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Interferometric Determination of the s and d-Wave Scattering Amplitudes in 87Rb
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We demonstrate an interference method to determine the low-energy elastic scattering amplitudes of
a quantum gas. We linearly accelerate two ultracold atomic clouds up to energies of 1.2 mK and observe
the collision halo by direct imaging in free space. From the interference between s- and d- partial waves
in the differential scattering pattern we extract the corresponding phase shifts. The method does not
require knowledge of the atomic density. This allows us to infer accurate values for the s- and d-wave
scattering amplitudes from the zero-energy limit up to the first Ramsauer minimum using only the
van der Waals C6 coefficient as theoretical input. For the 87Rb triplet potential, the method reproduces
the scattering length with an accuracy of 6%.
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The scattering length a, the elastic scattering ampli-
tude in the zero-energy limit, is the central parameter in
the theoretical description of quantum gases [1–3]. It de-
termines the kinetic properties of these gases as well as
the bosonic mean field. Its sign is decisive for the collec-
tive stability of the Bose-Einstein condensed state. Near
scattering resonances, pairing behavior [2] and three-
body lifetime [3] can also be expressed in terms of a.
As a consequence, the determination of the low-energy
elastic scattering properties is a key issue to be settled
prior to further investigation of any new quantum gas.

Over the past decade the crucial importance of the
scattering length has stimulated important advances in
collisional physics [4]. In all cases except hydrogen [5]
the scattering length has to be determined experimentally
as accurate ab initio calculations are not possible. An
estimate of the modulus jaj can be obtained relatively
simply by measuring kinetic relaxation times [6]. In some
cases the sign of a can be determined by such a method,
provided p-wave or d-wave scattering can be neglected
or accounted for theoretically [7]. These methods have
a limited accuracy since they rely on the knowledge of
the atomic density and kinetic properties. Precision
determinations are based on photoassociation [8],
vibrational-Raman [9], and Feshbach-resonance spec-
troscopy [10,11], or a combination of those. They require
refined knowledge of the molecular structure in ground
and excited electronic states [4] .

In this Letter we present a stand-alone interference
method for the accurate determination of the full (i.e.,
complex) s- and d-wave scattering amplitudes in a quan-
tum gas. Colliding two ultracold atomic clouds we ob-
serve the scattering halo in the rest frame of the
collisional center of mass by absorption imaging. The
clouds are accelerated up to energies at which the scat-
tering pattern shows the interference between the s- and
d-partial waves. After a computerized tomography trans-
formation [12] of the images we obtain an angular dis-
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tribution directly proportional to the differential cross
section. This allows us to measure the asymptotic phase
shifts �l�k� (with k the relative momentum) of the s-wave
�l � 0� and d-wave �l � 2� scattering channels. Using
these �l�k� as boundary conditions, we integrate the
radial Schrödinger equation inwards over the �C6=r6

tail of the potential and compute the accumulated phase
[13] of the wave function at radius 20a0 (with a0 the Bohr
radius). All data of �l�k� are used to obtain a single
optimized accumulated phase from which we can infer
all the low-energy scattering properties, by integrating
again the same Schrödinger equation outwards. Note that
this procedure does not require knowledge of the density
of the colliding and scattered clouds, unlike the stimu-
lated Raman detection approach of Ref. [14]. We demon-
strate this method with 87Rb atoms interacting through
the ground-state triplet potential. We took data with both
condensates and thermal clouds. Here we report on the
condensates, as they allow us to observe the largest range
of scattering angles, 25� < �< 90�. Up to 80% of the
atoms are scattered without destroying the interference
pattern. With our method, we obtain a � �102�6�a0 for
the scattering length. The d-wave resonance [15] is found
at the energy Eres � 300�70� �K. These results coincide
within experimental error with the precision determina-
tions a � 98:99�2�a0 [11,16] and Eres � 270 �K [16],
obtained by combining the results of several experiments
as input for state-of-the-art theory.

In our experiments, we load about 3� 109 87Rb atoms
in the (fully stretched) jF � 2; mF � 2i hyperfine level of
the electronic ground state from a magneto-optical trap
into a Ioffe-Pritchard quadrupole trap (21� 477 Hz)
with an offset field of B0 � �0:9 G. We precool the
sample to about 6 �K using forced radio-frequency (rf)
evaporation. The cloud is split in two by applying a
rotating magnetic field and ramping B0 down to a
negative value B�

0 . This results in two time-averaged
orbiting potential (TOP) traps loaded with atoms [17].
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By rf-evaporative cooling we reach Bose-Einstein con-
densation with about 105 atoms in each cloud and a
condensate fraction of 
60%.

We then switch off the TOP fields and ramp B0 back to
positive values, thus accelerating the clouds until they
collide with opposite horizontal momenta at the location
of the trap center. The collision energies E � j2�BB

�
0 j �

�h2k2=m (with �B the Bohr magneton and m the mass of
87Rb) range from 138 �K to 1.23 mK with an overall
uncertainty of 3% (rms). Approximately 0.5 ms before the
collision we switch off the trap. A few ms later we
observe the scattering halo by absorption imaging.
Figure 1(a) (upper part) displays the s-wave-dominated
scattering halo (averaged over 20 pictures) of fully en-
tangled pairs (see [18]) obtained for a collision energy of
E=kB � 138�4� �K. In Fig. 1(d) (upper part), taken at
E=kB � 1:23�4� mK, the halo is entirely different, show-
ing a d-wave-dominated pattern. The lower halves of
Figs. 1(a) and 1(d) show the theoretical column densities
n2�x; z� �

R
n�x; y; z�dy, where n�x; y; z� is the calculated

[19] density of the halo.
As the atoms are scattered by a central field, the scat-

tering pattern must be axially symmetric around the
(horizontal) scattering axis (z axis). As pointed out by
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FIG. 1. (a) Optical density of the scattering halo of two 87Rb
condensates for collision energy E=kB � 138�4� �K, measured
2.4 ms after the collision (upper half: measured; lower half:
calculated [19]); (b) radial density distribution obtained after
tomography transformation of image (a) (upper half: mea-
sured; lower half: calculated [19]); (c) the dots show the
angular scattering distribution W��� obtained after binning
plot (b); the line is the best parabolic fit. (d)–(f) As in
plots (a)–(c), but measured 0.5 ms after a collision at
1230�40� �K. The field of view of the images is 
1� 1 mm2.
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the Weizmann group [20], this allows a computerized
tomography transformation [12] to reconstruct the radial
density distribution of the halo in cylindrical coordinates,

n��; z� �
1

4�

Z 1

�1
~n2��x; z�J0��x��j�xjd�x: (1)

Here � � �x2 � y2�1=2 and ~n2��x; z� is the 1D Fourier
transform along the x direction of the optical density
with respect to z, and J0�%� is the zero-order Bessel
function. The transformed plots corresponding to the
images of Figs. 1(a) and 1(d) are shown as Figs. 1(b) and
1(e), respectively.

To obtain the angular scattering distribution W��� the
tomography pictures are binned in 40 discrete angular
sectors. For gas clouds much smaller than the diameter of
the halo, W��� is directly proportional to the differential
cross section ���� � 2�jf��� � f��� ��j2. Here, the
Bose-symmetrized scattering amplitude is given by a
summation over the even partial waves, f��� � f���
�� � �2=k�

P
l�even�2l� 1�ei�lPl�cos�� sin�l. Note that

unlike in the total elastic cross section [� �
R�=2

0 �����
sin�d� � �8�=k2�

P
l�even�2l� 1�sin2�l], the interfer-

ence between the partial waves is prominent in the dif-
ferential cross section. Given the small collision energy in
our experiments, only the s- and d-wave scattering am-
plitudes contribute, fs��� � fs��� �� � �2=k�ei�0 sin�0

and fd��� � fd��� �� � �2=k��5=2�ei�2�3cos2�� 1��
sin�2. Therefore the differential cross section is given by

���� �
8�

k2
sin2�0

�
1� 5 cos��0 � �2�u�

25

4
u2

�
; (2)

where u � �sin�2= sin�0��3cos
2�� 1�.

To obtain the phase shifts, we plot the measured angu-
lar distribution W��� as a function of �3cos2�� 1� as
suggested by Eq. (2). The results for Figs. 1(a) and 1(d)
are shown as the solid dots in Figs. 1(c) and 1(f), respec-
tively. A parabolic fit to W��� directly yields a pair
��exp

0 �k�; �exp
2 �k�� of asymptotic phase shifts (defined

modulo �) corresponding to the two partial waves in-
volved [21]. The absolute value of W��� depends on quan-
tities that are hard to measure accurately (such as the
atom number), so we leave it out of consideration. We
rather emphasize that the measurement of the phase shifts
is a complete determination of the (complex) s- and
d-wave scattering amplitudes at a given energy.

The radial wave functions corresponding to scattering
at different (low) collision energies and different (low)
angular momenta should all be in phase at small inter-
atomic distances [13]. This so-called accumulated phase
common to all low-energy wave functions can be ex-
tracted from the full data set f��exp

0 �k�; �exp
2 �k��g men-

tioned above. In practice, we use the experimental phase
shifts �exp

0 �k� and �exp
2 �k� as boundary conditions to in-

tegrate inwards—for given E and l—the Schrödinger
equation �h2d2%�r�=dr2 � p2�r�%�r� � 0 and obtain the
173202-2
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radial wave functions %�r�=r down to radius rin � 20a0.
Here, p2�r��m�E�V�r��� �h2l�l�1�=r2, where V�r� ’
�C6=r

6 is the tail of the interaction potential. At radius
20a0, the motion of the atoms is quasiclassical and the ac-
cumulated phase can be written as ��r� ’ arctan�p�r�=
� �h@ ln%=@r��. The distance 20a0 is small enough [22] for
��rin� to be highly insensitive to small variations in E or l
[13] and large enough that the �C6=r

6 part of the inter-
action potential is dominant over the full range of inte-
gration. With a least-squares method we establish the best
value �opt�rin� � 1:34� �� 0:025 for the accumulated
phase at 20a0 [23]. Here the error bar reflects the experi-
mental accuracy and not the systematic error related to
the choice of C6, the latter being of less relevance as
discussed below. Interestingly, the d-wave scattering reso-
nance [15] results in a sudden variation of �exp

2 with the
collision energy in the vicinity of that resonance [see
Fig. 2(a)]. This imposes a stringent condition on the
optimization of �opt and constrains its uncertainty.

Once �opt has been established, one can use it as a
boundary condition to integrate the Schrödinger equation
outwards and compute �l�k� for any desired (low) value
of k and l. Figure 2 shows the resulting phase shifts for
collision energies up to 5 mK [24]. The first Ramsauer-
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FIG. 2. (a) d-wave and (b) s-wave phase shifts versus colli-
sion energy in �K. The circles are the results of the parabolic
fit of W��� for individual images. The full black lines are
calculated from the accumulated phase �opt optimized from
all data points. The gray lines show the influence of the
uncertainty of ��� 0:025 on �opt. The vertical dotted line
indicates the condition �0 � �2. s� d interference is observed
only in the gray areas. The first s-wave Ramsauer-Townsend
minimum is found at ERT � 2:1�2� mK.
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Townsend minimum [25] in the s-wave cross section is
found at collision energy ERT=kB � 2:1�2� mK. The solid
dots represent the �exp

l �ki� obtained from the parabolic fit
of W��� from individual images. The three open circles
correspond to measurements for which the sign of the
phase shifts could not be established [26]. Refinements to
the present data analysis may include the occurrence of
multiple scattering as well as the influence of the spatial
extension of the colliding clouds taking into account the
noncondensed fraction.

Knowing the phase shifts, we can infer all the low-
energy scattering properties. Our results for the elastic
scattering cross section are shown in Fig. 3. The (asym-
metric) d-wave resonance emerges pronouncedly at
300�70� �K with an approximate width of 150 �K
(FWHM). Most importantly, the scattering length fol-
lows from the k ! 0 limiting behavior, �0�k ! 0� �
�ka. We find a � �102�6�a0, whereas the state-of-the-
art value is a � 98:99�2�a0 [16].

Comparison with the precision determinations [11,16]
shows that our method readily yields fairly accurate
results, relying only on the input of the C6 coefficient.
We used the value C6 � 4:698�4� � 103 a:u: [16]. In the
present case, one does not need to know C6 to this
accuracy. Increasing C6 by 10% results in a 1% change
of the scattering length. Clearly, the systematic error in
�opt accumulated by integrating the Schrödinger equa-
tion inward with a wrong C6 largely cancels when inte-
grating back outward. However, in the case of an s-wave
resonance other atomic species may reveal a stronger
influence of C6 on the calculated scattering length.
Simple numerical simulations show that the value of C6

becomes critical only when the (virtual) least-bound state
in the interaction potential has an extremely small (vir-
tual) binding energy (less than 10�2 level spacing). Hence
our method should remain accurate in almost any case.
µ

FIG. 3. s-wave (dashed line), d-wave (dotted line), and total
(full black line) elastic cross sections (in cm2) versus collision
energy (in �K), computed from the optimized accumulated
phase �opt as determined in this work. The gray lines are the
total elastic cross sections, obtained from �opt � �� 0:025.
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This method can therefore be applied to other bosonic
or fermionic atomic species, provided the gases can be
cooled and accelerated in such a way that the lowest-order
partial-wave interference can be observed with good
energy resolution. We speculate that the accuracy of the
method can be strongly improved by turning to smaller
optical-density clouds and fluorescence detection. It will
enable higher collision energies and observation of
higher-order partial-wave interference. The use of more
dilute clouds and longer expansion times will also elimi-
nate multiple-scattering effects and finite-size convolu-
tion broadening of the interference pattern. Finally, it will
enable precision measurements of the scattered fraction,
which in the case of 87Rb will allow us to pinpoint the
location of the d-wave resonance to an accuracy of 10 �K
or better. In combination with state-of-the-art theory
such improvements are likely to turn our approach into
a true precision method.

Similar experiments were reported during the final
stage of completion of this Letter [27].
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