitting Eq. ~9! to the results for the axial sizes we obtain t
initial axial size l z(0). l z(t* )5116(2) mm and the ‘‘axial
temperature’’Tz50.83(4) mK. The fit is shown as the solid
line in Fig. 1~a! and is insensitive to any reasonable choice
t* . Fitting Eq.~10! to the radial data we obtain the solid lin
in Fig. 1~b!, which corresponds toTr51.35(6) mK @35#. For
all these results statistical errors are negligible. The quo
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errors represent the uncertainty in the determination of
fugacity.

From the initial axial size we calculate with Eq.~7! T0
51.17(5) mK. Then, the central densityn053.6(6)
31014 cm23 follows with

n05g3/2@D#/L0
3 , ~12!

where L05@2p\2/mkT0#1/2 is the thermal wavelength a
temperatureT0. Using Eq.~8! to account for the mean-field
broadening we calculate with Eq.~5! N53.5(3)3106 atoms.
The error bar reflects the strict conditions on the atom nu
ber imposed by a known fugacity. We return to systema
errors in the section on thermometry.

The results presented here indicate a slightly deceler
expansion in axial direction,Tz /T050.71(2), and aslightly
accelerated expansion in radial direction,Tr /T051.15(3).
This corresponds to an ‘‘inversion’’ of the aspect ratio, whi
is demonstrated in Fig. 2 by plotting the aspect ratios for
same dataset as used in Fig. 1. Att512 ms of expansion the
cloud shape crosses over from a cigar shape to a pan
shape. The solid line represents a fit to the expansion m
to be discussed below.

For collisionless samples the expansion is expected to
isotropic. This was verified by reducing the density by
factor of 30~open circles in Fig. 2!. In this case the expan
sion is indeed isotropic~dashed line!, sz /sr51.02(4).

IV. EXPANSION MODEL

To interpret our results forT0 , Tr and Tz we divide the
expansion in two stages. During the first stage (t,t* ) the
expansion is treated as purely hydrodynamic and is descr
by scaling theory@8,13#. All data are taken during the secon
stage (t.t* ) for which the expansion is treated as collisio
less.

FIG. 2. Aspect ratio of a hydrodynamically expanding cloud
a function of expansion time. The error bars represent two stan
deviations. The change from a cigarlike to a pancakelike shap
evident as the data points cross the value ofl r / l z51. The open
circles represent low-density clouds expanding isotropically. T
solid and dashed lines represent fits of Eq.~35! to the data.
3-3
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A. Hydrodynamic stage

During the hydrodynamic stage (t,t* ) we treat the ex-
pansion as isentropic, i.e., the gas cools while conver
random motion into directed motion just as in the superso
expansion of an atomic beam@36#. As for isentropic expan-
sions the degeneracy parameterD is conserved@37# we find,
using Eq.~12!, that the temperature decreases according

T~ t !5T0@n~ t !/n0#2/3. ~13!

Turning to scaled size parameters,bi(t)[ l i(t)/ l i(0) with
i P$r,z%, the density ratio is conveniently written as

n~ t !

n0
5

1

br
2~ t !bz~ t !

. ~14!

We note that for our elongated clouds (vz /vr!1) the axial
size remains practically unchanged during the early stage
the expansion. Therefore, settingbz51 in Eq. ~14!, the ini-
tial (t!1/vz) isentropic drop in temperature can be writt
as

T~ t !/T051/br
4/3~ t !. ~15!

Herebr(t) satisfies the scaling equations for expanding
drodynamic thermal clouds@8# in the presence of a mea
field @13#:

b̈r5~12j!
vr

2

br
7/3bz

2/3
1j

vr
2

br
3bz

, ~16a!

b̈z5~12j!
vz

2

bz
5/3br

4/3
1j

vz
2

br
2bz

2
. ~16b!

Equations~16a! and ~16b! decouple fort!1/vz since bz
.1. In this limit the radial scaling equation can be written

S ḃr~ t !

vr
D 2

5
3

2
~12j!@121/br

4/3~ t !#1j@121/br
2~ t !#.

~17!

We then substitute Eq.~17! into Eq. ~15! and obtain to first
order in (ḃr /vr)2 the temperatureT* reached att5t* :

T*
T0

.12
2

3
S ḃr

vr
D

t5t
*

2

. ~18!

We point out that in the limit of very elongated clouds E
~17! also represents the correct description for a fully hyd
dynamic expansion. Then, we may write for the asympto
expansion velocity in radial direction

lim
t→`

ḃr~ t !

vr
5

1

vr

sr

l r~0!
5A~12j!

Tr

T0
. ~19!

Hence, comparing with the asymptotic value of Eq.~17! we
conclude that the following inequality should hold:
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1<Tr /T0<3/21j. ~20!

Returning to our experimental conditions we emphas
that the duration of the hydrodynamic stage will be ve
brief because the instantaneous mean free path growsqua-
dratically with br in these elongated clouds,

l~ t !/l05br
2~ t !, ~21!

as follows with Eqs.~1! and~14! @38#. Roughly speakingt*
is reached when the mean free path equals the radial siz
the cloud. Therefore, a rough estimate fort* can be obtained
by substitutingl(t)5 l r(t) into Eq.~21! for t5t* . With Eq.
~3! this leads to

br~ t* !.1/ṽrtc . ~22!

As for t&1/ṽr the radial size of a hydrodynamic clou
hardly differs from that of a collisionless cloud,

br~ t !.~11ṽr
2t2!1/2, ~23!

we find with Eq.~22!

t* .~1/ṽr!@~1/ṽrtc!
221#1/2'0.6 ms. ~24!

A self-consistent estimate for our expansion model can
obtained by combining Eqs.~23! and ~15! for t5t* ,

t* .~1/ṽr!@~T0 /T* !3/221#1/2. ~25!

However, for this estimate the ratioT* /T0 should first be
established experimentally.

B. Collisionless stage

Once the expansion is ballistic (t.t* ) the variance of the
axial (i 5z) and radial (i 5r) velocity components of the
expanding gas can be written as

^v i
2&5^ui

2&1^wi
2&, ~26!

whereui represents the thermal velocity components of
atoms andwi the dynamic velocity components of the de
sity distribution due to the expansion.

At the start of the ballistic stage (t5t* ) the thermal ve-
locity components can be associated withT* ,

m^ui
2&5kBT* . ~27!

The dynamical velocities due to the overall expansion can
expressed as

m^wi
2&5m^ ṙ i

2&5~ ḃi /ṽ i !
2kBT05 1

2 ml̇i
2 . ~28!

Here we used the scaling propertyṙ i5(ḃi /bi)r i , with the r i
representing the position coordinates in the expanding clo
Since for collisionless clouds thêv i

2& are conserved by the
time the mean field has vanished, we may write

m^v i
2&5kBTi , ~29!
3-4
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where theTi are effective axial and radial temperatures th
may be associated with the asymptotic axial and radial
pansion velocitiessi defined in Eq.~11!.

Substituting Eqs.~27! and~28! into Eq.~26! we obtain for
j!1

Tr

T0
5

T*
T0

1S ḃr

ṽr
D

t5t
*

2

1
j

br
2~ t* !

, ~30!

where the second term on the right-hand side~rhs! represents
both the hydrodynamic and mean field contributions to
dynamic motion att5t* !1/vz and the third term the mean
field contribution to the dynamic motion fort.t* @39#. With
Eq. ~17! this results in the following relation betweenT0 ,
Tr , andT* in expanding elongated thermal clouds:

3
2 T01jT05 1

2 T* 1Tr . ~31!

This equation is valid for small mean fields providedt*
!1/vz and expresses the energy conservation during the
pansion. It implies

Tz5T* . ~32!

This also follows directly by writing in analogy to Eq.~30!

Tz

T0
5

T*
T0

1S ḃz

ṽz
D

t5t
*

2

, ~33!

taking into account that (ḃz /ṽz)
2 is negligibly small@40#.

V. THERMOMETRY

Result ~32! shows that with our measurement ofTz we
directly probe the temperature of elongated clouds at the
of the hydrodynamic stage. Knowledge ofT* allows us to
obtain with Eq.~25! a self-consistent result fort* within our
expansion model. UsingT* /T050.71(2) we calculatet*
50.28 ms, somewhat smaller than the rough estimate~24!.

Rewriting Eq. ~31! we find an increase in the effectiv
radial temperature:

Tr

T0
5

3

2 S 12
1

3

T*
T0

D1j51.18~2!. ~34!

Hence 15% of the increase inTr is due to the mean field
Note that Eq.~34! satisfies inequality~20!. Notice further
that the valueTr51.37(6) mK obtained with Eq.~34! comes
close to the valueTr51.35(6) mK following directly from
the radial expansion.

We found the fitting procedure for determiningT0 , Tr ,
andT* to be very sensitive for the detailed shape of the
function. Choosing a simple Gaussian reduces the estim
values for these temperatures by as much as 25%. How
this enormous systematic error does not affect the co
sponding aspect ratios by more than a few parts in a th
sand. We found more indicators that the aspect ratios
more accurately determined than the absolute values. In
estingly, we find for the aspect ratios standard deviations
06360
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typically 1%, i.e., twice as small as for the absolute s
@41#. This points to some form of error cancellation. Also t
fit to the aspect ratio is somewhat better than those of
separate plots.

Let us now turn to the results for the aspect ratios
presented in Fig. 2. Using Eqs.~9!, ~10!, and~31! the evolu-
tion of the aspect ratio can be expressed as

l r~ t !

l z~ t !
.

@~ 3
2 1j!2 1

2 ~T* /T0!#1/2vzt

@11j1~T* /T0!vz
2~ t2t* !2#1/2

, ~35!

where we presumet@1/vr as in Eq.~10!. By construction
this form satisfies energy conservation. In this way our fitti
function stays as close as possible to a fit to a solution of
scaling equations. Fitting Eq.~35! to the data usingj
50.03 andt* 50.3 ms we obtainT* /T050.72(1). The fit is
shown as the solid line in Fig. 2. The result agrees wit
experimental error with that obtained from the axial expa
sion data but the accuracy is slightly better. The meth
lacks the accuracy to extractj @42#. The dashed line in Fig
2 corresponds to the collisionless limit of Eq.~35!: j50,
t* 50, andT* 5T0.

Once Eq.~35! is accepted, time-of-flight information for a
single expansion time suffices for thermometry. The pro
dure goes in two steps. First we setj and t* equal to zero
and use Eq.~35! to obtain a first estimate forT* /T0 . With
Eq. ~34! Tr /T0 follows. After Tr is determined from Eq.
~10!, we have an estimate for the absolute valueT0. Together
with n0 , deduced from Eq.~12!, this allows us to calculatej
andt* . Iterating the procedure once yields all values with
the limits of accuracy of the analysis. Choosing the exp
sion time sufficiently long (t@1/vz) the results are very in-
sensitive for the value oft* .

Our estimates for the absolute values ofT0 , Tr , andTz
are sensitive for the detailed shape of the clouds. Theref
deviations from the Bose shape will result in systematic
rors, in particular if the cloud shape changes during the
pansion. Shape deviations can arise from the presence o
mean field. Also, inhomogeneous isentropic cooling as a
sult of the inhomogeneous density profile of our samples
give rise to deviations of the Bose shape. Further, it may
that our transformation from optical density to column de
sity gives rise to slight distortions of the cloud shape a
result of optical pumping or saturation of the detection tra
sition.

In our analysis we did not correct for deviations of th
cloud shape from the Bose distribution. First of all becau
under our conditions the mean field is weak and our fits
Eq. ~4! to the measured column densities look convincing
Second, because shape deviations produce similar rela
errors in all three temperatures. Therefore, they do not af
the conclusions and consistency of our analysis as long
the scaling approach remains valid.

VI. CONCLUSIONS

We studied the behavior of dense elongated clouds
87Rb in the crossover from the collisionless to the hydrod
namic regime. At our highest densities the mean free pat
3-5
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slightly smaller than the radial size of the cloud and t
expansion is anisotropic. The expansion can be describe
a two-stage model in which the expansion is treated
purely hydrodynamic up to timet5t* and as purely colli-
sionless beyond this point. We find that at the end of
hydrodynamic stage the temperature has dropped sub
tially due to isentropic cooling,T* /T050.72(1). This re-
flects itself in an axial expansion that is substantially slow
than expected for the collisionless case,Tz5T* . In accor-
dance with energy conservation the radial expansion is fa
Tr.T0. The isentropic cooling is best determined from t
aspect ratio. Although the mean field in the trap cente
substantial,Umf(0)/kT050.23, it hardly affects the expan
sion behavior. Including the mean field in the analysis o
affects the value obtained forT0, with Tz andTr by defini-
tion being unaffected. In our case the mean-field correcti
are too small to be extracted with a fitting procedure but
be calculated accurately. It leads to systematic errors inT0 of
order 3% if not included.
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Presently it is possible to study the case of strong m
fields by tuning to a Feschbach resonance@5,6,17–19,
43,44#. It would be interesting to study the case where a
isotropic expansions are to be expected, but the behavio
the system is dominated by the mean field rather than
collisional hydrodynamics.
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