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We analytically study the atom-dimer scattering problem in the near-integrable limit when the oscillator length
l0 of the transverse confinement is smaller than the dimer size, ∼ l2

0/|a|, where a < 0 is the interatomic scattering
length. The leading contributions to the atom-diatom reflection and break-up probabilities are proportional to a6

in the bosonic case and to a8 for the ↑-↑↓ scattering in a two-component fermionic mixture. We show that by
tuning a and l0 one can control the “degree of integrability” in a quasi-1D atom-dimer mixture in an extremely
wide range leaving thermodynamic quantities unchanged. We find that the relaxation to deeply bound states in
the fermionic (bosonic) case is slower (faster) than transitions between different Bethe ansatz states. We propose
a realistic experiment for detailed studies of the crossover from integrable to nonintegrable dynamics.
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I. INTRODUCTION

Ultracold gases allow unprecedented experimental con-
trol over key parameters of a many-body system [1] and
offer unique opportunities to explore and understand its
out-of-equilibrium behavior. Particularly interesting are one-
dimensional systems, which can be more or less closely
approximated by integrable models and, therefore, allow one
to study the effects of integrability and deviations from it.
One-dimensional bosons [2] and fermions [3,4] are, in fact,
quasi-1D systems in which the transverse motion is frozen out
by a very tight confinement. By integrating out the transverse
motion in a two-body problem, one obtains a 1D δ-function
potential for the effective interatomic interaction [5]. In this
manner quasi-1D spinless bosons and spin-1/2 fermions are
modeled by the integrable Lieb-Liniger [6] and Yang-Gaudin
[7,8] Hamiltonians, respectively.

Quantum integrability implies that the N -body scattering
is nondiffractive, i.e., the outgoing momenta of particles are
restricted to be only rearrangements of the incoming ones [9].
The two-body scattering in 1D is necessarily diffractionless
for equal-mass particles. However, already for N = 3 the
nondiffractive rule has nontrivial consequences. In particular,
the probability of reflection and break-up in atom-dimer
collisions vanishes independent of the collision energy [10].
This manifestly quantum phenomenon, which has never been
observed experimentally, is a microscopic analog of the
reflectionless scattering of solitons.

Small imperfections of a realistic quasi-1D system com-
pared to its idealized integrable counterpart are practically
irrelevant as long as we are interested, for example, in the
equation of state or thermodynamic quantities. However,
the statistics of energy levels, localization of eigenstates,
decay of excitations, thermalization, response to an external
perturbation, transport, and other dynamical properties are
sensitive to deviations from integrability. Muryshev et al. [11]
have found that virtual excitations of transverse modes are
responsible for the dissipative dynamics of dark solitons in
a weakly interacting quasi-1D Bose gas. They have shown
(see also Refs. [12,13]) that the effect of the transverse
degrees of freedom can be accounted for by adding a local

three-body interaction term into the nonlinear Schrödinger
equation (equivalent in this case to the Lieb-Liniger model).
Yurovsky et al. [14] have numerically solved a purely 1D
three-boson problem near a Feshbach resonance and found
that the integrability is lifted when the two-body coupling
constant becomes energy-dependent.

In this paper we solve the quasi-1D atom-dimer scattering
problem by extending the approach of Mora et al. [15,16] to the
case of finite collision momenta. In the nearly integrable limit,
|a|/l0 � 1, we analytically calculate the scattering amplitudes
and find that at a finite collision momentum q the leading
contributions to the reflection and break-up probabilities are
proportional to a8/l10

0 q2 for fermions and to a6/l8
0q

2 for
bosons. We show that the diffraction in the fermionic case
originates mainly from the effective range corrections to
the quasi-1D two-body scattering amplitude. In contrast, the
bosonic result is due to a diffractive scattering of the atom by
the transversely excited part of the dimer, consistent with the
local three-body potential of Refs. [11–13].

The strong a-dependence of diffraction suggests a way of
creating a system with fixed thermodynamic properties but
with a tunable integrability parameter, the fermionic case being
more practical due to the higher power in the a-dependence
and, as we also discuss, due to the suppression of inelastic
processes. A fourfold increase of a and doubling of l0 does
not change the effective 1D model (the effective coupling
constant is unchanged), whereas the reflection probability
in atom-dimer collisions increases by a factor of 64 in the
fermionic case and by a factor of 16 for bosons. This effect
can be verified by colliding clouds of atoms and dimers in
a similar but more tunable fashion as the quantum Newton’s
cradle experiment of Kinoshita et al. [17]. We point out that a
quasi-1D two-component 40K mixture close to a zero crossing
for the interspecies scattering length is a promising candidate
for exploring this and other phenomena that are sensitive to
deviations from integrability.

The paper is organized as follows. In Sec. II we introduce
our notation and briefly rederive the three-body integral equa-
tions of Refs. [15,16]. In Sec. III we separate the “integrable”
part from the “perturbation” and develop the corresponding
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perturbation theory by constructing the resolvent of the
integrable part, the small parameter being the ratio of the dimer
binding energy to the confinement frequency. Then, we present
the perturbative results for the reflection, transmission, and
break-up probabilities as well as the three-body recombination
rate constant in the fermionic (Sec. IV) and bosonic (Sec. V)
cases. The relaxation and recombination to deep molecular
states are discussed in Sec. VI. In Sec. VII we propose an
experiment in which one can control the degree of integrability
and discuss effects that can be studied there from a more
general perspective. We conclude in Sec. VIII.

II. THE THREE-BODY INTEGRAL EQUATION

Let us first consider the fermionic ↑-↑-↓ system in a
cylindrical harmonic trap. We use units h̄ = m = ω = 1,
where m is the particle mass and ω is the frequency of the
radial confinement. The oscillator length l0 = √

h̄/mω = 1 is
our unit of length. After separating the center of mass motion
the noninteracting three-body Hamiltonian reads:

H0 = −∇2
r1

− ∇2
r2

+ ρ2
1/4 + ρ2

2/4 − 2, (1)

where r1 = {x1,ρ1} is the distance from one of the ↑-atoms to
the ↓-atom, and

√
3r2/2 = {√3x2/2,

√
3ρ2/2} is the distance

from their center of mass to the second ↑-atom. The last term
in Eq. (1) shifts the ground-state energy to zero. Including
interactions, the Schrödinger equation reads

(H0 − E)�(r1,r2) = −[U (r1)

+U (|r1 −
√

3r2|/2)]�(r1,r2), (2)

where the interspecies interaction is taken as the zero-range
Fermi pseudopotential

U (r) = 4πaδ(r)∂(r·)/∂r. (3)

The wavefunction of the system should be antisymmetric
with respect to the permutation of identical ↑-fermions; i.e.,

�(r1,r2) = −�(r1 → r̃1,r2 → r̃2), (4)

where

r̃1 = r̃1(r1,r2) = (r1 −
√

3r2)/2,

r̃2 = r̃2(r1,r2) = −(
√

3r1 + r2)/2. (5)

We now introduce an auxiliary function f proportional to
the regular part of � in the vicinity of r1 = 0:

lim
r1→0

∂[r1�(r1,r2)]/∂r1 = −f (r2)/4πa. (6)

The function f can be considered as the wavefunction for
the atom-dimer relative motion. In particular, the atom-dimer
scattering phase shifts can be read off of its long-distance
asymptote. In our problem the atom and the dimer are initially
in the transverse ground state and, since the total radial
angular momentum is conserved, it is sufficient to consider
f (x,ρ) = f (x,ρ). In the rest of this section we will derive
an equation for this function and discuss its relation to the
scattering amplitudes.

Comparing Eqs. (3) and (6) we rewrite Eq. (2) in the form

(H0 − E)�(r1,r2) = f (r2)δ(r1) − f (r̃2)δ(r̃1). (7)

Then let us expand f in eigenstates of a single-particle quasi-
1D Hamiltonian:

f (x,ρ) =
∞∑

m=0

∫
dk

2π
fm(k)Rm(ρ)eikx, (8)

where Rm(ρ) = Lm(ρ2/2) exp(−ρ2/4)/
√

2π are normalized
radially symmetric eigenfunctions of a 2D harmonic oscillator,( − ∇2

ρ + ρ2/4 − 1
)
Rm(ρ) = 2mRm(ρ), (9)

and Lm are Laguerre polynomials. The solution of Eq. (7) can
now be written as

�(r1,r2) =
∞∑

m=0

∫
dk

2π
fm(k)

[
Rm(ρ2)eikx2GE−k2−2m(r1)

− Rm(ρ̃2)eikx̃2GE−k2−2m(r̃1)
]
. (10)

The Green function GE(r) satisfies the equation (−∇2
r +

ρ2/4 − 1 − E)GE(r) = δ(r) and can be explicitly written as

GE(r) =
∫ ∞

0

exp[−(ρ2/4) coth τ − x2/4τ + Eτ + τ ]

(4π )3/2
√

τ sinh τ
dτ

= 1

4πr
+ ζ (1/2, − E/2)

4π
√

2
+ o(r), (11)

where we also present the two leading terms in its small-r
expansion. In Eq. (11), ζ is the Hurwitz zeta function.

We now substitute Eq. (10) into the left-hand side of Eq. (6),
multiply the resulting equation by Rn(ρ2) exp(−ipx2) and
integrate it over r2. The result is

ζ (1/2,p2/2 − E/2 + n)

4π
√

2
fn(p) −

∞∑
m=0

M̂nmfm(p)

= −fn(p)

4πa
, (12)

where the operator M̂nm is defined as

M̂nmfm(p) =
∫

dk

2π
Mnm[E − (4/3)(p2 + k2 + pk)]fm(k)

(13)

with the kernel

Mnm(E) = (1/
√

3π )
∫ ∞

0

∫ ∞

0
Ln(z)Lm(z/4)

× exp

[
−5 + 3 coth τ

8
z

]
dz

exp[(E − 2m)τ ]

1 − exp(−2τ )
dτ.

(14)

The function f0(p) can be thought of as the atom-dimer scat-
tering wavefunction in momentum space and its singularities
can be made explicit:

f0(p) = 2πδ(p − q) − ig0(p)2q/(p2 − q2 − i0), (15)

where the scattering momentum q > 0 satisfies

ζ (1/2,q2/2 − E/2) = −
√

2/a = ζ (1/2,Ed/2). (16)
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Here we introduce the dimer binding energy Ed > 0, which
equals q2 − E and, therefore, the second equality in Eq. (16)
directly relates a and Ed . In the case of small and negative a

the binding energy is also small. Expanding the Hurwitz zeta
function [see Eq. (20)] we obtain Ed ≈ a2 � 1.

The function g0(p) is smooth, and its values at p = q

and p = −q are related to the atom-dimer transmission and
reflection amplitudes:

t(q) = 1 + g0(q), r(q) = g0(−q). (17)

The functions fn for n > 0 also have poles (on the real axis)
if the collision energy is high enough to excite the relative
atom-dimer motion to the nth transverse state; i.e., q2 > 2n.
The correct rule of integrating the poles can be enforced by
the ansatz fn(p) = −2ign(p)qn/(p2 − q2

n − i0), where qn =√
q2 − 2n and the functions gn(p) are smooth. The amplitudes

of the forward and backward propagating waves in the nth
channel are given by gn(qn) and gn(−qn), respectively.

The break-up channel opens for q2 > Ed , i.e., for positive
E. We can still use Eq. (10) in this case by choosing the
retarded Green function GE>0, which requires that the flux
of the released atoms be directed to infinity in the plane
{x1,x2}. The retarded Green function is obtained by the analytic
continuation of GE<0 to positive energies along a contour in the
upper halfplane, or, equivalently, by substituting E → E + i0.
One should then proceed with solving Eq. (12), respecting
the branch cuts and the rules of residue integrations. For
example,

√−E should be substituted by −i
√

E for E > 0.
The break-up probability can then be calculated, for example,
from the equation

Pb(q) = 1 − |t(q)|2 − |r(q)|2

−
[q2/2]∑
n=1

|gn(qn)|2 + |gn(−qn)|2, (18)

which follows from the atom number conservation law.

III. PERTURBATIVE FORMALISM

Mora et al. [15,16] have derived Eq. (12), projected it
to the lowest transverse channel by setting fn>0 ≡ 0, and
solved it numerically at zero collision energy. In this manner
they determine the 1D scattering lengths for the even and
odd channels, aad and bad , as functions of Ed . They also
note that in the limit Ed → 0, Eq. (12) takes the form of
a purely 1D integral equation, the solution of which can be
found analytically from the Bethe ansatz. The transmission and
reflection amplitudes are known in this case for any collision
energy,

t (0)(q) = −
√

q2 − E + √
3iq√

q2 − E + √
3iq

, r (0)(q) ≡ 0, (19)

and the break-up reaction probability also strictly vanishes.
In order to derive the corrections to the amplitudes Eq. (19)

we return to Eq. (12) and separate out its integrable part in the

following manner. We represent the Hurwitz zeta function as

ζ

(
1

2
,
−E

2

)
=

√
2

−E
+

∫ ∞

0

[
2 exp(Eτ )

exp(2τ ) − 1
− 1

τ

]
dτ√
2πτ

,

(20)

where we make explicit the part diverging at E → 0. Similarly,
Eq. (14) for the ground transverse channels reads

M00(E) = 1

π
√

3

(
1

−E
+

∫ ∞

0

exp(Eτ )dτ

4 exp(2τ ) − 1

)
. (21)

Now, by using Eqs. (16), (20), and (21), we rewrite the n = 0
part of Eq. (12) as

(L̂ − λq)f0(p) = V (p)f0(p) + M̂ ′f0(p)

+
∑
m>0

M̂0mfm(p), (22)

where the operator L̂ is defined as

L̂f (p) = f (p)

4π
√

p2 − E

−
√

3

4π

∫
dk

2π

f (k)

k2 + p2 + kp − 3E/4
, (23)

λq = 1/(4π
√

q2 − E), the function V (p) equals

V (p) = 1

4π

∫ ∞

0

exp(Eτ − q2τ ) − exp(Eτ − p2τ )

exp(2τ ) − 1

dτ√
πτ

,

(24)

and M̂ ′ is an operator defined by

M̂ ′f (p) = 1√
3π

∫
dk

2π
f (k)

∫ ∞

0
dτ

eEτ−(4/3)(p2+k2+pk)τ

4e2τ − 1
.

(25)

In the limit Ed → 0, the right-hand side of Eq. (22)
vanishes. Neglecting it, one arrives at an integral equation
describing the purely one-dimensional integrable case [16,18],
which is our zeroth order starting point. Since the atom-
dimer scattering solution is known from the Bethe ansatz
for any momentum q̃ ∈ (−∞,∞), the operator L̂ is easily
diagonalized. Namely, the eigenstate equation

L̂χq̃(p) = λq̃χq̃(p) (26)

is solved by

χq̃(p) = 2πδ(p − q̃) − i
t (0)(q̃) − 1

p − q̃ − i0

+ i[t (0)(q̃) − 1](p + 2q̃)

p2 + q̃2 + pq̃ − 3E/4
. (27)

Accordingly, as the zeroth order solution of Eq. (22) we take

f
(0)
0 = χq, f

(0)
m>0 ≡ 0. (28)

Consider for simplicity that the collision energy is smaller
or of order Ed , so that there is a single small parameter Ed � 1.
We then substitute Eq. (28) into Eq. (22) and estimate the
magnitude of different terms by using the fact that typical
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momenta involved in χq(p) are of order
√

Ed . We see that
L̂ ∼ λq ∼ 1/

√
Ed . Expanding Eq. (24) to the leading order in

E, q, and p, we get

V (p) ≈ [ζ (3/2)/16
√

2π ](p2 − q2), (29)

where ζ (3/2) ≈ 2.61 is the Riemann zeta function. From
Eq. (29) we see that V ∼ Ed when acting on χq(p) and
the leading order correction to f0, which can be written as
(L̂ − λq)−1V (p)χq(p), is of order E

3/2
d χq .

To understand the physics behind the V -term in Eq. (22),
imagine a purely-1D problem in which ↑ and ↓ fermions
interact via a δ-function potential, the strength of which
depends on their collision energy. If this dependence is chosen
such that the corresponding scattering amplitude matches the
one obtained for two quasi-1D atoms [19], we arrive exactly
at the three-body equation (L̂ − λq)f (p) = V (p)f (p). The
V -term then reflects the effective range corrections to the
two-body interaction due to virtual transverse excitations. That
this type of perturbation breaks integrability in a system of
three identical 1D bosons has been shown numerically by
Yurovsky et al. [14].

As a side remark, we note that so far we have been
considering the idealized zero-range 3D interaction potential
Eq. (3). Corrections corresponding to the finite range of a
realistic 3D potential or to a finite Feshbach resonance width
can be incorporated into the formalism of Sec. II by introducing
an energy-dependent 3D scattering length, 1/a → 1/a(εcoll).
The collision energy εcoll is defined as the kinetic energy, −∇2

r1
,

of the relative motion of two atoms when they are close to
each other but still outside of the support of the 3D interaction
potential. If their relative motion with respect to the third atom
is described by the wavefunction Rm(ρ2)eikx2 , one can see from
Eq. (1) that εcoll = E − k2 + 1 − 2m. Adding the effective
range term, 1/a → 1/a − (r0/2)εcoll, one arrives at Eq. (12),
where

1/a → 1/a − (r0/2)(E − p2 + 1 − 2n). (30)

The right-hand side of Eq. (22) then acquires an additional
term

Ṽ (p)f0(p) = −(r0/8π )(p2 − q2)f0(p), (31)

which has the same form as Eq. (29). Therefore, if we know the
correction to f due to the perturbation V , the perturbation Ṽ

does not require any special treatment. We simply multiply the
V -result by 1 − 2

√
2r0/ζ (3/2). Note that Ṽ ∼ V only when

r0 is comparable to the transverse oscillator length, which is
typically of order 100 nm and much larger than the physical
range of van der Waals potentials for neutral atoms. Therefore,
one should care about Ṽ only when r0 is anomalously large,
in particular, in the case of a very narrow Feshbach resonance.

Let us now turn to the second term in the right-hand
side of Eq. (22). Approximating eEτ−(4/3)(p2+k2+pk)τ by 1 in
Eq. (25) we obtain M̂ ′f (p) ≈ ln(2/

√
3)/

√
3π

∫
f (p)dp/2π ,

i.e., this term is local in the position representation. Adopting
the confinement-induced resonance terminology the M ′-term
describes the interaction of the third atom with the “closed
channel” molecule formed by the first two atoms. If we were
dealing with bosons (see Sec. V) the M ′-term would give
a correction to f0 of order Edχq , i.e., it would be more

important than the V -term. However, for the fermionic ↑-↑-↓
system

∫
χq(p)dp = 0, which follows from the fact that three

atoms cannot be at one point in space. In this case the leading
contribution to the M ′-term is obtained by further expanding
Eq. (25) and corresponds to the odd-channel interaction of the
“closed channel” molecule with an atom. We will quantify
this interaction later [see Eq. (37)]. Now it is sufficient for us
to say that M ′ ∼ E

3/2
d when acting on χq(p) and is thus less

important than the V -term.
Finally, in order to estimate the contribution of the last term

in Eq. (22) we have to consider Eq. (12) for n > 0. To the
leading order we obtain

fn(p) ≈ −(1/λq)M̂n0χq(p). (32)

From Eq. (13) it follows that Mn0(E → 0) = const and
similarly to the operator M̂ ′ the order of magnitude of fn

depends on whether
∫

χq(p)dp vanishes or not. For fermions
it does and we have fn ∼ E2

dχq . Substituting this result into the
last term in Eq. (22) we see that the contribution of the higher
transverse channels can be safely neglected even compared to
the M ′-term (cf. [16]). This is what we will do and until further
notice we omit the subscript 0 of the function f0(p).

In the first approximation, Eq. (22) can be solved by
substituting f (0) in its right-hand side and by inverting the
operator L̂ − λq . We keep the operator M̂ ′ in play because its
leading order contribution is still larger than higher order terms
related to V . Accordingly, we call f (1) = (L̂ − λq)−1(V +
M̂ ′)f (0) the first order correction to f although it actually
contains the leading order term proportional to E

3/2
d χq as

well as the next-to-leading term ∝ E2
dχq . To diagonalize the

operator L̂ we expand f (p) in the basis of its eigenstates χq

[see Eq. (26)]:

f (p) =
∫

αkχk(p)dk/2π. (33)

One can directly show that these eigenfunctions are orthonor-
mal in the sense

〈q1|q2〉 =
∫ ∞

−∞
χ̄q1 (p)χq2 (p)dp/2π = 2πδ(q1 − q2). (34)

Here χ̄q = χ∗
q if E < q2, which is always the case below the

break-up threshold. Otherwise, as mentioned in the end of
Sec. II we require all the functions that we are dealing with
be analytic in the upper halfplane of complex variable E. In
particular, the functions χq and χ̄q are obtained by analytic
continuation of Eq. (27) and its complex conjugate from the
E < q2 to E > q2 part of the real axis following a path in the
upper halfplane.

Changing the basis from plane waves to χq diagonalizes
the left-hand side of Eq. (22):

(λk − λq)αk =
∫

〈k|V + M̂ ′|k′〉αk′dk′/2π. (35)

The matrix elements in Eq. (35) are

〈k|V |k′〉 ≈ C

4π

(k
√

k′2 − E − k′√k2 − E)/(k − k′)
4(k2 + k′2 + kk′)/3 − E

×(
√

k2 − E + i
√

3k)(
√

k′2 − E − i
√

3k′) (36)
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and

〈k|M̂ ′|k′〉 ≈ C ′

4π
(i

√
3k +

√
k2 − E)(i

√
3k′ −

√
k′2 − E),

(37)

where

C =
√

3ζ (3/2)/8
√

2 ≈ 0.400,

C ′ = Li2(1/4)/
√

3 ≈ 0.155,

and Li2(1/4) is the polylogarithm function. When calculating
the matrix element Eq. (36) we use the approximation Eq. (29)
and in Eq. (37) we also retain only the first nonvanishing term
in the expansion of Eq. (25). Equations (35)–(37) are therefore
valid for q2,k2,k′2,E � 1.

The iterative solution of Eq. (35) is now straightforward.
We substitute the zeroth order term α

(0)
k = 2πδ(k − q) into its

right-hand side and obtain

α
(1)
k = 〈k|V + M̂ ′|q〉/(λk − λq). (38)

We then find f (1)(p) from Eq. (33). The corresponding
corrections to the reflection and transmission amplitudes
Eq. (19) can be calculated from the residues of f (1)(p) at p =
−q and p = q, respectively [see Eqs. (15) and (17)]. These
residues are obtained by performing integration in Eq. (33)
in the vicinities of k = ∓q. Close to these points the matrix
elements Eqs. (36) and (37) are smooth and 1/(λk − λq) ≈
−8π (q2 − E)3/2/(k2 − q2 − i0). Here the positions of the
poles with respect to the real axis are chosen such that there
is no incoming wave with momentum −q. The corresponding
correction to the transmission amplitude reads

t (1)(q)/t (0)(q) = −4πi(q2 − E)3/2〈q|V + M̂ ′|q〉/q

= −iE2
d

C(1 − q2/Ed ) − C ′E1/2
d (1 + 3q2/Ed )

q
,

(39)

and for the reflection amplitude we get

r (1)(q) = −4πi(q2 − E)3/2〈−q|V + M̂ ′|q〉/q

= −iE2
d

C/(1 + q2/3Ed ) − C ′E1/2
d

q
(1 − i

√
3q2/Ed )2.

(40)

Equations (39) and (40) give the first two leading corrections
(∝ E2

d and ∝ E
5/2
d ) to the atom-dimer transmission and

reflection amplitudes for small Ed . The validity of these
equations requires that the scattering momentum be in the
interval E2

d � q � 1. In particular, the atom-dimer collision
energy q2 can be above or below the break-up threshold, Ed .
The unphysical divergence of t (1)(q) and r (1)(q) at very small
momenta q � E2

d � √
Ed is a consequence of the fact that

in 1D any weak interaction becomes strong at sufficiently
low energies and the Born approximation (which is our first
iteration) necessarily fails. To illustrate this we note that
Eq. (35) at low energies (k,k′,q � √

Ed ) reads

(k2 − q2)αk + 2Q

∫
αk′dk′/2π = 0, (41)

where

Q = 4πE
3/2
d 〈0|V + M̂ ′|0〉 = E2

d (C − C ′√Ed ) (42)

is a small characteristic momentum. Equation (41) is nothing
else than the 1D Schrödinger equation in momentum space
describing the scattering on a weak δ-function potential. Its
exact solution is

αk = 2πδ(k − q) − Q

q + iQ

2q

k2 − q2 − i0
. (43)

We see that αk is appreciable only at small momenta ∼q �√
Ed , which justifies Eq. (41). Note that solving Eq. (41) in

the first Born approximation we would miss the term iQ in
the denominator of Eq. (43), which would lead to the 1/q-
divergence, exactly as we observe in Eqs. (39) and (40).

Now substituting Eq. (43) into Eq. (33) and calculating the
residues of f (p) at p = ±q we obtain the transmission and
reflection amplitudes:

r(q) = t(q)/t (0)(q) − 1 = −iQ/(q + iQ). (44)

Equations (41)–(44) are valid for q2 � Ed . This range of
collision energies has a large overlap with the interval of
validity of Eqs. (39) and (40), and they can be easily matched
with the low-energy result [Eq. (44)]. A universal result can
be obtained simply by making the substitution q → q + iQ

in the denominators of Eqs. (39) and (40).
Equation (44) demonstrates that the integrable limit Ed →

0 (Q → 0) and the limit q → 0 do not commute. In the
near-integrable case (Ed � 1) the reflection probability is
of order 1 for collision energies q2 � Q2 ∝ E4

d . Outside of
this small region |r(q)|2 ∝ E4

d/q
2. Recalling that in the near-

integrable case Ed ≈ a2, we observe a very strong decrease
of the reflection probability with decreasing |a|. Namely, at a
fixed collision energy |r|2 ∝ a8.

The even, Fs(q), and odd, Fp(q), scattering amplitudes are
related to the transmission and reflection amplitudes by the
equations

Fs(q) = [t(q) + r(q) − 1]/2, Fp(q) = [t(q) − r(q) − 1]/2,

(45)

and thus can be calculated to the first order from Eqs. (39)
and (40) for any collision energy. The even, aad , and odd, bad ,
scattering lengths can be defined through the effective range
expansions of Fs and Fp valid for q2 � Ed :

Fs(q) = − 1

1 + 2iaadq/
√

3 + ...
(46)

and

Fp(q) = − 1√
3i/(2badq) + 1 − 2iξpq/

√
3 + ...

, (47)

where the rescaling of q is due to the fact that the atom-dimer
scattering momentum in our units equals 2q/

√
3, which is

the Fourier conjugate of the atom-dimer distance
√

3x/2. In
Eq. (47) we also introduce the odd-channel effective range ξp,
so that the expansions orders of Fp and Fs match. The even
scattering length equals (cf. [16])

aad = 3

2
E

−1/2
d − 11

√
3C

12
Ed + o

(
E

3/2
d

)
, (48)
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and the odd scattering length and effective range are given by

1

bad

= 2C√
3
E2

d − 2C ′
√

3
E

5/2
d + o

(
E

5/2
d

) = 2√
3
Q (49)

and

ξp = −3

2
E

−1/2
d − 23

√
3C

12
Ed + 3

√
3C ′E3/2

d + o
(
E

3/2
d

)
.

(50)

Let us now say a few words about higher order terms. The
second order correction to αk reads

α
(2)
k = 1

λk − λq

∫
dk′

2π

〈k|V + M̂ ′|k′〉〈k′|V + M̂ ′|q〉
λk′ − λq

. (51)

The integral in Eq. (51) diverges at large k′ if one uses Eqs. (36)
and (37). Investigating Eqs. (24) and (25) we see that the
exact matrix elements start decaying much more rapidly than
the approximate ones [Eqs. (36) and (37)] at momenta �1.
Therefore, in order to estimate α

(2)
k we can introduce a cut-off

at k′ ∼ 1 in Eq. (51) and still use Eqs. (36) and (37). One can
then directly show that the leading term in α

(2)
k is by a factor

∼√
Ed smaller than the M̂ ′-contribution to α

(1)
k . This justifies

our keeping the operator M̂ ′ when calculating the first order
terms.

IV. REACTION PROBABILITIES

We can now discuss the reflection, transmission, and break-
up probabilities: |r(q)|2, |t(q)|2, and Pb(q), respectively. The
reflection probability is approximated by |r (1)(q)|2, ensuring
the two leading terms:

|r(q)|2 ≈ C2 E4
d

q2

(
Ed + 3q2

Ed + q2/3

)2 (
1 − 2

C ′

C

3Ed + q2

3
√

Ed

)
.

(52)

The break-up probability can be obtained from the equation
Pb(q) = 1 − |r(q)|2 − |t(q)|2, in which |t(q)|2 is calculated to
the same order as |r(q)|2 in Eq. (52):

Pb(q) ≈ −|r (1)(q)|2 − |t (1)(q)|2 − 2Re
t (1)(q) + t (2)(q)

t (0)(q)
.

(53)

Here t (2)(q) is the correction to the transmission amplitude
derived from Eq. (51) in the same manner as t (1)(q) is derived
from Eq. (38):

t (2)

t (0)
= 4πi(q2 − E)3/2

q

∫
dk′

2π

〈q|V + M̂ ′|k′〉〈k′|V + M̂ ′|q〉
λq − λk′

.

(54)

From Eq. (39) one can see that Re[t (1)(q)/t (0)(q)] ≡ 0. In fact,
if Pb(q) contained first order terms, we could play with the
sign of the corresponding perturbation operator and make
the probability negative, which is not possible in principle.
Therefore, the operators that we have neglected earlier in favor
of V + M̂ ′ would contribute to Eq. (53) only to the second
order and thus we do not exceed accuracy by keeping the
second order term t (2). Anyway, the need for the second order

terms here is formal as we know that the break-up probability
can in principle be derived from the first order solution α

(1)
k

by restoring the wavefunction �(r1,r2) and calculating the
outgoing flux of free atoms.

One can see that the real part of t (2)/t (0) in Eq. (54)
originates only from the integration interval k′ ∈ (−√

E,
√

E)
and from the residues at k′ = ±q. The contribution of the latter
cancels the first two terms in the right-hand side of Eq. (53).
This means that Pb(q) ≡ 0 below the break-up threshold as it
should. For E > 0 we have explicitly

Pb(q) = −4E
3/2
d

q

∫ √
E

−√
E

Im
〈q|V + M̂ ′|k′〉〈k′|V + M̂ ′|q〉

λk′ − λq

dk′,

(55)

and performing the integration we arrive at

Pb(q) ≈ C2E3
d (q2 − Ed )3

q2(Ed + q2/3)2

×
[

1 − 2
C ′

C

E2
d + 10Edq

2/3 + q4

(
√

Ed + |q|)3

]
. (56)

Just above the break-up threshold, Pb ∝ E3. This is due to
the fermionization of unbound states at low energies—the
probability to find three unbound interacting atoms close to
each other scales with E3 as in the case of three identical
fermions.

Quantitative comparison of Eqs. (52) and (56) shows that
|r|2 is significantly larger than Pb even well above the break-up
threshold (in the extreme limit Ed → 0 the two curves intersect
at q2/Ed ≈ 12), and, for example, for the collision energy
q2 = 2Ed the ratio |r|2/Pb ∼ 40 for Ed � 0.1. This means
that the dissipative dynamics of a dimer immersed in a gas of
atoms is dominated by the reflection rather than the break-up.
On the other hand, the latter is a chemical reaction and its rate
can be measured by monitoring the evolution of the population
of dimers. The same holds for the break-up’s inverse, the
three-body recombination. The three-body recombination rate
determines, for instance, the rate of dimer formation in a
super-Tonks state—the state of the system with negative
coupling constant but without dimers [20–22] (the bosonic
super-Tonks gas has been recently observed [23]).

The three-body recombination rate constant α↑↑↓(E) is
readily obtained from Pb(q) by using the principle of detailed
balance. Indeed, the three-body recombination rate for a single
↑-↑-↓ triple per unit length in the center of mass reference
frame equals 2α↑↑↓(E). Here the factor 2 comes from the fact
that the product of densities n2

↑n↓ is twice the number of ↑-↑-↓
triples per unit length. This rate multiplied by the density
of unbound states (of a single triple) ρ↑↑↓(E) = 1/(4

√
3π )

should equal the break-up rate Pb(q)
√

3q multiplied by the
density of atom-dimer states ρad (E) = 1/(

√
3πq), where

E = −Ed + q2. In this manner we get

α↑↑↓(E) = α↑↓↓(E) = 2
√

3Pb(q), (57)

which should be multiplied by h̄/m in order to restore the
dimensions. We should mention that the rate constant Eq. (57)
is averaged over a uniform distribution of the initial three-body
unbound states in a small energy interval close to E, i.e., in the
ergodic approximation. For highly nonthermal distributions
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one should speak about the differential recombination rate
of a particular initial unbound state characterized by the
asymptotic momenta (rapidities) and an auxiliary index related
to the parametrization of the ↑-↑-↓ wavefunction in the
nested Bethe ansatz picture [24]. For each such state one can
determine the zeroth order function f (0), expand it in the basis
of χk , substitute the corresponding coefficients α

(0)
k into the

right-hand side of Eq. (35), determine α
(1)
k , and finally derive

the outgoing atom-dimer flux from the residues of the poles of
f (1)(p) at p = ±q. However, Eq. (57) holds for a thermal gas
(in this case E ∼ T ) and is also useful for systems in which
the atomic momentum distribution is not extremely exotic. In
particular, we believe that Eq. (57) with E ∼ EF gives a good
estimate of the recombination rate constant in a degenerate
super-Tonks gas, provided the Fermi energy EF = π2n2/2 is
much smaller than the dimer binding energy Ed .

Remarkable is that in the case E � Ed the recombination
rate constant (57) is independent of Ed , i.e., independent
of the interatomic interaction strength. The reason for this
is the following. On the one hand, we have a nonintegrable
perturbation, which acts on three atoms when they are close to
each other. The squared modulus of this perturbation (relative
to the zeroth order terms) scales as E3

d and it does vanish in
the integrable case. On the other hand, the local three-body
correlation function (probability to find three atoms close
together) is proportional to (E/Ed )3. We see that when we
multiply these two factors the Ed -dependence drops out. In a
thermal gas we have α↑↑↓ ∝ (h̄/m)(T/h̄ω)3.

V. BOSONIC CASE

In the case of three identical quasi-1D bosons the deriva-
tions of Secs. II and III are essentially the same. The
modifications are related only to the facts that the bosonic
wavefunction is symmetric and that all three atoms interact
with each other. Accordingly, the bosonic version of Eq. (12)
differs from the fermionic one by an extra factor −2 in front of
the operators M̂nm [16]. The operators M̂ ′ and M̂0m in Eq. (22)
and the integral in Eq. (23) should also be multiplied by this
factor. This changes the properties of the eigenstates and the
structure of the spectrum of the operator L̂ (we now have a
trimer state separated from the continuum).

In the bosonic case
∫

χq(p)dp is finite since three bosons
can be at one point in space. This fact leads to important
qualitative differences in between the fermionic and bosonic
cases. Analyzing different terms in the bosonic version of
Eq. (22) in the same manner as we did for fermions in Sec. III
we see that the M ′ term is the leading perturbation:

M̂ ′f (p) = ln(4/3)

2
√

3π

∫
dk

2π
f (k). (58)

It is of order M ′ ∼ √
Ed when acting on the bosonic χq(p),

whereas V is still of order Ed as in the fermionic case. One can
also easily show that the last term in Eq. (22), which represents
the coupling to higher transverse states is of the same order
of magnitude as the V -term. Therefore, the next to leading
order correction is more difficult to obtain compared to the
fermionic case. Here we restrict ourselves to the leading order
correction originating from the M ′-term, but before presenting

the results let us briefly mention the effect of a narrow Feshbach
resonance (cf. [14]). In this case we should add the term Ṽ

given by Eq. (31) to the right-hand side of Eq. (22). We see,
however, that it is larger than the M ′ term only when the
effective range r0 is larger than the size of the 1D dimer 1/

√
Ed ,

which is an extremely restrictive condition.
Formally, the M ′ term, local in real space, can be understood

as a modification of the one-dimensional interaction between
two bosons in the presence of a nearby third boson. One
can show that calculating the correction associated to this
perturbation is equivalent to solving the Schrödinger equation{

−∇2
{x1,x2} − 2

√
Ed [δ(x1) +

∑
±

δ(x1/2 ±
√

3x2/2)]

− 8
√

3 ln(4/3)Edδ(x1)δ(x2) − E

}
�(x1,x2) = 0 (59)

to the first order in the perturbation −8
√

3 ln(4/3)Edδ(x1)δ(x2)
(cf. [11–13]). The unperturbed operator in the first line of
Eq. (59) is diagonalized by using the Bethe ansatz. The
standard first order perturbation theory then gives the following
results.

The first order correction to the boson-diboson transmission
amplitude reads

t (1)(q) = i
4 ln(4/3)√

3

E
3/2
d

q

1 + 3q2/Ed

1 + q2/3Ed

t (0)(q), (60)

where the zeroth order transmission amplitude equals

t (0)(q) = 1 − √
3iq/

√
Ed

1 + √
3iq/

√
Ed

1 − iq/
√

3Ed

1 + iq/
√

3Ed

. (61)

The zeroth order reflection amplitude vanishes and in the first
order we get

r (1)(q) = i
4 ln(4/3)√

3

E
3/2
d

q

(
1 − √

3iq/
√

Ed

1 + iq/
√

3Ed

)2

. (62)

Accordingly, to the leading order the reflection probability
equals |r (1)|2. The break-up probability above the break-up
threshold (E = q2 − Ed > 0) is given by

Pb(q) ≈ 16 ln2(4/3)

3

E
3/2
d

q2

(q2 − Ed )3

(|q| + √
Ed )3

1 + 3q2/Ed

1 + q2/3Ed

,

(63)

and the three-body recombination rate constant equals
αrec(E) = 2

√
3Pb(q) as in the fermionic case. Here we also

observe the scaling Pb ∝ αrec ∝ E3 just above the threshold.
This fact is related to the suppression of the local three-body
density-density correlation function at low energies in an inter-
acting 1D gas. That the two-body correlator is also suppressed
can be seen by looking at the differential rate. Indeed, the
recombination rate for three bosons on the length L in a state
parameterized by the set of rapidities {k1,k2,k3} equals

νrec(k1,k2,k3) ≈ 36
√

3 ln2(4/3)L−2(E3/Ed ) sin2(3φ), (64)

where φ = arctan[
√

3(k2 − k3)/(2k1 − k2 − k3)] and we
assume that the energy in the center of mass reference frame
E = ∑

i k
2
i /2 − (

∑
i ki)2/6 is much smaller than Ed . We
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observe that νrec ∝ (ki − kj )2 for any pair of rapidities, if they
are close to each other, (ki − kj )2 � E.

Due to the fact that the nonintegrable perturbation scales
with lower power of Ed compared to the fermionic case, the
reflection and break-up probabilities, as well as the rate of
three-body recombination in the bosonic case contains one
power of Ed less. In particular, the three-body recombination
rate actually increases with decreasing Ed (although Ed should
be kept larger than E). This counterintuitive phenomenon is
explained by the fact that the local three-body correlator is
proportional to (E/Ed )3, whereas the squared modulus of the
perturbation is ∝ E2

d .

VI. RELAXATION TO DEEP STATES

Let us compare the reflection probability to the probability
of relaxation to deeply bound molecular states. This inelastic
process is extremely local. It takes place at distances ∼Re � 1,
where Re is the van der Waals range of the interatomic
potential. The relaxation probability is thus proportional to
the probability of finding three atoms at distances on the
order of the oscillator length (unit in our case) multiplied by
the recombination rate for three atoms confined to a unit 3D
volume. We stay in the near-integrable regime, where |a| � 1
and Ed ≈ a2. This gives the following results.

In the fermionic case, the probability of relaxation in an
atom-dimer collision at the collision energy q2 equals

Prel(q) ∝ q−1E
9/2
d (1 + 3q2/Ed )(Re/|a|)4+2γ , (65)

where γ ≈ −0.2273 [25]. Comparing Eqs. (65) and (52) we
see that the relaxation probability is always much smaller
than the reflection probability. One can also show that the
recombination to deep molecular states is much slower
than the formation of shallow dimers in a gas of unbound
fermionic atoms. Namely, for E � Ed the ratio of the cor-
responding recombination constants scales as αd,↑↑↓/α↑↑↓ ∝
Ed (Re/|a|)4+2γ � 1.

The relaxation probability in boson-diboson collisions
can be calculated including the prefactor. Indeed, in the
zeroth order the wavefunction of an atom and a dimer
normalized per (axial) length L is given by the axial
Bethe ansatz wavefunction multiplied by the wavefunctions
of the radial ground states. When the three atoms are at
distances much smaller than 1 (the radial oscillator length),
this wavefunction is approximately constant and its modu-
lus square equals |�|2 = (1/9π2L)

√
Ed (1 + 3q2/Ed )/(1 +

q2/3Ed ). Here we use the normalization corresponding to
the “normal” laboratory coordinates in which the atom-dimer
distance is not rescaled (we mean the factor

√
3/2 in the

definition of r2). The relaxation rate in this case equals
νrel = αd (a < 0)|�|2, where αd (a < 0) is the relaxation rate
constant for cold thermal bosons in the uniform space.
This quantity has been calculated numerically [26,27] and
analytically [28] in the zero-range theory as a function of
a, the three-body parameter, and the elasticity parameter.
We can write αd (a < 0) ≈ Cda

4, where Cd is a log-periodic
function of a bounded from below: Cd � 128π2(4π −
3
√

3) coth(πs0) tanh η∗ ≈ 104η∗. Here s0 ≈ 1.00624 and the
elasticity parameter is typically η∗ > 0.1. Assuming the case

Cd ≈ 103 we have

Prel(q) = (L/
√

3q)νrel ≈ 6.5
E

5/2
d

q

1 + 3q2/Ed

1 + q2/3Ed

. (66)

We observe that the ratio Prel/|r|2 � 15q/
√

Ed , which means
that the relaxation is the dominant process in boson-diboson
collisions unless we find a Feshbach resonance with a very
low elasticity parameter and/or go to extremely low collision
energies.

The above analysis can also be performed for un-
bound states of three quasi-1D bosons. Namely, the
relaxation rate of a Bethe ansatz state with rapidi-
ties {k1,k2,k3} equals νd (k1,k2,k3) = αd (a < 0)|�|2, where
|�|2 = (1/8π2L2)(E/Ed )3 sin2(3φ). This rate scales as
1/Ed ≈ 1/a2 in the same manner as the rate of three-body
recombination to the weakly bound state [Eq. (64)]. In fact,
these rates are related by νd/νrec = 2.5 × 10−3Cd and we
see that the recombination to deep states actually dominates,
assuming, for example, the value Cd = 103.

VII. DISCUSSION

A direct consequence of the relaxation analysis of the
previous section is that for bosons, at least in the near-
integrable case (|a| � 1), the thermalization due to the local
three-body coupling of different Bethe ansatz states is likely to
be slower than the relaxation and/or recombination to deeply
bound molecules. This means that such a gas is stuck in a
nonthermal state during all its lifetime (which may be long
because of the 1D fermionization). In contrast, the relaxation
processes in the fermionic case are suppressed and one should
be able to observe the diffraction of momenta in atom-dimer
collisions or the three-body recombination to a weakly bound
state well before the gas decays.

The dynamics of a mobile impurity in a 1D gas is at present
a very attractive theme of theoretical (see Refs. [29,30] and
references therein) and experimental [31,32] studies. The role
of integrability in this problem has been discussed [33] but
is still far from being well understood. The present paper
prepares grounds for studies in this direction. A quasi-1D
↑↓ dimer immersed in a Fermi sea of ↑ species is a long-
lived system in which, keeping the thermodynamic properties
unchanged, one can modify the degree of integrability. Indeed,
the thermodynamic quantities depend on the 1D ↑-↓ coupling
constant, which is proportional to the product of the scattering
length a and the frequency ω of the radial confinement
[5]. Keeping this product constant we can still modify the
atom-dimer reflection probability in a wide range by using
the fact that its scaling with a and ω is drastically different.
Namely, at a fixed collision energy we have |r|2 ∝ a8ω5 [see
Eq. (52)].

Having established control over the degree of integrability
one can study various physical problems, e.g., whether or not
a dimer loses its momentum while moving through a gas of
atoms, i.e., whether or not there is a friction force on the dimer.
Based on our understanding of the atom-dimer scattering
problem we can conjecture what happens if one collides a
gas of atoms with a gas of dimers in a quasi-1D trap with
a weak axial parabolic confinement. In the integrable limit
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these two clouds pass through each other without reflection
and one expects undamped relative oscillations. In contrast,
as we increase the reflection probability these oscillations
become damped and we expect to see none of them when
|r(q)|2 � 1/N , where N is the particle number. This scenario
remains based on the microscopic few-body analysis and we
do not exclude nontrivial many-body effects, especially in the
degenerate regime. We think that this problem deserves further
experimental and theoretical investigation.

Note that the limit a → 0 does not at all correspond to
the noninteracting case. Indeed, one can imagine a dimer in
a state given by a wavepacket localized in momentum space
around k and in real space around x0 + kt/2. Let us assume
that it passes an atom which is in a similar state but with
k = 0. This picture describes the relative motion of a dimer
and an atom at high energies close to the bottom of the axial
harmonic trap. After their collision the dimer wavepacket is
centered around x0 + δx + kt/2, i.e., its trajectory is shifted
by δx (the atomic wavepacket is then centered at −2δx). By
using the fermionic atom-dimer scattering solution Eq. (27)
and the transmission amplitude Eq. (19) with q = k/2

√
3,

one can show that this shift equals δx = √
Ed/(Ed + k2/4).

For the boson-diboson scattering we have δx = √
Ed [(Ed +

k2/4)−1 + (3Ed + k2/12)−1]. Note that if k2 is of order Ed , the
shift is proportional to 1/

√
Ed ∝ 1/|a| and actually increases

with decreasing |a|. The dimer passes the atom faster than
it does in the noninteracting case (as if the atom-dimer
interaction is attractive). If we now assume that there is a gas
of N atoms with N � 1, their effect on the dimer’s trajectory
and on the frequency of its oscillations is appreciable. Note
also that for a longitudinally trapped gas this shift is another
source of nonintegrability even in the purely 1D case [34].

As a more concrete experimental proposal for investigating
the above phenomena, we envision a setup that is a combi-
nation of the fermionic experiment of Moritz et al. [3] on
quasi-1D dimers and the bosonic quantum Newton’s cradle
experiment of Ref. [17]. Namely, one can follow the routine
of the former and create a quasi-1D spin mixture (in our
case spin-imbalanced) of two different hyperfine states of 40K
close to a zero crossing for the interspecies scattering length
and form molecules by adiabatically decreasing the scattering
length from zero to a finite a < 0. One can then separate the
dimers from atoms in momentum space by applying a Bragg
pulse, as has been demonstrated by Veeravalli et al. [35] in
the case of a 3D spin-mixture of 6Li. The transfer of 40K
dimers into a state with momentum 4π/λ, where λ = 767
nm, can be done by using counterpropagating Bragg beams
with the frequency detuning ν2m = 16.97 kHz. Since the
atoms remain at rest, the atom-dimer scattering energy then
equals ν2m/3 = 5.66 kHz. Assuming the radial confinement
frequency ν⊥ = 100 kHz, which corresponds to the oscillator
length l0 = 50 nm, this sets q2 = 5.66 × 10−2 in our formulas.
For a = −25 nm, the dimer size equals 155 nm, its binding
energy Ed ≈ 10.5 × 10−2 (10.5 kHz in the laboratory units),
and the reflection probability equals |r(q)|2 = 1.2 × 10−3.
Under these conditions, a cloud of, say, 30 dimers will pass
through a cloud of the same number of atoms several tens of
times without thermalization. Increasing a by a factor of 2
leads to |r(q)|2 = 0.01 and we expect to see only very few
oscillations. Although the value of a in this case equals l0, we
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FIG. 1. The quantity 1 − |t(q)|2 versus q2/Ed below the break-up
threshold for several values of Ed . Numerical solutions of Eq. (12)
are obtained by taking into account the first three (solid), the first
two (dash-dotted), or only the ground (dotted) transverse states. The
dashed lines is our perturbative result valid for small Ed . The dip at
q2/Ed = 0.5 in the case Ed = 4 is discussed in the text.

show below that the binding energy calculated from Eq. (16),
Ed ≈ 0.22, is sufficiently small to apply our perturbation
theory.

For this type of experiment, the relevant values of the
reflection probability are small, of order 1/N , meaning that
we can use the perturbation theory valid for Ed � 1. In
order to see the limitations of the perturbative approach we
have also numerically solved Eq. (12) and calculated |r(q)|2
and |t(q)|2 for various Ed . In Fig. 1 we show the quantity
1 − |t(q)|2 versus q2/Ed below the break-up threshold for six
different values of Ed from 0.125 to 4. The perturbative result
is shown as dashed lines and is given by Eq. (52) multiplied
by q2/(q2 + Q2), where Q2 = C2E4

d (1 − 2C ′√Ed/C) [see
discussion after Eq. (44)]. We present it only for the three
lowest values of Ed since for larger Ed the perturbation theory
breaks down as expected—the next-to-leading order term in
Eq. (52) becomes comparable to the leading one.

For each value of Ed in Fig. 1 we also present three
numerical curves: the solid lines are calculated by solving
Eq. (12) projected to the first three transverse channels, i.e.,
we set fn>2 ≡ 0; the dash-dotted lines correspond to the first
two channels, fn>1 ≡ 0; and the dotted lines are obtained by
projecting Eq. (12) to the ground transverse state (fn>0 ≡ 0).
For Ed � 0.5 the three lines practically coincide. For larger
Ed the projection to the ground transverse state is insufficient;
the dotted lines are far off. However, we clearly observe a fast
convergence with increasing the number of kept transverse
states.

In the case of Ed = 4, the point q2/Ed = 0.5 (q2 = 2) is the
threshold for the excitation of the relative atom-dimer motion
to the first transversely excited state (see the end of Sec. II).
The corresponding branch-cut singularities are visible only in
the solid and dash-dotted lines since the dotted line ignores
all transverse channels other than the ground. In Fig. 1 the
difference in between the quantities |r(q)|2 and 1 − |t(q)|2
exists only in the case Ed = 4 for q2/Ed > 0.5, where there is
a finite probability for the atom-dimer pair to be excited into
the first transverse channel.
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The small-q expansion of the transmission probability starts
with the term |t(q)|2 ≈ (4/3)(aad + bad )2q2, which can be
derived from Eqs. (45)–(47). In fact, one can show that the
coefficient in front of q4 is also proportional to aad + bad .
Therefore, the point at which aad = −bad is rather peculiar.
In this case there is a large region of collision energies
where atoms and dimers can be considered impenetrable.
Then a dimer immersed in a gas of atoms can move only
by shoving the atoms on its way, which leads to its diverging
effective mass, subdiffusive propagation dynamics, etc. (see,
for example, [29]). This regime is opposite to the integrable
limit where we have no reflection. The condition aad = −bad

is reached for Ed ≈ 5.2, but the effect is even more impressive
at somewhat smaller Ed (in Fig. 1 we deliberately show the
case Ed = 4). Then the region of collision energies where the
transmission probability is smaller than a certain small but
finite value is wider.

Finally, let us comment on the dimer-dimer collisions.
The scattering length for two quasi-1D dimers consisting
of fermionic atoms has been calculated in Ref. [36]. In
principle, one can also find the dimer-dimer phase shift at finite
collision energies. However, below the break-up threshold the
two-dimer collisions do not lead to momentum diffusion even
if the scattering phase shift differs significantly from the zeroth
order one. This is because these are identical particles of
the same mass. The momentum diffusion should appear in
three-dimer collisions or in other processes involving more
particles (atoms and/or dimers). Of course, these are much
more difficult to analyze, but we can neglect these few-dimer
diffusion channels compared to the two-body atom-dimer
channel when the density of dimers is small or when they
are in the Tonks regime, i.e., when the probability to find two
dimers close together is suppressed.

VIII. SUMMARY AND CONCLUSION

We have developed a perturbation theory for the quasi-1D
three-atom problem in the near-integrable limit. We have
shown that to the leading order the integrability of the
↑-↑-↓ fermionic system is broken by the effective range
corrections to the two-body coupling constant originating from
the virtual transverse excitations. In contrast, the quasi-1D
problem of three bosons can be reduced to the purely 1D
problem by adding an additional local three-body term [11],

the two-body effective range corrections, and other effects
being of higher order. We have calculated the atom-dimer
reflection, transmission, and break-up probabilities, as well
as the three-body recombination rate constants for fermions
and bosons as functions of the energy and the interatomic
scattering length. At a finite collision energy q2 the reflection
probability is proportional to a8/l10

0 q2 in the fermionic case
and to a6/l8

0q
2 for bosons.

We have shown that for fermions the rates of relaxation
and recombination to deep molecular states are much lower
than the rates of (momentum) diffusion in the zeroth order
Bethe ansatz basis, meaning that the integrability breaking
processes occur well within the lifetime of the system. In
this respect, the fermionic case differs strongly from the
bosonic one. For bosons, the rate of inelastic relaxation or
recombination is comparable or higher than the rates of
momentum diffusion. However, the lifetime of the bosonic
gas is sufficiently long to study “zeroth order” effects of
integrability, such as the reflectionless atom-dimer scatter-
ing. In spite of the absence of reflection, the atom-dimer
interaction is strong as can be seen from the phase of the
transmission amplitude. The corresponding shift in position
or in time of the relative atom-dimer trajectory can be
measured, for example, in a quantum Newton’s cradle type of
experiment [17].

The strong a-dependence of the atom-dimer reflection
probability and the suppression of inelastic processes in a
mixture of quasi-1D ↑-fermions and ↑-↓-dimers makes this
system an ideal candidate for a controllable investigation of
differences in integrable and nonintegrable dynamics. We have
estimated parameters of a realistic experiment, which can
be performed in a spin-imbalanced mixture of two hyperfine
states of 40K.
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