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Preface

When I was scheduled to give an introductory course on the physics of quantum gases I was full of
ideas about what to teach. The research in this field had flourished for more than a decade and many
experimental results and theoretical insights had become available. An enormous body of literature
had emerged with in its wake excellent review papers, summer school lectures and books, not to
mention the relation with a hand full of related Nobel prizes. So I drew my plan to teach about a
selection of the wonderful advances in this field. However, already during the first lecture it became
clear that at the bachelor level - even with excellent students - the common language was lacking
to bring across what I wanted to teach. So, rather than pushing my own program and becoming a
story teller, I decided to adapt my own ambitions to the level of the students, in particular to assure
a good contact with their level of understanding of quantum mechanics and statistical physics. This
resulted in a course allowing the students to digest parts of quantum mechanics and statistical
physics by analyzing various aspects of the physics of the quantum gases. The course was first
given in the form of 8 lectures of 1.5 hours to bachelor students at honors level in their third year
of education at the University of Amsterdam. Condensed into 5 lectures and presented within a
single week, the course was also given a number of times since the summer of 2006 for a group of 60
graduate students at an international predoc school organized together with Dr. Philippe Verkerk
and Dr. Hélène Perrin at the Centre de Physique des Houches in the French Alps. In 2012 part of
the course was given at the First African Winter School in Chlef Algeria organized by Prof. Georgi
Shlyapnikov and Prof. Mohamed Benarous. A special opportunity to improve the text arose when
I was invited by Prof. Markus Arndt to teach the summer semester of 2013 at the University of
Vienna for an audience of mostly graduate students.

A feature of the physics education is that quantum mechanics and statistical physics are taught
in “vertical courses” emphasizing the depth of the formalisms rather than the phenomenology of
particular systems. The idea behind the present course is to emphasize the “horizontal” structure,
maintaining the cohesion of the topic without sacrificing the contact with the elementary ingredients
essential for a proper introduction. As the subject has become enormous, severe choices have to be
made in the material to be covered. Thus, the entire atomic physics side of the subject, including
the interaction with the electromagnetic field, is simply skipped, giving preference to aspects of the
gaseous state. In this way the main goal of the course became to reach the point where the students
have a good physical understanding of the nature of the ground state of a trapped quantum gas in
the presence of binary interactions, including Feshbach resonances. The feedback of the students
turned out to be invaluable in this respect. Rather than presuming existing knowledge I found it
to be more efficient to simply reintroduce well-known concepts in the context of the discussion of
specific aspects of the quantum gases. In this way a firmly based understanding and a common
language developed quite naturally and prepared the students to read advanced textbooks like the
one by Pitaevskii and Stringari on Bose-Einstein Condensation as well as many papers from the
research and review literature. In its present form the course is taught in 14 oral lectures of 1.5
hours with a parallel set of exercise meetings and homework, together representing a work load of 6
EC. In this format typically a choice of 6 out of 10 chapters are covered depending on the interest
of the students.
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The starting point is the quasi-classical gas at low densities (Chapter 1). Emphasis is put on
the presence of a trapping potential and interatomic interactions. The density and momentum
distributions are derived along with some thermodynamic and collisional properties. All these
aspects meet in a discussion of the principles of evaporative cooling. The limitations of the classical
description is discussed by introducing the quantum resolution limit in the classical phase space.
The notion of a quantum gas is introduced by comparing the thermal de Broglie wavelength with
characteristic length scales of the gas: the range of the interatomic interaction, the interatomic
spacing and the size of a gas cloud.

Chapter 2 is included in preparation for treating interactions. We review the quantum mechanical
motion of particles in a central field potential. After deriving the radial wave equation we put it
in the form of the 1D Schrödinger equation. As this is part of the standard quantum mechanics
curriculum it is briefly summarized during the lectures and acts as a reference chapter for the rest
of the course.

The underlying idea of Chapter 3 is that a lot can be learned about quantum gases by considering
no more than two atoms confined to a finite volume. The discussion is fully quantum mechanical.
It is restricted to elastic interactions and short-range potentials as well as to the low-energy limit.
Particular attention is paid to the analytically solvable cases: free atoms, hard spheres and the square
well and arbitrary short range potentials. The central quantities are the asymptotic phase shift and
the s-wave scattering length. It is shown how the phase shift in combination with the boundary
condition of the confinement volume suffices to calculate the energy of interaction between the
atoms. Once this is digested the concept of pseudo potential is introduced enabling the calculation
of the interaction energy by first-order perturbation theory. More importantly it enables insight in
how the symmetry of the wavefunction affects the interaction energy.

Of course no introduction into the quantum gases is complete without a discussion of the relation
between interatomic interactions and collisions. Therefore, we discuss in Chapter 4 the concept of the
scattering amplitude as well as of the differential and total cross sections, including their relation
to the scattering length. Particular attention is paid to the quantum statistics of colliding pairs
demonstrating how collisions between identical particles differs from those between unlike particles.
All examples are given for collisions involving only a single interatomic potential and atomic species
without hyperfine interaction.

In Chapter 5 we turn to ground state atoms with more than one interaction potential. It is
demonstrated how the hyperfine interaction can give rise to a coupling between these channels and
thus shift the energy levels of bound states. It allows the students to understand one of the marvels of
the quantum gases: the in situ tunability of the interatomic interaction by a field-induced Feshbach
resonance. This chapter as inspired by a collaboration with Dr. Tobias Tiecke and Dr. Servaas
Kokkelmans. The chapter is concluded with a simple case of coupled channels. Although one may
argue that this section is a bit technical there are good reasons to include it. Weak coupling between
two channels is an important problem in elementary quantum mechanics and therefore a valuable
component in a course at bachelor level.

In Chapter 6 the knowledge of collisional properties is used in a simple application of the Boltz-
mann equation showing how to obtain the time scale on which equilibrium is reached in a dilute
quasi-classical gas. Using the kinetic equation we discuss how binary quantum collisions affect the
phase space distribution of a dilute gas of neutral atoms in the presence of an external potential.

Chapter 7 is included in the same spirit as Chapter 2 as an introduction into the quantum
mechanics of many-body systems. We start by quantizing the single-atom states. Then, we look
at pair states and introduce the concept of distinguishable and indistinguishable atoms, showing
the impact of indistinguishability on the probability of occupation of already occupied states. We
emphasize that even in the absence of interactions we should account for the quantum correlations
between all atoms to describe a quantum gas. To handle these many-body states we introduce the
occupation number representation.

At this point we turn to the quantum gases, first in the absence of interactions (Chapter 8).
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Using the grand canonical ensemble we derive the Bose-Einstein and Fermi-Dirac distributions and
the link to thermodynamics. In Chapter 9 we specialize to the case of Bose gases in different kinds
of trapping potentials. We show how the quantum statistics gives rise to a distortion of the density
profile and ultimately to the phenomenon of Bose-Einstein condensation.

In the last chapter we study the weakly-interacting Bose gas. In this chapter most of the
lecture material comes together in the derivation of the Gross-Pitaevskii equation. We discuss the
order parameter of the condensate and its decomposition in amplitude and phase. By studying the
fluctuations of the order parameter around the stationary value we obtain the Bogoliubov excitation
spectrum. We conclude with a discussion of superfluidity and topological excitations, in particular
vorticity and solitons.

I thank the students who inspired me to write up this course and Dr. Mikhail Baranov who was
invaluable as a sparring partner in testing my own understanding of the material and who shared
with me valuable insights that appear in the text. The same holds for Dr. Li Yun who joint me in
giving the course in Singapore and gave valuable feedback after critically reading the lecture notes.
Special thanks go to Prof. Kai Dieckmann at the National University of Singapore for his hospitality
and for offering me the opportunity to teach the full course in Singapore during the winter semester
of 2014. The winter and spring of 2015 I was in Innsbruck, where in particular the interaction with
Dr. Marko Cetina was valuable and enjoyable for me and helped me to include the section on narrow
s-wave resonances. I thank Prof. Rudolf Grimm for the generous hospitality during my stimulating
stay in his group. The text was actualized for the School on Interaction of Light with Cold Atoms
in Sao Paolo. Being back in Innsbruck in 2017, I used the opportunity to improve Chapter 7.

Innsbruck, March 22, 2017, Jook Walraven.
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Fundamental constants

The values given below for the fundamental physical constants correspond to the recommended
values (CODATA-2014 [49]).

~ = 1.054 571 800(13)× 10−34 J s Planck constant (reduced) ~ = h/2π
c = 299 792 458 m s−1 speed of light in vacuum def
µ0 = 4π × 10−7 N A−2 magnetic constant def
ε0 = 8.854 187 817...× 10−12 F m−1 electric constant ε0 = 1/µ0c

2

e = 1.602 176 6208(98)× 10−19 C elementary charge
α = 7.297 352 5664(17)× 10−3 fine-structure constant α = e2/4πε0~c

α−1 = 137.035 999 139(31) inverse fine-structure constant α−1 = 4πε0~c/e2

a0 = 0.529 177 210 92(17)× 10−10 m Bohr radius a0 = α/4πR∞
me = 9.109 38356(11)× 10−31 kg electron mass
R∞ = 1.097 373 156 8508(65)× 107 m−1 Rydberg constant R∞ = α2mec/2h
Ry = 3.289 841 960 355(19)× 1015 Hz Rydberg frequency R∞c
λC = 386.159 267 64(18)× 10−15 m Compton wavelength (reduced) λC = ~/mec = αa0

µB = 927.400 9994(57)× 10−26 J T−1 Bohr magneton µB = e~/2me

ge = 2.002 319 304 361 82(52) electron g factor 1 ge = 2(1 + ae)
ae = 1.159 652 180 91(26)× 10−3 electron magnetic moment anomaly ae = |µe|/µB − 1
mp = 1.007 276 466 879(91) mu proton mass
md = 2.013 553 212 745(40) mu deuteron mass
µN = 5.050 783 699(31)× 10−27 J T−1 nuclear magneton µN = e~/2mp

gp = 5.585 694 702(17) proton g factor gp = 2µp/µN
gd = 0.857 438 2311(48) deuteron g factor gd = 2µd/µN
rp = 0.87 51(61)× 10−15 m proton rms charge radius
mu = 1.660 539 040(20)× 10−27 kg atomic mass constant mu = 1

12m(12C)
1 Here we deviate from the CODATA recommendation in which ge is defined as a negative number.
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1

The quasi-classical gas at low densities

1.1 Introduction

Let us visualize a gas as a system of N atoms moving around in some volume V . Experimentally
we can measure its density n and temperature T and sometimes even count the number of atoms.
In a classical description we assign to each atom a position r as a point in configuration space and
a momentum p = mv as a point in momentum space, denoting by v the velocity of the atoms and
by m their mass. In this way we establish the kinetic state of each atom as a point s = (r,p) in
the 6-dimensional (product) space known as the phase space of the atoms. The kinetic state of the
entire gas is defined as the set {ri,pi} of points in phase space, where i ∈ {1, · · ·N} is the particle
index.

In any real gas the atoms interact mutually through some interatomic potential V(ri − rj). For
neutral atoms in their electronic ground state this interaction is typically isotropic and short-range.
By isotropic we mean that the interaction potential has central symmetry ; i.e., does not depend on
the relative orientation of the atoms but only on their relative distance rij = |ri − rj |; short-range
means that beyond a certain distance r0 the interaction is negligible. This distance r0 is called the
radius of action or range of the potential. Isotropic potentials are also known as central potentials.
A typical example of a short-range isotropic interaction is the Van der Waals interaction between
inert gas atoms like helium. The interactions affect the thermodynamics of the gas as well as its
collisional properties. For example they affect the relation between pressure and temperature; i.e.,
the thermodynamic equation of state. On the collisional side the interactions determine the time
scale on which thermal equilibrium is reached.

For sufficiently low densities the behavior of the gas is governed by binary interactions; i.e., the
probability to find three atoms simultaneously within a sphere of radius r0 is much smaller than the
probability to find only two atoms within this distance. In practice this condition is met when the
mean particle separation n−1/3 is much larger than the range r0; i.e.,

nr3
0 � 1. (1.1)

In this low-density regime the atoms are said to interact pairwise and the gas is referred to as dilute.
A dilute gas is said to be nearly ideal or weakly interacting if the collisional size a is small1,

na3 � 1. (1.2)

It is important to emphasize - right from the start - that at ultra-low temperature the length a
depends strongly on the details of the interatomic potential and can differ dramatically for minor
changes of this potential. Further it may or may not show a strong dependence on the collisional

1Note that weakly interacting does not mean that that the potential is “shallow”. Any gas can be made weakly
interacting by making the density sufficiently small.

1
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energy. To calculate the collision rate as well as the mean-free-path traveled by an atom in between
two collisions we need expressions for the collision cross section

σ ' 4πa2. (1.3)

In terms of this cross section the mean-free-path is given by

` = 1/nσ (1.4)

and the collision rate is
τ−1
c = nv̄rσ. (1.5)

Here v̄r =
√

16kBT/πm is the average relative atomic speed. In many cases estimates based on
the approximation a ' r0 are not at all bad but there are notable exceptions. For instance in the
case of the low-temperature gas of hydrogen the cross section was found to be anomalously small,
in the case of cesium anomalously large. Understanding of such anomalies has led to experimental
methods by which, for some gases, the cross section can be tuned to essentially any value with the
aid of external fields.

For any practical experiment one has to rely on methods of confinement. This necessarily limits
the volume of the gas and has consequences for its behavior. Traditionally confinement is done by
the walls of some vessel. This approach typically results in a gas with a density distribution which is
constant throughout the volume. Such a gas is called homogeneous. Unfortunately, the presence of
surfaces can seriously affect the behavior of a gas. Therefore, it was an enormous breakthrough when
the invention of atom traps made it possible to arrange wall-free confinement . Atom traps are based
on levitation of atoms or microscopic gas clouds in vacuum with the aid of an external potential
U(r). Such potentials can be created by applying inhomogeneous static or dynamic electromagnetic
fields, for instance a focused laser beam. Trapped atomic gases are typically strongly inhomogeneous
as the density has to drop from its maximum value in the center of the cloud to zero (vacuum) at the
“edges” of the trap. Comparing the atomic mean-free-path with the size of the cloud two density
regimes are distinguished: a low-density regime where the mean-free-path exceeds the size of the
cloud

(
`� V 1/3

)
and a high density regime where ` � V 1/3. In the low-density regime the gas

is referred to as free-molecular or collisionless. In the opposite limit the gas is called collisionally
hydrodynamic. Even under “collisionless” conditions collisions are essential to establish thermal
equilibrium. Collisionless conditions yield the best experimental approximation to the hypothetical
ideal gas of theoretical physics. If collisions are absent even on the time scale of an experiment we
are dealing with a non-interacting assembly of atoms which may be referred to as a non-thermal
gas.

1.2 Basic concepts

1.2.1 Hamiltonian of trapped gas with binary interactions

We consider a classical gas of N atoms in the same internal state, interacting pairwise through a
short-range central potential V(r) and trapped in an external potential U(r). In accordance with
the common convention the potential energies are defined such that V(r →∞) = 0 and U(rmin) = 0,
where rmin is the position of the minimum of the trapping potential. The total energy of this single-
component gas is given by the classical hamiltonian obtained by adding all kinetic and potential
energy contributions in summations over the individual atoms and interacting pairs,

H =
∑
i

(
p2
i

2m
+ U(ri)

)
+

1

2

∑
i,j

′V(rij), (1.6)

where the prime on the summation indicates that coinciding particle indices like i = j are excluded.
Here p2

i /2m is the kinetic energy of atom i with pi = |pi|, U(ri) its potential energy in the trapping
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field and V(rij) the potential energy of interaction shared between atoms i and j, with i, j ∈
{1, · · ·N}. The contributions of the internal states, chosen the same for all atoms, are not included
in this expression.

Because the kinetic state {ri,pi} of a gas cannot be determined in detail1 we have to rely on
statistical methods to calculate the properties of the gas. The best we can do experimentally is to
measure the density and velocity distributions of the atoms and the fluctuations in these properties.
Therefore, it suffices to have a theory describing the probability of finding the gas in state {ri,pi}.
This is done by presuming states of equal total energy to be equally probable, a conjecture known as
the statistical principle. The idea is plausible because for kinetic states of equal energy there is no
energetic advantage to prefer one microscopic realization (microstate) over the other. However, the
kinetic path to transform one microstate into the other may be highly unlikely, if not absent. For
so-called ergodic systems such paths are always present. Unfortunately, in important experimental
situations the assumption of ergodicity is questionable. In particular for trapped gases, where we
are dealing with situations of quasi-equilibrium, we have to watch out for the implicit assumption
of ergodicity in situations where this is not justified. This being said the statistical principle is an
excellent starting point for calculating many properties of trapped gases.

1.2.2 Ideal gas limit

We may ask ourselves the question under what conditions it is possible to single out one atom to
determine the properties of the gas. In general this will not be possible because each atom interacts
with all other atoms of the gas. Clearly, in the presence of interactions it is impossible to calculate
the total energy εi of atom i just by specifying its kinetic state si = (ri,pi). The best we can do is
write down a hamiltonian H(i), satisfying the condition H =

∑
iH

(i), in which we account for the
potential energy by equal sharing with the atoms of the surrounding gas,

H(i) = H0 (ri,pi) +
1

2

∑
j

′V(rij) with H0 (ri,pi) =
p2
i

2m
+ U(ri). (1.7)

The hamiltonian H(i) not only depends on the state si but also on the configuration {rj} of all
atoms of the gas. Actually, the same total energy H(i) of atom i can be obtained for many different
configurations of the gas but knowledge of only the state si is not sufficient.

Importantly, because the potential has a short range, for decreasing density the energy of the
probe atom H(i) becomes less and less dependent on the configuration of the gas. Ultimately the
interactions may be neglected except for establishing thermal equilibrium. This is called the ideal
gas regime. From a practical point of view this regime is reached if the energy of interaction εint
is much smaller than the kinetic energy, εint � εkin < H0. In Section 1.4.3 we shall derive an
expression for εint showing a linear dependence on the density.

1.2.3 Quasi-classical behavior

In discussing the properties of classical gases we are well aware of the underlying quantum mechan-
ical structure of any realistic gas. Therefore, when speaking of classical gases we actually mean
quasi-classical gaseous behavior of a quantum mechanical system. Rather than using the classical
hamiltonian and the classical equations of motion the proper description is based on the Hamilton
operator and the Schrödinger equation. However, in many cases the quantization of the states of the
system is of little consequence because gas clouds are typically macroscopically large and the spacing
of the energy levels extremely small. In such cases gaseous systems can be accurately described by
replacing the spectrum of states by a quasi-classical continuum.

1Position and momentum cannot be determined to infinite accuracy, the states are quantized. Moreover, from
any point of view the task is humbling when dealing with a large number of atoms.
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Figure 1.1: Left : Periodic boundary conditions illustrated for the one-dimensional case. Right : Periodic
boundary conditions give rise to a discrete spectrum of momentum states, which may be represented by
a quasi-continuous distribution if we approximate the delta function by a distribution of finite width ∆ =
2π~/L and height 1/∆ = L/2π~. Note that the latter represents the density of momentum states.

Let us have a look how this continuum transition is realized. We consider an external potential
U(r) representing a cubic box of length L and volume V = L3 (see Fig. 1.1). Introducing periodic
boundary conditions, ψ (x+ L, y + L, z + L) = ψ (x, y, z), the Schrödinger equation for a single
atom in the box can be written as

− ~2

2m
∇2ψk (r) = εkψk (r) , (1.8)

where the eigenfunctions and corresponding eigenvalues are given by

ψk (r) =
1

V 1/2
eik·r and εk =

~2k2

2m
. (1.9)

The ψk (r) represent plane wave solutions, normalized to the volume of the box, with k the wave
vector of the atom and k = |k| = 2π/λ its wave number. The periodic boundary conditions give
rise to a discrete set of wavenumbers, kα = (2π/L)nα with nα ∈ {0,±1,±2, · · · } and α ∈ {x, y, z}.
The corresponding wavelength λ is the De Broglie wavelength of the atom. For large values of L
the allowed k values form the quasi continuum we are looking for.

We write the momentum states of the individual atoms in the Dirac notation as |p〉 and normalize
the wavefunction ψp(r) = 〈r|p〉 on the quantization volume V = L3,

〈p|p〉 =

ˆ
dr|〈r|p〉|2 = 1. (1.10)

For the free particle this corresponds to a discrete set of plane wave eigenstates,

ψp(r) =
1

V 1/2
eip·r/~, (1.11)

with p = ~k. The complete set of eigenstates {|p〉} satisfies the orthogonality and closure relations

〈p′|p〉 =
1

V

ˆ
V

ei(p−p
′)·r/~dr = δp,p′ and 1 =

∑
p

|p〉〈p|, (1.12)

where 1 is the unit operator. In the limit L → ∞ the momentum p becomes a quasi-continuous
variable and the orthogonality relation and closure relations can be written in the form

〈p′|p〉 = (2π~/L)
3
fL(p− p′) and 1 = (L/2π~)3

ˆ
dp |p〉〈p|, (1.13)
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where fL(0) = (L/2π~)
3

is the density of momentum states and

lim
L→∞

fL(p− p′) = (2π~)−3

ˆ
ei(p−p

′)·r/~dr = δ(p− p′). (1.14)

Note that the delta function has the dimension of inverse cubic momentum; the elementary volume
of phase space drdp has the same dimension as the cubic Planck constant. Thus the continuum
transition does not affect the dimension. For finite L the Eqs. (1.12) remain valid to good approx-
imation and can be used to replace discrete state summation by the mathematically often more
convenient phase-space integration ∑

s

→ 1

(2π~)3

ˆ
drdp. (1.15)

Importantly, for finite L the distribution fL(p− p′) does not diverge for p = p′ like a true delta

function but has the finite value (L/2π~)
3
, which corresponds to the density of momentum states. Its

width scales like 2π~/L as follows by applying periodic boundary conditions to a cubic quantization
volume (see Fig. 1.1).

1.2.4 Canonical distribution

In search for the properties of trapped dilute gases we ask for the probability Ps of finding an
atom in a given quasi-classical state s for a trap loaded with a single-component gas of a large
number of atoms (Ntot≫ 1) at temperature T . The total energy Etot of this system is given by
the classical hamiltonian (1.6); i.e.,Etot = H. According to the statistical principle, the probability
P0(ε) of finding the atom with energy between ε and ε+ δε is proportional to the number Ω(0) (ε)
of microstates accessible to the total system in which the atom has such an energy,

P0(ε) = C0Ω(0) (ε) , (1.16)

with C0 being the normalization constant. Being aware of the actual quantization of the states the
number of microstates Ω(0) (ε) will be a large but finite number because a trapped gas is a finite
system. In accordance we shall presume the existence of a discrete set of states rather than the
classical phase space continuum.

Restricting ourselves to the ideal gas limit, the interactions between the atom and the surround-
ing gas may be neglected and the number of microstates Ω(0) (ε) accessible to the total system under
the constraint that the atom has energy near ε must equal the product of the number of microstates
Ω1 (ε) with energy near ε accessible to the atom with the number of microstates Ω (E∗) with energy
near E∗ = Etot − ε accessible to the rest of the gas:

P0(ε) = C0Ω1 (ε) Ω (Etot − ε) . (1.17)

This expression shows that the distribution P0(ε) can be calculated by only considering the exchange
of heat with the surrounding gas. Since the number of trapped atoms is large (Ntot≫ 1) the heat
exchanged is always small as compared to the total energy of the remaining gas, ε≪ E∗ < Etot.
In this sense the remaining gas of N∗ = Ntot − 1 atoms acts as a heat reservoir for the selected
atom. The ensemble {si} of microstates in which the selected atom i has energy near ε is called the
canonical ensemble.

As we are dealing with the ideal gas limit the total energy of the atom is fully defined by its
kinetic state s, ε = εs. Note that P0(εs) can be expressed as

P0(εs) = Ω1 (εs)Ps, (1.18)
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because the statistical principle requires Ps′ = Ps for all states s′ with εs′ = εs. Therefore, comparing
Eqs. (1.18) and (1.17) we find that the probability Ps for the atom to be in a specific state s is given
by

Ps = C0Ω (Etot − εs) = C0Ω (E∗) . (1.19)

In general Ps will depend on E∗, N∗ and the trap volume but for the case of a fixed number of
atoms in a fixed trapping potential U(r) only the dependence on E∗ needs to be addressed.

As is often useful when dealing with large numbers we turn to a logarithmic scale by introducing
the function, S∗ = kB ln Ω(E∗), where kB is the Boltzmann constant.1 Because εs≪ E∗ we may
approximate ln Ω(E∗) with a Taylor expansion to first order in εs,

ln Ω(E∗) = ln Ω (Etot)− εs (∂ ln Ω(E∗)/∂E∗)U,N∗ . (1.20)

Introducing the constant β ≡ (∂ ln Ω (E∗) /∂E∗)U,N∗ we have kBβ = (∂S∗/∂E∗)U,N∗ and the
probability to find the atom in a specific kinetic state s of energy εs takes the form

Ps = C0Ω (Etot) e
−βεs =

1

Z1
e−βεs . (1.21)

This is called the single-particle canonical distribution with normalization
∑
s Ps = 1. The normal-

ization constant Z1 is known as the single-particle canonical partition function

Z1 =
∑
se
−βεs . (1.22)

Note that for a truly classical system the partition sum has to be replaced by a partition integral
over the phase space.

Importantly, in view of the above derivation the canonical distribution applies to any small
subsystem (including subsystems of interacting atoms) in contact with a heat reservoir as long as
it is justified to split the probability (1.16) into a product of the form of Eq. (1.17). For such a
subsystem the canonical partition function is written as

Z =
∑
se
−βEs , (1.23)

where the summation runs over all physically different states s of energy Es of the subsystem.
If the subsystem consists of more than one atom an important subtlety has to be addressed.

For a subsystem of N identical trapped atoms one may distinguish ΩN (Es, s) = N ! permutations
yielding the same state s = {s1, · · · , sN} in the classical phase space. In quasi-classical treatments
it is customary to correct for this degeneracy by dividing the probabilities Ps by the number of
permutations leaving the hamiltonian (1.6) invariant.2 This yields for the N -particle canonical
distribution

Ps = C0Ω (Etot) e
−βEs =

1

N !ZN
e−βEs , (1.24)

with the N -particle canonical partition function given by

ZN =
1

N !

∑
se
−βEs . (1.25)

where the summation runs over all physically different states s of energy Es of theN -body subsystem.
This approach may be justified in quantum mechanics as long as multiple occupation of the same

1The appearance of the logarithm in the definition S∗ = kB ln Ω(E) can be motivated as resulting from the wish
to connect the statistical quantity Ω(E), which may be regarded as a product of single particle probabilities, to the
thermodynamic quantity entropy, which is an extensive (i.e., additive) property.

2Omission of this correction gives rise to the paradox of Gibbs - see e.g. the book by Frederick Reif [58]. Arguably
this famous paradox can be regarded - in hindsight - as pointing towards the modern concept of indistinguishability
of identical particles [39].
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single-particle state is negligible. In Section 1.4.4 we show that for a weakly interacting gas ZN =(
ZN1 /N !

)
J , with J → 1 in the ideal gas limit.

Interestingly, as the role of the reservoir is purely restricted to allow the exchange of heat of the
small system with its surroundings, the reservoir may be replaced by any object that can serve this
purpose. Therefore, in cases where a gas is confined by the walls of a vessel the expressions for the
small system apply to the entire of the confined gas.

Problem 1.1. Show that for a small system ofN atoms within a trapped ideal gas the rms energy fluctuation
relative to the total average total energy E √

〈∆E2〉
E

=
A√
N

decreases with the square root of the total number of atoms. Here A is a constant and ∆E = E − E is
the deviation from equilibrium. What is the physical meaning of the constant A? Hint: for an ideal gas
ZN =

(
ZN1 /N !

)
.

Solution. The average energy E = 〈E〉 and average squared energy
〈
E2
〉

of a small system of N atoms
are given by

〈E〉 =
∑
sEsPs = (N !ZN )−1∑

sEse
−βEs = − 1

ZN

∂ZN
∂β

= −∂ lnZN
∂β〈

E2〉 =
∑
sE

2
sPs = (N !ZN )−1∑

sE
2
se
−βEs =

1

ZN

∂2ZN
∂2β

.

The
〈
E2
〉

can be related to 〈E〉2 using the expression

1

ZN

∂2ZN
∂2β

=
∂

∂β

(
1

ZN

∂ZN
∂β

)
+

1

Z2
N

(
∂ZN
∂β

)2

.

Combining the above relations we obtain for the variance of the energy of the small system〈
∆E2〉 ≡ 〈(E − E)2〉 =

〈
E2〉− 〈E〉2 = ∂2 lnZN/∂

2β.

Because the gas is ideal we may use the relation ZN =
(
ZN1 /N !

)
to relate the average energy E and the

variance
〈
∆E2

〉
to the single atom values,

E = −∂N lnZ1/∂β = Nε〈
∆E2〉 = ∂2N lnZ1/∂

2β = N
〈
∆ε2〉 .

Taking the ratio we obtain √
〈∆E2〉
E

=
1√
N

√
〈∆ε2〉
ε

.

Hence, although the rms fluctuations grow proportional to the square root of number of atoms of the small
system, relative to the average total energy these fluctuations decrease with

√
N . The constant mentioned

in the problem represents the fluctuations experienced by a single atom in the gas, A =
√
〈∆ε2〉/ε. In view

of the derivation of the canonical distribution this analysis is only correct for N≪ Ntot and E≪ Etot. 2

1.2.5 Link to thermodynamic properties - Boltzmann factor

Recognizing S∗ = kB ln Ω(E∗) as a function of E∗, N∗,U in which N and U are kept constant, we
identify S∗ with the entropy of the reservoir because the thermodynamic function also depends on
the total energy, the number of atoms and the confinement volume. Thus, the most probable state
of the total system is seen to correspond to the state of maximum entropy, S∗ + S = max, where S
is the entropy of the small system. Next we recall the thermodynamic relation

dS =
1

T
dU − 1

T
dW − µ

T
dN, (1.26)
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where dW is the mechanical work done on the small system, U its internal energy and µ the
chemical potential. For homogeneous systems dW = −pdV with p the pressure and V the volume.
Since dS = −dS∗, dN = −dN∗ and dU = −dE∗ for conditions of maximum entropy, we identify
kBβ = (∂S∗/∂E∗)U,N∗ = (∂S/∂U)U,N and β = 1/kBT , where T is the temperature of the reservoir
(see also problem 1.2). The subscript U indicates that the external potential is kept constant; i.e.,
no mechanical work is done on the system. For homogeneous systems it corresponds to the case of
constant volume.

Comparing two kinetic states s1 and s2 having energies ε1 and ε2 and using β = 1/kBT we find
that the ratio of probabilities of occupation is given by the Boltzmann factor

Ps2/Ps1 = e−∆ε/kBT , (1.27)

with ∆ε = ε2 − ε1. Similarly, the N -particle canonical distribution takes the form

Ps = (N !ZN )
−1
e−Es/kBT (1.28)

where
ZN = (N !)

−1∑
se
−Es/kBT (1.29)

is the N -particle canonical partition function. With Eq. (1.28) the average energy of the small
N -body system can be expressed as

E =
∑
sEsPs = (N !ZN )

−1∑
sEse

−Es/kBT = kBT
2 (∂ lnZN/∂T )U,N . (1.30)

Identifying E with the internal energy U of the small system we have

U = kBT
2 (∂ lnZN/∂T )U,N = T [∂ (kBT lnZN ) /∂T ]U,N − kBT lnZN . (1.31)

Introducing the energy
F = −kBT lnZN ⇔ ZN = e−F/kBT (1.32)

we note that F = U + T (∂F/∂T )U,N . Comparing this expression with the thermodynamic relation
F = U − TS we recognize in F the Helmholtz free energy F , which is a function of T , N and
V (for inhomogeneous systems U). Once F is known the thermodynamic properties of the small
system can be obtained by combining the thermodynamic relations for changes of the free energy
dF = dU − TdS − SdT and internal energy dU = dW + TdS + µdN into dF = dW − SdT + µdN ,

S = −
(
∂F

∂T

)
U,N

and µ =

(
∂F

∂N

)
U,T

. (1.33)

Like above, the subscript U indicates the absence of mechanical work done on the system. Note
that the usual expression for the pressure

p = −
(
∂F

∂V

)
T,N

(1.34)

is only valid for the homogeneous gas but cannot be applied more generally before the expression
for the mechanical work dW = −pdV has been generalized to deal with the general case of an
inhomogeneous gas. We return to this issue in Section 1.3.1.

Problem 1.2. Show that the entropy Stot = S+S∗ of the total system of Ntot particles is maximum when
the temperature of the small system equals the temperature of the reservoir (β = β∗).

Solution. With Eq. (1.17) we have for the entropy of the total system

Stot/kB = ln ΩN (E) + ln Ω (E∗) = lnP0(E)− lnC0.

Differentiating this equation with respect to E we obtain

∂Stot
kB∂E

=
∂ lnP0(E)

∂E
=
∂ ln ΩN (E)

∂E
+
∂ ln Ω (E∗)

∂E∗
(
∂E∗

∂E
) = β − β∗.

Hence lnP0(E) and therefore also Stot reaches a maximum when β = β∗. 2
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1.3 Equilibrium properties in the ideal gas limit

1.3.1 Phase-space distributions

In this Section we apply the canonical distribution (1.28) to calculate the density and momentum
distributions of a classical ideal gas confined at temperature T in an atom trap characterized by the
trapping potential U(r), where U(0) = 0 corresponds to the trap minimum. In the ideal gas limit the
energy of the individual atoms may be approximated by the non-interacting one-body hamiltonian

ε = H0(r,p) =
p2

2m
+ U(r). (1.35)

Note that the lowest single particle energy is ε = 0 and corresponds to the kinetic state (r,p) = (0, 0)
of an atom which is classically localized in the trap center. In the ideal gas limit the individual
atoms can be considered as small systems in thermal contact with the rest of the gas. Therefore, the
probability of finding an atom in a specific state s of energy εs is given by the canonical distribution
(1.28), which with N = 1 and Z1 takes the form Ps = Z−1

1 e−εs/kBT . As the classical hamiltonian
(1.35) is a continuous function of r and p we obtain the expression for the quasi-classical limit by
turning from the probability Ps of finding the atom in state s, with normalization

∑
s Ps = 1, to the

probability density
P (r,p) = (2π~)

−3
Z−1

1 e−H0(r,p)/kBT (1.36)

of finding the atom with momentum p at position r, with normalization
´
P (r,p)dpdr = 1. Here

we used the continuum transition (1.15). In this quasi-classical limit the single-particle canonical
partition function takes the form

Z1 =
1

(2π~)3

ˆ
e−H0(r,p)/kBT dpdr. (1.37)

Note that (for a given trap) Z1 depends only on temperature.

The significance of the factor (2π~)
−3

in the context of a classical gas deserves some discussion.
For this we turn to a quantity closely related to P (r,p) known as the phase-space density

n(r,p) = NP (r,p) = (2π~)
−3
f(r,p). (1.38)

This is the number of single-atom phase points per unit volume of phase space at the location (r,p).
In dimensionless form the phase-space distribution function is denoted by f(r,p). This quantity
represents the phase-space occupation at point (r,p); i.e., the number of atoms at time t present

within an elementary phase space volume (2π~)
3

near the phase point (r,p). Integrating over phase
space we obtain the total number of particles under the distribution

N =
1

(2π~)3

ˆ
f(r,p)dpdr. (1.39)

Thus, in the center of phase space we have

f (0, 0) = (2π~)
3
NP (0, 0) = N/Z1 ≡ D (1.40)

the quantity D ≡ N/Z1 is seen to be a dimensionless number representing the number of single-atom
phase points per unit cubic Planck constant. Obviously, except for its dimension, the use of the
Planck constant in this context is a completely arbitrary choice. It has absolutely no physical signif-
icance in the classical limit. However, from quantum mechanics we know that when D approaches
unity the average distance between the phase points reaches the quantum resolution limit expressed
by the Heisenberg uncertainty relation.1 Under these conditions the gas will display deviations from

1 ∆x∆px ≥ 1
2
~ with similar expressions for the y and z directions.
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classical behavior known as quantum degeneracy effects. The dimensionless constant D is called the
degeneracy parameter. Note that the presence of the quantum resolution limit implies that only a
finite number Ω of microstates of a given energy can be distinguished, whereas at low phase-space
density the gas behaves quasi-classically.

Integrating the phase-space density over momentum space we find for the probability of finding
an atom at position r

n(r) =
1

(2π~)3

ˆ
f(r,p)dp = f (0, 0) e−U(r)/kBT

1

(2π~)3

ˆ ∞
0

e−(p/α)24πp2dp (1.41)

with α =
√

2mkBT the most probable momentum in the gas. Not surprisingly, n(r) is just the
density distribution of the gas in configuration space. Rewriting Eq. (1.41) in the form

n(r) = n0e
−U(r)/kBT (1.42)

and using the definition (1.40) we may identify

n0 = n(0) = D/(2π~)3

ˆ ∞
0

e−(p/α)24πp2dp (1.43)

with the density in the trap center. This density is usually referred to as the central density , the
maximum density or simply the density of a trapped gas. Note that the result (1.42) holds for both
collisionless and hydrodynamic conditions as long as the ideal gas approximation is valid. Evaluating
the momentum integral using (C.12) we obtain

ˆ ∞
0

e−(p/α)24πp2dp = π3/2α3 = (2π~/Λ)
3
, (1.44)

where
Λ ≡ [2π~2/(mkBT )]1/2 (1.45)

is called the thermal De Broglie wavelength. The interpretation of Λ as a De Broglie wavelength
and the relation to spatial resolution in quantum mechanics is further discussed in Section 1.5.
Substituting Eq. (1.44) into (1.43) we find that the degeneracy parameter is given by

D = n0Λ3. (1.46)

The total number of atoms N in a trapped cloud is obtained by integrating the density distribution
n(r) over configuration space

N =

ˆ
n(r)dr = n0

ˆ
e−U(r)/kBT dr. (1.47)

Noting that the ratio N/n0 has the dimension of a volume we can introduce the concept of the
effective volume of an atom cloud,

Ve ≡ N/n0 =

ˆ
e−U(r)/kBT dr. (1.48)

The effective volume of an inhomogeneous gas equals the volume of a homogeneous gas with the
same number of atoms and density. Experimentally, the central density n0 of a trapped gas is often
determined with the aid of Eq. (1.48) after measuring the total number of atoms and the effective
volume. Note that Ve depends only on temperature, whereas n0 depends on both N and T . Recalling
that also Z1 depends only on T we look for a relation between Z1 and Ve. Rewriting Eq. (1.40) we
have

N = n0Λ3Z1. (1.49)
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Eliminating N using Eq. (1.48) the mentioned relation is found to be

Z1 = VeΛ
−3. (1.50)

Having defined the effective volume we can also calculate the mechanical work done when the
effective volume is changed,

dW = −p0dVe, (1.51)

where p0 is the pressure in the center of the trap.
Similar to the density distribution n(r) in configuration space we can introduce a distribution

n(p) = (2π~)
−3 ´

f(r,p)dr in momentum space. It is more customary to introduce a distribution
PM(p) by integrating P (r,p) over configuration space,

PM(p) =

ˆ
P (r,p)dr = Z−1

1

e−(p/α)2

(2π~)
3

ˆ
e−U(r)/kBT dr = (Λ/2π~)

3
e−(p/α)2 =

e−(p/α)2

π3/2α3
, (1.52)

which is again a distribution with unit normalization. This distribution is known as the Maxwellian
momentum distribution.

Problem 1.3. Show that the average thermal speed in an ideal gas is given by v̄th =
√

8kBT/πm, where
m is the mass of the atoms and T the temperature of the gas.

Solution. By definition the average thermal speed v̄th = p̄/m is related to the first moment of the momen-
tum distribution,

p̄ =
1

m

ˆ
pPM(p)dp.

Substituting Eq. (1.52) we obtain using the definite integral (C.13)

p̄ =
1

π3/2α3

ˆ
e−(p/α)24πp3dp =

4α

π1/2

ˆ
e−x

2

x3dx =
√

8mkBT/π , (1.53)

which is the desired result. 2

Problem 1.4. Show that the average kinetic energy in an ideal gas is given by ĒK = 3
2
kBT .

Solution. By definition the kinetic energy ĒK = p2/2m is related to the second moment of the momentum
distribution,

p2 =

ˆ
p2PM(p)dp.

Substituting Eq. (1.52) we obtain using the definite integral (C.13)

p2 =
1

π3/2α3

ˆ
e−(p/α)24πp4dp =

4α2

π1/2

ˆ
e−x

2

x4dx = 3mkBT , (1.54)

which implies the desired result. 2

Problem 1.5. Show that the variance in the atomic momentum around its average value in a thermal
quasi-classical gas is given by

〈(p− p̄)2〉 = (3− 8/π)mkBT ' mkBT/2,

where m is the mass of the atoms and T the temperature of the gas.

Solution. The variance in the atomic momentum around its average value can be written as

〈(p− p̄)2〉 =
〈
p2〉− 2 〈p〉 p̄+ p̄2 = p2 − p̄2, (1.55)

where p̄ and p2 are the first and second moments of the momentum distribution. Substituting Eqs. (1.53)
and (1.54) we obtain the desired result. 2
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1.3.2 Example: the harmonically trapped gas

As an important example we analyze some properties of a dilute gas in an isotropic harmonic trap.
For magnetic atoms this can be realized by applying an inhomogeneous magnetic field B (r). For
atoms with a magnetic moment µ this gives rise to a position-dependent Zeeman energy

EZ (r) = −µ ·B (r) (1.56)

which acts as an effective potential U (r). For gases at low temperature, the magnetic moment
experienced by a moving atom will generally follow the local field adiabatically. A well-known
exception occurs near field zeros. For vanishing fields the precession frequency drops to zero and any
change in field direction due to the atomic motion will cause in depolarization, a phenomenon known
as Majorana depolarization. For hydrogen-like atoms, neglecting the nuclear spin, µ = −2µBS and

EZ (r) = 2µBmsB (r) , (1.57)

where ms = ±1/2 is the magnetic quantum number, µB the Bohr magneton and B (r) the modulus
of the magnetic field. Hence, spin-up atoms in a harmonic magnetic field with non-zero minimum
in the origin given by B (r) = B0 + 1

2B
′′(0)r2 will experience a trapping potential of the form

U(r) = 1
2µBB

′′(0)r2 = 1
2mω

2r2, (1.58)

where m is the mass of the trapped atoms, ω/2π their oscillation frequency and r the distance
to the trap center. Similarly, spin-down atoms will experience anti-trapping near the origin. For
harmonically trapped gases it is useful to introduce the thermal radius R of the cloud, which is the
distance from the trap center at which the density has dropped to 1/e of its maximum value,

n(r) = n0e
−(r/R)2 . (1.59)

Note that for harmonic traps the density distribution of a classical gas has a gaussian shape in the
ideal-gas limit. Comparing with Eq. (1.42) we find for the thermal radius

R =

√
2kBT

mω2
. (1.60)

Substituting Eq. (1.58) into Eq. (1.48) we obtain after integration for the effective volume of the gas

Ve =

ˆ
e−(r/R)24πr2dr = π3/2R3 =

(
2πkBT

mω2

)3/2

. (1.61)

Note that for a given harmonic magnetic trapping field and a given magnetic moment we have
mω2 = µB′′(0) and the cloud size is independent of the atomic mass.

Next we calculate explicitly the total energy of the harmonically trapped gas. First we consider
the potential energy and calculate with the aid of Eq. (C.12)

EP =

ˆ
U(r)n(r)dr = n0kBT

ˆ ∞
0

(r/R)
2
e−(r/R)24πr2dr =

3

2
NkBT. (1.62)

Similarly we calculate for the kinetic energy

EK =

ˆ (
p2/2m

)
n(p)dp =

NkBT

π3/2α3

ˆ ∞
0

(p/α)
2
e−(p/α)24πp2dp =

3

2
NkBT. (1.63)

Hence, the total energy is given by
E = 3NkBT. (1.64)
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Problem 1.6. An isotropic harmonic trap has the same potential energy curvature of mω2/kB = 2000
K/m2 for ideal classical gases of 7Li and 39K.
a. Calculate the trap frequencies for these two gases.
b. Calculate the harmonic radii for these gases at the temperature T = 10 µK.

Problem 1.7. Consider a thermal cloud of atoms in a harmonic trap and in the classical ideal gas limit.
a. Is there a difference between the average speed of the atoms in the center of the cloud (where the potential
energy is zero) and in the far tail of the density distribution (where the potential energy is high?
b. Is there a difference in this respect between collisionless and hydrodynamic conditions?

Problem 1.8. Derive an expression for the effective volume of an ideal classical gas in an isotropic linear
trap described by the potential U(r) = u0r. How does the linear trap compare with the harmonic trap for
given temperature and number of atoms when aiming for high-density gas clouds?

Problem 1.9. Consider the imaging of a harmonically trapped cloud of 87Rb atoms in the hyperfine state
|F = 2,mF = 2〉 immediately after switching off of the trap. If a small (1 Gauss) homogeneous field is
applied along the imaging direction (z direction) the attenuation of circularly polarized laser light at the
resonant wavelength λ = 780 nm is described by the Lambert-Beer relation

1

I(r)

∂

∂z
I(r) = −σn (r) ,

where I(r) is the intensity of the light at position r, σ = 3λ2/2π is the resonant optical absorption cross
section and n (r) the density of the cloud.
a. Show that for homogeneously illuminated low density clouds the image is described by

I(x, y) = I0 [1− σn2(x, y)] ,

where I0 is the illumination intensity, n2(x, y) =
´
n (r) dz. The image magnification is taken to be unity.

b. Derive an expression for n2(x, y) normalized to the total number of atoms.
c. How can we extract the gaussian 1/e size (R) of the cloud from the image?
d. Derive an expression for the central density n0 of the atom cloud in terms of the absorbed fraction A(x, y)
in the center of the image A0 = [I0 − I(0, 0)] /I0 and the R1/e radius defined by A(0, R1/e)/A0 = 1/e.

1.3.3 Density of states

Many properties of trapped gases do not depend on the distribution of the gas in configuration
space or in momentum space separately but only on the distribution of the total energy, represented
by the ergodic distribution function f(ε). This quantity is related to the phase-space distribution
function f(r,p) through the relation

f(r,p) =

ˆ
dε′ f(ε′) δ[ε′ −H0(r,p)]. (1.65)

To obtain the inverse relation we note that there are many microstates (r,p) with the same energy
ε and introduce the concept of the density of states

ρ(ε) ≡ (2π~)−3

ˆ
drdp δ[ε−H0(r,p)], (1.66)

which is the number of classical states (r,p) per unit phase space at a given energy ε and H0(r,p) =
p2/2m + U(r) is the single particle hamiltonian; note that ρ (0) = (2π~)−3. After integrating
Eq. (1.66) over p the density of states takes the form1

ρ(ε) =
2π(2m)3/2

(2π~)3

ˆ
U(r)≤ε

√
ε− U(r)dr, (1.67)

1Note that for isotropic momentum distributions
´
dp = 4π

´
dp p2 = 2π(2m)3/2

´
d
(
p2/2m

)√
p2/2m.
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Table 1.1: Properties of isotropic power-law traps of the type U(r) = U0(r/ltr)
3/γ .

square well harmonic trap linear trap square root dimple trap

w0 U0l
−3/γ
tr with γ → 0 1

2
mω2 U0l

−1
tr U0l

−1/2
tr

γ 0 3/2 3 6

αPL
4
3
πl3tr

(
2π/mω2

)3/2 4
3
πl3tr 3!/U3

0
4
3
πl3tr 6!/U6

0

APL (m/2π~2)3/2αPL/Γ(3/2) 1
2
(1/~ω)3 (m/2π~2)3/2αPL/Γ(9/2) (m/2π~2)3/2αPL/Γ(15/2)

which expresses the dependence on the potential shape. In the homogeneous case, U(r) = 0, the
density of states takes the well-known form

ρ(ε) =
4πmV

(2π~)3

√
2mε, (1.68)

where V is the volume of the system. As a second example we consider the harmonically trapped
gas. Substituting Eq. (1.58) into Eq. (1.67) we find after a straightforward integration for the density
of states

ρ(ε) = 1
2 (1/~ω)3ε2. (1.69)

Problem 1.10. Show the relationˆ
drdp f(r,p)δ[ε−H0(r,p)] = f(ε)ρ(ε) = f(ε)

ˆ
drdp δ[ε−H0(r,p)]. (1.70)

Solution. Substituting Eq. (1.65) into the left hand side of Eq. (1.70) we obtain using the definition for the
density of states

(2π~)−3

ˆ
dε′ f(ε′)

ˆ
drdp δ[ε′ −H0(r,p)] δ[ε−H0(r,p)] =

ˆ
dε′ f(ε′) ρ(ε′) δ

(
ε− ε′

)
= f(ε)ρ(ε). 2

1.3.4 Power-law traps

Let us analyze isotropic power-law traps. These are traps for which the potential can be written in
the form

U(r) = U0 (r/ltr)
3/γ ≡ w0r

3/γ , (1.71)

where γ is known as the trap parameter. For instance, for γ = 3/2 and w0 = 1
2mω

2 we have the
harmonic trap; for γ = 3 and w0 = ∇U the spherical linear trap. Note that the trap coefficient can

be written as w0 = U0l
−3/γ
tr , where U0 is the trap strength and ltr the characteristic trap size. In the

limit γ → 0 we obtain the spherical square well. Traps with γ > 3 are known as spherical dimple
traps. A summary of properties of isotropic traps is given in Table 1.1.

More generally one distinguishes orthogonal power-law traps [4], which are represented by po-
tentials of the type

U(x, y, z) = w1 |x|1/γ1 + w2 |y|1/γ2 + w3 |z|1/γ3 with γ =
∑
i

γi, (1.72)

where γ is again the trap parameter. Substituting the power-law potential (1.71) into Eq. (1.48) we
calculate (see problem 1.11) for the volume

Ve(T ) = αPL (kBT )
γ
, (1.73)

where the coefficients αPL are included in Table 1.1 for some typical cases of γ. Similarly, substi-
tuting Eq. (1.71) into Eq. (1.67) we find (see problem 1.12) for the density of states

ρ(ε) = APLε
1/2+γ with APL = αPL

(m/2π~2)3/2

Γ (γ + 3/2)
. (1.74)
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Also some APL coefficients are given in Table 1.1.

Problem 1.11. Show that the effective volume of an isotropic power-law trap is given by

Ve = 4
3
πl3trΓ(γ + 1) (kBT/U0)γ ,

where γ is the trap parameter and Γ (z) is de Euler gamma function.

Solution. The effective volume is defined as Ve =
´
e−U(r)/kBT dr. Substituting U(r) = w0r

3/γ for the

potential of an isotropic power-law trap we find with w0 = U0l
−3/γ
tr

Ve =

ˆ
e−w0r

3/γ/kBT 4πr2dr = 4
3
πl3trγ (kBT/U0)γ

ˆ
e−xxγ−1dx,

where x = (U0/kBT ) (r/ltr)
3/γ is a dummy variable. Evaluating the integral yields the Euler gamma

function Γ(γ) and with γΓ(γ) = Γ(γ + 1) provides the desired result. 2

Problem 1.12. Show that the density of states of an isotropic power-law trap is given by (compare with
Eq. (1.68))

ρ(ε) =
4πmVe
(2π~)3

√
2mε

√
π (ε/kBT )γ

2 Γ (γ + 3/2)
.

Solution. Substituting into Eq. (1.67) for the density of states the expression U(r) = w0r
3/γ , with w0 =

U0l
−3/γ
tr , and introducing the dummy variable x = ε− w0r

3/γ we find

ρ(ε) =
2π(2m)3/2

(2π~)3

4

3
πw−γ0 γ

ˆ ε

0

√
x (ε− x)γ−1 dx.

Using the integral (C.26) this leads to the desired result. 2

1.3.5 The harmonically trapped gas - a special case

In harmonic traps the restoring force acting on the atoms is linear in the distance to the trap center
irrespective of the direction of oscillation. For this reason harmonic oscillators are called linear
oscillators. As the force is linear in all directions the oscillations along the three principal axes
decouple, which places the harmonic trap on a special position among the trapping potentials. Here
we analyze the consequence for the effective volume and the density of states of the anisotropic
harmonic trapping potential

U(x, y, z) = 1
2m(ω2

xx
2 + ω2

yy
2 + ω2

zz
2). (1.75)

The energy levels are well known and given by

ε(nx, ny, nz) = (nx + 1
2 )~ωx + (ny + 1

2 )~ωy + (nz + 1
2 )~ωz. (1.76)

(a) The effective volume is given by

Ve = RxRyRz

ˆ
e−(X2+Y 2+Z2)dXdY dZ, (1.77)

where X =
(
mω2

x/2kBT
)1/2

x = x/Rx with similar expressions for the y and z direction. The
integral is evaluated by introducing the variable R, where R2 = X2 + Y 2 + Z2. Note that with our
transformation we reduced the problem to that of the isotropic harmonic oscillator,

Ve = R̄3

ˆ ∞
0

e−R
2

4πR2dR = π
3
2 R̄3 =

(
2πkBT/mω̄

2
)3/2

, (1.78)
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where R̄ =
(
2kBT/mω̄

2
)1/2

with ω̄ = (ωxωyωz)
1/3. Thus we obtained the result for the isotropic

harmonic oscillator with the oscillator frequency ω replaced by the geometric mean ω̄. Alternatively
we can integrate the X, Y and Z directions explicitly,

Ve = R̄3

ˆ
dR

ˆ R

0

e−X
2

dX

ˆ R−

0

e−Y
2

dY

ˆ
e−Z

2

dZ

(b) The density of states is given by

ρ(ε) =
2π(2m)3/2

(2π~)3
R̄3

ˆ
R2≤ε

√
ε− (X2 + Y 2 + Z2)dXdY dZ, (1.79)

where X =
(
mω2

x/2
)1/2

x = x/Ux with similar expressions for the y and z direction. The inte-
gral is evaluated by introducing the variable U , where U2 = X2 + Y 2 + Z2. Note that with our
transformation we reduced the problem to that of the isotropic harmonic oscillator,

ρ(ε) =
2π(2m)3/2

(2π~)3
Ū3

ˆ
R2≤ε

√
ε− U24πU2dU, (1.80)

In fact it is better to transform once more to the variable u = U2 → du = 2UdU ,

ρ(ε) =
4π2(2m)3/2

(2π~)3
Ū3

ˆ ε

0

√
ε− u

√
udu =

4π2(2m)3/2

(2π~)3
R̄3 π

4Γ(3)
ε2 =

(
1

~ω̄

)3
1
2ε

2, (1.81)

where Ū =
(
2/mω̄2

)1/2
with ω̄ = (ωxωyωz)

1/3. Thus we obtained also in this case the result for the
isotropic harmonic oscillator with the oscillator frequency ω replaced by the geometric mean ω̄.
(c) We consider an arbitrary functional of the type

f(x, y, z) = f [U(x, y, z)].

1.3.6 Thermodynamic properties of a trapped gas in the ideal gas limit

The concept of the density of states is ideally suited to derive general expressions for the thermody-
namic properties of an ideal classical gas confined in an arbitrary power-law potential U(r) of the
type (1.72). Taking the approach of Section 1.2.5 we start by writing down the canonical partition
function, which for a Boltzmann gas of N atoms is given by

ZN =
1

N !
(2π~)−3N

ˆ
e−H(p1,r1;··· ;pN ,rN )/kBT dp1· · ·dpNdr1 · · · drN . (1.82)

In the ideal gas limit the hamiltonian is the simple sum of the single-particle hamiltonians of the
individual atoms, H0(r,p) = p2/2m+U(r), and the canonical partition function reduces to the form

ZN =
ZN1
N !

. (1.83)

Here Z1 is the single-particle canonical partition function given by Eq. (1.37). In terms of the density
of states it takes the form1

Z1 = (2π~)
−3
ˆ
{
ˆ
e−ε/kBT δ[ε−H0(r,p)]dε}dpdr =

ˆ
e−ε/kBT ρ(ε)dε. (1.84)

1Note that e−H0(r,p)/kBT =
´
e−ε/kBT δ[ε−H0(r,p)]dε.
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Substituting the power-law expression Eq. (1.74) for the density of states we find for power-law traps

Z1 = APL (kBT )
(γ+3/2)

ˆ
e−xx(γ+1/2)dx = APLΓ(γ + 3/2) (kBT )

(γ+3/2)
, (1.85)

where Γ(z) is the Euler gamma function. For the special case of harmonic traps this corresponds to

Z1 = (kBT/~ω)
3
. (1.86)

First we calculate the total energy. Substituting Eq. (1.83) into Eq. (1.31) we find

E = NkBT
2 (∂ lnZ1/∂T )U,N = (3/2 + γ)NkBT, (1.87)

where γ is the trap parameter defined in Eq. (1.72). For harmonic traps (γ = 3/2) we regain the
result E = 3NkBT derived previously in Section 1.3.2. Identifying the term 3

2kBT in Eq. (1.87) with
the average kinetic energy per atom we notice that the potential energy per atom in a power-law
potential with trap parameter γ is given by

EP = γNkBT. (1.88)

To obtain the thermodynamic quantities of the gas we look for the relation between Z1 and the
Helmholtz free energy F . For this we note that for a large number of atoms we may apply Stirling’s
approximation N ! ' (N/e)

N
and Eq. (1.83) can be written in the form

ZN '
(
Z1e

N

)N
for N≫ 1. (1.89)

Substituting this result into expression (1.32) we find for the Helmholtz free energy

F = −NkBT [1 + ln(Z1/N)] ⇔ Z1 = Ne−(1+F/NkBT ). (1.90)

As an example we derive a thermodynamic expression for the degeneracy parameter. First we
recall Eq. (1.49), which relates D to the single-particle partition function,

D = n0Λ3 = N/Z1. (1.91)

Substituting Eq. (1.90) we obtain
n0Λ3 = e1+F/NkBT , (1.92)

or, substituting F = E − TS, we obtain

n0Λ3 = exp [E/NkBT − S/NkB + 1] . (1.93)

Hence, we found that for fixed E/NkBT increase of the degeneracy parameter expresses the removal
of entropy from the gas.

To calculate the pressure in the trap center we use Eq. (1.51),

p0 = − (∂F/∂Ve)T,N . (1.94)

Substituting Eq. (1.50) into Eq. (1.90) the free energy can be written as

F = −NkBT [1 + lnVe − 3 ln Λ− lnN ]. (1.95)

Thus, combining (1.94) and (1.95), we obtain for the central pressure the well-known expression,

p0 = (N/Ve) kBT = n0kBT. (1.96)
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Problem 1.13. Show that the chemical potential of an ideal classical gas is given by

µ = −kBT ln(Z1/N)⇔ µ = kBT ln(n0Λ3). (1.97)

Solution. Starting from Eq. (1.33) we evaluate the chemical potential as a partial derivative of the Helmholtz
free energy,

µ = (∂F/∂N)U,T = −kBT [1 + ln(Z1/N)]−NkBT [∂ ln(Z1/N)/∂N ]U,T .

Recalling Z1 = VeΛ
−3 we note that Z1 does not depend on N . Evaluating the partial derivative we obtain

µ = −kBT [1 + ln(Z1/N)]−NkBT [∂ ln(N)/∂N ]U,T = −kBT ln(Z1/N),

which is the requested result. 2

1.3.7 Adiabatic variations of the trapping potential - adiabatic cooling

In many experiments the trapping potential is varied in time. This may be necessary to increase the
density of the trapped cloud to promote collisions or just the opposite, to avoid inelastic collisions,
as this results in spurious heating or in loss of atoms from the trap.

In changing the trapping potential mechanical work is done on a trapped cloud (dW 6= 0) chang-
ing its volume and possibly its shape but there is no exchange of heat between the cloud and its
surroundings; i.e., the process proceeds adiabatically (dQ = 0). If, in addition, the change proceeds
sufficiently slowly the temperature and pressure will change quasi-statically and reversing the pro-
cess the gas returns to its original state; i.e., the process is reversible. Reversible adiabatic changes
are called isentropic as they conserve the entropy of the gas (dQ = TdS = 0).1

In practice slow means that the changes in the thermodynamic quantities occur on a time scale
long as compared to the time to randomize the atomic motion; i.e., times long in comparison to the
collision time or - in the collisionless limit - the oscillation time in the trap.

An important consequence of entropy conservation under slow adiabatic changes may be derived
for the degeneracy parameter. We illustrate this for power-law potentials. Using Eq. (1.87) the
degeneracy parameter can be written for this case as

n0Λ3 = exp [5/2 + γ − S/NkB ] , (1.98)

implying that n0Λ3 is conserved provided the cloud shape remains constant (γ = constant). Recall-
ing Eq. (1.45) this implies that the temperature changes with central density according to

T (t) = T0 [n0(t)/n0]
2/3

. (1.99)

Let us analyze what happens if we adiabatically change the power-law potential (1.71) by varying
the trap strength U0(t) as a function of time,

U(r) = U0(t) (r/ltr)
3/γ

. (1.100)

Using Eq. (1.48) we find that in this case also the central density n0 and the effective volume Ve
become functions of time (see Problem 1.11),

n0

n0(t)
=
Ve(t)

V0
=

(
T (t)/T0

U0(t)/U0

)γ
. (1.101)

Substituting this expression into Equation (1.99) we obtain

T (t) = T0 [U0(t)/U0]
γ/(γ+3/2)

, (1.102)

1Paul Ehrenfest extended the concept of adiabatic change to the quantum mechanical case, showing that a system
stays in the same energy level when the levels shift as a result of slow variations of an external potential. Note that
also in this case only mechanical energy is exchanged between the system and its surroundings.
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which shows that a trapped gas cools by reducing the trap strength in time, a process known as
adiabatic cooling. Reversely, adiabatic compression gives rise to heating. Similarly we find using
Eq. (1.99) that the central density will change like

n0 (t) = n0 [U0(t)/U0]
γ/(1+2γ/3)

. (1.103)

Using Table 1.1 we find for harmonic traps T ∼ U1/2
0 ∼ ω and n0 ∼ U3/4

0 ∼ ω3/2; for spherical

quadrupole traps T ∼ U2/3
0 and n0 ∼ U0; for square root dimple traps T ∼ U4/5

0 and n0 ∼ U6/5
0 .

Interestingly, the degeneracy parameter is not conserved under slow adiabatic variation of the
trap parameter γ. From Eq. (1.98) we see that transforming a harmonic trap (γ = 3/2) into a square
root dimple trap (γ = 6) the degeneracy parameter increases by a factor e9/2 ≈ 90.

Hence, increasing the trap depth U0 for a given trap geometry (constant ltr and γ) typically
results in an increase of the density. This increase is linear for the case of a spherical quadrupole
trap. For harmonic traps the density increases slower than linear whereas for dimple traps the
increases is faster. In the limiting case of the square well potential (γ = 0) the density is not
affected as long as the gas remains trapped. The increase in density is accompanied by and increase
of the temperature, leaving the degeneracy parameter D unaffected. To change D the trap shape
(i.e., γ) has to be varied. Although in this way the degeneracy may be changed significantly [55] or
even substantially [62], adiabatic variation will typically not allow to change D by more than two
orders of magnitude in trapped gases.

1.4 Nearly ideal gases with binary interactions

1.4.1 Evaporative cooling and run-away evaporation

An enormous advantage of trapped gases is that one can selectively remove the atoms with the
largest total energy. The atoms in the low-density tail of the density distribution necessarily have
the highest potential energy. As, in thermal equilibrium, the average momentum of the atoms
is independent of the position also the average total energy of the atoms in the low-density tail
is largest. This feature allows an incredibly simple and powerful cooling mechanism known as
evaporative cooling [29, 30]. By this method the most energetic atoms are continuously removed
by “evaporating off” the low-density tail of the atom cloud on a time scale slow in comparison
to the thermalization time τth, which is the time required to achieve thermal equilibrium in the
cloud. Because only a few collisions are sufficient to thermalize the atomic motion in the gas we
may approximate

τth ' τc = (n0v̄rσ)
−1
, (1.104)

where v̄r is the average relative speed given by Eq. (1.121). The finite trap depth by itself gives rise
to evaporation. However in many experiments the evaporation is forced by a radio-frequency field
inducing spin-flips at the edges of a spin-polarized cloud. In such cases the effective trap depth εtr
can be varied without changing the shape of the trapping potential. For temperatures kBT � εtr
the probability per thermalization time to produce an atom of energy equal to the trap depth is given
by the Boltzmann factor e−η, where η ≡ εtr/kBT . Hence, the evaporation rate is approximately
given by

− Ṅ/N = τ−1
ev ' n0v̄rσe

−η. (1.105)

Not surprisingly, the evaporation rate decreases exponentially with η.
Let us analyze evaporative cooling for the case of a harmonic trap1, where the total energy is

given by Eq. (1.64). As the total energy can be changed by either reducing the temperature or the

1In this course we only emphasize the essential aspects of evaporative cooling. More information can be found in
the reviews by W. Ketterle and N.J. van Druten, Adv. At. Mol. Opt. Phys. 36 (1997); C. Cohen Tannoudji, Course
96/97 at College de France; J.T.M. Walraven in: Quantum Dynamics of Simple Systems, G.-L. Oppo, S.M. Barnett,
E. Riis and M. Wilkinson (Eds.) IOP Bristol 1996).
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Figure 1.2: Measurement of evaporative cooling of a 87Rb cloud in a Ioffe-Pritchard trap. In this example
the efficiency parameter was observed to be slightly larger than unity (α = 1.1). See further K. Dieckmann,
Thesis, University of Amsterdam (2001).

number of trapped atoms, the rate of change of total energy should satisfy the relation

Ė = 3ṄkBT + 3NkBṪ . (1.106)

Suppose next that we continuously remove the tail of atoms of potential energy εtr = ηkBT with
η � 1. Under such conditions the loss rate of total energy is given by1

Ė = (η + 1)ṄkBT. (1.107)

As the energy removal is largest for large η we should evaporate as slow as possible but obviously
not slower than the vacuum loss rate τ−1

vac of the gas. Equating Eqs. (1.106) and (1.107) we obtain
the relation

Ṫ /T = 1
3 (η − 2)Ṅ/N. (1.108)

This relation shows that the temperature decreases with the number of atoms provided η > 2, which
is easily arranged. The solution of Eq. (1.108) can be written as2

T/T0 = (N/N0)
α

with α = 1
3 (η − 2),

demonstrating that the temperature drops linearly with the number of atoms for η = 5 and even
faster for η > 5 (see Fig.1.2).

Amazingly, although the number of atoms drops dramatically, typically by a factor 1000, the
density n0 of the gas increases! To analyze this behavior we note that N = n0Ve and the atom loss
rate should satisfy the relation Ṅ = ṅ0Ve + n0V̇e, which can be rewritten in the form

ṅ0/n0 = Ṅ/N − V̇e/Ve. (1.109)

Substituting Eq. (1.61) for the effective volume in a harmonic trap Eq. (1.109) takes the form

ṅ0/n0 = Ṅ/N − 3
2 Ṫ /T, (1.110)

and after substitution of Eq. (1.108)

ṅ0/n0 = 1
2 (4− η) Ṅ/N. (1.111)

1Naively one might expect Ė = (η + 3/2)ṄkBT . However, in the presence of evaporation the gas is out of
equilibrium. The expression given here results from a kinetic analysis of evaporative cooling in the limit η →∞ [43].

2Eq.(1.108) is an expression between logarithmic derivatives (y′/y = d ln y/dx) and corresponds to a straight line
of slope α on a log-log plot.



1.4. NEARLY IDEAL GASES WITH BINARY INTERACTIONS 21

Figure 1.3: Example of the increase in phase-space density with decreasing temperature as observed with
a cloud of 87Rb atoms in a Ioffe-Pritchard trap. In this example the gas reaches a temperature of 2.4 µK
and a phase-space density of 0.24. Further cooling results in Bose-Einstein condensation. See further K.
Dieckmann, Thesis, University of Amsterdam (2001).

Hence, for evaporation at constant η, the density increases with decreasing number of atoms for
η > 4.

The phase-space density grows even more dramatically. Using the same approach as before we
write for the rate of change of the degeneracy parameter Ḋ = ṅ0Λ3 + 3n0Λ2Λ̇ and arrive at

Ḋ/D = (3− η) Ṅ/N (1.112)

This shows that the degeneracy parameter D increases with decreasing number of atoms already
for η > 3.

The spectacular growth of phase-space density is illustrated in Fig.1.3.
Further, with increasing density the evaporation rate

Ṅ/N = −τ−1
ev ' −n0v̄rσe

−η, (1.113)

becomes faster and faster because the loss in thermal speed is compensated by the increase in
density. We are dealing with a run-away process known as run-away evaporative cooling , in which
the evaporation speeds up until the gas density is so high that the interactions between the atoms
give rise to heating and loss processes and put a halt to the cooling. This typically happens at
densities where the gas has become hydrodynamic but long before the thermodynamic properties
deviate significantly from ideal gas behavior.

Interestingly, the underlying assumption of forced evaporation at constant η turns out to be
satisfied automatically if the initial density n0 is sufficiently high, which is extremely convenient
from the experimental point of view. To understand this phenomenon, let us presume that the trap
is ramped down exponentially at the rate

ε̇tr/εtr = −τ−1
R . (1.114)

The condition for η to remain constant is

η̇/η = ε̇tr/εtr − Ṫ /T = 0. (1.115)

For constant η we may substitute Eq. (1.108) and find

η̇/η = −τ−1
R − 1

3 (η − 2) Ṅ/N = −τ−1
R + 1

3 (η − 2) τ−1
ev , (1.116)
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which means that η̇/η = 0 is obtained for

η = 2 + 3 (τc/τR) eη. (1.117)

The second term becomes negligible if n0 is sufficiently high. For τc = τRe
−η the forced evaporation

proceeds at constant η for η = 5. For τR = 15 s this requires 10 collisions per second. If this collision
rate is not reached the stable point shifts to larger η until the evaporation rate drops below the
vacuum loss rate, which means that the gas lacks the time to rethermalize and forced evaporation
turns into to spilling of trapped atoms without increase in phase-space density.

Problem 1.14. What is the minimum value for the evaporation parameter η to observe run-away evapo-
ration in a harmonic trap?

Problem 1.15. The lifetime of ultracold gases is limited by the quality of the vacuum system and amounts to
typically 1 minute in the collisionless regime. This means that evaporative cooling to the desired temperature
should be completed within typically 15 seconds. Let us consider the case of 87Rb in an isotropic harmonic
trap of curvature mω2/kB = 1000 K/m2. For T ≤ 500 µK the cross section is given by σ = 8πa2, with
a ' 100a0 (a0 = 0.529× 10−10 m is the Bohr radius).
a. Calculate the density n0 for which the evaporation rate is Ṅ/N = −1 s−1 at T = 0.5 mK and evaporation
parameter η = 5.
b. What is the thermalization time under the conditions of question a?
c. Is the gas collisionless or hydrodynamic under the conditions of question a?

1.4.2 Canonical distribution for pairs of atoms

Just as in the case of a single atom we can write down the canonical distribution for pairs of atoms
in a single-component classical gas of N trapped atoms. In analogy with Section 1.2.4 we argue that
for N≫ 1 we can split off one pair without affecting the energy E of the remaining gas significantly,
Etot = E + ε with ε� E < Etot. In view of the central symmetry of the interaction potential, the
hamiltonian for the pair is best expressed in center of mass and relative coordinates (see Appendix
A.7),

ε = H(P,R; p, r) =
P 2

2M
+
p2

2µ
+ U2 (R, r) + V(r), (1.118)

with P 2/2M = P 2/4m the kinetic energy of the center of mass of the pair, p2/2µ = p2/m the
kinetic energy of its relative motion,

U2 (R, r) = U(R + 1
2r) + U(R− 1

2r) = U (r1) + U (r2) (1.119)

the potential energy of trapping and V(r) the potential energy of interaction.
In the ideal gas limit introduced in Section 1.2.2 the pair may be regarded as a small system

in thermal contact with the heat reservoir embodied by the surrounding gas. In this limit the
probability to find the pair in the kinetic state (P,R; p, r)⇔ (p1, r1; p2, r2) is given by the canonical
distribution

P (P,R; p, r) = 1
2 (2π~)−6Z−1

2 e−H(P,R;p,r)/kBT , (1.120)

with normalization
´
P (P,R; p, r)dPdRdpdr = 1. Hence the partition function for the pair is given

by

Z2 = 1
2 (2π~)−6

ˆ
e−H(P,R;p,r)/kBT dPdRdpdr.

The pair hamiltonian shows complete separation of the variables P and p. This allows us to
write in analogy with the procedure of Section 1.3.1 a unit-normalized distribution for the relative
momentum

PM(p) =

ˆ
P (P,R; p, r)dPdRdr.
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As an example we calculate the average relative speed between the atoms

v̄r =

ˆ ∞
0

p

µ
PM(p)dp =

1

µ

´∞
0
pe−(p/α)24πp2dp´∞

0
e−(p/α)24πp2dp

=
√

8kBT/πµ, (1.121)

where where α =
√

2µkBT . Here we used the definite integrals (C.12) and (C.13) with dummy
variable x = p/α. As for a single component gas µ = m/2 and we obtain v̄r =

√
2ῡth (compare with

problem 1.3)

1.4.3 Pair-interaction energy

In this section we estimate the correction to the total energy caused by the interatomic interactions
in a single-component classical gas of N atoms interacting pairwise through a short-range central
potential V(r) and trapped in an external potential U(r). In thermal equilibrium, the probability to
find a pair of atoms at position R with the two atoms at relative position r is obtained by integrating
the canonical distribution (1.120) over P and p,

P (R, r) =

ˆ
P (P,R; p, r)dPdp, (1.122)

normalization
´
P (R, r)drdR = 1. The function P (R, r) is the two-body distribution function,

P (R, r) = 1
2 (2π~)−6

ˆ
Z−1

2 e−H(P,R;p,r)/kBT dPdp = J−1
12 V

−2
e e−[U2(R,r)+V(r)]/kBT , (1.123)

and Ve the effective volume of the gas as defined by Eq. (1.48). Further, we introduced the normal-
ization integral

J12 ≡ V −2
e

ˆ
e−[U2(R,r)+V(r)]/kBT drdR (1.124)

as an integral over the pair configuration. The integration of Eq. (1.123) over momentum space is
straightforward because the pair hamiltonian (1.118) shows complete separation of the momentum
variables P and p.

To evaluate the integral J12 we note that the short-range potential V (r) is everywhere zero except
for short relative distances r . r0. This suggests to split the configuration space for the relative
position into a long-range and a short-range part by writing e−V(r)/kBT = 1 + [e−V(r)/kBT − 1],
bringing the configuration integral in the form

J12 = V −2
e

ˆ
e−U2(R,r)/kBT drdR + V −2

e

ˆ
e−U2(R,r)/kBT

[
e−V(r)/kBT − 1

]
drdR. (1.125)

The first term on the r.h.s. is a free-space integration yielding unity.1 The argument of the second
integral is only non-vanishing for r . r0, where U2 (R, r) ' U2 (R, 0) = 2U (R). This allows us to
separate the configuration integral into a product of integrals over the relative and the center of
mass coordinates. Comparing with Eq. (1.47) we note that

´
e−2U(R)/kBTdR = Ve (T/2) ≡ V2e is

the effective volume for the distribution of pairs; hence, the configuration integral can be written as

J12 = 1 + vintV2e/V
2
e , (1.126)

where

vint ≡
ˆ [

e−V(r)/kBT − 1
]

4πr2dr ≡
ˆ

[g (r)− 1] 4πr2dr (1.127)

1Note that
´
e−U2(R,r)/kBT drdR =

´
e−U(r1)/kBT dr1e−U(r2)/kBT dr2 = V 2

e because the Jacobian of the trans-

formation drdR =
∣∣∣ ∂(r,R)
∂(r1,r2)

∣∣∣ dr1dr2 is unity (see Problem A.2).
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is the interaction volume. The function f(r) = [g (r)− 1] is called the pair correlation function and
g (r) = e−V(r)/kBT the classical radial distribution function of the pair.

The trap-averaged interaction energy of the pair is given by

V̄ ≡
ˆ
V(r)P (R, r)drdR = J−1

12 V
−2
e

ˆ
V(r)e−[U2(R,r)+V(r)]/kBT drdR. (1.128)

In the numerator the integrals over R and r separate because the argument of the integral is only
non-vanishing for r . r0 and like above we may approximate U2 (R, r) ' 2U (R). As a result
Eq. (1.128) reduces to

V̄ = V −2
e

ˆ
e−2U(R)/kBT dR J−1

12

ˆ
V(r)e−V(r)/kBT dr ' kBT 2 ∂ ln J12

∂T
, (1.129)

which is readily verified by substituting Eq. (1.126). The approximate expression becomes exact for
the homogeneous case, where the effective volumes are temperature independent. However, also for
inhomogeneous gases the approximation will be excellent as long as the density distribution may
be considered homogeneous over the range r0 of the interaction; i.e., as long as r3

0/Ve � 1. The
integral

Ũ ≡
ˆ
V(r)e−V(r)/kBT dr =

ˆ
V(r)g(r)dr (1.130)

is called the strength of the interaction. In terms of this interaction strength the trap-averaged
interaction energy is given by

V̄ =
1

J12

V2e

V 2
e

Ũ .

In Eq. (1.130) the interaction strength is expressed for thermally distributed pairs of classical atoms.
More generally the volume integral (1.130) may serve to calculate the interaction strength whenever
the g (r) is known, including non-equilibrium conditions.

To obtain the total energy of interaction of the gas we have to multiply the trapped-averaged
interaction energy with the number of pairs,

Eint = 1
2N (N − 1) V̄. (1.131)

Presuming N � 1 we may approximate N (N − 1) /2 ' N2/2 and using definition (1.48) to express
the effective volume in terms of the maximum density of the gas, Ve = N/n0, we obtain for the
interaction energy per atom

εint = Eint/N =
1

2

V2e

J12Ve
n0Ũ . (1.132)

Note that Ve/V2e is a dimensionless constant for any power law trap. For a homogeneous gas
Ve/V2e = 1 and under conditions where vint � Ve we have J12 ' 1.

As discussed in Section 1.2.2 ideal gas behavior is obtained for εint � εkin. This condition may
be rephrased in the present context by limiting the ideal gas regime to densities for which

n|Ũ | � kBT . (1.133)

Problem 1.16. Show that the trap-averaged interaction energy per atom as given by Eq. (1.132) can be
obtained by averaging the local interaction energy per atom εint (r) ≡ 1

2
n (r) Ũ over the density distribution,

εint =
1

N

ˆ
εint (r)n (r) dr.

Solution. Substituting n (r) = n0e
−U(r)/kBT and using Ve = N/n0 we obtain

1

N

ˆ
εint (r)n (r) dr = 1

2

n2
0

N
Ũ

ˆ
e−2U(r)/kBT dr = 1

2

V2e

Ve
n0Ũ . 2
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Figure 1.4: Model potential with hard core of diameter rc and Van der Waals tail.

Problem 1.17. Show that for a harmonically trapped dilute gas

V2e/Ve = Ve (T/2) /Ve (T ) = (1/2)3/2 . (1.134)

Solution. The result follows directly with Eq. (1.48). 2

Example: Van der Waals interaction

As an example we consider a power-law potential consisting of a hard core of radius rc and a ∼ 1/r6

attractive tail (see Fig. 1.4),

V (r) =∞ for r ≤ rc and V (r) = −C6/r
6 for r > rc, (1.135)

where C6 = V0r
6
c is the Van der Waals coefficient, with V0 ≡ |V (rc) | the well depth. Like the well-

known Lennard-Jones potential this potential is an example of a Van der Waals potential, named
such because it gives rise to the Van der Waals equation of state (see Section 1.4.5). Note that
the model potential (1.135) gives rise to an excluded volume b = 4

3πr
3
c around each atom where no

other atoms can penetrate.

In the high temperature limit, kBT � V0, we have

Ũ =

ˆ
V(r)e−V(r)/kBT dr '

ˆ ∞
rc

V(r)4πr2dr = −4πr3
cV0

ˆ ∞
1

1/x4dx = −bV0, (1.136)

where x = r/rc is a dummy variable. Note that the integral only converges for power-law potentials
falling-off faster than 1/r3 for increasing r; i.e., short-range potentials. The trap-averaged interaction
energy (1.132) is given by

εint = 1
2

V2e

Ve
n0Ũ . (1.137)

For completeness we verify that the interaction volume is indeed small; i.e.,

vint ≡
ˆ ∞
rc

[
e−V(r)/kBT − 1

]
4πr2dr ' − 1

kBT

ˆ ∞
rc

V(r)4πr2dr = b
V0

kBT
� Ve. (1.138)

This is the case if kBT � (b/Ve)V0. The latter is satisfied because b/Ve � 1 and Eq. (1.136) was
obtained for temperatures kBT � V0.
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1.4.4 Canonical partition function for a nearly ideal gas

To obtain the thermodynamic properties in the low-density limit we consider a small fraction of the
gas consisting of N � Ntot atoms. The canonical partition function for this gas sample is given by

ZN =
1

N !
(2π~)−3N

ˆ
e−H(p1,r1;··· ;pN ,rN )/kBT dp1· · ·dpNdr1 · · · drN . (1.139)

After integration over momentum space, which is straightforward because the pair hamiltonian
(1.118) shows complete separation of the momentum variables {pi}, we obtain

ZN =
1

N !
Λ−3N

ˆ
e−U(r1,···,rN )/kBT dr1 · · · drN =

ZN1
N !
J , (1.140)

where we substituted the single-atom partition function (1.50) and introduced the configuration
integral

J ≡ V −Ne

ˆ
e−U(r1,···,rN )/kBT dr1 · · · drN , (1.141)

with

U(r1, · · ·, rN ) =
∑
i

U(ri) +
∑
i<j

V(rij). (1.142)

Restricting ourselves to the nearly ideal limit where the gas consists of free atoms and distinct pairs
(i.e., atoms and pairs not overlapping with other atoms) we can integrate the configuration integral
over all rk with k 6= i and k 6= j and obtain1

J = (1−Nb/Ve)N−2∏
i<jJij , (1.143)

where Jij = V −2
e

´
e−[U(ri)+U(rj)+V(rij)]/kBT dridrj and Nb is the excluded volume due to the hard

cores of the potentials of the surrounding atoms. The canonical partition function takes the form

ZN =
ZN1
N !

(1−Nb/Ve)N−2
J
N(N−1)/2
12 . (1.144)

1.4.5 Example: Van der Waals gas

As an example we consider the high-temperature limit, kBT � V0, of a harmonically trapped gas of
atoms interacting pairwise through the model potential (1.135). In view of Eq. (1.144) the essential
ingredients for the calculation of the thermodynamic properties are the excluded volume b = 4

3πr
3
c

and the configuration integral J12 = 1 + vintV2e/V
2
e with interaction volume vint = bV0/kBT .

Substituting these ingredients into Eq. (1.144) we have for the canonical partition function of a
nearly ideal gas in the high-temperature limit

ZN =
ZN1
N !

(
1−N b

Ve

)N (
1 +

b

Ve

V2e

Ve

V0

kBT

)N2/2

. (1.145)

Here we used N − 2 ' N and N(N − 1)/2 ' N2/2, which is allowed for N � 1. For power-law
traps V2e/Ve is a constant ratio, independent of the temperature.

To obtain the equation of state we start with Eq. (1.33),

p0 = − (∂F/∂Ve)T,N = kBT (∂ lnZN/∂Ve)T,N . (1.146)

1This amounts to retaining only the leading terms in a cluster expansion.
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Then using Eq. (1.50) we obtain for the pressure under physical conditions such that (b/Ve)V0 �
kBT and Nb� Ve

p0 = kBT

(
N

Ve
+ b

N2

V 2
e

− bN
2

V 2
e

V0

kBT

V2e

Ve

)
. (1.147)

This expression may be written in the form

p0

n0kBT
= 1 +B(T )n0, (1.148)

where
B(T ) ≡ b[1− (1/2)

3/2 V0/kBT ] = b+ (V2e/Ve) Ũ/kBT (1.149)

is known as the second virial coefficient. For the harmonic trap V2e/Ve = (1/2)
3/2

. Note that B(T )
is positive for kBT � V0, decreasing with decreasing temperature. Not surprisingly, comparing the
nearly ideal gas with the ideal gas at equal density we find that the excluded volume gives rise to a
higher pressure. Approximating

1

Ve
+ b

N

V 2
e

' 1

Ve −Nb
, (1.150)

we can bring Eq. (1.147) in the form of the Van der Waals equation of state,(
p0 + a

N2

V 2
e

)
(Ve −Nb) = NkBT, (1.151)

where a = − (V2e/Ve) Ũ = b (V2e/Ve)V0 is a positive constant. This famous equation of state was
the first expression containing the essential ingredients to describe the gas to liquid phase transition
for decreasing temperatures - see e.g. [58]. For the physics of ultracold gases it implies that weakly
interacting classical gases cannot exist in thermal equilibrium at low temperature.

The internal energy of the Van der Waals gas is obtained by starting from Eq. (1.30),

U = kBT
2 (∂ lnZN/∂T )U,N . (1.152)

Then using Eqs. (1.144) and (1.129) we find for kBT � V0

U = kBT
2

(
3
N

T
+
N2

2

∂ ln J12

∂T

)
= 3NkBT + 1

2N
2V̄. (1.153)

A similar result may be derived for weakly interacting quantum gases under quasi-equilibrium con-
ditions near the absolute zero of temperature.

1.5 Thermal wavelength and characteristic length scales

In this chapter we introduced the quasi-classical gas at low density. The central quantity of such
gases is the distribution in phase space. Aiming for the highest possible phase-space densities we
found that this quantity can be increased by evaporative cooling. This is important when searching
for quantum mechanical limitations to the classical description. The quasi-classical approach breaks
down when we reach the quantum resolution limit, in dimensionless units defined as the point where
the degeneracy parameter D = nΛ3 reaches unity. For a given density this happens at sufficiently
low temperature. On the other hand, when taking into account the interactions between the atoms
we found that we have to restrict ourselves to sufficiently high-temperatures to allow the existence
of a weakly interacting quasi-classical gas under equilibrium conditions. This approach resulted in
Van der Waals equation of state. It cannot be extended to low temperatures because under such
conditions the Van der Waals equation of state gives rise to liquid formation. Hence, the question
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arises: what allows the existence of a quantum gas? The answer lies enclosed in the quantum
mechanical motion of interacting atoms at low-temperature.

In quantum mechanics the atoms are treated as atomic matter waves, with a wavelength λdB
known as the De Broglie wavelength. For a free atom in a plane wave eigenstate the momentum
is given by p = ~k, where k = |k| = 2π/λdB is the wave number. However, in general the atom
will not be in a momentum eigenstate but in some linear combination of such states. Therefore,
we better visualize the atoms in a thermal gas as wavepackets composed of the thermally available
momenta.

From elementary quantum mechanics we know that the uncertainty in position ∆x (i.e., the
spatial resolution) is related to the uncertainty in momentum ∆p through the Heisenberg uncertainty
relation ∆p∆x ' ~. Substituting

∆p = [〈(p− p̄)2〉]1/2 ' [mkBT/2]1/2 (1.154)

for the rms momentum spread around the average momentum in a thermal gas (see Problem 1.5),
the uncertainty in position is given by

∆l ' ~/∆p = [2~2/(mkBT )]1/2. (1.155)

The quantum resolution limit is reached when ∆l approaches the interatomic spacing,

∆l ' n−1/3
0 . (1.156)

Because, roughly speaking, ∆p ' p̄ we see that ∆l is of the same order of magnitude as the De Broglie
wavelength of an atom moving with the average momentum of the gas. Being a statistical quantity
∆l depends on temperature and is therefore known as a thermal wavelength. Not surprisingly,
the precise definition of the resolution limit is a matter of taste, just like in optics. The common
convention is to define the quantum resolution limit as the point where the degeneracy parameter
D = n0Λ3 becomes unity. Here Λ is the thermal De Broglie wavelength introduced in Section 1.3.1
(note that Λ and ∆l coincide within a factor of order 2). The quasi-classical description of a gas
breaks down when the quantum resolution limit is reached. Hence, many-body quantum behavior
emerges for

nΛ3 . 1. (1.157)

For a given density this happens at sufficiently low temperature. At elevated temperatures Λ will
be smaller than any of the relevant length scales of the gas:

• the size of the gas cloud V 1/3

• the average interatomic distance n−1/3

• the range r0 of the interatomic potential.

Under such conditions the classical description is adequate.
Non-degenerate quantum gases: For decreasing temperatures the thermal wavelength grows.

First it will exceed the range of the interatomic potential (Λ > r0) and quantum mechanics will
manifest itself in binary scattering events. As we show in the Chapter 3, the interaction energy
due to binary interaction can be positive down to T = 0, irrespective of the depth of the interaction
potential. This implies a positive pressure in the low-density low-temperature limit; i.e., unbound
states. Normally this will be a gaseous state but also Wigner-solid-like states are conceivable. In all
cases these states are metastable. With increasing density, when 3-body collisions become important,
the system becomes unstable with respect to binding into molecules and droplets, which ultimately
leads to the formation of a liquid or solid state.

Degeneracy regime: Importantly, the latter only happens when Λ is already much larger than
the interatomic spacing (nΛ3 > 1) and quantum statistics has become manifest. In this limit the
picture of classical particles has become useless for the description of both the thermodynamic and
collisional properties of the gas. We are dealing with a many-body quantum system.
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Problem 1.18. A classical gas cloud of rubidium atoms has a temperature T = 1 µK.
a. What is the average velocity v̄ of the atoms?
b. Compare the expansion speed of the cloud after switching off the trap with the velocity the cloud picks
up in the gravitation field
c. What is the average energy E per atom?
d. Calculate the De Broglie wavelength Λ of a rubidium atom at T = 1 µK?
e. At what density is the distance between the atoms comparable to Λ at this temperature?
f. How does this density compare with the density of the ambient atmosphere?
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2

Quantum motion in a central potential field

The motion of particles in a central potential plays an important role in atomic and molecular
physics. To understand the properties of the hydrogen atom we rely on careful analysis of the
motion of the electron in the Coulomb field of the nucleus. Similarly, many properties related to
interactions between atoms, like collisional properties, can be understood by analyzing the relative
atomic motion under the influence of central forces.

In view of the importance of central forces we summarize in this chapter the derivation of the
Schrödinger equation for the motion of two particles, say of masses m1 and m2, interacting through
a central potential V(r), r = |r1 − r2| being the radial distance between the particles. Given the
pure dependence of the potential energy on the relative distance between the particles it is (in the
absence of externally applied fields) practical to eliminate the center of mass motion of the pair and
represent the relative motion by a single particle of reduced mass mr = m1m2/(m1 + m2) in the
same potential field (see Appendix A.7). To further exploit the symmetry we can separate the radial
motion from the rotational motion, obtaining the radial and angular momentum operators as well
as the hamiltonian operator in spherical coordinates (Section 2.1). Knowing the hamiltonian we can
write down the Schrödinger equation (Section 2.2) and specializing to specific angular momentum
values we obtain the radial wave equation. The radial wave equation is the central equation for the
description of the radial motion associated with specific angular momentum states.

The approach just described amounts mathematically to the method of separation of variables
for solving differential equations. This suggests to extend the discussion to cylindrical coordinates,
as this opens - with little additional effort - a window onto related problems like quantization of
electronic orbitals into Landau levels as well as the description of the flow fields of quantized vortices.
In these cases the central potential is absent but the solutions are rotational in character; hence,
show a form of central symmetry.

2.1 Hamiltonian

The classical hamiltonian for the motion of a particle of (reduced) mass mr in the central potential
V(r) is given by the sum of the kinetic and potential energy,

H = 1
2mrv

2 + V(r), (2.1)

where v = ṙ is the velocity of the particle with r its position relative to the potential center. In
the absence of externally applied fields p = mrv is the canonical momentum of the particle and the
hamiltonian can be written as1

H0 =
p2

2mr
+ V(r). (2.2)

1In the presence of an external electromagnetic field the non-relativistic momentum of a charged particle of mass
m and charge q is given by p = mv + qA, with mv its kinetic momentum and qA its electromagnetic momentum.

31



32 CHAPTER 2. QUANTUM MOTION IN A CENTRAL POTENTIAL FIELD

To exploit the central symmetry we separate the radial motion from the angular motion by writing
the hamiltonian in the form (see Problem 2.1)

H0 =
1

2mr

(
p2
r +

L2

r2

)
+ V(r) (r 6= 0). (2.3)

Here pr = r̂·p (see Fig. 2.1) is the radial momentum, with r̂ = r/r the unit vector in radial direction,
and L = r × p the orbital angular momentum with respect to the potential center. As Eq. (2.3)
is well-defined only outside the origin any result based on this expression should be tested for its
validity at the origin.

Problem 2.1. Derive the vector relation (see also Appendix E).

(r̂ · p)2 + (r̂× p)2 = p2. (2.4)

Solution. In the Einstein notation with summation over repeating indices the cartesian components of
r̂× p are given by (r̂× p)i = εijkr̂jpk, where i, j, k ∈ {x, y, z} and εijk is the Levi-Civita tensor

εijk =


1 for even permutations of x, y, z

0 for i = j or i = k or j = k

−1 for odd permutations of x, y, z.

(2.5)

Using the summation convention, the contraction of the Levi-Civita tensor is given by

εijkεilm = δjlδkm − δjmδkl.

Since L2 = LiLi we obtain

(r̂× p)2 = (εijkr̂jpk) (εilmr̂lpm) = (δjlδkm − δjmδkl) r̂jpkr̂lpm

= (r̂j r̂j) (pkpk)− r̂jpj r̂kpk = p2 − (r̂ · p)2 . 2

2.1.1 Quantization of the hamiltonian - basic commutation relations

The transition from classical mechanics to quantum mechanics is made by postulating that the dy-
namical variables for position and momentum correspond to the following hermitian operators in the
position representation, p → −i~∇ and r → r.1 This is known as quantization by correspondence.
With this quantization rule, Eq. (2.2) becomes the quantum mechanical hamiltonian and takes the
familiar form of the Schrödinger hamiltonian for a particle in a central field,

H0 = − ~2

2mr
∆ + V(r). (2.6)

Although the quantization went smoothly in this case, in general we should watch out for ambiguities
in the application of the correspondence rules. For instance, whereas in classical mechanics the
expressions pr = r̂ · p and pr = p · r̂ are equivalent this does not hold for pr = −i~ (∇ · r̂) and
pr = −i~ (r̂ ·∇) because r̂ = r/r and −i~∇ do not commute.

Up to this point we did not make any choice of coordinate system (metric). To deal with non-
commutativity for a given coordinate system the operator algebra has to be completed with commu-
tation relations for the operators. In arbitrary orthogonal curvilinear coordinates r = r(r1, · · · rd)
of a d-dimensional euclidean vector space the gradient vector is given by

∇ = {h−1
1 ∂1, · · · , h−1

d ∂d} = ê1h
−1
1 ∂1 + · · ·+ êdh

−1
d ∂d, (2.7)

1Here we emphasized in the notation that r is the position operator rather than the position r. As this distinction
rarely leads to confusion the underscore will be omitted in most of the text.
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where the unit vectors are defined by û ≡ êu = ∂ur/|∂ur| and the scale factors by hu ≡ |∂ur|, with
u ∈ {r1, · · · rd}. Here ∂u ≡ ∂/∂ru is a shorthand notation for the partial derivative operator. Note
that ∂ur = huû.

In cartesian coordinates we have r = (r1, · · · rd) = (x, y, z). As the radius vector is given by
r = x̂x + ŷy + ẑz it follows that ∂xr = x̂, ∂yr = ŷ, ∂zr = ẑ and hx = hy = hz = 1. Note that the
property hi = 1, with i ∈ {1, · · · , d}, holds for an euclidean vector space of arbitrary dimension d.
The commutation relations for the components of the operators ri and pj = −i~∂j are obtained by
evaluating the action of the operator [ri, pj ] on a smooth test function of position φ(rx, ry, rz),

[ri, pj ]φ = −i~ (ri∂j − ∂jri)φ = −i~ (ri∂jφ− ri∂jφ− φδij) = i~δijφ. (2.8)

Thus we derived the commutation relations

[ri, pj ] = i~δij . (2.9)

These commutation relations hold for cartesian coordinates. In general, the direction of the unit
vectors depends on position (hi 6= 1) and the commutation relations do not have this simple form.

A consequence of the commutation relations (2.9) is that r and p do not commute with the
hamiltonian H0: for p we have [pi,H0] = [pi,V(r)] 6= 0, for r we find an important relation between
p and r

[ri,H0] =
[
ri,p

2/2mr

]
= i(~/mr)pi, (2.10)

which can be written in the form
p = −i (mr/~) [r,H0] . (2.11)

Laplacian in spherical coordinates

To explore the central symmetry of our problem we wish to write the laplacian from the Schrödinger
hamiltonian in spherical coordinates {r, θ, φ}. The relation between the cartesian coordinates and
the spherical coordinates of a point P = P(x, y, z) = P (r, θ, φ) is given by (see Fig. 2.1)

x = r sin θ cosφ, y = r sin θ sinφ, z = r cos θ. (2.12)

Using ∂aP = haâ, with a ∈ ({r, θ, φ}, the angular dependence of the unit vectors is given by1

r̂ = x̂ sin θ cosφ+ ŷ sin θ sinφ+ ẑ cos θ (2.13a)

θ̂ = x̂ cos θ cosφ+ ŷ cos θ sinφ− ẑ sin θ (2.13b)

φ̂ = −x̂ sinφ+ ŷ cosφ. (2.13c)

Using P = r̂r = r we calculate hr = |∂r/∂r| = 1, hφ = |∂r/∂φ| = r(sin2 θ sin2 φ+ sin2 θ cos2 φ)1/2 =
r sin θ and hθ = |∂r/∂θ| = r(cos2 θ cos2 φ+ cos2 θ sin2 φ+ sin2 θ)1/2 = r.

Hence, in spherical coordinates the gradient operator (2.7) becomes

∇ = r̂ ∂r + θ̂
1

r
∂θ + φ̂

1

r sin θ
∂φ. (2.14)

Evaluating the inner product ∇ ·∇ we obtain for the Laplace operator (see Problem 2.2)

∆ =
∂2

∂r2
+

2

r

∂

∂r
+

1

r2 sin θ

∂

∂θ
sin θ

∂

∂θ
+

1

r2 sin2 θ

∂2

∂φ2
. (2.15)

1In these lecture notes we use interchangeable notations for the radial unit vector: r̂ ≡ Ω ≡ (θ, φ).
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Figure 2.1: Illustration of spherical coordinates of a point P = P(x, y, z) = P (r, θ, φ): (a) unit vector
convention; (b) vector diagram indicating the direction r̂ and amplitude pr of the radial momentum vector.

Problem 2.2. Derive the expression (2.15) for the laplacian in spherical coordinates.

Solution. Starting from the vector expression (2.14) for the gradient operator the laplacian is obtained by
evaluating the inner product

∇ · ∇ψ = r̂ ·
(
∂r r̂ ∂r + [∂rθ̂]

1

r
∂θ + [∂rφ̂]

1

r sin θ
∂φ

)
ψ

+
1

r
θ̂ ·
(

[∂θ r̂]∂r + ∂θθ̂
1

r
∂θ + [∂θφ̂]

1

r sin θ
∂φ

)
ψ

+
1

r sin θ
φ̂ ·
(

[∂φr̂]∂r + [∂φθ̂]
1

r
∂θ + ∂φφ̂

1

r sin θ
∂φ

)
ψ.

Here we dismissed many terms that yield zero due to the orthogonality of the unit operators. Using ∂r r̂ =
∂rθ̂ = ∂rφ̂ = 0 and ∂θ r̂ = θ̂, ∂θθ̂ = −r̂, ∂θφ̂ = 0 and ∂φr̂ = φ̂ sin θ, ∂φθ̂ = φ̂ cos θ, ∂φφ̂ = − r̂ sin θ− θ̂ cos θ
the expression further simplifies to

∇ · ∇ψ = ∂2
rψ +

1

r

(
∂r +

1

r
∂2
θ

)
ψ +

1

r sin θ

(
sin θ∂r + cos θ

1

r
∂θ +

1

r sin θ
∂2
φ

)
ψ.

Collecting the terms we obtain for the Laplace operator

∆ = ∂2
r +

2

r
∂r +

1

r2
∂2
θ +

cos θ

r2 sin θ
∂θ +

1

r2 sin2 θ
∂2
φ,

which can be written in the form (2.15). 2

Laplacian in cylindrical coordinates

To describe central symmetry in two-dimensional systems or systems with cylindrical symmetry it is
important to be aware of the expression for the laplacian in cylindrical coordinates P = P(x, y, z) =
P (r⊥, φ, z). As illustrated in Fig. 2.2 the relation between the cartesian coordinates and the cylin-
drical coordinates is given by the expressions

x = r⊥ cosφ, y = r⊥ sinφ, z = z. (2.16)

Using ∂aP = haâ, with a ∈ {r⊥, φ, z}, the angular dependence of the unit vectors is given by

r̂⊥ = +x̂ cosφ+ ŷ sinφ (2.17a)

φ̂ = −x̂ sinφ+ ŷ cosφ (2.17b)

ẑ = ẑ. (2.17c)
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Figure 2.2: Illustration of cylindrical coordinates of a point P = P(x, y, z) = P (r⊥, φ, z) with unit vector
convention.

Using P = r̂⊥ r⊥ + ẑ z we have P2 = r2
⊥ + z2 and calculate hr⊥ = |∂P/∂r⊥| = 1, hφ = |∂P/∂φ| =

r⊥(sin2 φ+ cos2 φ)1/2 = r⊥ and hz = |∂P/∂z| = 1.
Hence, in cylindrical coordinates the gradient operator (2.7) is given by

∇ = r̂⊥ ∂r⊥ + φ̂
1

r⊥
∂φ + ẑ ∂z. (2.18)

Evaluating the inner product we obtain for the laplacian (see Problem 2.3)

∆ =
∂2

∂r2
⊥

+
1

r⊥

∂

∂r⊥
+

1

r2
⊥

∂2

∂φ2
+

∂2

∂z2
. (2.19)

Fixing the value of z this expression also serves to describe two-dimensional systems. In the form
(2.19) the laplacian is used to describe the flow field of quantized vortices in superfluids.

Problem 2.3. Derive the expression (2.19) for the laplacian in cylindrical coordinates.

Solution. Starting from the vector expression (2.18) for the gradient operator the laplacian is obtained by
evaluating the inner product (here we set r⊥→ r for compactness of notation)

∇ · ∇ψ = r̂ ·
(
∂r r̂ ∂r + [∂rφ̂]

1

r
∂φ + [∂rẑ]∂z

)
ψ

+
1

r
φ̂ ·
(

[∂φr̂]∂r + ∂φφ̂
1

r
∂φ + [∂φẑ]∂z

)
ψ

+ ẑ ·
(

[∂zr] ∂r + [∂zφ̂]
1

r
∂φ + ∂z ẑ ∂z

)
ψ.

Here we dismissed the many terms that yield zero due to the orthogonality of the unit operators. Using
∂r r̂ = ∂rφ̂ = ∂rẑ = ∂z r̂ = ∂zφ̂ = ∂z ẑ = 0 and ∂φr̂ = φ̂ , ∂φφ̂ = −r̂ + ẑ z, ∂φẑ = 0 the expression for ∆ψ
further simplifies to

∇ · ∇ψ = ∂2
rψ +

1

r

(
∂r + ∂φ

1

r
∂φ

)
ψ + ∂2

zψ.

Thus, the Laplace operator can be written in the form (2.19). 2

2.1.2 Angular momentum operator L

To obtain the operator expression for the angular momentum L = r×p in the position representation
we use the correspondence rules p → −i~∇ and r → r. Importantly, although r and p do not
commute the transition to the quantum mechanical expression,

L = −i~ (r×∇) , (2.20)
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can be made without ambiguity because the correspondence rules yield the same result for L = r×p
and for L = −p× r. This is easily verified by using the cartesian vector components of r and p and
their commutation relations,

− (p× r)i = −εijkpjrk = −εijkrkpj = εikjrkpj = εijkrjpk = (r× p)i . (2.21)

Note that for j 6= k the operators rj and pk commute and for j = k one has εijk = 0.
Having identified Eq. (2.20) as the proper operator expression for the orbital angular momen-

tum we can turn to arbitrary orthogonal curvilinear coordinates r = r(u, v, w). In this case the
gradient vector is given by ∇ = {h−1

u ∂u, h
−1
v ∂v, h

−1
w ∂w} and the angular momentum operator can

be decomposed in the following form

L =− i~ (r×∇) =− i~

∣∣∣∣∣∣
û v̂ ŵ
ru rv rw

h−1
u ∂u h−1

v ∂v h−1
w ∂w

∣∣∣∣∣∣ . (2.22)

For spherical coordinates the components of the radius vector are rr = r and rθ = rφ = 0. Working
out the determinant in Eq. (2.22), while respecting the order of the vector components ru and h−1

u ∂u,
we find for the angular momentum operator in spherical coordinates

L = −i~ (r×∇) = i~
(
θ̂

1

sin θ

∂

∂φ
− φ̂ ∂

∂θ

)
. (2.23)

Importantly, as was to be expected for a rotation operator in a spherical coordinate system, L
depends only on the angles θ and φ and not on the radial distance r.

2.1.3 The operator Lz

The operator for the angular momentum along the z direction is a differential operator obtained by
taking the inner product of L with the unit vector along the z direction, Lz = ẑ ·L. From Eq. (2.23)
we see that

Lz = i~
(

(ẑ · θ̂)
1

sin θ

∂

∂φ
− (ẑ · φ̂)

∂

∂θ

)
. (2.24)

Because the unit vector φ̂ = −x̂ sinφ + ŷ cosφ has no z component, only the θ component of
L will give a contribution to Lz. Substituting the unit vector decomposition θ̂ = x̂ cos θ cosφ +
ŷ cos θ sinφ− ẑ sin θ we obtain

Lz = −i~ ∂

∂φ
. (2.25)

The eigenvalues and eigenfunctions of Lz are obtained by solving the equation

− i~ ∂

∂φ
Φm(φ) = m~ Φm(φ). (2.26)

Here, the eigenvalue m is called the magnetic quantum number for the projection of the angular
momentum L on the z axis.1 The eigenfunctions are

Φm(φ) = ame
imφ. (2.27)

Because solutions of the Schrödinger equation must be single valued functions of position, the wave-
function must be invariant under rotation over 2π about the z axis; i.e., we have to impose the bound-
ary condition eimφ = eim(φ+2π). Thus we require eim2π = 1, which implies m ∈ {0, ±1, ±2, . . .}.

1In this chapter we use the shorthand notation m for the magnetic quantum numbers ml corresponding to states
with orbital quantum number l. When other forms of angular momentum appear we will use the subscript notation
to discriminate between the different magnetic quantum numbers; e.g., lml, sms, jmj , etc..
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In other words we quantized the rotation about the z axis. As the orientation of the coordinate
system was not defined up to this point, the chosen z direction is called the quantization axis. With
the normalization ˆ 2π

0

|Φm(φ)|2 dφ = 1 (2.28)

we find the same normalization coefficient for all values of the m quantum number, am = (2π)
−1/2

.

2.1.4 Commutation relations for Lx, Ly, Lz and L2

The three cartesian components of the angular momentum operator are differential operators satis-
fying the following commutation relations

[Li, Lj ] = i~εijkLk ⇔ [Lx, Ly] = i~Lz, [Ly, Lz] = i~Lx and [Lz, Lx] = i~Ly. (2.29)

These expressions are readily derived with the help of some elementary commutator algebra (see
Appendix C.8). We derive the relation [Lx, Ly] = i~Lz explicitly; the other commutators are
obtained by cyclic permutation of x, y and z. Starting from the definition Li = εijkrjpk we use
subsequently the distributive rule (C.29b), the multiplicative rule (C.29d) and the commutation
relation (2.9),

[Lx, Ly] = [ypz − zpy, zpx − xpz] = [ypz, zpx] + [zpy, xpz]

= y [pz, z] px − x [pz, z] py = i~(xpy − ypx) = i~Lz. (2.30)

A scalar operator always commutes with itself. This well-known commutation rule does not hold
for vector operators. Two vector operators A and B only commute if all components of A commute
with all components of B.1 Hence, L does not commute with itself (see Problem 2.4).

The components of L commute with L2,

[Lx,L
2] = 0, [Ly,L

2] = 0, [Lz,L
2] = 0. (2.31)

We verify this explicitly for Lz. Using the relation

L2 = L · L = L2
x + L2

y + L2
z (2.32)

we obtain with the aid of the multiplicative rule (C.29c)

[Lz, L
2
z] = 0

[Lz, L
2
y] = [Lz, Ly]Ly + Ly[Lz, Ly] = −i~(LxLy + LyLx)

[Lz, L
2
x] = [Lz, Lx]Lx + Lx[Lz, Lx] = +i~(LyLx + LxLy).

By adding these terms we find [Lz,L
2] = 0 as well as [Lz, L

2
x + L2

y] = 0.

Problem 2.4. Vector operators differ from classical vectors. Show that

L× L = i~L, [L,L] 6= 0,
[
L2,L2] = 0.

1The commutator of two vectors is a second order tensor. This becomes evident in the Einstein notation [A,B]⇔
[Ai, Bj ] = AiBj −BjAi ⇔ ABT − (BAT )T , where ()T represents matrix transposition.



38 CHAPTER 2. QUANTUM MOTION IN A CENTRAL POTENTIAL FIELD

2.1.5 The operators L±

The operators
L± = Lx ± iLy (2.33)

are obtained by taking the inner products of L with the unit vectors along the x and y direction,
L± = (x̂ · L)± i (ŷ · L). In spherical coordinates this results in

L± = i~
([

(x̂ · θ̂)± i(ŷ · θ̂)
] 1

sin θ

∂

∂φ
−
[
(x̂ · φ̂)± i(ŷ · φ̂)

] ∂
∂θ

)
, (2.34)

as follows directly with Eq. (2.23). Substituting the unit vector decompositions φ̂ = −x̂ sinφ+ŷ cosφ
and θ̂ = x̂ cos θ cosφ+ ŷ cos θ sinφ− ẑ sin θ we obtain

L± = ~e±iφ
(
i cot θ

∂

∂φ
± ∂

∂θ

)
. (2.35)

These operators are known as shift operators and more specifically as raising (L+) and lowering (L−)
operators because their action is to raise or to lower the angular momentum along the quantization
axis by one quantum of angular momentum (see Section 2.1.6).

Several useful relations for L± follow straightforwardly. Using the commutation relations (2.29)
we obtain

[Lz, L±] = [Lz, Lx]± i [Lz, Ly] = i~Ly ± ~Lx = ±~L±. (2.36)

Further we have

L+L− = L2
x + L2

y − i [Lx, Ly] = L2
x + L2

y + ~Lz = L2 − L2
z + ~Lz (2.37a)

L−L+ = L2
x + L2

y + i [Lx, Ly] = L2
x + L2

y − ~Lz = L2 − L2
z − ~Lz, (2.37b)

where we used again one of the commutation relations (2.29). Subtracting these equations we obtain

[L+, L−] = 2~Lz (2.38)

and by adding Eqs. (2.37) we find

L2 = L2
z + 1

2 (L+L− + L−L+) . (2.39)

2.1.6 The operator L2

To derive an expression for the operator L2 we use the operator relation (2.39). Substituting
Eqs. (2.25) and (2.35) we obtain after some straightforward manipulation

L2 = −~2

[
1

sin2 θ

∂2

∂φ2
+

1

sin θ

∂

∂θ
sin θ

∂

∂θ

]
. (2.40)

The eigenfunctions and eigenvalues of L2 are obtained by solving the equation

− ~2

[
1

sin2 θ

∂2

∂φ2
+

1

sin θ

∂

∂θ
sin θ

∂

∂θ

]
Y (θ, φ) = λ~2Y (θ, φ). (2.41)

Because the operators L2 and Lz commute they share a complete set of eigenstates (see Problem
B.1); i.e., the shared eigenfunctions Y (θ, φ) must be of the form Y (θ, φ) = P (θ, φ)Φm(φ), where
the function Φm(φ) is an eigenfunction of the Lz operator. Because of Eq. (2.26) this implies that
LzP (θ, φ) ≡ 0, which can only be satisfied for arbitrary value of θ if the variables θ and φ separate:
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P (θ, φ) = P (θ)Q(φ). In turn this requires LzQ(φ) ≡ 0, which can only be satisfied if Q(φ) is a
constant. Thus, we conclude that the shared eigenfunctions Y (θ, φ) must be of the form

Y (θ, φ) = P (θ)Φm(φ). (2.42)

Evaluating the second order derivative ∂2/∂φ2 in Eq. (2.41) we obtain[
1

sin θ

∂

∂θ
sin θ

∂

∂θ
− m2

sin2 θ
+ λ

]
P (θ) = 0. (2.43)

As this equation is real its solutions are real functions of the variable θ. Introducing the notation
λ = l(l+ 1) and u ≡ cos θ (with θ restricted to the interval 0 ≤ θ ≤ π) this equation takes the form
of the associated Legendre differential equation (C.34),[(

1− u2
) d2

du2
− 2u

d

du
+ l(l + 1)− m2

1− u2

]
Pml (u) = 0. (2.44)

Since 0 ≤ θ ≤ π we have sin θ =
√

1− u2 ≥ 0. The solutions are determined up to a constant factor,
which has to be fixed by convention. For m = 0 the Eq. (2.44) reduces to the Legendre differential
equation and its normalized solutions are the Legendre polynomials, defined by

Pl(u) =
1

2ll!

dl

dul
(u2 − 1)l. (2.45)

The solution Pl(u) is a real polynomial of degree l ∈ {0, 1, 2 · · · } with l zeros in the interval −1 ≤
u ≤ 1. The Legendre polynomials of lowest degree are

P0(u) = 1, P1(u) = u, P2(u) = 1
2 (3u2 − 1). (2.46)

Note that the sign of the highest power term is chosen to be positive. For m 6= 0 the solutions are
the associated Legendre functions Pml (u), real functions which can be written as the product of a
positive function (1−u2)m/2 and a polynomial of degree (l−m), parity (−1)l−m with (l−m) zeros
in the interval −1 ≤ u ≤ 1. For m = 0 we define P 0

l (u) ≡ Pl(u). For m > 0 the Pml (u) are obtained
by differentiation of the Legendre polynomials,1

Pml (u) = (−1)m(1− u2)m/2
dm

dum
Pl(u). (2.47)

The parity of the Pml (u) is given by

Pml (−u) = (−1)l−mPml (u) (2.48)

and the above definitions fix the normalization,ˆ 1

−1

[Pml (u)]
2
du =

2

2l + 1

(l +m)!

(l −m)!
. (2.49)

As Eq. (2.44) depends on m2 we also can define solutions for m < 0. Obviously, P−ml (u) and
Pml (u) are in essence the same but for the P−ml (u) we still have to define sign and normalization.
Unfortunately, several competing conventions can be found in the literature. In this course we use
a positive sign and adhere to the convention in which the normalization (2.49) is valid for both
positive and negative m. This is realized by extending the Pml (u) to negative m by the relation

P−ml (u) ≡ (−1)m
(l −m)!

(l +m)!
Pml (u), (2.50)

where 0 ≤ m ≤ l. The inclusion of the phase factor (−1)
m

in both Eq. (2.47) and (2.50) is referred to
as the Condon and Shortley phase convention [11]. It implies that the phase factor (−1)m is present
for positive m but absent for negative m. Note that the Pml (u) are nonzero only for −l ≤ m ≤ l;
i.e., the index m can assume 2l + 1 possible values for a given value of l.

1Beware of other phase conventions for the Pml (u), they affect the recurrence relations.
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Spherical harmonics - Condon and Shortley phase convention

At this point we define the spherical harmonics (cf. Section C.9.1)

Y ml (θ, φ) = AmP
m
l (cos θ)eimφ (2.51)

as the joint eigenfunctions of L2 and Lz in the position representation,

L2 Y ml (θ, φ) = l(l + 1)~2 Y ml (θ, φ) (2.52)

Lz Y
m
l (θ, φ) = m~Y ml (θ, φ). (2.53)

The prefactor Am is a normalization constant. Combining the normalization integrals (2.28) and
(C.44) we obtain

Y ml (θ, φ) =

√
2l + 1

4π

(l −m)!

(l +m)!
Pml (cos θ)eimφ, (2.54)

with −l ≤ m ≤ l. The Condon and Shortley phase convention assures that the shift operators
satisfy the following relations

L±Y
m
l (θ, φ) =

√
(l ∓m) (l ±m+ 1) ~Y m±1

l (θ, φ)

=
√
l (l + 1)−m(m± 1) ~Y m±1

l (θ, φ), (2.55)

with a positive sign in front of the square root for all values of l and m. Eqs. (2.55) are readily
obtained with the aid of Eqs. (2.35) and the recurrence relations (C.47). The parity of the Y ml (θ, φ)
under inversion in 3D, r̂ = (θ, φ)→ −r̂ = (π − θ, φ+ π), is independent of m and given by

Y ml (−r̂) = (−1)lY ml (r̂) (2.56)

as follows with Eqs. (2.54) and (2.48); i.e., the parity is even for l even and odd for l odd. This
parity rule is important as selection rule for electric-dipole transitions in atomic systems.

2.1.7 Orbital angular momentum in Dirac notation

The observables of the orbital angular momentum are represented by the operators L2 and Lz. In
Dirac notation (cf. Appendix B.1.1) their shared basis is defined by

L2 |l,m〉 = l(l + 1)~2 |l,m〉 (2.57a)

Lz |l,m〉 = m~ |l,m〉 , (2.57b)

where the |l,m〉 are abstract state vectors in Hilbert space, with l and m the rotational quantum
numbers. The spherical harmonics

Y ml (θ, φ) ≡ Y ml (r̂) = 〈r̂|l,m〉 (2.58)

are the corresponding wavefunctions in the position representation using spherical coordinates. The
action of the shift operators L± is given by

L± |l,m〉 =
√
l (l + 1)−m(m± 1) ~ |l,m± 1〉 , (2.59)

with a positive sign in front of the square root for all values of l and m. The latter requirement
constitutes the Condon and Shortley phase convention for the eigenstates |l,m〉 (cf. Section 2.1.6).
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2.1.8 Radial momentum operator pr

Thus far we succeeded in quantizing the Schrödinger hamiltonian H0 and the angular momentum
L. Let us now turn to the radial momentum pr = r̂ · p. Here we have a difficulty because the
correspondence rules are not unambiguous in this case. In classical mechanics the expressions
pr = r̂ · p and pr = p · r̂ are identities but since r̂ = r/r and −i~∇ do not commute this is not the
case for pr = −i~ (∇ · r̂) and pr = −i~ (r̂ ·∇). There is a way around this problem. Since we know

how to quantize p2 and (r̂× p)
2
, we infer with the aid of Eq. (2.4) that the radial momentum must

be given by
p2
r = (r̂ · p)

2
= p2 − (r̂× p)

2
= −~2∆− L2/r2. (2.60)

Substituting Eqs. (2.15) and (2.40) this yields

p2
rψ = −~2

(
∂2

∂r2
+

2

r

∂

∂r

)
ψ = −~2

(
∂

∂r
+

1

r

)2

ψ = −~2 1

r

∂2

∂r2
(rψ) . (2.61)

Hence, up to a sign, the radial momentum in spherical coordinates is given by

prψ = −i~
(
∂

∂r
+

1

r

)
ψ = −i~1

r

∂

∂r
(rψ). (2.62)

We shall use the sign convention of Eq. (2.62). This implies the commutation relation

[r, pr] = i~. (2.63)

Importantly, since L is independent of r and pr is independent of θ and φ, we find that p2
r commutes

with both Lz and L2, [
p2
r, Lz

]
= 0 and

[
p2
r,L

2
]

= 0. (2.64)

In Problem 2.5 it is shown that pr is only hermitian if one restricts oneself to the sub-class of
normalizable wavefunctions which are regular in the origin; i.e.,

lim
r→0

rψ(r) = 0.

This additional condition is essential to select physically relevant solutions for the (radial) wave-
function. Here we mean by physically relevant that the wavefunction satisfies not only the laplacian
in spherical coordinates (which is not defined in the origin) but also the laplacian in cartesian
coordinates (which is defined throughout space).

Problem 2.5. Show that pr is hermitian for square-integrable functions ψ(r) only if they are regular at
the origin, i.e. limr→0 rψ(r) = 0.

Solution. For pr to be hermitian we require the following expression to be zero for any wavefunction ψ
within its Hilbert space:

〈ψ, prψ〉 − 〈ψ, prψ〉∗ = −i~
ˆ [

ψ∗
1

r

∂

∂r
(rψ) +

1

r
ψ
∂

∂r
(rψ∗)

]
r2drdΩ

= −i~
ˆ [

rψ∗
∂

∂r
(rψ) + rψ

∂

∂r
(rψ∗)

]
drdΩ

= −i~
ˆ

∂

∂r
|rψ|2 drdΩ.

For this to be zero we require ˆ
∂

∂r
|rψ|2 dr =

[
|rψ|2

]∞
0

= 0.

Because ψ(r) is taken to be a square-integrable function; i.e.,
´
|rψ|2 dr = N with N finite, we have

limr→∞ rψ(r) = 0 and limr→0 rψ(r) = χ0, where χ0 is (in general) finite. Thus, for pr to be hermitian
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we require ψ(r) to be regular in the origin (χ0 = 0) on top of being square-integrable. However, square-
integrable eigenfunctions of pr can also be irregular at the origin and have complex eigenvalues, e.g.

pr
exp[−αr]

r
= − i~

r

∂

∂r
r

exp[−αr]
r

= i~αexp[−αr]
r

. 2

Problem 2.6. Show that the radial momentum operator can be written in the form

pr = 1
2

(r̂ · p + p · r̂) = − i~
2

[r
r
·∇+∇ ·

(r
r

)]
. (2.65)

Verify that in two dimensions pr cannot be written in the form given on the r.h.s..

2.2 Schrödinger equation

2.2.1 Schrödinger equation in spherical coordinates

We are now in a position to write down the Schrödinger equation of a (reduced) mass mr moving
at energy E in a central potential field V(r)[

1

2mr

(
p2
r +

L2

r2

)
+ V(r)

]
ψ(r, θ, φ) = Eψ(r, θ, φ). (2.66)

Because the operators L2 and Lz commute with the hamiltonian1 they share a complete set of
eigenstates with that hamiltonian (See Problem B.1); i.e., the shared eigenfunctions ψ(r, θ, φ) must
be of the form ψ = R(r, θ, φ)Y ml (θ, φ), which implies L2R(r, θ, φ) ≡ 0 in view of Eq. (2.52). This can
only be satisfied for arbitrary values of r if the radial variable can be separated from the angular
variables, R(r, θ, φ) = R(r)X(θ, φ). In turn this requires L2X(θ, φ) ≡ 0, which implies that X(θ, φ)
must be a constant. Thus, we conclude that the shared eigenfunctions ψ(r, θ, φ) must be of the form

ψ(r, θ, φ) = Rnl(r)Y
m
l (θ, φ), (2.67)

where the quantum number n appears to allow for more than one solution of given l. Hence, using
Eq. (2.52) and substituting Eqs. (2.61) and (2.67) into Eq. (2.66) we obtain[

~2

2mr

(
− ∂2

∂r2
− 2

r

∂

∂r
+
l(l + 1)

r2

)
+ V(r)

]
Rnl(r)Y

m
l (θ, φ) = ERnl(r)Y

m
l (θ, φ). (2.68)

Here the term

Vrot(r) ≡
l(l + 1)~2

2mrr2
(2.69)

is called the rotational energy barrier and represents the centrifugal energy at a given distance from
the origin and for a given value of the angular momentum. Because the operator on the left of
Eq. (3.2) is independent of θ and φ we can eliminate the functions Y ml (θ, φ) from this equation. The
remaining equation takes the form of the radial wave equation.[

~2

2mr

(
− d2

dr2
− 2

r

d

dr
+
l(l + 1)

r2

)
+ V(r)

]
Rnl(r) = ERnl(r), (2.70)

where the solutions Rnl(r) must depend on r but be independent of θ and φ. Note that the solutions
do not depend on m because the hamiltonian does not depend on Lz. This is a property of central
potentials.

1Note that Lz commutes with L2 (see Section 2.1.6); Lz and L2 commute with r and pr (see Section 2.1.8).
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Reduction to one-dimensional Schrödinger equation

Eq. (2.70) is the starting point for the description of the relative radial motion of any particle in a
central potential field. Introducing the quantities

ε = 2mrE/~2 and U(r) = 2mrV(r)/~2, (2.71)

Suppressing the quantum number n, Eq. (2.70) can be written in the compact form

R′′l +
2

r
R′l +

[
ε− U(r)− l(l + 1)

r2

]
Rl = 0, (2.72)

where the prime refers to a derivative with respect to r. Eq. (2.61) suggests to introduce so-called
reduced radial wavefunctions

χl(r) = rRl(r), (2.73)

which allows us to reduce the radial wave equation (2.70) to the form of a one-dimensional Schrödinger
equation

χ′′l +

[
2mr

~2
(E − V)− l(l + 1)

r2

]
χl = 0. (2.74)

The 1D-Schrödinger equation is a second-order differential equation of the following general form

χ′′ + F (r)χ = 0. (2.75)

Equations of this type satisfy some general properties. These are related to the Wronskian theorem,
which is derived and discussed in appendix C.13.

Not all solutions of the 1D Schrödinger equation are physically acceptable. The physical solutions
must be normalizable; i.e., for bound states

ˆ
r2 |R(r)|2 dr =

ˆ
|χ(r)|2 dr = N , (2.76)

where N is a finite number. However, there is an additional requirement. Because the hamiltonian
(2.3) is only valid outside the origin (r 6= 0) the solutions of the radial wave equation are not
necessarily valid at the origin. To be valid for all values of r the solutions must, in addition to be
being normalizable, also be regular in the origin; i.e., limr→0 rR(r) = limr→0 χ(r) = 0. Although
this is stated without proof we demonstrate in Problem 2.7 that normalizable wavefunctions ψ(r)
scaling like R(r) ∼ 1/r near the origin do not satisfy the Schrödinger equation in the origin. All
this being said, only wavefunctions based on the regular solutions of Eqs. (2.70) and (2.74) can be
valid solutions for all values of r, including the origin.

Problem 2.7. Show that a normalizable radial wavefunction scaling like R(r) ∼ 1/r for r → 0 does not
satisfy the Schrödinger equation in the origin.

Solution. Next we turn to solutions ψ(r) = Rl(r)Y
m
l (θ, φ) of the Schrödinger equation for the motion of

a particle in a central field. We presume that the wavefunction is well behaved everywhere but diverges like
Rl(r) ∼ 1/r for r → 0. We ask ourselves whether this is a problem because - after all - the wavefunction is
normalizable. However, the divergent wavefunction Rl(r) is defined everywhere except in the origin. This
is more than a technicality because it implies that the Schrödinger equation is not satisfied in the origin.
Using Problem 2.9 we find (

− ~2

2mr
∆ + V(r)− E

)
ψ(r) = −4π~2

2mr
δ (r) ,

which is zero everywhere except in the origin. Apparently, by solving the Schrödinger equation after separa-
tion in radial and angular variables we have generated a solution that does not satisfy the original equation
(which is valid everywhere in space - including the origin). 2
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Problem 2.8. Show that for a normalizable radial wavefunction scaling like R(r) ∼ 1/r for r → 0 the
kinetic energy diverges in the origin.

Solution. We first write the radial wavefunction in the form R0(r) = (χ0(r)/r), where limr→0 χ0(r) =
χ0 6= 0. Calculating the kinetic energy we find

−
ˆ
R0(r)Y 0

0 (θ, φ)
~2

2mr
∆R0(r)Y 0

0 (θ, φ) dr > − ~2

2mr
χ2

0(0) lim
ε→0

ˆ
V

1

4πr
∆

1

r
dr

=− ~2

2mr
χ2

0(0) lim
ε→0

ˆ
V

1

r
δ (r) dr→∞. 2

Problem 2.9. Use the Gauss theorem to demonstrate the relation ∆ (1/r) = −4πδ (r) .

Solution. We first integrate this expression on both sides over a small sphere V of radius ε centered at the
origin, ˆ

V

∆
1

r
dr = −4π.

Here we used
´
V
δ (r) dr = 1 for an arbitrarily small sphere at the origin. The l.h.s. also yields −4π as

follows with the divergence theorem (Gauss theorem)

lim
ε→0

ˆ
V

∆
1

r
dr = lim

ε→0

˛
S

dS ·∇1

r
= lim
ε→0

˛
S

dS · r̂
(
− 1

r2

)
= lim
ε→0

4πε2
(
− 1

ε2

)
= −4π. 2

2.2.2 Schrödinger equation in cylindrical coordinates

In systems with cylindrical symmetry about the z axis (see Fig. 2.2) the motion separates into motion
parallel to the z axis and motion in planes orthogonal to the z axis,

p2 = (ẑ · p)
2

+ (r̂⊥ · p⊥)
2

+ (r̂⊥ × p⊥)
2
, (2.77)

where r̂⊥ is defined in Eq. (2.17a) and ẑ is independent of position; p⊥ is the momentum in the
xy plane. The quantization rule for the linear momentum in the z direction, pzφ = ẑ · pφ →
−i~ẑ ·∇φ = −i~∂zφ, can be applied without ambiguity and we have for the p2

z operator

p2
z = (ẑ · p)

2
= −~2∂2/∂z2. (2.78)

With regard to the motion in planes orthogonal to the z axis we run into the same dilemma as
we encountered with spherical coordinates. The quantization rules for r̂⊥ · p⊥ = p⊥ · r̂⊥ are not
unambiguous since r̂⊥ ·∇⊥φ 6= ∇⊥ · r̂⊥φ (the direction of the unit vector r̂⊥ depends on position).
This dilemma can be circumvented in the same way as we did for pr in Section 2.1.8. By rewriting
Eq. (2.77) in the form

p2
r⊥

= (r̂⊥ · p⊥)
2

= p2 − (r̂⊥ × p⊥)
2 − (ẑ · p)

2
(2.79)

we obtain an expression where pr⊥ is expressed in quantities for which the correspondence rules can
be applied without ambiguity: p2 → −~2∆ and r̂⊥ × p⊥ → −i~r̂⊥ ×∇⊥. Note that for cylindrical
coordinates the angular momentum along the symmetry axis, L⊥ = r⊥ × p⊥, satisfies the property

L⊥ = −i~ ∂

∂φ
= Lz. (2.80)

Replacing the dynamical variables by their operators Eq. (2.79) takes the form

p2
r⊥

= −~2

(
∆− 1

r2
⊥

∂2

∂φ2
− ∂2

∂z2

)
. (2.81)

Substituting Eq. (2.19) for the laplacian we obtain

p2
r⊥

= −~2

(
∂2

∂r2
⊥

+
1

r⊥

∂

∂r⊥

)
. (2.82)
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At this point we can quantize the hamiltonian and starting from Eq. (2.77) the Schrödinger equation
takes the form[

− ~2

2mr

(
∂2

∂r2
⊥

+
1

r⊥

∂

∂r⊥
+

∂2

∂z2

)
+

L2
z

2mrr2
⊥

+ V(r⊥, φ, z)

]
ψ(r⊥, φ, z) = Eψ(r⊥, φ, z). (2.83)

If the potential only depends on the r⊥ variable, V(r⊥, φ, z) = V(r⊥), we have separation of variables
for the axial, radial and angular motion and we find for the radial Schrödinger equation in this case

~2

2mr

(
− d2

dr2
⊥
− 1

r⊥

d

dr⊥
+
l2

r2
⊥

+ V(r⊥)

)
Rnl(r⊥) = ERnl(r⊥). (2.84)

Reduction to one-dimensional Schrödinger equation

Suppressing the quantum number n and using the definitions (2.71) the radial wave equation (2.84)
takes the compact form

R′′l +
1

r⊥
R′l +

[
ε− U(r⊥)− l2

r2
⊥

]
Rl = 0, (2.85)

where the prime refers to a derivative with respect to r⊥. Introducing the functions

yl(r⊥) = r
1/2
⊥ Rl(r⊥), (2.86)

also in this case the radial wave equation is reduced to the form of a one-dimensional Schrödinger
equation,

y′′l +

[
2mr

~2
(E − V) +

1/4−m2

r2
⊥

]
yl = 0. (2.87)

2.3 Symmetry properties, conserved quantities and good quantum numbers

To conclude this chapter we return to the Schrödinger hamiltonian,

H0 = − ~2

2mr
∆ + V(r), (2.88)

and discuss the main findings of the chapter against the background of the symmetry properties
of this hamiltonian. In general, the symmetries of a physical quantity are defined by the set of
coordinate transformations that leave this quantity invariant. With each symmetry we associate an
operator that generates the corresponding coordinate transformation. The transformations may be
continuous (e.g., translation and rotation) or discrete (e.g., reflection and inversion). For instance,
an equilateral triangle is invariant under rotation over 120◦ about an axis through the center of mass
and perpendicular to the plane of the triangle; this reveals a three-fold symmetry under rotation (a
finite rotation symmetry in this case). The mathematical discipline for the investigation of symmetry
properties is called Group theory [67].

What are the symmetries of the Schrödinger hamiltonian? For the potential energy term this is
self evident from the notation because the central potential V(r) depends only on the radial distance
r = |r| to the atomic center of mass. This manifestly being the case, V(r) is said to be manifestly
invariant under any transformation that does not affect |r|. This holds for all rotations about the
origin, all reflections about a plane through the origin and for inversion about the origin. For the
kinetic energy term the symmetry under such operations is certainly not manifest and we need to
have a closer look.

As an example we consider the space inversion by the parity operator P. This operator transforms
the position r into position −r, which is equivalent to sign reversal of the cartesian coordinates
(x→ −x, y → −y, z → −z). As this operation conserves |r|, the potential energy is invariant under
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space inversion. To determine the inversion symmetry of the kinetic energy operator we write the
laplacian in cartesian coordinates,

∆ =
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
. (2.89)

As this expression only contains second derivatives with regard to position it also is invariant under
sign reversal. In other words the Schrödinger hamiltonian conserves parity for any interaction that
conserves parity. Note that by inverting twice we obtain the unit operator, P 2 = 1. In group theory
P and P 2 are said to be the elements of a group of order 2: the inversion group (P 2 is the identity
element). In the language of quantum mechanics we say that P commutes with the hamiltonian.
This implies that P is a hermitian operator; hence, its eigenvalues are real. As P 2 = 1 these
eigenvalues are 1 (even parity) or −1 (odd parity). The radius vector is odd under parity (such
vectors are called polar vectors). Angular momentum is even under parity (such vectors are called
axial vectors or pseudovectors). As P commutes with H0, also the energy eigenstates must be parity
eigenstates. This property was already noticed in Section 2.1.6.

What about rotational symmetry? From the commutation of Lz with H0 we find by using the
product rule for differentiation(

∂

∂φ
H0 −H0

∂

∂φ

)
ψ(r, θ, φ) =

(
∂H0

∂φ

)
ψ

ψ(r, θ, φ) = 0. (2.90)

Because this relation holds for any function ψ(r, θ, φ) it implies the invariance of H0 under an
infinitesimal rotation about the z axis,

∂H0

∂φ
= 0. (2.91)

As the quantization axis was chosen in an arbitrary direction, this invariance of H0 holds for any
infinitesimal rotation about the origin. Inversely, it is this invariance that makes Lz commute with
H0, which implies that Lz is a conserved quantity (see Appendix B.2.4). The operator Lz can be
identified with the operator for an infinitesimal rotation about the z axis as introduced above. The
hamiltonian is also invariant under any finite rotation about the origin because any such rotation
can be realized by an infinite sequence of infinitesimal rotations about the origin. The infinite set
of all rotations about the origin constitutes the elements of a continuous group: the full rotation
group.

In this course we raise awareness for the symmetry properties but do not enter into the sys-
tematics of group theory. With regard to rotation we emphasize that for the hamiltonian H0 the
expectation values of L2 and Lz are conserved whatever the radial motion, showing that L2 and Lz
are observables (observable constants of the motion). This means that the corresponding eigenvalues
and eigenstates can be measured simultaneously to arbitrary precision and are uniquely determined
by the quantum numbers l and ml. Whenever a quantum number is conserved, it is called a good
quantum number of the hamiltonian under consideration. As a counter example we consider p2

r. As
p2
r does not commute with r (see Section 2.1.8), it does not commute with the hamiltonian. This

means that p2
r is not a conserved quantity and no good quantum number can be identified with the

radial kinetic energy. This is no surprise from the physical point of view because the radial motion
is oscillatory.
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Motion of interacting neutral atoms

3.1 Introduction

In this chapter we investigate the relative motion of two neutral atoms under conditions typical
for quantumgases. This means that the atoms are presumed to move slowly, typically at large
separation, and to interact pair wise through a potential of the Van der Waals type. In Section 1.5
the term slowly was quantified as Λ � r0, where Λ is the thermal wavelength and r0 the range of
the interaction potential. Associating with Λ a typical wavenumber for the relative motion of free
atoms, k ∼ 1/Λ, the inequality can be expressed in the form

kr0 � 1. (3.1)

As the Van der Waals interaction gives rise to elastic collisions, the total energy of the relative
motion is conserved in time. As the potential energy vanishes at large interatomic separation the
total energy is usually expressed in the form E = ~2k2/2mr. This implies that also the wavenumbers
for the relative motion before and after the collision must be the same and shows that, far from the
potential center, the collision can only affect the phase of the wavefunction - not its wavelength.
Apparently, the appearance of a shift in phase relative to the free atomic motion provides the key to
the quantum mechanical description of elastic collisions. This being said, we postpone the discussion
of the actual collisional behavior to Chapter 4. First we prepare ourselves for this discussion by
analyzing the stationary states for the relative motion in the presence of an interaction potential.

An important simplifying factor in the description of ultracold collisions is the emergence of
universal behavior in the relative motion of the atoms. The latter applies to low-energy collisional
states as well as to weakly bound states. Universal means in this context that, asymptotically (for
r � r0), the wavefunctions become independent of the details of the interaction potential but can
be characterized in terms of a few parameters, each representing some characteristic length scale of
the collisional system. In other words, very different short-range physics can give rise to the same
scattering behavior. From a theory point of view this universality has the enormous advantage that
the essential features of ultracold collisions can be described with the aid of simple model potentials
for which analytical solutions can be obtained.

In our analysis of the collisional motion three characteristic length scales will appear, the inter-
action range r0, the scattering length a and the effective range re, each expressing a different aspect
of the interaction. The range r0 was already introduced in Chapter 1 as the distance beyond which
the interaction may be neglected even for k → 0. The second characteristic length, the s-wave
scattering length a, acts as an effective hard-sphere diameter. It is a measure for the interaction
strength and determines the collision cross section in the limit k → 0 as will be elaborated on in
Chapter 4. The third characteristic length, the effective range re expresses how the potential affects
the energy dependence of the cross section and determines when the k → 0 limit is reached.

47
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The s-wave scattering length is the central parameter for the theoretical description of bosonic
quantum gases. It determines both the thermodynamic and the collisional properties of these gases.
In single-component fermionic gases the s-wave scattering length plays no role because the wave-
function for the relative motion of the atoms has to be antisymmetric. In two-component fermionic
gases this restriction is absent for collisions between atoms of different components. As a con-
sequence, in these systems the inter-component s-wave scattering length determines the collision
related properties - for instance the thermalization rate.

This chapter consists of three main sections. In Section 3.2 we show how the phase shift appears
as a result of interatomic interaction in the wavefunction for the relative motion of two atoms.
For free particles the phase shift is zero. An integral expression for the phase shift is derived. In
Section 3.3 and beyond we specialize to the case of low-energy collisions (kr0 � 1). First, the basic
phenomenology is introduced and analyzed for simple model potentials like the hard-sphere (Section
3.3) and the spherical well (Section 3.4), where the existence of a short range is manifest. Then
we show that this phenomenology also holds for arbitrary short-range potentials (Section 3.6). For
the case l = 0 we derive general expressions for the energy dependence of the s-wave phase shift,
both in the absence (Sections 3.6.3) and in the presence (Section 3.6.4) of a weakly bound s level.
Unfortunately the existence of a finite range is in general far from obvious. Therefore, in order to
clarify this issue for the Van der Waals interaction we introduce in Section 3.7 power-law potentials
V(r) = Csr

−s and show that for this class of potentials a finite r0 can only be defined for low angular
momentum values l < 1

2 (s− 3). For l ≥ 1
2 (s− 3) we have to rely on a different method and use

perturbation theory to derive an analytic expression for the phase shift in the k → 0 limit (Section
3.7.2). This method works as long as so called shape resonances (l > 0) play no role. In the last
section of this chapter (Section 3.9) we analyze how the pair interaction energy is related to their
scattering properties and how this differs for identical bosons as compared to unlike particles.

3.2 The collisional phase shift

3.2.1 Schrödinger equation

The starting point for the description of the relative motion of two atoms at energy E is the
Schrödinger equation (2.66),[

1

2mr

(
p2
r +

L2

r2

)
+ V(r)

]
ψ(r, θ, φ) = Eψ(r, θ, φ). (3.2)

Here mr is the reduced mass of the atom pair and V(r) the interaction potential. As discussed in
Section 2.1.6 the eigenfunctions ψ(r, θ, φ) can be separated in a radial and a angular part,

ψ = Rl(r)Y
m
l (θ, φ), (3.3)

where the functions Ylm(θ, φ) are spherical harmonics and the functions Rl(r) satisfy the radial wave
equation [

~2

2mr

(
− d2

dr2
− 2

r

d

dr
+
l(l + 1)

r2

)
+ V(r)

]
Rl(r) = ERl(r). (3.4)

By the separation procedure the angular momentum term is replaced by a repulsive effective poten-
tial

Vrot(r) = l(l + 1)
~2

2mrr2
, (3.5)

representing the rotational energy of the atom pair at a given distance and for a given rotational
quantum number l. In combination with an attractive interaction it gives rise to a centrifugal barrier
for the radial motion of the atoms. This is illustrated in Fig. 3.1 for the example of hydrogen.
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Figure 3.1: Example showing the high-lying bound states near the continuum of the singlet potential 1Σ+
g

(the bonding potential) of the hydrogen molecule; v and J are the vibrational and rotational quantum
numbers, respectively. The dashed line shows the effect of the J = 3 centrifugal barrier.

To analyze the radial wave equation we introduce reduced energies

ε = 2mrE/~2 and U(r) = 2mrV(r)/~2, (3.6)

which put Eq. (3.4) in the form

R′′l +
2

r
R′l +

[
ε− U(r)− l(l + 1)

r2

]
Rl = 0. (3.7)

With the substitution χl (r) = rRl (r) it reduces to a 1D Schrödinger equation

χ′′l + [ε− U(r)− l(l + 1)

r2
]χl = 0. (3.8)

The latter form is particularly convenient for the case l = 0,

χ′′0 + [ε− U(r)]χ0 = 0. (3.9)

In this chapter we shall use the wave number notation ε = k2 for ε > 0. Here k = ±[2mrE/~2]1/2;
the + sign will be identified with “outgoing” waves and the − sign with “incoming” waves. Similarly,
we shall write ε = −κ2 for ε < 0. Hence, for a bound state of energy Eb < 0 we have κ =
[−2mrEb/~2]1/2 = [2mr|Eb|/~2]1/2.

For completeness we mention that equally well one may choose to use complex k values denoted
by k̄ = |k̄|eiφ. In the latter case positive energies (E > 0) correspond to real k̄ = ±

√
2mr|E|/~2

and negative energies (E < 0) to imaginary k̄ = ±i
√

2mr|E|/~2. Introducing the complex energy

Ē = ~2k̄2/2mr = (~2|k̄|2/2mr)e
i2φ = |Ē|eiΦ, (3.10)

where |Ē| = ~2|k̄|2/2mr and Φ = 2φ; i.e., the complex angle of Ē increases twice as fast as that of
k̄. Inversely, the complex wavevector k̄ is a double-valued function of the complex energy Ē,

k̄ = ±
√

2mr|Ē|/~2eiΦ/2 with 0 ≤ Φ < 2π. (3.11)
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Figure 3.2: The presence of a rotational barrier gives rise to an exponential suppression of the radial
wavefunction for r < rcl and is negligible at distances where the interaction becomes noticeable r � r0.

This double valuedness can be removed by introducing a Riemann surface consisting of two sheets, a
first Riemann sheet (the first sheet) with 0 < Φ = 2φ ≤ 2π corresponding to the + sign

(
Im k̄ > 0

)
and a second Riemann sheet (the second sheet) with 2π ≤ Φ = 2φ < 4π corresponding to the −
sign

(
Im k̄ < 0

)
,

k̄ =
√

2mr|Ē|/~2eiΦ/2 with 2π ≤ Φ < 4π.

By convention the bound states are represented by points on the positive sheet of the Riemann
surface. This is called the physical sheet. The points on the negative sheet of the Riemann surface
can be associated with so-called virtual states (l = 0) and scattering resonances (l > 0).

3.2.2 Low-energy limit - s-wave regime

For two atoms with relative angular momentum l > 0 there exists a distance rcl, called the classical
turning point, below which the rotational energy exceeds the total energy E,

k2 =
l (l + 1)

r2
cl

. (3.12)

This is illustrated in Fig. 3.2. In the classically inaccessible region of space (r < rcl) the radial
wavefunction is exponentially suppressed.1 Combining Eq. (3.12) with the condition (3.1) we obtain
the inequality kr0 =

√
l (l + 1)r0/rcl � 1, which implies that the classical turning point is found at

a distance much larger than the range of the interaction,

kr0 � 1⇔ rcl � r0 for l 6= 0. (3.13)

As the range r0 defines the distance beyond which the potential can be neglected, this inequality
shows that the radial motion is not affected by the presence of the potential V(r) in the radial wave
equation. The notable exception is the case l = 0, where the barrier is absent and the potential
gives rise to a substantial distortion of the radial waves. In other words, for kr0 � 1 phase shifts
(i.e., scattering) can only arise from collisions with zero angular momentum. The range of collision
energies where the inequalities (3.13) are valid is called the s-wave regime.

3.2.3 Free particle motion - spherical Bessel functions

We first have a look at the case of free particles. In this case V(r) = 0 and the radial wave equation
(3.7) becomes

R′′l +
2

r
R′l +

[
k2 − l(l + 1)

r2

]
Rl = 0, (3.14)

1At this point we exclude tunneling through the barrier and the occurrence of shape resonances.
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which can be rewritten in the form of the spherical Bessel differential equation by introducing the
dimensionless variable % ≡ kr,

R′′l +
2

%
R′l +

[
1− l(l + 1)

%2

]
Rl = 0. (3.15)

Here the derivatives are with respect to the new variable.
The general solution of Eq. (3.15) for angular momentum l is a linear combination of two partic-

ular solutions, one regular , the spherical Bessel function jl(%) (see Fig. 3.3), and one irregular , the
spherical Neumann function nl(%) (not shown Fig. 3.3):

Rl(%) = Aljl(%) +Blnl(%). (3.16)

Properties of the functions jl(%) and nl(%) are given in Appendix C.12.1. The coefficients Al and Bl
are called the scattering parameters. To best represent the radial motion it is conventional to define
alternative scattering parameters

{Al, Bl} → {cl, ηl} , where

{
Al = cl cos ηl
Bl = cl sin ηl.

(3.17)

The new parameters represent the amplitude cl and the asymptotic phase

ηl = arctanBl/Al (3.18)

of the wavefunction. In terms of these new parameters Eq. (3.16) becomes

Rl(%) = cl [cos ηl jl(%) + sin ηl nl(%)] . (3.19)

Note that this equation is singular in the origin except for the case of vanishing phase shifts.
Therefore, in the case of free particles we require ηl = 0 for all angular momentum values l. This
implies that the general solution reduces to the regular one, jl(kr).

3.2.4 Free particle motion for the case l = 0

The solution of the radial Schrödinger equation is particularly simple for the case l = 0 (s waves).
Writing the radial wave equation in the form of the 1D-Schrödinger equation (3.9) we have for free
particles

χ′′0 + k2χ0 = 0, (3.20)

with general solution χ0(k, r) = c0 sin (kr + η0). The s waves are special because χ0(k, r) has
the simple sinusoidal shape not only asymptotically but for all values r > 0. The corresponding
wavefunction is

R0(k, r) =
c0
kr

sin(kr + η0). (3.21)

Again we require η0 = 0 for the case of free particles to assure that Eq. (3.21) is non-singular in the
origin. For η0 = 0 we observe that R0(k, r) reduces to the spherical Bessel function j0(kr) shown in
Fig. 3.3.

3.2.5 Significance of the phase shifts

To investigate the effect of a short-range interaction potential U(r) we return to the radial wave
equation (3.7). As the potential is of short range it may be neglected for r � r0 and the general
solutions coincide with those of the spherical Bessel equation,

Rl(k, r) '
r�r0

cl [cos ηl jl(kr) + sin ηl nl(kr)] . (3.22)



52 CHAPTER 3. MOTION OF INTERACTING NEUTRAL ATOMS

For r � 1/k the spherical Bessel and Neumann functions assume their asymptotic form and we find
- see Eqs. (C.104a) and (C.104b)

Rl(k, r) '
kr→∞

cl
kr
{cos ηl sin(kr − 1

2 lπ) + sin ηl cos(kr − 1
2 lπ)}. (3.23)

This asymptotic expression can be rewritten in a convenient form with the aid of the angle-addition
formula for the sine,

Rl(k, r) '
r→∞

cl
kr

sin(kr + ηl − 1
2 lπ). (3.24)

Hence, the constant ηl(k) represents the asymptotic phase shift. For a given value of k this phase
shift fixes the general solution of the radial wavefunction Rl(k, r) up to an l dependent normalization
constant cl. Note that in view of the k dependence of the phase shift, Rl is a function of k and r
rather than a function of the product kr. Whereas in the case of free particles the phase shifts must
all vanish, in the presence of the interaction they provide the proper asymptotic form of the distorted
waves. The non-zero asymptotic phase shift is the signature of the interaction at short distance; the
motion becomes free-particle like (undistorted) only at large distance from the scattering center. In
elastic scattering the relative energy ~2k2/2m is conserved; hence, asymptotically also k and the de
Broglie wavelength. This leaves only the asymptotic phase of the wave to be affected.

Scattering matrix

Real wavefunctions like Eq. (3.19) are convenient for visualization but the complex notation is at
least as valuable. Rewriting Eq. (3.24) in the form

Rl(k, r) '
r→∞

cl
2k
i

[
e−iηl

e−i(kr−
1
2 lπ)

r
− eiηl e

i(kr− 1
2 lπ)

r

]
, (3.25)

we note that for r →∞ the stationary solution Rl(k, r) can be regarded as an “incoming” spherical

wave e−i(kr−
1
2 lπ)/r, interfering with an “outgoing” spherical wave ei(kr−

1
2 lπ)/r. It is convention to

choose the phase of the normalization constant such that the phase of the incoming wave is zero,

Rl(k, r) '
r→∞

c′l
2k

[
e−ikr

r
− e−ilπe2iηl

eikr

r

]
. (3.26)

Apart from the sign, the ratio of the phase factors of the outgoing over the incoming wave is

Sl ≡ e2iηl . (3.27)

This quantity is called the scattering matrix (S matrix) or, better, the l-wave contribution to the
S matrix. Being unitary it does not suffer from the divergences of the ratio Bl/Al = tan ηl. In
the present context the name scattering matrix is a bit heavy because we only have a single matrix
element (1× 1 matrix). The term matrix finds its origin in the description of scattering of particles
with an internal degree of freedom (like spin), for which the phase factor is replaced by a unitary
matrix.

Riccati-Bessel functions

The spherical-Bessel differential equation (3.15) can be reduced to a 1D Schrödinger equation

χ′′l +

[
1− l(l + 1)

%2

]
χl = 0, (3.28)

by changing to reduced wavefunctions of the type χl(%) = %Rl(%). Therefore, the general solution
of Eq. (3.28) follow directly from the solutions for the radial wavefunction Rl(%). To keep the
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Figure 3.3: The lowest-order spherical Bessel functions j0(kr) and j1(kr), which are the l = 0 and l = 1
eigenfunctions of the radial wave equation in the absence of interactions (free atoms). Also shown is the
l = 1 rotational barrier and the corresponding classical turning point for the radial motion. The j1(kr)
is shifted up to the horizontal dashed line only for convenience of display. Note that j1(kr) � j0(kr) for
krc � 1.

notation compact one introduces Riccati-Bessel functions ̂l(%) = %jl(%) (for the regular solutions)
and Riccati-Neumann function n̂l(%) = %nl(%) (for the irregular solutions). For ηl → 0 the general
solution

χl(%) = cl [cos ηl ̂l(%) + sin ηl n̂l(%)] . (3.29)

reduces to the regular one, ̂l(kr), which is the physical solution for free particles. For % → ∞ the
general solution has the following asymptotic form

χl(k, r) '
r→∞

cl sin(kr + ηl − 1
2 lπ), (3.30)

which can be written in the form

χl(k, r) '
r→∞

cl
2
i
[
e−iηle−i(kr−

1
2 lπ) − eiηlei(kr+ 1

2 lπ)
]
. (3.31)

Riccati-Hankel functions

The general solution (3.29) of the 1D Schrödinger equation for angular momentum l can also be
written in the form (see Problem 3.1)

eiηlχl(k, r) =
cl
2
i
[
ĥ−l (kr)− e2iηl ĥ+

l (kr)
]
, (3.32)

where the functions ĥ±l (%) = n̂l (%)± i ̂l (%) are Riccati-Hankel functions of the first (+) and second
(−) kind, mutually related by

ĥ±l (kr) = (−1)lĥ∓l (−kr) (3.33)

(cf. Appendix C.12.1). Note that for ηl → 0 the general solution reduces to the regular one, ̂l(kr).

Problem 3.1. Show that the general solution of the Riccati-Bessel differential equation for angular mo-
mentum l, Eq. (3.29), can be written in the form

χl(%) = 1
2
i
[
e−iηl ĥ−l (%)− eiηl ĥ+

l (%)
]
,

where we set have cl = 1 and the ĥ±l (%) are Riccati-Hankel functions.
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Solution. The general solution of the spherical Bessel equation is given by Eq. (3.29),

χl(%) = cos ηl ̂l(%) + sin ηl n̂l(%).

Writing sin ηl and cos ηl in the form of complex exponents we find

χl(%) = 1
2

(
eiηl + e−iηl

)
̂l(%)− 1

2
i
(
eiηl − e−iηl

)
n̂l(%)

= 1
2
eiηl [ ̂l(%)− i n̂l(%)] + 1

2
e−iηl [ ̂l(%) + i n̂l(%)] .

Using definition (C.93) of the Hankel functions we obtain the desired expression. 2

3.2.6 Integral representations for the phase shift

Exact integral expressions for the phase shift can be obtained with the aid of the Wronskian The-
orem. In this approach we compare the distorted wave solutions χl = krRl(r) with the regular
solutions ̂l(kr) and the irregular solutions n̂l(kr) of Eq. (3.28); i.e., we compare solutions of the 1D
Schrödinger equation obtained for U 6= 0 with those obtained by setting U = 0. As will be shown,
the resulting expressions hold for potentials U(r) that vanish for r →∞ more rapidly than 1/r and
diverge slower than 1/r2 for r → 0. Because the distorted waves χl (k, r) are the physical solutions
they have to be regular. Furthermore, it will be shown that for the mentioned class of potentials
the condition of being regular is equivalent to the statement that close to the origin they may be
replaced by Riccati-Bessel functions,

χl (k, r) ∼ ̂l(kr) for r → 0. (3.34)

This canonical form for the r → 0 limiting behavior is allowed because (as will be shown) it does
not effect the value obtained for the phase shift.

Comparing first the regular solutions ̂l(kr) of Eq. (3.28) with the solutions χl (k, r) of Eq. (3.8)
for the same value ε = k2 we use the Wronskian Theorem in the form (C.146)

W (χl, ̂l)|ba = −
ˆ b

a

U(r)χl(r)̂l(r)dr. (3.35)

Here W (χl, ̂l) = χl(r)̂
′
l(r) − χ′l(r)̂l(r) is the wronskian of χl and ̂l. Because both χl and ̂l are

regular at the origin this wronskian is zero in the origin, W (χl, ̂l)|0 = 0. Asymptotically we find ̂l(r)
and̂′l(r) with the aid of Eq. (C.104a), limr→∞ ̂l(r) = sin(kr − 1

2 lπ) and limr→∞ ̂′l(r) = k cos(kr −
1
2 lπ). For the distorted waves we have limr→∞ χl(r) = sin(kr + ηl − 1

2 lπ) and limr→∞ χ′l(r) =
k cos(kr + ηl − 1

2 lπ). Hence, asymptotically the wronskian is given by

lim
r→∞

W (χl, yl) = k sin ηl. (3.36)

With the Wronskian Theorem (3.35) we obtain the following integral expression for the phase shift,

sin ηl = −1

k

ˆ ∞
0

U(r)χl(k, r)̂l(kr)dr (3.37)

Analogously, by comparing the distorted wave solutions χl = krRl(r) with the irregular solutions
n̂l(kr) we obtain (see Problem 3.2),

cos ηl = 1 +
1

k

ˆ ∞
0

U(r)χl(k, r)n̂l(kr)dr. (3.38)

Let us verify that the integrals (3.37) and (3.38) converge as long as U(r) diverges slower than
1/rs with s < 2 for r → 0. This condition is most difficult to satisfy for Eq. (3.38) because the
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Riccati-Neumann functions with l 6= 0 diverge for r → 0. Since χl(k, r) is regular in the origin it
satisfies the relation χl(k, r) ≤ ̂l(kr). The integrand of Eq. (3.38) for r → 0 satisfies the condition

r−sχl(k, r)n̂l(kr) ≤ r−ŝl(kr)n̂l(kr) ∼
r→0

r−s+1. (3.39)

The primitive of this expression is r−s+2, which vanishes for r → 0 only for s < 2 as was mentioned
above.

Analogously we can verify that the integrals (3.37) and (3.38) converge for potentials falling off
faster than U(r) ∼ 1/rs with s > 1 for r → ∞. We demonstrate this for Eq. (3.37). Using the
asymptotic expressions for χl(k, r) and ̂l(kr) the integrand of takes the asymptotic form

U(r)χl(k, r)jl(kr)r ∼
r→∞

(1/r)s
{

sin(kr − 1
2 lπ) cos ηl + cos(kr − 1

2 lπ) sin ηl
}

sin(kr − 1
2 lπ)

∼
r→∞

(1/r)s
{

cos ηl [1− cos(2kr − lπ)] + 1
2 sin(2kr − lπ) sin ηl

}
. (3.40)

The oscillatory terms are bounded in the integration. Therefore, only the first term may be divergent.
Its primitive is 1/rs−1, which tends to zero for r →∞ only for s > 1.

Alternative expressions for the phase shifts

Since e−iηl = cos ηl − i sin ηl, we obtain by substitution of Eqs. (3.37) and (3.38)

e−iηl = 1 +
1

k

ˆ ∞
0

U(r)χl(k, r)ĥ
+
l (kr)dr, (3.41)

Similarly, since e2iηl = 1 + 2ieiηl sin ηl we obtain the S matrix by substituting Eq. (3.37)

Sl = e2iηl = 1− 2i

k

ˆ ∞
0

U(r)
[
eiηlχl(k, r)

]
̂l(kr)dr. (3.42)

Problem 3.2. Show that the phase shift can be expressed in the form

cos ηl = 1 +
1

k

ˆ ∞
0

U(r)χl(k, r)n̂l(kr)dr.

Solution. Comparing the distorted wave solutions χl = rRl(r) with the irregular solutions n̂l(kr) of the
1D Schrödinger equation. In this case the wronskian is given by

W (χl, n̂l) = χl(r)n̂
′
l(r)− χ′l(r)n̂l(r).

Because χl is regular we may replace χl(r) by ̂l(r) for r → 0. Thus, we have

W (χl, n̂l) '
r→0

̂l(r)n̂
′
l(r)− ̂′l(r)n̂l(r) = −k (a)

and the wronskian in the origin is given by W (χl, n̂l)|0 = −k. Asymptotically we have for n̂l(r) with
Eq. (C.104b) limr→∞ n̂l(r) = cos(kr − 1

2
lπ) and limr→∞ n̂

′
l(r) = −k sin(kr − 1

2
lπ). For the distorted waves

we have limr→∞ χl(r) = sin(kr+ ηl− 1
2
lπ) and limr→∞ χ

′
l(r) = k cos(kr+ ηl− 1

2
lπ). Hence, asymptotically

the wronskian is given by

lim
r→∞

W (χl, n̂l) = −k cos ηl.

With the wronskian theorem (a) we obtain the desired integral expression for the phase shift. 2
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3.3 Hard-sphere potentials

We now turn to analytical solutions for model potentials in the limit of low energy. We first consider
the case of two hard spheres of equal size. These can approach each other to a minimum distance
equal to their diameter a. For r ≤ a the radial wave function vanishes, Rl(r) = 0. Outside the hard
sphere we have free atoms, V(r) = 0, with relative wave number k = [2mrE/~2]1/2. Thus, for r ≥ a
the general solution for the radial wave functions of angular momentum l is given by the free atom
expression (3.19),

Rl(k, r) = cl[cos ηljl(kr) + sin ηlnl(kr)]. (3.43)

Asymptotically this takes the form (3.24) of a phase-shifted spherical Bessel function,

Rl(k, r) '
r→∞

cl
kr

sin(kr + ηl − 1
2 lπ). (3.44)

To determine the phase shift we require as a boundary condition that Rl(k, r) vanishes at the surface
of the hard sphere (see Fig. 3.4),

cos ηljl(ka) + sin ηlnl(ka) = 0. (3.45)

Hence, the phase shift follows from the expression

tan ηl = − jl(ka)

nl(ka)
. (3.46)

We analyze two limiting cases using the asymptotic expressions (C.104) and (C.105):

• For ka� 1 the phase shift can be written as 1

tan ηl '
k→0
− 2l + 1

[(2l + 1)!!]
2 (ka)

2l+1
=⇒ ηl '

k→0
− 2l + 1

[(2l + 1)!!]
2 (ka)

2l+1
(3.47)

and the radial wavefunction becomes

Rl(k, r) '
r→∞

cl
kr

sin
(
kr − (2l + 1) (ka)

2l+1
/ [(2l + 1)!!]

2 − 1
2 lπ
)
. (3.48)

In particular, for s waves we find

R0(k, r) '
r→∞

c0
kr

sin [k(r − a)] . (3.49)

• For ka� 1 we find

tan ηl '
k→∞

− tan(ka− 1
2 lπ) =⇒ ηl '

k→∞
−ka+ 1

2 lπ (3.50)

and for the radial wavefunction

Rl(k, r) '
r→∞

cl
kr

sin [k(r − a)] . (3.51)

Note that this expression is independent of l; i.e., for large k all wavefunctions are shifted by
the diameter of the hard sphere. This is only the case for hard-sphere potentials.

1The double factorial is defined as n!! = n(n− 2)(n− 4) · · · .
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Figure 3.4: Radial wavefunctions (l = 0) for decreasing values of k (down to the k → 0 limit) in the case of
a hard sphere potential. The boundary condition is fixed by the requirement that the wavefunction vanishes
at the edge of the hard sphere, R0(ka) = 0.

3.3.1 s-wave phase shifts for hard spheres

The case l = 0 is special because the Eqs. (3.49) and (3.51) are not valid only asymptotically but for
all values of k and for the full range of distances outside the sphere (r ≥ a). This follows directly
from the general solution (3.43) with the aid of Eq. (C.103a) for the case l = 0,

R0(k, r) =
c0
kr

(cos η0 sin kr + sin η0 cos kr) =
c0
kr

sin(kr + η0). (3.52)

The phase shift follows from the boundary condition R0(k, a) = 0, which can be written in the form

cos η0 sin ka+ sin η0 cos ka = 0. (3.53)

Hence, the phase shift is
η0 = −ka. (3.54)

With this expression Eq. (3.52) reduces to

R0(k, r) =
c0
kr

sin [k(r − a)] . (3.55)

This expression is exact for any value of k, as announced above. The linear k dependence of η0

simply expresses its definition in which the shift of the wave (by a) is compared to the de Broglie
wavelength λdB, η0 = −2πa/λdB. As a consequence the phase shift vanishes for k → 0,

lim
k→0

η0(k) = 0. (3.56)

This result is obvious when comparing the finite shift a to the diverging wavelength Λ.
Interestingly, in the limit k → 0 the expression (3.55) becomes k independent,

R0(r) ∼
k→0

1− a

r
for a ≤ r � 1/k. (3.57)

This important result is illustrated in Fig. 3.4. In the limit k → 0 the wavefunction is essentially
constant throughout space (up to a distance 1/k → ∞ at which it starts to oscillate), except for a
small region of radius a around the potential center.

In preparation for comparison with the phase shift induced by other potentials and for the
calculation of scattering amplitudes and collision cross sections (cf. Chapter 4) we rewrite Eq. (3.54)
in the form of a series expansion of k cot η0 in powers of k2,

k cot η0(k) = −1

a
+

1

3
ak2 +

1

45
a3k4 + · · · . (3.58)

This expansion is known as an effective-range expansion of the phase shift. Note that whereas
Eq. (3.54) is exact for any value of k this effective-range expansion is only valid for ka� 1.
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Figure 3.5: Plot of square well potential with related notation.

3.4 Spherical wells with a flat bottom

3.4.1 General

The second model potential to consider is the spherical well of range r0 sketched in Fig. 3.5,

U (r) =

{
2mrV0/~2 = U0 = −κ2

0

0

for r ≤ r0

for r > r0.
(3.59)

Here |U0| = κ2
0 is called the well depth (κ0 is chosen to be real and positive, κ0 > 0). This potential

is an example of a larger class of potentials called piece wise constant potentials (another example
is discussed in Section 3.5). The energy of the continuum states is given by ε = k2. In analogy, the
energy of the bound states is written as

εb = −κ2. (3.60)

With the spherical well potential (3.59) the radial wave equation (3.7) takes the form

R′′l +
2

r
R′l +

[
ε− U0 −

l(l + 1)

r2

]
Rl = 0 for r ≤ r0 (3.61a)

R′′l +
2

r
R′l +

[
ε− l(l + 1)

r2

]
Rl = 0 for r > r0. (3.61b)

Since the potential is constant inside the well (r ≤ r0) the wavefunction has to be free-particle
like with the wave number given by

K+ = [2mr(E − V0)/~2]1/2 = [κ2
0 + k2]1/2. (3.62)

As the wavefunction has to be regular in the origin, inside the well it is given by

Rl(r) = Cl jl(K+r) for r ≤ r0, (3.63)

where Cl is a normalization constant. This expression holds for E > V0 (both E > 0 and E ≤ 0).
Outside the well (r > r0) we have for E > 0 free atoms, U(r) = 0, with relative wavevector

k = [2mrE/~2]1/2. Thus, for r > r0 the general solution for the radial wave functions of angular
momentum l is given by the free atom expression (3.19),

Rl(k, r) = cl [cos ηl jl(kr) + sin ηl nl(kr)] for r > r0. (3.64)
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Figure 3.6: Radial wavefunctions for square wells: a.) continuum state (ε = k2 > 0); b.) Zero energy state
(ε = k2 = 0) in the presence of an asymptotically bound level (ε = −κ2 = 0); c.) bound state (ε = −κ2 < 0).
Note the continuity of R0(r) and R′0(r) at r = r0. The wavefunctions are not normalized and are shifted
relative to each other only for reasons of visibility.

The full solution (see Fig. 3.6) is obtained by the continuity conditions for Rl(r) and R′l(r) at
the boundary r = r0. These imply continuity of the logarithmic derivative with respect to r

βl =
χ′l(r)

χl(r)

∣∣∣∣
r=r0

=
K+j

′
l(K+r0)

jl(K+r0)
= k

cos ηl j
′
l(kr0) + sin ηl n

′
l(kr0)

cos ηl jl(kr0) + sin ηl nl(kr0)
, (3.65)

where the prime refers to the derivatives of jl(%) and nl(%) with respect to the variable %. This
important ratio suffices to determine ηl independently of the normalization constants Cl and cl.
Once the phase shift is known the relation between Cl and cl follows from the continuity condition
for Rl(r). Furthermore, it shows that the asymptotic phase shift ηl can take any (real) value
depending on the depth of the well. In view of the importance of the S matrix in scattering theory
(cf. Chapter 4), it is advantageous to determine e2iηl rather than ηl itself. Expressing sin ηl and
cos ηl in terms of eiηl and e−iηl Eq. (3.65) becomes

βl = kr0
e2iηl [j′l(kr0)− in′l(kr0)] + [j′l(kr0) + in′l(kr0)]

e2iηl [jl(kr0)− inl(kr0)] + [jl(kr0) + inl(kr0)]
. (3.66)

Solving for e2iηl this leads to the following expression for the l-wave contribution to the S matrix,

e2iηl = −jl(kr0) + i nl(kr0)

jl(kr0)− i nl(kr0)

1 + kr0

j′l(kr0)−i n′l(kr0)
jl(kr0)−i nl(kr0) −

j′l(kr0)+i n′l(kr0)
jl(kr0)+i nl(kr0)

βl − kr0
j′l(kr0)−i n′l(kr0)

jl(kr0)−i nl(kr0)

 . (3.67)

This expression may look a bit heavy but is valuable as it represents the exact result for arbitrary
l. As it lacks transparency from the physical point of view, we analyze in the coming sections the
case l = 0.

Problem 3.3. Show that the following two boundary conditions are equivalent

lim
r↑r0

R′l(r)

Rl(r)
= lim
r↓r0

R′l(r)

Rl(r)
⇔ lim

r↑r0

χ′l(r)

χl(r)
= lim
r↓r0

χ′l(r)

χl(r)
.

Solution. Substituting χl(r) = rRl(r) the equivalence follows from the relation

χ′l(k, r)

χl(k, r)
=
rR′l(r) +Rl(r)

rRl(r)
=
R′l(r)

Rl(r)
+

1

r
. 2
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Figure 3.7: The s-wave scattering length a normalized on r0 as a function of the depth of a spherical square
potential well. Note that, typically, a ' r0, except near the resonances at κ0r0 = (n+ 1

2
)π with n being an

integer.

3.4.2 The case l = 0 for E > 0 - s-wave scattering length

The analysis of spherical well potentials becomes particularly simple for the case l = 0. Let us first
consider the case E > 0, for which the radial wave equation can be written as a 1D-Schrödinger
equation (3.9) of the form

χ′′0 + [k2 − U(r)]χ0 = 0. (3.68)

The solution is

χ0(k, r) =

{
C0 sin (K+r) for r ≤ r0

c0 sin (kr + η0) for r > r0.
(3.69)

To determine η0(k) it is sufficient to apply the boundary condition for continuity of the logarithmic
derivative at the edge of the well,

χ′0/χ0|r=r0 = K+ cotK+r0 = k cot(kr0 + η0). (3.70)

Note that this expression coincides with the general result given by Eq. (3.65) for the case l = 0;
i.e., the boundary condition of continuity for χ′0/χ0 coincides with that for R′0/R0, as we know from
Problem 3.3. Furthermore, for a vanishing potential (κ0 → 0) we have K+ → k and the boundary
condition properly yields a zero phase shift (η0 = 0).

At this point we introduce the effective hard-sphere diameter a(k) to describe, in analogy with
Eq. (3.54), the behavior of the phase shift

η0(k) ≡ −ka(k). (3.71)

Preferring a(k) over η0(k) amounts to a change of scattering parameter,

{c0, η0(k)} → {c0, a(k)}. (3.72)

By this procedure we extract the linear k dependence as well as the negative sign from the phase
shift. This is a good idea because the linear k dependence does not arise from the potential but
simply from the definition of the phase in which, as discussed in Section 3.3.1, the shift of the wave
is compared to the de Broglie wavelength. In the limit k → 0, we have K+r0 → κ0r0 and with the
definition

a ≡ lim
k→0

a(k) = − lim
k→0

η0(k)/k (3.73)

the boundary condition (3.70) becomes

χ′0/χ0|r=r0 = κ0 cotκ0r0 =
1

r0 − a
. (3.74)
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Solving for a we find
a = r0 (1− tan γ/γ) , (3.75)

where the dimensionless positive quantity

γ ≡ κ0r0 (3.76)

is called the well parameter. As shown in Fig. 3.7 the value of a can be positive, negative or zero
depending on the value of γ. Therefore, rather than using the pictorial term effective hard-sphere
diameter the name scattering length is used for a. Next to the range, the scattering length represents
the second characteristic length that can be associated with the interaction potential. As the name
suggest it is a measure for the scattering behavior of atoms and we elaborate on this in Chapter 4.
At the end of the present chapter we will find a also to be a measure for the effective strength of
the interaction.

Fig. 3.7 and Eq. (3.75) show that a is typically a quantity of the size of r0, although for γ = tan γ
it is zero and for γ = (ν + 1

2 )π, with ν being an integer, it diverges. In the coming sections we
show that the latter condition points to the occurrence of a resonance phenomenon, occurring when
(with increasing γ) a new bound level enters the potential well. For the square well potential the
scattering length is mostly positive; it is negative in the regions with γ < tan γ, which become
narrower for increasing γ. We shall find that this unlikely occurrence of negative a is a-typical for
the general case; e.g., for Van der Waals potentials we find a 25% probability to find a negative
scattering length (see Section 3.7.3).

For r ≥ r0 the radial wavefunction corresponding to Eq. (3.69) is of the form

R0(k, r) =
c0
kr

sin [kr − ka(k)] . (3.77)

Recalling the definitions (3.71) and (3.73) we find that for k → 0 this radial wavefunction becomes
k independent,

R0(r) ∼
k→0

1− a

r
for r0 < r � 1/k. (3.78)

The latter two expressions for the radial wavefunction have the same formal appearance as the hard
sphere results (3.55) and (3.57). However, whereas the diameter of the hard-sphere has a fixed value,
the scattering length for the well depends on γ. As shown in Fig. 3.8, for positive scattering length
the s wave has a characteristic node at r = a; for negative scattering length this becomes a virtual
node.

Importantly, because Eq. (3.78) reaches the asymptotic value 1 only for distances r � a, the
use of this equation in the modeling of dilute gases is only justified if a is much smaller than the
interparticle spacing,

na3 � 1. (3.79)

Otherwise, the interaction with neighboring atoms will distort the relative motion of the colliding
pair. This violates the binary scattering approximation on which Eq. (3.78) is based. The dimen-
sionless quantity na3 is called the gas parameter. When its value is small the gas is called nearly
ideal or weakly interacting.1

3.4.3 The case l = 0 for E ≤ 0 - bound s levels

Let us turn to the case E ≤ 0. We shall show that the divergences of the scattering length obtained
by analyzing the continuum states (E > 0) result from the appearance of the next bound s level
when increasing the well parameter. The 1D Schrödinger equation takes the form

χ′′0 + [−κ2 − U(r)]χ0 = 0, (3.80)

1Note that weakly interacting does not mean that that the potential is “shallow”. Any gas can be made weakly
interacting by making the density sufficiently small.
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Figure 3.8: Reduced radial wavefunctions χ0(r) for continuum states (ε > 0) in the k → 0 limit for
increasing well depth near the threshold value κ0r0 = (n + 1

2
)π: a.) presence of an almost bound state

(a < 0); b.) presence of zero-energy resonance (κvs = 0, a → −∞); c.) presence of resonantly bound state
(κ = 0, a → ∞); d.) presence of a weakly bound state (a > 0). For r > r0 the wavefunction is given by
χ0(r) = c0(r − a); hence, the value of a is given by the intercept with the horizontal axis. This gives rise
to a characteristic node at r = a, which is real for a > 0 and virtual for a < 0. The wavefunctions are not
normalized. Note the π phase shift at the divergence.

where ε = −κ2 is the discrete energy eigenvalue of a bound state with l = 0. The solutions are of
the type (see Fig. 3.9)

χ0(κ, r) =

{
C0 sin (K−r) for r ≤ r0

c0e
−κr for r > r0,

(3.81)

where κ > 0 because the bound state wavefunction has to be normalized. The bound state energy
is obtained by requiring the continuity of the logarithmic derivative when connecting the inner part
of the wavefunction to the outer part,

χ′0/χ0|r=r0 = K− cotK−r0 = −κ, (3.82)

where κ > 0 and
K− = [2mr(E − V0)/~2]1/2 = (κ2

0 − κ2)1/2. (3.83)

With decreasing γ, the least bound level disappears in the limit κ → 0, K− → κ0. In this limit
Eq. (3.82) reduces to

χ′0/χ0|r=r0 = κ0 cotκ0r0 = 0 for κ→ 0. (3.84)

Increasing γ from zero the vibrational levels appear sequentially for

γ = (v + 1
2 )π, (3.85)

where v = 0, 1, · · · vmax is the vibrational quantum number. This shows that a minimum well pa-
rameter (γ = 1

2π) is required to bind the first state.1 For the least-bound level, vmax, we have

(vmax + 1
2 )π = Int(γ/π − 1

2 ) (3.86)

and the total number of bound s levels follows with

Nb = vmax + 1 = Int(γ/π + 1
2 ). (3.87)

The relation between κ and v for a given vibrational level depends on the ratio κ/K− and is given
by

cotK−r0 = −κ/K−. (3.88)

1This conclusion cannot be extended to lower dimensions; in two dimensions bound states appear for arbitrarily
shallow potentials.
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Figure 3.9: Bound states oscillate inside the well and decay exponentially outside the well: a.) the boundary
condition depends on the ratio κ/K−; b.) a slight reduction of the well depth can turn the least bound state
into a halo state.

Note that this relation corresponds to K−r0 ' (vmax + 1
2 )π for the least-bound state (κ/K− � 1)

and to K−r0 ' (v + 1)π for deeply bound levels (K−/κ� 1) as is illustrated in Fig. 3.9a.

3.4.4 Weakly bound s level - halo states

For weakly bound s levels (0 < κr0 � 1) we have K− → κ0 and Eq. (3.82) may be approximated by

χ′0/χ0|r=r0 = κ0 cotκ0r0 = −κ. (3.89)

Furthermore, we recall that in the presence of a weakly bound s level the scattering length is large
and positive, a � r0. From Eq. (3.74) we recall that for k → 0 the logarithmic derivative also
satisfies the relation

χ′0/χ0|r=r0 = κ0 cotκ0r0 =
1

r0 − a
' −1

a
. (3.90)

Interestingly, for a� r0 the logarithmic derivative of the continuum states becomes independent of
r0 and κ0; i.e., it becomes independent of the shape of the potential well. As we shall see it only
depends on the well parameter (γ) and not on the well shape. This points to a universal limiting
shape of the wavefunction for large scattering length. As is sketched in Fig. 3.9b, for decreasing κ
the least-bound state turns into a halo state; i.e., for κr0 � 1 most of the probability of the bound
state is found in the classically inaccessible region outside the potential well, thus surrounding the
potential center like a halo. In Section 3.6.4 this behavior is shown to hold for arbitrary short-range
potentials. We return to this important observation when discussing zero-range potentials and the
Bethe-Peierls boundary condition in Section 3.4.11.

With Eqs. (3.89) and (3.90) we have obtained two expressions for κ0 cotκ0r0 and arrive at the
conclusion that in the presence of a weakly bound state the scattering length is given by

a '
κ→0

1/κ. (3.91)

This expression reveals the tight relation between the binding energy of the least-bound state, given
by Eq. (3.60), and the scattering length

Eb = −~2κ2

2mr
'
κ→0
− ~2

2mra2
. (3.92)
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Figure 3.10: a.) Resonance contribution to the s-wave phase shift η0(k) for a large well parameter slighly
detuned from the threshold value (at γ = 98.960169) such that the scattering length is negative (∆γ = −0.5).
The linear shift of the background contribution is not included in the plot. Note that the π phase jumps
arise from the modulo-π representation of the arctangent and do not represent an observable phenomenon;
the physical phase increases monotonically and equals ηres = 1

2
π (modulo π) at the center of the resonances;

b.) contribution of the resonances to the effective hard sphere diameter a(k) = −η0(k)/k. As the lowest
resonance is not close to threshold we have |ares(k)| /r0 � 1.

3.4.5 s-wave resonances in the continuum - Breit-Wigner formula

To obtain the k dependence of the phase shift for large but otherwise arbitrary well parameter
(γ � 1) we rewrite the boundary condition (3.70) in the form

η0(k) = −kr0 + arctan

(
kr0

K+r0 cotK+r0

)
. (3.93)

The first term,
ηbg(k) = −kr0, (3.94)

is called the background contribution to the phase shift and the second term,

ηres(k) = arctan [kr0/ (K+r0 cotK+r0)] , (3.95)

the s-wave resonance contribution. Note that the background contribution shows the same phase
development as we found in Section 3.3.1 for hard spheres. The phase development of the res-
onance contribution is shown in Fig. 3.10a for the case of a large well parameter slighly de-
tuned from the threshold value (at γ = 98.960169) such that the scattering length is negative
(∆γ = −0.5). For potentials with γ � 1 the argument of the arctangent is predominantly small,
kr0/ |K+r0 cotK+r0| � 1, because

K+r0 = κ0r0(1 + k2/κ2
0)1/2 > γ � 1. (3.96)

However, the argument of the arctangent diverges when cotK+r0 passes through zero; i.e., for

K+r0 = (ṽ + 1
2 )π, (3.97)
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Figure 3.11: Transition from bound states to Breit-Wigner s-wave resonances plotted for ∆γ = −0.5 with
respect to the threshold at γ = 98.960169. The plot is based on Eqs. (3.93) and (3.82). The dashed red line
corresponds to the Breit-Wigner formula. The width of the resonances increases with the square root of the
energy. Note that the band of energies typical for the quantum gases (kr0 � 1) corresponds to a narrow
zone, unresolved on the energy scale of the plot.

where ṽ is an integer called the resonance index. This divergence is observed as a small resonant
enhancement of a(k) as shown in Fig. 3.10b. The physical phase is a continuous function of k
which changes by π when sweeping across the resonance. Because the arctangent remains finite for
cotK+r0 = 0 also the resonant phase shift remains finite, having the value ηres(k) = 1

2π (modulo
π) at the center of each resonance.

In the remainder of this section we shall analyze the width and separation of the s-wave reso-
nances for the case γ � 1. Since K+ ≥ κ0 ≥ K− we have

ṽ ≥ γ/π − 1
2 ≥ vmax , (3.98)

which shows that for γ � 1 the value of ṽ is large (ṽmin ≥ vmax � 1). Hence, the resonance
numbering starts where the numbering of bound states ends. To discuss the resonances we denote
the wavevectors k and K+ at resonance by kres and Kres ≡ (κ2

0+k2
res)

1/2, respectively. The resonance
energies εres = k2

res satisfy the condition

εres = K2
res − κ2

0 = (ṽ + 1
2 )2 (π/r0)

2 − κ2
0 ≥ 0. (3.99)

The exceptional case that the equal sign holds (ṽ = vmax) corresponds to a resonant bound state
(κ = 0) and the resonance is called a resonance at threshold or zero-energy resonance (kres = 0).

Let us first analyze s-wave resonances for large well parameters (γ � 1) and far from threshold,
kr0 � 1. The energy spacing between two subsequent resonances is

∆εres = ε(ṽ+1)
res − ε(ṽ)

res = 2(ṽ + 1)
(
π2/r2

0

)
' 2πγ/r2

0. (3.100)

To analyze a given resonance we expand K+ cotK+r0 around the point of zero crossing. For this
purpose we introduce the notation

K+ = [κ2
0 + (kres + δk)

2
]1/2 = Kres + δk kres/Kres + · · · , (3.101)

where δk = k − kres is called the detuning from resonance. Thus, restricting ourselves to the low-
energy (but not zero-energy) s-wave resonances (1 < kresr0 � Kresr0 ≈ γ), we may approximate
K+ cotK+r0 ' Kres cotK+r0. Expanding cotK+r0 about the zero crossing at K+r0 = (ṽ + 1

2 )π
and retaining only the linear term we obtain (See Problem 3.4)

Kres cotK+r0 = −δk kresr0. (3.102)
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Hence, the divergeing argument of the arcsinus becomes

k

K+ cotK+r0
' − 1

δk r0
=
− (k + kres)

(k2 − k2
res)r0

. (3.103)

This expansion is valid over the full range of the resonant change in phase provided the following
condition holds:

δk r0 � Kres/kres ' γ/kresr0. (3.104)

This condition is satisfied for the lowest resonances as long as the well parameter is sufficiently
large (γ � kresr0). As long as δk � kres we may further approximate k ' kres. With these
approximations and after restoring the dimensions, Eq. (3.103) can be written as a function of the
energy E = ~2k2/2mr,

tan ηres =
k

K+ cotK+r0
' −Γ/2

ε− εres
, (3.105)

where
Γ/2 = 2kres/r0 (3.106)

is called the spectral half width of the resonance. Comparing the expressions for Γ and ∆Eres we
find that for given r0 the width Γ is independent of γ, whereas the resonance spacing is proportional
to γ. Thus, for sufficiently large well parameters (γ � 1), the low-energy resonances become narrow
features in comparison to the resonance spacing,

Γ� ∆εres ⇔ kresr0 � πγ. (3.107)

Knowing the tangent of ηres, we readily obtain the sine and Eq. (3.105) is replaced by the Breit-
Wigner formula

sin2 ηres =
(Γ/2)2

(ε− εres)2 + (Γ/2)2
. (3.108)

For optical resonances this energy dependence is known as the Lorentz lineshape. Note that Γ
corresponds to the full-width-at-half-maximum (FWHM) of this line shape. The lowest energy
resonances are plotted in Fig. 3.11 along with the highest-energy bound states. In Chapter 4 we
return to the Breit-Wigner formula in relation with elastic scattering phenomena.

The resonance near threshold (almost bound level) deserves special attention as this type of
resonance is the only one that can play an important role within the band of energies relevant for
the quantum gases (kr0 � 1). Fig. 3.11 shows that near the threshold (at γ ' 98.960169) the
resonance narrows down and becomes asymmetric, which means that the Breit-Wigner lineshape
is lost. Using Eq. (3.87) we calculate ṽ = 31. The narrow line is reminiscent of a bound level but
the scattering length is negative. Under these conditions the wavefunction has a virtual node at
r = −|a| (see Fig. 3.8). Accordingly, the level is called a virtual level and the wavefunction is said to
represent a virtual bound state. In analogy with the bound states its energy is written as εvs = κ2

vs,
where κvs is to be defined later. The discussion of this special class of resonances (together with
weakly bound levels) is continued in Section 3.4.9. In preparation we analyze, for arbitrary values
of γ, the behavior of the phase shift for relative energies approaching zero, kr0 � 1.

Problem 3.4. Derive the expansion (3.102).

Solution. We calculate the linear expansion of Kres cotK+r0 near the zero crossing at K+r0 = (ṽ + 1
2
)π

where cotK+r0 = 0. This follows from the derivative evaluated at K+r0 = (ṽ + 1
2
)π :

dKres cotK+r0

dδk

∣∣∣∣
K+r0=(ṽ+

1
2

)π

= − kresr0

sin2K+r0

∣∣∣∣
K+r0=(ṽ+

1
2

)π

= −kresr0.

Multiplying the derivative with δk we obtain the desired result.
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3.4.6 s-wave resonances for kr0 � 1 - effective-range expansion

The leading energy dependence of the phase shift is obtained by applying the angle-addition formula
of the tangent to the r.h.s. of Eq. (3.93) and expanding tan kr0 in (odd) powers of k,

kr0 cot η0 =
K+r0 cotK+r0 + k2r2

0 + · · ·
1−

(
1 + 1

3k
2r2

0 + · · ·
)
K+r0 cotK+r0

. (3.109)

In view of the expansion, the validity of this expression is restricted to kr0 � 1. Next we expand
K+r0 in even powers of k,

K+r0 = κ0r0[1 + k2/κ2
0]1/2 = γ + 1

2k
2r2

0/γ + · · · , (3.110)

which is valid for γ & 1, and using the angle-addition formula for the cotangent we find

K+r0 cotK+r0 = γ cot γ − 1
2k

2r2
0

[
1 + (1− tan γ/γ) cot2 γ

]
+ · · · . (3.111)

Actually, sinceK+r0 cotK+r0 is an even function ofK+r0 we infer thatK+r0 cotK+r0 and kr0 cot η0

only depend on the even powers of k. Substituting Eq. (3.111) into Eq. (3.109) we arrive after some
calculus at the following expansion in even powers of k

kr0 cot η0 = − 1

1− tan γ/γ
+ 1

2k
2r2

0

(
1− 3 (1− tan γ/γ) + γ2

3γ2 (1− tan γ/γ)
2

)
+ · · · . (3.112)

Since limk→0kr0 cot η0 = −r0/a, we regain in the limit k → 0 the expression (3.75) for the scattering
length. Divided by r0, the expansion is called the effective-range expansion,

k cot η0 = −1

a
+ 1

2k
2re + · · · , (3.113)

and

re = r0

(
1− 3ar0 + γ2r2

0

3γ2a2

)
(3.114)

is called the effective range. In view of the derivation this expansion is valid valid for kr0 � 1 and
γ & 1. For γ →∞ the effective range becomes

re = r0(1− 1
3r

2
0/a

2). (3.115)

Next to the range and the scattering length, the effective range re represents the third characteristic
length that may be associated with the scattering potential. It provides a measure for the energy
dependence of the scattering length. Comparing the first two terms of Eq. (3.113) we find that the
scattering length approximation is valid for

kre �
2

k|a|
. (3.116)

This inequality shows that the range of energies for which this energy dependence may be neglected
becomes narrow (kre � kr0) for large values of |a|.

3.4.7 Scattering length approximation

Rather than expanding kr0 cot η0 in even powers of k we can also expand its reciprocal,

1

k cot η0
= − a

1− 1
2k

2rea+ · · ·
= −a(1 + 1

2k
2rea+ · · · ). (3.117)
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This is the preferred expansion for a → 0 but can also be used to determine the range of k values
for which the scattering length approximation holds; i.e., the range of k values for which a(k) has
reached its limiting value, a = limk→0 a(k). Substituting Eq. (3.114) we obtain

1

k
tan η0 = −a+ 1

6k
2r3

0[1− 3 (a/r0)
2

+ (3/γ2) (a/r0)] + · · · . (3.118)

Hence, a(k) is given by the arctangent,

ka(k) = arctan[ka− 1
6k

3r3
0[1− 3 (a/r0)

2
+ (3/γ2) (a/r0)] + · · · ]. (3.119)

Expanding the arctangent to the cubic power of k we obtain

a(k) = a− 1
6k

2r3
0[1 + 2 (a/r0)

3 − 3 (a/r0)
2

+ (3/γ2) (a/r0)] + · · · . (3.120)

This expansion is valid as long as the conditions kr0 � 1 and k |a| � 1 are both satisfied. To
estimate the domain of validity of the scattering length approximation we analyze the expansion
(3.120) for ordinary quantum gases (γ � 1). If the scattering length is not resonantly enhanced
(−1 < a/r < 1) we find that the k2 term becomes important only for kr0 & 1. Since kr0 � 1 in
all quantum gases, this means that the effective hard-sphere diameter has reached its limiting value
a(k) ' a. For large |a| the situation is different because the k2 term in Eq. (3.120) may only be
neglected for the lowest values of k.

kr0 � r0/ |a| . (3.121)

Note that the curvature is negative for 0.5 > a/r0 > 1 (see also Fig. 3.12).

3.4.8 Scattering length - regimes of interest

As re can be expressed in terms of r0 and a it is instructive to have a closer look at the relation
between re and a for some special cases:

• Regular scattering length: For a = ±r0 we find with the aid of Eq. (3.114)

re = r0( 2
3 ∓ 1/γ2) ' 2

3r0, (3.122)

where the last step holds for sufficiently large γ. This result coincides with that of the hard
sphere - see Eq. (3.58). The effective-range expansion is given by

k cot η0 = ∓ 1

r0
+ 1

3k
2r0 + · · · . (3.123)

From Eq. (3.116) we find with |a| = r0 that the scattering length approximation is valid for
ultracold gases (kr0 � 1) throughout the energy range of interest; i.e., the k dependence may
be neglected for most practical purposes.

• Anomalously large scattering length: For |a| � r0 we obtain with Eq. (3.114)

re = r0

(
1− r0

γ2a
− r2

0

3a2

)
' r0, (3.124)

which corresponds to an effective-range expansion of the form

k cot η0 = −1

a
+ 1

2k
2r0 + · · · . (3.125)

From Eq. (3.116) we find that for |a| � r0 the scattering length approximation is valid for

kr0 �
2

k|a|
, (3.126)
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which implies that for ultracold gases within the energy range of interest (kr0 � 1) the k
dependence becomes relevant for k|a| � 1; i.e., the scattering length approximation is only
valid up to k|a| ' 1.

• Anomalously small scattering length: The case |a| � r0 demands another approach. For
1− tan γ/γ = 0 the effective-range expansion breaks down, which emerges as a divergence of
the effective range,

re ' − 1
3r0 (r0/a)

2
for a→ 0 and γ 6= 0. (3.127)

This being the case it is advantageous to turn to the reciprocal expansion (3.118), which
remains well defined for |a| � r0. For the special case a = 0 the leading k dependence is found
to be

1

k
tan η0 = 1

6k
2r3

0 + · · · (a = 0) . (3.128)

This expression shows that the phase shift only vanishes exactly in the limit k = 0. For small
values of η0(k) = −ka(k) we find that a(k) grows linearly with k2,

a(k) = − 1
6k

2r3
0. (3.129)

For ultracold gases (kr0 � 1) this implies that a(k) remains effectively zero, a(k) � r0,
throughout the energy range of interest; i.e., the k dependence may be neglected for most
practical purposes.

The above analysis shows that an estimate of the range r0 can be obtained by extracting re from
a measurement of the energy dependence of k cot η0; i.e., of the phase shift. For diverging a this
is possible for energies typical in ultracold gases, otherwise it requires energies beyond that range.
The example of a large scattering length (|a| � r0) shows us that even for small re a strong k
dependence can be observed in ultracold gases. Similarly, for small scattering length (|a| � r0) the
effective range can be large while a remains small (a � r0) for all energies of interest (kr0 � 1).
Hence, a large effective range is not equivalent to a strong energy dependence. All this being said
the added value of the notion effective range for the quantum gases is not so obvious. We certainly
do not need it to determine r0 because the Van der Waals interaction is usually accurately known
from quantum chemistry. For the time being we shall remember the effective range as a measure
for the width of a resonantly enhanced s-wave scattering length.

Historically, the effective range has been important in nuclear physics as it enabled the first
experimental determination of the deuteron size by measuring the energy dependence of proton-
neutron s-wave scattering under the assumption re ' r0. Note also that the early neutron-proton
scattering was done in the s-wave regime. The nuclear size is some six orders of magnitude smaller
than a typical Van der Waals range. Therefore, the s-wave regime extends in this case to energies
which are some 12 orders of magnitude higher than those typical in ultracold gases.

3.4.9 Resonant enhancement of s-wave scattering length

As long as the lowest-energy resonance and the highest-energy bound state are far from threshold
the scattering length is regular and the scattering length approximation holds; i.e., a(k) has reached
its limiting value a for kr0 � 1. However, as mentioned at the end of Section 3.4.5, the situation
changes if a s-wave resonance (a < 0) or a weakly bound state (a > 0) approaches the threshold.
In this case the scattering length is resonantly enhanced and the scattering properties become k
dependent even at low energies. Upon crossing the threshold the scattering length changes sign
and the virtual level has become a weakly bound level or vice versa. To elucidate this behavior we
analyze the expression for effective hard-sphere diameter - see Eq. (3.71),

a(k) = −η0(k)/k = r0 −
1

k
arctan

(
k

K+ cotK+r0

)
. (3.130)
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Figure 3.12: From left to right: change in resonance shape for the virtual s level ṽ = 31 crossing the
threshold (at γ = 98.960169) from above calculated with the the exact expression (3.130). Note that only
close to threshold the resonance contribution exceeds the background value (horizontal line). The dashed
vertical lines indicate the center of the resonance (as defined by a π/2 resonant phase shift). For ares > 0
the resonance is below threshold.

Here the first term is called the background contribution to the scattering length (r0 = abg) and the
second term,

ares(k) = −(1/k) arctan [k/ (K+ cotK+r0)] , (3.131)

the s-wave resonance contribution. In terms of the well parameter, the product K+r0 is given by

K+r0 = γ
√

1 + (kr0/γ)2. (3.132)

Note that these expressions are exact for spherical wells of arbitrary γ.
We now specialize to large well parameters, γ � 1. For the s-wave resonances discussed in

Section 3.4.5 the resonant contribution ares(k) for γ = 303 is plotted in Fig. 3.10b; note that for
this value of γ the resonance contribution is small, ares(k) � r0. However, as shown in Fig. 3.12,
for the resonance approaching the threshold at γ = γ = 98.960169 the ares(k) becomes increasingly
important; it develops a qualitatively different shape and the region of validity of the scattering
length approximation narrows down sharply. In Fig. 3.13 the crossing of the threshold is illustrated
in detail by plotting Eq. (3.130) for two values of γ, corresponding to a virtual level (dashed line
κvsr0 = 0.1) and a weakly bound level (solid line κr0 = 0.1). In both cases the enhancement of |a|
with respect to the background level is roughly 10 fold. For the virtual level we have a ' −1/κvs.
As illustrated in Fig. 3.8, at threshold the sign switches and we have a ' 1/κ, which corresponds
to the resonant enhancement by a weakly bound level (halo state) discussed in Section 3.4.3. The
symmetry about the threshold is striking. It arises because r0 may be neglected if |a| is sufficiently
large. Returning to the virtual state, the center of the s-wave resonance (i.e., the point with
ηres = 1

2π modulo π) at

kr0 =
√

2r0/|ares| = 0.458 (3.133)

is indicated by the vertical arrow in Fig. 3.13. This resonance corresponds to the zero crossing of
cotK+r0 at ṽ = 31 (the corresponding sign change is an artifact of the modulo π representation of the
arctangent and is suppressed in the plot - recall that the phase development has to be continuous). At
first sight it may be surprising that the center of the resonance does not correspond to the maximum
value of a(k). However, as the resonance has a finite width and the arctangent is bounded between
− 1

2π and + 1
2π, the decrease of the absolute value of the arctangent (when detuning towards k = 0

away from k = κvs) is more than compensated by the prefactor 1/k. Ultimately, for k → 0, the
increase has to saturate at the value of the scattering length. This behavior is characteristic for s-
wave resonances near threshold. With increasing |ares| the width of the enhancement region narrows
down proportionally to

√
2r0/|ares|. On the other side of the threshold the scattering length is also
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Figure 3.13: (a) Level diagram chosen such that κ2 = κ2
vb and γ � 1. (b) The red curves represent the

corresponding scattering lengths based on the exact expression (3.130) plotted as a function of kr0 in the
presence of a weakly bound s level (solid line; ∆γ = 0.00101⇔ κr0 = 0.1) or virtual s level near threshold
(dashed line; ∆γ = −0.00101 ⇔ κvsr0 = 0.1). The threshold value is γ = 98.960169. The center of the s-
wave resonance caused by the virtual level is indicated by the vertical arrow at kr0 = 0.458 and corresponds
to the zero crossing of cotK+r0 at n = 31. A convenient analytical expression for the solid red curves
is given by Eq. (3.139). The black dashed lines correspond to the leading k dependence of a(k) as given
by Eq. (3.120). The blue solid and dashed lines correspond to the effective range expansion as given by
Eq. (3.140).

resonantly enhanced but, as the weakly bound state has negative energy, the resonance condition
cannot be reached for k → 0. In the latter case the resonance is said to be below threshold.

Knowing a(k), it is straightforward to determine the consequences for the phase shift. With
regard to the background contribution, the phase behavior is trivial, it is negative and shifts linearly
with k. The full phase development is obtained by multiplying the red curves in Fig. 3.13 by −k.
For the virtual state near threshold an interesting feature arises. As can be seen in Fig. 3.13 at
some wavenumber, k = k0, the effective hard sphere diameter crosses the value zero. As the phase
shift of a virtual level is positive, the zero crossing occurs when the background contribution and
the resonance contribution exactly cancel, which implies a total phase shift of zero. The phase
development is shown in Fig. 3.14. Zero phase shift means that at k = k0 the presence of the
interaction potential leaves no trace on the asymptotic (r → ∞) shape of the wavefunction. What
happens on the other side of the threshold? Fig. 3.13 suggests a difference because for a weakly
bound level the zero crossing is absent. Closer inspection shows however that a similar phenomenon
occurs because at the threshold the scattering length changes sign, which means that far from the
center of the resonance the phase has to be shifted by π. As can be seen in Fig. 3.14, at k = k0 the
phase is −π.

Example: resonant enhancement by a weakly bound s level

Let us have a closer look at potential wells with many bound levels (γ � 1) of which the last one,
of binding energy ε = −κ2, is a weakly bound s level (κr0 . 1). In view of Eq. (3.91), the scattering
length is large and positive, a ' 1/κ for κ → 0. A compact expression for the phase shift can be
obtained starting from Eq. (3.93). For kr0 � 1 we may approximate K+r0 cotK+r0 ' κ0 cotκ0r0 '
−κ. Thus, we immediately obtain

η0(k) ' −kr0 − arctan
k

κ
. (3.134)

This approximation becomes exact for κ = 0. However, we can do better and obtain an expression
valid for kr0 � γ. Using the procedure of Problem 3.5 we find

η0(k) = −kr0 − arctan[k/(κ+ 1
2κ

2r0 + 1
2k

2r0)] + · · · , (3.135)
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Figure 3.14: The s-wave phase shift as a function of k shown for the presence of a weakly bound s level
(κr0 = 0.1 - lower curve) or a virtual s level near threshold (κvsr0 = 0.1 - upper curve). The dashed line
corresponds to the background contribution. The center of the s-wave resonance (ηres = 1

2
π) is indicated by

the vertical dash-dotted line at kr0 = 0.458. Note that asymptotically (i.e., far from threshold) the phase
of the two curves differs by π.

where the higher order terms may be neglected for (k2 + κ2)r2
0 � γ2. Note that for γ � 1 this

expression remains accurate well beyond the s-wave regime. To illustrate this point we analyze the
corresponding expression for the effective hard sphere diameter,

a(k) = −η0(k)/k = r0 +
1

k
arctan[k/(κ+ 1

2κ
2r0 + 1

2k
2r0)] + · · · . (3.136)

In the limit k → 0 we obtain for the scattering length,

a = lim
k→0

a(k) = r0 +
1

κ+ 1
2κ

2r0

'
κ→0

1

κ
. (3.137)

Hence, the resonance contribution to the scattering length is given by

ares = a− r0 =
1

κ+ 1
2κ

2r0

. (3.138)

In terms of this positive quantity Eq. (3.136) can be written in a more compact form,

a(k) = r0 +
1

k
arctan[kares/(1 + 1

2k
2r0ares)]. (3.139)

At the resolution of Fig. 3.13, Eq. (3.139) cannot be distinguished from the exact result represented
by the solid red curve. It is interesting to compare Eq. (3.139) with the corresponding expression
based on the leading terms of effective-range expansion Eq. (3.113),

a(k) =
1

k
arctan[ka/(1− 1

2k
2rea)]. (3.140)

This approximation is shown as the blue solid line in Fig. 3.13 using a = r0 + ares for the example
κr0 = 0.1. As this corresponds to an enhancement of a by an order of magnitude we may approximate
the effective range by Eq. (3.124), re ' r0. This also follows by expansion of Eq. (3.139) in powers
of k (see Problem 3.6). Whereas Eq. (3.139) correctly approaches the background value r0 for
growing kr0, Eq. (3.140) decays to zero. Note that Eq. (3.140) becomes inaccurate for kr0 ≈ 1. This
can be traced back to the Taylor expansion of tan kr0 used in the derivation of the effective-range
expansion. For smaller enhancements the scattering length approximation becomes valid across the
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s-wave regime and the expansion (3.120) can be used to fit the leading k dependence. Also this
approximation is indicated in Fig. 3.13. Note that it holds for a much smaller range of k values but
is sufficient to establish the presence (or absence) of the resonance and to obtain a and re with a
fitting procedure. Experimentally this is done by studying elastic scattering (cf. Chapter 4).

A famous example of a system with a bound s level is the deuteron, the bound state of a proton
and a neutron with total spin I = 1. When scattering slow neutrons from protons (with “parallel”
spin) the a(k) increases with decreasing energy in accordance with Eq. (3.120). The fitting procedure
yields a = 5.41 × 10−15 m and re = 1.75 × 10−15 m (κre = 0.31) [50]. Among the quantum gases
a famous example of a system with a weakly bound s level is doubly spin-polarized 133Cs, where
a ≈ 2400 a0 and r0 ≈ 101 a0 (κr0 ≈ 0.042) [3, 40].

Problem 3.5. Consider a spherical well with a large well parameter (γ � 1) and a weakly bound level
(κr0 . 1) or a virtual level near threshold (κvsr0 . 1). Show that for

(
k2 + κ2

)
/2K2

− � 1 the following
approximations hold to leading order in k and κ or κvs:

k

K+ cotK+r0
'


−1/(κ+ 1

2
κ2r0 + 1

2
k2r0) (weakly bound s level)

+1/(κvs + 1
2
κ2
vsr0 − 1

2
k2r0) (virtual s level near threshold).

Solution. (a) To find an expression for K+ cotK+r0 in the presence of a weakly bound level (κr0 . 1) we
express K+ in terms of K− using the relation

K+ = [κ2
0 − κ2 + k2 + κ2]1/2 = K−[1 +

(
k2 + κ2) /K2

−]1/2.

Since γ � 1 the condition
(
k2 + κ2

)
/K2
− � 1 is easily satisfied. Hence, it suffices to expand K+ to first

order in
(
k2 + κ2

)
/K2
− and approximate K+ ' K− +

(
k2 + κ2

)
/2K−. To evaluate 1/ cotK+r0 we use the

angle addition formula for the tangent. Thus we obtain

k

K+ cotK+r0
' k

K−

1

1 + (k2 + κ2) /2K2
−

tanK−r0 + tan[(k2 + κ2)r0/2K−]

1− tanK−r0 tan[(k2 + κ2)r0/2K−]
.

Since
(
k2 + κ2

)
/2K2

− � 1 this quantity can be neglected in the denominator. Furthermore, since (k2 +
κ2)r0/2K− � 1 we can replace the tangent by its argument. Thus we obtain

k

K+ cotK+r0
' k 1/(K− cotK−r0) + (k2 + κ2)r0/2K

2
−

1− 1
2
(k2 + κ2)r0/(K− cotK−r0)

.

Next we use the boundary condition for bound states, K− cotK−r0 = −κ, and neglect the second term in
the numerator because (k2 + κ2)κr0/2K

2
− � 1. Thus we arrive at

k

K+ cotK+r0
' − k

κ+ 1
2
κ2r0 + 1

2
k2r0

'
k�κ
− k

κ+ 1
2
κ2r0

.

(b) In view of the symmetry of K+ cotK+r0 with regard to the position of the level closest to the threshold
(see Fig. 3.13) we can define the wavenumber of a virtual state near threshold (κvsr0 . 1) by replacing the
boundary condition (3.89) by Kvs cotKvsr0 = κvs, where Kvs ≡ [κ2

0 + κ2
vs]

1/2. Using the same approach as
above we express K+ in terms of Kvs using the relation

K+ = [κ2
0 + κ2

vs + k2 − κ2
vs]

1/2 = Kvs[1 +
(
k2 − κ2

vs

)
/K2

vs]
1/2.

Expanding this expression in powers of
(
k2 − κ2

vs

)
/K2

vs we obtain to first order K+r0 ' Kvsr0 + (k2 −
κ2
vs)r0/2Kvs. Under similar conditions as under (a) this leads to

k

K+ cotK+r0
' k

κvs + 1
2
κ2
vsr0 − 1

2
k2r0

'
k�κ

k

κvs + 1
2
κ2
vsr0

. 2

Problem 3.6. Show by expansion in powers of k that Eq.(3.139) corresponds to an effective range given
by the expression

re ' r0(1− 1
3
r2
0/a

2).

Note that this result coincides with Eq.(3.115) as is expected because Eq.(3.139) was derived for potentials
with many bound states (γ � 1).
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Solution. Starting from Eq. (3.139) we find for the phase shift

η0(k) = −kr0 − arctan[kares/(1 + 1
2
k2r0ares)].

Using the angle addition formula for the tangent and expanding tan kr0 in powers of k we obtain

tan η0(k) '
−(kr0 + 1

3
k3r3

0 + · · · )− kares/(1 + 1
2
k2r0ares)

1− k2r0ares/(1 + 1
2
k2r0ares)

.

Turning to the cotangent and retaining terms up to order k2 this expression becomes

−k cot η0(k) '
1 + 1

2
k2r0ares − k2r0ares

a+ 1
2
k2r2

0ares + 1
3
k2r3

0

.

Expanding to order k2 we find for strong resonant enhancement (|a| � r0)

−k cot η0(k) ' 1

a
− 1

2
k2r0

[
ares
a

+
ares
a

r0

a
+ 2

3

(r0

a

)2
]
.

Substituting ares = a− r0 this becomes

k cot η0(k) ' −1

a
+ 1

2
k2r0(1− 1

3
r2
0/a

2),

which corresponds to the given expression for the effective range. 2

Example: resonant enhancement by a virtual s level near threshold

Eq. (3.130) is also valid for large negative scattering lengths for potential wells with many bound
levels (γ � 1). In this case the k dependence of a(k) is very similar to that of a weakly bound state.
In Fig. 3.13 this is shown for an enhancement by one order of magnitude. The symmetry about the
threshold makes it possible to describe the phase shift by defining a virtual level in the continuum
using the boundary condition (3.82),

Kvs cotKvsr0 = κvs, (3.141)

with κvs > 0 and
Kvs ≡ (κ2

0 + κ2
vs)

1/2. (3.142)

Using this definition Eq. (3.93) can be written in the form (see Problem 3.5)

η0(k) = −kr0 + arctan[k/(κvs + 1
2κ

2
vsr0 − 1

2k
2r0)] + · · · . (3.143)

Higher order terms can be neglected for (k2 − κ2
vs)r

2
0 � 2γ2. This implies that for γ � 1 the

approximation comfortably allows us to describe the contribution of virtual states in the region of
strong resonant enhancement (see Fig. 3.14). The corresponding expression for the effective hard
sphere diameter is

a(k) = r0 −
1

k
arctan[k/(κvs + 1

2κ
2
vsr0 − 1

2k
2r0)] + · · · , (3.144)

which implies for the s-wave scattering length

a = lim
k→0
−η0(k)/k = r0 −

1

κvs + 1
2κ

2
vsr0

' −
κvs→0

1

κvs
. (3.145)

Hence, the resonance contribution to the scattering length is

ares = a− r0 = − 1

κvs + 1
2κ

2
vsr0

, (3.146)
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which is a negative quantity. Expressing Eq. (3.144) in terms of ares we obtain

a(k) = r0 +
1

k
arctan[kares/(1 + 1

2k
2r0ares). (3.147)

Note that this is the same expression as was obtained for the weakly bound level - see Eq. (3.139).
The two cases differ in the sign of ares, which is positive for the weakly bound level (ares = |ares|)
and negative for the virtual level (ares = −|ares|). From Eq. (3.147) it immediately follows that the
center of the s-wave resonance near threshold (i.e., the point with ηres = 1

2π modulo π) is given by

kr0 =
√

2r0/|ares|. (3.148)

Eq. (3.147) is plotted in Fig. 3.13. At the resolution of the figure it cannot be distinguished from
the exact result represented by the dashed red curve. It is interesting to compare Eq. (3.139) with
the corresponding expression based on the leading terms of effective-range expansion Eq. (3.113),

a(k) =
1

k
arctan[ka/(1− 1

2k
2rea)]. (3.149)

This approximation is shown as the blue dashed line in Fig. 3.13 using a = r0 +ares for the example
κvsr0 = 0.1. A nice quantitative indicator for the excellent quality of the approximation (3.143) for
large γ is obtained by calculating the zero crossing of the phase shift. Setting η0 = 0 in Eq. (3.143)
we obtain the condition

tan k0r0 = kr0/(κvsr0 + 1
2κ

2
vsr

2
0 − 1

2k
2
0r

2
0) '

κvs→0
−2/k0r0. (3.150)

For the example of Fig. 3.13 (κvsr0 = 0.1) we calculate k0r0 = 2.43656, which turns out an ex-
cellent estimate when compared with the exact value k0r0 = 2.43659. With increasing resonant
enhancement the location of the zero crossing becomes κvs independent and reaches the limiting
value k0r0 = 2.45871 for κvs → 0.

A virtual s level is observed in low-energy neutron-proton collisions through the anti-symmetric
spin channel (“anti-parallel” spins), a = −2.38 × 10−14 m and re = 2.67 × 10−15 m (κvsre = 0.11)
[50]. An example of a virtual bound state in the quantum gases is doubly polarized 85Rb, where
a ≈ −369 a0 and r0 ≈ 83 a0 (κvsr0 ≈ 0.22 ) [60].

Universal regime around threshold - summary

For convenience of reference we summarize the results for the universal regime around threshold,
where the scattering length only depends on the location of the highest bound state or the lowest
virtual state,

a(k) = r0 ±
1

k
arctan[k/(κ± + 1

2κ
2
±r0 ± 1

2k
2r0)]. (3.151)

Here we adopt the notation with + signs for bound states (κ+ ≡ κ) and − signs for virtual states
(κ− ≡ κvs). The resonance contribution to the scattering length is obtained by taking the k → 0
limit,

ares = ± 1

κ± + 1
2κ

2
±r0

= ±|ares|. (3.152)

In terms of this quantity Eq. (3.151) can be written in the unified form

a(k) = r0 +
1

k
arctan[kares/(1 + 1

2k
2r0ares) (3.153)

valid for both positive and negative ares. Using the sign convention introduced above this becomes

a(k) = r0 ±
1

k
arctan[k|ares|/(1± 1

2k
2r0|ares|)]. (3.154)
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3.4.10 S matrix for s-wave resonance near threshold

Rather than expanding the arctangent we first factorize the S matrix to the form 1

S0(k) = e2iη0 = e−2ikr0
1− ikares

1 + ikares
(3.155)

and subsequently expand the background contribution to second order,

S0(k) = (1− 2ikr0 − 2k2r2
0 + · · · )1− ikares

1 + ikares
, (3.156)

which valid for kr0 � 1. The real and imaginary parts of S0 become

ReS0(k) = 1− 2k2a2 + · · ·
1 + k2 (a− r0)

2 (3.157a)

ImS0(k) = −2ka+ · · · , (3.157b)

where we used a = ares + r0 and neglected terms of power k3 or higher. We return to the S matrix
in Chapter 4.

For certain applications it is advantageous to consider the S matrix as a complex function of the
form

S0(k̄) = e2iη0 = −e−2ik̄r0
k̄ − i/ares

k̄ + i/ares
, (3.158)

where k̄ represents a point in the complex k̄ plane. In this notation the bound state gives rise to a
pole at k̄ ' iκ; i.e., on the positive imaginary axis in the complex plane. The corresponding complex
energy is real and negative, ε̄ = k̄2 = −κ2, and is represented by a point on (the negative real axis
of) the first Riemann sheet (the physical sheet). The virtual level gives rise to a pole at k̄ ' −iκvs;
i.e., on the negative imaginary axis in the complex k̄ plane. The corresponding complex energy is
real and negative ε̄ = k̄2 = −κ2

vs and is represented by a point on (the negative real axis of) the
second Riemann sheet. As in both cases the energy is negative these poles cannot be reached in a
scattering experiment.

3.4.11 Zero-range potentials

An important model potential is obtained by considering a spherical well in the zero-range limit
r0 → 0. As illustrated in Fig. 3.15 it is possible to construct a zero-range well in such a way that
the long-range properties of the wavefunction are unaffected; i.e., the scattering length a and the
binding energy ε = −κ2 of the least-bound state remain unchanged.

For E < 0 this can be demonstrated with the aid of the boundary condition (3.82)

− κ = K− cotK−r0. (3.159)

Reducing the radius r0 the value of the binding energy ε = −κ2, can be conserved by increasing κ0.
In the limit r0 → 0 the well depth should diverge in accordance with

− κ

K−
= cotK−r0 → 0. (3.160)

This condition is satisfied for K−r0 ' π/2. To elucidate this point we consider the least-bound level
with vibrational quantum number v = vmax, for which K−r0 = (vmax + 1

2 )π. Reducing r0 by a factor

1Here we use the logarithmic representation of the arctangent with a real argument α,

arctanα =
i

2
ln

1− iα
1 + iα

.
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Figure 3.15: Wavefunctions corresponding to the same binding energy (ε = −κ2) plotted for three different
values of r0. Outside r0 the wavefunctions fall off exponentially, always with the same decay exponent κ;
this is the essence of the Bethe-Peierls boundary condition. The dashed lines show the extrapolation for
r → 0. a.) reference case; b.) for κr0 � 1 most of the probability density of a bound state is found outside
the well (halo state); c.) for zero-range potentials (κr0 = 0) the oscillating part of the wavefunction is
compressed into a delta function and only the decaying exponent remains (universal limit). Note that these
wavefunctions do not share the same normalization.

of 2 the wavenumber K− has to be doubled to conserve the number of nodes in the wavefunction
(i.e., to conserve vmax). This means that the kinetic energy inside the well has to increases by a
factor 4. Since for the least-bound level we have K−r0 ' γ, it means that in this case the binding
energy can be conserved at effectively constant well parameter. Obviously, the freedom to conserve
(for decreasing r0) the binding energy of one of the levels can only be used once. It does not hold for
the other levels because the level separation diverges with κ0. In the zero range limit the potential
only supports a single bound state and the wavefunction of that state is given by

R0(r) = c0e
−κr/r for r > 0 (3.161)

and with κ > 0. Unit normalization,
´
r2R2

0(r)dr = 1, is obtained for c0 =
√

2κ.
For E > 0 we can arrive at the same conclusion. The boundary condition for k → 0 and given

value of r0 is given by Eq. (3.74), which we write in the form

1

r0 − a
= κ0 cotκ0r0. (3.162)

Reducing the radius r0, the scattering length a can be conserved by increasing κ0. In the limit
r0 → 0 the well depth should diverge in accordance with

− 1

κ0a
= cotκ0r0 → 0. (3.163)

This is again satisfied for κ0r0 ' π/2. In the zero-range limit the radial wavefunction for k → 0 is
given by

R0(k, r) =
1

kr
sin[k(r − a)] for r > 0, (3.164)

which implies R0(k, r) ' 1− a/r for 0 < r � 1/k.
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Figure 3.16: Sketch of spherical well with tunnel barrier.

Bethe-Peierls boundary condition

Note that Eq. (3.161) is the solution for E < 0 of the 1D-Schrödinger equation in the zero-range
approximation

χ′′0 − κ2χ0 = 0 r > 0, (3.165)

under the boundary condition

χ′0/χ0|r→0 = −κ. (3.166)

The latter relation is called the Bethe-Peierls boundary condition and was first used to describe the
deuteron, the weakly bound state of a proton with a neutron [6]. It shows that for weakly bound
states the wavefunction has the universal form of a halo state, which only depends on the binding
energy, εb = −κ2 (see Fig. 3.15).

For E > 0 the 1D-Schrödinger equation in the zero-range approximation is given by

χ′′0 + k2χ0 = 0 (r > 0). (3.167)

The general solution is χ0(k, r) = c0 sin[kr + η0]. Using the Bethe-Peierls boundary condition we
obtain

k cot η0(k) = −κ, (3.168)

which yields after substituting η0(k → 0) ' −ka the universal relation between the scattering length
and the binding energy in the presence of a weakly bound s level, εb = −κ2 = −1/a2.

3.5 Spherical wells screened by a tunnel barrier

3.5.1 General

The third model potential to consider is the spherical well of range r0 screened by as deltafunction
tunnel barrier as sketched in Fig. 3.16,

U (r) =

{
−κ2

0 + g δ(r − r0)

0

for r ≤ r0

for r > r0.
(3.169)

This potential is a generalization of the spherical well introduced in Section 3.4. The well depth is
again defined as a positive number, |U0| = κ2

0. The energy of the continuum states is denoted by
ε = k2 and the energy of the bound states is εb = −κ2. Note that for g = 0 the barrier is absent
and Eq. (3.169) reduces to Eq. (3.59). For g → ∞ we regain the hard sphere (plus a disconnected
well with only bound states). The presence of the barrier enhances the lifetime of the virtual levels
which allows us to model narrow resonance features; e.g., s-wave Feshbach resonances.
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Figure 3.17: Crossover from bound states to narrow s-wave resonances (red solid line) plotted for ∆γ = −0.5
with respect to the well parameter γ = 98.960169 (see Fig. 3.11). The plot is based on Eqs. (3.173) and
(3.82). The width of the resonances increases with the square root of the energy. Note that the resonances
are shifted with respect to the corresponding Breit-Wigner resonances as a result of the different boundary
condition.

3.5.2 s-wave resonances and scattering length for screened wells

For l = 0 and E > 0 the 1D-Schrödinger equation (3.9) for the radial motion is of the form

χ′′0 + [k2 − U(r)]χ0 = 0. (3.170)

The solution is

χ0(k, r) =

{
C0 sin (K+r) for r < r0

c0 sin (kr + η0) for r > r0.
(3.171)

As the tunnel barrier is of zero width, the amplitude of χ0(k, r) is conserved across the barrier. In
contrast, the derivative χ′0(k, r) changes stepwise. The resulting boundary condition takes the form

χ′0/χ0|r=r0 = K+ cotK+r0 = k cot(kr0 + η0)− κ1. (3.172)

To obtain the k dependence of the phase shift for large but otherwise arbitrary well parameter
γ we rewrite the boundary condition (3.172) in the form

a(k) = r0 −
1

k
arctan

(
kr0

K+r0 cotK+r0 − β

)
, (3.173)

where the quantity
β ≡ κ1r0

is called the the barrier parameter. It is a measure for the coupling of the states across the barrier,
large β corresponding to weak coupling. For k → 0 this expression reduces to the following relation
between the well parameter, the barrier parameter and the scattering length:

γ cot γ =
r0

r0 − a
+ β. (3.174)

For potentials with γ � 1 the argument of the cotangent is large,

K+r0 = κ0r0(1 + k2/κ2
0)1/2 > γ � 1. (3.175)

Therefore, the argument of the arctangent is typically small,

k/ |K+ cotK+r0 − κ1| � 1. (3.176)
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However, this quantity diverges whenever K+r0 cotK+r0 − κ1r0 passes through zero; i.e., for

cotK+r0 = −κ1/K+. (3.177)

For κ1r0 → 0 this happens for K+r0 ' (ṽ+ 1
2 )π, where the integer ṽ is the resonance index. This is

the result (3.97) as obtained for the Breit-Wigner s-wave resonance. For κ1r0 →∞ the divergence
occurs for K+r0 ' ṽπ, which is the boundary condition for a particle in a closed box. Expanding
cotK+r0 about the zero crossing at K+r0 = ṽπ and retaining only the linear term we obtain (See
Problem 3.7)

Kres cotK+r0 − κ1 = −δk kresr0
κ2

1

K2
res

. (3.178)

Note that for a heavy barrier (κ2
1 � K2

res) the slope is enhanced by the factor (κ1/Kres)
2 with

respect to the Breit-Wigner case. This narrows down the width of the resonance by the same amount.
Approximating Kresr0 ' γ, which is valid for the lowest few resonances above the threshold of a
deep well, the diverging argument of the arcsinus becomes

k

K+ cotK+r0 − κ1
' − 1

δk r0

γ2

β2
=
− (k + kres)

(k2 − k2
res)r0

γ2

β2
. (3.179)

This expansion is valid over the full range of the resonant change in phase provided the following
condition holds:

δk r0 � Kres/kres ' γ/kresr0. (3.180)

This condition is satisfied for the lowest resonances as long as the well parameter is sufficiently
large (γ � kresr0). As long as δk � kres we may further approximate k ' kres. With these
approximations, Eq. (3.103) can be written as a function of the energy ε = k2,

tan ηres =
k

K+ cotK+r0 − κ1
' −Γ/2

ε− εres
, (3.181)

where
Γ/2 = 2kres(γ/β)2/r0 (3.182)

is the spectral half width of the resonance.

Problem 3.7. Derive the expansion (3.178)

Solution. For this we calculate the derivative at K+r0 ' ṽπ. Using Eq. (3.177) and cos2K+r0 ' 1 we
obtain

d (Kres cotK+r0 − κ1)

dδk

∣∣∣∣
K+r0'vπ

= −kres cot2 K+r0

cos2K+r0

∣∣∣∣
K+r0'ṽπ

= −kresr0
κ2

1

K2
res

.

Multiplying the derivative with δk we obtain the desired result.

3.5.3 Effective-range expansion for screened wells

The leading energy dependence of the phase shift is obtained by applying the angle-addition formula
of the tangent to the r.h.s. of Eq. (3.173) and expanding tan kr0 in (odd) powers of k,

k cot η0 =
(K+ cotK+r0 + κ1) + k2r0 + · · ·

1− r0

(
1 + 1

3k
2r2

0 + · · ·
)

(K+ cotK+r0 + κ1)
. (3.183)

In view of the expansion, the validity of this expression is restricted to kr0 � 1. Next we expand
K+r0 in even powers of k,

K+r0 = κ0r0[1 + k2/κ2
0]1/2 = γ + 1

2k
2r2

0/γ + · · · , (3.184)
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which is valid for γ & 1, and using the angle-addition formula for the cotangent we find

K+r0 cotK+r0 + β = (γ cot γ + β)− 1
2k

2r2
0

[
1 + (1− tan γ/γ) cot2 γ

]
+ · · · . (3.185)

Substituting Eq. (3.185) into Eq. (3.183) and subsequently use Eq. (3.174) we arrive after some cal-
culus at the effective-range expansion in powers of k,

k cot η0 = −1

a
+ 1

2k
2re + · · · , (3.186)

and

re = r0

(
1− 3ar0 + γ2r2

0 − 3β(a2 − r2
0) + 3β2(a− r0)2

3a2γ2

)
(3.187)

is called the effective range. In view of the derivation this expansion is valid for kr0 � 1 and γ & 1.
For γ →∞ the effective range becomes

re = r0(1− 1
3r

2
0/a

2). (3.188)

For finite γ we consider two limiting cases. For β → 0 we regain the open channel result (3.114),

re = r0

(
1− 3ar0 + γ2r2

0

3a2γ2

)
= r0

(
1− r0

aγ2
− r2

0

3a2

)
. (3.189)

For |β| → ∞ we find

re ' −r0
β2

γ2

(a− r0)2

a2
= −r0

β2

γ2

(
1− 2

r0

a
+
r2
0

a2

)
. (3.190)

This expression shows that the effective range is negative in the limit of weak coupling through the
barrier (|β| → ∞).

For |β| → ∞ and a� r0 we introduce the positive length

R∗ = − 1
2re ' r0

β2

γ2
, (3.191)

which, for R∗ � r0, defines the expression for the phase shift caused by a narrow resonance (weak
coupling) near threshold [53],

k cot η0 = −1

a
− k2R∗. (3.192)

3.6 Arbitrary short-range potentials

The results obtained above for the spherical well are typical for so called short-range potentials.
Such potentials have the property that they may be neglected beyond a certain radius of action r0,
the range of the potential. This holds manifestly for model potentials like the hard sphere or the
spherical well but is in general not obvious or simply not true. Heuristically, one may argue that an
arbitrary potential V(r) may be neglected at distances r � r0 if the kinetic energy of confinement
within a sphere of radius r � r0 (i.e., the zero-point energy ∼ ~2/2mrr

2) largely exceeds the
potential energy |V(r)| outside that sphere. If this is the case, the potential is apparently so weak
that it cannot confine the mass mr and being small even in comparison to the lowest energy scale
(the zero-point motion) means that it can be neglected. Estimating r0 as the distance where the
two contributions are equal,

|V(r0)| = ~2/2mrr
2
0, (3.193)
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it is obvious that the potential has to fall off faster than 1/r2 to be negligible at long distance. For
V(r) = −C6/r

6 the range is called the Van der Waals range and we find

r0 ' [2mrC6/~2]1/4. (3.194)

A more detailed analysis will show that the potential has to fall off faster than 1/rs with s > 2l+ 3
for a finite range r0 to exist; i.e., for s waves faster than 1/r3 (cf. Sections 3.6.2 and 3.7.1). For the
time being we shall simply presume that a finite range exist and show that the scattering length,
the effective range and resonant enhancement by a weakly bound s-level are typical phenomena for
any short-range potential.

3.6.1 Scattering lengths for arbitrary l

For short-range potentials and distances r � r0 the radial wave equation (3.7) reduces to the
spherical Bessel differential equation

R′′l +
2

r
R′l +

[
k2 − l(l + 1)

r2

]
Rl = 0. (3.195)

Thus, for r � r0 we have free atomic motion and the general solution for the radial wave functions
of angular momentum l is given by Eq. (3.19),

Rl(k, r) '
r�r0

cl[cos ηl jl(kr) + sin ηl nl(kr)]. (3.196)

For any finite value of k this expression has for r � 1/k the asymptotic form

Rl(k, r) '
r�1/k

cl
kr

sin(kr + ηl −
1

2
lπ), (3.197)

thus regaining the appearance of a phase shift like in the previous sections.
For kr � 1 and r � r0 equation (3.196) reduces with the aid of Eq. (C.105) to the form

Rl(kr) ' cl cos ηl
(kr)

l

(2l + 1)!!
+ cl sin ηl

(2l + 1)!!

2l + 1

(
1

kr

)l+1

for r0 � r � 1/k. (3.198)

To determine ηl we are looking for a boundary condition. For this purpose we derive a second
expression for Rl(r), which is valid in the range of distances r0 � r � 1/k where both V(r) and k2

may be neglected in the radial wave equation, which in this case reduces to

R′′l +
2

r
R′l =

l(l + 1)

r2
Rl. (3.199)

For l ≥ 1 the validity of this approximation is evident by comparing k2 to the rotational barrier; for
l = 0 we recall Eq. (3.78), which shows that also R0(r) is k independent on the interval r0 � r � 1/k.
The general solution of Eq. (3.217) is

Rl(r) = Al r
l +Bl/r

l+1. (3.200)

Comparing Eqs. (3.198) and (3.200) we find

cl cos ηl '
k→0

Al(2l + 1)!!k−l; cl sin ηl '
k→0

Bl
2l + 1

(2l + 1)!!
kl+1. (3.201)

Writing a2l+1
l = −Bl/Al we find

tan ηl '
k→0
− 2l + 1

[(2l + 1)!!]
2 (kal)

2l+1
. (3.202)
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Remember that this expression is only valid for short-range interactions. The constant al is referred
to as the l-wave scattering length. For the s-wave scattering length it is convention to suppress the
subscript to avoid confusion with the Bohr radius a0.

With Eq. (3.202) we have regained the form of Eq. (3.47). This is not surprising because a hard-
sphere potential is of course a short-range potential. By comparing Eqs. (3.202) and (3.47) we see
that for hard spheres all scattering lengths are equal to the diameter of the sphere, al = a. Eq. (3.202)
also holds for other short-range potentials like the spherical well and for potentials exponentially
decaying with increasing interatomic distance.

In particular, for the s-wave phase shift (l = 0) we find with Eq. (3.202)

tan η0 '
k→0
−ka ⇔ k cot η0 '

k→0
−1

a
, (3.203)

and since tan η0 → η0 for k → 0 this result coincides with the hard-sphere result (3.54), η0 = −ka.
The p-wave phase shift (l = 1) vanishes in the limit k → 0 in accordance with

tan η1 '
k→0
−1

3
(ka1)

3 ⇔ k cot η1 '
k→0
− 3

a3
1k

2
. (3.204)

For any finite value of k the radial wavefunction (3.197) has the asymptotic form

R0(k, r) '
k→0

c0
kr

sin(kr + η0) =
c0
kr

sin [k(r − a)] . (3.205)

As follows from Eq. (3.200), for the range of distances r0 � r � 1/k the radial wavefunction behaves
asymptotically like

R0(r) ∼
k→0

1− a

r
for r0 � r � 1/k. (3.206)

This is an important result. Exactly as in the case of the spherical well the wavefunction of an
general short-range potential is found to be constant throughout space (in the limit k → 0) except
for a small region of radius a around the potential center. For a positive scattering length we regain
the characteristic node in the s wave at r = a; for negative scattering length we regain the virtual
node. This result also confirms that the smallness of the gas parameter, na3 � 1, is the prime
indicator for the weakly interacting gas.

3.6.2 Existence of the finite range

Thus far we assumed that for distances r � r0 the interaction potential could be neglected. In the
present section we ask ourselves when this is justified. For this purpose we write the radial wave
equation (3.7) in the form

R′′l +
2

r
R′l +

[
k2 − l(l + 1)

r2

]
Rl = U(r)Rl. (3.207)

Considering the zero energy limit (k → 0) this relation reduces to

R′′l +
2

r
R′l −

l(l + 1)

r2
Rl = U(r)Rl. (3.208)

This equation is valid for r � 1/k →∞. If the potential may be neglected the solution is given by
Eq. (3.200). This shows that the condition

U(r)

{
c1lr

l + c2l(
1

r
)l+1

}
∼ c1lrl−s → 0 (3.209)
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should hold for r → ∞ provided l < s. However, the solution to Eq. (3.200) shows that the contri-
bution

c2l
l(l + 1)

r2
(
1

r
)l+1

has to remain significant, also in the presence of a short-range potential. This gives rise to the
condition

c1lr
l−s � c2l(

1

r
)l+3 for r →∞. (3.210)

Note that this condition is satisfied if the potential decays sufficiently fast,

l <
1

2
(s− 3).

This shows that the range only exists if the potential decays faster than 1/r3.

3.6.3 Effective-range

In the previous section we restricted ourselves to the k → 0 limit by using Eq. (3.199) to put a
boundary condition on the general solution (3.196) of the radial wave equation. We can do better
and explore the region of small k with the aid of the Wronskian Theorem. We demonstrate this
for the case of s waves by comparing the regular solutions of the 1D-Schrödinger equation with and
without potential,

χ′′0 + [k2 − U(r)]χ0 = 0 and y′′0 + k2y0 = 0. (3.211)

Clearly, for r � r0, where the potential may be neglected, the solutions of both equations may be
chosen to coincide. Rather than using the normalization to unit asymptotic amplitude (c0 = 1) we
turn to the normalization c0 = 1/ sin η0(k),

y0(k, r) = cot η0(k) sin (kr) + cos (kr) '
r�r0

χ0(k, r), (3.212)

which is well-defined except for the special case of a vanishing scattering length (a = 0). For r � 1/k
we have y0(k, r) ' 1 + kr cot η0, which implies for the origin y0(k, 0) = 1 and y′0(k, 0) = k cot η0(k).
This allows us to express the phase shift in terms of a Wronskian of y0(k, r) at k1 = k and k2 → 0.
For this we first write the Wronskian of y0(k1, r) and y0(k2, r),

W [y0(k1, r), y0(k2, r)] |r=0 = k2 cot η0(k2)− k1 cot η0(k1). (3.213)

Then we specialize to the case k1 = k and obtain by using Eq. (3.203) in the limit k2 → 0

W [y0(k1, r), y0(k2, r)] |r=0 = −1/a− k cot η0(k). (3.214)

To employ this Wronskian we apply the Wronskian Theorem twice in the form (C.145) with
k1 = k and k2 = 0,

W [y0(k, r), y0(0, r)] |b0 = k2
´ b

0
y0(k, r)y0(0, r)dr (3.215)

W [χ0(k, r), χ0(0, r)] |b0 = k2
´ b

0
χ0(k, r)χ0(0, r)dr. (3.216)

Since χ0(k, 0) = 0 we have W [χ0(k1, r), χ0(k2, r)] |r=0 = 0 . Furthermore, we note that for b � r0

we have W [χ0(k1, r), χ0(k2, r)] |r=b = W [y0(k1, r), y0(k2, r)] |r=b. Thus subtracting Eq. (3.216) from
Eq. (3.215) we obtain the Bethe formula [7]

1/a+ k cot η0(k) = k2
´ b

0
[y0(k, r)y0(0, r)− χ0(k, r)χ0(0, r)] dr ≡ 1

2re(k)k2. (3.217)
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In view of Eq. (3.212) only the region r . r0 (where the potential may not be neglected) contributes
to the integral and we may extend b→∞. The quantity re(k) is the effective range of the interaction.
Replacing re(k) by its k → 0 limit,

re = 2
´∞

0

[
y2

0(0, r)− χ2
0(0, r)

]
dr, (3.218)

where y0(0, r) = 1− r/a, the phase shift may be expressed as

k cot η0(k) =
k→0
−1

a
+ 1

2rek
2 + · · · . (3.219)

Comparing the first two terms in Eq. (3.219) we find that the k → 0 limit is reached for

k2 |a| re � 1. (3.220)

As we derived an expression for the effective range of an arbitrary short range potential, we
should be able to reproduce the results obtained for the rectangular potentials. For the hard sphere
we have χ0(0, r) = 1− r/a for r > a. Substituting this into Eq. (3.218) we calculate

re = 2
´ a

0
(1− r/a)2dr = 2

3a, (3.221)

which indeed coincides with the value obtained from expansion (3.58). Similarly we can reproduce
the expression for the effective range of a spherical well (see Problem 3.8). In analogy with Eq. (3.120)
we can also derive for the general case a power-law expansion of the effective hard-sphere diameter
(see Problem 3.9)

a(k) = a[1− 1
3k

2a2(1− 3
2re/a)]. (3.222)

Note that substituting Eq. (3.124) for re of the spherical well we reproduce Eq. (3.120). Eq. (3.222)
is valid for all values of a provided both k |a| � 1 and k |re| � 1.

With the above derivation we regained for an arbitrary short-range potential the main conclusions
obtained in Section 3.4.9 for a spherical well: for ordinary quantum gases (large well parameters and
scattering length not anomalously small or resonantly enhanced) we may approximate |a| ' r0 and
find that the k2 term becomes important only for kr0 & 1. Since kr0 � 1 in all quantum gases, this
means that the effective hard sphere diameter has reached its limiting value a(k) ' a. The leading
curvature of the function a(k) becomes zero for re = 2

3a and changes sign when further increasing
the well depth. In this case of resonant enhancement near threshold the k2 term in Eq. (3.120) may
only be neglected for the lowest values of k; i.e., for k |a| � 1⇔ kr0 � r0/ |a|.

A famous example of an anomalously small scattering length is given by two hydrogen atoms in
the electronic ground state interacting via the triplet interaction. In this case we have a = 1.22 a0

and re = 348 a0, where a0 is the Bohr radius [33]. This case is anomalous for several reasons. The
scattering length a is positive but the potential does not support even a single bound state. The
effective range is large as expected for an anomalously small a but the sign of re is positive. The
range r0 is not determined by the Van der Waals interaction but by the exchange. These anomalies
show that for shallow potentials the intuitive picture offered by the spherical well breaks down
and one should integrate the Bethe formula (3.217) to obtain re. This requires the knowledge of
the distorted waves χ0(k, r), which are obtained by numerical integration of the 1D Schrödinger
equation for the best available potential and also provide the value of a.

Problem 3.8. Show that the effective range of a spherical well of depth −κ2
0 and radius r0 is given by

re = 2r0

[
1− r0

a
+

1

3

(r0

a

)2

+
1

2

(
cotκ0r0

κ0r0
− 1

sin2 κ0r0

)(
1− r0

a

)2
]
.

Note that this equation can be rewritten in the form (3.114).
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Solution. Substituting y0(0, r) = (1− r/a) and χ0(0, r) = (1− r0/a) sinκ0r/ sinκ0r0 into Eq. (3.218) the
effective range is given by

re = 2

ˆ r0

0

[
(1− r/a)2 − sin2 κ0r

sin2 κ0r0
(1− r0/a)2

]
dr.

Evaluating the integral results the desired expression. 2

Problem 3.9. Show that the following expansion holds

a(k) = a[1− 1
3
k2a2(1− 3

2
re/a)].

Note that for the re of a spherical well this equation results in Eq. (3.120).

Solution. Using the expansion (3.118) we have

1

k
tan ka(k) = − 1

k cot η0(k)
=

a

1− 1
2
k2are + · · ·

= a+ 1
2
k2a2re + · · · .

Thus, a(k) follows from the arctangent,

ka(k) = arctan[a+ 1
2
k2a2re + · · · ],

which leads to the desired expression by expansion to third order in k. 2

3.6.4 Weakly bound s level

The analysis of the previous section can be extended to obtain the relation between the effective
range and the binding energy of a weakly bound s level, Eb = −~2κ2/2mr, with κr0 � 1. In
particular the relation between scattering length and κ can be determined. In this case four 1D
Schrödinger equations are relevant to calculate the phase shift:

χ′′0 + [k2 − U(r)]χ0 = 0

B′′0 − [κ2 + U(r)]B0 = 0

y′′0 + k2y0 = 0

B′′a − κ2Ba = 0.
(3.223)

The first two equations are the same as the ones in the previous section and yield the continuum
solutions (3.212). The second couple of equations deal with the bound state, with Ba(r) = e−κr.
Like the continuum solutions they can be made to overlap asymptotically, Ba(r) '

r�r0
B0(r). Hence,

we have
Ba(0) = 1

y0(k, 0) = 1

B′a(0) = −κ
y′0(k, 0) = k cot η0(k).

(3.224)

As in the previous section we apply the Wronskian Theorem in the form (C.145) to the cases with
and without potential.

W [B0(r), χ0(k, r)] |b0 = −
(
κ2 + k2

) ´ b
0
B0(r)χ0(k, r)dr (3.225a)

W [Ba(r), y0(k, r)] |b0 = −
(
κ2 + k2

) ´ b
0
Ba(r)y0(k, r)dr. (3.225b)

Subtracting these equations, noting that χ0(0) = B0(0) = 0 and hence W [B0(r), χ0(k, r)] |r=0 = 0,
and further that W [B0(r), χ0(k, r)] |r=b = W [Ba(r), y0(k, r)] |r=b for b� r0 we obtain

W [Ba(r), y0(k, r)] |r=0 =
(
κ2 + k2

) ´ b
0

[Ba(r)y0(k, r)−B0(r)χ0(k, r)] dr. (3.226)

Using W [Ba(r), y0(k, r)] |r=0 = k cot η0(k) + κ we obtain for κr0 � 1 in the limit k → 0

k cot η0(k) '
κr0�1

−κ+ 1
2

(
κ2 + k2

)
r′e + · · · , (3.227)
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where

r′e = 2
´ b

0
[Ba(r)y0(0, r)−B0(r)χ0(0, r)] dr (3.228)

is the effective range for this case. Note that this integral differs from the one obtained for re by
analysis of the continuum and is only valid for κr0 � 1 but r′e should coincide with re in the limit
κ→ 0. Comparing Eq. (3.227) with Eq. (3.219) we find that the scattering length can be written as

− 1

a
'

κr0�1
−κ+ 1

2κ
2re. (3.229)

Note that in the limit κ → 0 the scattering length has the positive value a ' 1/κ and the binding
energy can be expressed in terms of the scattering length and the effective range as

Eb = −~2κ2

2mr
'

κr0�1
− ~2

2mr

1

(a− 1
2re)

2
'
κ→0
− ~2

2mra2
. (3.230)

For the case of a square well potential we have re ' r0 for a → ∞ and the above result coincides
with the expression obtained for halo states in Section 3.4.4.

3.7 Power-law potentials

The general results obtained in the previous sections presumed the existence of a finite range of
interaction, r0. Thus far this presumption was based only on the heuristic argument presented in
Section 3.6. To derive a proper criterion for the existence of a finite range and to determine its value
r0 we have to analyze the asymptotic behavior of the interatomic interaction [50]. For this purpose
we consider potentials of the power-law type,

V(r) = −Cs
rs
, (3.231)

where Cs = V0r
s
c is the power-law coefficient, with V0 ≡ |V (rc) | ≡ ~2κ2

c/2mr the well depth. These
power-law potentials are important from the general physics point of view because they capture
major features of interparticle interactions.

For power-law potentials, the radial wave equation (3.7) takes the form

R′′l +
2

r
R′l +

[
k2 +

κ2
cr
s
c

rs
− l(l + 1)

r2

]
Rl = 0. (3.232)

Because this equation can be solved analytically in the limit k → 0 it is ideally suited to analyze
the conditions under which the potential V(r) may be neglected and thus to determine r0.

To solve Eq. (3.232) we look for a clever substitution of the variable r and the function Rl(r) to
optimally exploit the known r dependence of the potential in order to bring the differential equation
in a well-known form. To leave flexibility in the transformation we search for functions of the type

Gl(x) = r−νRl(r), (3.233)

where the power ν is to be selected in a later stage. Turning to the variable x = βr(2−s)/2 with

β = κcr
s/2
c [2/(s− 2)] (excluding the case s = 2) the radial wave equation (3.232) can be written as

(cf. Problem 3.10)

G′′l +
2 (2− s/2 + 2ν)

(2− s)x
G′l +

[
1− l(l + 1)− ν (ν + 1)− k2r2

(2− s)2

4

x2

]
Gl = 0. (3.234)
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Choosing ν = − 1
2 we obtain for kr � 1

2 ⇔ x � xk = (2krc)
s/2−1

κcrc 2/(s − 2) the Bessel
differential equation (C.111),

G′′n +
1

x
G′n +

(
1− n2

x2

)
Gn = 0, (3.235)

where n = (2l + 1)/(s − 2). In the limit k → 0 the validity of this equation extends over all space
and its general solution is given by Eq. (C.112a). Substituting the general solution into Eq. (3.233)
with ν = − 1

2 , the general solution for the radial wave equation of a power-law potential in the k → 0
limit is given by

Rl(r) = r−1/2 [AJn(x) +BJ−n(x)] , (3.236)

where the coefficients A and B are to be fixed by a boundary condition and the normalization.

Problem 3.10. Show that the radial wave equation (3.232) can be written in the form

G′′l +
2 (2− s/2 + 2ν)

(2− s)x G′l +

[
k2

κ2
c

rs

rsc
+ 1− [l(l + 1)− ν (ν + 1)]

(2− s)2

4

x2

]
Gl = 0,

where x = κcr(rc/r)
s/2[2/(s− 2)] and Gl(x) = r−νRl(r).

Solution. We first turn to the new variable x = βrγ by expressing R′′l , R′l and Rl in terms of the function
Gl and its derivatives

Rl = rνGl(x)

R′l = rνG′lx
′ + νrν−1Gl = γβrγ−1+νG′l + νrν−1Gl

R′′l = γ2β2r2γ−2+νG′′l + γ (γ − 1 + 2ν)βrγ+ν−2G′l + ν (ν − 1) rν−2Gl,

where x′ = dx/dr = γβrγ−1. Combining the expressions for R′′l and R′l to represent part of the radial wave
equation (3.232) we obtain

R′′l +
2

r
R′l = γ2β2r2γ−2+νG′′l + γ (1 + γ + 2ν)βrγ+ν−2G′l + ν (ν + 1) rν−2Gl

= γ2β2r2γ−2+ν

[
G′′l +

(1 + γ + 2ν)

γβrγ
G′l +

ν (ν + 1)

γ2β2r2γ
Gl

]
.

Now we use the freedom to choose β by setting γ2β2 = κ2
cr
s
c . Replacing twice βrγ by x the radial wave

equation (3.232) can be expressed in terms of G(x) and its derivatives,

G′′l +
(1 + γ + 2ν)

γx
G′l +

ν (ν + 1)

γ2x2
Gl +

[
k2

κ2
c

+

(
1− l(l + 1)(β2/x2)(1−s/2)/γ

κ2
crsc

)
rsc
rs

]
rs

rsc
Gl = 0.

We collect the terms proportional to G(x), with x = [κcr
s/2
c /γ]rγ , and substitute the expression for β2.

Then we obtain the desired form by choosing γ = (2 − s)/2 (which excludes the case s = 2), for which
x = κcr(rc/r)

s/2[2/(s− 2)]. 2

3.7.1 Existence of a finite range r0

To establish whether the potential may be neglected at large distances we have to analyze the
asymptotic behavior of the radial wavefunction Rl(r) for r →∞. If the potential is to be neglected
the radial wavefunction should be of the form

Rl(r) = Al r
l +Bl/r

l+1. (3.237)

as was discussed in Section 3.6. The asymptotic behavior of Rl(r) follows from the general solution
(3.236) by using the expansion in powers of (x/2)2 given by Eq. (C.113),

Rl(r) ∼ r−1/2

[
Al x

n(1− x2

4(1 + n)
+ · · · ) +Bl x

−n(1− x2

4(1− n)
+ · · · )

]
, (3.238)
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where n = (2l + 1)/(s − 2). Substituting the definition x = βr(2−s)/2 = βr(2l+1)/2n with β =

κcr
s/2
c [2/(s− 2)] we find for r →∞

Rl(r) ∼ Al rl(1− a1r
2−s + · · · ) +Bl r

−l−1(1− b1r2−s + · · · ), (3.239)

where the coefficients ap and bp (with p = 1, 2, 3, · · · ) are fully defined in terms of the potential
parameters and l but not specified here. As before, the coefficients Al and Bl depend on boundary
condition and normalization. From Eq. (3.239) we notice immediately that in both expansions on
the r.h.s. the leading terms are independent of the power s. Hence, for the r dependence of these
terms the potential plays no role. If further also the second and higher terms of the left expansion
may be neglected (for r → ∞) compared to the first term of the right expansion the two leading
terms of the asymptotic r dependence of Rl(r) are independent of s and are of the form (3.237).
This is the case for l+ 2− s < −l− 1. Thus we have obtained that the potential may be neglected
for

l < 1
2 (s− 3)⇔ 0 ≤ n < 1. (3.240)

This shows that existence of a finite range depends on the angular momentum quantum number l;
for s waves the potential has to fall off faster than 1/r3; for 1/r6 potentials the range does not exist
for l ≥ 2.

To obtain an expression for r0 in the case of s waves we presume n � 1, which is valid for
large values of s and even for s = 4 not a bad approximation (n = 1

2 ). With this presumption the
inequality (3.240) may be rewritten in a form enabling the definition of the range r0,

r2−s � r2−s
c (s− 2)2/(κ2

cr
2
c ) = r2−s

0 ⇔ r0 = rc [κcrc/(s− 2)]
2/(s−2)

. (3.241)

In terms of the power-law coefficient this becomes

r0 = (s− 2)2/(2−s) [2mrCs/~2
]1/(s−2)

. (3.242)

In terms of the range r0 the variable x is defined as

x = 2 (r0/r)
(s−2)/2

. (3.243)

For 1/r6 potentials r0 is called the Van der Waals range

rvdW = 1
2rc[κcrc]

1/2 = 1
2

[
2mrCs/~2

]1/4
. (3.244)

Note that this value agrees within a factor of 2 with the heuristic estimate (3.194).

3.7.2 Phase shifts for power-law potentials

To obtain an expression for the phase shift by a power-law potential of the type (3.231) we note
that for l < 1

2 (s− 3) the range r0 is well-defined and the short-range expressions must be valid,

tan ηl '
kr→0

− 2l + 1

[(2l + 1)!!]
2 (kal)

2l+1
(3.245)

For l ≥ 1
2 (s− 3) we have to adopt a different strategy to obtain an expression for the phase

shifts. At distances where the potential may not be neglected but still is much smaller than the
rotational barrier the radial wavefunction Rl(k, r) will only be slightly perturbed by the presence
of the potential; i.e., Rl(k, r) ' jl(kr). In this case the phase shift can be calculated perturbatively
in the limit k → 0 by replacing χl(k, r) with krjl(kr) in the integral expression (3.37) for the phase
shift. This is known as the Born approximation. Its validity is restricted to cases where the vicinity
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of an l-wave shape resonance can be excluded. Thus we obtain for the phase shift by a power-law
potential of the type (3.231)

sin ηl '
π

2

ˆ ∞
0

κ2
cr
s
c

rs
[
Jl+1/2(kr)

]2
rdr. (3.246)

Here we turned to Bessel functions of half-integer order using Eq. (C.109). To evaluate the integral
we use Eq. (C.129) with λ = s− 1 and µ = l + 1/2

ˆ ∞
0

1

rs−1

[
Jl+1/2(kr)

]2
dr =

ks−2Γ (5) Γ
(

2l+3−s
2

)
2s−1 [Γ (3)]

2
Γ
(

2l+7
2

) = 6ks−2 (2l + 3− s)!!
(2l + 5)!!

.

This expression is valid for 1 < s < 2l + 3. Thus the same k dependence is obtained for all angular
momentum values l > 1

2 (s− 3),

sin ηl '
k→0

κ2
cr

2
c

3π(2l + 3− s)!!
(2l + 5)!!

(krc)
s−2

. (3.247)

Note that the same k dependence is obtained as long as the wavefunctions only depend on the
product kr. However, in general Rl(k, r) 6= Rl(kr), with the cases V(r) = 0 and s = 2 as notable
exceptions.

3.7.3 Van der Waals potentials

A particularly important interatomic interaction in the context of the quantum gases is the Van
der Waals interaction introduced in Section 1.4.3. It may be modeled by a potential consisting of a
hard core and a −1/r6 long-range tail (see Fig. 1.4),

V (r) =

{
∞

−C6/r
6

for r ≤ rc
for r > rc.

(3.248)

where C6 = V0r
6
c is the Van der Waals coefficient, with V0 = ~2κ2

c/2mr the well depth. For this
model potential the radial wavefunctions Rl(r) are given by the general solution (3.236) for power-
law potentials in the k → 0 limit for the case s = 6. Choosing l = 0 we find for radial s waves,

R0(r) = r−1/2
[
AJ1/4(x) +BJ−1/4(x)

]
, (3.249)

where we used n = (2l + 1)/(s − 2) = 1
4 and x = 2 (r0/r)

2
, with r0 being the range of the Van

der Waals potential as given in Eq. (3.244). In Table 3.1 some values for C6 and r0 are listed for
hydrogen [64] and the alkali atoms [17].

Imposing the boundary condition R0(rc) = 0 with rc � r0 (i.e., xc = 2 (r0/rc)
2 � 1) we

calculate for the ratio of coefficients

A

B
= −

J−1/4(xc)

J1/4(xc)
'

xc→∞
−cos (xc − 3π/8 + π/4)

cos (xc − 3π/8)
= −2−1/2 [1− tan (xc − 3π/8)] . (3.250)

An expression for the scattering length is obtained by analyzing the long-range (r � r0) behavior of
the wavefunction with the aid of the short-range (x� 1) expansion (C.116) for the Bessel function.

Choosing B = r
1/2
0 Γ (3/4) the zero-energy radial wavefunction is asymptotically normalized to unity

and of the form (3.206),

R0(r) '
x�1

Br−1/2

[
A

B

(x/2)
1/4

Γ (5/4)
+

(x/2)
−1/4

Γ (3/4)

]
= 1− a

r
. (3.251)



3.7. POWER-LAW POTENTIALS 91

Table 3.1: Van der Waals C6 coefficients and the corresponding ranges for alkali-alkali interactions. D∗ is
the maximum dissociation energy of the last bound state.

C6(Hartree a.u.) r0(a0) D∗(K)
1H-1H 6.49 5.2 249

6Li-6Li 1389 31 1.16
6Li-23Na 1467 36 0.565
6Li-40K 2322 41 0.391

6Li-87Rb 2545 43 0.335
23Na-23Na 1556 45 0.146
23Na-40K 2447 54 0.081

23Na-87Rb 2683 58 0.056
40K-40K 3897 65 0.040

40K-87Rb 4274 72 0.024
87Rb-87Rb 4691 83 0.011

133Cs-133Cs 6851 101 0.005

where
a = ā [1− tan (xc − 3π/8)] , (3.252)

with ā = r02−1/2Γ (3/4) /Γ (5/4) ' 0.956 r0 is identified as the scattering length. The parameter ā
has been referred to as the average scattering length.1

It is interesting to note the similarities between Eq. (3.252) and the result obtained for square
well potentials given by Eq. (3.75). In both cases the typical size of the scattering length is given
by the range r0 of the interaction. Also the resonant structure is similar. The scattering length
diverges for xc − 3π/8 = (p+ 1/2)π with p = 0, 1, 2, · · · . However, whereas the scattering length is
almost always positive for deep square wells, for Van der Waals potentials this is the case over 3/4
of the free phase interval of π, with −π/2 < xc−3π/8−pπ < π/4. For arbitrary xc this means that
in 25% of the cases the scattering length will be negative.

3.7.4 Asymptotic bound states in Van der Waals potentials

The weakly bound states in a molecular potential are also known under the name Asymptotic Bound
States (ABS). The least-bound of these states is a halo state if most of its probability density is
found outside the potential well; i.e., if the classical turning point rcl is located at distances where
the potential may be neglected, rcl � r0. In the limit of zero binding energy the halo state can be
regarded either as a resonant bound states or as a zero-energy resonance. In Fig. 3.18 we show the
radial wavefunction R0(r) of such a resonant bound state for the case xc = (p+ 7/8)π with p = 15
in a Van der Waals model potential of the type (3.248). As for such states the scattering length
diverges the radial wavefunction (3.249) must be of the analytic form

R0(r) ∼ r−1/2J1/4(2r2
0/r

2). (3.253)

The least-bound s level for the same values of rc and C0 can be obtained by numerical integration
of the Schrödinger equation from rc outward. The wavefunction of this state is denoted by B∗0 (r) in
Fig. 3.18, its binding energy E∗b corresponds to the largest binding energy a least-bound state can
have for this potential. The position of the outer classical turning point r∗cl is found by equating
the numerically determined E∗b with the potential energy curve, E∗b = −C6/r

∗6
cl . Using Eq. (3.242)

this procedure yields r∗cl = 0.860 r0. Thus the largest possible dissociation energy D∗ = −E∗b of the
least-bound l = 0 state is readily calculated if C6 and mr are known,

D∗ ' 2.474C6/r
6
0. (3.254)

1See G.F. Gribakin and V.V. Flambaum, Phys. Rev. A 48, 546 (1993).
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Figure 3.18: R0(r): radial wavefunction of a resonant bound state (diverging scattering length) in a Van der
Waals potential; B0(r): corresponding first regular bound state (least-bound state for the same potential
parameters). Its classical outer turning point lies close to the position of the last node of R0(r). Note the
1/r long-range behavior typical for resonant bound states.

The D∗ values are also included in Table 3.1. Comparing D∗/kB = 249 K for hydrogen with the
actual dissociation energy D14,0/kB ≈ 210 K of the highest zero-angular-momentum bound state
|v = 14; J = 0〉 (see Fig. 3.1) we notice that indeed D14,0 ≤ D∗, in accordance with the definition of
D∗ as an upper limit. Since for halo states the condition r∗cl � r0 is satisfied these states necessarily
have a dissociation energy D≪ D∗.

The expression for D∗ was obtained starting from the boundary condition R0(rc) = 0. This
forces all continuum and bound-state wavefunctions to have the same phase at r = rc. Importantly,

for distances rc � r � rφ ≡ |C6/E|1/6, where E = ~2k2/2mr, the phase development of both bound
and continuum states is determined by the interaction potential. This can be seen in Fig. 3.18. Note
that the result r∗cl = 0.860 r0 coincides to within 1.5% with the value r∗cl = 0.848 r0 obtained from
the last node of R0(r); i.e., from the condition J1/4(x∗) = 0, where x∗ ≡ 2r2

0/r
∗2 ≈ 2.778 is the

smallest (non-zero) node of the Bessel function J1/4(x). Similarly, the subsequent nodes of J1/4(x)
correspond to the turning points of the next bound states in the Van der Waals potential and provide
their binding energies. The expression (3.254) for D∗ holds for all potentials with a long-range Van
der Waals tail as long as the phase of the wavefunction accumulated in the motion from the inner
turning point to a point r = rφ is to good approximation independent of E.

The concept of the accumulated phase is at the basis of semi-empirical precision descriptions of
collisional phenomena in ultracold gases [48]. In a semi-classical approximation the turning points
a and b of the v-th bound state (energy Ev = −D, with v = 0, 1, · · · ) are defined by the phase
condition

φ = (v + 1
2 )π =

ˆ b

a

Kvdr, (3.255)

where Kv ≡ [2mr[Ev − V(r)]/~2]1/2, with V(r) being the best available scattering potential for a
given pair of atoms. For the spherical well Kv = [κ2

0 − κ2
v]

1/2, a = 0 and b = r0; for the Van der
Waals model potential κ2

v = 2mrC6/~2r6
v, a = rc and b = rv and we find [41]

Kv = [2mrC6/~2r6 − κ2
v]

1/2 = κv[r
6
v/r

6 − 1]1/2.

Turning to the new variable y = rv/r the integral becomes

(v + 1
2 )π = κvrv

´ rv/rc
1

[1− 1/y6]1/2ydy.

In cases where the scattering length is known we can derive an expression for the effective range
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of Van der Waals potentials in the k → 0 limit using the integral expression (3.218),

re = 2
´∞

0

[
y2

0(r)− χ2
0(r)

]
dr, (3.256)

where y0(r) = 1 − r/a. The wavefunction χ0(r) corresponds to Eq. (3.249), normalized to the
asymptotic form χ0(r) ' 1− r/a. Using Eqs. (3.252) and (3.250) and turning to the dimensionless
variable ρ = r/r0 the function χ0(r) takes the form

χ0(ρ) = ρ1/2
[
Γ (5/4) J1/4(2/ρ2)− (r0/a) Γ (3/4) J−1/4(2/ρ2)

]
. (3.257)

Substituting this expression into Eq. (3.256) we obtain for the effective range1

re/2r0 = I0 − 2 (r0/a) I1 + I2 (r0/a)
2

(3.258)

=
16

3π

[
[Γ (5/4)]

2 − π

2
(r0/a) + [Γ (3/4)]

2
(r0/a)

2
]
. (3.259)

Substituting numerical values the expression (3.219) for the s-wave phase shift becomes

k cot η0 = −1

a
+

1

2
r0k

2 × 2.789
[
1− 1.912 (r0/a) + 1.828 (r0/a)

2
]
. (3.260)

Note that in the presence of a weakly bound state (a → ∞) the effective range converges to the
value re = 2.789 r0, which is somewhat larger than in the case of the spherical well.

3.8 Pseudo potentials

As in the low-energy limit (k → 0) the scattering properties only depend on the asymptotic phase
shift it is a good idea to search for the simplest mathematical form that generates this asymptotic
behavior. The situation is similar to the case of electrostatics, where a spherically symmetric charge
distribution generates the same far field as a properly chosen point charge in its center. Not surpris-
ingly, the suitable mathematical form is a point interaction. It is known as the pseudo potential and
serves as an important theoretical Ansatz at the two-body level for the description of interacting
many-body systems [31]. The existence of such pseudo potentials is not surprising in view of the
zero-range square well solutions discussed in Section 3.4.11.

As the pseudo potential cannot be obtained at the level of the radial wave equation we return
to the full 3D Schrödinger equation for a pair of free atoms(

∆ + k2
)
ψk (r) = 0, (3.261)

where k = [2mrE]1/2/~ is the wave number for the relative motion (cf. Section 3.2.1). The general
solution of this homogeneous equation can be expressed in terms of the complete set of eigenfunctions
Rl(k, r)Y

m
l (r̂),

ψk(r) =

∞∑
l=0

+l∑
m=−l

clmRl(k, r)Y
m
l (r̂). (3.262)

1Here we use the following definite integrals:

I2 =
´∞
0 %2

[
1−

[
Γ (3/4) J−1/4(x)

]2
/%
]
d% = [Γ (3/4)]2 16/3π

I1 =
´∞
0 %

[
1− Γ (3/4) J−1/4(x)Γ (5/4) J1/4(x)

]
d% = 4/3

I0 =
´∞
0

[
1− %

[
Γ (5/4) J1/4(x)

]2]
d% = [Γ (5/4)]2 16/3π.
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In this section we restrict ourselves to the s-wave limit (i.e., choosing clm = 0 for l ≥ 1) where
η0 = −ka. We are looking for a pseudo potential that will yield a solution of the type (3.205)
throughout space,

ψk(r) =
c0
kr

sin(kr + η0), (3.263)

where the contribution of the spherical harmonic Y 0
0 (r̂) is absorbed into the proportionality constant.

The difficulty of this expression is that it is irregular in the origin. We claim that the operator

− 4π

k cot η0
δ (r)

∂

∂r
r (3.264)

is the s-wave pseudo potential U(r) that has the desired properties; i.e.,(
∆ + k2 +

4π

k cot η0
δ (r)

∂

∂r
r

)
ψk (r) = 0. (3.265)

The presence of the delta function makes the pseudo potential act as a boundary condition at r = 0,

4πδ (r)

k cot η0

[
∂

∂r
rψk (r)

]
r=0

= 4πδ (r)
c0
k

sin η0 = −4πδ (r)
c0
k

sin(ka) '
k→0
−4πac0δ (r) , (3.266)

where we used the expression for the s-wave phase shift, η0 = −ka. This is the alternative boundary
condition we were looking for. Substituting this into Eq. (3.265) we obtain the inhomogeneous
equation (

∆ + k2
)
ψk (r) '

k→0
4πac0δ (r) . (3.267)

This inhomogeneous equation has the solution (3.263) as demonstrated in Problem 3.11.
For functions f (r) with regular behavior in the origin we have[

∂

∂r
rf (r)

]
r=0

= f (r) +

[
r
∂

∂r
f (r)

]
r=0

= f (r) (3.268)

and the pseudo potential takes the form of a delta function potential 1

U(r) = − 4π

k cot η0
δ (r) '

k→0
4πa δ (r) (3.269)

or, equivalently, restoring the dimensions

V (r) = g δ (r) with g =
(
2π~2/mr

)
a . (3.270)

This expression, for na3 � 1 valid in the zero energy limit, is convenient for calculating the inter-
action energy as will be shown in Section 3.9.7.

Problem 3.11. Verify the equation

(
∆ + k2)ψk (r) = 4πδ (r)

1

k
sin η0 (3.271)

by direct substitution of the solution (3.263) setting c0 = 1.

1Note that the dependence on the relative position vector r rather than its modulus r is purely formal as the delta
function restricts the integration to only zero-length vectors. This notation is used to indicate that normalization
involves a 3-dimensional integration,

´
δ (r) dr = 1. Pseudo potentials do not carry physical significance but are

mathematical constructions that can chosen such that they provide wavefunctions with the proper phase shift.
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Solution. Integrating Eq. (3.267) by over a small sphere V of radius ε around the origin we have

ˆ
V

(
∆ + k2) 1

kr
sin(kr + η0)dr = −4π

k
sin η0 (3.272)

Here we used
´
V
δ (r) dr = 1 for an arbitrarily small sphere around the origin. The second term on the l.h.s.

of Eq. (3.272) vanishes,

4πk lim
ε→0

ˆ ε

0

r sin(kr + η0)dr = 4πk sin(η0) lim
ε→0

ε = 0.

The first term follows with the divergence theorem (Gauss theorem)

lim
ε→0

ˆ
V

∆
1

kr
sin(kr + η0)dr = lim

ε→0

˛
S

dS ·∇ 1

kr
sin(kr + η0)

= lim
ε→0

4πε2
(

1

ε
cos(kε+ η0)− 1

kε2
sin(kε+ η0)

)
= −4π

k
sin η0. 2

3.9 Impurity model for pair interactions

3.9.1 Introduction

How do interatomic interactions affect the energy of the individual atoms in a gas? To answer this
question we start by considering an ultracold gas of N non-interacting atoms of mass m contained
in a spherical volume of radius R. To include the interaction we add a probe particle to the system
which interacts with all atoms of the gas. The interaction is modeled by a spherically symmetric
potential of finite range r0 as introduced in Section 3.5. For simplicity we fix the potential at the
center of the sphere. Physically this corresponds to introducing an impurity atom of infinite mass
into the gas; i.e., the reduced mass equals the mass of the gas atoms, mr = m. The radius of the
container, R, will be chosen larger than all relevant length scales in the system; in particular, R� a.

In view of the central symmetry we search for the eigenstates of the atoms in the spherical basis,

ψnlm(r) = cnlmY
m
l (r̂)Rnl(r), (3.273)

where cl is a normalization constant and depends on R. Most of these states are not affected by the
interaction because for an ultracold gas (kr0 � 1) only the s-wave channel gives rise to scattering.
Therefore, we focus on the s waves; i.e., the l = 0 wavefunctions inside the sphere,

ψn(r) = Y 0
0 (r̂)R0(kn, r), (3.274)

where Y 0
0 (r̂) = (4π)−1/2 represents the l = 0 rotational state and R0(kn, r) is the radial wavefunction

for energy εn = k2
n, with n being the quantum number for the radial motion. For n = 1 we obtain

the motional ground state of the atoms in the spherical box.

3.9.2 Fermions - not interacting with impurity

In the absence of the interaction we denote the full wavefunction by ϕn(r) and the radial wavefunc-
tion is of the form

R
(0)
0 (kn, r) = cn

sin[knr]

r
. (3.275)

The normalization constant cn follows from the boundary condition that the wavefunction vanish at

the surface of the spherical container, R
(0)
0 (kn, R) = 0. For the wavefunction (3.275) this condition

becomes
cn
R

sin[knR] = 0 ⇔ kn = n
π

R
with n ∈ {1, 2, · · · }. (3.276)
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Figure 3.19: Ground state radial wavefunctions satisfying the boundary condition of zero amplitude at the
surface of a spherical quantization volume of radius R. In this example |a/R| = 0.1. Note that for positive
scattering length the wavefunction is suppressed for distances r . a as expected for repulsive interactions.
The oscillatory behavior of the wavefunction in the core region cannot be seen on this length scale (i.e.,
r0 � a in this example).

In Fig. 3.19 this is illustrated for the motional ground state of the atoms. Integrating over the angles
the normalization of ϕn(r) follows from the radial integral,

1/c2n =

ˆ R

0

dr sin2[knr] =
R

2
⇔ cn =

√
2

R
. (3.277)

Thus the normalized radial wavefunction is

R
(0)
0 (kn, r) =

√
2

R

sin[knr]

r
. (3.278)

Let us now specialize to a fermionic quantum gas and suppose that the Fermi energy is given by

εF = k2
F = n2

F

π2

R2
. (3.279)

How many particles in the spherical volume correspond to this Fermi energy for given value of R?
For a homogeneous gas the Fermi energy is given by

εF = (6π2n0)2/3 = [ 9
2πN/R

3]2/3 (3.280)

For kF and nF this yields
kFR ≈ 2.4N1/3 ⇔ nF ≈ 0.77N1/3. (3.281)

Hence, for a million atoms only some 100 radial s levels are occupied.

3.9.3 Fermions interacting with impurity

Let us turn on the interactions. As we found in this chapter, the presence of interaction gives rise
to an l-dependent phase shift ηl(k). So the perturbed l = 0 radial wavefunction of the atom can be
written in the form

R0(k′n, r) =
r>r0

c′n
r

sin[k′nr + η0(k′n)], (3.282)

where η0(k′n) = −k′na(k′n) is the s-wave phase shift at radial wavenumber k′n. For this wavefunction
the boundary condition becomes

cn′

R
sin [k′n(R− a)] = 0 ⇔ k′n = n

π

(R− a)
with n ∈ {1, 2, · · · }. (3.283)
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Expressing k′n in terms of kn we find to leading order in the phase shift

k′n = kn
1

(1− a/R)
= kn [1 + a(k′n)/R+ · · · ] . (3.284)

Substituting (3.284) into (3.282) we obtain, to leading order in the phase shift, for the radial wave-
function [2]1

R0(kn, r) =
r>r0

c′n
r

sin[knr + η0(kn)(1− r/R)]. (3.285)

Here we approximate a(k′n) ' a(kn), which is always allowed for sufficiently large R. Extending
Eq. (3.282) to r = 0 we obtain, with the aid of the boundary condition (3.283), an approximate
expression for the normalization integral,

1/c′2n =

ˆ R

0

dr sin2 [k′nR+ η0(k′n)]

=
1

2

ˆ R

0

dr[1− cos[2k′mr + 2η0(k′m)]. (3.286)

The oscillatory term can be made arbitrarily small by choosing R sufficiently large. To demonstrate
this we evaluate the integral; using the boundary condition (3.283) we obtain

1/c′2n =
R

2

[
1 +

sin[2η0(k′n)]

2k′nR

]
. (3.287)

As the sine is bounded the second term can indeed be made arbitrarily small by choosing R suffi-
ciently large. Hence, to a good approximation the normalization constant is conserved by switching
on the interaction if R is chosen sufficiently large,

c′n = cn for R→∞. (3.288)

This is a remarkable result because it shows that for a/R� 1 the short range physics drops out of
the normalization,

R0(k′n, r) '
√

2

R

sin[knr + η0(kn)(1− r/R)]

r
. (3.289)

3.9.4 Energy shift - repulsive versus attractive interaction

What happens to the energy of the atoms if we adiabatically apply the interaction? To first order
in a(k)/R we find for the shift in wavenumber

δkn = k′n − kn = kna(kn)/R+ · · · . (3.290)

This fixes the energy shifts of all levels. For the nth radial state the energy shift is given by

δE =
~2

2m

(
k′2n − k2

n

)
=

~2

2m
2k2
n[a(kn)/R+ · · · ] ' n2 ~2

m

π2

R3
a(kn) , (3.291)

For the motional ground state (n = 1) we have k1 → 0 and a(k1) approaches the scattering length,
a(k1)→ a. Thus the change in ground-state energy as a result of the interaction is

δE =
~2

2m

(
k′21 − k2

1

)
' ~2

m

π2

R3
a , (3.292)

1Note that Anderson uses a different sign convention for the phase shift.
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where m is the mass of the gas atoms. Note that for a > 0 the energy increases by the presence of
the interaction (effective repulsion). Likewise, for a < 0 the energy decreases (effective attraction).
The energy shift δE is known as the interaction energy of the interacting pair (atom plus impurity).
Apart from the s-wave scattering length it depends on the mass of the atoms and scales inversely
proportional to the volume of the quantization sphere; i.e., linearly proportional to the mean proba-
bility density of the pair. The linear dependence in a is only accurate to first order in the expansion
in powers of a/R. Most importantly, note that the shift δE only depends on the value of a and not
on the details of the oscillatory part of the wavefunction in the core region.

3.9.5 Analysis of orthonormality between perturbed and unperturbed states

Let us investigate the overlap between the unperturbed wavefunctions α(ki, r) and the perturbed
wavefunctions β(k′i, r). The overlap integral is given by

〈αi|βj〉 =
2

R

ˆ R

0

dr sin[kir] sin[k′jr + η0(k′j)], (3.293)

where we used the same normalization for the perturbed and unperturbed states - see Eq. (3.288).
The overlap can be rewritten in the form

〈αi|βj〉 =
1

R

ˆ R

0

dr
{

cos[kir − k′jr − η0(k′j)]− cos[kir + k′jr + η0(k′j)]
}
. (3.294)

For ki − k′j � ki + k′j the second term oscillates faster than the first one and becomes negligible for
R → ∞. This holds in particular for states close to the Fermi level. Integrating the first term we
obtain

〈αi|βj〉 =

ˆ (ki−k′j)R

0

dx
cos[x− η0(k′j)]

(ki − k′j)R
=

sin[η0(k′j)] + sin[(ki − k′j)R− η0(k′j)])

(ki − k′j)R
. (3.295)

Recalling the boundary condition (3.283) we find

sin[kiR− k′jR− η0(k′j)] = 0, (3.296)

and using the approximation (3.284) the overlap integral simplifies to [2]1

〈αi|βj〉 =
sin[η0(kj)]

(i− j)π + η0(kj)
. (3.297)

For sufficiently large R this approximation is valid to first order in the phase shift. The result shows
that for i = j the overlap is unity for zero phase shift and decreases like a spherical Bessel function
with phase shift. Just as one expects for a weak perturbation the overlap is close to unity if the
perturbation is small. Returning to the second term of Eq. (3.294) we find that it evaluates to

sin[η0(kj)]

(i+ j)π − η0(kj)
. (3.298)

Comparing with (3.297) shows that this term is indeed negligible if jπ � η0(kj), which can always
be satisfied by making R sufficiently large.

1Note that this is the same expression as given by Anderson but we started from different sign conventions. The
result given here is correct as, for i = j, the overlap should go to unity for vanishing phase shift.
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Figure 3.20: Black curves: the k dependence of the scattering length for resonances with a resonance-range
R∗ = 60 r0 and 30-fold/300-fold resonant enhancement of the scattering length (kF a = ±1 / kF a = ±10).
Red curve: comparison with the k dependence of a Breit-Wigner resonance near threshold (R∗ = r0/2)
with the a resonant enhancement of 300. In all cases the r0 is taken as the background scattering length,
abg = r0. Note the asymmetry of the narrow resonance.

3.9.6 Examples

Let us look at a few examples. We consider the 6Li-40K interaction with a range r0 = 40 a0 ' 2 nm
and a spherical volume of radius R = 50µm = 2.5 × 104r0. For this system the ground state
wavenumber is k1 = π/R → k1r0 = 1.3 × 10−4. The Fermi wavenumber for N = 106 atoms inside
the sphere is kF = N1/3π/R = 100 k1. For atom-impurity interactions with a regular scattering
length, |a| ≈ r0, we have |η0(k)| ≈ kr0 � 1 and the overlap is close to unity up to the Fermi
level. For cases with a moderately enhanced positive scattering length, kFa = 1, the resonant
enhancement is 30 fold, a = 30 r0 and a(kF ) ≈ 15 r0. Thus the phase shift is η0(kF ) = −kFa(kF ) ≈
1500 k1r0 ≈ 0.2 and we calculate for the overlap 〈αnF |βnF 〉 ≈ 1. For a strong enhancement,
kFa = 10, the resonant enhancement is 300 fold, a = 300 r0 and a(kF ) ≈ 50 r0. Thus the phase
shift is η0(kF ) = −kFa(kF ) ≈ 5000 k1r0 ≈ 0.65 and we find for the overlap 〈αnF |βnF 〉 ≈ 0.93.

We analyze the resonance conditions for these examples. For an s-wave resonance close to
threshold, the k dependence of the total scattering length a(k) can be written in the universal form

a(k) = abg +
1

k
arctan

[
kares/(1 + k2R∗ares)

]
. (3.299)

The expression is called universal because the spectral width of the resonance can be varied inde-
pendently from the resonant enhancement (ares + abg)/r0 and the background contribution abg/r0.
The variation of the width is done by variation of the resonance range R∗. In Feshbach resonances
R∗ is a measure for the coupling between the open and the closed channel. For a resonance with
R∗ = 60 r0 (kFR

∗ = 1) the k dependence of the scattering length is shown as the black curves
in Fig. 3.20. For comparison also the behavior of the corresponding Breit Wigner resonance near
threshold is shown. Note that for the ground state the scattering-length limit is reached. As we are
dealing with an ultracold gas and in the presence of at most one resonance we can put a bound on
the phase shift,

|η0(kF )| . π. (3.300)
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3.9.7 Energy shift obtained with pseudo potentials

The method used above to calculate the interaction energy δE of the reduced mass mr in a spherical
volume of radius R has the disadvantage that it relies on the boundary condition at the surface of
the volume. It would be hard to extend this method to non-spherical volumes or to calculate the
interaction energy of a gas of N atoms because only one center of mass of a collisional pair can be
put in the center of the quantization volume. Therefore we look for a different boundary condition
that does not have this disadvantage. The pseudo potentials introduced in Section 3.8 provide this
boundary condition.

With the delta function potential (3.269) we can readily regain the interaction energy (3.291)
using first order in perturbation theory

δE =
〈ϕk| V (r) |ϕk〉
〈ϕk|ϕk〉

, (3.301)

where
ϕk(r) = c0Y

0
0 (r̂)j0(kr) (3.302)

is the wavefunction for the unperturbed relative motion of two atoms,with Y 0
0 (r̂) being the lowest

order spherical harmonic and r̂ = r/|r| the unit vector in the radial direction (θ, φ). The normaliza-
tion condition is 1 = 〈ϕk|ϕk〉 =

´
V

[c0Y
0
0 (r̂)j0(kr)]2dr with kR = π. Rewriting the integral in terms

of the variable % ≡ kr we find after integration and choosing the wavevector used in the previous
section (k = π/R)

1

c20
=

1

k2

ˆ R

0

sin2(kr)dr =
1

k3

ˆ π

0

sin2(%)d% =
R3

π3

π

2
. (3.303)

Then, to first order in perturbation theory the interaction energy is given by

δE '
k→0

~2

2mr

ˆ
4πa δ (r)ϕ2

k(r)dr =
~2

2mr
ac20

[
sin2(kr)

k2r2

]
r→0

=
~2

mr

π2

R3
a , (3.304)

which is seen to coincide with Eq. (3.291). This expression is accurate only as long as we can
restrict ourselves to first order in perturbation theory ; the pseudo potential is constructed such
that it provides the correct value for the interaction energy but the actual correlations between the
colliding atoms are neglected.

3.9.8 Interaction energy of two unlike atoms

Let us consider two unlike atoms in a cubic box of length L and volume V = L3 interacting via the
central potential V(r). The hamiltonian of this two-body system is given by 1

H = − ~2

2m1
∇2

1 −
~2

2m2
∇2

2 + V(r). (3.305)

In the absence of the interaction the pair wavefunction of the two atoms is given by the product
wavefunction

ψk1,k2
(r1, r2) =

1

V
e−ik1·r1e−ik2·r2

with the wavevector of the atoms i, j ∈ {1, 2} subject to the same boundary conditions as above,
kiα = (2π/L)niα. The interaction energy is calculated by first-order perturbation theory using the
delta function potential V (r) = g δ (r) with r = |r1 − r2|,

δE =
〈k1,k2| V (r) |k1,k2〉
〈k1,k2|k1,k2〉

=
g

V
. (3.306)

1In this description we leave out the internal states of the atoms (including spin).
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This result follows in two steps. The norm is given by

〈k1,k2|k1,k2〉 =

¨
V

|ψk1,k2
(r1, r2)|2 dr1dr2

=
1

V 2

ˆ
V

|e−ik1·r1 |2dr1

ˆ
V

|e−ik2·r2 |2dr2 = 1, (3.307)

because
∣∣e−iα∣∣2 = 1. As the plane waves are regular in the origin we can indeed use the delta

function potential (3.270) to approximate the interaction

〈k1,k2| V (r) |k1,k2〉 =
g

V 2

¨
V

δ (r1 − r2)
∣∣e−ik1·r1e−ik2·r2

∣∣2 dr1dr2 (3.308)

=
g

V 2

ˆ
V

|e−i(k1+k2)·r1 |2dr1 = g/V.

Like in Eq. (3.291) the interaction energy depends on the reduced mass of the atoms and scales
inversely proportional to the quantization volume.

3.9.9 Interaction energy of two identical bosons

Let us return to the calculation of the interaction energy but now for the case of identical bosonic
atoms. As in Section 3.9.8 we shall use first-order perturbation theory and the delta function
potential

V (r) = g δ (r) with g =
(
4π~2/m

)
a , (3.309)

where m is the atomic mass (the reduced mass equals mr = m/2 for particles of equal mass).
First we consider two atoms in the same state and wavevector k = k1 = k2. In this case the

wavefunction is given by

ψk,k (r1, r2) =
1

V
eik·r1eik·r2 , (3.310)

with 〈k,k|k,k〉 = 1. Thus, to first order in perturbation theory the interaction energy is given by

δE = g 〈k,k| δ(r) |k,k〉 =
g

V 2

¨
V

δ (r1 − r2)
∣∣e−ik·r1e−ik·r2

∣∣2 dr1dr2

=
g

V 2

ˆ
V

∣∣e−i2k·r1∣∣2 dr1 = g/V. (3.311)

We notice that we have obtained exactly the same result as in Section 3.9.8.
For k1 6= k2 the situation is different. The pair wavefunction is given by

ψk1,k2
(r1, r2) =

1

V

√
1
2!

(
eik1·r1eik2·r2 ± eik2·r1eik1·r2

)
. (3.312)

with norm 〈k1,k2|k1,k2〉 = 1. To first order in perturbation theory we obtain in this case

δE = g 〈k1,k2| δ(r) |k1,k2〉

=
1

2

g

V 2

¨
V

δ (r1 − r2)
∣∣e−ik1·r1e−ik2·r2 + e−ik2·r1e−ik1·r2

∣∣2 dr1dr2

=
1

2

g

V 2

ˆ
V

[|e−i(k1+k2)·r1 |2 + |e−i(k1−k2)·r1 |2 + |ei(k1−k2)·r1 |2 + |ei(k1+k2)·r1 |2]dr1

= 2g/V. (3.313)

Thus the interaction energy between two bosonic atoms in same state is seen to be twice as
small as for the same atoms in ever so slightly different states! Clearly, in the presence of repulsive
interactions the interaction energy can be minimized by putting the atoms in the same state.



102 CHAPTER 3. MOTION OF INTERACTING NEUTRAL ATOMS



4

Elastic scattering of neutral atoms

4.1 Introduction

To gain insight in the collisional properties of dilute quantum gases it is important to understand
the elastic scattering of atoms under the influence of an interatomic potential. For dilute gases
the interest primarily concerns binary collisions; by elastic we mean that the energy of the relative
motion is the same before and after the collisions. Important preparatory work has already been
done. In Chapter 3 we showed how to obtain the radial wavefunctions necessary to describe the
relative motion of a pair of atoms moving in a central interaction potential. In the present chapter we
search for the relation between these wavefunctions and the scattering properties in binary collisions.
This is more subtle than it may seem at first sight because in quantum mechanics the scattering of
two particles does not only depend on the interaction potential but also on the intrinsic properties
of the particles.1 This has to do with the concept of indistinguishability of identical particles. We
must assure that the pair wavefunction of two colliding atoms has the proper symmetry with respect
to the interchange of its constituent elementary particles. We start the discussion in Section 4.2
with the elastic scattering of two atoms of different atomic species. The atoms of such a pair are
called unlike or distinguishable. In Section 4.3 we turn to the case of identical (indistinguishable)
atoms. These are atoms of the same isotopic species. First we discuss the case of identical atoms
in the same atomic state (Section 4.3.1). This case turns out to be relatively straightforward. More
subtle questions arise when the atoms are of the same isotopic species but in different atomic states
(Section 4.4). In the latter case we can distinguish between the states but not between the atoms.
Many option arise depending on the spin states of the colliding atoms. In the present chapter we
focus on the principal phenomenology for which we restrict the discussion to atoms with only a
nuclear spin degree of freedom. In Chapter 5 collisions between atoms in arbitrary hyperfine states
will be discussed.

We derive for all mentioned cases the probability amplitude of scattering and the corresponding
differential and total cross sections. As it turns out the expressions that are obtained hold for elastic
collisions at any non-relativistic velocity. In Section 4.3.2 we specialize to the case of slow collisions.
At low collision energy the scattering amplitude is closely related to the scattering length. Important
differences between the collisions of identical bosons and fermions are pointed out. At the end of the
chapter the origin of Ramsauer-Townsend minima in the elastic scattering cross section is discussed.

4.2 Distinguishable atoms

We start this chapter with the scattering of two atoms of different atomic species (which includes the
case of two different isotopes of the same element). These atoms are called distinguishable because

1N.F. Mott, Proc. Roy. Soc. A126, 259 (1930).

103



104 CHAPTER 4. ELASTIC SCATTERING OF NEUTRAL ATOMS

Figure 4.1: Scattering configuration.

they have a different composition of elementary particles and consequently lack a prescribed overall
exchange symmetry and may be labeled 1 and 2. Let us presume that, long before the collision, the
atoms are in momentum eigenstates close to k1 and k2 the pair wavefunction can be expressed as
a product of plane wave eigenfunctions,1

ψin (r1, r2) = eik1·r1eik2·r2 . (4.1)

To describe this collision we turn to center-of-mass and relative coordinates,

r1 = R +
m2

M
r and r2 = R− m1

M
r, (4.2)

where R = (m1r1 + m2r2)/(m1 + m2) is the position of the center of mass and r = r1 − r2 the
position of particle 1 relative to particle 2 (see Appendix A.7). In terms of the new coordinates we
have

ψin (R, r) = ei(k1+k2)·Rei(m2k1−m1k2)·r/M = eiK·Reik·r, (4.3)

where P = ~K = ~(k1 + k2) is the center-of-mass momentum and

p = mr(v1 − v2) = mrv = ~k (4.4)

the relative momentum. In the presence of the interaction, the relative motion is completely de-
termined by the Schrödinger equation (3.2). As, by definition, the potential center is located at
relative position r = 0, each collision event also fixes a scattering center (the position R of the
center of mass at the time of the event), which differs from event to event within the limits set by
the uncertainty in K. In the presence of a central potential V(|r1 − r2|) the wavefunction for the
relative motion is distorted by the interaction and can be written is the form

ψ (R, r) = eiK·R [ψin (r) + ψsc (r)] , (4.5)

were ψin (r) is referred to as the incident wave and ψsc (r) as the scattered wave, in reference to freely
propagating waves in axial/radial direction, long before/after a collision. The actual positions R
remain undetermined in a typical scattering experiment, where the scattering products are detected
in the far field. In experiments the quantum mechanical uncertainty in R depends on the practical
realization of the plane wave eiK·R.

k1 =
m1

M
K + k and k2 =

m2

M
K− k. (4.6)

To be specific we consider the crossed atomic beam scattering configuration sketched in Fig. 4.1.
Two atomic beams are crossed after collimation, with the wavevectors of the atoms chosen to be

1To promote a transparent notation the normalization volume is chosen to be unity (V = 1).
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Figure 4.2: Schematic drawing of the scattering of a matter wave at a spherically symmetric scattering center
in the center-of-mass coordinate system. Indicated are the wavevector k of the incident wave, representing
the reduced mass µ moving in the positive z-direction (θi = 0), as well as the scattering angle ϑ = θ, which
can take values in the interval 0 ≤ ϑ ≤ π.

equal and opposite along the z axis; i.e., k2 = −k1, up to the limits of diffraction posed by the
collimation slits. In this arrangement the center of mass is approximately at rest (|K| � |k1|).
Before discussing the scattering we estimate the uncertainty in K.

In view of the central symmetry the variables for the radial and angular motion separate (see
Section 2.1.6) and far from the scattering center the scattered wave can be represented by the
stationary solution of an outgoing spherical wave,

ψsc (r) '
r→∞

f (θ)
eikr

r
. (4.7)

As required for elastic scattering the modulus of the relative wave vector k = |k| is conserved.
The current density falls off asymptotically as 1/r2, as expected for a spherically expanding wave.
The prefactor f (θ) is called the scattering amplitude and represents the probability amplitude for
scattering of the reduced mass in the direction (θ, φ). Here φ defines the scattering plane and θ
the scattering angle. As the direction of incident motion is chosen along the positive z axis and
the potential is central the scattering amplitude is independent of the orientation of the scattering
plane; i.e., independent of φ. Combining the expressions for the incident and the scattered wave we
obtain the distorted wave describing the relative motion of the interacting pair,

ψ = ψin + ψsc '
r→∞

eikz + f(θ)
eikr

r
. (4.8)

Note that this is an axially symmetric solution of the Schrödinger equation (3.2).
The scattering of the reduced mass (in the center-of-mass-fixed frame) is illustrated in Fig. 4.2.

Particle 1 is moving from left to right and scatters over the angle ϑ = θ in the direction (θ, φ), while
particle 2 moves from right to left and scatters also over the angle ϑ = θ in the opposite direction
(π − θ, π + φ). Experimentally, this can be arranged by providing the colliding atoms in opposing
atomic beams. A pair of mass spectrometers would be an appropriate (atom selective) detector in
this (spin-independent) case as with these instruments we can determine the direction of scattering
(θ, φ) of the individual atoms.

4.2.1 Scattered waves - partial wave expansion of the scattering amplitude

It is the goal of this section to derive an expression for the scattering amplitude. Knowing the
angular and radial eigenfunctions Y ml (θ, φ) and Rl(k, r), the general solution for a particle in a
central potential field V(r) can be expressed as a linear combination of the eigenstates,

ψ(r) =

∞∑
l=0

+l∑
m=−l

clmRl(k, r)Y
m
l (θ, φ), (4.9)
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where r ≡ (r, θ, φ) is the position vector relative to the scattering center. This important expression
is known as the partial-wave expansion. The coefficients clm depend on the particular choice of
coordinate axes. Our interest concerns the wave functions with axial symmetry along the z axis,
which are φ independent. Hence, all coefficients clm with m 6= 0 must be zero. Accordingly, for
axial symmetry about the z axis the partial wave expansion (4.9) can be written in the form

ψ =

∞∑
l=0

(2l + 1)ilclRl(k, r)Pl(cos θ), (4.10)

where the Pl(cos θ) are Legendre polynomials and the Rl(k, r) satisfy the radial wave equation (3.7).

It is our task to choose the coefficients cl such that at large distances the partial-wave expansion
has the asymptotic form given by Eq. (4.8). For this purpose we note that in the absence of scattering
the distorted wave ψ reduces to the unperturbed plane wave ψin. Hence, the radial wavefunction
Rl(k, r) reduces to the spherical Bessel function jl(kr) and the partial-wave expansion becomes (see
Problem 4.1)

eikz =

∞∑
l=0

(2l + 1)iljl(kr)Pl(cos θ). (4.11)

Comparison of Eqs. (4.10) and (4.11) shows that the form (4.10) was chosen such that cl = 1 in
the absence of scattering. To obtain the desired asymptotic behavior for the distorted wave ψ the
coefficient cl should be chosen such that the scattered wave is asymptotically of the form (4.7); i.e.,
represents a pure outgoing spherical wave. Subtracting the incident wave from the general solution
for the distorted wave the partial-wave expansion of the scattered wave is found to be

ψ − ψin = ψsc =

∞∑
l=0

(2l + 1)ilQl(k, r)Pl(cos θ), (4.12)

where

Ql(k, r) ≡ clRl(k, r)− jl(kr) (4.13)

represents the scattered part of the radial wave. For short-range potentials, the asymptotic forms of
both Rl(k, r) and jl(kr) should satisfy the spherical Bessel equation (3.14); i.e., be of the asymptotic
form (3.24). Thus we have

Ql(k, r) '
r→∞

1

kr

[
cl sin(kr + ηl − 1

2 lπ)− sin(kr − 1
2 lπ)

]
'

r→∞

1

2ikr

[
i−leikreiηlcl − ile−ikre−iηlcl − i−leikr + ile−ikr

]
. (4.14)

This expression represents an outgoing spherical wave if the terms proportional to e−ikr vanish,
which is the case for cl = eiηl . Note that in this case we have cl → 1 for ηl → 0, which means that
cl = 1 in the absence of scattering, as it should. The coefficient cl is obtained by analyzing the
long-range behavior but once it is known it can be used in Eq. (4.13) to represent the full solution
of the scattered wave,

ψsc (r, θ) =

∞∑
l=0

(2l + 1)il
[
eiηlRl(k, r)− jl(kr)

]
Pl(cos θ), (4.15)

which includes the distortion of the wave close to the scattering center.
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Partial wave expansion

Many features of elastic scattering can be understood by analyzing the asymptotic behavior of the
scattered wave. Therefore, it is important to derive an expression for the scattering amplitude.
Substituting cl = eiηl into Eq. (4.14) the scattered part of the radial wave takes the asymptotic form

Ql(k, r) '
r→∞

eikr

2ikr
i−l(e2iηl − 1). (4.16)

Substituting this expression into Eq. (4.12) we obtain

ψsc '
r→∞

eikr

r

1

2ik

∞∑
l=0

(2l + 1)(e2iηl − 1)Pl(cos θ) (4.17)

and comparing this equation with the asymptotic expression (4.7) we find that the scattering am-
plitude is given by

f(θ) =
1

2ik

∞∑
l=0

(2l + 1)(e2iηl − 1)Pl(cos θ). (4.18)

This expression is know as the partial wave decomposition of the scattering amplitude.

Problem 4.1. Show that the partial wave expansion of the plane wave eikz, describing the motion of a free
particle in the positive z direction, is given by

eikz =

∞∑
l=0

(2l + 1)iljl(kr)Pl(cos θ).

Solution. For configurations with axial symmetry the partial wave expansion is of the general form

ψ =

∞∑
l=0

clRl(k, r)Pl(cos θ), (a)

where Rl(k, r) is the radial wavefunction for partial waves of angular momentum l, Pl(cos θ) the Legendre
polynomial of order l, and cl the expansion coefficient. For a free particle the radial wavefunction Rl(k, r)
must be a regular solution of the spherical Bessel equation. So we choose Rl(k, r) equal to the spherical
Bessel function jl(kr) (see Section C.12.1). The remaining task is to determine the coefficients cl. Expanding
eikz in powers of kz = kr cos θ we find

eikz =

∞∑
l=0

(ikr cos θ)l

l!
. (b)

Turning to the r.h.s. of Eq. (a) we obtain

∞∑
l=0

cljl(kr)Pl(cos θ) '
r→0

∞∑
l=0

cl
(kr)l

(2l + 1)!!

1

2ll!

(2l)!

l!
(cos θ)l . (c)

Here we used the expansion of the Bessel function jl(kr) in powers (kr)l as given by Eq. (C.104b),

jl(kr) '
r→0

(kr)l

(2l + 1)!!
(1 + · · · ),

and used Eq. (C.35) to find the term of order (cos θ)l in the expansion of Pl(u) with u ≡ cos θ,

Pl(u) =
1

2ll!

dl

dul
(u2 − 1)l =

1

2ll!

dl

dul

(
u2l + · · ·

)
=

1

2ll!

(2l)!

l!
(ul + · · · ).

Thus, equating the terms of order (kr cos θ)l in Eqs. (a) and (b), we obtain for the coefficients 1

cl = il(2l + 1)!!
2ll!

(2l)!
= il(2l + 1),

which leads to the desired result after substitution into Eq. (a). 2
1Note that (2n)!/ (2n− 1)!! = (2n)!! = 2nn!
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4.2.2 Scattered waves - the method of Green’s functions

The formal theory of scattering is based on exact integral expressions for the scattered wave. As
the goal of this introductory text is to emphasize the physics rather than formalism formal theory
is avoided as much as possible. In this section we make an exception and show (as an intermezzo)
how an exact integral expression for the scattered wave is obtained with the method of Green’s
functions. For this purpose we start at the Schrödinger equation for an interacting pair of atoms,[

− ~2

2mr
∆ + V(r)

]
ψ(r) = Eψ(r), (4.19)

where V(r) is the potential energy curve describing the interaction between the two atoms. Intro-
ducing the wavenumber notation, k = [2mrE/~2]1/2 and defining U(r) ≡ (2mr/~2)V(r), for positive
energy (E > 0) this expression can be written in the form(

∆ + k2
)
ψ(r) = U(r)ψ(r). (4.20)

The general solution of this equation can be written in the form

ψ(r) = eik·r + ψsc(r) (4.21)

where eik·r is an arbitrary solution of the homogeneous equation
(
∆ + k2

)
ψ(r) = 0 and

ψsc(r) ∼ eikr

r
(4.22)

is a particular solution of Eq. (4.20) representing an outgoing spherical wave.
Particular solutions of Eq. (4.20) can be expressed in the form (see Problem 4.2)

ψsc(r) = − 1

4π

ˆ
G(r, r′)U(r′)ψsc(r

′)dr′, (4.23)

where G(r, r′) is a solution of the equation(
∆ + k2

)
G(r, r′) = −4πδ(r− r′). (4.24)

Here the choice of the prefactor −4π is based on insider knowledge of the final result for G(r, r′).
Eq. (4.24) is solved by Fourier transformation

G(r, r′) =

ˆ
g(k′)eik

′·(r−r′)dk′ (4.25)

and by using the well-known relation for the delta function

δ(r− r′) =
1

(2π)3

ˆ
eik
′·(r−r′)dk′. (4.26)

Substituting these expressions into Eq. (4.24) we obtain

(
∆ + k2

) ˆ
g(k′)eik

′·(r−r′)dk′ = − 4π

(2π)3

ˆ
eik
′·(r−r′)dk′, (4.27)

which is satisfied for (
k2 − k′2

)
g(k′) = − 4π

(2π)3
. (4.28)
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After substitution of g(k′) into Eq. (4.25) we obtain for the Green’s function

G(r− r′) = − 4π

(2π)3

ˆ
eik
′·(r−r′)

k2 − k′2
dk′. (4.29)

To evaluate the integral we first rewrite it in the form (see Problem 4.3)

G(r) = − 4π

(2π)3

ˆ
eik
′·r

k2 − k′2
dk′ = − 1

πr

d

dr

ˆ +∞

−∞

eik
′r

k′2 − k2
dk′. (4.30)

What remains to be done is to evaluate an integral with a complex argument. The integral leads to
a class of solutions for G(r), each corresponding to a particular solution of the Schrödinger equation
(4.20). In Problem 4.4 it is shown that one of the results is of the desired form of an outgoing
spherical wave,

G(r− r′) =
eik|r−r

′|

|r− r′|
. (4.31)

The expression for the scattered wave becomes

ψsc(r) = − 1

4π

ˆ
eik|r−r

′|

|r− r′|
U(r′)ψsc(r

′)dr′. (4.32)

Problem 4.2. Show that

ψ(r) = − 1

4π

ˆ
G(r, r′)U(r′)ψ(r′)dr′

is a solution of the equation
(
∆ + k2

)
ψ(r) = U(r)ψ(r).

Solution. By substitution we have(
∆ + k2)ψ(r) = − 1

4π

ˆ (
∆ + k2)G(r, r′)U(r′)ψ(r′)dr′

=

ˆ
δ(r− r′)U(r′)ψ(r′)dr′ = U(r)ψ(r). 2

Problem 4.3. Derive the following expression

ˆ
eik
′·r

k2 − k′2 dk
′ = −2π

r

d

dr

ˆ +∞

−∞

eik
′r

k2 − k′2 dk
′.

Solution. First we rewrite the integral in polar coordinates

ˆ
eik
′·r

k2 − k′2 dk
′ =

ˆ
eik
′r cos θ

k2 − k′2 k
′2 sin θdθdϕdk′

where we chose to define the angle θ with respect to the direction r. Since sin θdθ = −d cos θ the integral
can be written in the form

ˆ
eik
′·r

k2 − k′2 dk
′ = −2π

r

ˆ ∞
0

eik
′r − e−ik

′r

k2 − k′2 ik′dk′

= −2π

r

d

dr

ˆ ∞
0

eik
′r + e−ik

′r

k2 − k′2 dk′.

The latter expression is readily rewritten in the desired form. 2

Problem 4.4. Show that G(r) = eikr/r is one of the solutions for the Green’s function

G(r) = − 1

πr

d

dr

ˆ +∞

−∞

eik
′r

k′2 − k2
dk′.
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Solution. To search for solutions we replace the linear integral by a contour integral in the upper half of
the complex half, ˆ +∞

−∞

eik
′r

k′2 − k2
dk′ = lim

η→0

˛
γ

eik̄r

k̄2 − (k + iη)2
dk̄

where k̄ = |k̄|eiφ = |k̄| cosφ+ i|k̄| sinφ. The poles of the integrand are shifted over a small distance iη into
the complex plane to assure that the contour is void of singularities. The result depends on the contour
chosen, each contour corresponding to a particular solution. As we are looking for a particular solution in
the form of an outgoing spherical wave, eikr/r, we choose to close the contour along the path γ in the upper

half of the complex plane where eik̄r = ei|k̄|r cosφe−|k̄|r sinφ → 0 for |k̄| → ∞. The integrand has poles for
k̄ = ±(k + iη). Hence, for η > 0 the contour encloses the pole k̄ = k + iη and the integral evaluates to

˛
γ

eik̄r

k̄2 − (k + iη)2
dk̄ = 2πi Res

k̄=k+iη

eik̄r

k̄2 − (k + iη)2
= 2πi

ei(k+iη)r

2(k + iη)
(4.33)

and the Green’s function becomes

G(r) = − i
r

d

dr
lim
η→0

ei(k+iη)r

(k + iη)
=
eikr

r
. 2

4.2.3 Partial-wave scattering amplitudes and forward scattering

For future convenience we rewrite the partial-wave expansion of the scattering amplitude, see
Eq. (4.18), in the more compact form

f(θ) =

∞∑
l=0

(2l + 1)flPl(cos θ), (4.34)

where the contribution fl of the partial wave with angular momentum l can be written in several
equivalent forms

fl =
1

2ik
(e2iηl − 1) (4.35a)

= k−1eiηl sin ηl (4.35b)

=
1

k cot ηl − ik
(4.35c)

= k−1
(
sin ηl cos ηl + i sin2 ηl

)
. (4.35d)

Each of these expressions has its specific advantage. In particular we draw the attention to the last
expression, which shows that the imaginary part of the scattering amplitude fl is given by

Im fl =
1

k
sin2 ηl. (4.36)

Specializing Eq. (4.34) to the case of forward scattering and summing over all partial waves we
obtain an important expression that relates the forward scattering to the phase shifts,

Im f(0) =

∞∑
l=0

(2l + 1) Im fl Pl(1) =
1

k

∞∑
l=0

(2l + 1) sin2 ηl. (4.37)

This expression shows that in general the scattering amplitude is not real and Im f(0) is always
positive. Quantum gases in the s-wave regime form an exception to this rule because for k → 0 the
imaginary part vanishes proportional to k.
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4.2.4 Partial wave scattering amplitudes for power-law potentials

Let us turn now to power-law potentials for which we derived in Section 3.7.2 explicit expressions
for the phase shifts in the limit k → 0:

• For l < 1
2 (s− 3) a short range r0 can be defined and the limiting phase shifts are given by

Eq. (3.245). As this is an expression for tan ηl we use Eq. (4.35c) and obtain

fl =
1

k

tan ηl
1− i tan ηl

'
k→0
−al

2l + 1

[(2l + 1)!!]
2 (kal)

2l
. (4.38)

We see that for kal � 1 all partial-wave amplitudes fl with l 6= 0 are small in comparison to
the s-wave scattering amplitude f0, demonstrating again that in the low-energy limit only s
waves contribute to the scattering of atoms which may be traced back to the presence of the
rotational barrier for all scattering processes with l > 0 (see Section 3.2.1). For Van der Waals
potentials we find for l = 0, 1

f0 '
k→0
−a ; f1 '

k→0
−a1

1
3k

2a2
1. (4.39)

• For l ≥ 1
2 (s− 3) the limiting phase shifts are given by Eq. (3.247). As this is an expression

for tan ηl we use Eq. (4.35c) and obtain

fl = k−1eiηl sin ηl '
k→0

k−1κ2
cr

2
c

3π(2l + 3− s)!!
(2l + 5)!!

(krc)
s−2

. (4.40)

For Van der Waals potentials (s = 6) we find for l = 2

f2 '
k→0

rc
1

100k
3r3
c κ

2
cr

2
c . (4.41)

4.2.5 s-wave scattering amplitude - effective range expansion

To analyze the k dependence for scattering in the s-wave regime we use expression (4.35c) to write
the s-wave scattering amplitude in the form

f0 =
1

k cot η0 − ik
. (4.42)

For arbitrary short-range potentials we may substitute the effective range expansion

f0 '
k→0

1

−1/a+ 1
2rek

2 − ik
= − a

1− 1
2k

2rea+ ika
, (4.43)

with re given by Eq. (3.218), which corresponds to Eq. (3.114) for the spherical square well.

Existence of a finite range r0 for s-wave scattering

In this section we derive a criterion for the existence of a finite range r0 for s-wave scattering by
power-law potentials (see Section 3.7). It differs from the derivation of Section 3.7.1 because it is
based on the requirement of a vanishing contribution to the scattering amplitude of distances r > r0

when using the integral expression for the phase shift. We start by combining Eqs. (4.35b) and
(3.37) to obtain the integral expression for the s-wave scattering amplitude,

f0 = k−1eiη0 sin η0 = −k−1eiη0
ˆ ∞

0

U(r)χ0(kr)j0(kr)rdr. (4.44)
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For the finite range to exist we require the contribution ∆f0 of distances larger than a radius r0 to
the s-wave scattering amplitude f0 to vanish for k → 0. Substituting Eq. (3.212) into Eq. (4.44) this
contribution can be written as

∆f0 = k−1 (krc)
s
eiη0

(
U0/k

2
) ˆ ∞

kr0

1

%s
[sin η0 cos %+ cos η0 sin %] sin %d%

= ks−3eiη0U0r
s
c

ˆ ∞
kr0

1

%s
[cos η0 − cos(2%+ η0)] d%. (4.45)

where U0 ≡ U0(rc) = κ2
c . Because the integral in Eq. (4.45) converges for s > 1, we see that the

zero-energy limit of ∆f0 is determined by the prefactor ks−3 in front of the integral. This implies
that, for s waves in the limit k → 0, the contribution of distances r > r0 to the scattering amplitude
vanishes provided s > 3, which agrees with the result obtained in Section 3.7.

4.2.6 Scattering amplitudes - relation with S matrix

The S matrix was introduced in Section 3.2.3 as the ratio (apart from the sign) of the phase factors
of the outgoing over the incoming spherical wave. Using Eq. (4.35a) the l-wave contribution to the
S matrix can be expressed in the form

Sl ≡ e2iηl = 1 + 2ikfl. (4.46)

This is one of the fundamental relations of scattering theory. An important feature of the S matrix
is that it enables to separate different contributions to the phase shift and to approximate these
separately. As the total phase shift is given by η = η0 +η1 +η2 + · · · , the S matrix can be factorized
and becomes

S = S0S1S2 · · · . (4.47)

With regard the point of implementing approximations we consider the s-wave resonance struc-
ture analyzed in Section 3.4 where we have two contributions to the phase shift, η0 = ηbg +ηres, and
the S matrix takes the form

S = e2iη0 = e2iηbge2iηres ≡ SbgSres. (4.48)

Recalling the expression for the resonant phase shift - see Eq. (3.105),

ηres = − arctan

[
Γ/2

E − Eres

]
, (4.49)

the S matrix becomes 1

Sres = e2iηres =
E − Eres − iΓ/2
E − Eres + iΓ/2

= 1− iΓ

E − Eres + iΓ/2
. (4.50)

Combining with Eq. (4.46) we find

fres = −1

k

Γ/2

E − Eres + iΓ/2
. (4.51)

1Here we use the logarithmic representation of the arctangent with a real argument α,

arctanα =
i

2
ln

1− iα
1 + iα

.
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Figure 4.3: A fraction of the probability current is scattered in the direction r̂ = (θ, φ).

The real and imaginary parts of Sres become

ReSres (E) = 1− 2 (Γ/2)
2

(E − Eres)
2

+ (Γ/2)
2 (4.52a)

ImSres (E) = −2
(Γ/2) (E − Eres)

(E − Eres)
2

+ (Γ/2)
2 . (4.52b)

In view of the derivation in Section 3.4 these expressions are valid across the low-energy resonances
at energies E = Eres for potentials with large resonance spacing (γ � kresr0).

Of particular importance for the quantum gases is the case of a s-wave resonance near threshold
for which Eqs. (4.49)-(4.52) do not hold. These are the resonances caused by a weakly bound (κ = κb)
or virtually bound (κ = −κvb) s level for which the phase shift is given by - see Section 3.4.5

η0 = −kr0 − arctan kares. (4.53)

Rather than expanding the arctangent we first factorize the S matrix and subsequently expand the
background contribution to second power in k - see Eqs. (3.157). From this we find with the aid of
Eq. (4.35a) for the s-wave scattering amplitude

f0 =
1

2ik
[1− S0(k)] = −a 1 + ika+ · · ·

1 + k2 (a− r0)
2 . (4.54)

In the limit k → 0 this becomes
f0 = −a. (4.55)

4.2.7 Differential and total cross section

To calculate the partial cross-section for scattering of the reduced mass within the cone of angles
between θ and θ + dθ we have to compare the probability current density jout emerging from the
scattering center in the direction r̂ = (θ, φ) with that of the incident wave jin. Using the asymptotic
expression for the scattered wave (4.7) the probability current density for the reduced mass at
position r = (r, θ, φ) is given by (see Problem 4.5)

jout(r) = |f(θ)|2 v

r2
r̂. (4.56)

Hence, the probability current of reduced masses scattering through an infinitesimal surface element
dS = r̂ r2dΩ is given by

dIout = jout(r) · dS = v |f(θ)|2 dΩ, (4.57)

where dΩ is an infinitesimal solid angle around the direction r̂ (see Fig. 4.3). The ratio of the current
dIout (θ, φ) to the current density jin = v of the incident wave defines the partial cross section,

dσ (θ, φ) = dIout (θ, φ) /jin = |f(θ)|2 dΩ, (4.58)
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Figure 4.4: Schematic plot of a pure d-wave sphere emerging from a scattering center and its projection as
can be observed with absorption imaging after collision of two ultracold clouds. Also shown are 2D and 3D
angular plots of |f (θ)|2 where the length of the radius vector represents the probability of scattering in the
direction of the radius vector. See further N.R. Thomas, N. Kjaergaard, P.S. Julienne, A.C. Wilson, PRL
93 (2004) 173201.

for scattering in the direction (θ, φ). This expression can be rewritten as the cross section per unit
solid angle for scattering in the direction (θ, φ)

dσ (θ, φ)

dΩ
= |f(θ)|2 . (4.59)

This quantity is called the differential cross section. For pure d-wave scattering we illustrate in
Fig. 4.4 how this quantity can be measured by observing the radially expanding sphere of scattered
atoms emerging from the scattering center after collision of two small atomic clouds. Note the
characteristic d-wave distribution |f(θ)|2 ∼ |Y 0

2 (θ, φ)|2 as follows from Eq. (4.34).
Expressing the solid angle in the form dΩ = sin θdθdφ, the partial cross section for scattering of

the reduced mass over an angle between θ and θ + dθ is found to be

dσ(θ) = 2π sin θ |f(θ)|2 dθ. (4.60)

The circumstance that the quantity dσ(θ)/dθ is zero in the forward direction, dσ(θ)/dθ|θ=0 = 0,
does not mean that there is no forward scattering; the differential cross section typically remains
nonzero also in the forward direction, dσ(θ)/dΩ|θ=0 = |f(0)|2, as follows from Eq. (4.34). The total
cross section is obtained by integration over all scattering angles,

σ =

ˆ π

0

2π sin θ |f(θ)|2 dθ. (4.61)

Substituting Eq. (4.34) for the scattering amplitude we find for the cross-section

σ = 2π

∞∑
l,l′=0

(2l′ + 1)(2l + 1)f∗l′fl

ˆ π

0

Pl′(cos θ)Pl(cos θ) sin θdθ. (4.62)

The cross terms drop due to the orthogonality of the Legendre polynomials,

σ = 2π

∞∑
l=0

(2l + 1)2|fl|2
ˆ π

0

[Pl(cos θ)]
2

sin θdθ, (4.63)

which reduces with Eq. (C.44) to

σ = 4π

∞∑
l=0

(2l + 1)|fl|2 ≡
∞∑
l=0

σl, (4.64)



4.2. DISTINGUISHABLE ATOMS 115

where

σl = 4π(2l + 1)|fl|2 (4.65)

is called the partial cross section for l-wave scattering. Substituting Eq. (4.35b) the total cross
section takes the form

σ =
4π

k2

∞∑
l=0

(2l + 1) sin2 ηl. (4.66)

In particular for pure s-wave scattering the cross section becomes

σ0 =
4π

k2
sin2 ηl. (4.67)

Optical theorem and unitary limit

Substituting Eq. (4.37) into Eq. (4.66) we obtain the optical theorem

σ =
4π

k
Im f(0). (4.68)

This theorem shows that the imaginary part of the forward scattering amplitude is a measure for
the loss of intensity of the incident wave as a result of the scattering. Clearly, conservation of
probability assures that the scattered wave cannot represent a larger flux than the incident wave.
Writing Eq. (4.66) as the sum of partial-wave cross sections, we note that the l-wave contribution
to the cross section has an upper limit given by

σl ≤
4π

k2
(2l + 1). (4.69)

This limit is called the unitary limit . It shows that even for a diverging scattering length the cross
section remains finite (be it that it diverges for k → 0).

Problem 4.5. Show that the current density of the scattered wave runs purely in the radial direction

jout(r) = |f(θ)|2 ~k
mrr2

r̂ = |f(θ)|2 v

r2
r̂.

Solution. The asymptotic expression for the scattered wave is given by

ψsc '
r→∞

f(θ)
eikr

r
with 0 ≤ θ ≤ π.

To calculate jout(r) we use Eq. (2.14) for the gradient operator (note that ψsc does not depend on the φ
angle),

jout(r) =
i~

2mr
(ψsc∇ψ∗sc − c.c.)

=
i~

2mr

[(
eikr

r

∂

∂r

e−ikr

r
− c.c.

)
|f(θ)|2 r̂ +

(
f(θ)

∂

∂θ
f∗(θ)− c.c.

)
1

r3
θ̂

]
.

The component in the r̂ direction immediately yields the desired result. To show explicitly that the com-
ponent in the θ̂ direction vanishes we substitute the expression for the scattering amplitude,

f(θ)
∂

∂θ
f∗(θ)− c.c. =

∞∑
l,l′=0

(2l + 1)(2l′ + 1)Pl(cos θ)
∂

∂θ
Pl′(cos θ) [flf

∗
l′ − f∗l fl′ ] = 0.

This contribution vanishes because all terms l, l′ cancel against the terms l′, l. 2
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4.2.8 s-wave cross section - dependence on scattering length

Using Eq. (4.35c) the total cross section takes the form

σ = 4π

∞∑
l=0

(2l + 1)

k2 cot2 ηl + k2
. (4.70)

Let us consider in particular the expression for the s-wave scattering cross section

σ0 = 4π
1

k2 cot2 η0 + k2
. (4.71)

This form is particularly suited to analyze the low-energy k dependence using the effective range
expansion for k cot η0 as expressed by Eq. (3.113),

σ0 = 4πa2 1

1 + k2a2(1− re/a) + · · ·
. (4.72)

Importantly, although the interaction energy (and therefore the thermodynamics) differs dramati-
cally depending on the sign of the scattering length a (see Section 3.9) this has no consequences for
the collisional aspects (such a the collision rate) because the cross section depends on the square of
the scattering length.

Example: spherical square well

For a spherical square-well potential we obtain with the aid of Eqs. (3.128) − (3.125) for the cases
a = 0, a = ±r0 and |a| � r0 to leading order in kr0 the following expressions:

• For a = 0 we use Eq. (3.128) and obtain for k → 0 a vanishing cross section,

σ0 =
1

12
πr2

0(kr0)4 + · · · . (4.73)

• For a = r0 we use re = 2
3r0 and obtain for kr0 � 1 a constant cross section,

σ0 = 4πa2 1

1 + 1
3k

2a2 + · · ·
'

kr0�1
4πa2. (4.74)

• For a = −r0 we use again re = 2
3r0 and obtain for kr0 � 1 the same constant cross section,

σ0 = 4πa2 1

1 + 5
3k

2a2 + · · ·
'

kr0�1
4πa2. (4.75)

• For |a| � r0 we use re ' r0 and obtain for k2a2 � 1 a cross section that diverges for k → 0
in the limit a→∞,

σ0 = 4πa2 1

1 + k2a2(1− r0/a) + · · ·
'

a→∞

4π

k2
. (4.76)

This means that, whatever the scattering length, the cross section cannot exceed the value
σ0 = 4π/k2. This is the unitarity limited s-wave cross section.
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4.2.9 s-wave cross section - relation with S matrix

Using Eq. (4.35a) we obtain for the total cross section

σl =
π

k2
(2l + 1) |1− Sl(k)|2 . (4.77)

Specializing to s waves this expression can be written as

σ0 =
2π

k2
[1− ReS0(k)] . (4.78)

For the case of a spherical square well with a resonance near threshold we substitute ReS0 from
Eq. (3.157a) and obtain

σ0 = 4πa2 1

1 + k2a2(1− r0/a)2
. (4.79)

For the other low-energy resonances we find with the aid of Eq. (4.52a) for the resonance contribution
to the cross section

σ0 =
4π

k2
res

(Γ/2)
2

(E − Eres)
2

+ (Γ/2)
2 . (4.80)

Note that this expression is also obtained by using Eq. (4.67) for the cross section after substitution
of the Breit-Wigner formula.

4.3 Identical atoms

In this section we turn to collisions between two atoms of the same atomic isotope. In this case the
atoms are identical because they have the same composition of elementary particles, which implies
that two conditions are satisfied:

1. it is impossible to construct a detector that can distinguish between the atoms,

2. the pair wavefunction must have a prescribed symmetry under exchange of the atoms.

Condition 1 is the same in classical physics. Condition 2 is specific for quantum mechanics: it is
impossible to distinguish by position; the pair wavefunction is symmetric if the total spin of the
pair is integer (bosons) and antisymmetric if the total spin of the pair is half-integer (fermions).
At this point we recognize two more possibilities: the identical atoms can be in the same internal
state or in different internal states. In the first case the total spin of the pair is necessarily integer
and the wavefunction for the relative motion of the atoms must be either symmetric (for bosonic
atoms) or anti-symmetric (for fermionic atoms). If the atoms are in different internal states neither
symmetric nor anti-symmetric spin states can be excluded. The latter is a complicating factor and
will be discussed in Section 4.4.

A special class of collisions between atoms in the same internal state concerns all bosonic
atoms with a non-degenerate electronic ground state 1S0 and zero nuclear spin; i.e., all even
isotopes of closed shell atoms: 4He, 20Ne,22Ne, 36Ar, · · · ,40Ar, 78Kr, · · · ,86Kr, 124Xe, · · · ,134Xe,
the earth-alkalis 24Mg,26Mg, 40Ca, · · · ,48Ca, 78Sr, · · · ,86Sr, 130Ba, · · · ,138Ba, the transition ele-
ments 64Zn, · · · ,70Zn, 102Pd, · · · ,110Pd, 106Cd, · · · ,114Cd, 196Hg, · · · ,204Hg, and the rare earths
168Yb, · · · ,176Yb.

4.3.1 Identical atoms in the same internal state

We start the discussion of identical atoms with two of such atoms (classically we would call them 1
and 2) in the same internal state and moving freely in opposite directions with relative momentum
k along the z direction as illustrated in Fig. 4.5. Since the atoms are identical and in an eigenstate
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Figure 4.5: Schematic drawing of two indistinguishable scattering processes (a) and (b) for identical atoms.
Indicated are the wavevectors k of the incident waves for the reduced mass µ moving in (a) the positive
z-direction (θi = 0) and scattering over the angle ϑ = θ; (b) the negative z-direction (θi = π) and scattering
over the angle ϑ = π−θ. The indistinguishability of the two possibilities restricts the range of distinguishable
scattering angles to the interval 0 ≤ ϑ ≤ π/2.

of relative momentum their relative position is completely delocalized and we have no possibility to
point to the atoms to identify them as atom 1 moving in the positive direction (to the right) and
as atom 2 in the negative direction (to the left) or vice versa. Consequently, the direction of the
reduced mass (defined for labeled atoms) can equally well be in the positive or negative z direction
and probability amplitudes for these two options have to be added. In other words the wavefunction
for the relative motion has to be symmetrized. As the atoms are in the same internal state, the
internal state of the pair (e.g., spin state) is symmetric under exchange of the atoms. In accordance,
the wavefunction for the relative motion must be symmetric (+) under exchange of two bosonic
atoms and anti-symmetric (−) in the case of fermionic atoms,1

ψin = eikz ± e−ikz. (4.81)

This corresponds to a choice of normalization in which the current density jin towards the scattering
center is equal to twice the relative velocity of the atoms, jin = 2v, with half of jin coming from the
left and the other half from the right (note that the current density with respect to the laboratory
frame is identically zero, as expected for stationary standing wave).

What happens in the presence of scattering? As long as the internal state of the atoms is
conserved in the collision (i.e., for elastic collisions) we only have to consider the orbital part of the
motion. When an atom is detected after scattering in the direction (θ, φ) with respect to the positive
z axis (symmetry axis) it may be an atom coming from the left after scattering over the angles ϑ = θ
and ϕ = φ into the detector. Equally well it may be an atom coming from the right after scattering
over the complementary angle, ϑ = π − θ and ϕ = π + φ. Since we cannot distinguish between
these two processes the corresponding waves interfere and we have to add their amplitudes. In other
words, in the collision we created an EPR pair.2 As the operation (θ, ϕ)→ (π − θ, π + φ) amounts
to interchange of the scattered atoms we require that the scattered wave is either symmetric (for
bosons) or antisymmetric (for fermions) under this operation. Hence, the scattered wave must be
of the following asymptotic form

ψsc '
r→∞

[f(θ)± f(π − θ)]eikr/r. (4.82)

Formally the expression also depends on the position of the scattering center in the standing wave
pattern but this is of no practical consequence as long as the scattering region is much larger
than the de Broglie wavelength and one has to average over the pattern. This condition holds for

1To keep the notation transparent we have chosen not to use the usual symmetrization prefactor
√

1/2. As we
will do the same for subsequent symmetrization procedures concerning the relative motion this amounts to an overall
change of normalization (current densities twice as large) that does not affect the results obtained for the differential
and total cross section.

2A. Einstein, B. Podolski, N. Rosen, Phys. Rev. 47, 777 (1935).
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typical scattering arrangements (for the hypothetical counter-propagating plane waves of Fig. 4.5
the scattering region even covers all space). Note that we can still use the positive exponent to
define the outgoing spherical wave since (as for distinguishable atoms) both scattering partners
emerge from the scattering center. Combining the symmetrized expressions for the incident and
scattered wave we find for the asymptotic wavefunction of the relative motion for a pair of identical
atoms

ψ '
r→∞

(eikz ± e−ikz) + [f(θ)± f(π − θ)]eikr/r, (4.83)

with +/− for bosonic/fermionic atoms.
Along the same lines of reasoning also the partial wave expansion for the wavefunction for the

relative motion must be of the symmetrized form

ψ =

∞∑
l=0

cl(2l + 1)ilRl(k, r) [Pl(cos θ)± Pl(− cos θ)] , (4.84)

again with +/− for bosonic/fermionic atoms. Using the parity rule for the Legendre polynomials,
Pl(−u) = (−1)lPl(u) (cf. Section C.9), Eq. (4.84) takes the form

ψ =

∞∑
l=0

cl(2l + 1)ilRl(k, r)
[
1± (−1)l

]
Pl(cos θ), (4.85)

which corresponds to a summation over even/odd partial waves. In particular, the symmetrized
incident wave can be written in the form

ψin =

∞∑
l=0

(2l + 1)iljl(kr)[1± (−1)l]Pl(cos θ). (4.86)

Repeating the procedure of Section 4.2 we choose the expansion coefficients cl such that, asymp-
totically, the scattered wave represents a purely outgoing spherical wave. Subtracting the incident
wave from the general solution for the distorted wave, the partial-wave expansion of the scattered
wave becomes

ψ − ψin = ψsc =

∞∑
l=0

(2l + 1)ilQl(k, r)
[
1± (−1)l

]
Pl(cos θ), (4.87)

where Ql(k, r) is defined by Eq. (4.13) and takes the form of Eq. (4.16) when choosing cl = eiηl .
Being aware of the equivalent expressions (4.35) Ql(k, r) can be written as

Ql(k, r) '
r→∞

i−lk−1eiηl sin ηl e
ikr/r. (4.88)

Substituting this equation into the partial wave expansion (4.87) we obtain for the scattered wave

ψsc '
r→∞

eikr

kr

∞∑
l=0

(2l + 1)eiηl sin ηl
[
1± (−1)l

]
Pl(cos θ). (4.89)

From a comparison of Eq. (4.89) with the asymptotic expression (4.82) we find that the scattering
amplitude is given by a sum over even/odd partial waves for bosonic/fermionic atoms,

f±(θ) ≡ f(θ)± f(π − θ) =
2

k

∑
(2l + 1)

l=even/odd

eiηlPl(cos θ) sin ηl (bosons/fermions). (4.90)

In view of the parity of the Legendre polynomials we note that the terms of even l have even parity
and the odd-l terms odd parity. Therefore, the parity of the orbital wavefunction is conserved in
the collision as it should for a centrally symmetric potential.



120 CHAPTER 4. ELASTIC SCATTERING OF NEUTRAL ATOMS

4.3.2 Scattering amplitudes in the s-wave regime - comparing like and unlike atoms

Depending on the symmetry under permutation of the scattering partners Eq. (4.38) leads to the
following expressions for the scattering amplitudes in the s-wave regime:

unlike atoms: f(θ) ' f0 ' −a (4.91a)

identical bosons: f(θ) + f(π − θ) ' 2f0 ' −2a (4.91b)

identical fermions: f(θ)− f(π − θ) ' 6f1 cos θ ' −2a1 (ka1)
2

cos θ. (4.91c)

We notice that for bosons the scattering amplitude is closely related to the s-wave scattering length
a introduced in Section 3.4.2. For fermions the lowest non-zero partial wave is the p-wave (l = 1),
which vanishes in the limit k → 0. In practice this means that fermionic quantum gases do not
thermalize.

4.3.3 Differential and total section

In the case of identical atoms the best we can do is determine the partial cross-section for scattering
of one of the atoms over an angle between θ and θ+dθ. To analyze this case we start with Eq. (4.82)
and calculate the asymptotic current density for the reduced mass to emerge from the scattering
center in the direction r̂ = (θ, φ),

i~
2mr

(ψ∇ψ∗ − ψ∗∇ψ) = |f(θ)± f(π − θ)|2 v

r2
r̂ (0 ≤ θ ≤ π) . (4.92)

Importantly, Eq. (4.92) gives us the correct expression for the probability current density of the
reduced mass moving in the direction r̂ (taking into account that it may have come from the left or
from the right). However, experimentally it is impossible to determine this direction as r̂ = (θ, φ)
and −r̂ = (π − θ, π + φ) are equivalent directions for identical particles. In both cases one of the
atoms scatters in the direction r̂. Therefore, the best we can do is to determine the total current
density for scattering of one of the atoms in the direction r̂. This quantity is obtained by adding
the contributions for scattering in the directions r̂ and −r̂. To avoid double counting, the angle θ
has to be restricted to the interval 0 ≤ θ ≤ π/2. Since |f±(π − θ)|2 = |f±(θ)|2 the total current
density of scattered atoms at position r = (r, θ, φ) becomes

jout(r) = 2 |f(θ)± f(π − θ)|2 v

r2
r̂ (0 ≤ θ ≤ π/2) . (4.93)

Hence, the probability current dIout(θ, φ) = jout(r) · dS that one of the atoms scatters through a

surface element dS = r̂r2dΩ is given by dIout(θ, φ) = jout(r, θ, φ)dS = 2v |f±(θ)|2 dΩ and the partial
cross section for one of the atoms to scatter in the direction (θ, φ) is given by

dσ± (θ, φ) = dIout (θ, φ) /jin = |f(θ)± f(π − θ)|2 dΩ, (4.94)

where jin = 2v is the combined current density towards the scattering center originating from the
two incident waves eikz and e−ikz. Hence, the differential cross section for one of the atoms to
scatter in the direction (θ, φ) is found to be

dσ± (θ, φ)

dΩ
= |f(θ)± f(π − θ)|2 .

For the case of s-wave scattering, where |f+(θ)|2 ∼ |Y 0
0 (θ, φ)|2 = 1/4π, and for d-wave scattering,

where |f+(θ)|2 ∼ |Y 0
2 (θ, φ)|2, this is illustrated in Fig. 4.6. For bosonic atoms p-wave scattering is

absent because f+(θ) = 0 for l = 1.
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Figure 4.6: Absorption images of collision halo’s of two ultracold clouds of 87Rb atoms just after their
collision. Left: collision energy E/kB = 138(4)µK (mostly s-wave scattering), measured 2.4 ms after the
collision (this corresponds to the k → 0 limit discussed in this course); Right: idem but measured 0.5 ms after
a collision at 1230(40) µK (mostly d-wave scattering). The field of view of the images is ∼ 0.7× 0.7 mm2.
See further Ch. Buggle, Thesis, University of Amsterdam (2005).

The total cross section follows by integration over all scattering angles,

σ± =

ˆ π/2

0

2π sin θ |f(θ)± f(π − θ)|2 dθ, (4.95)

where we used dΩ = 2π sin θdθ. After substitution of the scattering amplitude (4.90), the cross
section is given by

σ± = 8π
∑

(2l′ + 1)(2l + 1)
l,l′=even/odd

f∗l′fl

ˆ π/2

0

Pl′(cos θ)Pl(cos θ) sin θdθ. (4.96)

Using the orthogonality of the Legendre polynomials Eq. (4.96) becomes

σ± = 8π
∑

(2l + 1)2

l=even/odd

|fl|2
ˆ π/2

0

[Pl(cos θ)]
2

sin θdθ. (4.97)

which reduces with Eq. (C.44) to

σ± = 8π
∑

(2l + 1)
l=even/odd

|fl|2 ≡
∑

σl
l=even/odd

, (4.98)

where

σl = 8π(2l + 1)|fl|2 (4.99)

is the partial cross section for l-wave scattering of identical atoms, with |fl|2 given by Eqs. (4.2.8).
For a given value of l the partial cross section σl is found to be either zero or twice as big as for
distinguishable atoms as determined by the statistical nature of the atoms. Substituting Eq. (4.35b)
we obtain

σ± =
8π

k2

∑
(2l + 1)

l=even/odd

sin2 ηl (bosons/fermions). (4.100)

4.3.4 Total cross section in the s-wave regime - comparing like and unlike atoms

In the absence of resonant enhancement the total cross-section for unlike atoms in the limit k → 0
follows from Eq. (4.66) as

σ =
4π

k2
sin2 η0 ≈

k→0
4πa2. (4.101)
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Similar we find, starting from Eq. (4.100), for the cross section of bosons in the k → 0 limit

σ =
8π

k2
sin2 η0 ≈

k→0
8πa2. (4.102)

For fermions we find

σ =
8π

k2
3 sin2 η1 ≈

k→0
8πa2

1 (ka1)
4
. (4.103)

With Eqs. (4.101)-(4.103) we have obtained the quantum mechanical underpinning of Eq. (1.3) for
the zero temperature limit (k → 0).

4.3.5 Ramsauer-Townsend effect

Whenever the phase of a partial wave has shifted by exactly π with respect to the phase in the plane
wave expansion, the influence of the potential on the scattering pattern vanishes. This gives rise to
minima in the total cross section. The contribution of the involved partial wave vanishes completely
because sin ηl = 0.

Let us look in particular to the case of bosons at relative energies such that all but the lowest
two partial waves contribute. At the first s-wave Ramsauer minimum we have η0 = π. Hence the
d-wave contributes to the scattering in leading order. The differential cross-section becomes,

dσ(u) =
8π

k2

25

4
sin2 η2

(
3u2 − 1

)2
du, (4.104)

where we used the notation u ≡ cos θ and substituted P2(u) =
(
3u2 − 1

)
/2. This expression

demonstrates that the differential cross-section will vanish in directions where u = ±
√

1/3 ; i.e., for
scattering over θ ≈ 53◦ or its complement with π. The total cross section is given by

σ =
8π

k2
5 sin2 η2. (4.105)

Problem 4.6. Show that in the limit k → 0 the cross-section of hard-sphere bosons of diameter a is given
by σ = 8πa2 and determine the value of k for which the first Ramsauer minimum is reached.

Solution. The cross-section for bosons is given by Eq. (4.100). For hard-sphere bosons the low energy phase
shifts are given by Eq. (3.47),

ηl ∼
k→0
− (ka)2l+1 .

Hence, for ka� 1 all but the l = 0 phase shift vanish (to first order in ka) and

σ =
8π

k2
sin2 η0 ≈

k→0
8πa2. (4.106)

For hard spheres the radius of action is the sphere diameter, r0 = a, so we confirm that for ka � 1 we
are in the s-wave regime. The Ramsauer minima are reached for (sin η0) /k = 0, i.e., for ka = nπ, where
n ∈ {1, 2, 3, · · · }. So the lowest Ramsauer minimum is reached for k = π/a. 2

Problem 4.7. Show that for low energies, where only the s-wave and d-wave contribute to the scattering
of bosons in the same internal state, the partial cross section can be written in a quadratic form of the type

dσ (u) =
8π

k2
sin2 η0

[
1 + 2 cos (η0 − η2) f (η0, η2, u) + f2 (η0, η2, u)

]
sin θdθ,

where u = cos θ with θ the scattering angle and

f (η0, η2, u) =
5

2

sin η2

sin η0
(3u2 − 1).
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Table 4.1: Nuclear spin of all stable isotopes of atoms with 1S0 electronic ground state.

1S0 atoms
He Ne Ar Kr Xe Be Mg Ca Sr Ba Zn Pd Cd Hg Yb

bosons 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1/2 1/2 1/2 1/2 1/2

3/2 3/2 3/2 3/2 3/2

fermions 5/2 5/2 5/2 5/2

7/2

9/2 9/2

4.4 Identical atoms in different internal states

Arguably more subtle situations arise in the elastic scattering between atoms of the same isotopic
species but in different atomic states. In the context of the quantum gases this usually means that
both atoms are in their electronic ground state but in different hyperfine states. From a general point
of view we know that the total angular momentum of the pair must be conserved in the collision.
Neglecting spin-orbit interaction, this means that also the total spin must be conserved. This will
be presumed throughout this section. But what is the total spin of the pair? For arbitrary hyperfine
states the answer to this question can become rather elaborate. Therefore, this is postponed till
Chapter 5. To reveal the essential physics we focus in the present chapter on the relatively simple
case of fermionic atoms with a nuclear spin degree of freedom but in a 1S0 electronic ground state
(see Table 4.1). Interestingly, for atoms in different spin eigenstates the same expression for the
elastic cross section is obtained as was found in Section 4.2.7 for distinguishable atoms. First we
show this for the important case of spin-1/2 atoms (Section 4.4.1). In Section 4.4.3 it is generalized
to the case of arbitrary half-integer nuclear spin.

4.4.1 Fermionic 1S0 atoms in nuclear spin 1/2 eigenstates

We start with 1S0 atoms with nuclear spin 1/2. The famous example is the inert gas 3He but also
the closed-shell rare earth 171Yb and the ‘group 12’ atoms 199Hg, 111Cd and 113Cd fall in this class.
Let us consider collisions between two 3He atoms in their electronic ground state, one with nuclear
spin “up” and the other with nuclear spin “down”; i.e., in spin eigenstates. Experimentally, we can
prepare 3He pairs in such a way that the spin-up atoms always move in the positive z direction and
the spin-down atoms always in the negative z direction. However, because the atoms are identical,
for any pair of colliding atoms it is impossible to determine which atom carries the up spin and
which the down spin. All we know is that the 3He atoms are fermions and the pair wavefunction
must be anti-symmetric under exchange of complete atoms,1

ψin = eikz|↑-↓-)− e−ikz|↓-↑-). (4.107)

With this normalization the current density jin towards the scattering center is again equal to the
relative velocity of the atoms, jin = 2v, with half of jin coming from the incident wave eikz|↑-↓-) in
which particle 1 carries an up spin to the right and the other half from the incident wave e−ikz|↓-↑-) in
which particle 1 carries a down spin to the left. To better reveal the relevant symmetries Eq. (4.107)
is rewritten in the form

ψin = 1√
2

(
eikz + e−ikz

)
|0, 0〉+ 1√

2

(
eikz − e−ikz

)
|1, 0〉, (4.108)

1The curved brackets |s1, · · · , sN ) are used for unsymmetrized many-body states with the convention of referring
always in the same order to the states of particle 1, · · · , N . With the symbol ↑- we refer to a nuclear spin 1/2.
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where the state |I,mI〉 represents the total nuclear spin state of the pair, with Clebsch-Gordan
decomposition

|0, 0〉 = 1√
2
[|↑-↓-)− |↓-↑-)]; |1, 0〉 = 1√

2
[|↑-↓-) + |↓-↑-)]. (4.109)

Note that - as expected for fermions - the symmetric spin state |1, 0〉 combines with the anti-
symmetric pair wavefunction for the end-over-end orbital motion and the anti-symmetric spin state
|0, 0〉 with the symmetric orbital pair wavefunction. We found that with two angular momenta
i1 = i2 = 1

2 the total spin I = i1 + i2 can take the values I ∈ {0, 1} for “anti-parallel” and “parallel”
coupling, respectively. Since the total spin of the pair is conserved in the collision this must also
hold for the parity of the orbital part. Thus, the symmetric spin state |1, 0〉 (anti-symmetric spin
state |0, 0〉) can only give rise to scattering into odd (even) partial waves and along the same lines
of reasoning as developed in Section 4.3.1 we find for the corresponding scattering amplitudes

f±(θ) ≡


f(θ) + f(π − θ) =

2

k

∑
(2l + 1)

l=even

eiηlPl(cos θ) sin ηl (I = 0)

f(θ)− f(π − θ) =
2

k

∑
(2l + 1)

l=odd

eiηlPl(cos θ) sin ηl (I = 1) .
(4.110)

The two scattering options are referred to as the singlet (I = 0) and the triplet (I = 1) channel.
Note that the expression for the triplet scattering amplitude f−(θ) coincides with the expression
obtained in Section 4.3.1 for fermionic atoms in the same internal state. On closer inspection this
is not surprising because two 3He atoms in the same spin state carry total spin I = 1, |↑-↑-〉 = |1, 1〉
and |↓-↓-〉 = |1,−1〉, which implies that these atoms also scatter through the triplet channel.

Differential and total cross section

For 3He atoms in different spin states the pair-wavefunction for the scattered wave depends on the
total spin I and is asymptotically given by

ψsc ∼
r→∞

∑
I=0,1

1√
2
[f(θ) + (−1)If(π − θ)]|I, 0〉eikr/r, (4.111)

From this equation the total current density of scattered atoms (in any spin state) at position
r = (r, θ, φ) is found to be

jout(r) =
∑
I=0,1

∣∣f(θ) + (−1)If(π − θ)
∣∣2 v

r2
r̂ (0 ≤ θ ≤ π/2) . (4.112)

The singlet-triplet cross terms drop due to the orthogonality of the singlet and triplet states. The
probability current that one of the colliding atoms scatters through a surface element dS = r̂r2dΩ
in the direction (θ, φ) is given by

dIout (θ, φ) = jout (r, θ, φ) dS =
∑

v
I=0,1

∣∣f(θ) + (−1)If(π − θ)
∣∣2 dΩ.

The partial cross sections for scattering in the direction (θ, φ) is given by

dσ (θ, φ) = dIout (θ, φ) /jin = 1
2

∑
I=0,1

∣∣f(θ) + (−1)If(π − θ)
∣∣2 dΩ, (4.113)

where jin = 2v is the combined current density towards the scattering center originating from the
two incident waves eikz|↑-↓-) and e−ikz|↓-↑-). The total cross section is given by

σ = 1
2

∑
I=0,1

σI , where σI =

ˆ π/2

0

2π sin θ
∣∣f(θ) + (−1)If(π − θ)

∣∣2 dθ. (4.114)
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Evaluating the integral like in Section 4.3.1 we obtain

σI =


σ+ =

8π

k2

∑
(2l + 1)

l=even

sin2 ηl (I = 0)

σ− =
8π

k2

∑
(2l + 1)

l=odd

sin2 ηl (I = 1) .
(4.115)

Thus the expression for the triplet (I = 1) cross section σI = σ− is found to coincide with the
expression obtained in Section 4.3.1 for two fermionic atoms in the same internal state. This is in
line with the comment made below Eq. (4.110) where we point out that two 3He atoms in the same
spin state also carry total spin I = 1. Substituting Eq. (4.115) into Eq. (4.114) we establish that the
elastic cross section for up-down pairs is given by the average of the even (σ+) and odd (σ−) parity
contributions,

σ = 1
2 (σ+ + σ−) =

4π

k2

∞∑
l=0

(2l + 1) sin2 ηl. (4.116)

Note that this expression coincides with the result obtained for distinguishable atoms. Thus we arrive
at an important conclusion: in elastic collisions between identical atoms in different eigenstates of
the nuclear spin the atoms can be treated as if they are distinguishable by their nuclear spin state.

4.4.2 Fermionic 1S0 atoms in nuclear spin 1/2 spinor states

We continue with 1S0 atoms with nuclear spin 1/2. Let us consider collisions between two 3He
atoms in their electronic ground state, one - as in the previous section - with nuclear spin up but
the other in a given spinor state, the mixed state χ = a|↑-〉 + b|↓-〉, with a = cosφ and b = sinφ.
Note that the polarization direction of the mixed state is rotated by an angle 2φ with respect to
the quantization axis. Since we are free to choose our quantization axis this case is equivalent with
collisions where both atoms are in spinor states with an angle 2φ between their planes of polarization.
Experimentally, we can prepare 3He pairs in such a way that the spin up atoms always move in the
positive z direction and the mixed state atoms always in the negative z direction. However, because
the atoms are identical, for any pair of colliding atoms it is impossible to determine which atom
carries the up spin and which the spinor. All we know is that the 3He atoms are fermions and the
pair wavefunction must be anti-symmetric under exchange of complete atoms,

ψin = eikz[a|↑-↑-) + b|↑-↓-)]− e−ikz[a|↑-↑-) + b|↓-↑-)]. (4.117)

To better reveal the relevant symmetries this expression can be rewritten in the form

ψin = a
(
eikz − e−ikz

)
|1, 1〉+ 1√

2
b
(
eikz + e−ikz

)
|0, 0〉+ 1√

2
b
(
eikz − e−ikz

)
|1, 0〉, (4.118)

where the state |I,mI〉 represents the total nuclear spin state of the pair. Note that the symmetric
spin states |1, 1〉 and |1, 0〉 combine with the anti-symmetric pair wavefunction for the end-over-end
orbital motion and the anti-symmetric spin state |0, 0〉 with the symmetric orbital pair wavefunction.
We found that with two angular momenta i1 = i2 = 1

2 the total spin I = i1 + i2 can take the values
I ∈ {0, 1} for “anti-parallel” and “parallel” coupling, respectively. Since the total spin of the pair is
conserved in the collision this must also hold for the parity of the orbital part. Thus, the symmetric
spin states |1, 1〉 and |1, 0〉 (anti-symmetric spin state |0, 0〉) can only give rise to scattering into odd
(even) partial waves and along the same lines of reasoning as used in Section 4.3.1 we find for the
corresponding scattering amplitudes

f±(θ) =


f(θ) + f(π − θ) =

2

k

∑
l=even

(2l + 1)eiηlPl(cos θ) sin ηl (I = 0)

f(θ)− f(π − θ) =
2

k

∑
l=odd

(2l + 1)eiηlPl(cos θ) sin ηl (I = 1) .
(4.119)
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The two options are referred to in the present context as the singlet (I = 0) and the triplet (I = 1)
channel. Note that the expression for the triplet scattering amplitude f−(θ) coincides with the
expression obtained in Section 4.3.1 for fermionic atoms in the same internal state. On closer
inspection this is not surprising because two 3He atoms in the same spin state carry total spin
I = 1, |↑-↑-〉 = |1, 1〉 and |↓-↓-〉 = |1,−1〉, which implies that these atoms also scatter through the
triplet channel.

Differential and total cross section

For 3He atoms in spin states of different polarizations the pair-wavefunction for the scattered wave
is asymptotically given by

ψsc ∼
r→∞

a[f(θ)− f(π − θ)]|1, 1〉eikr/r

+ b
∑
I=0,1

1√
2
[f(θ) + (−1)If(π − θ)]|I, 0〉eikr/r (0 ≤ θ ≤ π/2) . (4.120)

The total current density of scattered atoms (irrespective of the spin state) at position r = (r, θ, φ)
is found to be

jout(r) =
(
2a2 + b2

)
|f(θ)− f(π − θ)|2 v

r2
r̂ + b2 |f(θ) + f(π − θ)|2 v

r2
r̂, (4.121)

with 0 ≤ θ ≤ π/2. The singlet-triplet cross terms drop due to the orthogonality of the singlet and
triplet states. The probability current dIout (θ, φ) = jout(r, θ, φ)dS that any of the colliding atoms
scatters through a surface element dS = r̂r2dΩ in the direction (θ, φ) is given by

dIout (θ, φ) =
(
2a2 + b2

)
v |f(θ)− f(π − θ)|2 dΩ + b2v |f(θ) + f(π − θ)|2 dΩ. (4.122)

The partial cross sections for scattering in the direction (θ, φ) is given by

dσ (θ, φ) = dI (θ, φ) /jz (4.123)

= 1
2

(
2a2 + b2

)
|f(θ)− f(π − θ)|2 dΩ + 1

2b
2 |f(θ) + f(π − θ)|2 dΩ, (4.124)

where jz = 2v is the total current density towards the scattering center of the incident wave. The
total cross section between atoms in specified spinor states can be written as

σ = 1
2 (σ0,0 + σ1,1 + σ1,0) = 1

4 (σ+ + 3σ−) + 1
4 (σ− − σ+) cos 2φ, (4.125)

where σ± represents the cross sections defined by Eq. (4.95) and 2φ is the angle between the
polarization planes of the two spinors. Using the procedure given in Section 4.3.1 we obtained
σ0,0 = σ+ sin2 φ, σ1,1 = σ− cos2 φ and σ1,0 = σ−.

For parallel polarizations (φ = 0) we regain the expression σ = σ− for scattering of atoms in the
same spin state; for opposite polarizations (2φ = π) we regain the expression σ = 1

2 (σ+ + σ−) for
scattering of atoms in opposite spin states; for perpendicular polarization (2φ = π/2) we find

σ = 1
4 (σ+ + 3σ−) . (4.126)

The latter result is also obtained by averaging over all angles (0 ≤ 2φ ≤ 2π). This is just the sta-
tistical average we expect for collisions in an unpolarized gas of spin 1/2 atoms, where we identify
four possibilities for the initial spin configurations, |↑-↑-〉, |↑-↓-), |↓-↑-) and |↓-↓-〉, each with equal proba-
bility. From these possibilities |↑-↑-〉 and |↓-↓-〉 manifestly represent triplet scattering; the other two
cases yield 50/50 probability to scatter through the singlet/triplet channel. Together this results in
75% triplet and 25% singlet scattering events. Reasoning verbatim along these lines we find for an
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arbitrary angle 2φ between the polarization planes two possibilities, cos2 φ|↑-↑-〉 and sin2 φ|↑-↓-). This
means that the triplet and singlet scattering probabilities are given by σ− cos2 φ + 1

2σ− sin2 φ and
1
2σ+ sin2 φ, respectively. For the cross section this yields

σ = 1
2σ−

(
1 + cos2 φ

)
+ 1

2σ+ sin2 φ, (4.127)

which is equivalent to Eq. (4.125), as it should.

4.4.3 Fermionic 1S0 atoms with arbitrary half-integer nuclear spin

In this section we will generalize the discussion to collisions between fermionic 1S0 atoms in arbitrary
half-integer spin eigenstates.1 Aside from the spin-1/2 systems 3He, 111Cd and 113Cd, 129Xe, 199Hg
and 171Yb this class includes the spin-3/2 systems 9Be, 21Ne, 131Xe, 135Ba, 137Ba and 201Hg, the
spin-5/2 systems 25Mg, 67Zn, 105Pd and 173Yb, the spin-7/2 system 43Ca, and the spin-9/2 systems
83Kr and 87Sr. As we are dealing with fermions the pair wavefunction must be anti-symmetric under
exchange of complete atoms,

ψin ∼
r→∞

eikz|m1m2)− e−ikz|m2m1), (4.128)

which can be rewritten in the form

ψin ∼
r→∞

1
2

(
eikz + e−ikz

)
[|m1m2)− |m2m1)] + 1

2

(
eikz − e−ikz

)
[|m1m2) + |m2m1)] (4.129)

With two equal angular momenta (i1 = i2) the total spin I = i1 + i2 takes the values 0 ≤ I ≤ Imax =
2i1 and using a Clebsch-Gordan decomposition we obtain (cf. Problem 4.8)

ψin ∼
r→∞

(
eikz + e−ikz

) Imax∑
I=even

I∑
M=−I

|IM〉〈IM |i1i1m1m2)

+
(
eikz − e−ikz

) Imax∑
I=odd

I∑
M=−I

|IM〉〈IM |i1i1m1m2). (4.130)

Note that the symmetric spin states, |IM〉 with I = odd, combine with the anti-symmetric orbital
pair wavefunctions; the anti-symmetric spin states, |IM〉 with I = even, combine with the symmetric
orbital pair wavefunctions. Since the total spin of the pair is conserved in the collision this must
also hold for the parity of the orbital part. Thus, the symmetric spin states (anti-symmetric spin
states) can only give rise to scattering into odd (even) partial waves and along the same lines of
reasoning as used in Section 4.4.1 we find for the corresponding scattering amplitudes

f±(θ) =


f(θ) + f(π − θ) =

2

k

∑
l=even

(2l + 1)eiηlPl(cos θ) sin ηl (I = even)

f(θ)− f(π − θ) =
2

k

∑
l=odd

(2l + 1)eiηlPl(cos θ) sin ηl (I = odd) .
(4.131)

These expressions represent a generalization of the expressions for the scattering amplitude f±(θ)
obtained in Section 4.4.1 for spin 1/2 fermionic atoms.

1All stable bosonic isotopes with 1S0 electronic ground state have nuclear spin I = 0.
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Differential and total cross section

The pair-wavefunction for the scattered wave is asymptotically given by

ψsc ∼
r→∞

Imax∑
I

I∑
M=−I

〈IM |i1i1m1m2)[f(θ) + (−1)If(π − θ)]|I,M〉eikr/r, (4.132)

The total current density of scattered atoms (irrespective of the spin state) at position r = (r, θ, φ)
is found to be

jout(r) = 2

Imax∑
I

I∑
M=−I

|(i1i1m1m2|IM〉|2
∣∣f(θ) + (−1)If(π − θ)

∣∣2 |I,M〉 v
r2

r̂, (4.133)

with 0 ≤ θ ≤ π/2. Here we used the orthogonality of the singlet and triplet wavefunctions. The
probability current dIout (θ, φ) = jout(r, θ, φ)dS that any of the colliding atoms scatters through a
surface element dS = r̂r2dΩ in the direction (θ, φ) is given by

dIout (θ, φ) = 2

Imax∑
I

I∑
M=−I

|(i1i1m1m2|IM〉|2v
∣∣f(θ) + (−1)If(π − θ)

∣∣2 dΩ.

Note that any atom observed in the direction Ω must originate either from the incident wave eikz|↑-↓-)
or form the incident wave e−ikz|m1m2). The partial cross sections for scattering in the direction
(θ, φ) is given by

dσm1m2 (θ, φ) = dIout (θ, φ) /jz

=

Imax∑
I

I∑
M=−I

|(i1i1m1m2|IM〉|2
∣∣f(θ) + (−1)If(π − θ)

∣∣2 dΩ, (4.134)

where jz = 2v is the total incident current density towards the scattering center. The total cross
section is given by

σm1m2
=

Imax∑
I

I∑
M=−I

|(i1i1m1m2|IM〉|2σI , where σI =

ˆ π/2

0

2π sin θ
∣∣f(θ) + (−1)If(π − θ)

∣∣2 dθ.
(4.135)

Evaluating the integral like in Section 4.3.1 we obtain

σI =


σ+ =

8π

k2

∑
(2l + 1)

l=even

sin2 ηl (I = even)

σ− =
8π

k2

∑
(2l + 1)

l=odd

sin2 ηl (I = odd) .
(4.136)

Thus the expressions for the cross sections with I = odd are found to coincide with the expression
obtained for σ− in Section 4.3.1 for two fermionic atoms with the same internal state. Substituting
Eq. (4.136) into Eq. (4.135) we establish that the cross section is given by the average of the even
(σ+) and odd (σ−) parity contributions,

σm1m2
=

Imax∑
I=even

I∑
M=−I

|(i1i1m1m2|IM〉|2σ− +

Imax∑
I=odd

I∑
M=−I

|(i1i1m1m2|IM〉|2σ+. (4.137)

The summations both yield 1/2, therefore Eq. (4.137) reduces to

σm1m2 =
1

2
(σ− + σ+) =

4π

k2

∞∑
l=0

(2l + 1) sin2 ηl for m1 6= m2, (4.138)
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which coincides with Eq. (4.116) obtained in Section 4.4.1 for the special case i1 = i2 = 1/2. Hence
the elastic cross section of two fermions in different spin eigenstates is given by the same expression
as was obtained for distinguishable atoms.

To obtain the effective elastic cross section in an unpolarized gas we have to calculate the
statistical average over all (2i1 + 1)

2
possible initial spin configurations {|i1i1m1m2)}. From these

possibilities we have (2i1 + 1) cases with m1 = m2 and cross section σm1m1 = σ−. The remaining

(2i1 + 1)
2− (2i1 + 1) = (2i1 + 1) 2i1 possibilities correspond to m1 6= m2 and cross section σm1m2 =

1
2 (σ− + σ+). Therefore, the effective elastic cross section is given by

σ =
1

(2i1 + 1)
2

∑
m1,m2

σm1m2 =
1

(2i1 + 1)
[i1σ+ + (i1 + 1)σ−] . (4.139)

Problem 4.8. Derive the following relation for fermions:

1
2

[|i1i1m1m2)± |i1i1m2m1)] =

2i1∑
I=odd/even

I∑
M=−I

|IM〉〈IM |i1i1m1m2).

Solution. Using a Clebsch-Gordan decomposition we have

1
2

[|i1i1m1m2)± |i1i1m2m1)] =
1

2

2i1∑
I=0

I∑
M=−I

|IM〉 [〈IM |i1i1m1m2)± 〈IM |i1i1m2m1)]

=
1

2

2i1∑
I=0

I∑
M=−I

[
1± (−1)I−2i1

]
|IM〉〈IM |i1i1m1m2).

Here we used the property 〈IM |i1i1m2m1) = (−1)I−2i1〈IM |i1i1m1m2), which becomes

〈IM |i1i1m2m1) = −(−1)I〈IM |i1i1m1m2)

for fermions because 2i1 is odd. The latter summation can be rewritten as the requested expression. 2
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5

Feshbach resonances

5.1 Introduction

In the previous chapters we only considered a single interaction potential to describe the scattering
between two cold atoms. Along this potential the atoms enter and leave the scattering region
elastically. However, in general the interaction potential depends on the internal states of the atoms
and when during the collision the internal states change the atoms may become trapped in a bound
molecular state. This is known as scattering into a closed channel. Similarly, the term open channel
is used for scattering into all states in which the atoms leave the scattering region, with or without
excess energy.

In this chapter we discuss how the spin dependence of the interatomic interaction gives rise to
open and closed channels. The presence of closed channels affects the elastic collisions between
atoms when their energy is close to resonant with the energy of the atoms in the incoming channel.
In such a case we are dealing with a bound-state resonance embedded in the continuum of states of
the open channel. Within the Feshbach theory one separates the resonance due to the bound state
from the background contribution of the continuum. Such resonances are known in nuclear physics
as Feshbach resonances [23] and in atomic physics as Fano resonances [21]. In molecular physics
they give rise to predissociation of molecules in excited states or the inverse process [28]. In the
context of ultracold gases they are of special importance as they allow in situ modification of the
interaction between the atoms, thus effecting the scattering length. Whereas the scattering length
is typically of the order of the Van der Waals range, r0 ≈ 50− 100 a0, near a Feshbach resonance it
can reach values exceeding interparticle separation, a� 10 000 a0.

The theory of the in situ modification of the scattering length with the aid of a Feshbach res-
onance was pioneered by B.J. Verhaar and his group [66]. Although the value of the Feshbach
phenomenon for the investigation of quantum gases is currently undisputed the early experiences
were discouraging. The resonance enhances the duration of the collision. This also enhances the
chance of molecule formation through stabilization by a third atom in a process called three-body
recombination. In bosonic systems this results in severe atom losses as was observed in early experi-
ments with hydrogen [59] and sodium [32]. A turn to the better came when the Feshbach resonances
proved useful for suppressing recombination in gases with severe losses; i.e., in systems with a neg-
ative scattering length (e.g., 85Rb [12]) or anomalously large positive scattering length (e.g., 133Cs
[68]). This enabled Bose-Einstein condensation of these systems as well as the formation of the first
Feshbach molecules [20]. The real breakthrough came when it was found that three-body recombi-
nation is strongly suppressed in two component Fermi gases of 6Li [63, 13, 34] and 40K [57]. In such
systems always two of the three fermions (required for recombination) have to be in the same state;
Pauli exclusion will prevent a close encounter of those atoms whereas they can interact resonantly
or even form a long-lived molecule with the third collision partner [54]. For comprehensive reviews
see [37, 9].
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Figure 5.1: Example showing the MS = −1 branch of the triplet potential 3Σ+
u (the anti-bonding potential -

solid line) which acts between two spin-polarized hydrogen atoms. Choosing the zero of energy corresponding
to two spin-polarized atoms at large separation the singlet potential 1Σ+

g (the bonding potential - dashed
line) is shifted upwards with respect to the triplet by 13.4 K in a magnetic field of 10 T. The triplet potential
is open for s-wave collisions, whereas the singlet is closed because its asymptote is energetically inaccessible
in low-temperature gases.

5.2 Open and closed channels

5.2.1 Pure singlet and triplet potentials and Zeeman shifts

To introduce the concept of open and closed channels we consider two one-electron atoms in their
electronic ground state. At short internuclear distances, r . 15 a0, the electrons redistribute
themselves in the Coulomb field of the nuclei. As the electronic motion is fast as compared to
the nuclear motion, the electronic wavefunction can adapt itself adiabatically to the position of the
nuclei. This effectively decouples the electronic motion from the nuclear motion and enables the
Born-Oppenheimer approximation, in which the potential energy curves are calculated for a set of
fixed nuclear distances (clamped nuclei) and the nuclear motion is treated as a perturbation. The
potentials obtained in this way are known as adiabatic potentials.

The lowest adiabatic potentials correspond asymptotically to two atoms in their electronic ground
states. These are Σ potentials because in its electronic ground state the molecule has zero orbital
angular momentum (Λ = 0).1 Depending on the symmetry of the electronic spin state the potentials
are either of the singlet and bonding type X1Σ+

g , subsequently denoted by Vs(r), or of the triplet
and anti-bonding type a3Σ+

u , further denoted by Vt(r). To assure anti-symmetry of Σ molecular
states under exchange of the electrons, the symmetric spin state (triplet) must correspond to an odd
(ungerade) orbital wavefunction. Similarly, the anti-symmetric spin state (singlet) must correspond
to an even (gerade) orbital wavefunction.2

1The molecular orbital wavefunctions are denoted by Σ, Π, ∆, · · · corresponding to Λ = 0, 1, 2, · · · , where Λ is
the quantum number of total electronic orbital angular momentum around the symmetry axis.

2The superscript + refers to the symmetry of the orbital wavefunction under reflection with respect to a plane
containing the symmetry axis.
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For our purpose it suffices to represent the interatomic interaction by an expression of the form

V(r) = VD(r) + J(r)s1 · s2, (5.1)

where VD(r) = 1
4 [Vs(r) + 3Vt(r)] and J(r) = Vt(r) − Vs(r) are known as the direct and exchange

contributions, respectively. Asymptotically, VD(r) describes the Van der Waals attractive tail. As
this function decays exponentially with internuclear distance, beyond typically 15 a0 the exchange
interaction may be neglected and Vt(r) and Vs(r) coincide. Introducing the total electronic spin of
the system, S = s1 + s2, with corresponding eigenstates |s1, s2, S,MS〉, the spin-dependence can be
written in the form s1 · s2 = 1

2

(
S2 − s2

1 − s2
2

)
. Because s2

1 and s2
2 only have a single eigenvalue (3/4

for spin 1/2) in the |s1, s2, S,MS〉 representation, the eigenvalues may replace the operators, which
results in the simplified expression

s1 · s2 = 1
2S2 − 3

4 (5.2)

and allows us to write the spin states more compactly as |S,MS〉, with S ∈ {0, 1} and −S ≤MS ≤ S.
One easily verifies that V(r) |0, 0〉 = Vs(r) |0, 0〉 and V(r) |1,MS〉 = Vt(r) |1,MS〉, thus properly
yielding the singlet and triplet potentials. Equivalently, the potential V(r) can be replaced by

VS(r) ≡ Vs(r)|0, 0〉〈0, 0|+
1∑

MS=−1

Vt(r)|1,MS〉〈1,MS |. (5.3)

In the presence of a magnetic field the molecule experiences a spin-Zeeman interaction, which
also depends on the total electron spin,

HZ = γes1 ·B + γes2 ·B = γeS ·B, (5.4)

where γe = gsµB/~ is the gyromagnetic ratio of the electron, γe/2π = 2.802495364(70) MHz/Gauss,
with gs ≈ 2 the electronic g-factor and µB the Bohr magneton. Therefore, the states with non-zero
magnetic quantum number Ms will show a Zeeman effect causing the triplet potential to shift up
(MS = 1) or down (MS = −1) with respect to the singlet potential,

∆EZ = gsµBBMS . (5.5)

In Fig. 5.1 this is illustrated for the case of hydrogen in the MS = −1 state and for a field of
B = 10 T. The triplet potential is open for s-wave collisions in the low-energy limit, whereas the
singlet is closed because its asymptote is energetically inaccessible in low-temperature gases. The
highest bound level of the singlet potential corresponds to the |v = 14, J = 4〉 vibrational-rotational
state of the H2 molecule and has a binding energy of 0.7 ± 0.1 K. Note that the triplet potential
is so shallow that it does not support any bound state. This is an anomaly caused by the light
mass of the H-atom. In general both the singlet and the triplet potentials support bound states.
By adjusting the magnetic field to B ' 1 T the asymptote of the triplet potential can be made
resonant with the |v = 14, J = 4〉 bound state. The consequences for an electron-spin polarized gas
of hydrogen atoms was observed to be enormous because even a weak triplet-singlet coupling gives
rise - in the presence of a third body - to rapid recombination to molecular states.1

5.2.2 Radial motion in singlet and triplet potentials

To describe the relative motion in the presence of triplet and singlet potentials we ask for eigenstates
of the hamiltonian

H =
1

2µ

(
p2
r +

L2

r2

)
+ VS(r). (5.6)

1M.W. Reynolds, I. Shinkoda, R.W. Cline and W.N. Hardy, Physical Review B, 34 (1986) 4912.
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This hamiltonian is diagonal in the representation {
∣∣RSl , l,ml

〉
|s1, s2, S,MS〉}, where 〈r

∣∣RSl , l,ml

〉
=

RSl (r)Y ml (θ, φ). Restricting ourselves to specific values of s1, s2, S and l the eigenvalues may replace
the operators and the hamiltonian (5.6) takes the form of an effective hamiltonian for the radial
motion

Hrel =
p2
r

2µ
+
l (l + 1) ~2

2µr2
+ VS(r) (5.7)

The corresponding Schrödinger equation is a radial wave equation as introduced in Chapter 2, which
for given values of s1, s2, S and l is given by

R′′S,l +
2

r
R′S,l + [ε− US,l(r)]RS,l = 0, (5.8)

with US,l(r) =
(
2µ/~2

)
VS,l(r) and

VS,l(r) = VS(r) +
l (l + 1) ~2

2µr2
(5.9)

represents the effective potential energy curves for given values of S and l.
For ε > 0 (open channel) the solutions of Eq.(5.8) are radial wavefunctions Rl,S (k, r) = 〈r|RSk,l〉

corresponding to a scattering energy in the continuum,

εk = k2. (5.10)

For ε < 0 (closed channel) the solutions of Eq.(5.8) are radial wavefunctions Rv,l,S (r) = 〈r|RSv,l〉
corresponding to the bound states |ψSv,l〉 of energy

εSv,l = −κ2
v,S + l (l + 1)RSv,l, (5.11)

where RSv,l = 〈RSv,l|r−2|RSv,l〉 is the rotational constant. In Fig. 5.1 the five highest ro-vibrational
energy levels are shown for the singlet potential of hydrogen. Note the increasing level separation.

5.2.3 Coupling of singlet and triplet channels

Aside from the electron spin also the nuclear spin i couples to the magnetic field B, which is known
as the nuclear Zeeman interaction,

HZ = −γni ·B, (5.12)

where γn = gnµN/~ is the gyromagnetic ratio of the nucleus and µn the nuclear magneton. Thus,
the states with non-zero magnetic quantum number mi will show a Zeeman effect,

∆EZ = gnµNBmi. (5.13)

A weak coupling between the triplet and singlet channels arises when including the hyperfine
interaction of the atoms

Hhf =
(
ahf1/~2

)
i1 · s1 +

(
ahf2/~2

)
i2 · s2, (5.14)

where i1 and i2 are the nuclear spins of atom 1 and 2, respectively. In general the two hyperfine
coefficients differ (ahf1 6= ahf2). For instance, in the case of the HD molecule, the two hyperfine
coefficients correspond to those of the hydrogen and deuterium atoms. Eq.(5.14) can be rewritten
in the form Hhf = H+

hf +H−hf , where

H±hf =
(
ahf1/2~2

)
(s1 ± s2) · i1 ±

(
ahf2/2~2

)
(s1 ± s2) · i2. (5.15)

For ahf1 = ahf2 = ahf these equations reduce to

H±hf =
(
ahf/2~2

)
(s1 ± s2) · (i1 ± i2) . (5.16)
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Because H+
hf depends on the total electronic spin S = s1 + s2 it may induce changes in MS but

the total spin S is conserved; i.e., H+
hf does not couple singlet and triplet channels (see problem

5.1). On the other hand the term H−hf does not conserve S but couples triplet to singlet and vice
versa (see problem 5.2).

Problem 5.1. Show that H+
hf as defined in Eq.(5.15) converts between triplet states but does not induce

singlet-triplet mixing,

H+
hf =

(ahf1

~
i1z +

ahf2

~
i2z
) |1, 1〉〈1, 1| − |1,−1〉〈1,−1|

2

+
(ahf1

~
i1− +

ahf2

~
i2−
) |1, 1〉〈1, 0|+ |1, 0〉〈1,−1|

2
√

2

+
(ahf1

~
i1+ +

ahf2

~
i2+

) |1, 0〉〈1, 1|+ |1,−1〉〈1, 0|
2
√

2
.

Solution. Because H+
hf depends on the total electronic spin S = s1 + s2 we can rewrite the inner products

of Eq. (5.15) in the form

H+
hf =

2∑
γ=1

(
ahfγ/2~2) {Sziγz + 1

2
[S+iγ− + S−iγ+]

}
, (5.17)

where γ ∈ {1, 2} is the nuclear index. Hence, although H+
hf may induce changes in MS the total spin S is

conserved.1 2

Problem 5.2. Show that H−hf as defined in Eq.(5.15) converts singlet states into triplet states and vice
versa,

H−hf =
(ahf1

~
i1z −

ahf2

~
i2z
) |1, 0〉〈0, 0|+ |0, 0〉〈0, 1|

2

−
(ahf1

~
i1− −

ahf2

~
i2−
) |1, 1〉〈0, 0|+ |0, 0〉〈1, 1|

2
√

2

+
(ahf1

~
i1+ −

ahf2

~
i2+

) |1,−1〉〈0, 0|+ |0, 0〉〈1,−1|
2
√

2
.

Solution. We first write Eq. (5.15) in the form

H−hf =

2∑
γ=1

(−)γ−1 (ahfγ/2~2) {(s1z − s2z) iγz + 1
2

[(s1+ − s2+) iγ− + (s1− − s2−) iγ+]
}
. (5.18)

Acting on the singlet state |S,MS〉 = |0, 0〉 =
√

1/2 [| ↑↓)− | ↓↑)] the components of the difference term
(s1 − s2) yield

(s1z − s2z) |0, 0〉 = ~ |1, 0〉 ; (s1+ − s2+) |0, 0〉 = −
√

2~ |1, 1〉 ; (s1− − s2−) |0, 0〉 =
√

2~ |1,−1〉 (5.19)

Acting on the triplet states non-zero results are obtained only in the cases

(s1z − s2z) |1, 0〉 = ~ |0, 0〉 ; (s1− − s2−) |1, 1〉 = −
√

2~ |0, 0〉 ; (s1+ − s2+) |1,−1〉 =
√

2~ |0, 0〉 . (5.20)

Hence, the H−hf operator converts triplet into singlet and vice versa. 2

1Note that S± |S,MS〉 = ~
√
S (S + 1)−MS (MS ± 1) |S,MS ± 1〉.
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5.2.4 Radial motion in the presence of singlet-triplet coupling

To describe the radial motion in the presence of singlet-triplet coupling we extend the effective
hamiltonian for the radial motion Hrel with the electronic plus nuclear Zeeman term

HZ = γeS ·B− γ1i1·B− γ2i2·B, (5.21)

with γ1 and γ2 the gyromagnetic ratios of the nuclei 1 and 2, and the hyperfine terms given by
Eq. (5.14),

H = Hrel +HZ +H+
hf +H−hf . (5.22)

The first two terms of this hamiltonian are diagonal in the {
∣∣RSl , l,ml

〉
|s1, s2, S,MS〉 |i1, i2,m1,m2〉}

representation, the third term gives rise to hyperfine coupling within the singlet and triplet manifolds
separately and the last term is purely off-diagonal and non-zero only when connecting the singlet
and triplet manifolds.

To find the eigenvalues of the Schrödinger equation H |Ψ〉 = E |Ψ〉 we have to solve the following
secular equation

det
∣∣∣〈S′,M ′S ,m′1,m′2|〈RS′l |H − E ∣∣RSl 〉 |S,MS ,m1,m2〉

∣∣∣ = 0. (5.23)

Here we used the property of the hamiltonian (5.22) that it does not mix states of different l and ml.
Because this hamiltonian also conserves the total angular momentum projectionMF = MS+m1+m2

only matrix elements with M ′S + m′1 + m′2 = MS + m1 + m2 are non-zero. Importantly, all terms
of the hamiltonian (5.22) except the singlet-triplet mixing term H−hf conserve S and, hence, are
diagonal in the orbital part

∣∣RSl 〉.
With regard to the mixing term H−hf we first consider singlet-triplet coupling in the closed

channel. This involves coupling between the bound states |R0,l
v 〉 (possibly quasibound states) of

the singlet potential with those of the triplet potentials, |R1,l
v′ 〉. Then, we can factor out the radial

integral and the secular equation becomes for given l

det
∣∣∣[εS,lv + Eσ(B)− E]δσ,σ′ + 〈σ′|H+

hf |σ〉δν,ν′ + 〈σ′|H−hf |σ〉〈R
S′,l
v′ |R

S,l
v 〉
∣∣∣ = 0. (5.24)

Here we use the shorthand notation |σ〉 ≡ |S,MS ,m1,m2〉 and Eσ(B) = (γeMS − γ1m1 − γ2m2)B.
Note that 〈σ′|H+

hf |σ〉 = 0 unless S = S′ and 〈σ′|H−hf |σ〉 = 0 unless S 6= S′. The overlap integral

〈RS
′,l

v′ |RS,lv 〉 is a so-called Franck-Condon factor. For most combinations of vibrational levels these

are small, 〈RS
′,l

v′ |RS,lv 〉 � 1. Small distances (typically r . 15a0) do not contribute to the overlap
because the exchange dominates and the potentials (and hence also the wavefunctions) differ a lot.
Further, the location of the outer turning points will generally be quite different causing also the
overlap of the outer region to be small.

An important exception can happen in the presence of asymptotically bound states in both the
singlet and triplet potential. These are states for which the outer classical turning point is found
at inter-nuclear distances where the exchange is negligible (typically r & 15a0). Whenever the
binding energy of an asymptotically bound state in the singlet potential |R0

v,l〉 is close to resonant

with the binding energy of an asymptotically bound state in the triplet potential |R1
v′,l〉 the Franck-

Condon factor of these states is close to unity, 〈RS
′,l

v′ |RS,lv 〉 ' 1. More in general approximating the
least-bound states (ν = −1) of the singlet and triplet potentials by the halo states

R0,0
−1(r) =

e−κ0r

r
and R1,0

−1(r) =
e−κ1r

r
(5.25)

the Franck-Condon overlap is fiven by

〈RS
′,l

v′ |R
S,l
v 〉 = 2

√
κ0κ1

κ0 + κ
. (5.26)
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Figure 5.2: Energy levels of 6Li40K for the l = 0 (curved drawn lines) and l = 1 (curved dotted lines)
molecular bound states as a function of magnetic field. The horizontal lines represent the highest bound
states in the pure singlet (E0) and triplet (E1) potentials. The energy shift of the open channel of atoms in
the |6Li; 1/2, 1/2〉 and |40P; 9/2,−7/2〉 states carry the experimental data points.

Solving the characteristic equation (5.24) we find that the Franck-Condon term gives rise to molec-
ular states which are no longer pure singlet or triplet states but magnetic-field dependent singlet-
triplet mixtures. A good example of nearly complete Franck-Condon overlap is the case of 6Li40K.1

In Fig. 5.2 we show for this system the level shifts as a function of magnetic field for the case
MF = MS +m1 +m2 = −3.

5.3 Coupled channels

5.3.1 Coupling to the continuum

Let us consider a collisional system with hamiltonian H0. For reasons of compactness of notation
we turn to the reduced energy notation of Eqs. (3.6),

h0 =
(
2µ/~2

)
H0. (5.27)

In this notation the continuum states are denoted by |k〉 and satisfy the relation

h0|k〉 = k2|k〉. (5.28)

The bound states are denoted by |v〉 and satisfy

h0|v〉 = εv|v〉, (5.29)

where εv can be positive or negative with respect to the k = 0 threshold. This context is sketched is
illustrated in Fig. 5.3. Let us focus on the vibrational state |v〉. In the presence of a weak coupling
between the open and the closed channel, U(r) = 2µV (r)/~2, where µ is the reduced mass of the
colliding pair, the state |v〉 is slightly perturbed. This perturbed state is denoted by |ϕ〉,

|v〉 V→ |ϕ〉. (5.30)

1E. Wille et al., Physical Review Letters 100, 053201 (2008).
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Figure 5.3: Energy levels of an open (red curve) and a closed (blue curve) channel in the absence of coupling
between the channels. The energy of a continuum state in the open channel is indicated by the dashed red
line at energy k2. The energy of a bound state in the closed channel is indicated by the dashed-dotted lines
for two cases: a.) bound level below threshold εv ⇔ −κ2 < 0; b.) bound level above threshold εv ⇔ κ2

vs > 0.
Note that the threshold is defined as the k = 0 asymptote of the open channel.

To analyze the effect of the perturbation we write the hamiltonian in the form

h = h0 + λU(r), (5.31)

where the parameter λ is only introduced to keep track of the orders of the perturbation theory. As
the perturbation U is supposed to be sufficiently weak we may take the limit λ→ 1 at any desired
moment. The energy of the perturbed state just below the threshold can be written as

h|ϕ〉 = −κ2|ϕ〉. (5.32)

Our task is to find the relation between εv and −κ2. For purpose we express the perturbed states
as a linear combination of all eigenstates, bound states as well as continuum states,

|ϕ〉 =
∑
v′

|v′〉〈v′|ϕ〉+

ˆ
dk |k〉〈k|ϕ〉. (5.33)

On the one hand we have
〈v|h|ϕ〉 = −κ2〈v|ϕ〉 (5.34)

and on the other hand

〈v|h|ϕ〉 =
∑
v′

〈v|h0|v′〉〈v′|ϕ〉+ λ
∑
v′

〈v|U |v′〉〈v′|ϕ〉

+

ˆ
dk 〈v|h0|k〉〈k|ϕ〉+ λ

ˆ
dk 〈v|U |k〉〈k|ϕ〉. (5.35)

In view of the orthogonality of the eigenstates of h0 we have 〈v|h0|v′〉 = εv′〈v|v′〉 = εvδv,v′ and
〈v|h0|k〉 = k2〈v|k〉 = 0. Furthermore, we may approximate 〈v|U(r)|v′〉 ' δεvδv,v′ because the
coupling to the open channel only appreciably shifts the resonant level, the other bound states
being too far detuned. Eliminating 〈v|h|ϕ〉 from Eqs. (5.34) and (5.35) we find to lowest order in λ
after summing over v′

−
(
εv + λδεv + κ2

)
〈v|ϕ〉 = λ

ˆ
dk 〈v|U |k〉〈k|ϕ〉. (5.36)

To evaluate the integral we search for an expression for 〈k|ϕ〉. This expression is obtained by
projecting the perturbed vibrational state |ϕ〉 on a continuum state |k〉. We compare again two
expressions

〈k|h|ϕ〉 = −κ2〈k|ϕ〉 (5.37)
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and

〈k|h|ϕ〉 =
∑
v′

〈k|h0|v′〉〈v′|ϕ〉+ λ
∑
v′

〈k|U |v′〉〈v′|ϕ〉

+

ˆ
dk′〈k|h0|k′〉〈k′|ϕ〉+ λ

ˆ
dk′〈k|U |k′〉〈k′|ϕ〉. (5.38)

In view of the orthogonality of the eigenstates of h0 we have 〈k|h0|v′〉 = εv′〈k|v′〉 = 0 and 〈k|h0|k′〉 =
k′2δ(k − k′). Furthermore, we may approximate 〈k|U(r)|k′〉 ' δεδ(k − k′) because the coupling
to the resonant level shifts all occupied continuum levels (kr0 � 1) in a similar way. Eliminating
〈k|h|ϕ〉 from Eqs. (5.37) and (5.38) we find to lowest order in λ after integration over k′

−
(
k2 + λδε+ κ2

)
〈k|ϕ〉 = λ

∑
v′

〈k|U |v′〉〈v′|ϕ〉. (5.39)

Actually, of the terms in this summation only the term v′ = v contributes to lowest order in λ,
〈v|ϕ〉 ≈ 1, whereas |〈v′|ϕ〉| � 1 for v′ 6= v. Thus, the summation is dominated by a single term,

−
(
k2 + λδε+ κ2

)
〈k|ϕ〉 = λ〈k|U |v〉〈v|ϕ〉. (5.40)

Substituting this expression into Eq. (5.36) and retaining only the terms linear in λ we find for λ→ 1

εv + δεv + κ2 =

ˆ
dk
|〈v|U |k〉|2

(κ2 + k2)
+ · · · . (5.41)

Since both the vibrational s level and the perturbation are centrally symmetric the integral only
depends on k = |k|,

u(k) ≡ 〈v|U |k〉 =

ˆ
drR∗v(r)U(r)eik·r. (5.42)

Furthermore, as the interaction is short range we know that U(r) vanishes for r � r0. This implies
that u(k) is constant for kr0 � 1,

u(k) '
ˆ r0

0

dr 4πr2R∗v(r)U(r) ≡ u0.

For kr0 � 1, u(k) averages to zero. In order not to enter in the particularities of the intermediate
region we shall approximate u(k) by a piece-wise constant function: u(k) = u0, up to a cuttof value
kmax, and u(k) = 0 beyond. Within this approximation we can rewrite Eq. (5.41) in the form

εv + δεv + κ2 ' u2
0

ˆ kmax

0

4πk2

(κ2 + k2)
dk = 4πu2

0

(
kmax − κ arctan

kmax

κ

)
. (5.43)

Introducing the notation
ε0 = 4πu2

0kmax − δεv (5.44)

we arrive at the following relation between εv − ε0 and κ,

εv − ε0 = −κ2 − 4πu2
0κ arctan

kmax

κ
. (5.45)

For κ → 0 the perturbed binding energy reaches threshold and Eq. (5.45) reduces to εv = ε0. The
quantity ε0 is called the resonance shift. It expresses the shift of the unperturbed energy level as a
result of the coupling to the continuum. The quantity

εres ≡ εv − ε0
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Figure 5.4: Solid curves: energy of an effective level close to threshold (ε′v) as a result of Feshbach coupling
of a bound state (εv) in the closed channel to the continuum of states in the open channel. The energy shift
is maximum (ε0) when the unperturbed bound level (dashed red line at ε′v = εv ) reaches the threshold
(εv = 0). The dashed blue curve corresponds to universal expressions which are accurate only close to the
center of the resonance. In the limit of narrow resonances (weak coupling) the two curves coincide. In
experiments εv can be shifted with the aid of a magnetic or optical field.

is called the position of the resonance. If the position can be tuned with an external field the
position is called the detuning from resonance. For εres > 0 (positive detuning) the resonance is
said to be above threshold. Similarly, for εres < 0 (negative detuning) the resonance position is
below threshold. The shift is plotted in Fig. 5.4.

The region κr0 . 1 � kmaxr0 corresponds to conditions near threshold. In this region the
arctangent becomes insensitive for the value of kmax. Approximating arctan[kmax/κ] ' π/2 the
expression (5.45) can be written in the form

(εv − ε0)R∗ = −κ−R∗κ2. (5.46)

Here we introduced the characteristic length R∗, which is a measure for the Feshbach coupling
strength (and 1/R∗ for the spectral width of the resonance - see Section 5.3.2) [54]. As R∗ has the
dimension of length it might be called the Feshbach resonance range,

2π2u2
0 ≡ 1/R∗. (5.47)

Note that the value of kmax does not affect the shape of the curve; it only determines the value of
the shift ε0. The threshold region is called universal because the relation between εv and −κ2 is
independent of the details of the bound state and the r dependence of the coupling (these become
important for κr0 � 1, when κ approaches kmax). All this being the case, the parameters R∗ and
ε0 can be determined by measuring the perturbed binding energy

ε = −κ2 = − 1

4R∗2

[
−1 +

√
1− 4R∗2(εv − ε0)

]2
(5.48)

versus the unperturbed energy εv at negative detuning. This is, of course, only possible if the
latter can be varied by some external parameter, for instance the magnetic field (see Section 5.3.3).
Similarly, by measuring −κ2, a shift in ε0 (for instance a differential light shift between open and
closed channel) can be determined if R∗ and εv are known.

Interestingly, for R∗ = 1
2r0 the r.h.s. of Eq. (5.46) has exactly the same κ dependence as

Eq. (3.138). This suggests to use R∗ as a generalized range characterizing some spherical poten-
tial similar to the spherical well discussed in Section 3.4. Therefore, we interpret the r.h.s. of
Eq. (5.46) as the inverse of the resonance contribution of a weakly bound level κ to the scattering
length of some effective potential :

ares =
1

κ+R∗κ2
= − 1

(εv − ε0)R∗
. (5.49)
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The quantity

εres ≡ εv − ε0 (5.50)

is called the resonance energy. Note that ares is positive for εv < ε0 ⇔ εres < 0 and negative for
εv > ε0 ⇔ εres > 0.

We distinguish two regions for ares > 0. For 1/R∗ � κ� kmax we may neglect the linear term
in Eq. (5.46). This is the asymptotic region in which the binding energy scales linearly with the
energy of the unperturbed level

ε = −κ2 = εv − ε0. (5.51)

For κ � 1/R∗ we reach the threshold region. Near the threshold we may neglect the κ2 term in
the denominator of Eq. (5.49) and the expression for the scattering length shows the universal κ
dependence, ares = 1/κ. In this regime the perturbed state approaches the threshold quadratically,

ε = −κ2 = − (εv − ε0)
2
R∗2. (5.52)

Furthermore, within the above interpretation we can extend the description to include virtual levels
(ares < 0) by replacing Eq. (5.49) with

ares = − 1

κvs +R∗κ2
vs

= − 1

(εv − ε0)R∗
, (5.53)

where κ2
vs corresponds to the energy of a resonance feature in the continuum.

5.3.2 Narrow versus broad resonances

To complete the discussion of effective one channel model introduced above, we have to add the
dependence on k as well as a background contribution abg. The latter corresponds to the scattering
length of the open channel. As long as the least-bound level in the open channel is not weakly bound
this background contribution abg is not resonantly enhanced and may be taken as constant across
the Feshbach resonance. As close to the universal regime the k dependence is given by Eqs. (3.151)
the k dependence of the total scattering length a(k) can be expressed in the universal form

a(k) = abg +
1

k
arctan

[
kares/(1 + k2R∗ares)

]
, (5.54)

The expression (5.54) is plotted in Fig. 5.5 for two values of the resonance range. For R∗ = r0/2 and
abg = r0 we regain the conditions of the s-wave resonance near threshold as discussed in Section 3.4.9.
For R∗ = 100 r0 the resonant enhancement is narrowed down to a small spectral region. For ares > 0
this region is below threshold and acts as a weakly bound level giving rise to an enhanced scattering
length a� r0 for kr0 � 1. In the limit of vanishing coupling, R∗ →∞, this enhancement vanishes,
a = abg. For ares < 0 the resonance shows up as a narrow spectral feature at −k2R∗ares ' 1; i.e.,
the resonance position is given by

k2
res ' −

1

R∗ares
. (5.55)

We now can distinguish two types of resonances a.) Narrow resonance: for R∗ � r0 the coupling
strength γres is weak and only contributes to the scattering amplitude in a narrow range of energies;
b.) Wide resonance: for R∗ � r0 the coupling strength is strong and affects the scattering amplitude
in a broad range of energies.

In view of the expressions (5.49) and (5.53) the argument of the arctangent is equivalent to

kares
1 + k2R∗ares

= − kγres
εv − ε0 − k2

. (5.56)
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Figure 5.5: Narrow resonances (R∗ = 100 r0 - red and black solid curves) compared with s-wave resonances
near threshold (R∗ = r0/2 - dashed red curves). With respect to an s-wave resonance near threshold with the
same resonant enhancement we find: (a) for positive/negative scattering length the resonant enhancement
is pulled/pushed to lower/higher energy by coupling to a bound state below/above threshold. The red solid
and dashed curves were plotted for the same (positive or negative) scattering-length enhancement (i.e., for
the same detuning of resonance from threshold - see left). For a < 0 the resonance shows up as a spectral
feature at k = kres = (−aresR∗)−1/2 (dotted vertical lines - see right).

From this expression we see that the resonance condition is given by

k2 = εv − ε0 ≡ εres. (5.57)

In terms of this quantity the universal expression for a(k) becomes

a(k) = abg −
1

k
arctan

[
kγres/(εv − ε0 − k2).

]
(5.58)

and the scattering length is given by

a = lim
k→0

a(k) = abg + ares = abg −
1

R∗(εv − ε0)
. (5.59)

5.3.3 Feshbach resonances induced by magnetic fields

For one-electron atoms the potentials corresponding to the open and the closed channels will show
different Zeeman shifts when applying a magnetic field B. This opens the possibility of tuning of
the scattering length near Feshbach resonances. Let us suppose that the differential Zeeman shift
of the closed channel with respect to the asymptote of the open channel is given by the relation

εv(B)− ε0 = (2µ/~2)δµM (B −B0), (5.60)

where δµM is the difference in differential magnetic moment of the two states near the resonance
field B0. Substituting these expressions into Eq. (5.59) we obtain

a = abg −
~2

2µR∗δµM (B −B0)
. (5.61)

This expression can be brought in the well-known form

a = abg

(
1− ∆B

B −B0

)
, (5.62)
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where ∆B is called the magnetic width of the resonance, defined by

∆B ≡
~2

2µabgR∗δµM
. (5.63)

The binding energy as a function of magnetic field detuning is

ε = −κ2 = − 1

r2
0

−1 +
√

1− 4 (R∗/r0)
2

(2µr2
0/~2)δµM (B −B0)

2R∗/r0

2

Note that for abg > r0 the scattering length first decreases with increasing field until the resonance is
reached; beyond the resonance the scattering length increases until the background value is reached
(See Fig. 5.7). For abg < 0 this behavior is inverted.

Zeeman tuning of a Feshbach resonance is an extremely important method in experiments with
ultracold gases as it allows in situ variation of the scattering properties of the gas. When the energy
width of the resonance is large as compared to a typical value for k2 the term broad resonance is
used. In this case all atoms experience the same scattering length. When the resonance is narrower
than k2 the scattering length is momentum dependent and one speaks of a narrow resonance.

Restoring the dimensions

At this point it is appropriate to restore the dimensions. The resonance range is given by

R∗ =
1

2πu2
0

=
(~2/2µ)2

8π2|〈v|V |k〉|2
. (5.64)

Expressing the resonant contribution to the scattering length in terms of this quantity we find

ares =
~2

2µR∗(Ev − E0)
, (5.65)

where

E0 =
2~2kmax

πµR∗
(5.66)

is the resonance shift. Writing the resonant contribution to the scattering length in the form

kresares =
Γ/2

Ev − E0
, (5.67)

where k2
res = |εres|, the spectral width of the resonance becomes

Γ =
~2kres
µR∗

. (5.68)

The magnetic width is

∆B =
~2

2µabgR∗δµM
. (5.69)

The resonance shift is

E0 =
4

π
kmaxabgδµM ∆B . (5.70)

The relation between ∆B and R∗ is

abgδµM∆B =
~2

2µR∗
.
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The bound states in the closed channel correspond to singlet states and they can be Zeeman
shifted with respect to ε = 0 asymptote of the MS = −1 triplet channel with the aid of a magnetic
field. A given singlet bound state at energy Ec =

(
~2/m

)
εc will shift with respect to the triplet

asymptote in accordance with
Ec(B) = Ec + µMB,

where µM is the difference in magnetic moment of the two channels. In this particular case
µM = 2µB . Replacing εc by εc(B) = εc + µM

(
m/~2

)
B = µM

(
m/~2

)
(B −Bres), where Bres =

−
(
~2/m

)
εc/µM is the resonance field Eq. (5.100) can be written as

1

r0 − a
=

1

r0 − abg
− Bγres

(r0 − abg) (B −Bres)
, (5.71)

where we introducedBγres =
(
~2/m

)
γres (abg − r0) /µM , a characteristic field reflecting the strength

of the resonance and chosen to be positive for abg > r0. Eq. (5.71) can be rewritten as

a = abg

[
1 +

(r0 − abg)
abg

(
Bγres

B −Bres +Bγres

)]
= abg

(
1− ∆B

B −B0

)
, (5.72)

where ∆B = Bγres (r0 − abg) /abg =
(
~2/m

)
γres (abg − r0)

2
/abgµM is the Feshbach resonance

width, again chosen to be positive for abg > r0, and B0 = Bres−Bγres the apparent Feshbach reso-
nance field. Not surprisingly, in case of weak Feshbach coupling (Bγres � Bres) one has B0 ' Bres
and Eq. (5.72) reduces to

a ' abg
(

1− ∆B

B −Bres

)
. (5.73)

Note that for abg > r0 the scattering length first decreases with increasing field until the resonance is
reached; beyond the resonance the scattering length increases until the background value is reached
(See Fig. 5.7). For abg < 0 this behavior is inverted.

Zeeman tuning of a Feshbach resonance is an extremely important method in experiments with
ultracold gases as it allows in situ variation of the scattering properties of the gas. When the energy
width of the resonance is large as compared to a typical value for k2 the term broad resonance is
used. In this case all atoms experience the same scattering length. When the resonance is narrower
than k2 the scattering length is momentum dependent and one speaks of a narrow resonance.

5.3.4 Relation to the scattering amplitude

Rather than expanding the arctangent we factorize the S matrix,

S0(k) = e−2ikabge−2ikares(k). (5.74)

The resonance contribution to the phase shift can be written in the form1

− 2ikares(k) = 2i arctan
[
kγres/(εres − k2)

]
= − ln

[
εres − k2 − ikγres
εres − k2 + ikγres

]
. (5.75)

Hence, we find for the resonant contribution to the S matrix

Sres(k) =
εres − k2 + ikγres
εres − k2 − ikγres

= 1 +
2ikγres

εres − k2 − ikγres
. (5.76)

1Here we use the logarithmic representation of the arctangent with a real argument α,

arctanα =
i

2
ln

1− iα
1 + iα

.
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Using (4.46) and (5.49/5.53) we find for the scattering amplitude [54]

fres = − γres
k2 − εres + ikγres

= − 1

1/ares + k2R∗ + ik
. (5.77)

Restoring the dimensions this becomes

fres = − 1

kres

Γ/2

E − Eres + i(k/kres)(Γ/2)
. (5.78)

5.3.5 Pure singlet and triplet potentials modeled by spherical square wells

Let us model a two channel system with square well potentials like in section 3.4.2, with the triplet
potential represented by a square well of range r0 shown as the solid line in Fig. 5.6, with Vt(r) = −κ2

o

for r ≤ r0 and Vt(r) = 0 for r > r0; i.e., open for s-wave collisions at energy ε = k2. Similarly,
the singlet potential is represented by a square well of the same range r0, the dashed gray line in
Fig. 5.6, with Vs(r) = −κ2

c for r ≤ r0, measured relative to the asymptote of the triplet potential at
ε = 0 and Vs(r) � k2 for r > r0; i.e., at the energy ε = k2 only supporting bound states because
its asymptotic energy is much higher than the collision energy. In the present example pure triplet
and singlet potentials are associated with open and closed s-wave scattering channels, respectively.

For the triplet potential the radial wave function is given by Eq. (3.69). The full radial wave-
function, including spin part, describing the motion in the open channel is written as

|ψo〉 =
sin(kr + η0)

kr
|1,mS〉 for r ≥ r0 (5.79a)

|ψo〉 =
sinK+r

K+r
|1,mS〉 for r < r0 (5.79b)

where K+ =
√
κ2
o + k2 is the wavenumber of the relative motion.

The singlet potential only has bound-state radial wave functions with the full wavefunction
describing the motion in the closed channel being written as1

|ψc〉 = 0 for r ≥ r0 (5.80a)

|ψc〉 =
sinK−r

K−r
|0, 0〉 for r < r0. (5.80b)

Bound states occur for K−r0 = nπ = qnr0; i.e., for energies εn = q2
n with respect to the potential

bottom. We have K− =
√
κ2
c + k2 for the wavenumber of the relative motion at the collision energy

ε = k2. where Vs(r) = −κ2
c for r < r0 corresponds to the depth of the singlet potential (see Fig. 5.6).

The energy εc = εn−κ2
c−k2 defines the energy of the n-th bound state of the closed channel relative

to ε = k2 and can be positive or negative.

5.3.6 Coupling between open and closed channels

In this section we consider the case of a weak coupling Ω between the open and the closed channel.2

In the presence of this coupling the interaction operator of the previous section takes the form

U(r) = −κ2
o |1,mS〉 〈1,mS | − κ2

c |0, 0〉 〈0, 0|+ Ω {|0, 0〉 〈1,mS |+ |1,mS〉 〈0, 0|} for r < r0 (5.81)

with U(r) = 0 for r ≥ r0. Here we used the definition U(r) ≡
(
2µ/~2

)
V(r). The coupling will mix

the eigenstates of the uncoupled hamiltonian into new eigenstates |ψ±〉 and cause the wavenumbers
K± to shift to new values which we shall denote by q±.

1Here we presume for simplicity Vt(r)→∞ for r ≥ r0.
2See Cheng Chin, cond-mat/0506313 (2005).
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Figure 5.6: Plot of the potentials corresponding to the open (black solid line) and closed (gray dashed line)
channel with related notation. The asymptote of the closed channel is presumed to be at a high positive
energy and is not shown in this figure.

Turning to distances within the well (r < r0) we note that for arbitrary triplet-singlet mixtures
the solutions of the corresponding 1D-Schrödinger equation[

−∇2
r + U(r)

]
|χ〉 = ε |χ〉 (5.82)

should be of the form

|χ〉 = A sin qr {cos θ |1,mS〉+ sin θ |0, 0〉} for r < r0 (5.83a)

|χ〉 = sin(kr0 + η0) |1,mS〉 for r ≥ r0. (5.83b)

Here the coupling angle θ defines the spin mixture of the coupled states such that the spin state
remains normalized. For θ = 0 the wavenumber q corresponds to the pure triplet value (q = K+)
and with increasing θ the wavenumber crosses over to the pure singlet value q = K− at θ = π/2.

Substituting Eq. (5.83a) into the 1D-Schrödinger equation we obtain two coupled equations

〈1,mS |
[
−∇2

r + U(r)− k2
]
|χ〉 = A sin qr

{[
q2 − κ2

o − k2
]

cos θ + Ω sin θ
}

= 0 (5.84a)

〈0, 0|
[
−∇2

r + U(r)− k2
]
|χ〉 = A sin qr

{
Ω cos θ +

[
q2 − κ2

c − k2
]

sin θ
}

= 0. (5.84b)

The solutions are obtained by solving the secular equation∣∣∣∣ [q2 − κ2
o − k2

]
Ω

Ω
[
q2 − κ2

c − k2
] ∣∣∣∣ = 0, (5.85)

which amounts to solving a quadratic equation in
(
q2 − k2

)
and results in

q2
± = k2 +

1

2

(
κ2
o + κ2

c

)
± 1

2

√
(κ2
o − κ2

c)
2

+ 4Ω2. (5.86)

For weak coupling (i.e., for Ω� κ2
o, κ

2
c and

∣∣κ2
o − κ2

c

∣∣) and presuming κ2
o − κ2

c > 0 as in Fig. 5.6 the
two solutions can be expressed in terms of shifts with respect to the unperturbed wavenumbers

q2
± = K2

± ±
Ω2

(κ2
o − κ2

c)
+ · · · . (5.87)

Note that the coupling makes the deepest well deeper and the shallowest well shallower.
The eigenstates corresponding to the new eigenvalues q± can be written as

|χ±〉 = A± sin q±r |±〉 , (5.88)
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where we introduced the notation |±〉 = cos θ± |1,mS〉+ sin θ± |0, 0〉. To establish how θ± depends
on the coupling Ω we return to Eqs.(5.84) and notice that these equations should hold for arbitrary
values of r ≤ r0. Using the upper equation to fix θ+ and the lower equation to fix θ− we find for
the limit of weak coupling

tan θ+ = cot θ− = −
q2
± −K2

±
Ω

' − Ω

(κ2
o − κ2

c)
. (5.89)

Hence for weak coupling the coupling angles satisfy the relation θ+ = (n+ 1/2)π− θ− ≡ θ and the
spin states are given by

|+〉 = + cos θ |1,mS〉+ sin θ |0, 0〉 (5.90a)

|−〉 = − sin θ |1,mS〉+ cos θ |0, 0〉 . (5.90b)

Having established the effect of the coupling Ω on both q± and θ± we are in a position to write
down the general solution of the radial wave equation for r ≤ r0,

|ψ〉 = A+
sin q+r

q+r
|+〉+A−

sin q−r

q−r
|−〉 . (5.91)

To fully pin down the wavefunction and to obtain the phase shift in the presence of the coupling we
have to impose onto |ψ〉 the boundary conditions at r = r0. Because for r ≥ r0 the wavefunction is
a pure triplet state we rewrite Eq. (5.91) in the form |ψ(r)〉 = ψt(r) |1,mS〉+ψs(r) |0, 0〉, expressing
the effect of the coupling on the triplet and singlet amplitudes,

|ψ(r)〉 =

{
A+ cos θ

sin q+r

q+r
−A− sin θ

sin q−r

q−r

}
|1,mS〉+

+

{
A+ sin θ

sin q+r

q+r
+A− cos θ

sin q−r

q−r

}
|0, 0〉 . (5.92)

We notice that the amplitudes ψt(r) and ψs(r) consist of two terms, one term displaying the spatial
dynamics of the |ψ+(r)〉 eigenstate of the coupled system and another term doing the same for the
|ψ−(r)〉 state.

At the boundary the singlet amplitude ψs(r) should vanish, which implies the condition

A−
A+

= −q− sin q+r0

q+ sin q−r0
tan θ. (5.93)

Further, the amplitude ψt(r) of the triplet component should be continuous in r = r0, which implies

ψt(r0) =
sin k(r0 − a)

kr0
= A+

{
cos θ

sin q+r0

q+r0
− A−
A+

sin θ
sin q−r0

q−r0

}
. (5.94)

In combination with Eq. (5.93) this equation can be rewritten in a form defining the A+ or A−
coefficients independently,

sin(kr0 + η0)

kr0
=

sin q+r0

q+r0

A+

cos θ
= − sin q−r0

q−r0

A−
sin θ

. (5.95)

Using this result in imposing continuity on the logarithmic derivative ψ′t(r)/ψt(r) of the triplet
amplitude in r = r0 we obtain

k cot(kr0 + η0) = q+ cot q+r0 cos2 θ + q− cot q−r0 sin2 θ ≡ Q+ +Q− = Q, (5.96)
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which reduces in the limit k → 0 to

1

r0 − a
= Q+ +Q−. (5.97)

The first term on the r.h.s. gives the contribution of the triplet channel to the scattering length.
As this is the open channel it is only marginally affected by the weak coupling to the closed channel.
Comparing with Eq. (3.74) and approximating cos2 θ ' 1 and q+ ' K+ this term is written as

Q+ =
q+ cos2 θ

tan q+r0
' 1

r0 − abg
, (5.98)

where abg is known as the background scattering length. To first approximation abg simply equals
the scattering length in the absence of the coupling.

The second term on the r.h.s. of Eq. (5.97) is the contribution of the closed channel. In general
this term will be small because the coupling angle θ is small in the limit of weak coupling. However,
an important exception occurs for q−r0 = nπ, when this term diverges. This happens when a bound
state of the closed channel is resonant with the collision energy ε = k2 in the open channel. Defining
εc as the energy of the n-th bound state relative to ε = k2, the resonance condition for this state
can be written as qnr0 = nπ = r0

√
κ2
c + k2 + εc. For |εc| � κ2

c + k2 this enables the expansion

q− =
√
κ2
c + k2 ' qn

(
1− εc/2q2

n + · · ·
)
. In accordance, the denominator of the second term of

Eq. (5.97) can be expanded as tan q−r0 ' −εcr0/2qn and approximating q− ' qn ' κc we obtain

Q− =
q− sin2 θ

tan q−r0
' −2κ2

cθ
2

εcr0
. (5.99)

Thus, combining Eqs.(5.98) and (5.99), we arrive at the following important expression for the
scattering length:

1

r0 − a
=

1

r0 − abg
− γres

εc
, (5.100)

where Γ = 4κ2
cθ

2/r0 is known as the Feshbach coupling strength. Eq. (5.100) shows that the scat-
tering length diverges whenever εc is small. Hence, the divergence occurs whenever the coupling
connects the open channel to a resonant level in the closed channel. This resonance phenomenon is
known as a Feshbach resonance.

5.3.7 Feshbach resonances

In this section we characterize Feshbach resonances in a system of one closed and one open channel
using the model potentials of the previous section. As a starting point we note that resonances
occur whenever

k cot η0 = 0⇔ η0 = (n+ 1
2 )π. (5.101)

Indeed, in this case the scattering amplitude diverges in accordance with the unitary limit,

f0 =
1

k cot η0 − ik
= − 1

ik
(5.102)

Our first task is to obtain a criterion for the occurrence of Feshbach resonances. Writing the
boundary condition (5.96) in the form

η0 ' −kr0 + tan−1 k

Q+ +Q−
(5.103)

We can expand q− cot q−r0 around the points of zero crossing. Writing q− = [κ2
c + (kres + δk)

2
]1/2,

where δk = k − kres, we have for |δk|kres � Q2
res ≡ κ2

c + k2
res

q− ' [κ2
0 + k2

res + 2δk kres]
1/2 ' Qres + δk kres/Qres. (5.104)
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Hence, close to the zero crossings
(
|δk|kres � Q2

res

)
we may approximate q− ' Qres and obtain

k

Q+ +Q−
' − 1

Q+ + δk r0θ2
' − (k + kres)

Q+ + (k2 − k2
res)r0

. (5.105)

Using this expression the resonant phase shift can be written as a function of the collision energy
E = ~2k2/2µ

tan ηres =
−Γ/2

δEres + E − Eres
, (5.106)

where Γ(k) = ~2 (k + kres) /(µr0 sin θ2) is called the width and Eres − δEres = ~2k2
res/2µ− δEres the

position

~2 (k + kres)

2µr0

r0

(r0 − a)

we can apply the angle-addition formula for the tangent. Restricting ourselves to slow collisions
(kr0 � 1) the boundary condition becomes

k cot η0 =
1

r0

Qr0 + k2r2
0 + · · ·

1 + k2r2
0 − (Qr0 + k2r2

0)(1 + 1
3k

2r2
0 + · · · )

. (5.107)

For simplicity we restrict ourselves in the rest of this section to cases without resonance structure
in the open channel; i.e., Q+r0 ' 1 for kr0 � 1. Comparing Eqs. (5.101) and (5.103) the criterion
for the occurrence of a Feshbach resonance is found to be

Qr0 + k2r2
0 ' 1 +Q−r0 = 0. (5.108)

Dividing Eq. (5.107) in numerator and denominator by
(
Q+ k2r0 + · · ·

)
the boundary condition

takes the form

k cot η0 =
1

r0

1

ares(k)− r0(1 + 1
3k

2r2
0 + · · · )

, (5.109)

where ares(k) is the k-dependent resonant contribution to the scattering length

ares(k) =
r0

1 +Q−r0
. (5.110)

In this notation the scattering amplitude and the cross section are given by

f0 =
ares(k)− r0(1 + 1

3k
2r2

0 + · · · )
1− ik[ares(k)− r0]

(5.111a)

σ(k) = 4π
[ares(k)− r0]2

1 + k2[ares(k)− r0]2
. (5.111b)

Here we used ares(k)k2r3
0 � [ares(k) − r0]2. Since ares(k) diverges tangent-like (or cotangent-like)

around k = kres we find that the cross section has an asymmetric lineshape (provided r0 6= 0),
and is zero when a(k) = r0. Note that the cross section changes-over from the value σ = 4πr2

0 for
conditions far from resonance (ares = 0) to σ = 4π/k2 exactly on resonance. Introducing the overall
scattering length −a = ares(k)−r0 the expression for the cross section takes the well known general
form

σ(k) = 4π
a2

1 + k2a2
, (5.112)
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and a is given by

a = r0

(
1− 1

1 +Q−r0

)
. (5.113)

What remains to be done is to write the scattering length as a function a = a(B,E) of colli-
sion energy E and magnetic field B. For this purpose we expand Q−r0 around the value −1.
Restricting ourselves for convenience to deep potentials (κcr0 � 1) we note that q−r0 � 1 and
Q−r0 = q−r0 cot q−r0 sin2 θ = −1 for q−r0 ' (n + 1

2 )π. Recalling the boundary condition for the
bound states in the closed channel, qnr0 = nπ and accounting for the change in well depth (5.87),

−
(
κ2
o − κ2

c

)
tan2 θ, we obtain q−r0 = r0

√
κ2
c − (κ2

o − κ2
c) tan2 θ + k2 + εn − εn, which we write for

purposes of the expansion of cot q−r0 around qnr0 + 1
2π in the form

q−r0 '
(
qnr0 + 1

2π
)
− 1

2π −
1
2εnr0/qn − 1

2 tan2 θ
(
κ2
o − κ2

c

)
r2
0/qn.

For very weak coupling,

1
2

(
κ2
o − κ2

c

)
r2
0

tan2 θ

qnr0
� 1

2π,

we can neglect the change in well depth and obtain

1 +Q−r0 = 1 + q−r0 cot q−r0 sin2 θ

= 1− 1
2πqnr0 sin2 θ + 1

2εnr
2
0 sin2 θ

(
1 + 1

2εnr0/qn
)
,

where the expansion of the cotangent is only valid as long as 1
2εnr0/qn � 1

2π. Furthermore, for

very weak coupling, 1
2πqnr0 sin2 θ � 1, we may further approximate,

1

1 +Q−r0
=

γres
γres + εn

.

Here Γ = (2/r0 sin θ)
2

is the resonance width. Substituting εn ≡ k2
n − k2, with k2

n representing
the resonance energy relative to the asymptote of the open channel at the magnetic field of the
measurement, we obtain

1

1 +Q−r0
=

µrel∆B

µrel∆B + µrel (B −Bn)− ~2k2/2µ
.

Thus, the resonance is observed at the field where B0 = Bn −∆B

∆B =
~2

2µ

2

r2
0 sin2 θ

a = r0

(
1 +

µrel∆B

~2k2/2µ− µrel (B −B0)

)
. (5.114)

The phase shift is given by

η0 = −kr0 − tan−1 kr0µrel∆B

~2k2/2µ− µrel (B −B0)
. (5.115)
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Figure 5.7: Example of the magnetic field dependence of a scattering length in the presence of a Feshbach
resonance. Note that far from the resonance the scattering length attains its background value abg.
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6

Kinetic phenomena in dilute quasi-classical gases

The statistical theory of Chapter 1 was developed to describe the equilibrium properties of gaseous
systems. This does not provide us information about the time scales on which the equilibrium
is reached. Thermal equilibrium in dilute atomic gases arises as the result of random collisions
between the atoms, which is the domain of kinetic theory. In the present chapter we discuss how
binary collisions affect the phase space distribution of a dilute gas of neutral atoms moving quasi-
classically under the influence of an external potential. To keep the discussion general we allow for
the presence ν components, in principle all experiencing different confinement potentials, Ui(r) with
i ∈ {1, · · · , ν}.

6.1 Boltzmann equation for a collisionless gas

Let us presume that at a given time t the phase-space distribution of a dilute gas of neutral atoms is
given by the dimensionless distribution function f(r,p, t), not necessarily the equilibrium function.
The quantity f(r,p, t) represents the phase-space occupation at point (r,p); i.e., the number of

atoms at time t present within an elementary phase space volume (2π~)
3

near the phase point
(r,p). In quasi-classical gases this occupation is small, f(r,p, t) < 1. We ask for the evolution
of f(r,p, t) as a function of time. The number of atoms at time t present within an infinitesimal

volume drdp in phase space near the phase point (r,p) is given by (2π~)
−3
f(r,p, t)drdp. In the

absence of collisions the same number of atoms will be found at a slightly later time t′ = t + dt in
a slightly displaced and distorted volume dr′dp′ near the phase point (r′,p′). Hence,

f(r′,p′, t′)dr′dp′ = f(r,p, t)drdp. (6.1)

The points (r,p) and (r′,p′) are related by a coordinate transformation in phase space, which follows
from the Newton equations of motion,

r′ = r + ṙ dt = r + (p/m) dt (6.2a)

p′ = p + ṗ dt = p + F dt, (6.2b)

where ṗ = F = − gradU(r) is the force imposed on the atoms by the external potential U(r).
Fortunately, the Jacobian of the transformation dr′dp′ = |∂ (r′,p′) /∂ (r,p)| drdp is unity (see
Problem 6.1). Therefore, Eq. (6.1) can be written in the form

f(r + ṙ dt,p + ṗ dt, t+ dt)− f(r,p, t) = 0. (6.3)

Physically this means that the phase space density is conserved for an observer moving along with
the atoms, which expresses the Liouville theorem. By Taylor expansion of f(r+ ṙ dt,p+ ṗ dt, t+dt)

153
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in Cartesian coordinates to first order in dt Eq. (6.3) takes the form Df(r,p, t)dt = 0, where D is
the differential operator defined by1

D ≡ ṙi
∂

∂ri
+ ṗi

∂

∂pi
+
∂

∂t
with i ∈ {x, y, z}. (6.4)

Hence, Eq. (6.3) holds when the linear partial differential equation Df(r,p, t) = 0 is satisfied. This
equation is called the Boltzmann equation for collisionless classical gases. In vector notation it takes
the form (

ṙ · ∂
∂r

+ ṗ · ∂
∂p

+
∂

∂t

)
f(r,p, t) = 0, (6.5)

where ∂/∂r ≡ ∂r ≡∇ and ∂/∂p ≡ ∂p are the gradient operators in position and momentum space,
∂/∂t ≡ ∂t the partial derivative with respect to time, ṙ = v the atomic velocity and ṗ = F the force
on the atoms. Thus, Eq.(6.5) also can be written in the compact form

(v · ∂r + F · ∂p + ∂t) f(r,p, t) = 0, (6.6)

Solving a partial differential equation with 7 variables is in general a non-trivial task. In contrast,
it is easy to verify that the equilibrium distribution function f0(r,p, t) for ideal gases obtained in
Chapter 1 is indeed a solution of Eq. (6.6),

f0(r,p, t) = n0Λ3 exp[−H0(r,p)/kBT ]. (6.7)

Here H0(r,p) = p2/2m + U(r) is the classical Hamiltonian for atoms of mass m in the external
potential U(r), n0 = N/Ve the central density for a cloud of N atoms with Ve =

´
exp[−U(r)/kBT ]dr

the effective volume and Λ = (2π~2/mkBT )1/2 the thermal wavelength, both at temperature T . For
the left hand side of Eq. (6.6) we obtain with Eq. (6.7)

Df0 = −vi
∂U
∂ri

f0 − Fi
pi
m
f0, (6.8)

which indeed evaluates to zero since −(∂U/∂ri) = Fi = ṗi and pi/m = vi.

Problem 6.1. Show that the Jacobian for the transformation

dr′dp′ =

∣∣∣∣∂ (r′,p′)

∂ (r,p)

∣∣∣∣ drdp, (6.9)

describing the infinitesimal distortion of an infinitesimal volume in phase space as a result of free evolution
in time is unity.

Solution. The free evolution in the x direction is described by

x′ = x+ ẋ dt = x+ (px/m) dt

p′x = px + ṗx dt = px + Fx dt.

Hence, the Jacobian for the transformation in the x direction dx′dp′x = |∂ (x′, p′x) /∂ (x, px)| dxdpx is given
by

∂ (x′, p′x)

∂ (x, px)
=

∣∣∣∣ ∂x′/∂x ∂x′/∂px
∂p′x/∂x ∂p′x/∂px

∣∣∣∣ =

∣∣∣∣ 1 (1/m) dt
(∂Fx/∂x) dt 1

∣∣∣∣ = 1− ∂Fx
m∂x

(dt)2 .

The Jacobian of the transformation 6.9 is given by the modulus of the product of three such terms. Since the
deviation from unity vanishes quadratically with dt the Jacobian becomes unity in the infinitesimal limit.2

1Here we use the Einstein summation convention for repeating indices.
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6.2 Boltzmann equation in the presence of collisions

The obvious challenge is to include collisions in the Boltzmann equation. Starting again from the
phase-space occupation f(r,p, t) of a dilute atomic gas at time t trapped in the external potential
U(r), we note that on a time scale t � τ ; i.e., short as compared to the average time interval τ
between two collisions of the same atom, the time evolution of f(r,p, t) remains governed by the
Newton equations of motion (6.2). This holds certainly for the infinitesimal time dt. However, even
during the time dt atoms can scatter into or out off the infinitesimal volume drdp during its motion
from point (r,p) to point (r + ṙ dt,p + ṗ dt) in phase space. Denoting the infinitesimal change in

the number of atoms over the period dt by (2π~)
−3

Γc(r,p, t)drdpdt Eq. (6.3) has to be replaced by.

f(r + ṙ dt,p + ṗ dt, t+ dt)dr′dp′ = f(r,p, t)drdp + Γc(r,p, t)drdpdt. (6.10)

Taylor expansion of f(r + ṙ δt,p + ṗ δt, t+ dδ) in Cartesian coordinates to first order in δt yields for
the total time derivative of the phase space occupation

d

dt
f(r,p, t) = lim

δt→0

f(r + ṙ δt,p + ṗ δt, t+ dδ)− f(r,p, t)

δt
= ṙ · ∂f

∂r
+ ṗ · ∂f

∂p
+
∂f

∂t
(6.11)

Combining Eqs. (6.10) and (6.11) we obtain after substitution of ṙ = v and ṗ = F

(v · ∂r + F · ∂p + ∂t) f(r,p, t) = Γc(r,p, t). (6.12)

In shorthand notation this equation becomes

df

dt
= Df = Γc, (6.13)

where f ≡ f(r,p, t), Γc ≡ Γc(r,p, t) and D is given by Eq. (6.4). Equation (6.12) is called the
Boltzmann equation and

Γc(r,p, t) ≡ Γ(+)
c (r,p, t) + Γ(−)

c (r,p, t) (6.14)

is the collision term, the net rate at which the phase-space occupation f(r,p, t) increases (+) or
decreases (−) at point (r,p) and time t.

To obtain an expression for the collision term we analyze in the coming sections the elementary
collision processes. We restrict ourselves to elastic collisions. Before the collision the motion of the
atoms is presumed to be uncorrelated. This is called the assumption of molecular chaos. In dilute
gases this fundamental approximation is well satisfied because the collisions occur as well-separated
binary events. Further, as the collisional behavior depends on the properties of the colliding atoms,
the collision rate depends on the composition of the gas. Therefore, to keep the discussion general
in this respect we presume the gas to consist of ν components.

6.2.1 Loss contribution to the collision term

For a dilute gas of ν components the rate of loss of phase-space occupation of atoms of type i ∈
{1, 2, · · · , ν} at point (r,pi) and time t as the result of collisions with atoms of type j ∈ {1, 2, · · · , ν}
is given by

Γ(−)
c (r,pi, t) = −

ν∑
j=1

fi(r,pi, t)
1

(2π~)3

ˆ
dpj fj(r,pj , t)vijσij(vij). (6.15)

where

Rij = vijσij(vij) = vij

ˆ
dΩ′σij(vij ,Ω

′) (6.16)

is the scattering rate per unit density for one pair of atoms (of types i and j) in a given initial state
of relative momentum pij = µij(pi/mi−pj/mj) and with total cross section σij(vij) (cf. Appendix
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Figure 6.1: Elastic scattering of a matter wave from a centrally symmetric scattering potential in the center-
of-mass-fixed coordinate system. Indicated are the scattering angle (polar angle) ϑ and the azimuthal angle
ϕ, which defines the scattering plane.

A.7 for a discussion of center-of mass and relative coordinates). To keep the notation compact and
self-explanatory we use the relative speed vij = pij/µij = |pi/mi − pj/mj | rather than the relative
momentum and write

Ω′ = p̂′ij = (ϑ′, ϕ′) (6.17)

for the direction of motion of the reduced mass µij after scattering. This direction is defined relative
to the initial direction p̂ij . The angles are illustrated in Fig. 6.1. The polar angle ϑ′ is given by
cosϑ′ = p̂ij · p̂′ij and is called the scattering angle. The azimuthal angle ϕ′ defines the plane of
scattering in the center of mass frame. In elastic collisions the relative speed vij is a conserved
quantity.

The total cross section is given by the angular integral over σij(vij ,Ω
′), the differential cross

section for scattering with relative speed vij in the direction Ω′,

σij(vij ,Ω
′) =

 |f(vij ,Ω
′)|2 (i 6= j)

|f(vij ,Ω
′)± f(vij ,−Ω′)|2 (i = j) .

(6.18)

The quantity f(vij ,Ω
′), with dimension length, is the scattering amplitude. As discussed in Chapter

4) the relation between the partial cross section and the scattering amplitude depends on the identity
of the particles involved: for i = j we distinguish between identical bosons and identical fermions
by symmetrization (+) and antisymmetrization (−) of the scattering amplitudes, respectively.

6.2.2 Relation between T matrix and scattering amplitude

To reveal the underlying symmetries of the collision term in the Boltzmann equation we use Fermi’s
golden rule of time-dependent perturbation theory to write an expression for the loss contribution
(6.15),

Γ(−)
c (pi, t) = −

ν∑
j=1

npi(t)
∑
pj

npj (t)
∑
p′i,p

′
j

2π

~
|〈p′i,p′j |T |pi,pj〉|2δ(E − E′). (6.19)

Here npi(t) is the occupation of state |pi〉 at time t with i ∈ {1, · · · , ν}. The double summation in
Eq. (6.19) represents the overall transition rate Rij from the initial state |pi,pj〉 into any state in the
quasi-continuum of final states |p′i,p′j〉 under conservation of energy and momentum (Fermi’s golden
rule). The matrix elements 〈p′i,p′j |T |pi,pj〉 represent the transition amplitude between the (unit
normalized and properly symmetrized) eigenstates |pi,pj〉 and |p′i,p′j〉 before and, respectively, after
the collision. These matrix elements define the so-called transition matrix (short: T matrix) and
have the dimension of energy. The operator T is called the transition operator and depends in cold
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atomic gases only the electromagnetic interaction, which is invariant under time reversal (t → −t)
and space inversion (r→ −r),

〈p′i,p′j |T |pi,pj〉 = 〈−pi,−pj |T | − p′i,−p′j〉 (time reversal) (6.20)

〈p′i,p′j |T |pi,pj〉 = 〈−p′i,−p′j |T | − pi,−pj〉 (space inversion). (6.21)

Hence, the T matrix is also invariant under the combination of these two operations, which is the
state inversion of initial and final states,1

〈p′i,p′j |T |pi,pj〉 = 〈pi,pj |T |p
′
i,p
′
j〉 (state inversion). (6.22)

To determine the relation between the T matrix and the scattering amplitude f(vij ,Ω
′) we make

the continuum transition (1.15) from the quantum mechanical expression (6.19) to its quasi-classical
analogue,

Γ(−)
c (r,pi, t) = −

ν∑
j=1

fi(r,pi, t)
1

(2π~)3

ˆ
drjdpjfj(r,pj , t)×Rij , (6.23)

where the overall transition rate Rij takes the form

Rij =
1

(2π~)6

ˆ
dr′idr

′
jdp
′
idp
′
j

2π

~
|〈p′i,p′j |T |pi,pj〉|2δ(E − E′). (6.24)

In making this transition we presumed implicitly that it is possible to define at position r a quan-
tization volume L3 over which the system can be treated as a locally homogeneous quasi-classical
gas. The quasi-classical approximation is valid if L can be chosen large as compared to the range
r0 of the interaction potential, r0 � L; the gas is homogeneous over the volume L3 if L is much
smaller than the characteristic size Le of the gas cloud, L � Le. Combining these two conditions
we find that the quasi-classical expression for the collision term is valid if

r0 � L� Le. (6.25)

This is only possible if the confinement by the external potential U(r) is not too tight. Integrating
over the quantization volume we obtain for the transition rate per unit density

Rij =
(2π~)−3L9

4π2~4

ˆ
dp′idp

′
j〈pi,pj |T

†|p′i,p′j〉〈p′i,p′j |T |pi,pj〉δ(E − E′). (6.26)

Next we transform to the center of mass and relative momentum. As the interaction does not affect
the center of mass motion it can be factored out and we obtain

Rij =
(2π~)−3L9

4π2~4

ˆ
dp′dP′〈P|P′〉〈P′|P〉δ(E−E′)×

 |〈p
′|T |p〉|2 (i 6= j)

|〈p′|T |p〉 ± 〈p′|T | − p〉|2 (i = j) .
(6.27)

To avoid the redundant proliferation of indices we suppressed the common subscript ij in all quan-
tities associated with the center of mass and relative motion; i.e., µij → µ, Pij → P, p′ij → p′, etc..

After integration over P′ the expression for the scattering rate becomes2

Rij =
L6

4π2~4

ˆ
dp′δ(p2/2µ− p′2/2µ)×

 |〈p
′|T |p〉|2 (i 6= j)

|〈p′|T |p〉 ± 〈p′|T | − p〉|2 (i = j) .
(6.28)

1The invariance under state inversion remains valid also in the presence of spin.
2Recalling Eq. (1.15) we substitute

´
dP′〈P|P′〉〈P′|P〉 = (2π~/L)3

´
dP′〈P|P′〉δ(P−P′).
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Here we used the normalization 〈P|P〉 = 1. Transforming to spherical coordinates for the relative
motion dp′ = dΩ′dp′p′2 and using the delta function property δ(p2/2µ− p′2/2µ) = (µ/p′) δ(p− p′)
we obtain after integration over p′

Rij = vij

ˆ
dΩ′σij(vij ,Ω

′), (6.29)

where we restored the indices and

σij(vij ,Ω
′) =

µ2L6

4π2~4
×

 |〈p
′|T |p〉|2 (i 6= j)

|〈p′|T |p〉 ± 〈p′|T | − p〉|2 (i = j) .
(6.30)

is the differential cross section (with |p′| = |p|). Comparing Eq. (6.18) with (6.30) we arrive at the
following relation between the scattering amplitude and the transition matrix element,

f(vij ,Ω
′) =

µL3

2π~2
〈p′ij |T |pij〉. (6.31)

6.2.3 Gain contribution to the collision term

We are now half-way in deriving an expression for the full collision term Γc(r,pi, t) in the Boltzmann

equation and turn to the gain contribution Γ
(+)
c (r,pi, t), which represents the overall transition

rate from any initial state |p′i,p′j〉 to any of the final states |pi,pj〉 in which the atom of type i

emerges under conservation of energy and momentum moving with momentum pi at position r.1

Implementing right from the start the invariance of the T matrix under state inversion of the initial
and final states, this contribution can be written as

Γ(+)
c (pi, t) =

ν∑
j=1

∑
p′i,p

′
j

np′i(t)np′j (t)
∑
pi

2π

~
|〈p′i,p′j |T |pi,pj〉|2δ(E − E′). (6.32)

Like in the case of the loss contribution we make the continuum transition (1.15) and transform to
the center of mass and relative momentum. To keep the discussion compact we demonstrate this
only for unlike atoms,

Γ(+)
c (r,pi, t) =

ν∑
j=1

1

(2π~)3

ˆ
dpjdP

′dp′fi(r, (mi/M) P′ + p′, t) fj(r, (mj/M) P′ − p′, t)×

L6

4π2~4
〈P|P′〉δ(P−P′)|〈p′|T |p〉|2δ(E − E′). (6.33)

After integration over P′ the becomes

Γ(+)
c (r,pi, t) =

ν∑
j=1

1

(2π~)3

ˆ
dpjdp

′fi(r, (mi/M) P + p′, t) fj(r, (mj/M) P− p′, t)×

L6

4π2~4
|〈p′|T |p〉|2δ(p2/2µ− p′2/2µ). (6.34)

This integration takes care of the momentum conservation. Transforming to spherical coordinates
for the relative motion dp′ = dΩ′dp′p′2 and integrating over p′ we also account for the energy
conservation

Γ(+)
c (r,pi, t) =

ν∑
j=1

1

(2π~)3

ˆ
dpj

ˆ
dΩ′ fi(r,p

′
i, t)fj(r,p

′
j , t)vijσij(vij ,Ω

′). (6.35)

1Note that for the loss/gain contribution the primed quantities refer to the initial/final states.
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Here p′i = (mi/M) P+p′, p′j = (mj/M) P−p′ and σij(vij ,Ω
′) is the differential cross section. It is

straightforward to show that Eq.(6.35) also holds in the general case; i.e., for like as well as atoms.
Importantly, Eq.(6.35) cannot be further reduced to the form (6.15) because p′i and p′j depend on
Ω′.

6.2.4 Boltzmann equation

Combining the gain and loss terms we obtain the Boltzmann equation for component i of a ν
component mixture

(v · ∂r + Fi · ∂pi + ∂t) fi =

ν∑
j=1

1

(2π~)3

ˆ
dpjdΩ′vijσij(vij ,Ω

′)(f ′if
′
j − fifj). (6.36)

Here we use the shorthand notation f ′i ≡ fi(r,p
′
i, t), f

′
j ≡ fj(r,p

′
j , t) and fi ≡ fi(r,pi, t), fj ≡

fj(r,pj , t), where the primed momentum states are given by

p′i = (mi/Mij) (pi + pj) + µij |pi/mi − pj/mj | p̂′ij (6.37a)

p′j = (mj/Mij) (pi + pj)− µij |pi/mi − pj/mj | p̂′ij . (6.37b)

To finish this section we verify that the equilibrium distribution function for ideal gases obtained
in Chapter 1 indeed provides a solution of Eq. (6.36). Using the Boltzmann distribution the product
f ′if
′
j is given by

fi(r,p
′
i, t)fj(r,p

′
j , t) = niΛ

3
injΛ

3
j exp[−Hij(r,p

′
i,p
′
j)/kBT ], (6.38)

with ni and Λi the central density and thermal wavelength of component i. Since Hij(r,p
′
i,p
′
j) =

p′2i /2mi +Ui(r) + p′2j /2mj +Uj(r) = P 2/2M + p2/2µ+Ui(r) +Uj(r) = Hij(r,pi,pj), the difference
f ′if
′
j − fifj vanishes,

fi(r,p
′
i, t)fj(r,p

′
j , t)− fi(r,pi, t)fj(r,pj , t) = 0. (6.39)

This implies that also the collision integral vanishes, as it should because in thermal equilibrium all
occupations are stationary.

6.3 Collision rates in equilibrium gases

As an exercise we calculate the collision rate in a dilute gaseous mixture of ν components at tem-
perature T and confined by the external potentials Ui(r) with i ∈ {1, · · · , ν}. The collision rate of
atoms of type i is given by

Ṅ =

ν∑
j=1

1

(2π~)3

ˆ
drdpiΓ

(−)
coll(r,pi, t). (6.40)

Substituting Eq. (6.15) the expression for Ṅ becomes

Ṅi = −
ν∑
j=1

1

(2π~)6

ˆ
drdpidpjfi(r,pi, t)fj(r,pj , t)vijσij(vij). (6.41)

Next we substitute the equilibrium distributions

fi(r,pi) = niΛ
3
i e
−Hi(r,pi)/kBT , (6.42)

whereHi(r,pi) = p2
i /2mi+Ui(r) is the classical hamiltonian for atoms of type i in the external poten-

tial Ui(r), ni = Ni/V
(i)
e the central density for a cloud of Ni atoms with V

(i)
e =

´
exp[−Ui(r)/kBT ]dr
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the effective volume and Λi = (2π~2/mikBT )1/2 the thermal wavelength, both at temperature T .
Turning to center of mass and relative coordinates,

´
dpidpj =

´
dPdp, and suppressing again the

double subscripts (Pij → P and pij → p) the rate of collisions between atoms of type i and j 6= i
takes the form

Ṅi =
niΛ

3
injΛ

3
j

(2π~)6

ˆ
drdPdp (p/µ) σij(p) exp

[
− P 2

2MkBT
− p2

2µkBT
− Ui(r) + Uj(r)

kBT

]
. (6.43)

For i = j we should include a factor 1/2 to avoid double counting. Evaluating the integrals and
specializing for convenience to the case of the same external potential for all components, Ui(r) =
U(r) for i ∈ {1, · · · , ν}, we obtain for the collision rate

τ−1
c =

Ṅi
Ni

=
1

2
ni〈v σii〉

V2e

Ve
+
∑
j 6=i

nj〈v σij〉
V2e

Ve
, (6.44)

where

〈v σ〉 =

(
Λµ
2π~

)3 ˆ
dp (p/µ) σ(p)e−p

2/2µkBT (6.45)

is the thermally averaged collision rate per unit density and V2e =
´

exp[−2U(r)/kBT ]dr the effective
volume corresponding to the distribution of pairs. In particular, for a homogeneous one-component
gas of density n0 with a velocity-independent cross section we have 〈v σ〉 = v̄rel σ and find for the
collision rate the well-known expression

τ−1
c =

1√
2
n0v̄ σ, (6.46)

where v̄ =
√

8kBT/πm is the average speed of the atoms.

6.4 Thermalization

As a first example of the use of the Boltzmann equation we analyze the process of thermalization by
elastic collisions (thermal relaxation). Thermalization is the generic name for all kinds of processes
giving rise to relaxation towards thermal equilibrium starting from a non-equilibrium situation. The
characteristic time for thermalization by elastic collisions is called the thermal relaxation time τ .1

Obviously, there are many different ways to be out of equilibrium. Here we will simply select the
most convenient one from the computational point of view.

We consider a two-component gas consisting of N1 of atoms of type 1 mixed with N2 atoms
of type 2. Choosing N2 � N1 the abundant component plays the role of a heat reservoir. In
the most general case the two components will be of different atomic species. For simplicity we
presume both components to be confined by the same trapping potential U(r). Further, we presume
isotropic scattering between the atoms of the two components as well as an energy-independent
differential cross section σ(v,Ω′) ≡ dσ/dΩ′ = σ/4π. As we shall see the latter assumption represents
a substantial simplification because the corresponding total cross section σ will appear in front of the
collision integral. To define the initial condition we presume the inter-component cross section σ12

to be initially zero.2 In this way we can prepare a mixture in which both components i ∈ {1, 2} are
thermally distributed in the same trapping potential U(r) but with distributions of slightly different
temperatures Ti,

fi(r,pi, t) = niΛ
3
i e
−Hi(r,pi)/kBTi . (6.47)

1Spin relaxation is an example of relaxation by inelastic collisions.
2In ultracold atomic gases this can be realized experimentally near an inter-species Feshbach resonance where the

inter-species cross section can be made to vanish (cf. Chapter 5).



6.4. THERMALIZATION 161

Here niΛ
3
i = Ni/Z

(i)
1 is the degeneracy parameter in the trap center, with Z

(i)
1 is the single-particle

partition function and Hi(r,pi) = p2
i /2mi+ U(r) the quasi-classical hamiltonian of component i.

Since N2 � N1 and the deviation from equilibrium is small the temperature T1 of the majority
component remains approximately constant, T1 ' T , and T2 = T + δT , with δT/T � 1. Hence, we
can write

f2(r,p2, t) =
N2

Z
(2)
1

e−H2(r,p2)/kBT

[
1 +H2(r,p2)

δT/T

kBT
+ · · ·

] [
1− (γ + 3/2)

δT/T

kBT
+ · · ·

]
, (6.48)

where the first factor in brackets results from the expansion of the exponent and the second from

the expansion of Z
(2)
1 using Eq. (1.85). Because the collisions conserve the energy of the pair we

obtain to first order in the deviation

f ′1f
′
2 − f1f2 = f

(0)
1 f

(0)
2

p′22 − p2
2

2m2

kB
(kBT )2

δT (t) , (6.49)

where
f

(0)
i = niΛ

3
i e
−Hi(r,pi)/kBT (6.50)

is the equilibrium distribution of component i at temperature T . The quantity (p′22 − p2
2)/2m2 is the

energy transfer in the collision (cf. Appendix A.7.3). It can be written in the form

p′22 − p2
2

2m2
= −P · q

M
=
Pp

M
(u− u′), (6.51)

where q = p′ − p is the momentum transfer in the collision and u = cos θ (u′ = cos θ′), with
0 ≤ θ, θ′ ≤ π the angles between the directions of p, p′ and P.

At time t = 0 we switch the inter-component cross section to a non-zero value σ12 6= 0 and ask
for the rate of change of the heat content of the minority component 2

Ė2 =
d

dt
〈H2(r,p2)〉 =

1

(2π~)3

ˆ
dr dp2H2(r,p2)

d

dt
f2(r,p2, t). (6.52)

Here, the quantity in the brackets represents the sum of the average kinetic and potential energy
per atom. For power-law traps this quantity follows with Eq. (1.87)

E2 = 〈H2(r,p2)〉 = (γ + 3/2)N2kBT2(t). (6.53)

The thermal relaxation time is defined as

1

τ
= −δṪ

δT
= − Ė2

E2
. (6.54)

The connection with the Boltzmann using df2(r,p2, t)/dt = Df2(r,p2, t). We find by substitution
of Eq. (6.36) into Eq. (6.52)

Ė2 =
σ12

(2π~)64π

ˆ
dr dp1dp2dΩ′H2(r,p2)v12(f ′1f

′
2 − f1f2). (6.55)

This expression holds for the case of inter-component scattering in a binary mixture. Note that the
total cross section appears conveniently in front of the collision integral. Turning to center of mass
and relative coordinates and using the linearization (6.49) Eq. (6.52) becomes

Ė2 = − σ12

(2π~)64π

ˆ
drdPdpdp̂′f

(0)
1 f

(0)
2 H2(r,p2)

p

µM
(P · q)

kBδT (t)

(kBT )2
. (6.56)
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Integrating over the azimuthal angles of p̂′ and p̂ around the direction of P this expression takes
the form

Ė2 =
π σ12 kB
(2π~)6

ˆ
drdPp2dp f

(0)
1 f

(0)
2

ˆ +1

−1

dudu′H2(r,p2)
Pp2

µM
(u− u′) kBδT (t)

(kBT )2
. (6.57)

Note that all terms of odd power in u or u′ vanish. To search for even powers of u we note that

p2
2

2m2
=

(m2P/M − p)
2

2m2
=
m2

M

P 2

2M
+
m1

M

p2

2µ
− Pp

M
u. (6.58)

Thus, writing only the u-dependent term we have

H2(r,p2) = p2
2/2m2 + U(r) = −Pp

M
u+ · · · . (6.59)

Substituting this expression into Eq. (6.57) we find, with the aid of Eq. (6.54), after integration over
r and all directions of P to first order in the deviation δT for the thermal relaxation rate

1

τ
= − 4π2 σ12V2en1Λ3

1n2Λ3
2

(2π~)6 (γ + 3/2)N2 (kBT )
2

ˆ ∞
0

dPdp e−(P/α)2−(p/β)2
ˆ +1

−1

du
P 4p5

µM2
u2. (6.60)

where α =
√

2MkBTand β =
√

2µkBT and Λi =
√

2π~2/mikBT . Evaluating the integrals we arrive
at

τ−1
th = ξ

n1v̄relσ12

2 (γ + 3/2)

V2e

Ve
, (6.61)

where v̄rel =
√

8kBT/πµ is the average relative speed between the atoms of the two components.
In terms of the inter-component collision time this expression takes the form

τ−1
th =

ξ

2 (γ + 3/2)
τ−1
c , (6.62)

where ξ = 4µ/M a the mass-mismatch factor (cf. Appendix A.7.3). Note that for m2 � m1 we have
ξ ' 4m1/m2 and the thermalization rate decreases accordingly. For a homogeneous gas (γ = 0) of
two-component with atoms of the same mass (ξ = 1) this expression reduces to

τ−1
th =

1

3
τ−1
c , (6.63)

showing that it takes in this case about three collisions to approach thermal equilibrium to the
1/e level. To conclude this section we note that the results were obtained starting from a specific
deviation from equilibrium. Therefore, care is required in making statements of the type ‘it takes
three collisions to thermalize a dilute gas’.
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Quantum mechanics of many-body systems

7.1 Introduction

In this chapter we introduce the basic theory for describing interacting many-body quantum sys-
tems. We start (Section 7.2) by quantizing a homogeneous gas of noninteracting atoms using the
familiar basis of single atom wavefunctions with periodic boundary conditions and normalization to
a quantization volume of appropriate size. Already when inspecting a gas of two identical atoms
(i.e., atoms atoms with the same internal structure) we meet an essential quantum mechanical phe-
nomenon: exchange degeneracy. If two identical atoms are in different states, there is no way by
which we can determine which atom is in which state because all expectation values are invariant
under exchange of the atoms of the pair. In particular this holds for the energy of the pair. When
the two atoms are in the same state there is nothing to be distinguished and the exchange issue is
manifestly absent.

Although exchange degeneracy may seem innocent at first sight, it has far reaching consequences
for many-body quantum systems. It turns out that only the two eigenstates of the exchange operator
are observed for pairs of identical particles in physical systems. For this reason one distinguishes two
species of identical particles: bosons and fermions (see Section 7.3). If the many-body eigenstates
of a system of identical particles are symmetric under exchange of any two of these particles, the
particles are called bosons. If these eigenstates are antisymmetric under such exchange we speak of
fermions. As will be shown in Section 7.3.1, the norm of antisymmetric many-body wavefunctions
is identically zero whenever any of the single-particle states is more than singly occupied. This
means that double occupation is absent in fermionic systems, which expresses the well known Pauli
exclusion principle. Consequently, doubly (or multiply) occupied states can only be observed in
bosonic systems (which is consistent with the absence of degeneracy under exchange of particles in
the same state).

As is manifest for a set of fermions but equally relevant for bosons, the occupation of a given
single-particle state by one particle affects the probability of occupation of that state by other
particles of the set. In other words, the statistical distribution over the energy levels depends on the
occupation of those levels, even in the absence of electromagnetic interaction between the particles.
This collisionless statistics is known as quantum statistics. As the hamiltonian is by definition
invariant under exchange of any two identical particles, the statistical nature of the particles is
conserved in time. The origin of this statistical nature is deeply rooted in relativistic quantum field
theory, which provides the underpinning for the spin-statistics theorem [51]: bosons always have
integral spin and fermions half-integral spin. This theorem has been subject of fierce debate for
decades but its derivation falls outside the scope of the present lectures [44].

The presence of quantum statistics has far reaching consequences for the description of inter-
acting quantum gases because the strategy developed for treating interactions in classical gases
completely fails in the quantum case. It is no longer allowed to restrict ourselves to a test particle
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surrounded by a cluster of interacting neighbors because we have to include all atoms of the gas to
enforce the proper statistics. We are dealing with a many-body problem even without interactions.
Moreover, since interactions between the atoms couple the single-atom states we need a formalism
that rigorously enforces the exchange symmetry of the many-body wavefunction. This formalism is
known as the second quantization method, although a less confusing name would be occupation num-
ber representation or construction operator formalism. This formalism is introduced in Section 7.5.
In particular we introduce construction operators by which we can create or annihilate particles in
properly symmetrized many-body states and show that the proper quantum statistics is enforced
by an algebra defined through the commutation relations between the construction operators. A
special form of construction operators, introduced for the description of non-uniform properties, are
field operators. These are discussed in Section 7.6.

All this being said it is often not so obvious what is actually meant by “particle”. It certainly
depends on the presence or absence of interactions. For instance, whereas isolated protons and
neutrons behave as particles with well-defined properties (mass, charge, spin, · · · ), in the presence
of nuclear forces they can transform into one another and are better regarded as two states of a
new particle, the nucleon. From this point of view the nucleon is a particle composed as a linear
combination of a proton and a neutron. Its internal structure is determined by a new degree
of freedom, the isospin of the nucleon. Importantly, the presence of isospin does not affect the
properties of the constituent particles, it is an additional property representing a symmetry in the
isospin subspace of the nucleon. Since both the proton and the neutron are fermions also the nucleon
is a fermion. The proton and neutron themselves can be regarded as composite particles constructed
from quarks. In turn, the nucleons are the building blocks of the atomic nuclei. As the nucleons
are fermionic, the even mass nuclei are bosons, and those with odd mass fermions. For neutral
atoms, the number of electrons equals the number of protons in the nucleus, which implies that the
number of neutrons determines the quantum statistics of the entire atom. These examples show that
the conditions determine how we define our particles. With regard to quantum gases, we consider
the constituent atoms as “particles” as long a they have a well defined internal structure. If they
have the same internal structure they are called identical. When their structure brakes down, for
instance by molecule formation, new quantum numbers appear (related to the symmetries of the
new structure) but the statistical nature under exchange of complete atoms (i.e., all components of
the atom) is conserved (see Section 7.3.1).

7.2 Quantization of the gaseous state

7.2.1 Single-atom states

To start the discussion we consider the Schrödinger equation for the spatial motion of a single atom,
considering it as a point-like particle of mass m but without further internal structure,

− ~2

2m
∇2ϕk (r) = εkϕk (r) . (7.1)

Introducing periodic boundary conditions, ϕ (x+ L, y + L, z + L) = ϕ (x, y, z), we find for the eigen-
functions and eigenvalues

ϕk (r) =
1

V 1/2
eik·r and εk =

~2k2

2m
. (7.2)

The wavefunctions ϕk (r) represent plane wave solutions normalized to the quantization volume
V = L3, k is the wave vector of the atom, where k = |k| = 2π/λ is the wave number, with λ the De
Broglie wavelength. The periodic boundary conditions imply a discrete spectrum of wavenumbers,
kα = (2π/L)nα, with nα ∈ {0,±1,±2, · · · } and α ∈ {x, y, z}.
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7.2.2 Pair wavefunctions and exchange degeneracy

As the simplest example of a gas we consider the case of two atoms per quantization volume V. The
hamiltonian for the motion of these atoms is given by

H =
∑
i=1,2

(
− ~2

2mi
∇2
i + U(ri)

)
+ V(r12), (7.3)

where m1 and m2 are the masses of the atoms and V(r12) a potential describing the interatomic
interaction. The solutions of the corresponding Schrödinger equation are pair wavefunctions. Single-
atom states are no longer defined as these have become non stationary through coupling by the
interaction. However, they regain significance in the collisionless limit (see Section 1.1) which can
be realized (for short-range interactions) by making the density sufficiently low. In the collisionless
limit the Schrödinger equation can be approximated by(

− ~2

2m1
∇2

1 −
~2

2m2
∇2

2

)
ψk1,k2 (r1, r2) = Ek1,k2ψk1,k2 (r1, r2) . (7.4)

As in this expression the variables separate, the pair solution can be written as a product of two
single-atom wavefunctions of the type (7.2),

ψk1,k2
(r1, r2) =

1

V
eik1·r1eik2·r2 . (7.5)

Note that this wavefunction is unit normalized (one pair). The energy and momentum are given by

Ek1,k2 =
~2k2

1

2m1
+

~2k2
2

2m2
and P = ~k1 + ~k2. (7.6)

Thus we found that the momentum of the pair is not affected by exchanging the two particles (of
different mass) but the energy is,

Ek1,k2 6= Ek2,k1 for k1 6= k2. (7.7)

This shows that for a pair of unlike atoms (i.e., atoms with different internal structure as expressed by
the difference in mass) product wavefunctions of the type (7.5) represent uniquely defined quantum
mechanical eigenstates for the eigenvalues Ek1,k2 and Ek2,k1 (two states, two energies). It means
that the states of the atoms (of mass m1 and m2) can be determined by measuring the energy of
the pair. In other words, the particles are distinguishable by their internal structure.

For identical atoms (i.e., atoms with the same internal structure) the situation is fundamentally
different. Since m1 = m2 we find that for identical atoms in different states (k1 6= k2) the product
wavefunctions (7.5) are degenerate with pair wavefunctions in which the atoms are exchanged,

Ek1,k2 = Ek2,k1 for k1 6= k2. (7.8)

This is called exchange degeneracy (two states, one energy). This phenomenon shows that we
cannot determine which atom is in which state by measuring the energy of the pair. Actually, it
is fundamentally impossible to distinguish the atoms by any measurement because (by definition of
being identical) the expectation values of all observables of the pair are invariant under exchange
of the atoms. For identical atoms in the same state (k1 = k2 = k) the exchange degeneracy is
manifestly absent because there is nothing to be distinguished.

The exchange degeneracy implies that any linear combination of the type

ψk1,k2
(r1, r2) =

1

V

1√
|c1|2 + |c2|2

(c1e
ik1·r1eik2·r2 + c2e

ik2·r1eik1·r2) (7.9)
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represents itself a properly normalized eigenstate of the pair provided k1 6= k2. In this two-
dimensional subspace we can construct two orthonormal basis states for the pair,

ψ±k1,k2
(r1, r2) =

1

V

√
1/2(eik1·r1eik2·r2 ± eik2·r1eik1·r2). (7.10)

These are called the symmetric and antisymmetric eigenstates of the pair.
In the absence of exchange degeneracy (i.e., for k1 = k2 = k) Eq. (7.5) represents the proper

solution,

ψk,k (r1, r2) =
1

V
eik·r1eik·r2 . (7.11)

This state is symmetric and unit normalized to start with, so there is no need for explicit sym-
metrization. However, giving preference to a fixed procedure, we can always use the generic form
7.10 provided we correct for double counting of probabilities (see Problem 7.1),1

ψk,k (r1, r2) =
√

1
2ψ

+
k,k (r1, r2) . (7.12)

Problem 7.1. Show that ψ+
k1,k2

(r1, r2) has norm N = 1 for k1 6= k2 but N = 2 for k1 = k2.

Solution. We first turn to Dirac notation. The symmetrized state is given by

ψ+
k1,k2

(r1, r2) ≡ (r1, r2|k1,k2〉 =
√

1/2 {(r1, r2|k1,k2) + (r1, r2|k2,k1)} ,

where |ka,kb) (with the curved bracket) stands for the product state, |ka,kb) ≡ |ka〉1⊗|kb〉2, with ψk(r1) ≡
〈r1|k〉 ≡ 〈r|k〉1 representing the state of particle 1. Calculating the norm we find

N = 〈k1,k2|k2,k1〉 =
√

1/2 {(k1,k2|+ (k2,k1|}
√

1/2 {|k1,k2) + |k2,k1)}
= 1

2
{(k1,k2|k1,k2) + (k1,k2|k2,k1) + (k2,k1k1,k2) + (k2,k1|k2,k1)}

= 1 + δk1,k2 .

Here we used (k1,k2|k2,k1) = (k2,k1|k1,k2) = δk1,k2 and (k1,k2|k2,k1) = (k2,k1|k2,k1) = 1. 2

7.3 Identical particles and the exchange operator

At this point a fascinating twist happens in the discussion because (as pointed out in the intro-
duction) arbitrary linear combinations of the type (7.9) were never observed for pairs of identical
particles in physical systems. In accordance with the spin-statistics theorem one either observes
symmetric pair states (for particles of integral spin - bosons) or antisymmetric pair states (for par-
ticles of half-integral spin - fermions). Apparently it is not allowed to neglect the internal degrees
of freedom when studying ensembles of identical particles.

So, we start allover and formalize the discussion by including the spin states from the beginning.
As before, two particles are called identical if there is no physical way to establish whether or not
they particles have been exchanged. This condition is satisfied for particles with identical internal
structure because, in quantum mechanics, it is fundamentally impossible to label a particle by
tracking its motion along an orbit. The latter is only possible in classical mechanics as it requires
the simultaneous determination of position and momentum. Including the spin, the state of the
identical pair is given by the pair wavefunction

ψ (r1, σ1; r2, σ2) , (7.13)

1Beware that in some text books this is done, in others not. By always using the generic form, the atoms can be
exchanged as if they are distinguishable (like the atoms in a classical gas). This offers some convenience because we
are familiar with the classical world around us. The price we pay is that we have to correct our findings for double
counting of doubly (multiply) occupied single-particle states. In the other approach we have to keep track of which
exchange give rise to degeneracy and which not. It is a matter of taste. In the present lectures we use the generic
form and correct for double counting.
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where r1 and r2 are the position coordinates and σ1 and σ2 the spin coordinates, respectively (see
Appendix B.1.5). The squared modulus of the wavefunction,

|ψ (r1, σ1; r2, σ2) |2, (7.14)

corresponds to the probability of observing one particle (say particle 1) at position r1 in spin state σ1

with the other particle (say particle 2) at position r2 in spin state σ2. With this procedure we labeled
the particles by the position of observation. It does not mean that we observe a labeled particle.
The latter is only possible for particles with a difference in internal structure (the “label”) which
is absent for identical particles. Next we interchange the particles before doing the measurement.
This can be done, also when the particles are identical. Formally this is realized by introducing the
exchange operator P,

Pψ (r1, σ1; r2, σ2) ≡ ψ (r2, σ2; r1, σ1) . (7.15)

As “tracking” is impossible in quantum mechanics, we have no physical means to determine whether
or not two identical particles have been exchanged. This means that the probability to observe
particle 2 at position r1 in spin state σ1 with particle 1 at position r2 in spin state σ2 has to be
equal to that of observing particle 1 at position r1 in spin state σ1 with particle 2 at position r2 in
spin state σ2 :

|ψ (r1, σ1; r2, σ2) |2 = |ψ (r2, σ2; r1, σ1) |2. (7.16)

This shows that P has to be norm-conserving,

〈ψ|P†P|ψ〉 = 〈ψ|ψ〉 = 1, (7.17)

but also that the actual labels 1 and 2 have no physical significance.
Let us have a closer look at the exchange operator. Because P is norm-conserving, we have

P†P = 1 (7.18)

and
P|ψ〉 = e−iθ|ψ〉. (7.19)

Furthermore, exchanging the particles twice must leave the pair state unchanged. Rewriting the
phase angle in the form θ = nπ + ϕ (which can be done without loss of generality) we find from
Eq. (7.19)

P2|ψ〉 = e−i2ϕ|ψ〉. (7.20)

So the question arises for what value of ϕ the pair state is invariant under all possible ways to
exchange the particles twice. For 3D systems (and in the absence of topological excitations)1 this
is the case only for ϕ = 0; i.e., for

P2 = 1. (7.21)

Writing P† = P†P2 = P we see that P is hermitian; i.e., the eigenvalues of P are real an take
the values ±1. In view of the definition (7.15) these eigenvalues correspond to pair wavefunctions
which are either symmetric (+1) or antisymmetric (−1) under exchange of the particles. Taking into
account the relation between spin and statistics the action of the exchange operator is summarized
by the expression

Pψ (r1, σ1; r2, σ2) = e−i2πsψ (r1, σ1; r2, σ2) , (7.22)

where s is the (integral or half-integral) spin of the particle.

1The general case was analyzed by Jon Leinaas and Jan Myrheim in 1977 [39]. In 2D (or 3D in the presence of
vorticity), the phase angle θ corresponds to a rotation angle, with θ1 = nπ + ϕ being equivalent to θ2 = −(nπ − ϕ).
This implies that exchange with θ1 + θ2 = 2ϕ 6= 0 is a physical option. It gives rise to quantum statistics with its
own type of identical particle called anyon (with fractional spin defined by θ = 2πs) [69].
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Since, by definition, the pair hamiltonian H is invariant under exchange of identical particles,
P commutes with H, which implies that P and H share a complete set of eigenstates. Therefore,
the eigenstates of P span the full Hilbert space of the pair and P is not only hermitian but also an
observable. Apparently, for identical particles the pair wavefunction has to be an eigenfunction of
the exchange operator; i.e., the exchange symmetry of the wavefunction is conserved in time.

7.3.1 Internal symmetry versus external symmetry and Pauli principle

Let us have a closer look at the spin states. For two identical particles of spin s, the total spin S and
its magnetic quantum number MS are good quantum numbers. The total spin state |S,MS〉 can be
decomposed with respect to the quantum numbers of the individual spins using a Clebsch-Gordan
decomposition,

|S,MS〉 =
∑
m1,m2

|s,m1; s,m2)(s,m1; s,m2|S,MS〉, (7.23)

where |s,m1; s,m2) ≡ |sm1〉1 ⊗ |sm2〉2 is a product state (curved bracket). As is well known, the
Clebsch-Gordan coefficient of a stretched state (S ≡ Smax = s1 + s2, MS = Smax) is always unity
and manifestly symmetric,

(s1, s1; s2, s2|Smax, Smax〉 = (s2, s2; s1, s1|Smax, Smax〉 = 1.

Actually, in general, the exchange symmetry is symmetric for S = Smax, Smax − 2, Smax − 4, · · ·
and antisymmetric for S = Smax− 1, Smax− 3, · · · and always independent of the value of MS . For
bosons Smax = 2s is always even, whereas for fermions it is always odd. Therefore, for bosons the
even (odd) total spin states are symmetric (antisymmetric) whereas for fermions this is the case for
odd (even) total spin.

As an example we have a look at the well-known case of two s = 1/2 fermions (e.g., electrons),

|1,+1〉
|1, 0〉
|1,−1〉

= |↑↑)
=
√

1/2 {|↑↓) + |↓↑)}
= |↓↓)

 (S = 1)

|0, 0〉 =
√

1/2 {|↑↓)− |↓↑)} (S = 0) .

(7.24)

Note that the odd total spin state (S = 1) is symmetric as was asserted above for fermions.
As for a pair of fermions in a state of odd total spin, the total spin state |S,MS〉 is always

symmetric under exchange of the particles, the orbital wavefunction must be antisymmetric,1

ψ−k1,k2
(r1, r2)|S,MS〉 =

1

V

√
1/2

(
eik1·r1eik2·r2 − eik2·r1eik1·r2

)
|S,MS〉 for S = odd. (7.25)

This expression shows that ψ−k1,k2
(r1, r2) is identically zero for k1 = k2 = k,

ψ−k,k(r1, r2)|S,MS〉 ≡ 0. (7.26)

Hence, the formalism shows that the two fermions (in symmetric spin states) have zero probability
to be in the same momentum state, in accordance with the Pauli exclusion principle.

Furthermore, ψ−k1,k2
(r1, r2) also vanishes for r1 = r2 = r (whatever the value of k1 and k2),

ψ−k1,k2
(r, r) |S,MS〉 = 0, (7.27)

Hence, two fermions (in symmetric spin states) have zero probability to be at the same position,
which means that they avoid each other by quantum interference. In this sense the quantum
correlations represent kinematic correlations between the particles.

1Here we conveniently write the state |S,MS〉 rather than the spinor χS,MS (σ1, σ2) ≡ (σ1, σ2|S,MS〉 because the
probability to be in the state |S,MS〉 is not of interest in the present context.
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Interestingly, also for a pair bosons in states of odd total spin, the orbital wavefunction has to
be antisymmetric because, for bosons, the total spin state |S,MS〉 is always antisymmetric under
exchange of the particles; i.e., Eq. (7.25) also applies in this case. In accordance ψ−k1,k2

(r1, r2) is
identically zero for k1 = k2 = k and also zero for r1 = r2 = r (whatever the value of k1 and k2). In
other words, we expect the same kinematic correlations as discussed for the fermionic case. This is
dramatically demonstrated in molecular physics by comparing hydrogen and deuterium molecules.

Both for hydrogen (nuclear spin I = 1
2 ) and deuterium (nuclear spin I = 1) the molecular states

with total spin total spin Itot = 1 are only observed in combination with antisymmetric rotational
states (the odd rotational quantum numbers). This remarkable consequence of the relation between
spin and statistics is summarized in Table 7.1. The exclusion of rotational levels was conjectured
by David Dennison in 1927 to explain the specific heat of molecular hydrogen [16]. As the ground
states of the hydrogen and deuterium molecules have an even rotational quantum number (J = 0)
and transitions between even and odd rotational levels requires a nuclear spin flip, the mentioned
isomers behave at low temperature as metastable species known under the names ortho-hydrogen
and para-deuterium.

Similarly, for a pair of bosons or fermions in a state of even total spin, the total spin state
|S,MS〉 always combines with a symmetric orbital state,

ψ+
k1,k1

(r1, r2) |S,MS〉 =
1

V

√
1/2

(
eik1·r1eik2·r2 + eik2·r1eik1·r2

)
|S,MS〉 for S = even. (7.28)

In molecular physics this leads to the isomers para-hydrogen and ortho-deuterium (also included in
Table 7.1). By comparing hydrogen and deuterium, the relation between spin and statistics was
used to conjecture the value of the deuteron spin (hence, indirectly, also the spin of the neutron) by
Gilbert Lewis and Muriel Ashley in 1933 [42].

The physics of the hydrogen isomers provides a good example of how interactions affect the
particles in a many-body system. At sufficiently low density we can study a gas of hydrogen atoms.
These are composite bosons, consisting of an electron bound to a proton. The interactions between
the hydrogen atoms gives rise to molecule formation, which is an inelastic process in which the
individual atoms loose their integrity. The molecules represent new particles (a bound state of 2
electrons and two protons rather than a bound state of two atoms). They are characterized by
additional quantum numbers such as the total nuclear spin (which gives rise to the ortho-para
rotational structure of the hydrogen molecule). Although the integrity of the atoms is lost the
symmetry under simultaneous exchange of one proton and one electron is conserved.

As long as the constituent particles of a many-body system do not loose their integrity they
can be used as particles in a microscopic many-body theory. This applies, for instance, for the
electrons in atoms or solids. In the case of the atomic quantum gases we are dealing with composite
particles and microscopic many-body theories can be developed as long as the interactions remain
sufficiently weak. Systems of weakly-interacting particles can be transformed into systems of non-
interacting systems quasiparticles. In the presence of strong interactions (e.g., in liquid helium or
near Feshbach resonances) analytic theories brake down and one has to rely on phenomenological
or numerical approaches.

7.3.2 Spinorbitals, symmetric and antisymmetric product states

As the internal and external degrees of freedom are related through the spin-statistics theorem it is
important to treat them on equal footing by writing the wavefunction in the form of a multi-valued
function called spinorbital. For an atom at position |r〉 and in spin state |σ〉 the spinorbitals are
(2s+ 1)-valued functions of the form

ϕk,sms(r, σ) =
1

V 1/2
eik·rχsms (σ) . (7.29)
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Fermions

Let us start with the familiar case of s = 1/2 fermions. In this case the spin-up spinorbital is a
double-valued function,

ϕk↑(q) =
1

V 1/2
eik·rχ↑ (σ) . (7.30)

Here we introduced a shorthand notation for the position and spin coordinates: q ≡ {r, σ}. Note
that Eq. (7.25) can be written in the form of a determinant,

ψ−k1,k2
(r1, r2) (σ2, σ2 |1, 1〉 =

√
1
2

∣∣∣∣ϕk1↑(q1) ϕk2↑(q1)

ϕk1↑(q2) ϕk2↑(q2)

∣∣∣∣ , (7.31)

where we substituted |S,MS〉 → |1, 1〉. In the representation free notation of Dirac it takes the form

|k1,k2〉A |1, 1〉 =
√

1
2

∣∣∣∣ |k1 ↑〉1 |k2 ↑〉1
|k1 ↑〉2 |k2 ↑〉2

∣∣∣∣ . (7.32)

Similarly, the symmetric spin state |1, 0〉 in combination with the antisymmetric orbital state
ψ−k1,k2

(r1, r2, ) (again a properly symmetrized fermionic state) can be written as the sum of two
determinants|

|k1,k2〉A |1, 0〉 =
1

2

∣∣∣∣ |k1 ↑〉1 |k2 ↓〉1
|k1 ↑〉2 |k2 ↓〉2

∣∣∣∣+
1

2

∣∣∣∣ |k1 ↓〉1 |k2 ↑〉1
|k1 ↓〉2 |k2 ↑〉2

∣∣∣∣ . (7.33)

The two-body state (7.28) consisting of an anti-symmetric spin state with both atoms in the sym-
metric orbital state (k1 = k2 = k) represents again a determinant,

|k,k〉S |0, 0〉 =
√

1
2

∣∣∣∣ |k↓〉1 |k↑〉1|k↓〉2 |k↑〉2

∣∣∣∣ . (7.34)

In the final combination we combine the symmetric orbital state ψ+
k1,k2

(r1, r2) with the antisym-
metric spin state |S,MS〉 = |0, 0〉,

|k1,k2〉S |0, 0〉 =
1

2

∣∣∣∣ |k1 ↑〉1 |k2 ↓〉1
|k1 ↑〉2 |k2 ↓〉2

∣∣∣∣− 1

2

∣∣∣∣ |k1 ↓〉1 |k2 ↑〉1
|k1 ↓〉2 |k2 ↑〉2

∣∣∣∣ . (7.35)

Thus, we found that any two-body fermion state in a prescribed total spin state |S,MS〉 can
be expressed as a determinant of spinorbitals or a linear combination of such determinants. Note

Table 7.1: In the ortho and para isomers of the hydrogen (I = 1/2) and deuterium (I = 1) molecules the
distribution over the rotational levels is different as a result of quantum statistics (only even or odd rotational
levels are observed). Furthermore, being bound by two electrons in an antisymmetric state (S = 0), the
molecules are symmetric under exchange of complete hydrogen atoms (proton + electron) and antisymmetric
in the case of deuterium (deuteron + electron) as required by the spin-statistics theorem.

symmetry

isomer Itot J ψnucl ψrot ψvib
1
∑+
g ψtot

ortho-H2 1 1, 3, 5, · · · S A S A S

para-D2 1 1, 3, 5, · · · A A S A A

para-H2 0 0, 2, 4, · · · A S S A S

ortho-D2 0, 2 0, 2, 4, · · · S S S A A
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that in all cases considered, the states are unit normalized. The determinantal form is particularly
attractive to represent identical fermions because of the property of determinants to vanish when
two columns or two rows are equal. This assures that the wavefunction vanishes when two fermions
are in the same state or share the same (position and spin) coordinates. Furthermore, exchanging
two rows or two columns yields a minus sign as required for anti-symmetric wavefunctions.

Reversely, if we know the states of the individual atoms we can use a determinant to construct
a properly symmetrized fermionic state. In this application the determinant is called a Slater
determinant. The difference with the pair states discussed above is that the Slater determinant, in
general, does not correspond to a pure spin state |S,MS〉 but to a linear combination of such total
spin states. For instance, the normalized Slater determinant for a pair of particles in the spinorbitals
|k1 ↑〉 and |k2 ↓〉 is given by

|k1 ↑,k2 ↓〉A ≡
√

1
2

∣∣∣∣ |k1 ↑〉1 |k2 ↓〉1
|k1 ↑〉2 |k2 ↓〉2

∣∣∣∣ =
√

1
2

{
|k1,k2〉S |0, 0〉+ |k1,k2〉A |1, 0〉

}
. (7.36)

This follows directly by adding Eqs. (7.33) and (7.35). On the other hand, in view of Eq. (7.32),
the Slater determinant for the spinorbital pair |k1 ↑〉 and |k2 ↑〉 correspond to a pure total state,

|k1 ↑,k2 ↑〉A ≡
√

1
2

∣∣∣∣ |k1 ↑〉1 |k2 ↑〉1
|k1 ↑〉2 |k2 ↑〉2

∣∣∣∣ = |k1,k2〉A |1, 1〉 . (7.37)

Bosons

Let us now turn to bosons. We immediately step to the approach of symmetrizing the spinorbitals
and check if it provides us with the proper combinations of total spin and orbital pair states. For
two identical bosons in the internal states |sm1〉 and |sm2〉 the symmetric spinorbital state is given
by

|k1m1,k2m2〉S =
√

1
2

∑
P

P |k1m1,k2m2). (7.38)

Here P is the permutation operator; i.e., we sum over all possible permutations of the particles (in
this case only 2: P = 1 and P = P). Note that we omitted the s value because it only blurs the
notation. Since |k1m1,k2m2) is a product state we can separate the spin states from the orbital
states and use a Clebsch-Gordan decomposition for the spin state,

|k1m1,k2m2) = |k1k2)|m1m2) = |k1k2)

2s∑
S=0

|SMS〉〈SMS |sm1; sm2) (7.39a)

P |k1m1,k2m2) = |k2k1)|m2m1) = |k2k1)

2s∑
S=0

|SMS〉〈SMS |sm2; sm1). (7.39b)

Since, for bosons, the symmetry of Clebsch-Gordan coefficients is even for even S and odd for odd
S we find by adding the Eqs. (7.39),

|k1m1,k2m2〉S =
√

1
2

[
|k1k2) + (−1)S |k2k1)

] 2s∑
S=0

|SMS〉〈SMS |sm1; sm2). (7.40)

This shows that the decomposition combines symmetric spin states with symmetric orbital states
and antisymmetric spin states with antisymmetric orbital states, just as it should be for bosons
(and not unexpected because the pair state was symmetric to begin with). Moreover, the states
are unit normalized. However, there is a catch. For k1 = k2 = k the norm of the state adds up
to 2 (recall Problem 7.1). In hindsight, this is no surprise because by explicit symmetrization we
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incorrectly doubly counted the product state of two identical particles in the same internal state
although this state remains itself under exchange. This is easily repaired by dividing the norm of
the state by the number of permutations of particles in the same internal state (in our case 2!).

In conclusion: for a given pair of spinorbitals (i.e., knowing the occupation of the spinorbital
states) can write the properly symmetrized and unit normalized bosonic pair state in the form

|k1m1,k2m2〉S =

√
1

2n!

∑
P

P |k1m1,k2m2), (7.41)

where n is the number of particles occupying the same state; i.e., n = 1 for k1 6= k2 and n = 2 for
k1 = k2. From the above it is straightforward to verify that for two fermions the proper expression
is

|k1m1,k2m2〉A =
√

1
2

∑
P

(−1)pP |k1m1,k2m2), (7.42)

where p is the parity of the permutation (p = 0, 1 for even/odd permutations). Note that the n! is
lacking because two identical fermions cannot be in the same state.

7.4 Quantum mechanics in the N-body Hilbert space

7.4.1 Introduction - generalization of the symmetrization procedure

The analysis of pair states in the previous sections has prepared us for a generalization of the
discussion of identical particles for the many-body case. First we have a look at fermions. The
Slater determinants are readily extended to describe a system of N fermions in the states α1, · · · , αN
(where αi stands for all internal and external quantum numbers of particle i),

|α1, · · · , αN 〉A ≡
√

1

N !

∣∣∣∣∣∣∣
|α1〉1 · · · |αN 〉1

... · · ·
...

|α1〉N · · · |αN 〉N

∣∣∣∣∣∣∣ . (7.43)

This N × N determinant represents a straightforward generalization of a product wavefunction
with the proper symmetry under interchange of any two fermions and also unit normalized. It
is evidently consistent the Pauli principle. It represents a true milestone in many-body physics.
Recalling the Leibniz expansion of the determinant (see Appendix D) the many-body state of N
fermions occupying the single-particles states α1, · · · , αN is given by

|α1, · · · , αN 〉A ≡
√

1

N !

∑
P

(−1)pP |α1, · · ·αN ), (7.44)

where
|α1, · · ·αN ) ≡ |α1〉1 ⊗ |α2〉2 ⊗ · · · |αN 〉N (7.45)

is the N -body product state of the single-particle states |ακ〉i, κ ∈ {1, · · · , N} being the state index
and i ∈ {1, · · · , N} the particle index. Note that the wavefunction in the representation {|q1, · · · qN )}
is given by

ψα (q1, · · · qN ) ≡ (q1, · · · qN |α1, · · · , αN 〉. (7.46)

The summation in Eq. (7.44) runs over all permutations P of the particles, p being the parity
of the permutation; i.e., the number of transpositions (binary interchanges) required to realize
the permutation starting from an initial ordering fixed by convention. As the sum runs over all
permutations, it makes no difference whether we permute all particles or permute all states of the
particles. We choose the convention in which the permutation operator P acts on the state index
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(κ) and not on the particle index (i). With this choice, the interchange of the states of particles 1
and 2 is written as

P |α1, α2, · · ·αN ) = |α2, α1, · · ·αN ) = |α2〉1 ⊗ |α1〉2 ⊗ · · · |αN 〉N . (7.47)

To assure a uniquely defined sign of the Slater determinants we have to adopt a standard ordering
convention of atomic configurations.

For bosons it is straightforward to generalize Eq. (7.41) for a system of N identical particles
occupying the single-particle states α1, · · · , αN ,

|α1, · · · , αN 〉S ≡
√

1

N !n1n2 · · ·nN

∑
P

P |α1, · · ·αN ). (7.48)

As evidenced by Eqs. (7.44) and (7.48), the quantum mechanical indistinguishability of identical
particles affects the distribution of particles over the single-particle states. For fermions (antisym-
metric under exchange) this is made explicit by the Pauli principle, which excludes double occupation
of the same state. For bosons (symmetric under exchange) exchange of two particles in the same is
must be excluded as being unphysical (the pair state is nondegenerate). In both cases the distribu-
tion in configuration space is affected; kinematic correlations happen between the particles in the
complete absence of interatomic forces: it is a purely quantum statistical phenomenon.

7.4.2 Formal structures in the N-body Hilbert space

For each particle i we can define a Hilbert space Hi spanned by a basis consisting of a complete
orthonormal set of states {|ks〉i},

i〈ks′ |ks〉i = δks,ks′ and
∑
ks

|ks〉i i〈ks| = 1, (7.49)

where s ∈ {1, · · · , N} is the state index and i ∈ {1, · · · , N} the particle index. The ket |ks〉i stands
for the full description of the eigenstates of the particle i, including the internal state (for instance
the hyperfine state in the case of atoms). The boldface k is used to indicate that, in general, we are
dealing with some vector of quantum numbers (i.e., it can be a discrete wave vector but in general
it is not). The wavefunctions of the Schrödinger picture are obtained as the probability amplitude
to find the particle at coordinates qi,

ψks(qi) = 〈qi|ks〉 ≡ 〈q|ks〉i. (7.50)

For spinless free particles, these wavefunctions can be conveniently chosen to be the plane waves
given by Eq. (7.2); for harmonic trapping potentials they will be harmonic oscillator eigenstates; for
electrons in the Coulomb field of the nucleus they are the atomic spinorbitals, etc.. In the presence
of interactions similar single-particle wavefunctions remain a good basis but the interpretation as
the eigenstates of a free massive particle is lost.

For the N -body system we can define a Hilbert space as the product space

HN = H1 ⊗H2 ⊗ · · · ⊗HN (7.51)

of the N single-particle Hilbert spaces Hi and represented by the orthonormal basis {|k1, · · · ,kN )},
where

|k1,k2, · · · ,kN ) ≡ |k1〉1 ⊗ |k2〉2 ⊗ · · · |kN 〉N (7.52)

is the N -body tensor product of the single-particle states |ks〉i with normalization condition

(k′1, · · · ,k′N |k1, · · · ,kN ) = δk1,k′1
· · · δkN ,k′N (7.53)
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and closure ∑
k1,··· ,kN

|k1, · · · ,kN ) (k1, · · · ,kN | =
N∏
i=1

(∑
ks

|ks〉i i〈ks|

)
= 1. (7.54)

The notation of curved brackets |k1, · · · ,kN ) is reserved for unsymmetrized many-body states; i.e.,
product states are written with the convention of referring always in the same order from left to
right to the states of particle 1 through N . Sometimes we shall use an implicit definition of the
N -body state |Nγ) by specifying the index γ as an array of state indices,

|Nγ) = |k1, · · · ,kN ) for γ = {1, · · · , N}.

The product states represent an ordered set of particles distinguished by their particle index.
This makes no sense for identical particles. Identical particles are by definition indistinguishable,
which renders any type of ordering impossible. To deal with the indistinguishability we argue that
all dynamical properties must remain unchanged under an arbitrary permutation P of the particles.
This means that all operators representing a dynamical variable of the system must be invariant
under these permutations. This holds in particular for the Hamilton operator and implies that P
commutes with the hamiltonian, just as we found for the exchange operator in the two-body case.
This is of course not surprising because any permutation can be realized by a sequence of binary
interchanges of particles. A many-body state |ψ(S)〉 is called symmetric (bosonic) if it is invariant
under all permutations P ,

P |ψ(S)〉 = |ψ(S)〉 (7.55)

Similarly, a many-body state |ψ(A)〉 is called antisymmetric (fermionic) if it satisfies the property

P |ψ(A)〉 = (−)p|ψ(A)〉, (7.56)

where (−)p = 1 for all even permutations and (−)p = −1 for all odd permutations, p being the
number of transpositions (binary interchanges) generating the permutation. We thus can identify
two orthogonal subspaces within the product space HN : the symmetric subspace H(S) (for bosons)
and the antisymmetric subspace H(A) (for fermions),

H(S) ⊕H(A) ⊆ HN . (7.57)

Fermions

For identical fermions in states k1, · · · ,kN the N -body state has to be antisymmetric. To assure
the absence of ordering, the state is written as the sum of all permutations of the product state. It
is made antisymmetric by using a plus sign for all even permutations and a minus sign for all odd
permutations,

|k1, · · · ,kN 〉 ≡
√

1

N !

∑
P

(−1)pP |k1, · · ·kN ). (7.58)

Note that this expression represents a unit normalized Slater determinant and satisfies the condition
(7.56). The permutation operator P is chosen to act on the state index as this allows us to conserve
a particular ordering convention of the particle index in the product states. With this choice, the
interchange of the states of particles 1 and 2 is written as

P12|k1,k2, · · ·kN ) = −|k2,k1, · · ·kN ) = − |k2〉1 ⊗ |k1〉2 ⊗ · · · |kN 〉N . (7.59)

To assure a uniquely defined sign of the Slater determinants we adopt an ordering convention for
the non-permuted product state.
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Bosons

For identical bosons the N -body state has to be symmetric. This is assured by summing over all
permutations while correcting for the degeneracy of occupation (as we did in the two-body case)
in order to maintain unit normalization. For a N -body system with n1 particles in state k1, n2

particles in state k2, · · · and nl particles in state kl we obtain1

|k1,k1, · · · ,kl〉 ≡
√

1

N !n1! · · ·nl!
∑
P

P |k1,k1, · · ·︸ ︷︷ ︸,
n1

k2, · · ·︸ ︷︷ ︸
n2

· · · · · · ,kl︸ ︷︷ ︸
nl

), (7.60)

where N = n1+n2+· · ·nl. In view of the symmetric form, in the bosonic case there is no significance
in the order in which the states are written.

As an example we consider the special case of N bosons in the same state, |ks, · · · ,ks). Here all
N ! permutations leave the unsymmetrized wavefunction unchanged and we obtain N ! identical terms
with normalization coefficient 1/N !, reflecting the feature that the wavefunction was symmetrized
to begin with; i.e., |ks, · · · ,ks〉 = |ks, · · · ,ks).

Symmetrization operators

In the literature one defines symmetrization and antisymmetrization operators. The symmetrization
operator is (usually) defined as

S ≡ 1

N !

∑
P

P. (7.61)

It projects an arbitrary product state |k1, · · ·kN ) onto the symmetric N -body subspace H(S). Sim-
ilarly, the quantity

A ≡ 1

N !

∑
P

(−1)pP (7.62)

is called the antisymmetrization operator . It projects an arbitrary product state |k1, · · ·kN ) onto
the antisymmetric subspace H(A). Note that (for discrete spectra as discussed above) these operators
do not conserve the normalization of the product state.

Problem 7.2. Show that any pair wavefunction can be written as the sum of a part symmetric under
exchange and a part antisymmetric under exchange of the pair.

Solution. For any pair state we have |ψ〉 = 1
2

(1 + P) |ψ〉+ 1
2
(1−P)|ψ〉, where P is the exchange operator,

P2 = 1. The first term is symmetric, P (1 + P) |ψ〉 =
(
P + P2

)
|ψ〉 = (1 + P) |ψ〉, and the second term is

antisymmetric, P (1− P) |ψ〉 =
(
P − P2

)
|ψ〉 = − (1− P) |ψ〉. 2

Problem 7.3. Show that for N > 2
S +A 6= 1.

7.4.3 Example: Anderson’s orthogonality theorem

The generalization from two-body to many-body systems is not “just more of the same”. This is
exactly what makes many-body physics into a fascinating field. As a first illustration we consider
the ground state of an ideal Fermi gas of N particles; i.e., the state in which all single-particle
levels are occupied up to the Fermi level. Let us denote the single-particle states by |ki〉, with
i ∈ {1, · · · , N}. Next we introduce an impurity in the system. This changes both the energies and the
wavefunctions of all the fermions. The distorted wavefunctions are denoted by |qi〉. In 1967 Philip
Anderson pointed out that, in the thermodynamic limit, the many-body states |α〉 = |k1, · · · ,kN 〉

1We use the convention in which all classically defined permutations are included in the summation - see the
footnote to Eq. (7.12).
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and |β〉 = |q1, · · · ,qN 〉 are orthogonal (i.e., 〈α|β〉 � 1) no matter how weak the interaction with the
impurity [2]. This feature is fundamental because it offers an example in which perturbation theory
works at the two-body level but fails at the many-body level.

To demonstrate the idea behind this theorem, we start by expressing the properly symmetrized
states in terms of the unsymmetrized states,

〈α|β〉 =
1

N !

∑
Pk

(−1)pkPk
∑
Pq

(−1)pqPq(k1, · · · ,kN |q1, · · · ,qN ), (7.63)

where Pk and Pq are the permutation operators acting on the bra and ket states, respectively. To
proceed we factorize each term of the double summation,

(k1, · · · ,kN |q1, · · · ,qN ) = 〈k1|q1〉1 · · · 〈kN |qN 〉N = 〈k1|q1〉 · · · 〈kN |qN 〉. (7.64)

This is possible because, for identical particles, the inner products 〈ki|qj〉 are independent of the
particle considered. Thus, the projection 〈α|β〉 can be expressed in the form

〈α|β〉 =
1

N !

∑
Pk

(−1)pkPk
∑
Pq

(−1)pqPq〈k1|q1〉 · · · 〈kN |qN 〉. (7.65)

The first summation gives rise to N ! terms, each corresponding to the sequence 〈k1|, · · · , 〈kN |
combined with one of the permutations of the sequence |q1〉, · · · , |qN 〉. For each of these terms the
second summation will generate the same set of terms because the value of the terms is independent
of the order in which the factors 〈ki|qj〉 appear. Thus each term appears N ! times and the expression
for 〈α|β〉 simplifies to

〈α|β〉 =
∑
Pq

(−1)pqPq〈k1|q1〉 · · · 〈kN |qN 〉, (7.66)

which can be written as the determinant of the single-particle overlap matrix,

〈α|β〉 =

∣∣∣∣∣∣∣
〈k1|q1〉 · · · 〈k1|qN 〉

...
. . .

...

〈kN |q1〉 · · · 〈kN |qN 〉

∣∣∣∣∣∣∣ . (7.67)

Specializing to the case |qi〉 = |ki〉 and using the orthonormality of the basis {|ki〉} we readily verify
the normalization of the many-body state |α〉,

〈α|α〉 =

∣∣∣∣∣∣∣
1 · · · 0
...

. . .
...

0 · · · 1

∣∣∣∣∣∣∣ = 1. (7.68)

On the other hand, if the two states are only approximately equal, |qi〉 ' |ki〉, we have 〈ki|qi〉 = 1−ε,
with ε � 1, and 〈ki|qj〉 � 1. Recalling from perturbation theory that off-diagonal elements
contribute to higher than the diagonal ones we are led to expect that the off-diagonal ones may
be neglected if ε is sufficiently small. This withstands mathematical scrutiny and leaves us with a
diagonal determinant; i.e., a product of the diagonal terms which are all slightly smaller than 1. In
this case 〈α|β〉 → 0 for N →∞.
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7.5 Occupation number representation

7.5.1 Introduction

The notation of the previous section calls for simplification. This is realized by introducing construc-
tion operators which satisfy an algebra that enforces the quantum statistics. The first construction
operators were introduced by Paul Dirac in 1927 [18]. Starting from Maxwell’s equations, Dirac
quantized the electromagnetic field by treating the eigenmodes of the field as independent harmonic
oscillators. The excitation level of the oscillator represents the mode occupation of the field. The
raising (lowering) operators of the oscillator serve to construct the field by creation (annihilation) of
photons, the quanta occupying the modes of the radiation field. The commutation relations between
the operators define the algebra that enforces the Bose statistics of the field. This marks the start
of quantum field theory. In the same year Pascual Jordan and Oskar Klein showed that the method
could be extended to describe quantum many-body systems of bosons satisfying the Schrödinger
equation [35]. Adapting the algebra, Jordan and Wigner further extended the method to describe
quantum many-body systems of fermionic particles [36]. The above sequence of seminal papers is
not complete without the name of Vladimir Fock, who emphasized in 1932 the use of field opera-
tors (construction operators for position space) [24]. This approach leads to an operator identity
resembling the Schrödinger equation, which explains the unfortunate name second quantization for
the construction operator formalism. In following sections we give a concise introduction in the
construction operator formalism for quantum many-body systems. For a systematic introduction
(including the discussion of continuous spectra) the lecture notes of Jan de Boer are recommended
[15].

7.5.2 Number states in the N-body Hilbert space HN

The notation of the properly symmetrized states can be compacted by listing only the occupations
of the states,

|ñγ〉 = |n1, n2, · · · , nl〉 ≡ |k1,k1, · · ·︸ ︷︷ ︸
n1

,k2,k2, · · ·︸ ︷︷ ︸
n2

· · · · · · ,kl︸ ︷︷ ︸〉,
nl

(7.69)

where γ = {1, 1, · · · 2, 2, · · · , l}, with l . N . In this way the states take the shape of number states,
which are the basis states of the occupation number representation (see next section). For the case
of N bosons in the same state |ks〉 the number state is given by |ns〉 ≡ |ks, · · ·,ks〉; for a single
particle in state |ks〉 we have |1s〉 ≡ |ks〉. Note that the Bose symmetrization procedure puts no
restriction on the value or order of the occupations n1, · · · , nl as long as they add up to the total
number of particles, n1 + n2 + · · ·+ nl = N . For fermions the notation is the same but because the
wavefunction changes sign under permutation the order in which the occupations are listed becomes
subject to convention (for instance in order of growing energy of the states). Up to this point and
in view of Eqs. (7.60) and (7.58) the number states (7.69) have normalization

〈n′1, n′2, · · · |n1, n1, · · · 〉 = δn1,n′1
δn2,n′2

· · · (7.70)

and closure ∑
n1,n2···

′ |n1, n2, · · · 〉 〈n1, n2, · · · | = 1, (7.71)

where the prime indicates that the sum over all occupations equals the total number of particles,
n1 + n2 + · · · = N . This is called closure within HN .
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7.5.3 Number states in Grand Hilbert space - construction operators

An important generalization of number states is obtained by interpreting the occupations ns, nt, · · ·
as the eigenvalues of number operators n̂s, n̂t, · · · defined by

n̂s |ns, nt, · · · , nl〉 = ns |ns, nt, · · · , nl〉 . (7.72)

With this definition the expectation value of n̂s is exclusively determined by the occupation of
state |s〉; i.e., not by the occupation of all other states. Therefore, the number operators may be
interpreted as acting in a Grand Hilbert space, also known as Fock space, which is the direct sum of
the Hilbert spaces of all possible atom number states of a gas cloud, including the vacuum,

HGr = H0 ⊕H1 ⊕ · · · ⊕HN ⊕ · · · .

By adding an atom we shift from HN to HN+1, analogously we shift from HN to HN−1 by removing
an atom. As long as the change in particle number does not affect the occupation of the single-
particle state |s〉 the operator n̂s yields the same result. Hence, the number states |ns, nt, · · · , nl〉
from HN may be reinterpreted as number states |ns, nt, · · · , nl, 0a, 0b, · · · 0z〉 within HGr by speci-
fying - in principle - the occupations of all single-particle states. Usually only the occupied states
are indicated. Thus the definition (7.69) remains valid but the notation may include empty states.
For instance, the number states |2q, 1t, · · · , 1l〉 and |0s, 2q, 1t, · · · , 1l〉 represent the same many-body
state |kq,kq,kt, · · · ,kl〉.

The basic operators in Grand Hilbert space are the construction operators defined as

â†s |ns, nt, · · · , nl〉 ≡
√
ns + 1 |ns + 1, nt, · · · , nl〉 (7.73a)

âs |ns, nt, · · · , nl〉 ≡
√
ns |ns − 1, nt, · · · , nl〉 , (7.73b)

where the â†s and âs are known as creation and annihilation operators, respectively. The creation
operators transform a properly symmetrized N -body eigenstate in HN into a (N+1)-body eigenstate
(of the same symmetry) in HN+1. Analogously, the annihilation operators transform a properly
symmetrized N -body eigenstate in HN into a (N − 1)-body eigenstate (of the same symmetry) in
HN−1. Note that the annihilation operators yield zero when acting on non-occupied states. This
reflects the logic that an already absent particle cannot be annihilated. Note further that â†s and âs
are hermitian conjugates,

〈ns + 1|â†s |ns〉 = 〈ns|âs |ns + 1〉∗ =
√
ns + 1. (7.74)

Hence, when acting on the bra side â†s and âs change their role, â†s becomes the annihilation operator
and âs the creation operator.

For fermions we have to add some additional rules to assure that the construction operators
create or annihilate proper fermions. First, a creation operator acting on an already occupied
fermion state has to yield zero,

â†s |nq, · · · , 1s, · · · , nl〉 = 0. (7.75)

Secondly, to assure anti-symmetry a creation (annihilation) operator acting on an empty (filled)
fermion state must yield +1 or −1 depending on whether it takes an even or an odd permutation
P between occupied states to bring the occupation number to the most left position in the fermion
state vector,

â†s |1q, · · · , 0s, · · · 〉 = (−1)
p |1q, · · · , 1s, · · · 〉 (7.76a)

âs |1q, · · · , 1s, · · · 〉 = (−1)
p |1q, · · · , 0s, · · · 〉 . (7.76b)

Let us have a look at a few examples: â†s |0q, 0s, · · · 〉 = + |0q, 1s, · · · 〉, â†s |1q, 0s, · · · 〉 = − |1q, 1s, · · · 〉
and further âs |0q, 1s, · · · 〉 = |0q, 0s, · · · 〉 and âs |1q, 1s, · · · 〉 = − |1q, 0s, · · · 〉.
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With the above set of rules any occupation of any given one-body state |s〉 can be obtained by
repetitive use of the creation operator â†s,(

â†s
)ns |0s, nt, · · · 〉 =

√
ns! |ns, nt, · · · 〉 . (7.77)

The notation can even be further compacted by using implicit definition of the many-body state
vectors |ψγ〉 and number states |ñγ〉. For instance, the example state |ψγ〉 = |kq,kq,kt, · · · ,kl〉,
with γ = {q, q, t, · · · , l}, corresponds to |ñγ〉 = |2q, 1t, · · · , 1l〉. By straightforward generalization of
Eq. (7.77) any number state |ñγ〉 can be created by repetitive use of a set of creation operators

|ñγ〉 =
∏
s∈γ

(
â†s
)ns

√
ns!
|0〉 . (7.78)

This expression holds for both bosons and fermions. The index s ∈ γ points to the set of one-body
states to be populated and |0〉 ≡ |0q, 0t, · · · , 0l〉 is the vacuum state. We note that for the special
case of a single particle in state |s〉

|s〉 ≡ |1s〉 ≡ |1̃s〉 = â†s |0〉 . (7.79)

Thus we have obtained the occupation number representation. By extending HN to HGr the
definition of the number states and their normalization 〈ñγ′ |ñγ〉 = δγ′γ has remained unchanged.
Note that also the newly introduced vacuum state is normalized,

〈0|0〉 =
〈
1s|â†sâs|1s

〉
= 〈s|s〉 = 1,

as follows irrespective of the particular choice of single particle state |s〉. Importantly, by turning
to HGr the condition on particle conservation is lost. This has the very convenient consequence
that in the closure relation (7.71) the restricted sum may be replaced by an unrestricted sum, thus
allowing for all possible values of N ,∑

γ

|ñγ〉 〈ñγ | =
∑

n1,n2···
|n1, n2, · · · 〉 〈n1, n2, · · · | = 1. (7.80)

This is called closure within HGr.
Having defined the construction operators the number operator can be expressed as n̂s = â†sâs

(cf. Problem 7.5). Further we can derive the following commutation relations for bosons (−) and
anticommutation relations for fermions (+):1[

âq, â
†
s

]
± = δqs ; [âq, âs]± =

[
â†q, â

†
s

]
± = 0, (7.81)

For both bosons and fermions we have[
n̂q, â

†
s

]
= +â†sδqs ; [n̂q, âs] = −âsδqs . (7.82)

Problem 7.4. Show that for bosons the following commutation relation holds[
âq, â

†
s

]
= δqs.

Solution. By definition
[
âq, â

†
s

]
= âqâ

†
s − â†sâq.

(a) For q 6= s we obtain by applying the definition of the creation operators[
âq, â

†
s

]
|nq, ns, · · · 〉 = âq

√
ns + 1 |nq, ns + 1, · · · 〉 − â†s

√
nq |nq − 1, ns, · · · 〉

=
√
nq
√
ns + 1 |nq − 1, ns + 1, · · · 〉 −

√
ns + 1

√
nq |nq − 1, ns + 1, · · · 〉 = 0

1Note that we use the convention [a, b] ≡ [a, b]− = ab − ba for the commutator and [a, b]+ = ab + ba for the
anti-commutator.
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(b) For q = s we obtain we obtain[
âs, â

†
s

]
|ns, · · · 〉 = âs

√
ns + 1 |ns + 1, · · · 〉 − â†s

√
ns |ns − 1, · · · 〉

= (ns + 1) |ns, · · · 〉 − ns |ns, · · · 〉
= |ns, · · · 〉 . 2

Problem 7.5. Show that the occupation number operator can be expressed as

n̂s = â†sâs. (7.83)

Solution. The result follows by subsequent operation of âs and â†s on a number state

n̂s |ns, nt, · · · , nl〉 = â†sâs |ns, nt, · · · , nl〉

=
√
nsâ
†
s |ns − 1, nt, · · · , nl〉 = ns |ns, nt, · · · , nl〉 .

Note that this holds for both bosons and fermions. 2

Problem 7.6. Show that for both bosons and fermions the following commutation relation holds[
n̂q, â

†
s

]
= +â†sδqs.

7.5.4 Operators in the occupation number representation

Thus far we introduced âs, â
†
s and n̂s as operators in Grand Hilbert space. It may be shown

that for any operator G acting in a N -body Hilbert space HN we can define an extension Ĝ into
Grand Hilbert space with the aid of the construction operators defined above. In particular we are
interested in operators G that may be written as a sum of N one-body operators g(i), N(N − 1)/2!
two-body operators g(ij), N(N − 1)(N − 2)/3! three-body operators g(ijk), etc.; i.e., operators of
the type

G = G(1) +G(2) +G(3) + · · · (7.84)

=
∑
i

g(i) +
1

2!

∑
i,j

′g(i,j) +
1

3!

∑
i,j,k

′g(i,j,k) + · · · , (7.85)

where the primed summations indicate that coinciding particle indices, like i = j, are excluded. The
best known example of such an operator is the hamiltonian for a gas with binary interactions.

In preparation for the extension of G we first have a look at a cleverly selected one-body operator,
the correlation operator

As′s ≡
∑
i

|s′〉i i〈s| . (7.86)

Acting on the number state |nq, · · · , ns′ , · · · , ns, · · · , nl〉 of HN , this operator sums over all possible
ways in which one of the ns particles in eigenstate |s〉 can be replaced by a particle in eigenstate
|s′〉. The extension of As′s from HN into HGr is given by

As′s ≡
∑
i

|s′〉i i〈s| ⇒ Âs′s = â†s′ âs. (7.87)

Although this extension has an intuitive appeal its simple form can be misleading. In this respect
the proof in Problem 7.7 may speak for itself. The full complexity of the (anti)symmetrization
condition is contained in an algebra in which we only create or annihilate particles. The role of
the (anti)symmetrization procedure is absorbed in the properties of the construction operators, in
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particular their commutation relations. The extension of the two-body correlation operator is given
by

As′t′ts ≡
∑
i,j

′ |s′〉j |t
′〉i i〈t| j〈s| ⇒ Âs′t′ts = â†s′ â

†
t′ âtâs, (7.88)

where the primed summation symbol implies i 6= j. The extensions Âs′t′ts = â†s′ â
†
t′ âtâs for the two-

body operator, Ât′s′u′uts = â†s′ â
†
t′ â
†
u′ âuâtâs for the three-body operator as well as similar extensions

for more-body operators can be demonstrated in a way closely analogous to the one-body case, be it
that the proofs become increasingly tedious and are not given here. In these expressions attention
should be paid to the order of the construction operators.

Let us now return to the operator G. First we look at the one-body contribution G(1) ≡
∑
i g

(i).
Using twice the single particle closure relation (7.49) this expression can be rewritten as

G(1) =

N∑
i=1

(∑
s′

|s′〉i i〈s
′|

)
g(i)

(∑
s

|s〉i i〈s|

)
. (7.89)

As all particles are identical, the matrix elements i〈s′| g(i) |s〉i all evaluate to the same value
〈s′| g(1) |s〉, irrespective of the particle label i. Thus, Eq. (7.89) reduces to

G(1) =
∑
s′s

N∑
i=1

|s′〉i 〈s
′| g(1) |s〉 i〈s| . (7.90)

Recognizing the correlation operator As′s ≡
∑
i |s′〉i i〈s| in Eq. (7.90) we have established that the

extension of the operator G1 is given by

Ĝ(1) =
∑
s′s

â†s′ 〈s
′| g(1) |s〉 âs. (7.91)

Using the same approach for the pair terms G(2) and the three-body terms G(3) we obtain for the
extension of the full operator G into the Grand Hilbert space,

Ĝ = Ĝ(1) + Ĝ(2) + Ĝ(3) + · · · , (7.92)

where

Ĝ(1) =
∑
s′s

â†s′ 〈s
′| g(1) |s〉 âs (7.93)

Ĝ(2) =
1

2!

∑
t′t

∑
s′s

â†s′ â
†
t′(s
′, t′|g(1,2)|s, t)âtâs (7.94)

Ĝ(3) =
1

3!

∑
u′u

∑
t′t

∑
s′s

â†s′ â
†
t′ â
†
u′(s

′, t′, u′|g(1,2,3)|s, t, u)âuâtâs. (7.95)

This expression represents the generic operator to calculate expectation values in many-body sys-
tems, including the effects of interactions between the particles. Importantly, the particle index (i)
does not appear in the notation, as it should for an ensemble of atoms that cannot be ordered be-
cause they are identical. The superscripts (1), (1, 2), (1, 2, 3), etc. refer to an arbitrary single atom,
an arbitrary single pair of atoms, etc.; hence not to any specific choice of particle(s).

It is important to note the order in which the construction operators appear. Because the matrix
element is not symmetrized, the indices s and s′ are attached to particle 1 (better: the first particle
of a product state), t and t′ to particle 2, u and u′ to particle 3, etc.. For bosons this is of no

consequence because âu, ât, âs, · · · as well as â†s′ , â
†
t′ , â

†
u′ commute. For fermions this is not the case

and mistakes in the order of the operators gives rise to sign errors.
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Problem 7.7. Show that the extension of the correlation operator As′s in HN to Âs′s in HGr is given by

As′s ≡
N∑
i=1

∣∣s′〉
i i
〈s| ⇒ Âs′s = â†s′ âs,

where |s〉 and |s′〉 are eigenstates of the same operator A on which the occupation number representation
of â†s′ and âs is based.

Solution. The proof is given in the notation of Section 7.5.2. We set |s〉 = |k1〉 and |s′〉 = |k2〉, both
eigenstates of the operator A,

A |ks〉 = αs |ks〉 ,
with s ∈ {1, 2, · · · l}, where l ≤ N. In this notation the correlation operator is written as A21 =

∑
i |k2〉ii〈k1|

acting on the number state |n1, n2, · · · , nl〉 .
Bosons: For bosons the number states are defined through (7.69) by the N -body state given in Eq. (7.60),

replacing all particles in state |k1〉 by particles in state |k2〉,

A21 |n1, n2, · · · , nl〉 = n1

√
1

N !n1! · · ·nl!
∑
P

P |k1,k1, · · ·︸ ︷︷ ︸
n1

,k2, · · ·︸ ︷︷ ︸
n2

· · · · · ·kl︸ ︷︷ ︸
nl

) (7.96a)

=
√
n2 + 1

√
n1 |n1 − 1, n2 + 1, · · · , nl〉 . (7.96b)

Note that term i of the correlation operator only yields a non-zero result if the state |k1〉 is found at position i
in the product state. This follows directly from the orthonormality relations (7.49), |k2〉i i〈k1|ks〉i = |k2〉i δs,1.
Because we have initially n1 particles in state |k1〉 there are n1 equivalent ways to replace one particle in
state |k1〉 by a particle in state |k2〉. The prefactor n1 in Eq. (7.96a) is the same for all permutations P
but results from a different subset of n1 terms in the correlation operator. Note that if the state |k1〉 is
not occupied the operator A21 is orthogonal to the number state and the procedure yields zero. Hence, in
view of the definitions (7.73) we infer from Eq. (7.96b) that the extension of the operator A21 to the Grand
Hilbert space is given by Â21 = â†2â1,

Â21 |n1, · · · , nl〉 = â†2â1 |n1, · · · , nl〉 .

This extension is readily generalized to correlation operators As′s acting on the occupations of arbitrary
eigenstates |s〉 = |ks〉 and |s′〉 = |k′s〉, thus completing the proof for bosons.

Fermions: For fermions we use a number state defined by the antisymmetric state (7.58):

As′s |11, · · · , 1s, · · · , 1N 〉 =

√
1

N !

∑
P

(−1)pP |k1, · · · ,ks′ , · · · ,kN ) = |11, · · · , 1s′ , · · · , 1N 〉 .

The operator As′s has replaced in the Slater determinant the column containing all particles in state |ks〉
by a column with all particles in state |k′s〉. This is exactly the result obtained by the action of the operator
Âs′s = â†sâs,

Âs′s |11, · · · , 1s, · · · , 1N 〉 = (−1)pâ†s′ âs |1s, 11, · · · , 1N 〉
= (−1)p |1s′ , · · · , 1N 〉 = |11, · · · , 1s′ , · · · , 1N 〉 ,

where p is the number of binary interchanges that brings the column containing all particles in state |ks〉
to the first position in the bracket. 2

Example 7.1. An almost trivial but very instructive example of the extension procedure of an operator
into Grand Hilbert space is the extension of the total-number operator, which is the unit operator 1 summed
over all particles of a system,

N =

N∑
i=1

1. (7.97)

In the notation of the previous section the one-body operator in this example is g(1) = 1 and the more-body
operators are all zero. By substitution into Eq. (7.5.4) we obtain

N̂ =
∑
s′s

â†s′
〈
s′
∣∣ 1 |s〉 âs =

∑
s′s

â†s′ âsδs′s (7.98)
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and substituting n̂s = â†sâs we arrive at

N̂ =
∑
s

n̂s. (7.99)

7.5.5 Example: Hamiltonian in the occupation number representation

As an important application of the many-body formalism we consider the hamiltonian

H = H(1) +H(2) + · · · =
∑
i

(
− ~2

2m
∇2
i + U(ri)

)
+ 1

2

∑
i,j

′V(ri − rj) + · · · , (7.100)

representing a gas of N atoms trapped in an external potential U(r) and interacting pairwise through
the (not necessarily central) potential V(ri−rj). In the language of the previous section the one-body
contribution to the Hamilton operator is

g(i) = − ~2

2m
∇2
i + U(ri) ≡ H0(p

i
, ri). (7.101)

The two-body contribution is
g(i,j) = V(ri − rj), (7.102)

and because we only consider binary interaction all more-body contributions are zero. Thus, ac-
cording to Eq. (7.5.4), the extension of the hamiltonian to the occupation number representation is
given by the expression

Ĥ = Ĥ(1) + Ĥ(2) + · · · =
∑
s,s′

â†s′ 〈s
′|H0 |s〉 âs + 1

2

∑
t,t′

∑
s,s′

â†s′ â
†
t′(s
′, t′|V|s, t)âtâs + · · · . (7.103)

Occupation of energy eigenstates

Interestingly, the construction operators were introduced without specification of the representation
{|s〉}. Hence, the expression (7.103) can be simplified by turning to a specific representation in
which the occupation numbers refer to the occupation of the eigenstates |s〉 of H0 defined by

H0 |s〉 = εs |s〉 . (7.104)

In this representation, the representation of H0, the one-body matrix is diagonal, 〈s′|H0 |s〉 = εsδss′ ,
and Ĥ(1) becomes

Ĥ(1) =
∑
s

â†s 〈s|H0 |s〉 âs =
∑
s

εsn̂s, (7.105)

as could be written down without much knowledge of the underlying formalism. Thus we find for
the full hamiltonian

Ĥ =
∑
s

εsn̂s + 1
2

∑
t,t′

∑
s,s′

â†s′ â
†
t′(s
′, t′|V|s, t)âtâs + · · · . (7.106)

7.6 Field operators

7.6.1 Position representation

Let us write the total number operator (7.98) in the position representation. Using the closure
relation 1 =

´
dr |r〉〈r| we obtain

N̂ =

ˆ
dr
∑
s′s

â†s′ 〈s
′| r〉〈r |s〉 âs =

ˆ
dr
∑
s′

ϕ∗s′(r)â†s
∑
s

ϕs(r)âs, (7.107)
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where the 〈r |s〉 = ϕs(r) are the wavefunctions of an arbitrary single-particle basis {|s〉}. With this
transformation we introduced two operator densities

ψ̂(r) ≡
∑
s

ϕs(r)âs and ψ̂†(r) ≡
∑
s

ϕ∗s(r)â†s, (7.108)

which are called field operators in view of their dependence on position. In terms of these field
operators the total number operator takes the form

N̂ =

ˆ
drψ̂†(r)ψ̂(r), (7.109)

which can be written as

N̂ =

ˆ
dr n̂(r). (7.110)

This defines the density operator n̂(r) as the diagonal part of the density matrix operator,

n̂(r, r′) = ψ̂†(r)ψ̂(r′). (7.111)

The field operators are construction operators that create or annihilate particles at a given position.
Let us demonstrate this for ψ̂†(r). This field operator is a creation operator because it is defined in
terms of creation operators,

ψ̂†(r)|0〉 =
∑
s

ϕ∗s(r)â†s|0〉 =
∑
s

|s〉〈s|r〉 = |r〉. (7.112)

Using the closure relation 1 =
∑
s |s〉 〈s| we found that ψ̂†(r) creates from the vacuum a particle

in state |r〉; i.e., a particle at position r. Similarly we can show that ψ̂(r) is the corresponding
annihilation operator (cf. Problem 7.8)

ψ̂(r)|r〉 = |0〉. (7.113)

The field operators are important quantities because (at least in principle) the positions of the
particles can be measured to arbitrary accuracy in any many-body system, also when the concept
of stationary single-particle states has lost meaning due to coupling by the interactions.

Example 7.2. Consider the number state |N0〉, representing N0 bosons in the single-particle ground state
ϕ0(r). In this case the following relation holds,

ψ̂(r)|N0〉 =
√
N0ϕ0(r)|N0 − 1〉. (7.114)

This expression follows immediately from Eq. (7.108). As we are dealing with a pure number state only
a single term contributes. In general, the state of the system is not a pure number state but a linear
combination of number states (often with multiply occupied single-particle states). In that case also off-
diagonal terms of the summation (7.108) contribute.

Problem 7.8. Show that ψ̂(r)|r〉 = |0〉.

Solution. Inserting the closure relation
∑
s′ |s

′〉 〈s′| = 1 just behind the annihilation operator we obtain

ψ̂(r)|r〉 =
∑
s

ϕs(r)âs|r〉 =
∑
s,s′

ϕs(r)âs|s′〉〈s′|r〉 =
∑
s,s′

ϕs(r)δs,s′ |0〉ϕ∗s′(r) =
∑
s

|ϕs(r)|2|0〉 = |0〉.

Here we recognized in the last step the Parseval relation
∑
s |ϕs(r)|2 = 1. 2
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7.6.2 Commutation relations for field operators

It is straightforward to show (cf. Problem 7.9) that the field operators ψ̂†(r) and ψ̂(r) satisfy
commutation relations very similar to those of the construction operators â†s and âs (cf. Section
7.5.3)

[ψ̂(r), ψ̂†(r′)]± = δ(r− r′) ; [ψ̂(r), ψ̂(r′)]± = [ψ̂†(r), ψ̂†(r′)]± = 0. (7.115)

Like previously, the commutators (−) refer to to case of bosons and the anti-commutators (+) to
the case of fermions. Further we have for both bosons and fermions

[n̂(r), ψ̂†(r′)] = +ψ̂†(r′)δ(r− r′) ; [n̂(r), ψ̂(r′)] = −ψ̂(r′)δ(r− r′). (7.116)

Using the expression (7.110) for the total number operator the latter commutation relation leads to

[ψ̂(r), N̂ ] = ψ̂(r). (7.117)

Problem 7.9. Show that the boson (−) and fermion (+) field operators satisfy the following commutation
relations

[ψ̂(r), ψ̂†(r′)]± = δ(r− r′).

Solution. Starting from the definition we have

[ψ̂(r), ψ̂†(r′)]± =
∑
q

ϕq(r)âq
∑
s

ϕ∗s(r
′)â†s ±

∑
s

ϕ∗s(r
′)â†s

∑
q

ϕq(r)âq

=
∑
q,s

ϕ∗s(r
′)ϕq(r)âqâ

†
s ±

∑
q,s

ϕ∗s(r
′)ϕq(r)â†sâq

=
∑
q,s

ϕ∗s(r
′)ϕq(r)[âq, â

†
s]±

=
∑
s

〈r|s〉〈s|r′〉.

In the last step we used the commutation relation [âq, â
†
s]± = δq,s . Substituting the closure relation∑

s |s〉 〈s| = 1 we arrive at [ψ̂(r), ψ̂†(r′)]± = 〈r|r′〉 = δ(r− r′). 2

7.6.3 Number density

For a many-body system in the state |ψN 〉 the number-density is given by the expectation value

n(r) = 〈ψN |n̂(r)|ψN 〉. (7.118)

We calculate the density for a system in a pure number state, |ψN 〉 → |ñγ〉 of the single-particle
representation {|s〉}. Substituting the definitions (7.108) we obtain

n̂(r) =
∑
s

ϕ∗s(r)â†s
∑
t

ϕt(r)ât =
∑
s

|ϕs(r)|2â†sâs +
∑
s,t

′ϕ∗s(r)ϕt(r)â†sât, (7.119)

where the prime indicates that t 6= s. We separated the operators into a sum of two contributions:
(a) the part diagonal in the number representation of {|s〉},∑

s

|ϕs(r)|2n̂s|ñγ〉 =
∑
s

|ϕs(r)|2ns|ñγ〉 = n̄(r)|ñγ〉, (7.120)

having as its eigenvalue, the quantum mechanical average (probability density)

n̄(r) ≡
∑
s

|ϕs(r)|2ns. (7.121)

(b) the cross terms in this representation, corresponding to the density fluctuations about the
average, ∑

s,t

′ϕ∗s(r)ϕt(r)â†sât|ñγ〉 = [n̂(r)− n̄(r)] |ñγ〉. (7.122)
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7.6.4 The hamiltonian expressed in field operators

It is instructive to write the matrix elements 〈s′|H0 |s〉 and (s′, t′|V|s, t) in the position representa-
tion,

Ĥ(1) =
∑
s,s′

ˆ
dr′dr â†s′ 〈s| r

′〉〈r′|H0|r〉〈r |s〉 âs (7.123)

Writing this expression in the form

Ĥ(1) =

ˆ
dr′dr

∑
s′

ϕ∗s′(r
′)â†s′〈r

′|H0|r〉
∑
s

ϕs(r)âs (7.124)

we recognize the field operators and Ĥ(1) takes the form

Ĥ(1) =

ˆ
dr′drψ̂†(r′)〈r′|H0|r〉ψ̂(r). (7.125)

Since H0 is diagonal in the position representation, 〈r′|H0|r〉 = H0(p, r)δ(r − r′), the one-body
hamiltonian reduces to

Ĥ(1) =

ˆ
dr′drψ̂†(r)H0(p, r)ψ̂(r). (7.126)

HereH0(p, r) is the single-particle hamiltonian in the Schrödinger representation (p→ −(~/m)∇, r→
r). Importantly, H0(p, r) does not commute with the field operators because the laplacian does not
commute with the functions of the basis set {ϕs(r)}. In Problem 7.10 we derive the commutation
relation

[ψ̂(r), Ĥ(1)] = H0(p, r)ψ̂(r), (7.127)

which holds for both bosons and fermions.
We proceed with the interaction term from Eq. (7.103),

Ĥ(2) = 1
2

∑
t,t′s,s′

ˆ
dr′1dr

′
2dr1dr2â

†
s′ â
†
t′(s
′, t′|r′1, r′2)(r′1, r

′
2|V(r1 − r2)|r1, r2)(r1, r2|s, t)âtâs. (7.128)

Since the operator V(ri − rj) is diagonal in the position representation we have

Ĥ(2) = 1
2

∑
t,t′s,s′

ˆ
dr′1dr

′
2dr1dr2â

†
s′ â
†
t′〈t
′|r′2〉〈s′|r′1〉V(r1 − r2)〈r′1|r1〉〈r′2|r2〉〈r2|t〉〈r1|s〉âtâs, (7.129)

where V(r1− r2) is not an operator but a function of the relative position of two arbitrary particles
(denoted 1 and 2). Since 〈r′|r〉 = δ(r− r′) and 〈r|s〉 = ϕs(r) the operator Ĥ(2) by integration over
r′1 and r′2 Eq. (7.129) reduces to

Ĥ(2) = 1
2

∑
t,t′s,s′

ˆ
dr1dr2â

†
s′ϕ
∗
s′(r1)â†t′ϕ

∗
t′(r2)V(r1 − r2)âtϕt(r2)âsϕs(r1). (7.130)

Note that the indices s and s′ (t and t′) are attached to particle 1 (2). Eq. (7.130) is different in this
respect. As long as V(r1− r2) is a simple function of r1− r2 (e.g., not depending on a gradient with
respect to position) it commutes with the functions of the set {ϕs(r)} and Eq. (7.130) simplifies to
the form

Ĥ(2) = 1
2

ˆ
dr1dr2V(r1 − r2)ψ̂†(r1)ψ̂†(r2)ψ̂(r2)ψ̂(r1). (7.131)

Note that the relation between summation index and particle index has resulted in the particular
order in which the position variables r1 and r2 appear in Eq. (7.131).
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Problem 7.10. Show that the following commutation relation holds for both fermions and bosons,

[ψ̂(r), Ĥ(1)] = H0(p, r)ψ̂(r).

Solution. First we write the commutator in the form

[ψ̂(r), Ĥ(1)] =

ˆ
dr′[ψ̂(r), Ĥ(1)(r′)],

where Ĥ(1)(r′) = ψ̂†(r′)H0(p, r′)ψ̂(r′) is the construction operator density for the one-body hamiltonian
H0(p, r). Using the commutation relations [ψ̂(r), ψ̂(r′)]± = 0 and [H0(p, r′), ψ̂(r)] = 0 we find

ˆ
dr′[ψ̂(r), Ĥ(1)(r′)] =

ˆ
dr′[ψ̂(r)ψ̂†(r′)H0(p, r′)ψ̂(r′)− ψ̂†(r′)H0(p, r′)ψ̂(r′)ψ̂(r)]

=

ˆ
dr′[ψ̂(r)ψ̂†(r′)H0(p, r′)ψ̂(r′)± ψ̂†(r′)ψ̂(r)H0(p, r′)ψ̂(r′)]

=

ˆ
dr′[ψ̂(r), ψ̂†(r′)]±H0(p, r′)ψ̂(r′).

Substituting [ψ̂(r′), ψ̂†(r′)]± = δ(r− r′) and integrating over r′ we obtain the desired expression. 2

7.6.5 Time-dependent field operators - second quantized form

Let us consider the hamiltonian of an ideal gas (non-interacting many-body system),

H =
∑
i

− ~2

2m
∇2
i + U(ri) =

∑
i

H0(pi, ri). (7.132)

In terms of field operators this hamiltonian can be written in the form Ĥ = Ĥ(1),

Ĥ(1) =

ˆ
drψ̂†(r)H0(p, r)ψ̂(r), (7.133)

where the one-body construction operator Ĥ(1) is expressed in terms of the field operators ψ̂(r) and

ψ̂†(r) defined by Eqs. (7.108). Let

ψ̂(r, t) ≡ ψ̂H(t) = eiĤ
(1)t/~ψ̂(r)e−iĤ

(1)t/~ (7.134)

be the Heisenberg operator corresponding to ψ̂(r). Because ψ̂(r) does not contain an explicit time

dependence (∂ψ̂(r)/∂t = 0), the Heisenberg equation of motion is given by Eq. (B.101) and since
the evolution operator commutes with Ĥ(1) we have

i~
∂

∂t
ψ̂(r, t) = [ψ̂(r, t), Ĥ(1)] = eiĤ

(1)t/~[ψ̂(r), Ĥ(1)]e−iĤ
(1)t/~. (7.135)

Applying Eq. (7.127) we obtain

i~
∂

∂t
ψ̂(r, t) = H0(p, r)ψ̂(r, t). (7.136)

With this equation we have regained for the Heisenberg equation of motion the form of the Schrödinger
equation! This has become known as the second quantization form and, more in general, to the not
very helpful name second quantization for the construction operator formalism.
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7.7 Correlation functions

7.7.1 Introduction

We define first-order (one-body), second-order (two-body), third-order (three-body), etc. correlation
operators depending on the number of particles involved in the correlation,

n̂(r, r′) = ψ̂†(r)ψ̂(r′),

n̂(2)(r, r′) = ψ̂†(r)ψ̂†(r′)ψ̂(r′)ψ̂(r),

n̂(3)(r, r′, r′′) = ψ̂†(r)ψ̂†(r′)ψ̂†(r′′)ψ̂(r′′)ψ̂(r′)ψ̂(r),

and analogously for higher-order correlations. For a many-body system in an arbitrary state, |ψN 〉,
the corresponding density matrices are defined as the expectation value of the correlation operators
in that state

ρ(1)(r, r′) = 〈ψN |n̂(r, r′)|ψN 〉,
ρ(2)(r, r′) = 〈ψN |n̂(2)(r, r′)|ψN 〉,

ρ(3)(r, r′, r′′) = 〈ψN |n̂(3)(r, r′, r′′)|ψN 〉,

and analogously for higher order. These density matrices are correlation functions representing the
distribution of one body, two bodies, three bodies, etc.. Importantly, these correlation functions are
well defined, irrespective of the presence or absence or strength of the interparticle interactions but,
in general, the actual calculation will be a major task.

In the coming section we discuss some interesting cases for which explicit expressions can be
obtained. In Section 7.7.2 we discuss the one-body correlation functions for the ideal Fermi gas at
T = 0 K and the ideal Bose gas for T < Tc, where Tc is the critical temperature for Bose-Einstein
condensation (see Section 9.2). For the ideal Fermi gas we can obtain a closed expression because
the groundstate of the system can be represented by a simple number state, |ψN 〉 → |DFG〉. We
show that the correlation is of the order of the inverse Fermi wavevector k−1

F . For the degenerate
Bose gas we have to follow a different approach because, at finite temperature, the best we can do
is use a statistical distribution over the energy levels. For the ideal Bose gas the situation is still
favorable because the statistical distribution can be expressed in terms of the occupation numbers of
the single-particles states. As these occupation numbers are given by the well-known Bose-Einstein
distribution function we can obtain a closed expression for the single particle correlation function of a
degenerate ideal Bose gas. This correlation function shows the famous off-diagonal long-range order
provided the single-particle groundstate (condensate) is macroscopically occupied. For interacting
Bose gases this approach fails because the single-particle state are coupled by the interactions.
So what is the relevance of Bose-Einstein condensation for a quantum fluid if the interactions
are strong? This question has been debated for many years in relation to the superfluidity of
liquid 4He below the so-called lambda transition at Tλ ≈ 2.17 K. In 1956 Oliver Penrose and Lars
Onsager pointed out that the eigenstates of the statistical operator remain well defined irrespective
of the strength of the interaction because the statistical operator contains the full hamiltonian
[52]. Therefore, although the concept of occupation of free-particle states has lost its meaning,
off-diagonal long-range order can still be present and serve as an indicator for superfluidity. As
we show in Section 7.7.3 off-diagonal long-range order is present if a macroscopic fraction of the
particles have identical momentum. This criterium for superfluidity is supported by the Bogoliubov
theory for the weakly-interacting Bose gas.

In Section 7.7.4 we turn to the two-body correlation functions. These are called pair-correlation
functions because they describe the distribution of the particles remaining after removal of one
particle from the system. For the ideal Fermi gas at T = 0 K we use again the number state |DFG〉
and obtain zero probability to find two fermion (in the same internal state at the same position.
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This manifests itself as a dip in the pair-correlation function (repulsive statistics) which is known
as the Fermi hole. For the ideal Bose gas below Tc we use again the Bose-Einstein distribution
function. Characteristically, we find no correlations between the atoms in the condensate and
attractive correlations for those in the thermal cloud.

7.7.2 First-order correlations - density matrix - single-particle correlation function

For a many-body system in the state |ψN 〉, the expectation value

ρ(1)(r, r′) = 〈ψN |n̂(r, r′)|ψN 〉 (7.137)

is called the one-body density matrix or single-particle correlation function of the system in state
|ψN 〉. To evaluate the density matrix we have to choose a representation. Substituting the definitions
(7.108) the operator takes the form

n̂(r, r′) =
∑
s

ϕ∗s(r)â†s
∑
t

ϕt(r
′)ât =

∑
s

ϕ∗s(r)ϕs(r
′)â†sâs +

∑
s,t

′ϕ∗s(r)ϕt(r
′)â†sât, (7.138)

which is convenient for calculating the density matrix in the number representation of {|s〉}. For
pure number states, |ψN 〉 → |ñγ〉 (see Section 7.5.3), the cross terms of n̂(r, r′) do not contribute
and the correlation function takes the form

ρ(1)(r, r′) = 〈ñγ |n̂(r, r′)|ñγ〉 =
∑
s

ϕ∗s(r)ϕs(r
′)〈ñγ |â†sâs|ñγ〉 =

∑
s

ϕ∗s(r)ϕs(r
′)ns. (7.139)

Ideal fermions

As an instructive example we calculate the density matrix for the groundstate of a one-component
ideal Fermi gas of N particles per quantization volume V . By one-component we mean that all
fermions are in the same internal state. Hence, the kinetic state of the gas has to be antisymmetric
and can be represented by a single Slater determinant of N fermions. In the occupation number
representation this groundstate is denoted by

|DFG〉 ≡ |n0, n1, · · · 〉 with ns =

{
1 for s ≤ N
0 for s > N,

(7.140)

where DFG stands for Degenerate Fermi Gas. The single-particle correlation function for the |DFG〉
is defined as the expectation value

ρ(1)(r, r′)=〈DFG|n̂(r, r′)|DFG〉 =

N∑
s=0

ϕ∗s(r)ϕs(r
′)〈DFG|n̂s|DFG〉.

For a homogeneous gas the states can be represented by plane waves (s→ k),

ϕk (r) =
1

V 1/2
eik·r. (7.141)

Thus, the density matrix takes the form

ρ(1)(r, r′) =
1

V

∑
k

eik·(r
′−r)〈DFG|n̂k|DFG〉. (7.142)

Furthermore, if the quantization volume is sufficiently large we obtain a quasi continuum of mo-
mentum states for which we may replace the state summation by a phase space integration - see
Eq. (1.15) ∑

k

→ V

(2π)3

ˆ
dk, (7.143)
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Figure 7.1: Single-particle correlation function (normalized to the density) for a fully degenerate Fermi sea

of non-interacting particles. For the correlation length we calculate `
(1)
c = 3

4
πk−1

F , which is comparable to
the mean interparticle spacing.

and, taking into account the occupied levels of the Fermi sea, we obtain

ρ(1)(r, r′) =
1

(2π)3

ˆ
k≤kF

dk eik·(r
′−r). (7.144)

Note that this is a function of r = |r′ − r|. Therefore, we simplify the notation by writing ρ(1)(r)
for the correlation function. After k integration we obtain (see Problem 7.11)

ρ(1)(r) =
2k3
F

(2π)2

sin(kF r)− kF r cos(kF r)

(kF r)3
. (7.145)

This function plotted in Fig. 7.1. For small kF r the function can be expanded in powers of (kF r)

ρ(1)(r) =
k3
F

6π2

{
1− 1

10 (kF r)
2 + · · ·

}
. (7.146)

Since for r → 0 the density matrix reduces to the number density, ρ(1)(0) = n = N/V, we find that
the latter is given by the well-known expression

n =
k3
F

6π2
. (7.147)

This shows that, in a fully-degenerate uniform one-component ideal Fermi gas, the mean interparticle
spacing is about as large as the inverse Fermi wavevector

n−1/3 ∼ k−1
F . (7.148)

The correlation length calculates to

`(1)
c ≡

∞̂

0

ρ(1)(r)/ρ(1)(0) dr = 3
4πk

−1
F . (7.149)

Let us discuss our findings. For this purpose we first consider the one-body density matrix for a
single particle in the eigenstate |ϕs〉,

ρ(1)(r, r′) = 〈ϕs|ψ̂†(r)ψ̂(r′)|ϕs〉. (7.150)
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In this case, the density matrix represents the overlap between the states

ψ̂(r′)|ϕs〉 = ϕs(r
′)|0〉 and ψ̂(r)|ϕs〉 = ϕs(r)|0〉, (7.151)

which evaluates to

ρ(1)(r, r′) = ϕ∗s(r)ϕs(r
′). (7.152)

For the plane wave basis this becomes a wave uniformly distributed over space,

ρ(1)(r, r′) =
1

V
eik·(r

′−r),

being 1 for k · (r′− r) = 0, ±2π, ±4π, · · · . For the N -body density matrix of the |DFG〉 this density
matrix is given by

ρ(1)(r, r′) =
∑
k

(k≤kF )

eik·(r
′−r), (7.153)

which is unity for r′ = r but falls off rapidly for growing r′ − r,

ρ(1)(r, r′)→ 0 for |r− r′| → ∞. (7.154)

In the limit of an unrestricted sum over k the density matrix becomes the Dirac deltafunction.
The one-body density matrix is a measure for the single-particle correlations in the system. The

distance over which the correlations are substantial is called the correlation length `
(1)
c . For many-

body fermionic systems `
(1)
c is small because many Fourier components contribute to the number

states. As can be seen in Fig. 7.1, the correlation length is of the order of the mean interparticle

spacing, `
(1)
c ∼ k−1

F .

Problem 7.11. Show that the density matrix of a fully-degenerate uniform one-component Fermi gas can
be written in the form

ρ(1)(r) =
2k3
F

(2π)2

sin(kF r)− kF r cos(kF r)

(kF r)3
.

Solution. Starting from Eq. (7.144) we rewrite the integral in the form

ρ(1)(r′ − r) =
1

(2π)3

ˆ kF

0

dk

ˆ
dΩk2eik·(r

′−r).

Defining r = |r′ − r| and θ as the angle enclosing the vectors k and r′ − r| the integral is written as

ρ(1)(r) =
2π

(2π)3

ˆ kF

0

dk k2

ˆ π

0

dθeikr cos θ.

Changing to the dummy variable cos θ → x the integral becomes

ρ(1)(r) =
1

(2π)2

ˆ kF

0

dk k2

ˆ −1

1

dx eikrx =
2

(2π)2

ˆ kF

0

dk k2 [eikr − e−ikr]
2ikr

.

Recycling the dummy variable, kr → x, we obtain

ρ(1)(r) =
2

(2π)2

1

r3

ˆ kF r

0

dxx sinx,

which becomes, after integration by parts, the desired expression. 2
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Ideal bosons

Let us repeat the calculation but now for a degenerate ideal gas of spinless bosons. This a state of the
system in which the single-particle ground state is macroscopically populated, while the occupation
of the other states remains of order unity. In general this will be a thermal state. The one-body
density matrix is given by the trace

ρ(1)(r, r′) =
∑
{ñγ}

〈ñγ |ρ̂ n̂(r, r′)|ñγ〉, (7.155)

which represents the average with the quantum statistical operator,

ρ̂ = Z−1
gr e

−(Ĥ−µN̂)/kBT . (7.156)

Here T is the temperature and µ the chemical potential of the system; Zgr is the grand canonical
partition sum, which assures the unit normalization of the statistical distribution (see Chapter 8).
As (for the ideal gas) ρ̂ is diagonal in the occupation number representation of H0, the one-body
density matrix can be written in the form

ρ(1)(r, r′) =
∑
{ñγ}

〈ñγ |ρ̂|ñγ〉〈ñγ |n̂(r, r′)|ñγ〉, (7.157)

where 〈ñγ |n̂(r, r′)|ñγ〉 is the density matrix for the number state state |ñγ〉. As 〈ñγ |n̂(r, r′)|ñγ〉 is
diagonal, we may neglect the cross terms in Eq. (7.138) and the density matrix becomes

ρ(1)(r, r′) =
∑
s

ϕ∗s(r)ϕs(r
′)〈n̂s〉. (7.158)

The quantity 〈n̂s〉 is the quantum-statistical average of the occupation of state |s〉 (see Section 8.3.2),
which evaluates to the well-know Bose-Einstein distribution function

〈n̂s〉 =
∑
{ñγ}

〈ñγ |ρ̂|ñγ〉〈ñγ |n̂s|ñγ〉 =
1

z−1eεs/kBT − 1
. (7.159)

In particular, one finds for the single-particle groundstate (s = 0)

n̄0 ≡ N0 =
z

1− z
' kBT

−µ
. (7.160)

Note that µ is macroscopically small but nonzero (otherwise N0 diverges, which is unphysical). The
quantity z ≡ eµ/kBT is the called the fugacity of the system. This function of the chemical potential
(µ) offers convenience for algebraic manipulation of the Bose-Einstein distribution functions (see
e.g., Problem 7.12). Separating the groundstate from the excited states the density matrix becomes

ρ(1)(r, r′) = N0ϕ
∗
0(r)ϕ0(r′) + ρ

(1)
T (r, r′), (7.161)

where ρ
(1)
T (r, r′) is the thermal contribution to the density matrix,

ρ
(1)
T (r, r′) =

∑
s6=0

ϕ∗s(r)ϕs(r
′)〈n̂s〉. (7.162)

Although the same result as for ρ(1)(r, r′) is obtained for the pure number state |N0, n̄1, n̄2, · · · 〉, it
should be emphasized that the statistical average has a totally different physical meaning.
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For a homogeneous gas the states can be represented by plane waves (s→ k),

ϕk (r) =
1

V 1/2
eik·r. (7.163)

Thus, the density matrix takes the form

ρ(1)(r, r′) =
N0

V
+

1

V

∑
k6=0

nke
ik·(r′−r). (7.164)

If the quantization volume is sufficiently large we obtain a quasi continuum of momentum states for
which we may replace the state summation by a phase space integration, see Eq. (7.143), and we
obtain

ρ
(1)
T (r− r′) =

1

(2π)3

ˆ
dknke

ik·(r′−r). (7.165)

Substituting for nk the Bose-Einstein distribution function - see Eq. (8.63) ,

n(k) =
1

z−1e~2k2/2mkBT − 1
, (7.166)

and evaluating the integral (see Problem 7.12), we find for the thermal contribution to the single
particle correlation function

ρ
(1)
T (r) =

1

Λ3

∞∑
`=1

z`

`3/2
exp[−πr

2

`Λ2
]. (7.167)

The full single particle correlation function is given by

ρ(1)(r) =
N0

V
+

1

Λ3

∞∑
`=1

z`

`3/2
exp[−πr

2

`Λ2
] (7.168)

In the limit r → 0 the density matrix yields the total density. For z → 1 it becomes

ρ(1)(0) =
N0

V
+

2.612 · · ·
Λ3

. (7.169)

The first term represents the condensate density. In the second term we recognize the critical
density for BEC (nc = ζ(3/2)Λ−3, see Section 9.2) for a homogeneous gas in the thermodynamic
limit (N,V → ∞, for (N − N0)/V = nc). The full density matrix is sketched in Fig. 7.2. Note
that it does not decay to zero but to a constant value determined by the condensate density. This
phenomenon is known as off-diagonal long-range order and is regarded as an indicator for the
presence of a condensate (importantly, also for interacting quantum systems - cf. Section 7.7.3). For
the ideal gas the correlation length evaluates to

`(1)
c ≡

∞̂

0

ρ
(1)
T (r)/ρ

(1)
T (0) dr = 1

2Λ[g1(z)/g3/2(z)], (7.170)

which is of order Λ but diverges for z → 1 (the functions g1 and g3/2 are defined in Appendix C.4).
This is characteristic for second-order (i.e., continuous) phase transitions and arises from an algebraic
decay of the correlation function for r →∞ (see Problem 7.13).

Problem 7.12. Show that the density matrix for the thermal component of a degenerate ideal Bose gas
can be written in the form

ρ
(1)
T (r) =

1

Λ3

∞∑
`=1

z`

`3/2
exp[−πr

2

`Λ2
],

where Λ is the thermal wavelength.



194 CHAPTER 7. QUANTUM MECHANICS OF MANY-BODY SYSTEMS

Figure 7.2: Single-particle correlation function (normalized to the condensate density) showing off-diagonal

long-range order (`
(1)
c →∞) caused by the presence of the condensate. The correlation length in the thermal

cloud is `
(1)
c (T ) ∼ Λ but diverges for z → 1.

Solution. Starting from Eq. (7.165) we rewrite the integral in the form

ρ
(1)
T (r) =

1

(2π)3

ˆ ∞
0

dk

ˆ
dΩk2n(k) eik·(r

′−r) =
2π

(2π)3

ˆ ∞
0

dk k2n(k)

ˆ π

0

dθeikr cos θ.

Introducing the dummy variable cos θ → x, the integral becomes

ρ
(1)
T (r) =

1

(2π)2

ˆ ∞
0

dk k2n(k)

ˆ −1

1

dx eikrx =
2

(2π)2

ˆ ∞
0

dk
k2

z−1e~2k2/2mkBT − 1

[eikr − e−ikr]
2ikr

.

Recycling the dummy variable, ~2k2/2mkBT → x, we obtain

ρ
(1)
T (r) =

1

πΛ2

1

r

ˆ ∞
0

dx
sin(2

√
πx r/Λ)

z−1ex − 1
.

This integral is rewritten with the aid of the fugacity expansion (8.85),

ρ
(1)
T (r) =

1

πΛ2

1

r

∞∑
`=1

z`
ˆ ∞

0

dx e−`xsin(2
√
πx r/Λ).

Evaluating the integral we find the desired result. 2

Problem 7.13. Show that for degenerate Bose gases (z → 1) the one-body correlation function falls off
algebraically at large distances,

ρ
(1)
T (r) ∼ 1

Λ2

1

r
for r →∞,

where Λ is the thermal wavelength.

Solution. Starting from Eq. (7.165) we use the approach of Problem 7.12 to write ρ
(1)
T (r) in the form

ρ
(1)
T (r) =

1

πΛ2

1

r

ˆ ∞
0

dx
sin(2

√
πx r/Λ)

z−1ex − 1
,

where x = ~2k2/2mkBT . In view of its oscillatory behavior the sine only contributes substantially to
the integral for x > (1/4π)(Λ/r)2. For distances much larger than the thermal wavelength (r � Λ) this
corresponds to values x� 1, which implies that (for z → 1) the integral may be approximated by

ρ
(1)
T (r) ' 1

πΛ2

1

r

ˆ ∞
0

dx
sin(2

√
πx r/Λ)

x
=

1

Λ2

1

r
. �
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7.7.3 Generalization to interacting systems - off-diagonal long-range order

The concept of off-diagonal long-range order derives its genuine importance from the interacting
many-body quantum systems. In the presence of interactions, the stationary wavefunctions of the
individual atoms are no longer defined as they have become coupled by the interactions. In search
for the relevance of Bose-Einstein condensation in the presence of interactions Penrose and Onsager
pointed out that the statistical operator (density matrix) remains well defined irrespective of the
strength of the interactions because the statistical operator contains the full hamiltonian [52].

So let us consider a many-body system in the eigenstate ψN (r1, · · · , rN ) of the many-body
hamiltonian of identical bosonic particles. The one-body density matrix of this state is given by the
expectation value

ρ(1)(r, r′) = 〈ψN |n̂(r, r′)|ψN 〉. (7.171)

In the position representation this expression becomes

ρ(1)(r, r′) =

ˆ
dr1 · · · drN

ˆ
dr′1 · · · dr′N 〈ψN |r1, · · · , rN )

(r1, · · · , rN |n̂(r, r′)|r′1, · · · , r′N )(r′1, · · · , r′N |ψN 〉. (7.172)

For (r1, · · · , rN |ψ̂†(r)ψ̂(r′)|r′1, · · · , r′N ) to be nonzero, annihilation of a particle at position r′i (this
is the particle with index i ∈ {1, · · · , N} in the product state) has to be compensated by recreating
this particle at position r′i,

(r1, · · · , rN |n̂(r, r′)|r′1, · · · , r′N ) = δ(r1 − r′1) · · · δ(r− ri)δ(r
′ − r′i) · · · δ(r′N − rN ). (7.173)

As we are integrating over all positions and the particles are identical we obtain the same result for
all particles (because |ψN 〉 is symmetric under exchange of any two particles). This means that we
are free to choose i = 1 and obtain

ρ(1)(r, r′) =

ˆ
dr2 · · · drN ψ∗N (r, · · · , rN )ψN (r′, · · · , rN ).

This shows that the one-body distribution function ρ(1)(r, r′) is well defined, irrespective of the
strength of the interactions. Its shape is determined by quantum correlations as well as interparticle
forces.

Knowing the one-body distribution function, we ask for its momentum content. For this purpose
we write the field operator in the momentum representation

ψ̂(k) =
1√
V

ˆ
dreik·rψ̂(r). (7.174)

The operator for the momentum density is given by

n̂(k) = ψ̂†(k)ψ̂(k). (7.175)

In complete analogy with the number density, the operator for the total number of particles follows
by integration over all momentum states (see Problem 7.14)

N̂ =

ˆ
n̂(k)dk. (7.176)

In search for the relation with the density matrix we use the definition (7.174) to write the momentum
density operator in the form

n̂(k) =
1

V

ˆ
drdr′eik·(r

′−r)n̂(r, r′). (7.177)
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Changing variables, r′ − r→ s and 1
2 (r′ + r)→ R (see Appendix A.7), the operator takes the form

n̂(k) = lim
V→∞

1

V

ˆ
dRdseik·sn̂(R + 1

2s,R− 1
2s). (7.178)

Let us restrict ourselves to the eigenstates |ψN 〉 of uniform isotropic systems. In this case the density
matrix is independent of R and the momentum distribution n(k) = 〈ψN |n̂(k)|ψN 〉 is given by

n(k) =

ˆ
dseik·sρ(1)(r, r′). (7.179)

Changing variables, s→ r′ − r this becomes

n(k) =

ˆ
dr′eik·(r

′−r)ρ(1)(r, r′). (7.180)

Multiplying both sides with eik·r this integral takes the form of an eigenvalue equation for the
density operator (cf. B.1.2), ˆ

dr′ρ(1)(r, r′) eik·r
′

= n(k) eik·r. (7.181)

This expression shows that the many-body system can be analyzed in terms of the density of
momentum states of the particles, n(k). The Fourier decomposition has replaced the the basis of
free-particle momentum states used in the ideal gas. This immediately implies that by observation of
off-diagonal long-range order a macroscopic fraction of the atoms has to occupy the same momentum
state. This points to BEC or a BEC-like phenomenon and suggest that off-diagonal long-range
order can serve as an indicator for BEC in both non-interacting and interacting quantum systems.
In the weakly interacting case this conjecture can be verified analytically. Penrose and Onsager
demonstrated that this criterium also applies to models describing superfluid liquid 4He [52].

Problem 7.14. Verify the relation
´
dkn̂(k) = N̂ .

Solution. Using Eq. (7.177) we have

ˆ
dkn̂(k) =

1

V

ˆ
drdr′

ˆ
dkeik·(r

′−r)n̂(r, r′).

Using the expression for the Dirac deltafunction,

1

V

ˆ
dkeik·(r

′−r) = δ(r′ − r) (7.182)

we find the desired result
ˆ
dkn̂(k) =

ˆ
drdr′δ(r′ − r)n̂(r, r′) =

ˆ
drn̂(r, r) = N̂ . �

7.7.4 Second-order correlations - two-body density matrix - pair correlation function

The idea of the density matrix can be generalized to characterize higher-order correlations. In this
spirit we define the two-body density matrix,

n̂(2)(r, r′) ≡ ψ̂†(r)ψ̂†(r′)ψ̂(r′)ψ̂(r). (7.183)

For a many-body system in the state |ψN 〉, the expectation value

ρ(2)(r, r′) = 〈ψN |n̂(2)(r, r′)|ψN 〉 (7.184)
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is the called the pair-correlation function of the system in state |ψN 〉. To reveal the physical meaning
of this quantity we notice that the two-body density matrix is equal to the one-body density matrix
after removal of a particle,

ρ(2)(r, r′) = 〈ψN |ψ̂†(r)ψ̂†(r′)ψ̂(r′)ψ̂(r)|ψN 〉 = 〈ψ′N |ψ̂†(r′)ψ̂(r′)|ψ′N 〉 = n̄(r′), (7.185)

where
|ψ′N 〉 ≡ ψ̂(r)|ψN 〉. (7.186)

This shows that ρ(2)(r, r′) is nothing else but the density distribution of the remaining particles in
the system and corresponds to the distribution of pairs in the state |ψN 〉. It also explains the name
pair correlation function.

To evaluate the two-body density matrix we substitute the decomposition (7.108) for calculating
the two-body density matrix in the number representation of {|s〉},

n̂(2)(r, r′) =
∑

t,t′,s,s′

ϕ∗s′(r)ϕ∗t′(r
′)ϕt(r

′)ϕs(r) â†s′ â
†
t′ âtâs. (7.187)

For pure number states, |ψN 〉 → |ñγ〉, the only nonzero contributions from the state summation

(7.187) are those terms in which all states annihilated by the âtâs are recreated by the â†s′ â
†
t′ . For

l 6= s these are the terms with either s′ = s and t′ = t or t′ = s and s′ = t. For s = t there is no
exchange; i.e., only a single option remains to reconstruct the number state. Thus, the expression
for the two-body density matrix reduces to the form

ρ(2)(r, r′) ≡
∑
s

{ϕ∗s(r)ϕ∗s(r
′)ϕs(r

′)ϕs(r)〈ñγ |â†sâ†sâsâs|ñγ〉

+
∑
t,s

′{ϕ∗s(r)ϕ∗t (r
′)ϕt(r

′)ϕs(r)〈ñγ |â†sâ
†
t âtâs|ñγ〉

+ ϕ∗t (r)ϕ∗s(r
′)ϕt(r

′)ϕs(r)〈ñγ |â†t â†sâtâs|ñγ〉}, (7.188)

where the prime stands for the exclusion of s = t from the double summation.

Ideal fermions

First we focus again on the fermions. Before evaluating the two-body density matrix we bring in
recollection that two fermions in the same internal state cannot be at the same position. As we shall
find, this shows up in the relative distribution of the particles. To demonstrate this we use again for
the groundstate of the degenerate Fermi gas the state |DFG〉 defined by Eq. (7.140) in Section 7.7.2,

ρ(2)(r, r′) = 〈DFG|ψ̂†(r)ψ̂†(r′)ψ̂(r′)ψ̂(r)|DFG〉. (7.189)

As the |DFG〉 is a pure number state, the expression for the two-body density matrix follows from
Eq. (7.188),

ρ(2)(r, r′) =
∑
t,s

′{ϕ∗s(r)ϕ∗t (r
′)ϕt(r

′)ϕs(r)〈DFG|â†sâ
†
t âtâs|DFG〉

+ ϕ∗t (r)ϕ∗s(r
′)ϕt(r

′)ϕs(r)〈DFG|â†t â†sâtâs|DFG〉}. (7.190)

We excluded the term s = t from the summation because doubly occupied fermionic states do not
exist. Since, we have n̂s = â†sâs and for fermions â†t âs = −âsâ†t (since s 6= t for fermions), we find
with the aid of the commutation relation (7.82)

ρ(2)(r, r′) =
∑
t,s

′{|ϕt(r′)|2|ϕs(r)|2 − ϕ∗t (r)ϕ∗s(r
′)ϕt(r

′)ϕs(r)}〈DFG|n̂tn̂s|DFG〉. (7.191)
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Figure 7.3: Pair correlation function (normalized to the density squared) for a fully degenerate Fermi sea
of non-interacting particles. This pair correlation function vanishes for r → 0, which reflects the absence
of fermions (in the same internal state) within a “Pauli excluded” volume of size k−3

F around each fermion.

For the correlation length we find `
(2)
c ∼ k−1

F .

For a homogeneous Fermi gas the states can be represented by plane waves,

ϕk (r) =
1

V 1/2
eik·r. (7.192)

Setting s→ k and t→ q we obtain

ρ(2)(r, r′) =
1

V 2

∑
q,k

′
{

1− e−ik·(r
′−r)eiq·(r

′−r)
}
〈DFG|n̂qn̂k|DFG〉. (7.193)

Substituting 〈DFG|n̂qn̂k|DFG〉 = 〈DFG|n̂q|DFG〉〈DFG|n̂k|DFG〉 and using the relation (7.142) we
obtain

ρ(2)(r, r′) =
N(N − 1)

V 2
−
[
ρ(1)(r, r′)

]2
. (7.194)

This shows that the second-order correlation function is closely related to the first-order one. Sub-
stituting Eq. (7.145) we arrive at

ρ(2)(r) =
N(N − 1)

V 2

{
1−

(
3

sin(kF r)− kF r cos(kF r)

(kF r)3

)2
}
. (7.195)

This function is plotted in Fig. 7.3. Note that the pair correlation function vanishes for r → 0, which
reflects the absence of fermions (in the same internal state) within a “Pauli excluded” volume of size
k−3
F around each fermion. This excluded volume is often referred to as the Fermi hole surrounding

the fermions in the Fermi sea.

Ideal bosons

For the bosonic case we shall use the same approach as introduced for the one-body correlations in
Section 7.7.2. The two-body density matrix is given by the trace

ρ(2)(r, r′) =
∑
{ñγ}

〈ñγ |ρ̂ n̂(2)(r, r′)|ñγ〉, (7.196)

which represents the average with the quantum statistical operator (7.156). As ρ̂ is diagonal in the
occupation number representation of H0, the two-body density matrix can be written in the form

ρ
(2)
T (r, r′) =

∑
{ñγ}

〈ñγ |ρ̂|ñγ〉〈ñγ |n̂(2)(r, r′)|ñγ〉. (7.197)
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where 〈ñγ |n̂(2)(r, r′)|ñγ〉 is the two-body density matrix for the number state state |ñγ〉. As the |ñγ〉
is a pure number state, the expression for the two-body density matrix follows from Eq. (7.188) and
becomes after thermal averaging,

ρ(2)(r, r′) =
∑
s

|ϕs(r′)|2|ϕs(r)|2〈â†sâ†sâsâs〉

+
∑
t,s

′{ϕ∗s(r)ϕ∗t (r
′)ϕt(r

′)ϕs(r)〈â†sâ
†
t âtâs〉

+ ϕ∗t (r)ϕ∗s(r
′)ϕt(r

′)ϕs(r)〈â†t â†sâtâs〉}, (7.198)

where

〈Â〉 ≡
∑
{ñγ}

〈ñγ |ρ̂|ñγ〉〈ñγ |Â|ñγ〉.

Comparing ρ(2)(r, r′) with the fermionic case we find that the fermionic constraint s 6= t is absent.
Since, we have n̂s = â†sâs and for bosons n̂tâs = −âsδs,t + âsn̂t, we find with the aid of the
commutation relation (7.82)

ρ(2)(r, r′) =
∑
s

|ϕs(r′)|2|ϕs(r)|2〈n̂s(n̂s − 1)〉

+
∑
t,s

′{|ϕt(r′)|2|ϕs(r)|2 + ϕ∗t (r)ϕ∗s(r
′)ϕt(r

′)ϕs(r)}〈n̂tn̂s〉. (7.199)

For a homogeneous Bose gas the states can be represented by plane waves,

ϕk (r) =
1

V 1/2
eik·r. (7.200)

Setting s→ k and t→ q we obtain

ρ(2)(r, r′) =
1

V 2

∑
k

〈n̂k(n̂k − 1)〉+
1

V 2

∑
q,k

′
{

1 + e−ik·(r
′−r)eiq·(r

′−r)
}
〈n̂qn̂k〉. (7.201)

In case only the single-particle groundstate is macroscopically occupied this expression may be
approximated by

ρ(2)(r) ' N0(N0 − 1)

V 2
+
N0

V 2

∑
k

′
{

1 + e−ik·(r
′−r)

}
〈n̂k〉 (7.202)

After continuum transition and recalling Eq. (7.165) we obtain

ρ(2)(r) ' N0(N0 − 1)

V 2
+
N0(N −N0)

V 2
+
N0

V
ρ

(1)
T (r). (7.203)

Substituting n = N/V and n0 = N0/V and using

n− n0 = nc '
2.612

Λ3
(7.204)

we arrive at

ρ(2)(r) ' n2
0

{
1 + (nc/n0)[1 + ρ

(1)
T (r)]

}
. (7.205)

This function is plotted in Fig. 7.4. Note that the probability to find two thermal bosons at the
same position is twice as large as the probability to find them at large separation.
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Figure 7.4: Pair correlation function (normalized to the condensate density squared) for a degenerate Bose
gas of non-interacting particles. In this example the condensate fraction is taken to be 2/3. The pair-

correlation length diverges (`
(2)
c → ∞) due to the presence of the condensate. For the thermal component

we find `
(2)
c (T ) ∼ Λ.

7.7.5 Occupation of momentum eigenstates

In the case of homogeneous fluids the eigenfunctions of H0 correspond to plane waves,

ϕk(r) =
1

V 1/2
eik·r. (7.206)

These are also eigenstates of the momentum representation. Hence, Ĥ(2) can also be expressed in
the occupation number representation of the momentum eigenstates |k〉,

Ĥ(2) = 1
2

∑
k1,k′1,k2,k′2

â†k′1
â†k′2

âk2
âk1

1

V 2

ˆ
dr1dr2e

i(k1−k′1)·r1ei(k2−k′2)·r2V(r1 − r2). (7.207)

Turning to center of mass (R) and relative (r) coordinates (cf. Appendix A.7), we have r1 = R + r/2,
r2 = R− r/2 and the expression for Ĥ(2) becomes

Ĥ(2) = 1
2

∑
k1,k′1,k2,k′2

â†k′1
â†k′2

âk2 âk1

1

V 2

ˆ
dRei(k1+k2−k′1−k

′
2)·R
ˆ
drei(k1−k2−k′1+k′2)·r/2V(r). (7.208)

Note that this expression is zero unless the two-body operator conserves momentum

k1 + k2 = k′1 + k′2 = (k1 + q) + (k2 − q). (7.209)

Thus, the summation over k1,k
′
1,k2,k

′
2 can be replaced by a summation over k1,k2,q and the

expression for Ĥ(2) reduces to

Ĥ(2) = 1
2

∑
k1,k2,q

â†k1+qâ
†
k2−qâk2

âk1

1

V

ˆ
dre−iq·rV(r). (7.210)

For realistic short-range interatomic potentials the Fourier transform

Ṽ(q) =

ˆ
dre−iq·rV(r) (7.211)

cannot be restricted to low values of q because the potential steeply varies at distances r � r0,
where r0 is the range of the potential. For ultracold dilute gases this problem can be circumvented
because in the low-energy limit (kr0 � 1) the scattering amplitude becomes energy independent
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and for isotropic scatterers all effects of the interaction can be represented by a single parameter,
the s-wave scattering length a - see Chapter 3. In that case we can replace the potential V(r) by
an effective potential Veff(r) that lacks the hard core of the real system but yields the same value
for a. In this case q is always small and the exponent e−iq·r always close to unity except for large
values of r (r � r0) where short-range potentials are negligibly small. Hence, we may approximate

Ṽ(q) ' Ṽeff(0). (7.212)

In this limit the expression for Ĥ(2) becomes

Ĥ(2) =
g

2V

∑
k1,k2,q

â†k1+qâ
†
k2−qâk2 âk1 , (7.213)

where

g =

ˆ
drVeff(r) (7.214)

is called the coupling constant of the interaction. This expression is only valid for ultracold dilute
gases, where the size of the scattering length is much smaller that the mean particle spacing,

|a| � n−1/3. (7.215)

A particularly convenient form for the effective potential is the pseudo potential introduced in
Section 3.8. In that section we show that the coupling constant and the scattering length are
related by the expression

g = 4π~2a/m. (7.216)
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8

Quantum statistics

8.1 Introduction

To describe the time evolution of an isolated quantum gas, in principle, all we need to know is the
many-body wavefunction plus the hamiltonian operator. Of course, in practice, these quantities will
be known only to limited accuracy. Therefore, just as in the case of classical gases, we have to rely on
statistical methods to describe the properties of a quantum gas. This means that we are interested
in the probability of occupation of quantum many-body states. In view of the convenience of the
occupation number representation we ask in particular for the probability of occupation Pγ of the
number states |ñγ〉. The canonical ensemble introduced in Section 1.2.4 is not suited for this purpose
because it presumes a fixed number of atoms N , whereas the ensemble of number states {|ñγ〉} is
defined in Grand Hilbert space in which the number of atoms is not fixed. This motivates us to
introduce an important variant of the canonical ensemble which is known as the grand canonical
ensemble.

8.2 Grand canonical distribution

In the grand canonical approach we consider a small system which can exchange not only heat but
also atoms with a large reservoir. Like in the canonical case a small system is split off as a part of a
one-component gas of Ntot identical atoms at temperature T (total energy Etot). We can visualize
the situation as a cloud of trapped atoms connected asymptotically to a homogeneous gas at very
low density, a bit reminiscent of the conditions for evaporative cooling (see Section 1.4.1). We are
interested in conditions in which the quantum resolution limit is reached in the center of the cloud
and the cloud has to be treated as an interacting quantum many-body system. In the reservoir the
density can be made arbitrarily low, so the reservoir atoms may be treated quasi-classically.

According to the statistical principle, the probability P0(E,N) that the trapped gas (the sub-
system) has total energy between E and E+δE and consists of a number of trapped atoms between
N and N + δN is proportional to the number Ω(0) (E,N) of states accessible to the total system in
which the subsystem matches the conditions for E and N ,

P0(E,N) = C0Ω(0) (E,N) ,

where C0 is a normalization constant. Because the atoms of the subsystem do not interact with the
atoms of the reservoir (except for a vanishingly fraction of the atoms near the edge of the trap) the
probability P0(E,N) can be written as the product of the number of quantum mechanical N -body
states ΩN (E) with energy near E with the number of microstates Ω (E∗, N∗) with energy near
E∗ = Etot − E accessible to the N∗ = Ntot −N atoms of the rest of the gas,

P0(E,N) = C0Ω (E,N) Ω (Etot − E,Ntot −N) . (8.1)

203
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If the total number of atoms is very large (Ntot≫ 1) the trapped number will always be much
smaller than the number in the remaining gas, N≪ N∗. Similarly, the amount of heat involved is
small, E ≪ E∗. Thus the distribution P0(E,N) can be calculated by treating the remaining gas
as both a heat reservoir and a particle reservoir for the small system. The ensemble of subsystems
with energy near E and atom number near N is called the grand canonical ensemble.

The probability Pγ that the small system is in a specific, properly symmetrized, many-body
energy eigenstate |ñγ〉 is given by

Pγ = C0Ωγ (Eγ , Nγ) Ω (Etot − Eγ , Ntot −Nγ) = C0Ω (E∗, N∗) , (8.2)

where we used that Ωγ (Eγ , Nγ) = 1 because the state of the subsystem is fully specified.
Like in the case of the canonical distribution we turn to a logarithmic scale by introducing the

function S∗ = kB ln Ω(E∗, N∗). Because E � Etot and N � Ntot we may approximate ln Ω(E∗, N∗)
with a Taylor expansion to first order in E∗ and N∗,

ln Ω(E∗, N∗) = ln Ω (Etot, Ntot)− [∂ ln Ω(E∗, N∗)/∂E∗]N∗ Eγ − [∂ ln Ω(E∗, N∗)/∂N∗]E∗ Nγ .

Introducing the quantity β ≡ [∂ ln Ω(E∗, N∗)/∂E∗]N∗ we have kBβ = (∂S∗/∂E∗)N∗ . Similarly we
introduce the quantity α ≡ [∂ ln Ω(E∗, N∗)/∂N∗]E∗ , which implies kBα = (∂S∗/∂N∗)E∗ . In terms
of these quantities we obtain for the probability to find the small system in the state |ñγ〉

Pγ = CγΩ (Etot, Ntot) e
−βEγ−αNγ = Z−1

gr e
−βEγ−αNγ . (8.3)

This is called the grand canonical distribution with normalization
∑
γ Pγ = 1. The normalization

constant
Zgr =

∑
γ
e−βEγ−αNγ (8.4)

is the Grand partition sum. It differs from the canonical partition sum in that the summation over
all many-body states |ñγ〉 is unrestricted ; i.e., it not only includes states of different energy but
also states of different number of atoms. The Grand partition sum can be separated into a double
summation in which we first sum over all possible states |N, ñγ〉 of N atoms and subsequently over
all possible values of N ,

Zgr =
∑
Ne
−αN∑

γ
(N)e−βEγ =

∑
Ne
−αNZN . (8.5)

Here ZN is recognized as the canonical partition sum for a subsystem of N atoms. The superscript
(N) indicates that the sum over γ is restricted to all many-body states of N atoms. In the quantum
gases the distribution over the states depends on the temperature (actually, on the level of quantum
degeneracy). This is similar to the temperature dependence of chemical equilibrium between states
and is most conveniently handled with the aid of a chemical potential.

Recognizing in S∗ = kB ln Ω(E∗, N∗) a function of E∗, N∗ and U in which U is kept constant,
we identify S∗ with the entropy of the reservoir. Thus, the most probable state of the total system
is seen to corresponds to the state of maximum entropy, S∗ + S = max, where S is the entropy of
the small system. Next we recall the thermodynamic relation

dS =
1

T
dU − 1

T
dW − µ

T
dN, (8.6)

where dW is the mechanical work done on the small system, U its internal energy and µ the
chemical potential. For homogeneous systems dW = −pdV with p the pressure and V the volume.
Since dS = −dS∗, dN = −dN∗ and dU = −dE∗ for conditions of maximum entropy, we identify
kBβ = (∂S∗/∂E∗)U,N∗ = (∂S/∂U)U,N and β = 1/kBT , where T is the temperature of the system.
Further we identify kBα = (∂S∗/∂N∗)E∗ = (∂S/∂N)U with α = −µ/kBT , where µ is the chemical
potential of the system.
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8.2.1 The statistical operator

Averaged over the grand canonical ensemble the average value of an arbitrary observable A of a
system is given by

〈〈A〉〉 =
∑
γ
wγ〈Â〉γ , (8.7)

where

wγ = Z−1
gr e

−(Eγ−µNγ)/kBT (8.8)

is the grand canonical probability (8.3) to find the system in the Fock state |ñγ〉, where {|ñγ〉} is

the occupation number representation of the hamiltonian Ĥ, and

〈Â〉γ ≡ 〈ñγ |Â|ñγ〉 (8.9)

is the quantum mechanical expectation value of Â for this state.
Formally, see Eq. (B.25), the grand canonical ensemble average 〈〈A〉〉 can be obtained with the

aid of the statistical operator,

%̂ =
∑
γ
wγ |ñγ〉〈ñγ | = Z−1

gr e
−(Ĥ−µN̂)/kBT , (8.10)

where Ĥ and N̂ are the hamiltonian and total number operator, respectively, and Zgr is the grand
canonical partition function. Using the statistical operator, the quantum statistical average of the
observable A can be written in representation free form

〈〈A〉〉 = tr %̂Â. (8.11)

To demonstrate that Eq. (8.11) represents indeed the average value of the observable A we choose
the energy representation |ñγ〉, which is the representation based on the eigenstates of Ĥ. In this
representation %̂ is diagonal and Eq. (8.11) can be rewritten as

〈〈A〉〉 =
∑
γ
〈ñγ |%̂|ñγ〉 〈ñγ |Â|ñγ〉. (8.12)

8.3 Ideal quantum gases

8.3.1 Gibbs factor

An important application of the grand canonical ensemble is to calculate the average occupation ns
of a given single-particle state |s〉 of energy εs in an ideal quantum gas,

ns = Z−1
gr

∑
γ

〈ñγ | e−(Ĥ−µN̂)/kBT n̂s |ñγ〉 , (8.13)

where the normalization is assured by the grand canonical partition function,

Zgr =
∑
γ

〈ñγ | e−(Ĥ−µN̂)/kBT n̂s |ñγ〉 . (8.14)

To calculate ns we choose the representation of Ĥ, where in the absences of interactions the hamil-
tonian is given by Eq. (7.105). Thus we have

Ĥ − µN̂ =
∑
s
n̂s(εs − µ) (8.15)
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and the statistical operator is given by

%̂ = Z−1
gr

∏
s
e−n̂s(εs−µ)/kBT .

Substituting this expression into Eq. (8.13) we obtain

ns = Z−1
gr

∑
n1,n2,···

〈n1, · · · , ns, · · · | e−[n1(ε1−µ)+n2(ε2−µ)+··· ]/kBT n̂s |n1, · · · , ns, · · · 〉 , (8.16)

where the sums over the occupations n1, n2, · · · run from zero up, unrestricted for the case of
bosons and restricted to the maximum value 1 for the case of fermions. Separating the sum over
the occupations of state s from the sums over the occupations of all other states we obtain after
evaluation of the matrix elements

ns = Z−1
gr

∑
ns

nse
−ns(εs−µ)/kBT

∑
n1,n2,···

(ns)e−[n1(ε1−µ)+n2(ε2−µ)+··· ]/kBT . (8.17)

The superscript at the summation
∑

(ns) indicates that the contribution of state |s〉 is excluded
from the sum. Similarly, the grand canonical partition function can be written as

Zgr =
∑
ns

e−ns(εs−µ)/kBT
∑

n1,n2,···

(ns)e−[n1(ε1−µ)+n2(ε2−µ)+··· ]/kBT . (8.18)

Substituting Eq. (8.18) into Eq. (8.17) we obtain for the average thermal occupation

ns =

∑
ns
nse
−ns(εs−µ)/kBT∑

ns
e−ns(εs−µ)/kBT

. (8.19)

From this expression we infer that the probability to find n atoms in the same state of energy ε is
given by

P (n) = Z−1e−n(ε−µ)/kBT , (8.20)

with normalization
∑
n P (n) = 1 and normalization factor

Z =
∑
n

e−n(ε−µ)/kBT . (8.21)

Comparing the probability of occupation n1 with n2 for a given state of energy ε we find that
their probability ratio is given by the Gibbs factor

P (n2)/P (n1) = e−∆n(ε−µ)/kBT , (8.22)

with ∆n = n2 − n1.
For identical bosons there is no restriction on the occupation of a given state and Z has the form

of a geometrical series with ratio r = e−(ε−µ)/kBT ,

ZBE =
∑∞

n=0
rn =

1

1− r
(r < 1) . (8.23)

Note that this series only converges if the ratio r is less than unity; i.e., for µ < ε. For identical
fermions the occupation n of a given state is restricted to 0 or 1 and

ZFD =
∑1

n=0
rn = 1 + r. (8.24)

Comparing Eq. (8.23) with (8.24) we see that the grand canonical partition sums for Bose and
Fermi systems coincide in the limit r � 1; i.e., for kBT � (ε−µ). For a given value of ε this is the
case for large negative values of µ.
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8.3.2 Bose-Einstein statistics

We are now in a position to calculate the average occupation of an arbitrary single-particle state |s〉
of energy εs. For a system of identical bosons there is no restriction on the occupation of the state
|s〉 and using Eq. (8.20) the average occupation is given by

n̄s =

∞∑
n=0

nPs(n) = Z−1
BE

∞∑
n=0

ne−n(εs−µ)/kBT = Z−1
BE

∞∑
n=0

nrns , (8.25)

where rs = e−(εs−µ)/kBT . Using the relation∑∞

n=0
nrn = r

∑∞

n=0
nrn−1 = r

∂ZBE

∂r
=

r

(1− r)2 , (8.26)

which hold for r < 1, and substituting Eqs. (8.23) and (8.26) into Eq. (8.25) we obtain for the average
thermal occupation of state |s〉

n̄s =
rs

(1− rs)
=

1

e(εs−µ)/kBT − 1
≡ fBE(εs). (8.27)

As n̄s depends for given values of T and µ only on the energy of state |s〉, we introduced in Eq. (8.27)
the Bose-Einstein (BE) distribution function fBE(ε), which gives the BE-occupation of any single-
particle state of energy ε for given values of T and µ. The average total number of atoms is given
by ∑

sn̄s = N̄ ,

where N̄ is the average number of trapped atoms of the grand canonical ensemble.
To apply the grand canonical ensemble to a gas of N identical atoms at temperature T we use

the condition ∑
sn̄s = N (8.28)

to determine the value of µ at which the BE-distribution function yields the correct occupation of
all states. As µ has to be a function of temperature, we ask for the properties of this function. We
recall the condition rs < 1 (or equivalently µ < εs) from the derivation of Eq. (8.27). This also
makes sense from the physical point of view: rs > 1 is unacceptable as it would imply a negative
thermal occupation. As this objection holds for any state we require µ ≤ ε0 ≤ εs, where ε0 is the
energy of the single atom ground-state |s = 0〉. However, also µ = ε0 is unacceptable because it
makes Ps=0(n) independent of n. This is unphysical as it implies the absence of a unique solution
for the state of the gas in thermal equilibrium (for instance its density or momentum distribution).
Thus, we have to require µ < ε0. Choosing the zero of the energy scale such that ε0 = 0 we arrive
at the conclusion that in the case of bosons the chemical potential must be negative, µ < 0.

Interestingly, although the condition µ < 0 assures that the occupation of all states remains reg-
ular it does not prevent the ground state occupation N0 from becoming anomalously large (N0 ' N)
at finite temperature. This happens if the condition −µ≪ ε1 � kBT can be satisfied. In this case
we have

N0 =
1

e−µ/kBT − 1
' kBT

−µ
(8.29)

which can indeed become arbitrarily large, whereas the occupation of all excited states |s 6= 0〉
remains finite, ns = kBT/εs. The ground state occupation remains regular as long as

N0 ≪ N ⇔ −µ/kBT ≫ 1/N. (8.30)

Note that Eqs. (8.29) and (8.30) can indeed be simultaneously satisfied if 1/N ≪ −µ/kBT � 1,
which is possible because N is a macroscopic number (N≫ 1). In classical statistics (Boltzmann
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statistics) macroscopic occupation of the ground state can also occur but only in the zero tempera-
ture limit (kBT � ε1).

The phenomenon in which a macroscopic fraction of a Bose gas collects in the ground state
is known as Bose-Einstein condensation (BEC) and the macroscopically occupied ground state is
called the condensate. The atoms in the excited states are known as the thermal cloud. Knowing
that N0 grows like 1/µ for decreasing chemical potential does not give us a sharp criterion for the
onset of BEC. Actually, it does not even tell us whether BEC will occur or not. As will appear in
the next sections, this depends crucially on the density of states of the system. In extreme cases
such as in one-dimensional (1D) gases or in the homogeneous two-dimensional (2D) gas BEC turns
out to be absent. Therefore, the occurrence of BEC should be distinguished from the occurrence of
quantum degeneracy . By the latter we mean the deviation from classical statistics and this occurs
whenever the degeneracy parameter (nΛ3 in 3D, as introduced in Section 1.3.1) exceeds unity.

8.3.3 Fermi-Dirac statistics

For identical fermions the occupation n of a given state is restricted to the values 0 or 1, so the
average occupation of state |s〉 is given by

n̄s =

1∑
n=0

nPs(n) = Z−1
FDe

−(εs−µ)/kBT =
rs

(1 + rs)
, (8.31)

where rs ≡ e−(εs−µ)/kBT . Hence,

n̄s =
1

e(εs−µ)/kBT + 1
≡ fFD(εs). (8.32)

Note that n̄s < 1 for any finite temperature. As n̄s depends for given values of T and µ only on
the energy of the state |s〉 we have introduced the Fermi-Dirac (FD) distribution function fFD(ε),
which gives the FD-occupation of any single-particle state of energy ε for given values of T and µ.
Note that for µ� kBT we have n̄s ≈ 1 for εs ≤ µ and n̄s � 1 for εs > µ. This is the limit of strong
quantum degeneracy for fermions.

8.3.4 Density distributions of quantum gases - quasi-classical approximation in 3D

For inhomogeneous gases the quantum statistics will not only affect the distribution over states but
also the distribution in configuration space. To analyze this behavior we consider a quantum gas
with a macroscopic number of atoms, N ≫ 1, confined in the external potential U(r). The sum
over the average occupations n̄s of all single-particle states must add up to the total number of
trapped atoms. Therefore, we require

N =
∑
s

n̄s =
∑
s

1

e(εs−µ)/kBT ± 1
, (8.33)

where the ± sign distinguishes between Bose-Einstein (−) and Fermi-Dirac (+) statistics. For suffi-
ciently high temperatures many single-particle levels will be occupied and their average occupation
will be small, ns � N . For fermions this is the case for all temperatures. For bosons we have to
restrict ourselves to temperatures kBT much larger than the characteristic trap level splitting ~ω
and exclude, for the time being, the presence of a condensate. Under these conditions the quantum
gases are characterized by a quasi-continuous Bose-Einstein or Fermi-Dirac distribution function.
Therefore, like in Section 1.3.1, the discrete summation over states in Eq. (8.33) may be replaced by

the integration (2π~)
−3 ´

dpdr over phase space,

N =
1

(2π~)
3

ˆ
1

e(H0(r,p)−µ)/kBT ± 1
drdp, (8.34)
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with the energy of the states given by the classical one-body hamiltonian,

εs = H0(r,p) = p2/2m+ U(r) (8.35)

In principle it is not allowed to integrate over the full phase space because the zero point motion
lifts the energy of the ground state above the minimum of the classical hamiltonian, ε0 > H0(0, 0).
In practice we simply extend the integral to the full phase space because for kBT � ~ω only a
small error is made by neglecting the discrete structure of the spectrum, ε0 ' H0(0, 0) = 0. At this
point we realize that the description has remained mostly classical. Only the quantum mechanical
condition on the level occupation; i.e., the quantum statistics, affects the results.

Local density approximation

Along the lines of Section 1.3.1 we note that the total number of atoms N must equal the integral
over the density distribution,

N =

ˆ
n(r)dr. (8.36)

This suggest to make a local density approximation. For given temperature and chemical potential
n(r) is obtained by integrating the integrand of Eq. (8.34) only over momentum space

n(r) =
1

(2π~)
3

ˆ ∞
0

4πp2

e(p2/2m+U(r)−µ)/kBT ± 1
dp, (8.37)

where the ± sign distinguishes between BE (−) and FD (+) statistics. In particular, we obtain for
the density in the minimum of the trap (r = 0)

n0 =
1

(2π~)
3

ˆ
4πp2

e(p2/2m−µ)/kBT ± 1
dp. (8.38)

Note that this result is obtained irrespective of the shape of the trap and coincides with the result
for a homogeneous gas.1 To proceed we make the integral dimensionless by introducing reduced
variables,

n(r) =
1

Λ3

2√
π

ˆ ∞
0

ε1/2

z̃−1eε ± 1
dε =

1

Λ3
F

FD/BE
3/2 [z̃(r)]. (8.39)

Here

ε = p2/2mkBT (8.40)

is called the reduced kinetic energy ; the chemical potential has been reduced by introducing the
(local and global) fugacity,

z̃(r) = ze−U(r)/kBT , with z ≡ eµ/kBT . (8.41)

In terms of these reduced quantities the local density can be written in the compact form

n(r) =
1

Λ3
F

FD/BE
3/2 [ze−U(r)/kBT ]. (8.42)

The F
FD/BE
3/2 integrals are monotonically increasing functions of z as shown in Fig. 8.1. From

Eq. (8.42) we infer that these integrals can be interpreted as the local degeneracy parameters for

1V. Bagnato, D.E. Pritchard and D. Kleppner, Physical Review A 35, 4354 (1987). Note that this well-known
result does not hold for reduced dimensionality.
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Figure 8.1: Bose-Einstein (BE) and Fermi-Dirac (FD) integrals as a function of the fugacity z for the three-
dimensional case. For comparison also the linear dependence of Maxwell-Boltzmann statistics is shown. The
dotted line corresponds to the expansion (8.91) for fermions.

the cases of BE and FD statistics. To deal with inhomogeneity, the degeneracy of trapped gases is
defined by the degeneracy parameter in the trap center,

D = n0Λ3 = F
FD/BE
3/2 (z) . (8.43)

The F
FD/BE
3/2 integrals are part of the more general class of the quantum statistical integrals defined

by

FFD/BE
α (u) =

2√
π

ˆ ∞
0

εα−1

u−1eε ± 1
dε. (8.44)

These integrals are related to the polylogarithm Liα(z) (cf. Section 8.3.8 and Appendix C.3).

8.3.5 Quasi-classical approximation - dependence on dimensionality

The discussion of the previous section is readily extended to arbitrary dimension d by the replace-
ment ∑

s
→ 1

(2π~)
d

ˆ
dpdr, (8.45)

where p and r represent vectors in d dimensions. For given temperature and chemical potential
n(r) is again obtained by integrating the integrand of Eq. (8.34) over momentum space,

n(r) =
1

(2π~)
d

ˆ ∞
0

cp(d−1)

e(p2/2m+U(r)−µ)/kBT ± 1
dp, (8.46)

where c = 4π, 2π, 1 for d = 3, 2, 1, respectively. Changing integration variable by turning to the
dimensionless kinetic energy ε = p2/2mkBT we obtain

n(r) =
1

Λd
F

FD/BE
d/2

(
ze−U(r)/kBT

)
. (8.47)

The functions

F
FD/BE
d/2 (z) =

1

Γ(d/2)

ˆ ∞
0

εd/2−1

z−1eε ± 1
dε (8.48)

differ in the energy dependence of the density of states ρ(ε) = εd/2−1 as shown in Fig. 8.2. For

d = 2 the density of states is constant and F
FD/BE
1 (z) represents the flat integral over the quantum

distributions. For d > 2 the density of states favors the contribution of states with kinetic energy
larger than kBT and for d < 2 that of states with kinetic energy smaller than kBT .
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Figure 8.2: Density of states versus energy for homogeneous clouds in 1, 2 and 3 dimensions. For d > 2 the
density of states favors the contribution of states with kinetic energy larger than kBT and for d < 2 that of
states with kinetic energy smaller than kBT . For d = 2 the density of states is flat. The absence of states
at low energy favors BEC.

8.3.6 Grand partition function

In Section 1.2.5 we discussed how the thermodynamic properties of trapped classical gases can be
obtained systematically once we have an expression for the canonical partition function ZN . The
grand partition function Zgr plays a similar role for the quantum gases. In preparation for the
discussion of this topic in Section 8.3.7 we first derive expressions for Zgr for the cases of BE- and
FD-statistics. Starting from the definition

Zgr =
∑

n1,n2,···
e−[n1(ε1−µ)+n2(ε2−µ)+··· ]/kBT , (8.49)

we note that we can sequentially factor-out the contributions of all single-particle states, just as was
done for state s in Eq. (8.50),

Zgr =
∏
s

∑
ns

e−ns(εs−µ)/kBT . (8.50)

This is only possible since we are dealing with unrestricted sums. Introducing the quantity rs =
e−(εs−µ)/kBT , Eq. (8.50) can be further simplified to the form

Zgr =
∏
s

∑
ns

rnss . (8.51)

• For identical bosons there is no restriction on the occupation ns of a given state s and we
recognize in rs the ratio of a geometrical series. After summation we obtain,

Zgr =
∏
s

1

1− rs
(bosons). (8.52)

• For identical fermions the state occupations ns are restricted to the values 0, 1 and we have
only two terms in the sum,

Zgr =
∏
s

(1 + rs) (fermions). (8.53)

• Combining Eqs. (8.52) and (8.53) we obtain a single formula,

lnZgr = ±
∑
s

ln (1± rs) , (8.54)

where the ± sign distinguishes between Bose-Einstein (−) and Fermi-Dirac (+) statistics.
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Let us derive an expression for lnZgr in the quasi-classical approximation. Replacing the summation

over all states by the integration (2π~)
−3 ´

dpdr over phase space we obtain,

lnZgr =
1

(2π~)
3

ˆ
ln
(

1± ze−H0(p,r)/kBT
)
dpdr, (8.55)

where H0(r,p) is again the one-body hamiltonian (1.35). For inhomogeneous gases we write lnZgr
in the form

lnZgr = Λ−3

ˆ
F5/2[ze−U(r)/kBT ]dr, (8.56)

where the local contribution to lnZgr is given by

ln Z̃gr(r) = Λ−3F5/2[ze−U(r)/kBT ]. (8.57)

For homogeneous gases U(r) = 0 and we can simply integrate (8.56) over configuration space,

lnZgr =
(
V/Λ3

)
F5/2(z). (8.58)

Introducing α =
√

2mkBT and changing to the integration variable ε = (p/α)
2

the function F5/2(z)
can be written as

F5/2(z) =
Λ3

(2π~)
3

ˆ ∞
0

ln
(

1± ze−(p/α)2
)

4πp2dp

=
1

Γ(3/2)

ˆ ∞
0

ln
(
1± ze−ε

)
ε1/2dε, (8.59)

which can be rewritten by partial integration in the form of the integral representation of the
polylogarithm (see Appendix C.3),

F5/2(z) =
1

Γ(5/2)

ˆ ∞
0

ε3/2

z−1eε ± 1
dε. (8.60)

Example: BE and FD distributions

As a (first) demonstration of the central role of lnZgr in the grand canonical approach we rederive
the expressions for the average thermal occupation ns in bosonic and fermionic quantum gases.
Rewriting Eq. (8.19) in the form

ns =
rs
∑
ns
nsr

ns−1
s∑

ns
rnss

∏
t6=s

∑
nt
rntt∏

t6=s

∑
nt
rntt

, (8.61)

we recognize in the denominator the expression (8.51) for Zgr and in the numerator a derivative of
Zgr,

ns =
rs
Zgr

∂Zgr
∂rs

= rs∂ lnZgr/∂rs. (8.62)

Substituting Eq. (8.54) yields in one line the BE (−) and FD (+) distribution functions,

ns =
rs

1± rs
=

1

e(εs−µ)/kBT ± 1
. (8.63)



8.3. IDEAL QUANTUM GASES 213

8.3.7 Link to the thermodynamics - quasi-classical approximation

Let us explore how the thermodynamic properties can be obtained from the grand partition function.
We restrict ourselves again to temperatures kBT much larger than the characteristic trap level
splitting ~ω and exclude the presence of a condensate. The starting point is to identify the grand
canonical average of the total energy E of a system with the thermodynamic internal energy U of
that system,

U = Ē =
∑
s
εsn̄s =

∑
s

εs
e(εs−µ)/kBT ± 1

. (8.64)

In the quasi-classical approximation this becomes

U =

ˆ
u(r)dr =

1

(2π~)
3

ˆ
H0(r,p)

e(H0(r,p)−µ)/kBT ± 1
dpdr, (8.65)

where the local energy density u(r) is given by

u(r) = kBT
1

Λ3

2√
π

ˆ
ε3/2

eU(r)/kBT z−1eε ± 1
dε+

U(r)

Λ3

2√
π

ˆ
ε1/2

eU(r)/kBT z−1eε ± 1
dε. (8.66)

Here we recognize two polylogarithms,

u(r) = 3
2kBT

1

Λ3
F5/2[ze−U(r)/kBT ] + U(r)

1

Λ3
F3/2[ze−U(r)/kBT ]. (8.67)

Using the recursion relation for polylogarithms (C.18) we find that Eq. (8.67) is equivalent with

u(r) = −kBT
1

Λ3
F5/2[ze−U(r)/kBT ]

+ T

(
∂

∂T
kBT

1

Λ3
F5/2[ze−U(r)/kBT ]

)
U,µ

+ µ
1

Λ3
F3/2[ze−U(r)/kBT ]. (8.68)

In the first two terms we recognize the expression (8.57) for ln Z̃gr(r). In the last term we recognize
the local density, but rather than writing µn(r) we note that the local density can also be expressed
in terms of ln Z̃gr(r) (see Problem 8.1),

n(r) =

(
∂

∂µ
kBT ln Z̃gr(r)

)
U,T

, (8.69)

Thus Eq. (8.68) can be written in a form containing only kBT ln Z̃gr(r) and its derivatives,

u(r) = −kBT ln Z̃gr + T [∂(kBT ln Z̃gr)/∂T ]U,µ + µ∂[kBT ln Z̃gr)/∂µ]U,T . (8.70)

This expression suggests to introduce the quantity

Ω̃(r) = −kBT ln Z̃gr(r) ⇔ Z̃gr(r) = e−Ω̃(r)/kBT . (8.71)

By substitution of Eq. (8.57) Ω̃(r) can be expressed in the form

Ω̃(r) = −kBT
Λ3

F5/2[ze−U(r)/kBT ]. (8.72)

We are now in a position to make the connection to thermodynamics. First we shall do this
for the homogeneous gas. In this case U(r) ≡ 0 the conditions on the trap shape are replaced by
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conditions on the volume of the gas, V . Eq. (8.70) can be written in the form Ω = U+T (∂Ω/∂T )V,µ+
µ (∂Ω/∂µ)V,T . Comparing this relation with the thermodynamic relation

Ω = U − TS − µN (8.73)

we recognize in Ω the grand potential Ω, which is a function of T , µ and V (for inhomogeneous
systems U). Further, we identify

S = −
(
∂Ω

∂T

)
V,µ

, N = −
(
∂Ω

∂µ

)
V,T

. (8.74)

Other thermodynamic quantities are obtained by combining the thermodynamic relation for changes
of the grand potential dΩ = dU −TdS−SdT −µdN −Ndµ with that for the internal energy dU =
dW + TdS + µdN into the expression dΩ = dW − SdT −Ndµ. In particular the pressure follows
from the expression for the mechanical work dW = −pdV ,

p = −
(
∂Ω

∂V

)
T,µ

. (8.75)

Hence, Ω is obtained by integrating p over the volume (for given value of T and µ),

Ω = −
ˆ
V

(∂Ω/∂V )T,µ dr. (8.76)

Evaluating the integral we obtain

Ω = −pV. (8.77)

In other words, in a homogeneous gas the pressure is simply an other name for the Grand potential
per unit volume (up to a sign),

p = −Ω/V = −Ω̃(r). (8.78)

To discuss inhomogeneous systems we presume the local density approximation to be valid; i.e.,
we write Ω as the integral over a local grand potential, Ω = −

´
V

Ω̃(r)dr, and use the relation

p = −Ω̃(r) (8.79)

for the local pressure. Using Eq. (8.79) in combination with Eqs. (8.72) and (8.42) we obtain for the
equation of state

p =
F5/2[ze−U(r)/kBT ]

F3/2[ze−U(r)/kBT ]
n(r)kBT. (8.80)

Note that this equation scales linearly with the density as it should for an ideal gas. Similar to Ω
and U , all extensive quantities can be expressed as an integral over their corresponding local density
and (8.73) becomes

p = −u(r) + Ts(r) + µn(r). (8.81)

The entropy density and number density follow from the pressure with

s(r) = (∂p/∂T )U,µ and n(r) = (∂p/∂µ)U,T . (8.82)

Substituting Eq. (8.72) we obtain for the entropy density

s(r) = 5
2

kB
Λ3
F5/2[ze−U(r)/kBT ]− 1

Λ3
F3/2[ze−U(r)/kBT ]

µ− U(r)

T
. (8.83)
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Problem 8.1. Show that the relation between the local density and Zgr is given by

n(r) =

(
∂

∂µ
kBT ln Z̃gr(r)

)
U,T

.

Solution. Starting from the r.h.s. of Eq. (8.69) we have for constant U(r) and T

∂

∂µ
kBT ln Z̃gr(r) = kBT

1

Λ3

∂

∂µ
F5/2[ze−U(r)/kBT ].

Noting the property (∂z̃/∂µ)U,T = z̃/kBT the above expression becomes for constant U(r) and T

kBT
1

Λ3

∂

∂z̃
F5/2(z̃)

∂z̃(r)

∂µ
=

1

Λ3
F3/2(z̃) = n(r),

where Eq. (8.42) was used in the final step. 2

8.3.8 Series expansions for the quantum gases

To deal with the BE and FD integrals a number of mathematical tools is at our disposal, which can
be ordered with respect to the value of the fugacity.

a. the case 0 < z ≤ 1

For µ/kBT ≤ 0 the fugacity is small and we can rewrite both the BE and FD integrals in the form

FFD/BE
α (z) =

1

Γ(α)

ˆ ∞
0

εα−1

z−1eε ± 1
dε. (8.84)

Since z ≤ 1 and e−ε ≤ 1 the denominator of the integrand can be expanded in powers of ze−ε,

ze−ε

1± ze−ε
= ze−ε[1∓ ze−ε +

(
ze−ε

)2 ∓ · · · ] = ∓
∑
`=1

(∓z)` e−`ε (8.85)

and substituting this expansion into Eq. (8.84) we obtain after swapping summation and integration

FFD/BE
α (z) = ∓

∑
`=1

(∓z)` 1

Γ(α)

ˆ ∞
0

e−`εεα−1dε. (8.86)

Note that this swap is allowed because the series converges uniformly (for 0 < z ≤ 1). Evaluating
the integral gives

1

Γ(α)

ˆ ∞
0

e−`εεα−1dε =
1

`α
. (8.87)

Thus we obtain

FBE
α (z) =

∑
`=1

z`

`α
≡ gα(z) = Liα(z) (8.88a)

FFD
α (z) =

∑
`=1

(−)
`+1 z

`

`α
≡ fα(z) = −Liα(−z), (8.88b)

where Liα(z) is the polylogarithm (see Appendix C.3). These expressions are known as the fugacity
expansions of the BE-function gα(z) and FD-function fα(z).
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b. the case z ↑ 1

Highly degenerate bosonic gases are characterized by the condition 0 ≤ −µ/kBT � 1. In this case
the integral FBE

α (z) can be expanded in powers of − ln z = −µ/kBT � 1 (see Appendix C.4). In
particular we have

FBE
3/2(z) = ζ(3/2) + Γ(−1/2)

√
− ln z + · · · (8.89)

FBE
5/2(z) = ζ(5/2)− ζ(3/2) (− ln z) + Γ (−3/2) (− ln z)

3/2
+ · · · (8.90)

valid for −µ� kBT . Note that these expressions satisfy the recursion relations (C.18). Note further
that these relations break down for z > 1 (see Fig. 8.1).

c. the case z � 1

Highly degenerate fermionic gases are characterized by the condition µ/kBT � 1. In this case the
integral FFD

3/2(z) can be expanded in powers of ln z = µ/kBT (see Appendix C.5),

FFD
3/2(z) =

4

3
√
π

(ln z)
3/2

[
1 +

π2

8
(ln z)

−2
+ · · ·

]
(8.91)

FFD
5/2(z) =

8

15
√
π

(ln z)
5/2

[
1 +

5π2

8
(ln z)

−2
+ · · ·

]
, (8.92)

valid for µ� kBT . Note that these expressions satisfy the recursion relations (C.18). Note further
that FFD

3/2(z) and FFD
5/2(z) diverge logarithmically with z. The approximation by the first two terms

of Eq. (8.91) is shown for FFD
3/2(z) as the dotted line in Fig. 8.1. Note that this approximation is

already excellent for µ/kBT & ln 4 ≈ 1.3.



9

The ideal Bose gas

9.1 Introduction

In this section we analyze the ideal Bose gas in more detail, in particular the phenomenon of
Bose-Einstein Condensation (BEC). Like in previous chapters we consider a gas of N trapped
atoms confined by an external potential U(r) with characteristic level splitting ~ω and studied at
temperatures T where many states are populated (kBT � ~ω). The system is described by the
hamiltonian

H =
∑
i

H0(pi, ri), (9.1)

representing the sum of single-particle contributions,

H0(p, r) = − ~2

2m
∇2 + U(r). (9.2)

The single-particle energy eigenstates |s〉 and eigenvalues εs are defined by H0 |s〉 = εs |s〉. As we
are dealing with bosons, the occupation of the state s is given by the BE-distribution

fBE(εs;µ, T ) =
1

e(εs−µ)/kBT − 1
. (9.3)

For given εs and T this distribution is a regular, monotonically increasing function of µ on the interval
−∞ < µ < 0, which diverges in the case of the ground state (εs = ε0 = 0) when µ approaches zero
(see also Section 8.3.2),

1

e−µ/kBT − 1
' 1

−µ/kBT
for µ→ 0. (9.4)

As the occupation can impossibly exceed the total number of available atoms N we note that in
finite systems the chemical potential remains nonzero, −µ/kBT ≥ 1/N . Excluding the ground
state, the BE-distribution is a quasi-continuous function of εs (even for −µ� kBT ) as is illustrated
in Fig. 9.1. In the absence of a condensate, i.e. for −µ/kBT � 1/N , this allows us to make the
quasi-classical approximation (8.34), in which the summation over single-particle states is replaced
by an integral over phase space (see Section 8.3.4). Clearly, this approximation brakes down with the
onset of BEC, i.e. for −µ � kBT , when the ground-state occupation N0 grows disproportionately
as compared to the occupation of adjacent excited states. The work-around is well known: as only
the ground-state becomes macroscopically populated it suffices to single-out the ground state from
the summation (8.33). In this way we obtain the semi-classical approximation in which only the
summation over excited states is treated quasi-classically,

N = N0 +
∑
s

′n̄s =
1

e−µ/kBT − 1
+

1

(2π~)
3

ˆ
1

e(H0(r,p)−µ)/kBT − 1
drdp. (9.5)

217
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Figure 9.1: Average thermal occupation n̄s ≡ fBE(εs;µ, T ) of states of energy εs for −µ/kBT = 10−4 (solid
line). The occupation of the lowest levels (εs < kBT ) is strongly enhanced as compared to the classical
(Boltzmann) occupation (dashed line). This is known as quantum degeneracy. The lowest plotted energy
corresponds to ε1 = kBT/100, a typical value for the first excited state in harmonic traps at T ' Tc.

The summation over the occupations of the excited states yields by definition the number of atoms
in the thermal cloud, ∑

s

′n̄s ≡ N ′ = N −N0. (9.6)

As is readily verified, like the N0-term also the BE-integral in Eq. (9.5) is a regular, monotonically
increasing function of µ on the interval −∞ < µ < 0 and because N0 diverges for µ→ 0 the Eq. (9.5)
can be satisfied for any value of N and T by choosing the appropriate value for µ. The occupation
of the thermal cloud can be written as

N ′ =

ˆ
n′(r)dr, (9.7)

where

n′(r) =
1

Λ3
FBE

3/2[z̃(r)] =
1

Λ3

2√
π

ˆ ∞
0

ε1/2

z̃(r)−1eε − 1
dε, (9.8)

with ε = p2/2mkBT the reduced kinetic energy and z̃(r) the local fugacity defined in Eq. (8.41).
Because the chemical potential is always negative, the fugacity is bounded to the interval 0 <

z < 1. Since also e−p
2/2mkBT is bounded to this interval we can use the fugacity expansion (8.88a)

for the BE-integral in Eq. (9.5),

N = N0 +N ′ =
z

1− z
+

1

Λ3

∞∑
`=1

z`

`3/2

ˆ
e−`U(r)/kBT dr. (9.9)

In the intergral we recognize the effective volume defined for a Boltzmann gas in Section 1.3.1,

V`e(T ) =

ˆ
e−`U(r)/kBT dr = Ve(T/`). (9.10)

In accordance with Eq. (1.48) this is the effective volume Ve of a classical cloud at temperature T/`.
Although this volume cannot be observed in the quantum gas it is convenient from the mathematical
point of view. For spherical power-law traps with trap parameter γ the effective volume is given by
Eq. (1.73),

Ve(T ) = αPLT
γ = `γVe(T/`), (9.11)
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and the number of atoms in the thermal cloud can be written as

N ′ =
Ve
Λ3

∞∑
`=1

z`

`3/2+γ
. (9.12)

Note the dependence on the trap parameter. In contrast the degeneracy parameter of the thermal
cloud is independent of γ; setting r = 0 in Eq. (9.8) we find

n′0Λ3 =

∞∑
`=1

z`

`3/2
≡ g3/2(z), (9.13)

where n′0 ≡ n′(0) is the local density at the trap minimum.1 Note that Eq. (9.13) does not depend
on U(r). Therefore, the degeneracy parameter of the thermal cloud has the same convergence limit
(z → 1⇔ µ→ 0), irrespective of the trap shape. This convenient rule is well known; therefore, it is
important to be aware that it does not hold for cases of reduced dimensionality.

9.2 Regimes of quantum degeneracy

9.2.1 Classical regime - n0Λ3 � 1

At constant n′0 the l.h.s. of Eq. (9.13) decreases monotonically for increasing temperature T . There-
fore, the corresponding fugacity z has to become smaller until in the classical limit (D → 0) only
the first term contributes significantly to the series,

∑∞
`=1 z

`/`3/2 ' z. Hence, in the classical limit ,
where n′0 = n0 the fugacity is found to coincide with the degeneracy parameter

z '
T→∞

n0Λ3 ⇔ µ = kBT ln[n0Λ3]. (9.14)

Apparently, in the classical limit µ must have a large negative value to assure that the Bose-Einstein
distribution function corresponds to the proper number of atoms. In Chapter 1 expression (9.14)
was obtained for the classical gas starting from the Helmholtz free energy (see Problem 1.13).

9.2.2 The onset of quantum degeneracy - 1 . n0Λ3 < 2.612

Decreasing the temperature of a trapped gas the chemical potential increases until at a critical
temperature, Tc, the fugacity expansion reaches its convergence limit (z → 1) and the density is
given by

n(r) = n′(r) =
1

Λ3

∞∑
`=1

1

`3/2+γ
e−`U(r)/kBT . (9.15)

Note that only in the trap center all terms of the expansion contribute to the density. Off-center
the higher-order terms are exponentially suppressed with respect to the lower ones. This reflects
the property of the Bose statistics to favor the occupation of the most occupied states. For the trap
center we have at Tc

D = n0Λ3 =

∞∑
`=1

1

`3/2
≡ ζ (3/2) ≈ 2.612. (9.16)

We thus established that the parameter D = n0Λ3, where n0 = n(0) is the density at the trap
center, is indeed a good indicator for the presence of quantum degeneracy, i.e. for the deviation
from classical statistics. Hence, in 3D Tc only depends on the density in the trap center and not on
the trap shape.

1Beware that n′0 ≡ n′(0) = ζ (3/2)n0 6= N ′/Ve. The central density is enhanced by the Bose statistics.
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Figure 9.2: Chemical potential as a function of temperature for a homogeneous Bose gas close to Tc (solid
line). For comparison the classical expression (9.14) is also plotted (dashed line).

9.2.3 Fully degenerate Bose gas - homogeneous case

In this section we have a closer look at what happens close to Tc. First we consider the homogeneous
gas for which the general expression (9.9) reduces to

N = N0 +N ′ =
z

1− z
+
V

Λ3

∞∑
`=1

z`

`3/2
. (9.17)

For T . Tc the chemical potential is always close to zero. Therefore, in the degenerate regime the
Bose function is best represented by the expansion (8.89) in powers of (− ln z) = −µ/kBT ,

N =
kBT

−µ
+
V

Λ3

[
ζ(3/2) + ζ(1/2)

√
−µ
kBT

+ · · ·
]

for (µ ↑ 0) . (9.18)

Just above Tc, i.e. for 1/N≪ −µ/kBT � 1, the chemical potential can be expressed as

µ = −kBT
(
ζ(3/2)− n0Λ3

ζ(1/2)

)2

, (9.19)

which is plotted in Fig. 9.2.
As expected, the chemical potential increases with decreasing temperature. For −µ . kBT

the curve deviates from the classical expression (9.14) shown as the dashed line in Fig. 9.2. For
−µ � kBT , the fugacity expansion approaches its convergence limit and the thermal term of
Eq. (9.18) can no longer account for all atoms. For a large but finite number of atoms (N≫ 1) this
happens at a non-zero temperature T = Tc, where µ has a small but finite negative value and the
following expression is satisfied,

N =
kBT

−µ
+
V

Λ3
c

[
ζ(3/2) + ζ(1/2)

√
−µ
kBTc

+ · · ·
]
' V

Λ3
c

ζ(3/2) ' N ′. (9.20)

Bose-Einstein condensation

Lowering the temperature below Tc the ground state occupation starts to grow fromN0 = −kBT/µ�
N to macroscopic values, which marks the onset of Bose-Einstein condensation. Extracting the tem-
perature from Eq. (9.20) we obtain the well know expression for Tc in a homogeneous 3D system,

kBTc ' 3.31
(
~2/m

)
n

2/3
0 . (9.21)

Below Tc the non-condensed fraction is given by

N ′ = (V/Λ3)ζ(3/2). (9.22)
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Figure 9.3: Condensate fraction as a function of T/Tc for three types of traps: homogeneous square well
(γ = 0); harmonic trap (γ = 3/2); linear trap (γ = 3).

Dividing this expression by Eq. (9.20) we obtain

N ′/N = ζ(3/2)/nΛ3 = (T/Tc)
3/2

, (9.23)

which implies that below Tc the number of atoms in the condensate has to be N0 = N − N ′ =
−kBT/µ and that below Tc the condensate fraction is growing in accordance with

N0/N = 1−N ′/N = 1− (T/Tc)
3/2

. (9.24)

This is illustrated in Fig. 9.3. Far below Tc the condensate fraction is close to unity (N0 ' N) and
the chemical potential reaches its limiting value,

µ = kBT ln(1− 1/N0) ' −kBT/N. (9.25)

Note that µ is zero for all practical purposes provided N≫ 1 and truly zero only in the thermody-
namic limit (N,V →∞, N/V = n0).

9.2.4 BEC in isotropic power-law traps

The above analysis can be generalized to inhomogeneous gases. Restricting ourselves to power-
law traps with trap parameter γ, the number of atoms in the thermal cloud can be expressed as
Eq. (9.27) and the total number of atoms is given by

N = N0 +N ′ =
z

1− z
+
Ve
Λ3

∞∑
`=1

z`

`3/2+γ
, (9.26)

where Ve is the effective volume defined by Eq. (1.73). For T ≤ Tc we have z ' 1 and the number
of atoms in the thermal cloud is given by

N ′ =
Ve
Λ3

∞∑
`=1

1

`3/2+γ
≤ N. (9.27)

Dividing by the expression for the total number of atoms at Tc,

N = N ′ =
Ve(Tc)

Λ3
c

∞∑
`=1

1

`3/2+γ
, (9.28)
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we obtain
N ′/N = (T/Tc)

3/2+γ
, (9.29)

For the condensate fraction this implies

N0/N = 1− (T/Tc)
3/2+γ

. (9.30)

For γ = 0, 3/2, 3 this is illustrated in Fig. 9.3.

9.2.5 BEC in systems with a power-law density of states

The analysis can be further generalized with the aid of the density of states ρ(ε) of the system,
introduced in Section 1.3.3. For this purpose we write the total number of atoms in the thermal
cloud as

N ′ =
∑
s

′n̄s =

∞∑
`=1

z`
1

(2π~)
2

ˆ
e−`H0(r,p)/kBT drdp =

∞∑
`=1

z`Z1(T/`), (9.31)

where Z1 is the one-body canonical partition function introduced in Chapter 1. For trapping po-
tentials, isotropic or anisotropic, with a density of states of the type

ρ(ε) = Aε1/2+γ (9.32)

Eq. (9.31) can be expressed in the form

N ′ =

∞∑
`=1

z`
ˆ ∞

0

e−`ε/kBT ρ(ε)dε, (9.33)

where we used Eq. (1.84). For T ≤ Tc we have z = 1 and the expression for N ′ becomes

N ′ = A

∞∑
`=1

ˆ ∞
0

e−`ε/kBT ε1/2+γdε = A (kBT )
3/2+γ

∞∑
`=1

ˆ ∞
0

e−`xx1/2+γdx. (9.34)

Hence, using the integral relation (C.14) Eq. (9.34) reduces to

N ′ = A (kBT )
3/2+γ

Γ(3/2 + γ)g3/2+γ(z) (9.35)

and Eq. (9.30) for the condensate fraction is seen to hold for all traps with a density of states of the
type (9.32).

9.2.6 Example: BEC in harmonic traps

As an example we consider the harmonically trapped ideal Bose gas (trap parameter γ = 3/2)
at temperatures kBT � ~ω̄, where ω̄/2π is the average oscillation frequency of a single trapped

atom, with ω̄ = (ωxωyωz)
1/3

. For this system we have a quasi-continuous level occupation and the

quasi-classical single-particle partition function is given by Z1 = (kBT/~ω̄)
3

- see Eq. (1.86).
The density profile of the thermal cloud is found by substituting U(r) = 1

2mω
2r2 into Eq. (9.15),

n′(r) =
1

Λ3

∞∑
`=1

z`

`3/2
exp[−`mω

2r2

2kBT
]. (9.36)

The profile of a fully saturated (z = 1) Bose-Einstein distribution is shown in Fig. 9.4. Note that
the cloud is gaussian for mω2r2 � kBT , which means that the tail of the distribution remains quasi
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Figure 9.4: The density profile of a fully saturated (z = 1) thermal cloud of bosons in an isotropic harmonic
trap (solid line). For comparison the gaussian profile of a classical gas is also drawn (dashed line); R =√

2kT/mω2 is the thermal radius of the classical cloud.

classical, irrespective of the value of z. Clearly, the center of the cloud is the interesting part. Here
the density is enhanced, a plausible precursor for BEC.

The onset of BEC occurs when the fugacity expansion reaches its convergence limit z → 1. This
process is best analyzed starting from Eq. (9.9), which takes for harmonic traps the form

N =
z

1− z
+ (kBT/~ω)

3
∞∑
`=1

z`

`3
. (9.37)

The convergence limit of the series is given by

lim
z→1

∞∑
`=1

z`

`3
= g3(1) = ζ (3) ≈ 1.202. (9.38)

Thus at Tc we find with the aid of Eq. (9.37) N = (kBTc/~ω)
3
ζ (3), which can be written in the

form of an expression for Tc,

kBTc = [N/ζ (3)]
1/3 ~ω ' N1/3~ω. (9.39)

With this expression we calculate that for a million atoms in a harmonic trap the critical temperature
corresponds to 100× the harmonic oscillator spacing. Thus we verified that down to Tc the condition
kBT � ~ω remains satisfied. Note that this holds for any harmonic trap and only as long as N≫ 1
and the ideal gas condition is satisfied (υ0n0 � kBTc).

For T ≤ Tc Eq. (9.37) takes the form

N = N0 + (kBT/~ω)
3
ζ (3) = N0 + (T/Tc)

3
N, (9.40)

where N0 is the number of atoms in the oscillator ground-state (the condensate). Because the ground
state is highly localized in the trap center, the condensation process results in a dramatic increase
of the density in the center of the cloud and, in most cases, the ideal-gas approximation breaks
down. Note that this density increase is a feature of the inhomogeneous gas. In homogeneous gases
the density is constant and BEC manifests itself only in momentum space. Rewriting Eq. (9.40) we
obtain for the for the condensate fraction of a harmonically trapped gas

N0/N = 1− (T/Tc)
3
. (9.41)

Note that at T/Tc = 0.21 the condensate fraction is already 99%.
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Problem 9.1. Show that for one million bosons in a harmonic trap at Tc the first excited state has a
hundred fold occupation.

Solution. The occupation of the lowest excited state, i.e. the state of energy ε1 = ~ω � kBTc ' N1/3~ω,
is given by

n̄1 =
1

eε1/kBTc − 1
' kBTc

~ω
' N1/3.

For N = 106 this implies that n̄1 = 100. 2

9.3 Release of trapped clouds - momentum distribution of bosons

For a gas of bosons above Tc the momentum distribution is given by

n(p) =

∞∑
`=1

z`
1

(2π~)
3

ˆ
e−`H0(r,p)/kBT dr =

1

(2π~)
3

∞∑
`=1

z`e−`(p/α)2Ve (T/`) , (9.42)

where α =
√

2mkBT and Ve(T/`) is the effective volume of a classical cloud at temperature T/` as
defined in Eq. (9.10). Importantly, whatever the trap shape the momentum distribution is seen to
be isotropic. This means that when releasing a trapped cloud by switching-off the trapping potential
the cloud shape will always evolve into a spherical form. Once the cloud is much larger than its
initial size only the radial distribution of the density reflects the properties of the original trap.

Substituting Eq. (9.11) into Eq. (9.42) we obtain for the momentum distribution

n(p) =
Ve (T )

(2π~)
3

∞∑
`=1

z`

`γ
e−`(p/α)2 =

N

4πα3

1
1
4

√
π

gγ(ze−(p/α)2)

gγ+3/2(z)
, (9.43)

where we used

N =

ˆ
n(p)dp =

Ve (T )

(2π~)
3 4πα3 1

4

√
π gγ+3/2(z). (9.44)

Since Λ3 = π−3/2 (2π~/α)
3

the above expression coincides with Eq. (9.27). Interestingly, for har-
monic traps (γ = 3/2) the momentum distribution (9.43) has exactly the same functional form as
the density distribution (9.36).

To conclude this section we introduce the normalized momentum distribution

fBE(p) = n(p)/N =
1

4πα3

1
1
4

√
π

gγ(ze−(p/α)2)

gγ+3/2(z)
.

and give expressions for the variance and the average value of the momentum

〈
p2
〉

=

ˆ
p2fBE(p)dp = α2

3
8

√
πgγ+5/2(z)

1
4

√
πgγ+3/2(z)

= 3mkBT
gγ+5/2(z)

gγ+3/2(z)

〈p〉 =

ˆ
p fBE(p)dp = α

1
2gγ+4(z)

1
4

√
πgγ+3/2(z)

=
√

8mkBT/π
gγ+4(z)

gγ+3/2(z)

Comparing the first and second moments we obtain〈
p2
〉
/ 〈p〉2 =

3π

8
gγ+5/2(z)gγ+3/2(z)/ [gγ+2(z)]

2
,

which implies that for harmonic traps the ratio
〈
p2
〉
/ 〈p〉2 increases by ∼ 2.5% when the fugacity

changes from its value in the classical gas (z � 1) to that of the saturated Bose-Einstein distribution
(z = 1). Clearly, this ratio is not a sensitive indicator for the onset of BEC.
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9.4 Degenerate Bose gases without BEC

Interestingly, not any Bose gas necessarily undergoes BEC. This phenomenon depends on the density
of states of the system. We illustrate this with a two-dimensional (2D) Bose gas, i.e. a gas of bosons
confined to a plane. Like in Section 8.3.2 we require the sum over the average occupations n̄s of all
single-particle states to add up to the total number of trapped atoms,

N =
∑
s
n̄s =

∞∑
`=1

z`
1

(2π~)
2

ˆ
e−`H0(r,p)/kBT drdp. (9.45)

In 2D the phase space is 4-dimensional and after integration we obtain

N =
1

Λ2

∞∑
`=1

z`

`

ˆ
e−`U(r)/kBT dr. (9.46)

For the homogeneous gas of N bosons confined to an area A this expression reduces for µ � kBT
to

D = nΛ2 =

∞∑
`=1

z`

`
= − ln (1− z) ' − ln(−µ/kBT ), (9.47)

where n = N/A is the two-dimensional density. Because the fugacity expansion does not converge
to a finite limit Eq. (9.47) shows that, at constant n, the 2D degeneracy parameter D = nΛ2 can
grow to any value without the occurrence of BEC. The ground state occupation grows steadily until
at T = 0 all atoms are collected in the ground state.

The homogenous 2D Bose gas is seen to be a limiting case for BEC; even the slightest enhance-
ment of the density of states will result in a finite Tc for Bose-Einstein condensation, also in two
dimensions. This is easily demonstrated by including a trapping potential of the isotropic power-law
type, U(r) = w0r

3/γ . In this case Eq. (9.46) can be written as

N =
1

Λ2

∞∑
`=1

z`

`
Ae(T/`) =

Ae
Λ2

∞∑
`=1

z`

`1+2γ/3
=
Ae
Λ2
g1+2γ/3(z), (9.48)

where Ae = αPLT
2γ/3 (see problem 9.2) is the classical effective area of the atom cloud. Hence, the

condition for BEC in a 2D trap coincides with the existence of the convergence limit,

lim
z→1

g1+2γ/3(z) = ζ(1 + 2γ/3). (9.49)

This limit exists for γ > 0, which shows that even the weakest power-law trap assures BEC in gas
of bosons confined to a plane.

Similarly, it may be shown (see problem 9.3) that BEC occurs for 1D Bose gases in power-law
traps with γ > 3/2. 1,2 Interestingly, unlike the 3D gas where the density in the trap center is also
an indicator for the onset of BEC in lower dimensions this is not the case. For instance, as follows
from Eq. (9.46) the 2D density in the trap center is independently of γ given by

n0 =
1

Λ2

∞∑
`=1

z`

`
' − 1

Λ2
ln(−µ/kBT ). (9.50)

Hence, the density in the trap center locally diverges irrespective of the occurrence of BEC and is
as such no indicator for BEC.

1Note that for Tc very close to T = 0 the continuum approximation brakes down because the condition kT > ~ω
is no longer satisfied. In this case the discrete structure of the excitation spectrum has to be taken into account.

2See W. Ketterle and N. J. van Druten, Phys. Rev. A 54, 656 (1996) and D.S. Petrov, Thesis, University of
Amsterdam, Amsterdam 2003 (unpublished).
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Problem 9.2. Show that the effective area of a classical cloud in a 2D isotropic power-law trap is given by

Ae =
2

3
πr2
eγΓ(2γ/3)

(
kBT

U0

) 2
3
γ

,

where γ is the trap parameter and Γ (z) is de Euler gamma function.

Solution. The effective area is defined as Ae =
´
e−U(r)/kBT dr. Substituting U(r) = w0r

3/γ for the

potential of an isotropic power-law trap we find with w0 = U0r
−3/γ
e

Ve =

ˆ
e−w0r

3/γ/kBT 2πrdr =
2

3
πr2

0γ

(
kBT

U0

) 2
3
γ ˆ

e−xx
2
3
γ−1dx,

where x = (U0/kBT ) (r/re)
3/γ is a dummy variable. 2

Problem 9.3. Show that BEC can be observed in a 1D Bose gas confined by a power-law potential if the
trap parameter satisfies the condition γ > 3/2.

Solution. The total number of bosons confined by a power-law potential U(r) = w0r
3/γ along a line can

be written in form equivalent to Eq. (9.48):

N =
1

Λ

∞∑
`=1

z`

`1/2
Le(T/`) =

Le
Λ

∞∑
`=1

z`

`1/2+γ/3
=
Le
Λ
g1/2+γ/3(z),

where Le is the classical effective length

Le =

ˆ
e−w0r

3/γ/kBT dr =
1

3
r0γ

(
kBT

U0

) 1
3
γ ˆ

e−xx
1
3
γ−1dx =

1

3
r0γ

(
kBT

U0

) 1
3
γ

Γ(1γ/3),

with x = (U0/kBT ) (r/re)
3/γ a dummy variable. Like in the 3D and 2D case the condition for the existence

of BEC is determined by the existence of a convergence limit of a gα(z)-function,

lim
z→1

g1/2+γ/3(z) = ζ(1/2 + γ/3).

In the 1D case the limit exists for γ > 3/2. Taking into account the discrete structure of the excitation
spectrum it may be shown that BEC also occurs in harmonic traps.7 2
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Ideal Fermi gases

10.1 Introduction

In the case of fermionic gases the quasi-classical approximation (8.34) is always valid because as
a result of the Pauli principle for N ≫ 0 the typical single-particle energy is always much larger
than the characteristic level splitting ~ω. The number of atoms is given by the Fermi-Dirac integral
(8.34),

N =
1

(2π~)
3

ˆ
1

e(H0(r,p)−µ)/kBT + 1
drdp. (10.1)

Because the integrand (the Fermi-Dirac distribution function) is a regular, monotonically increasing
function of µ, the integral expression (10.1) can be satisfied for any temperature T by choosing the
appropriate value for the chemical potential. This value can be positive or negative, depending on
N and T .

For µ < 0 the fugacity z ≡ eµ/kBT is a small positive number (0 < z ≤ 1) and the distribution
function can be expanded in powers of z exp[−H0(r,p)/kBT ],

1

e(H0(r,p)−µ)/kBT + 1
=

∞∑
`=1

(−)
`+1

z`e−`H0(r,p)/kBT . (10.2)

Note that this fugacity expansion has the form of an alternating series. Substituting Eq. (10.2) into
Eq. (10.1) we obtain

N =

∞∑
`=1

(−)
`+1

z`
1

(2π~)
3

ˆ
e−`H0(r,p)/kBT drdp. (10.3)

Introducing the local density approximation (8.37) for the case of fermions in a trap U(r),

n(r) =

∞∑
`=1

(−)
`+1

z`
1

(2π~)
3

ˆ
e−`H0(r,p)/kBT dp =

1

Λ3

∞∑
`=1

(−)
`+1 z`

`3/2
e−`U(r)/kBT . (10.4)

In particular, at the trap minimum (r = 0) we have for the degeneracy parameter

D ≡ n0Λ3 =

∞∑
`=1

(−)
`+1 z`

`3/2
≡ f3/2(z) = F3/2(u) (for 0 < z ≤ 1), (10.5)

where z ≡ e−u with u ≡ −µ/kBT .
For µ > 0 the series does not converge uniformly. Hence, the interchange of the order of

summation and integration as applied in Eq. (10.3) is not allowed and a different approach is required
to evaluate the Fermi-Dirac integral 10.1 (cf. section 10.4).
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10.2 Classical regime
(
n0Λ3 � 1

)
At constant n0 the l.h.s. of Eq. (10.5) decreases monotonically for increasing temperature T . There-
fore, the corresponding fugacity z has to become smaller until in the classical limit (D → 0) only

the first term contributes significantly to the series,
∑∞
`=1 (−)

`+1
z`/`3/2 ' z. Hence, just like for

bosons, in the classical limit the fugacity is found to coincide with the degeneracy parameter

z '
T→∞

n0Λ3 ⇔ µ = kBT ln[n0Λ3]. (10.6)

In Chapter 1 expression (9.14) was obtained for the classical gas starting from the Helmholtz free
energy (see Problem 1.13). Hence, in the classical limit the expressions for the chemical potentials
of the quantum gases coincide with that of the Boltzmann gas, i.e., µ is a large negative number.

10.3 The onset of quantum degeneracy
(
n0Λ3 ' 1

)
Decreasing the temperature of a trapped fermionic gas the chemical potential increases monoton-
ically until at the degeneracy temperature TD the fugacity expansion reaches its limit of validity
(z = 1) in the trap center. At this temperature the density distribution is given by

n(r) =
1

Λ3

∞∑
`=1

(−)
`+1 z`

`3/2
e−`U(r)/kBT

=
1

Λ3
f3/2(ze−U(r)/kBT )

=
e−U(r)/kBTD

Λ3

{
1− 1

23/2
e−U(r)/kBTD +

1

33/2
e−2U(r)/kBTD − · · ·

}
.

Note that only in the trap center all terms of the expansion contribute to the density. Off-center
the higher-order terms are exponentially suppressed with respect to the lower ones. Hence, the
degeneracy is largest in the center and because the leading correction is negative the density is
suppressed as compared to the classical Boltzmann gas. This reflects the Pauli exclusion of doubly
occupied states. Like in the case of bosons the parameter D = n0Λ3 is a good indicator for the
presence of quantum degeneracy. For the trap center we have at TD

D = n0Λ3
D =

∞∑
`=1

(−)
`+1

`3/2
= (1− 2−1/2)ζ (3/2) ≈ 0.765. (10.7)

Hence, the degeneracy temperature is given

kBTD ' 7.51
(
~2/m

)
n

2/3
0

and depends only on the density in the trap center and not on the trap shape.

10.4 Fully degenerate Fermi gases

In this section we have a closer look at what happens below the degeneracy temperature TD, where
µ/kBT � 1 and z � 1. In accordance with Eq.(8.91) the local density can be written as

n =
1

Λ3
FFD(z) ' 4

3
√
π

(ln z)
3/2

[
1 +

π2

8
(ln z)

−2
+ · · ·

]
. (10.8)

Restoring the position dependence by substituting

ln z = µ (r) /kBT (10.9)
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we obtain

n (r) =
1

Λ3

4

3
√
π

(
µ (r)

kBT

)3/2
[

1 +
π2

8

(
kBT

µ (r)

)2

+ · · ·

]
. (10.10)

Eliminating the chemical potential we obtain

µ (r) =
~2

2m

[
6π2n (r)

]2/3 [
1− π2

12

(
kBT

µ (r)

)2

+ · · ·

]
. (10.11)

Introducing the Fermi energy of the gas

εF ≡ lim
T→0

µ (0) =
~2

2m

[
6π2n0

]2/3
(10.12)

and defining the Fermi temperature as εF ≡ kBTF the chemical potential of a homogeneous system
can be written as

µ ' εF
[
1− π2

12
(T/Tc)

2

]
(for T → 0). (10.13)

10.4.1 Thomas-Fermi approximation

The local density approximation in the zero-temperature limit is called the Thomas-Fermi approx-
imation

µ (r) = εF − U(r) =
~2

2m

[
6π2n (r)

]2/3
. (10.14)

The corresponding Thomas-Fermi profile is obtained by eliminating n (r) from this equation

n (r) =
1

6π2

{
2m

~2
[εF − U(r)]

}3/2

= n0 [1− U(r)/εF ]
3/2

.
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11

Weakly interacting bosons at zero temperature

11.1 Introduction

In this chapter we specialize to the case of bosons, in particular to a bosonic fluid of neutral atoms
without spin confined in space by an external potential U(r) at T = 0 K. The famous example of
such a fluid is liquid 4He. Let us assume that the fluid may be described by the hamiltonian for a
pairwise interacting many-body system,

H = H(1) +H(2) =
∑
i

H0(pi, ri) + 1
2

∑
i,j

′V (ri, rj) , (11.1)

where

H0(p, r) = − ~2

2m
∆ + U(r) (11.2)

is the free particle hamiltonian. Let us further assume that the interatomic potential has a short
range and may be approximated by the expression

V (ri, rj) = g δ(ri − rj), (11.3)

where g =
(
4π~2/m

)
a and a is called the s-wave scattering length (see Section 3.8). Such a potential

is called a contact potential. It expresses the physical picture that the interatomic forces may be
neglected except when the atoms are touching each other; i.e., during collisions. To determine the
ground state of the fluid in the Schrödinger picture we have to solve the Schrödinger equation for the
many-body hamiltonian H. This is a formidable task and can only be done numerically for a small
number of atoms. Therefore, we take a different approach. Realizing that we are dealing with a
quantum many-body system of identical particles we turn to the hamiltonian in second quantization,

Ĥ = Ĥ(1) + Ĥ(2) =

ˆ
drψ̂†(r)H0(p, r)ψ̂(r) + 1

2

ˆ
drdr′ψ̂†(r)ψ̂†(r′)V (r, r′) ψ̂(r′)ψ̂(r). (11.4)

Substituting the contact potential, the interaction term Ĥ(2) immediately simplifies a lot,

Ĥ(2) = 1
2g

ˆ
drψ̂†(r)n̂(r)ψ̂(r). (11.5)

Before proceeding, it is important to be aware of three commutation relations,

[ψ̂(r), Ĥ(1)] = H0(p, r)ψ̂(r), (11.6)

[ψ̂(r), Ĥ(2)] = g n̂(r)ψ̂(r), (11.7)

[ψ̂(r), N̂ ] = ψ̂(r). (11.8)

Note the absence of the factor 1
2 on the r.h.s. of Eq. (11.7). Eq. (11.6) was derived in Problem 7.10.

The other commutation relations can be derived analogously.
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Problem 11.1. Derive the commutation relation

[ψ̂(r), Ĥ(2)] = g n̂(r)ψ̂(r).

Note the absence of the prefactor 1
2

on the r.h.s. of this commutation relation.

Problem 11.2. Derive the commutation relation

[ψ̂(r), N̂ ] = ψ̂(r).

11.2 Gross-Pitaevskii equation

Having the hamiltonian at our disposal in terms of field operators ψ̂(r) and ψ̂†(r), we can investigate
the effect of the interactions on the N -body ground state |GN 〉 of the interacting quantum fluid,
which is an eigenstate of the hamiltonian Ĥ,

Ĥ |GN 〉 = E0(N) |GN 〉 .

The evolution of the system is described by the Heisenberg equation of motion for the field operators.
Since neither the hamiltonian Ĥ nor the Schrödinger field operator ψ̂(r) have an explicit time
dependence, the Heisenberg equation of motion is of the form (B.101),

i~
∂

∂t
ψ̂H(r, t) = [ψ̂H(r, t), Ĥ], (11.9)

where
ψ̂H(r, t) = eiĤt/~ψ̂(r)e−iĤt/~ (11.10)

is the Heisenberg field annihilation operator.

11.2.1 Chemical potential

Since the operator ψ̂(r) will remove one atom from the ground state we have

ψ̂H(r, t) |GN 〉 = eiE0(N−1)t/~ψ̂(r)e−iE0(N)t/~ |GN 〉 (11.11)

and since µ = E0(N) − E0(N − 1) is the chemical potential of the system, the Heisenberg field
operator can be written in the form

ψ̂H(r, t) = ψ̂(r)e−iµt/~. (11.12)

Substituting this expression into Eq. (11.9) we obtain with the aid of the commutation relations
(11.6)-(11.8) the following operator identity

0 = i~
∂

∂t
ψ̂(r) = [ψ̂(r), Ĥ − µN̂ ] = [H0 + gn̂(r)− µ]ψ̂(r). (11.13)

Substituting Eq. (11.2) this operator identity takes the form[
− ~2

2m
∆ + U(r) + g n̂(r)

]
ψ̂(r) = µψ̂(r). (11.14)

Alternatively, we may start from the point of view that, a priori, the value of µ is not known.
In this case we may define the field operator

ψ̂(r, t) = ψ̂H(r, t)ei(µ/~)t. (11.15)
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and search for the value of µ at which it becomes stationary, i.e. ψ̂(r, t) → ψ̂(r). In this case the
equation of motion takes the form

i~
∂

∂t
ψ̂(r, t) = [ψ̂(r, t), Ĥ − µN̂ ], (11.16)

which implies

i~
∂

∂t
ψ̂(r, t) |GN 〉 = [E0(N)− E0(N − 1)− µ]ψ̂(r, t) |GN 〉 . (11.17)

Hence, the field operator ψ̂(r, t) is stationary if we choose µ equal to the chemical potential of the
system.

11.2.2 Order parameter

Let us presume that within the many-body ground state |GN 〉 we have N0 atoms occupying the
single particle ground state ϕ0(r). These atoms are called the condensate atoms. In the occupation
number representation a condensate of N0 atoms is denoted by |N0〉. In ideal Bose gases at T =
0 all atoms will be in the condensate (N0 = N) but in general the interactions will give rise to
depletion (N0 < N). This is called quantum depletion and should be distinguished from thermal
depletion, which is depletion by thermal excitation at non-zero temperatures. In dilute quantum
gases the quantum depletion is small and can be calculated with a microscopic theory. In liquid
4He the quantum depletion is severe and only a small fraction of the atoms can be attributed to the
condensate. In this case one has to rely on numerical simulation for a small number of atoms or on
a phenomenological description because an analytic microscopic theory is beyond reach.

In dilute gases the wavefunction ϕ0(r) exists but is yet to be determined. To proceed in this
respect we analyze the following off-diagonal matrix element of Eq. (11.14):

〈N0 − 1|
[
− ~2

2m
∆ + U(r) + g n̂(r)

]
ψ̂(r) |N0〉 = µ 〈N0 − 1| ψ̂(r) |N0〉 , (11.18)

On the r.h.s. we have a function of position,

ψN0(r) ≡ 〈N0 − 1| ψ̂(r) |N0〉 . (11.19)

In search for the significance of this function we recall the definition (7.108) for the field operators.
Separating the term with construction operator â0 for the single particle ground state ϕ0(r) from
the terms of construction operators âs6=0 of the excited states ϕs 6=0(r), the expression for the field

operator ψ̂(r) becomes

ψ̂(r) ≡ ϕ0(r)â0 +
∑
s6=0

ϕs(r)âs. (11.20)

Substituting this expression into Eq. (11.19) we find a relation between the function ψN0
(r, t) and

the one-body ground state wavefunction ϕ0(r),

ψN0
(r) = 〈N0 − 1|

√
N0ϕ0(r) |N0 − 1〉 =

√
N0ϕ0(r). (11.21)

Apparently, the probability amplitude ϕ0(r) to find a particle at position r can be expressed as the
off-diagonal average (11.19) over the many-body states |N0〉 and |N0 − 1〉; i.e., we have

ψ̂(r) |N0〉 = ψN0
(r) |N0 − 1〉 . (11.22)

As the kets for the number states are representation free these are position independent. Therefore,
the l.h.s. of Eq. (11.14) evaluates to[

− ~2

2m
∆ + U(r) + g 〈N0 − 1| n̂(r) |N0 − 1〉

]
ψN0

(r) = µψN0
(r). (11.23)



234 CHAPTER 11. WEAKLY INTERACTING BOSONS AT ZERO TEMPERATURE

Integrating over the matrix element of the number density operator and using the definition (7.110)
of the total number operator N̂ , we find

N0 − 1 =

ˆ
dr 〈N0 − 1| n̂(r) |N0 − 1〉 =

ˆ
dr |ψN0−1(r)|2. (11.24)

For N0 ≫ 1 the shape of ψN0
(r) can depend only very weakly (and in an infinite homogeneous

system not at all) on the exact value of N0. Hence, we may approximate to within an accuracy
1/N0

〈N0 − 1| n̂(r) |N0 − 1〉 ' 〈N0| n̂(r) |N0〉 = |ψN0(r)|2. (11.25)

The function ψN0
(r) is called the order parameter or condensate wavefunction of the many-body

system. It becomes independent of the particle number in the thermodynamic limit

Ψ0(r) ≡ lim
N0→∞

〈N0 − 1| ψ̂(r) |N0〉 at constant N0/V . (11.26)

Here we dropped the subscript N0. Note that the approximation (11.25) amounts to replacing the
construction operators for the condensate by real numbers,

â0 |N0〉 =
√
N0 |N0〉 ⇔ â†0 |N0〉 =

√
N0 |N0〉 . (11.27)

This is known as the Bogoliubov Ansatz.

11.2.3 Gross-Pitaevskii equation

Expressing Eq.(11.23) in terms of the order parameter it takes the form of a non-linear Schrödinger
equation (

− ~2

2m
∆ + U(r) + g |Ψ0(r)|2

)
Ψ0(r) = µΨ0(r). (11.28)

This expression is called the Gross-Pitaevskii (GP) equation [27, 56]. Equivalently, in analogy with
Eq. (11.12) we can introduce the time-dependent order parameter

Ψ0(r, t) = Ψ0(r)e−iµt/~ (11.29)

and write the GP equation in its time-dependent form

i~
∂

∂t
Ψ0(r, t) =

(
− ~2

2m
∆ + U(r) + g|Ψ0(r, t)|2

)
Ψ0(r, t). (11.30)

The interaction term has the effect of modifying the external potential into an effective potential
field,

Ueff(r) = U(r) + g|Ψ0(r)|2. (11.31)

As this field depends on the solution of the GP equation it has to be determined self-consistently.
The GP equation is an example of a Hartree mean field equation and the order parameter Ψ0(r)
describes the mean field. The quantity

n0(r) = |Ψ0(r)|2 (11.32)

represents the density of the mean field, usually called the condensate density. Importantly, the
order parameter is not an ordinary wavefunction. Its time evolution is governed by the chemical
potential and not by the energy as is the case for ordinary wavefunctions. In this sense the name
condensate wavefunction is a bit unfortunate. It should certainly not be confused with the many-
body wavefunction of the condensate. Even with as little as 10 particles the density of the order
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parameter is already defined to an accuracy of 1%. Importantly, because the GP equation is non-
linear its solutions are in general not orthogonal. This reflects the mean field origin of the order
parameter and further underlines the difference with the many-body wavefunction of the condensate.

The simplest example of a solution of the GP equation is obtained for the ground state of a
homogeneous quantum fluid. In this case the order parameter follows by setting U(r) = 0 and
∆Ψ0(r) = 0 in Eq. (11.28); the density is constant across the fluid, |Ψ0(r)|2 = n0, and the chemical
potential is given by

µ = gn0. (11.33)

With the concept of the order parameter we discovered a powerful tool to describe the collective
properties of a many-body system while properly accounting for the quantum correlations between
the atoms. This concept is certainly one of the most profound achievements of condensed matter
physics.

11.2.4 Example: Gross-Pitaevskii equation for harmonically trapped Bose gas

As an important example we consider the properties of a Bose-Einstein condensate in an isotropic
harmonic trap U(r) = 1

2mω
2r2. In the absence of interactions (g = 0) the Gross-Pitaevskii equation

reduces to the Schrödinger equation for the harmonic oscillator and the order parameter has the
gaussian shape of harmonic-oscillator ground state

Ψ0(r) =
√
N0ϕ0(r) =

√
N0

π3/4l
3/2
0

e−r
2/2l20 , (11.34)

where the quantity l0 is the harmonic oscillator length, defined by

1
2mω

2l20 = 1
2~ω ⇔ l0 =

√
~/mω. (11.35)

The harmonic-oscillator solution fails once the energy of interaction dominates over the kinetic
energy, which is the case for (see Problem 11.3)

l0 � N0|a|. (11.36)

Problem 11.3. Show that for l0 � N0|a| the interaction energy dominates over the kinetic energy.

Solution. The kinetic energy is largest for the harmonic-oscillator ground state,

〈(
~2/2m

)
∆Ψ0(r)

〉
' ~2

2m

1

l20
.

The interaction energy in the ground state scales proportionally to the density
(
N0/l

3
0

)
|g n0(r)| ' 4π~2

m
|a|N0

l30
.

Hence, the kinetic energy dominates over the interaction energy for

l0 � N0|a|. 2

Thomas-Fermi approximation

The Gross-Pitaevskii equation can also be solved analytically for conditions where the interactions
are repulsive and dominate over the kinetic energy,

N0a� l0 � a > 0. (11.37)
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By the additional requirement l0 � a we exclude tightly confining traps in which the binary collisions
are affected by the trap confinement. Under the condition (11.37) the kinetic energy term can be
neglected and the Gross-Pitaevskii equation reduces to

µ = gn0(r) + U(r) = gn0(0). (11.38)

This amounts to a local density approximation in which the chemical potential is set to be constant
across the inhomogeneous gas. This approximation is known as the Thomas-Fermi approximation
because Thomas and Fermi used a similar local density approximation to obtain the distribution of
a degenerate electron cloud around the nucleus of a many-electron atom [65, 22]. Solving Eq. (11.38)
for the density from we obtain the famous Thomas-Fermi density profile observed in the very first
experiments with Bose-Einstein condensed gases [1, 14],

n0(r) = [µ− U(r)] /g with N0 =

ˆ
n0(r)dr. (11.39)

Note that near the edge of the Thomas-Fermi profile the approximation must break down because
the density (and thus the interaction energy) vanishes and the kinetic energy takes over. This results
in a softening of the condensate surface over a distance ξ that may be estimated by equating the
kinetic and interaction energies, gn0 ' ~2/2mξ2,

ξ =
~√

2mg n0
.

This characteristic length ξ is known as the healing length. For condensates with many atoms the
presence of the healing layer is of little consequence because only a small fraction of the atoms
occupy this region.

Let us calculate the Thomas-Fermi radius R0 of a Bose-Einstein condensate in an isotropic
harmonic trap U(r) = 1

2mω
2r2. As the density is zero at the edge of the condensate we find with

Eq. (11.38)
1
2mω

2R2
0 = µ⇔ R0 =

√
2µ/mω2. (11.40)

It is instructive to compare R0 with, on the one hand, the thermal radius of a harmonically trapped
cloud at the critical temperature for BEC,

1
2mω

2R2
cr = kBTc ⇔ Rcr =

√
2kBTc/mω2, (11.41)

and, on the other hand, the harmonic oscillator length l0 =
√

~/mω. One may show that aside
from exceptional experimental cases the following inequalities are satisfied:

1
2~ω � µ� kBTc ⇔ l0 � R0 � Rcr. (11.42)

This means that down to T = Tc the interactions may be neglected (g n0(0)� kBTc). In other
words, above Tc the gas behaves as an ideal gas. However, as soon as the condensate becomes
macroscopically occupied, its properties are strongly affected by the interactions (g n0(0)� ~ω).
Apparently, since R0 � l0, the repulsive interactions give rise to a substantial broadening of the
ground state wavefunction, from the size of the harmonic oscillator length in the case of the ideal
gas to the Thomas-Fermi radius in the case of an interacting boson gas with positive scattering
length. Note that the Thomas-Fermi approximation is valid because

~2

2mR2
0

=
~2ω2

4µ
� ~ω � µ, (11.43)

i.e. the kinetic energy contribution is small as compared to the chemical potential.
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A relation between R0 and the total number of atoms N0 =
´
n0(r)dr is obtained by integrating

over the density distribution (11.39),

g N0 =

ˆ [
µ− 1

2mω
2r2
]
dr = µ

4π

3
R3

0 −
2π

5
mω2R5

0. (11.44)

With the aid of Eq. (11.40) we can eliminate µ from Eq. (11.44) and obtain

R0 =

(
15

4π

g N0

mω2

)1/5

= l0

(
15
a

l0
N0

)1/5

(11.45)

where a is the scattering length and l0 is the harmonic oscillator length. Hence, the Thomas-Fermi
radius grows only slowly with increasing N0, reflecting a compromise between growth of the central
density n0(0) and growth of the condensate volume.
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12

Weakly interacting Bose gas - elementary excitations

12.1 Amplitude-phase decomposition of the order parameter

To investigate the dynamical properties of a condensate it has to be excited in some way. So let
us suppose that the distribution of the condensate density n0(r, t) = |Ψ(r, t)|2 has somehow been
driven out of its stationary shape and ask for the time dependence of the deformation,

∂

∂t
n0(r, t) = Ψ∗(r, t)

∂

∂t
Ψ(r, t) + Ψ(r, t)

∂

∂t
Ψ∗(r, t). (12.1)

To relate this expression to the hamiltonian we use the time-dependent GP equation and its complex
conjugate,

Ψ∗
∂

∂t
Ψ = − i

~
Ψ∗
(
− ~2

2m
∆ + U(r) + g n0(r, t)

)
Ψ (12.2a)

Ψ
∂

∂t
Ψ∗ = +

i

~
Ψ

(
− ~2

2m
∆ + U(r) + g n0(r, t)

)
Ψ∗. (12.2b)

By adding these conjugates we obtain the real part of Ψ∗∂tΨ,

∂

∂t
n0(r, t) =

i~
2m

(Ψ∗∆Ψ−Ψ∆Ψ∗) =
i~
2m

∇ · (Ψ∗∇Ψ−Ψ∇Ψ∗) . (12.3)

Interpreting the quantity

j(r, t) = − i~
2m

(Ψ∗∇Ψ−Ψ∇Ψ∗) . (12.4)

as the neutral current density we obtain the continuity equation

∂

∂t
n0(r, t) + ∇ · j(r, t) = 0. (12.5)

This equation expresses the conservation of normalization and can be regarded as the quantum
mechanical counterpart of the continuity equation of classical fluid dynamics, which expresses the
conservation of mass.

To analyze deviations from the stationary state we write the order parameter in a form separating
the fluctuations of the amplitude from those of the phase,

Ψ(r, t) = |Ψ(r, t)|eiφ(r,t), (12.6)

where the amplitude is given by
|Ψ(r, t)| =

√
n0(r, t) (12.7)

239
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and the overall phase φ(r, t) is a real quantity defined as

φ(r, t) ≡ −µt/~ + Φ(r, t). (12.8)

Here the phase Φ(r, t) is called the fluctuating phase and represents the deviation from the dynamical
phase evolution (−µt/~) of the stationary state Ψ0(r) - see Eq. (11.29). Substituting the order
parameter (12.6) into the current density (12.4) we relate current fluctuations to those of the density
and phase. Since |Ψ(r, t)| is real, the terms depending on ∇|Ψ| cancel when calculating j(r, t).
Furthermore, since µ is constant across the order parameter we have

∇φ = ∇Φ (12.9)

and the terms depending on ∇µ vanish. Thus only the terms depending on ∇Φ survive and we
obtain

j(r, t) = − i~
2m
|Ψ|2(2i∇Φ) =

~
m
n0(r, t)∇Φ(r, t). (12.10)

This expression shows that the current density j(r, t) depends only on the number density n0(r, t)
and the gradient of the fluctuating phase, ∇Φ(r, t). Since the local current density in a fluid, j,
is related to the local flow velocity, v, through the flux relation j = nv, the flow velocity in the
condensate follows from the current density (12.10) and is given by

v =
~
m
∇Φ. (12.11)

With this expression we have obtained a major result. Deviations from stationary shape Ψ0(r)
not only affect the density of the order parameter but also give rise to gradients in its phase, which
manifest themselves as currents in the quantum fluid. The form (12.11) demonstrates that the phase
Φ(r, t) acts as a potential for the velocity field. Moreover, as the rotation of any gradient is zero
(outside singularities), the velocity field is rotation free,

∇× v = 0. (12.12)

This means that (outside singularities) the fluid flows without circulation, which is called irrotational
flow. Irrotational flow is the pure potential flow on which the classical hydrodynamics of inviscid
fluids (i.e., fluids without viscosity) is based. We return to circulation in the presence of singularities
when discussing vortices in Section 12.7.2.

To further explore the dynamical properties of a condensate we now subtract the equations (12.2)
and obtain on the l.h.s. (twice) the imaginary part of Ψ∗∂tΨ by substituting the order parameter
(12.6)

Ψ∗(r, t)
∂

∂t
Ψ(r, t)−Ψ(r, t)

∂

∂t
Ψ∗(r, t) = 2i|Ψ|2 ∂φ

∂t
(12.13)

Note that the terms depending on ∂t|Ψ| canceled because |Ψ(r, t)| is real, so only the terms depending
on ∂tφ survive. Here φ(r, t) is the overall phase defined above. Subtracting also the r.h.s. we obtain

2i|Ψ|2 ∂φ
∂t

= − i
~

[
− ~2

2m
(Ψ∗∆Ψ + Ψ∆Ψ∗) + 2U(r)|Ψ|2 + 2g|Ψ|4

]
. (12.14)

Dividing both sides by −2i|Ψ|2/~ and evaluating the laplacians we find the following expression for
the time dependence of the phase of the order parameter,

− ~
∂φ

∂t
=

~2

2m
(∇φ)2 + U(r) + g|Ψ|2 − ~2

2m

1

|Ψ|
∆|Ψ|. (12.15)
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Using Eqs. (12.11) and (12.9) we arrive at

m
∂v

∂t
+ ∇

(
1
2mv

2 + U(r) + gn0 −
~2

2m

1

|Ψ|
∆|Ψ|

)
= 0. (12.16)

Importantly, as the equation of motion (12.15) and the continuity equation (12.5) correspond to
the real and imaginary parts of the time-dependent GP equation, they constitute a set of coupled
equations which are completely equivalent to Eqs. (12.2).

12.2 Fluctuations of the order parameter about the stationary value

At this point we have established the equations for the dynamical evolution of the density and phase
of the order parameter and proceed to solve these equations. First we write the order parameter in
the form

Ψ(r, t) = [Ψ0(r) + δΨ(r, t)]e−iµt/~, (12.17)

where
Ψ0(r) =

√
n0(r) (12.18)

is the stationary solution, n0(r) being the density distribution of the condensate at rest. The
quantity δΨ(r, t) represents a deviation from the stationary shape and can be expressed in the form

δΨ(r, t) = |Ψ(r, t)|eiΦ(r,t) −Ψ0(r). (12.19)

Here Φ(r, t) is the deviation from the dynamical phase of the stationary state as introduced in Section
12.1. Substituting Eq. (12.17) into the time-dependent GP equation and neglecting the terms which
depend nonlinearly on δΨ we obtain the linearized GP equation for the time dependence of small
fluctuations of the order parameter Ψ about its stationary value (see Problem 12.1),

i~
∂

∂t
δΨ = − ~2

2m
∆δΨ + gn0(r) [δΨ∗ + 2δΨ]− µδΨ. (12.20)

The above equation enables us to determine the dispersion relation for the elementary excitations
of the condensate; i.e., the relation between the frequency and wavevector of the normal modes
of oscillation of the condensate. We demonstrate this for the homogeneous case, in which the
stationary solution of the order parameter reduces to a constant, Ψ0(r) → Ψ0 =

√
n0, and the

chemical potential is given by µ = gn0 (see Section 11.2.3). In this case Eq. (12.20) becomes

i~
∂

∂t
δΨ = − ~2

2m
∆δΨ + gn0[δΨ + δΨ∗]. (12.21)

As this is a wave equation for a system with translational symmetry the normal modes can be
written in the form

δΨ(r, t) = Aei(k·r−ωt) −B∗e−i(k·r−ωt). (12.22)

To determine the relation between ω and k we substitute the solution (12.22) into the linearized
GP equation (12.21),

~ωAei(k·r−ωt) + ~ωB∗e−i(k·r−ωt) = [(~2k2/2m+ gn0)A− gn0B]ei(k·r−ωt)+

+ [−(~2k2/2m+ gn0)B∗ + gn0A
∗]e−i(k·r−ωt). (12.23)

Equating the terms with the same phase evolution from both sides of the equation we find two
conditions that should be simultaneously satisfied,

~ωA = (~2k2/2m+ gn0)A− gn0B (12.24a)

~ωB = −(~2k2/2m+ gn0)B + gn0A. (12.24b)
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Figure 12.1: Bogoliubov excitation spectrum. For kξ � 1 the excitations are hydrodynamic (sound); for
kξ � 1 the excitations are particle like.

Writing the set of equations in the form of an eigenvalue equation,(
~2k2/2m+ gn0 −gn0

gn0 −(~2k2/2m+ gn0)

)(
A

B

)
= ~ω

(
A

B

)
, (12.25)

the eigenvalues are obtained by solving the characteristic equation∣∣∣∣~2k2/2m+ gn0 − ~ω −gn0

gn0 −(~2k2/2m+ gn0 + ~ω)

∣∣∣∣ = 0. (12.26)

This leads to two solutions, differing only in the sign. Retaining only the solution of positive energy
we find

εk = ~ωk =

√
(~2k2/2m)

2
+ 2gn0 (~2k2/2m) =

~2k2

2m

√
1 + 2/ (kξ)

2
. (12.27)

This is the famous Bogoliubov excitation spectrum Bogoliubov [8]. As illustrated in Fig. 12.1 this
spectrum has the following limiting behavior:

εk '

{√
gn0/m ~k for kξ � 1

~2k2/2m+ gn0 for kξ � 1.
(12.28)

Apparently, for large values of k the excitations show quadratic dispersion, whereas for small k the
dispersion is linear.

As wave-like excitations of the density represent sound, the low-lying excitations of the bosonic
ground state are sound waves, with

c =
√
gn0/m =

√
1
2

~
mξ

(12.29)

being the speed of sound. In terms of the speed of sound the crossover point is given by

kξ = 1⇔ ~2k2/2m = mc2. (12.30)
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Problem 12.1. Derive the linearized GP equation for the time dependence of a small fluctuation of the
order parameter Ψ about its stationary shape,

i~∂tδΨ = −(~2/2m)∆δΨ + gn0(r) [δΨ∗ + 2δΨ]− µδΨ,

where δΨ(r, t) represents the fluctuation and n0(r) the stationary shape of a condensate of chemical potential
µ.

Solution. Substituting the dynamically fluctuating order parameter (12.17) into the time-dependent GP
equation (11.30) we obtain on the one left-hand side

i~∂tΨ = µΨ0e
−iµt/~ + µδΨe−iµt/~ + i~∂tδΨe−iµt/~

and, noting that

|Ψ|2Ψ = |Ψ0|2Ψ0 + 2|Ψ0|2δΨ + Ψ2
0δΨ

∗ + Ψ∗0δ
2Ψ + 2Ψ0δΨδΨ

∗ + δ2ΨδΨ∗

and neglecting the three nonlinear terms, we obtain on the right-hind side of the GP equation

− (~2/2m)∆Ψ + g|Ψ|2Ψ = −(~2/2m) (∆Ψ0 + δΨ) e−iµt/~

+ g(|Ψ0|2Ψ0 + 2|Ψ0|2δΨ + Ψ2
0δΨ

∗)e−iµt/~.

Since −(~2/2m)∆Ψ0 + gn0Ψ0 = µΨ0 and the phase of Ψ0 may be chosen to be real we obtain the linearized
expression. 2

12.3 The order parameter in the limit ω, k → 0

Let us now focus on the elementary excitations of lowest energy; i.e., those with ω, k → 0. As
Eq. (12.24a) represents a relation between the A and B coefficients we find for ω, k → 0,

B =
~2k2/2m+ gn0 − ~ω

gn0
A '
ω,k→0

A. (12.31)

Substituting this result into Eq. (12.22) we obtain for the fluctuation

δΨ(r, t) = Aei(k·r−ωt) −A∗e−i(k·r−ωt) for ω, k → 0. (12.32)

Separating the coefficient A into its modulus and phase, A =
√
n0A0e

−iφ, the fluctuation is found
to be purely imaginary,

δΨ(r, t) = i
√
n0 2A0 sin(k · r− ωt− φ). (12.33)

Hence, we can write the order parameter in the form

Ψ(r, t) =
√
n0(1 + iΦ), (12.34)

where

Φ(r, t) ≡ 2A0 sin(k · r− ωt− φ) (12.35)

is a dimensionless quantity. In view of Eq. (12.34), for A0 � 1 this quantity can be interpreted as
the phase of the order parameter

Ψ(r, t) ' Ψ0e
iΦ(r,t). (12.36)

Thus we found that the low-frequency elementary excitations manifest themselves as fluctuations of
the phase whereas the effect on the amplitude (i.e., the density) may be neglected.
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Figure 12.2: Fluid element of fixed volume V and mass M = Mn moving at velocity v as part of an
inhomogeneous fluid confined by an external potential.

12.4 Relation with classical hydrodynamics

At this point it is important to recall the basics of inviscid flow from classical hydrodynamics.
For this purpose we consider a small volume element V , containing N atoms of mass m in an
inhomogeneous fluid confined by an external potential U(r). The configuration is illustrated in
Fig. 12.2. The number density of the fluid at position r and time t is given by n = n(r, t) and its
flow velocity by v(r, t). The conservation of mass when the fluid flows into and out of the (fixed-size)
volume element V is expressed by the continuity equation

∂

∂t
n(r, t) + ∇ · j(r, t) = 0 (12.37)

as follows simply with the Gauss divergence theorem. In the Section 12.1 we found that the conti-
nuity equation is satisfied by the order parameter.

Also the linear momentum of the fluid inside the volume element V is a conserved quantity.
As mv is the momentum of the individual atoms within V the total momentum is Nmv̇. This
momentum is conserved if the net force on the fluid element is zero,

Nmv̇ = F−∇pV. (12.38)

Here Nmv̇ is the inertial force of the mass contained within V . This quantity is balanced by sum
of the external force F and the gradient force −∇pV , where p = p(r, t) is the local pressure. In the
microscopic picture the total force is given by the sum of N equal forces, F = −N∇U . Note that
in the absence of flow Eq. (12.38) represents hydrostatic equilibrium between the external force and
the pressure gradient. The quantity

v̇(r, t)=
d

dt
v(r, t) =

∂v

∂x
vx +

∂v

∂y
vy +

∂v

∂z
vz +

∂v

∂t
= (v ·∇) v +

∂v

∂t
(12.39)

is the total derivative with respect to time, which represents the rate at which the velocity changes
in the coordinate system moving along with the fluid. Substituting this expression into Eq. (12.38)
and dividing by N we obtain the Euler equation for inviscid flow

m
∂v

∂t
= −m (v ·∇) v −∇U − 1

n
∇p. (12.40)

Imposing the condition that the flow be irrotational we have 2 (v ·∇) v = ∇v2 as follows with
Eq. (E.10) and the Euler equation takes the form

m
∂v

∂t
+ ∇

(
1
2mv

2 + U(r)
)

+
1

n
∇p = 0. (12.41)



12.5. BOGOLIUBOV SPECTRUM FROM THE HYDRODYNAMIC FORMALISM 245

Comparing Eq. (12.41) with (12.16) we notice that the flow field of the condensate resembles
that of irrotational inviscid flow of classical hydrodynamics but there is a quantum correction

1

n
∇p→∇

(
gn0 −

~2

2m

1

|Ψ|
∆|Ψ|

)
. (12.42)

Indeed, recalling Eq. (8.82) we have ∇p = n∇µ. Thus, integrating over the elementary volume,´
V
∇p · dr =

´
dp = p, we find for the pressure

p =

ˆ
V

gn0∇n0 · dr + pQM = 1
2gn

2
0 + pQM. (12.43)

Here, the first term, ˆ
V

gn0∇n0 · dr =

ˆ
gn0dn0 = 1

2gn
2
0, (12.44)

can be written as an integral over the bulk modulus of the fluid
ˆ
gn0dn0 =

ˆ
gK(p)dp.

The bulk modulus, K(p) = n0 (∂n0/∂p), is the inverse of the compressibility and is a well-defined
quantity in classical hydrodynamics. The second term

pQM = −
ˆ
V

n0∇
(

~2

2m

1

|Ψ|
∆|Ψ|

)
· dr (12.45)

is called the quantum pressure and has no classical analogue. It accounts for (non-hydrodynamic)
phenomena involving changes in the order parameter over small distances as they occur in the core
of a vortex and in elementary excitations at larger values of k.

12.5 Bogoliubov spectrum from the hydrodynamic formalism

At the end of the previous section we established that the equations of motion for the amplitude and
phase of the order parameter show a strong similarity with those of the classical hydrodynamics of
an irrotational fluid. We now proceed and search for the limitations on this analogy. In particular
we shall analyze how the presence of the quantum pressure affects the dispersion curve of the
elementary excitations. In classical hydrodynamics the time evolution of the density distribution of
a fluid, n(r, t), is related to that of its velocity field v(r, t). To obtain the excitation spectrum we
consider a linear deviation from the stationary values (n0 and v0) of the fields,

n = n0 + δn and v = v0 + δv. (12.46)

For a condensate at rest (v0 = 0) the second equation simplifies to

v = δv. (12.47)

To include the quantum pressure we use Eq. (12.42) and write the Euler equation in the form

m
∂

∂t
v + ∇

(
1
2mv

2 + gn− ~2

2m

1

|Ψ|
∆|Ψ|

)
= 0. (12.48)

To leading order in δn the contribution of the quantum pressure becomes

− ~2

2m

1

|Ψ|
∆|Ψ| = ~2

8m

1

n2
(∇n)

2 − ~2

4m

1

n
∇2n ' − ~2

4m

1

n
∇2δn, (12.49)
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where we used the relation |Ψ| =
√
n. Expressing all terms of the Euler equation in this way we

obtain (after division by m and multiplication by n0)

∂

∂t
n0δv + ∇

(
gn0

m
δn− ~2

4m2
∇2δn

)
= 0. (12.50)

Similarly, to leading order in δn and δv the continuity equation becomes

∂

∂t
δn+ ∇ · n0 δv = 0. (12.51)

Since δn and δv must be real they can be written in the form

δn = Aei(k·r−ωt) +A∗e−i(k·r−ωt) (12.52)

δv = ik
[
Bei(k·r−ωt) −B∗e−i(k·r−ωt)

]
. (12.53)

Substituting these expressions into Eqs. (12.51) and (12.50) we find, respectively,

ωA+ k2n0B = 0 (12.54)

ωn0B +
gn0

m
A+

~2k2

4m2
A = 0. (12.55)

Solving the corresponding eigenvalue equation, ω k2

~2k2

4m2
+
gn0

m
ω

( A

n0B

)
= 0, (12.56)

we regain the Bogoliubov excitation spectrum

εk = ~ω =

√
(~2k2/2m)

2
+ 2gn0 (~2k2/2m). (12.57)

If, on the other hand, we leave out the quantum pressure contribution ~2k2/4m2 we find only the
linear dispersion

ω =
√
gn0/mk. (12.58)

This shows that the appearance of the particle-like dispersion in the Bogoliubov spectrum can be
traced back to the quantum pressure term, which is not present in the classical hydrodynamic
equations; hence it is a non-hydrodynamic effect.

12.6 Superfluidity - Landau criterion and critical velocity

Superfluidity is the name for a complex of phenomena in degenerate quantum fluids.1 It was
discovered in 1938 in liquid 4He by Kapitza as well as by Allan and Misener, who found that, below
a critical temperature Tλ ' 2.17 K, liquid 4He flows without friction through narrow capillaries
or slits. London (1938) conjectured a relation with the phenomenon of BEC and Landau (1941)
suggested an explanation for the absence viscosity. Not surprisingly, the question arises ‘is a dilute
Bose-Einstein condensed gas a superfluid’? In this section we shall arrive at the conclusion that
BEC is not sufficient to observe viscous-free flow.

As all experiments with quantum gases require surface-free confinement, a capillary arrangement
like in liquid helium is out of the question from the experimental point of view. Therefore, we

1A.J. Leggett, Rev. Mod. Phys. 73, 307 (2001); also in Bose-Einstein Condensation: from Atomic Physics to
Quantum Fluids, C.M. Savage and M. Das (Eds.), World Scientific, Singapore (2000).
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Figure 12.3: A body moving at velocity v through a Bose-Einstein condensate at rest.

analyze an equivalent situation in which a body of mass m0 moves at velocity v through a Bose-
condensed atomic gas as sketched in Figure 12.3. The body may be an impurity atom or a spherical
condensate of a different atomic species. For simplicity we presume the Bose-condensed gas to be
a homogeneous Bose-Einstein condensate at rest at T = 0. In the absence of external forces the
momentum of the body p = m0v is conserved unless the condensate gives rise to friction. At the
microscopic level friction means the creation of excitations and this will only occur if this excitation
process is energetically favorable.

Before excitation the energy of the moving body is p2/2m0 and the energy of the condensate is
zero (ε0 ≡ 0); i.e., the total energy of the system is

Ei = p2/2m0. (12.59)

After creating in the condensate an excitation of energy εk and momentum ~k the energy of the
body is known to be (p− ~k)

2
/2m0 as follows by conservation of momentum. Thus, the total

energy in the final state is

Ef = (p− ~k)
2
/2m0 + εk = p2/2m0 + ~2k2/2m0 − ~k · p/m0 + εk. (12.60)

Energy conservation excludes excitation if Ef−Ei > 0, which is equivalent to εk > ~k · v−~2k2/2m0.
This condition is most difficult to satisfy for v parallel to k, in which case we obtain after some
rearranging

v < εk/~k + ~k/2m0 ≡ vc. (12.61)

Here vc is the critical velocity for the creation of elementary excitations of momentum ~k. Thus we
found that elementary excitations of momentum ~k cannot be created if the speed of the body is
less than vc.

In the case of an ideal Bose gas the elementary excitations are free-particle-like; i.e., the dispersion
is given by εk = ~2k2/2m, where m is the mass of the condensate atoms. Substituting this dispersion
into Eq. (12.61) we find for the critical velocity in an ideal gas

vc = ~k/2mr, (12.62)

where mr = mm0/ (m+m0) is the reduced mass of the body with the excited atom. For heavy
bodies µ ' m and vc is simply half the speed of the excited atom. Importantly, in an ideal gas vc is
seen to scale with the momentum of the excitation. Hence, for any velocity of the body it is possible
to create elementary excitations under conservation of energy and momentum. The efficiency of
excitation is of course another matter. Here, this is left out of consideration because it only sets the
time scale on which friction brings the body to rest.

In the case of the liquid 4He at T = 0 the low-lying excitations are phonon-like εk = ~ck,
with c the speed of sound. Substituting the linear dispersion into Eq. (12.61) the condition for
excitation-free motion becomes

v < c+ ~k/2m0 ≡ vc.

Apparently, below a critical velocity, the Landau critical velocity vc = c, none of the phonon-like
modes can be excited, which explains the absence of phonon-related friction. Note that the Landau
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critical velocity is independent of the mass of the moving body. In general the criterion v < c is not
sufficient to guarantee superfluidity, because any other cause of dissipation, like the excitation of
vortices or of different elementary modes (like the so-called rotons in liquid helium), could destroy
the effect. This being said we conclude from experiment that this is apparently not the case in liquid
4He! Nevertheless, the existence of other types of excitations (vortices) should not be forgotten, if
only because they make it extremely difficult to observe the theoretical value for the Landau critical
velocity in liquid helium.

12.7 Gross-Pitaevskii equation for elongated condensates

12.7.1 Introduction

In many experiments with quantum fluids we are dealing with very long, axially symmetric config-
urations (ellipsoidal or cylindrical shapes), for instance a cylindrical column of liquid helium. To
investigate such configurations the z direction is chosen along the longest symmetry axis and we
search for (excited-state) solutions of the GP equation in cylindrical coordinates r = (ρ, φ, z),1

i~
∂

∂t
Ψ(r, t) =

[
− ~2

2m

(
∂2

∂ρ2
+

1

ρ

∂

∂ρ
+

1

ρ2

∂2

∂φ2
+

∂2

∂z2

)
+ U(r, t) + g|Ψ(r, t)|2

]
Ψ(r, t), (12.63)

where ρ is the radial distance to the z axis. In the third term of the laplacian we recognize the
operator L2

z = −~2∂2/∂φ2 representing the square of the orbital angular momentum L around the
z axis, L = r⊥ × p = −i~(r⊥ ×∇) = ẑLz with r⊥ = (ρ, φ). In general, the effective potential

Ueff(r, t) = U(r, t) + g|Ψ(r, t)|2 (12.64)

will give rise to coupling between the cylindrical degrees of freedom. However, for very elongated
configurations we can identify several important regular solutions that conserve the cylindrical sym-
metry (either completely or approximately) and in which the variables ρ, φ and z may be treated
as separable at least up to first order in perturbation theory.

12.7.2 Condensate confined by a cylinder

Let us first consider confinement of a condensate by a infinitely long hard-walled cylinder of radius
R0. In this case the external potential depends only on the radial distance ρ to the symmetry axis,
U(r) = U(ρ), with U(ρ) = 0 for ρ < R0 and U(ρ) → ∞ for ρ ≥ R0. This implies the boundary
condition that the condensate wavefunction vanishes at the wall of the cylinder; i.e., Ψ(R0, φ, z) = 0.
As long as the interaction term g|Ψ(r)|2 does not break the cylindrical symmetry (e.g. no phonons,
no solitons) we can separate the cylindrical variables and write the order parameter as a product of
the form

Ψ(ρ, φ, z, t) = ψl (ρ)ϕl(φ)eikze−iµlt/~, (12.65)

where k is the wavevector for motion along the z direction and ϕl(φ) represents the eigenfunctions
of the Lz operator,

Lzϕl(φ) = l~ϕl(φ) with ϕl(φ) =
1√
2π
e−ilφ, (12.66)

where l is called the quantum number of circulation. Recalling the relation (12.11) between the
gradient of the phase and the flow velocity of the fluid the order parameter (12.65) represents
stationary flow patterns of two types: linear flow along the symmetry axis and circular flow around
the symmetry axis. The nonlinearity caused by the interaction term can also give rise to static and

1The corresponding expression for the classical kinetic energy is (aside from the common denominator 2m)
p2 = (ρ̂ · p)2 + (ẑ · p)2 + (ρ̂× p)2 .
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Figure 12.4: Boundary layer of the superfluid near a hard wall, where the order parameter drops to zero.
The thickness of the layer is comparable to the healing length. Near the symmetry axis vortices with l = 1
and l = 2 are sketched.

dynamic flow patterns along the z direction representing soliton modes but a discussion of these
excitations of the order parameter is postponed until Section #. In particular the circular flow is
interesting. Evaluating the angular momentum operator Lz we find that the circulation around the
z direction is quantized in units of ~ and obtain for given value l the radial GP equation[

− ~2

2m

(
∂2

∂ρ2
+

1

ρ

∂

∂ρ
− l2

ρ2
− k2

)
+ g|Ψk,l(r)|2

]
Ψk,l(r) = µk,lΨk,l(r). (12.67)

This equation holds for ρ < R0 and can be made dimensionless by dividing by n1/2µl, where µl is
the chemical potential for a condensate with l units of circulation and n the density far from the
symmetry axis (ρ� ξ) and far from the wall (R0 − ρ� ξ). Introducing the dimensionless variable
% ≡ ρ/ξ, where ξ = ~/(2mµl)1/2 is the healing length of a fluid at density n = µl/g,(

− d2

d%2
− 1

%

d

d%
+
l2

%2
+ (kξ)

2
+ |fk,l (%) |2

)
fk,l (%) = fk,l (%) , (12.68)

where fk,l (%) ≡ n−1/2ψk,l (%) for % < R0/ξ.

12.7.3 Ground state - order parameter near hard wall

In the limit R0 → ∞ the Eq. (12.68) represents the GP equation for the homogeneous fluid. For
k = 0 and l = 0 this equation reduces to the GP equation for the ground state, with solution f0 ≡ 1.
For a cylinder with a finite radius R0 the order parameter must vanish at the wall, f0(R0/ξ) = 0.
In principle the confinement will affect the chemical potential but for large R0 this effect mag be
neglected. Hence, on the symmetry axis we may presume f0(0) = 1. Further we note that the
second term of Eq. (12.68) may be neglected since on the axis f ′0(%)/% = 0 for symmetry reasons
and near the wall f ′0(%)/%� 1 when R0 is sufficiently large. Thus, the radial GP equation reduces
to

− f ′′0 + f3
0 − f0 = 0. (12.69)

As the variables f0 and % separate we can solve this equation by integration (see Problem 12.2).
Restoring the dimensions we find

ψ0 (ρ) =
√
n tanh

[√
1
2 (R0 − ρ) /ξ

]
(12.70)

This shape is illustrated in Fig. 12.4. The order parameter is seen to decay smoothly to zero over a
distance of the order of the healing length.



250 CHAPTER 12. WEAKLY INTERACTING BOSE GAS - ELEMENTARY EXCITATIONS

Problem 12.2. Show that the solution of the differential equation −f ′′0 + f3
0 − f0 = 0 under the boundary

conditions f ′0(0) = 0, f0(0) = 1 and f0(b) = 0 is given by

f0 (%) = tanh[2−1/2 (b− %)].

Solution. First we multiply by f ′ and obtain after integration by parts

− 1
2

(df0/d%)2 + 1
4
f4

0 − 1
2
f2

0 = a1. (a)

Recalling that f ′0(0) = 0 and f0(0) = 1 the integration constant is found to be a1 = −1/4. Taking the
square root of Eq. (a) and integrating we obtain

2% = ±
ˆ

1

f2
0 − 1

df0 = ±
(
tanh−1 f0 + a2

)
.

Using the boundary condition f0(b) = 0 the second integration constant is given by a2 = ±2b. Taking
the hyperbolic tangent on both sides we find the desired expression. Here we have chosen the minus sign
because % is a positive quantity. Note that the condition f ′0(%)/%� 1 for %→ b is satisfied. 2

12.7.4 Order parameter with nonzero circulation

Let us now solve the radial GP equation (12.68) in the presence of circulation in the fluid (l > 0).
Very close to the z axis (%� 1) the circulation term dominates over the interaction and Eq. (12.68)
reduces to

− d2fl
d%2
− 1

%

dfl
d%

+
l2

%2
fl = fl. (12.71)

This is the Bessel differential equation. Therefore, close to the axis the solutions are give by Bessel
functions J±l(%). Searching for solutions with boundary condition fl(0) = 0 the Bessel functions
near the axis can be approximated by

fl(%) = α%|l| for %� 1, (12.72)

where α is a numerical coefficient.
For % � 1 the interaction dominates over the circulation term. Hence, for ξ � ρ � R0

Eq. (12.68) reduces to
l2

%2
fl + f3

l = fl. (12.73)

Applying the boundary condition fl(%)→ 1 for %� 1 we find

fl(%) = (1− l2/%2)1/2 ' 1− l2/2%2 for %� 1.

Unfortunately, the full radial dependence cannot be represented in analytical form. The result of
numerical solutions for the cases l = 1 and l = 2 are shown in Fig. 12.4.

The azimuthal dependence of the order parameter is given by Eq. (12.66) and after restoring the
dimensions the full order parameter is given by

Ψ(ρ, φ, z) =
√
nfl(ρ/ξ)e

−iΦ with Φl = lφ. (12.74)

This expression is invariant under translation along the z direction and implies a velocity orthogonal
to the radial vector r⊥,

vl =
~
m
∇Φl =

~
m

l

ρ
φ̂ (12.75)

Hence, the phase is independent of ρ.
˛

vl · ds =
h

m
l. (12.76)
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12.8 Solitons

A special class of solutions of the GP equation are solitary wave solutions known as solitons. The
soliton is a dispersion-free wave. This means that it is stationary in the coordinate system moving
along with the wave. Hence, a soliton moving at speed v along the z axis can be described by the
expression

Ψ(r, t) = Ψ0(r⊥, z − vt)e−iµt/~, (12.77)

where r⊥ = (ρ, φ). Substituting this expression in the time-dependent GP equation we obtain in
cylindrical coordinates

ih
∂

∂t
Ψ(r, t) =

[
− ~2

2m

(
∂2

∂ρ2
+

1

ρ

∂

∂ρ
+

1

ρ2

∂2

∂φ2
+

∂2

∂z2

)
+ U(r) + g|Ψ(r, t)|2

]
Ψ(r, t). (12.78)

In the absence of vorticity this becomes

µΨ(r, t)− iv~e−iµt/~ ∂

∂z(t)
Ψ0(r⊥, z − vt) =

=

[
− ~2

2m

(
∂2

∂ρ2
+

1

ρ

∂

∂ρ
+

∂2

∂z2

)
+ U(r) + g|Ψ0(r⊥, z − vt)|2

]
Ψ(r, t). (12.79)

This equation is made dimensionless by dividing by µn1/2e−iµt/~, where n is the density at large
distance from the center of the soliton

f(r⊥, ζ)− iv ~
µξ

∂

∂ζ
f(r⊥, ζ) =

[
−
(
∂2

∂%2
+

1

%

∂

∂%
+

∂2

∂ζ2

)
+ |f(r⊥, ζ)|2

]
f(r⊥, ζ). (12.80)

where % ≡ ρ/ξ, ζ ≡ z/ξ and f(r⊥, ζ) ≡ n−1/2Ψ0(r⊥, ζ). Introducing the dimensionless quantity

2u ≡ v ~
µξ

(12.81)

soliton speed

u ≡ mvξ/~ =
~

2µξ
v (12.82)

Eq. (12.80) reduces to the form

− i2u∂f
∂ζ

= −∂
2f

∂ζ2
+ f3 − f. (12.83)
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A

Classical Mechanics

A.1 Introduction

The goal of classical mechanics is to describe the time evolution of systems of point-like particles,
called classical particles, subject to Newton’s laws of motion. To introduce the subject we consider
a mechanical system of N classical particles labeled by the particle index α. The position of particle
α is denoted by the vector rα. The first derivative with respect to time t, ṙα ≡ drα/dt, is called the
velocity of the particle and the second derivative, r̈α ≡ d2rα/dt

2, its acceleration.
We suppose that for a given state of the system the evolution does not depend on the instant

that we choose to follow it in time; i.e., time is homogeneous. Space is taken to be both homogeneous
and isotropic; i.e., it is possible to choose a frame of reference in which the evolution of the system
is independent of position and orientation. Such a reference frame is called an inertial frame. In
an inertial frame a free particle either stays at rest or moves at constant velocity. This is Newton’s
first law : the law of inertia.

A system of N classical particles has at most 3N degrees of freedom; i.e., 3N independent ways
to change in time. For free particles this motion can be described by 3N coordinates, for instance
the cartesian coordinates xα, yα and zα, with α ∈ {1, · · ·N}. However, in many cases the motion
is not free but subject to constraints. These can be time independent (scleronomous) or have
an explicit time dependence (rheonomous). An example of a scleronomous constraint is the fixed
distance between two particles in a rotating rigid body. A ball rolling on the deck of a ship is an
example of a system (the ball) with a rheonomous constraint (confinement to the deck of the ship).
The system is called holonomic if the constraining relations reduce the 3N degrees of freedom the
system. This holds for constraint equalities, for instance the above mentioned fixed distance between
two particles in a rotating rigid body. If the constraints do not affect the 3N degrees of freedom
the system is called nonholonomic. An example of the latter is the confinement of particles within
a vessel. Nonholonomic constraints can sometimes be avoided by idealizations of the theory.

The field of classical mechanics is subdivided into three subjects: (a) statics, which is the theory
of mechanical equilibrium between forces; (b) kinematics, which is the theory of motion without
entering in the origin of this motion; (c) dynamics, which is the theory of motion under the influence
of forces. This appendix cannot be more than a summary. For a proper introduction the reader is
referred to volume 1 of the Landau-Lifshitz series [38] and the book by Herbert Goldstein [26].

Dynamical evolution - Newton’s equation of motion

The time development of a system of N particles under the influence of external forces is called
the dynamical evolution of that system. In classical mechanics the dynamical evolution of a single
particle is described by Newton’s second law, which states that the total force Fα acting on particle
α is proportional to the acceleration of that particle, with the proportionality constant mα being
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its inertial mass,
Fα = mαr̈α. (A.1)

For a system of N particles the force Fα is given by the resultant of all external forces, Fext
α , and

the sum of the interaction forces Fαβ of particle α with all other particles of the system,

Fext
α +

N∑
β=1

′Fαβ = mαr̈α, (A.2)

where the prime indicates the condition β 6= α. This expression represents a set of N coupled
differential equations which is impossible to solve for a macroscopic number of particles. However,
as we shall see below, in many cases excellent approximations can be obtained by replacing the
interparticle forces by one or more relations acting as constraints on the motion of particle α.

A.2 Kinematic evolution of holonomous systems

For a holonomic system of N particles at positions rα with l constraints we can introduce f = 3N−l
independent coordinates qi(t) known as the generalized coordinates, with i ∈ {1, · · · f} being the
coordinate index. Together these define the evolution of the system as a function of time in the
f -dimensional configuration space of the system. The time derivatives q̇i(t) are called the generalized
velocities.1

• The rheonomous constraints of a N -particle system with f = 3N − l degrees of freedom
constitute a set of l time-dependent relations fk(r1, · · · , rN , t) = 0, where k ∈ {1, · · · l} is
called the constraint index. In this case the position of particle α may be expressed as a
function of the f coordinates qi plus time,

rα = rα(q1, · · · , qf , t). (A.3)

The velocities follow with

ṙα =

f∑
i=1

∂rα
∂qi

q̇i +
∂rα
∂t

, (A.4)

which shows that the velocity of particle α is (in general) a function of qi, q̇i and t,

ṙα = ṙα(q1, · · · , qf , q̇1, · · · , q̇f , t). (A.5)

Hence, in rheonomous systems rα and ṙα depend explicitly on time.

• For scleronomous constraints the l constraining relations do not contain an explicit time
dependence: fk(r1, · · · , rN ) = 0, with k ∈ {1, · · · l}. This makes it is possible to choose the
f coordinates qi in such a way that the position of the particles does not depend explicitly
on time. For instance, for a rolling sphere on a fixed surface we can choose the generalized
coordinate system such that the entire sphere remains at rest.

A.2.1 Virtual displacements - principle of d’Alembert

The force Fα acting on particle α is the superposition of all forces acting on that particle. These
forces can be separated into known forces Fext

α , like gravity or externally applied forces, and unknown
forces Kα,

Fα = Fext
α + Kα. (A.6)

1Throughout this appendix we adhere to the convention α ∈ {1, · · ·N} for the particle index, i ∈ {1, · · · f} for the
coordinate index and k ∈ {1, · · · l}. for the constraint index.
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The unknown forces are called forces of constraint. These unknown forces are reaction forces that
reduce the freedom of motion of the particles. Their actual value is unknown but always such that
the constraints remain satisfied, for instance to assure that a train stays in the rails.

The explicit appearance of the reaction forces can be eliminated from the formalism. To demon-
strate this we first consider mechanical equilibrium. This is the state in which all particles are at
rest in their equilibrium position; i.e., Fα = 0 and Kα = −Fext

α for all particles. By pulling on one
of the particles we expect to perform work against the restoring force of the system but as long as
the displacements δrα remain small (i.e., close to the equilibrium position) we find that this work
vanishes because the forces Fα remain vanishingly small,∑

α

Fα · δrα =
∑
α

(Fext
α + Kα) · δrα = 0. (A.7)

In other words, in equilibrium the restoring force is zero. This implies that in the absence of external
forces the reaction forces have to be zero, Fα = Kα = 0.

Now suppose that the system is pulled out of equilibrium. In this case we have forces acting on
(in general) all the particles; i.e., Fα = mαr̈α 6= 0 and Kα = −Fext

α + Fα 6= 0. Shifting the external
forces to the l.h.s. of (A.7) this equation takes the form∑

α

(mαr̈α − Fext
α ) · δrα =

∑
α

Kα · δrα 6= 0. (A.8)

The dot product leads us to distinguish between the component of δrα along Kα and the component
perpendicular to Kα. A parallel displacement would require work but is not in accordance with
the constraints; a perpendicular displacement is in accordance with the constraints but does not
result in work (as long as the displacements remain sufficiently small). This insight leads us to the
principle of d’Alembert : under virtual displacements δrα (in accordance with the constraints) no
work is done by the reaction forces,

δW =
∑
α

Kα · δrα = 0. (A.9)

This important principle allows us to derive the central equations of classical mechanics: the equa-
tions of Lagrange (see Section A.3). By analyzing virtual displacement we can eliminate the reaction
forces from (A.8) and the principle of d’Alembert takes the form

δW =
∑
α

(mαr̈α − Fext
α ) · δrα = 0. (A.10)

As this expression also holds outside equilibrium, we have obtained a condition for the dynamical
evolution of the system in which the constraints are satisfied implicitly.

Let us have a closer look at the virtual displacements. These can be thought of as instantly
being present at any desired point in time just to analyze how they would affect the system; i.e.,
unlike real displacements, which are based on (A.3), virtual displacements have no (explicit) time
dependence. To be relevant, they have to be in accordance with the constraints; i.e., δrα has to be
perpendicular to Kα. This leads to the practical difficulty that (in principle) the virtual displacement
of one particle affects the virtual reaction forces of all other particles; i.e., the δrα cannot be chosen
independently. This difficulty can be eliminated by decomposing the virtual displacements in terms
of the generalized coordinates defined by the constraints,

δrα =

f∑
i=1

∂rα
∂qi

δqi. (A.11)
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Note the absence of the time variable. Substituting this expression into (A.10) we obtain

δW =

f∑
i=1

[
N∑
α=1

(mαr̈α − Fext
α ) · ∂rα

∂qi

]
δqi = 0 (A.12)

and since the qi are independent variables the principle of d’Alembert takes the form of a set of f
coupled differential equations∑

α

(mαr̈α − Fext
α ) · ∂rα

∂qi
= 0, with i ∈ {1, · · · , f}. (A.13)

Inversely, it is easily verified that (A.10) is always valid provided the equations (A.13) are simulta-
neously satisfied.

In the absence of dynamical evolution (the static case - r̈α = 0) the principle of d’Alembert
reduces to the Bernoulli principle of virtual displacements :

δW =
∑
α

Fext
α · δrα = 0. (A.14)

As an example of Bernoulli’s principle without constraints we consider a system of N = 2 identical
particles subject to a force Fext

α = −∇αU(r1, r2), where U(r1, r2) is a potential function which
depends on the position of all the particles. This is an example of a conservative force (see Section
A.5.2). The expression for the virtual work is δW = Fext

1 · δr1 + Fext
2 · δr2 = 0. For two free

particles confined by a harmonic potential the condition δW = 0 is satisfied at the minimum of
the potential. For two repulsive particles we have Fext

1 = −Fext
2 and the condition δW = 0 is

satisfied for δr1 = −δr2 perpendicular to Fext
1 . Note the correlation between δr1 and δr2 (these

are not independent). The virtual displacements correspond to a rotation of the pair about the
potential center. The latter case shows that the virtual variation does not automatically correspond
to minimum of δW but can also represent a degenerate case.

Kinetic energy relations

Introducing the kinetic energy,

T ≡ 1
2

∑
α

mαṙ2
α, (A.15)

we note that, in view of (A.5), the kinetic energy of particle α is in the most general case a function
of qi(t), q̇i(t) and t,

T = T (q1, · · · , qf , q̇1, · · · , q̇f , t). (A.16)

For the partial derivatives with respect to qi and q̇i we derive for future use

∂T

∂qi
=
∑
α

mαṙα ·
∂ṙα
∂qi

(A.17a)

∂T

∂q̇i
=
∑
α

mαṙα ·
∂rα
∂qi

. (A.17b)

Here we used the relation ∂ṙα/∂q̇i = ∂rα/∂qi, which follows immediately from (A.4) and (A.3).

A.3 Lagrange equations

In this section we derive the Lagrange equations, which are the equations of motion of classical
mechanics. The Lagrange equations are equally valid for conservative and non-conservative forces.
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Examples of conservative forces are the gravitational force and the Lorentz force. The friction force
is an example of a non-conservative force. The Lagrange equations offer an important simplification
with respect to Newton’s equation of motion because forces of constraint are eliminated from the
formalism by the introduction of the generalized coordinates. We shall use the vector notation in
which the position and velocity of the particles of a mechanical system are represented by vectors
in the configuration space and velocity space, respectively

q ≡ (q1, · · · , qf ) (A.18a)

q̇ ≡ (q̇1, · · · , q̇f ). (A.18b)

The vectors q and q̇ are called dynamical variables because their evolution in represents the dynam-
ical evolution of the system. This time dependence is obtained by solving the Lagrange equations.
In the present section the Lagrange equations are obtained from the principle of d’Alembert. In
Section A.4 they follow the principle of least action of Hamilton.

A.3.1 Absence of constraining forces

First we show how the Lagrange equations are obtained form Newton’s second law. In the absence of
forces of constraint the particles are called free and the equations of motion (A.1) suffice to describe
the motion of the particles. Using Eq. (A.15) for the kinetic energy, we find that a force acting on
particle α can be written in the form

Fα =
d

dt

∂T

∂ṙα
. (A.19)

Now we restrict ourselves to forces that can be expressed as the negative gradient of a potential
function U = U(r1, · · · , rN , t),

Fext
α = − ∂U

∂rα
. (A.20)

In the special case of a time-independent potential function the force field is called conservative and
potential function can be interpreted as the potential energy U = V (r1, · · · , rN ). We return to the
concept of potential energy in the context of the conservation laws (see Section A.5.2). Combining
(A.19) and (A.20) we find

− ∂U

∂rα
=

d

dt

∂T

∂ṙα
. (A.21)

At this point we introduce the Lagrangian L(rα, ṙα, t) as the difference between the kinetic energy
and the potential function,

L(rα, ṙα, t) ≡ T (ṙα)− U(rα, t). (A.22)

Because the potential function U(r1, · · · , rN , t) does not depend explicitly on ṙα, and T (ṙ1, · · · , ṙN )
not explicitly on rα, (A.21) we arrive at the so-called Lagrange equations for particle α,

d

dt

∂L
∂ṙα
− ∂L
∂rα

= 0, with α ∈ {1, · · · , N}. (A.23)

A.3.2 Presence of constraining forces

Lagrange equations can also be derived for systems with holonomic constraints. So let us turn to
a system of N particles in which holonomic constraints add up to the reaction forces Kα. How do
these constraints affect the evolution of the system? To answer this question we apply the principle
of d’Alembert. Rewriting (A.13) in the form∑

α

Fext
α ·

∂rα
∂qi

=
∑
α

mαr̈α ·
∂rα
∂qi

, with i ∈ {1, · · · , f}, (A.24)
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we can introduce a generalized force defined by f components, one for every degree of freedom of
the system,

Qi ≡
∑
α

Fext
α ·

∂rα
∂qi

, with i ∈ {1, · · · , f}. (A.25)

Using the r.h.s. of (A.24) the Qi can be expressed as

Qi =
d

dt

(∑
α

mαṙα ·
∂rα
∂qi

)
−
∑
α

mαṙα ·
∂ṙα
∂qi

, (A.26)

and after substitution of (A.17) this becomes

Qi =
d

dt

(
∂T

∂q̇i

)
− ∂T

∂qi
, with i ∈ {1, · · · , f}. (A.27)

This expression holds for any holonomic system. It has the structure of a Lagrange equation but the
forces have not been specified. Below we derive the Lagrange equation for three types of forces: (a)
conservative or non-conservative potential forces; (b) generalized potential forces; (c) non-potential
forces.

(a) If the components of the generalized force can be expressed as the gradients of the potential
function U = U(r1, · · · , rN , t) we can substitute (A.20) into (A.25) and obtain

Qi ≡ −
∑
α

∂U

∂rα
· ∂rα
∂qi

= −∂U
∂qi

. (A.28)

Substituting this equation into (A.27) and taking into account ∂U/∂q̇i = 0 (because U does
not depend explicitly on the q̇i), the equations of motion takes the form

d

dt

∂L
∂q̇i
− ∂L
∂qi

= 0, with i ∈ {1, · · · , f}, (A.29)

where
L(q, q̇, t) ≡ T (q, q̇, t)− U(q, t). (A.30)

The set of equations (A.29) will be referred to as the Lagrange equations. Note that in the
nonholonomic case we have f = 3N and the set of generalized coordinates {qi} coincides with
the full set of cartesian coordinates {rα}; i.e., (A.29) coincides with (A.23).

(b) The derivation of Eq. (A.29) breaks down in cases where ∂U/∂q̇i 6= 0; i.e., for velocity-
dependent forces. However, by construction, the Lagrange equations will still be obtained
if the generalized forces can be written the form

Qi = −∂U
∂qi

+
d

dt

(
∂U

∂q̇i

)
, with i ∈ {1, · · · , f}. (A.31)

Substituting this expression into (A.27) we find

d

dt

∂L
∂q̇i
− ∂L
∂qi

= 0, with i ∈ {1, · · · , f}. (A.32)

Here the lagrangian is defined as.

L(q, q̇, t) ≡ T (q, q̇, t)− U(q, q̇, t). (A.33)

In the presence of a velocity dependence the function U = U(q, q̇, t) is called a generalized
potential function.
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(c) Not all forces can be derived from a potential function. However, also for non-potential forces
(for instance friction forces) the equation (A.27) is valid. In the most general case, when both
potential and non-potential forces are present, the Lagrange equations can be written in the
form

d

dt

∂L
∂q̇i
− ∂L
∂qi

= Qi, with i ∈ {1, · · · , f}. (A.34)

Here Qi are the components of the non-potential force. Forces that can be derived from a
potential function are presumed to be contained in the lagrangian.

A.3.3 Example: friction force

In this example we ask for the steady-state velocity of particle falling in a gravitational field in the
presence of friction. For a gravitational field along the z axis the potential is V = αz. This is a
conservative potential field. The friction force is a velocity dependent force,

F = −βż. (A.35)

This is a non-Newtonian force. The lagrangian is determined only by the kinetic energy and the
potential fields (in this case only the gravitational potential),

L = 1
2 ż

2 − αz. (A.36)

Substituting the friction force into the r.h.s. of the Lagrange equation (A.29) we obtain

d

dt

∂L
∂ż
− ∂L
∂z

= −βż. (A.37)

Substituting the lagrangian (A.36) we obtain

z̈ + βż − α = 0. (A.38)

The steady-state condition is z̈ = 0; hence, we find for the steady-state velocity

ż = −α/β. (A.39)

A.3.4 Example: Lorentz force

The celebrated example of a velocity-dependent force for which a generalized potential can be
defined is the Lorentz force. This force governs the motion of a charged particle moving through an
electromagnetic field in vacuum. The Lorentz force is given by

F = q(E + v ×B), (A.40)

where q is the electric charge and v = ṙ the velocity of the particle. The generalized electromagnetic
potential from which the Lorentz force may be derived has the form,

U(r,v, t) = q(ϕ− v ·A), (A.41)

where ϕ(r, t) and A(r, t) are the scalar and vector potentials of the electromagnetic field. To
demonstrate this assertion we start from (A.31) and find in the vector notation 1

F(r, ṙ, t) = −∂rU +
d

dt
∂ṙU = −q[∂rϕ− ∂r(ṙ ·A) +

d

dt
∂ṙ(ṙ ·A)]. (A.42)

1In this example we use the short-hand notation ∂q ≡ ∂/∂q ≡ (∂/∂qx, ∂/∂qy , ∂/∂qz) and ∂t ≡ ∂/∂t.
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Because A(r, t) does not depend explicitly on ṙ and in view of the vector rule (E.17) the last term
of (A.42) can be rewritten as

d

dt
∂ṙ(ṙ ·A) =

dA

dt
= ∂tA + (ṙ · ∂r)A. (A.43)

Substitution of this expression into (A.42) we obtain

F = −q[∂rϕ+ ∂tA + (ṙ · ∂r)A− ∂r(ṙ ·A)], (A.44)

which yields with (E.16) the expression for the Lorentz force

F = −q(∂rϕ+ ∂tA− ṙ× ∂r ×A) = q(E + v ×B). (A.45)

A.4 The Lagrange formalism

In Appendix A.3 the Lagrange equations were derived from the Newton equations of motion together
with the principle of d’Alembert. An alternative approach is to derive the Lagrange equations from
the principle of Hamilton. In this approach we start by noting that the time evolution of the system
corresponds to a unique path of the vector q ≡ (q1, · · · , qf ) in the f -dimensional configuration
space. As these generalized coordinates are mutually independent, this path can be predicted over
an infinitesimal time interval from t to t+ δt by the relation

q(t+ δt) = q(t) + q̇(t)δt. (A.46)

Hence, to predict the continuation of the path at time t, both q(t) and q̇(t) have to be known. In
other words, together q and q̇ fully determine the classical state of the system (often represented
by a point in the so-called phase space of position and momentum).

A.4.1 Principle of Hamilton

Let us consider the case where the actual path q(t) runs from the starting point q(t0) to the end
point q(t1) during the time interval (t0, t1), and let q′(t) be some adjacent path, slightly differing
from the actual path but with the same starting point and end point. The key idea behind the
principle of Hamilton is that any continuous deviation from the actual path,

δq(t) = q′(t)− q(t), (A.47)

with boundary conditions
δq(t0) = 0 and δq(t1) = 0, (A.48)

has to be unfavorable in some respect. Thus we search for a functional of q and q̇ (the cost functional
of the variational problem) which is minimal for the actual path from q(t0) to q(t1). Minimizing
this functional with respect to the path provides us with criteria that have to be satisfied along the
actual path (for instance conservation laws). This cost functional is called the action integral and
is given by the integral of a lagrangian function L(q, q̇, t) over the time interval (t0, t1),

S =

ˆ t1

t0

L(q, q̇, t)dt. (A.49)

Whatever this “lagrangian” may turn out to be, the expression for the action is plausible; at each
point in time t within the interval (t0, t1), knowledge of q and q̇ suffice to determine the actual path
from q(t0) to q(t1). So if the lagrangian is to be deterministic for the actual path, it can only be
a function of the variables q, q̇ and t. This minimization procedure is called the principle of least
action or the principle of Hamilton.



A.4. THE LAGRANGE FORMALISM 261

The principle of Hamilton enables us to derive properties of the lagrangian for systems in which
the function L(q, q̇, t) is at least twice differentiable; i.e., smooth with respect to the variables q,
q̇ and t. Fortunately, many systems fall in this class and we shall study some examples. Let us
consider the change in action of such a system over the time interval (t0, t1) when deforming the
path defined by q(t) and q̇(t) into an adjacent smooth continuous path q′(t) and q̇′(t) given by
q′ = q + δq and q̇′ = q̇ + δq̇,

δS =

ˆ t1

t0

[L(q + δq, q̇ + δq̇, t)− L(q, q̇, t)]dt. (A.50)

As the lagrangian is smooth we can use a Taylor expansion with respect to δq and δq̇,1

L(q + δq, q̇ + δq̇, t) = L(q, q̇, t) +
∂L
∂q
· δq +

∂L
∂q̇
· δq̇ + · · · , (A.51)

and the change of action takes the form

δS =

ˆ t1

t0

∑
i

(
∂L
∂qi

δqi +
∂L
∂q̇i

δq̇i

)
dt. (A.52)

By partial integration of the second term this integral becomes

δS =
∑
i

[
∂L
∂q̇i

δqi

]t1
t0

+

ˆ t1

t0

∑
i

(
∂L
∂qi
− d

dt

∂L
∂q̇i

)
δqidt. (A.53)

Since the variation is zero at the boundaries of the path, see (A.48), this expression reduces to

δS =

ˆ t1

t0

∑
i

(
∂L
∂qi
− d

dt

∂L
∂q̇i

)
δqidt. (A.54)

At this point we can formulate a necessary condition for minimal action: the functional must be
stationary (δS = 0) under arbitrary variations of the path,2

ˆ t1

t0

∑
i

(
∂L
∂qi
− d

dt

∂L
∂q̇i

)
δqidt = 0. (A.55)

Since the variations δqi are independent this condition is only satisfied if all terms of the summation
vanish simultaneously,

∂L
∂qi
− d

dt

∂L
∂q̇i

= 0, with i ∈ {1, · · · , f}. (A.56)

These equations are called the Euler-Lagrange equations of the variational problem in which we
recognize the Lagrange equations of classical mechanics. In Appendix A.3 these were obtained
starting from the principle of d’Alembert.

Properties of the lagrangian

Above the lagrangian L(q, q̇, t) is introduced as a smooth (at least twice differentiable) function of
the variables, q, q̇ and t for which the action is stationary under the condition that the Lagrange
equations (A.56) are satisfied. Lagrangians have the following properties:

1Note the following equivalent notations for the gradient operator, ∂q ≡ ∂/∂q ≡ (∂/∂q1, · · · , ∂/∂qf ).
2Note that the inverse is not generally true: being stationary does not mean that this action is minimal.
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(a) Additive property : The lagrangian L of a system consisting of two non-interacting subsystems
can be written as the sum of the lagrangians L1 and L2 of the two subsystems,

L = L1 + L2. (A.57)

This has to be the case because the paths of the subsystems in configuration space can be
varied independently. Hence, the least action of the total system must coincide with the sum
of the least actions of the two subsystems.

(b) Definition up to a multiplicative factor : The path of least action is invariant under multipli-
cation of the lagrangian by an arbitrary constant. For L′ = αL we find

S′ = α

ˆ t1

t0

L(q, q̇, t)dt = αS. (A.58)

Hence, δS′ = αδS, which implies that the condition δS′ = 0 is equivalent to δS = 0. This
means that the multiplication by α does not affect the stationarity condition and leads to the
same Euler-Lagrange equation.

(c) Definition up to a total time derivative: The path of least action is invariant under addition
of a total time derivative to the lagrangian. For L′ = L+ df/dt we find

S′ =

ˆ t1

t0

L(q, q̇, t)dt+

ˆ t1

t0

df

dt
dt = S + f(t1)− f(t0). (A.59)

Hence, S′ and S differ by a constant and this does not affect the variation, δS′ = δS. Thus,
the addition of dα/dt does not change the stationarity condition and leads to the same Euler-
Lagrange equation.

A.4.2 Lagrangian of a free particle

To gain insight in the functional form of the lagrangian we consider a free particle. As in classical
mechanics space and time are postulated to be homogeneous we know that its lagrangian (which
determines the time evolution of the system) must be independent of position r and time t, which
leaves the velocity v = ṙ as the only variable, L = L(v). Since L is independent of r we have
∂L/∂r = 0 and the Lagrange equation (A.56) becomes

d

dt

∂L
∂v

= 0. (A.60)

Hence, ∂L/∂v must be a constant and since v is the only variable of L the velocity must be constant,
v(t) = v0. Thus we found Newton’s law of inertia.

Space is postulated to be isotropic. Thus, the lagrangian may only depend on the absolute value
of the velocity, v; i.e., it has to be some function of the velocity squared,

L = L(v2). (A.61)

This observation immediately implies that the lagrangian is invariant under time reversal; i.e., time is
isotropic in newtonian mechanics. To get more precise information about the functional dependence
of L on v2 we turn to Galileo’s principle of relativity, which is also based on the homogeneity and
isotropy of space and time. According to this principle the equations of motion (hence also the
lagrangian) must be invariant under a Galilean transformation, which is a transformation of one
inertial frame to another (from the inertial frame S to the frame S ′)

r′ = r + Vt; t′ = t, (A.62)
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where V is the relative velocity of the frame S ′ with respect to the frame S. Thus we are led to
compare two lagrangians, L(v′2) and L(v2), defined with respect to two inertial frames which move
with an infinitesimally small but constant velocity w = v′ − v with respect to each other. Using
the relation v′2 = v2 + 2v ·w + w2 we find

L(v′2) = L(v2) +
∂L
∂v2

(2v + w) ·w+
∂2L
∂(v2)2

[(2v + w) ·w]
2

+ · · · . (A.63)

Because the time evolution of the system must be independent of the choice of inertial frame, the
two lagrangians must be equivalent. In view of property (A.59) this means that they cannot differ by
more than a total time derivative. Since v is by definition a total time derivative and w a constant,
∂L/∂v2 has to be a constant; i.e., the function L has to be a linear function of v2,

L = L0 + αv2. (A.64)

For any other functional dependence on v2 the lagrangian is either trivially zero or differs from L
by more than a total time derivative. Once we accept that L has to be a linear function of v2 we
find that all higher order terms of the expansion vanish. As the constant L0 can also be regarded
as a total time derivative we may write the lagrangian as simply proportional to v2,

L = 1
2mv

2 = T. (A.65)

The proportionality constant m is called the mass of the particle and serves to calibrate the la-
grangian. This calibration is possible in view of property (A.58). The chosen calibration yields the
kinetic energy of the particle, T = 1

2mv
2.

For a free particle the principle of least action is very intuitive. The particle has to follow a
straight path in configuration space (which coincides in this case with real space) because for a
constant lagrangian any deviation from a straight path leads to an increase of the action integral.
The example also shows that the mass must be positive (m > 0) because otherwise the action could
be reduced by deviating from the straight path, which contradicts experimental observation.

A.4.3 Lagrangian of a single particle in a potential field

Let us now add to the kinetic energy of the particle a (smooth) function of position and time (i.e.,
a time-dependent field),

L(r, ṙ, t) = 1
2mv

2 − U(r, t). (A.66)

Being a function of r, ṙ and t, the new expression is again a lagrangian if the Lagrange equations
are satisfied:

∂L
∂r

=
d

dt

∂L
∂v

. (A.67)

When will this be the case? Since U(r, t) is independent of v and T = 1
2mv2 is independent of r

and t, substitution of (A.66) into the Lagrange equations (A.67) leads to the following condition

− ∂U

∂r
=

d

dt

∂T

∂v
= m

dv

dt
. (A.68)

Interpreting the negative gradient of U(r, t) as a force,

F = −∂U
∂r

(A.69)

we recognize in (A.68) Newton’s second law, F = mr̈. Hence, the Lagrange equations are satisfied if
the particle moves in accordance with the Newton equations of motion; i.e., under non-relativistic
conditions. The function U(r, t) is called the potential field of the system. If this field does not
depend on position, U(r, t) = U(t), it is called uniform. If it does not depend on time, U(r, t) = U(r),
the field is called conservative.
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Generalized potential functions

The above discussion can be generalized to include velocity-dependent potentials, called generalized
potential functions. For this purpose we add to the kinetic energy a (smooth) function of r, ṙ and t,

L(r, ṙ, t) = 1
2mv

2 − U(r, ṙ, t). (A.70)

This function is a lagrangian if it satisfies the Lagrange equations. Substituting L(r, ṙ, t) into (A.67),
we find that the condition (A.68) is replaced by

− ∂U

∂r
+
d

dt

∂U

∂v
=

d

dt

∂T

∂v
. (A.71)

In other words, the Lagrange equations are satisfied for generalized forces of the type

Q = −∂U
∂r

+
d

dt

∂U

∂v
. (A.72)

Note that (A.72) reduces to (A.69) for velocity-independent potentials; hence, the class of generalized
forces includes gradient forces as a subclass. Although any generalized potential function gives rise
to a generalized force, the inverse is not true. For instance, friction forces, F = −αv, cannot be
expressed in the form (A.72). On the other hand, the Lorentz force is an example of a generalized
force because we can define a generalized potential function for which (A.72) is satisfied (see Problem
A.1).

Problem A.1. Show, using the Einstein notation, that the Lorentz force, Fi = q[Ei + (v × B)i], is the
generalized force resulting from the generalized potential function U = q(ϕ − vj · Aj), where ϕ(r, t) is the
scalar and A (r, t) the vector potential. Further, Ei = −∂iϕ − ∂tAi and Bi = εijk∂jAk are the cartesian
components of the (generally time dependent) E and B fields, respectively. Use the short-hand notation
∂i ≡ ∂/∂ri and ∂t ≡ ∂/∂t.

Solution. The first term of (A.72) yields

− ∂iU = q [−∂iϕ− vj∂iAj (r, t)] (a)

and the second term can be written as

d

dt

(
∂U

∂vi

)
= q

d

dt

(
∂ϕ (r, t)

∂vi
− ∂vjAj (r, t)

∂vi

)
= −q d

dt
Ai (r, t) = q [−∂jAi (r, t) ṙj − ∂tAi (r, t)] . (b)

Combining (a) and (b) we obtain for the generalized force

Qi = q [−∂iϕ− ∂tAi + vj∂iAj − vj∂jAi] . (c)

In the first two terms within the brackets we recognize the Ei-component of the E field. Similarly, recalling
B =∇×A, we recognize in the last two terms the component (v ×B)i of the v ×B field 1

(v ×B)i = εijkvj(∇×A)k = εijkεklmvj∂lAm = vj∂iAj − vj∂jAi.

Hence, Eq. (c) can be rewritten as Qi = q
[
Ei + (v ×B)i

]
, which is indeed the expression for the Lorentz

force. 2

1In the Einstein notation the contraction of the Levi-Civita tensor is given by εijkεklm = δilδjm − δimδjl.
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A.5 Many-particle systems

A.5.1 Lagrangian

At this point we return to many-particle systems. In view of property (A.57) we know that the
lagrangian of a system of N non-interacting particles is given by

L = 1
2

∑
α

mαv
2
α, (A.73)

where α ∈ {1, · · ·N}. In search for the lagrangian in the presence of interactions between the parti-
cles as well as interactions with the environment we use a procedure similar to the one introduced
for the single particle: we add to the lagrangian (A.73) a generalized potential function

L(· · · , rα, ṙα, · · · , t) = 1
2

∑
α

mαṙ2
α − U(· · · , rα, ṙα, · · · , t). (A.74)

The potential function depends in principle on the position and velocities of all the particles as well
as on time

U(· · · , rα, ṙα, · · · , t) = U int(· · · , rα, ṙα, · · · ) + Uext(· · · , rα, ṙα, · · · , t). (A.75)

The function U int is called the internal generalized potential function and represents the interaction
between all particles of the system; e.g., the Van der Waals interaction between the atoms in a
classical gas. The function Uext is called the external generalized potential function and represents
externally applied fields; e.g., the electromagnetic potential of a light field.

The function (A.74) is a lagrangian if it satisfies the Lagrange equations,

∂L
∂rα

=
d

dt

∂L
∂vα

, with α ∈ {1, · · ·N}. (A.76)

Since the first term on the r.h.s. of (A.74) is independent of rα we find that the condition (A.76)
can be written in the form

− ∂U

∂rα
+
d

dt

∂U

∂vα
=

d

dt

∂T

∂vα
= mαr̈α, with α ∈ {1, · · ·N}. (A.77)

Hence, the quantity

Qα = − ∂U
∂rα

+
d

dt

∂U

∂vα
, with α ∈ {1, · · ·N}, (A.78)

can be interpreted as the generalized force acting on particle α as the result of its interaction with
all other particles in the system.

Generalization to the presence of scleronomous constraints

It is straightforward to generalize the formalism to holonomic systems with scleronomous con-
straints. In this case the positions rα and velocities ṙα of the particles can be expressed in terms of
f = 3N − l generalized coordinates q1, · · · , qf and velocities q̇1, · · · , q̇f ,

rα = rα(q1, · · · , qf ) (A.79a)

ṙα =

f∑
i=1

∂rα
∂qi

q̇i. (A.79b)
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Substituting these expressions into (A.74) we obtain

L(q, q̇) = 1
2

f∑
i,j=1

aij(q)q̇iq̇j − U(q, q̇). (A.80)

Here we use the vector notation (A.18); the coefficient aij(q) is given by

aij(q) =
∑
α

mα
∂rα
∂qi

∂rα
∂qj

. (A.81)

In terms of the generalized coordinates and velocities the Lagrange equation take the form

∂L
∂qi

=
d

dt

∂L
∂q̇i

, with i ∈ {1, · · · f}, (A.82)

and the components of the generalized force become

Qi = −∂U
∂qi

+
d

dt

∂U

∂q̇i
, with i ∈ {1, · · · f}. (A.83)

Note that in the absence of constraints we have f = 3N and the generalized coordinates turn into
the cartesian coordinates of the particles, (q1, · · · , qf )→ (x1, y1, z1, · · · , xN , yN , zN ), and we regain
(A.76) and (A.78).

Open and closed systems

A mechanical system is called closed if it does not interact with its environment; i.e., the potential
function can be written as U = U int(· · · , rα, ṙα, · · · ). Hence, for closed systems both the potential
function and the lagrangian are time independent. An example of a closed mechanical system is an
atom in field-free space. If the system is not closed it is called open. An example of an open system
is a cloud of interacting particles confined by an external potential.

A.5.2 Energy conservation

In the absence of time-dependent external forces the evolution of a mechanical system only depends
on the state of that system and not on the instant that this state is created in time. In view of
this homogeneity of time the lagrangian of such a system cannot depend explicitly on time; i.e., the
total time derivative of (A.74) can be written in the form

dL
dt

=
∑
α

∂L
∂rα
· ṙα +

∑
α

∂L
∂ṙα
· r̈α. (A.84)

With the aid of the Lagrange equation (A.76) this becomes

dL
dt

=
∑
α

ṙα ·
d

dt

∂L
∂ṙα

+
∑
α

r̈α ·
∂L
∂ṙα

=
∑
α

d

dt

(
ṙα ·

∂L
∂ṙα

)
. (A.85)

Rewriting this expression in the form

d

dt

(∑
α

ṙα ·
∂L
∂ṙα
− L

)
= 0 (A.86)

we find that the quantity

E =
∑
α

ṙα ·
∂L
∂ṙα
− L (A.87)
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is a constant of the motion; i.e., it is conserved along the path from t0 to t1. This quantity
is called the energy of the system. Mechanical systems for which the energy is conserved are
called conservative systems. It is straightforward to generalize (A.87) to holonomic systems with
scleronomous constraints,

E(q, q̇) =
∑
i

q̇i
∂L
∂ṙi
− L. (A.88)

Potential energy

The energy of a conservative system can always be written as the sum of a kinetic energy and a
potential energy contribution. This can be seen as follows. The kinetic energy is uniquely determined
by the velocities of the particles,

T (ṙ1, · · · , ṙN ) = 1
2

∑
α

mαv
2
α.

In general this quantity will change in time under the influence of inter-particle forces but (since the
system is conservative) the (total) energy has to remain constant, E(r1, · · · , rN , ṙ1, · · · , ṙN ) = E.
Since the same kinetic energy can be obtained for different distributions of velocity over the particles
the difference of E and T has to be a function of the positions only. This difference is called the
potential energy V (r1, · · · , rN ) of the system,

V (r1, · · · , rN ) = E(r1, · · · , rN , ṙ1, · · · , ṙN )− T (ṙ1, · · · , ṙN ). (A.89)

Beware of the difference between the potential energy V (r1, · · · , rN ) and the generalized potential
function U(r1, · · · , rN , ṙ1, · · · , ṙN ); the former determines the kinetic energy of a conservative system
(also in the presence of generalized forces between the particles); the latter determines the force on
all particles, both for conservative and non-conservative systems.

Open and closed systems

When discussing energy conservation we should distinguish between open and closed mechanical
systems. An open system is conservative if the external potential is constant in time.

A.5.3 Momentum conservation in closed systems

The evolution of a closed mechanical system only depends on the internal state of that system and
not on the absolute position where this state is created in space. In view of this homogeneity of
space the lagrangian of a closed system must be independent of the absolute position of that system;
i.e., (A.74) must be invariant under a translation of the system over a distance R,

r′α = rα + R. (A.90)

Thus we are led to compare two lagrangians, defined with respect to two inertial frames shifted
with respect to each other over an infinitesimally small distance δrα = r′α − rα = δR. For this
displacement the change change in lagrangian is given by

δL =
∑
α

∂L
∂rα
· δR + · · · . (A.91)

Hence, a necessary condition that the lagrangian be invariant under an arbitrary small shift δR is∑
α

∂L
∂rα

= 0. (A.92)
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Note that also the sum over all higher order terms has to vanish but this has no relevance in the
present context. Using the Lagrange equation (A.77) the condition (A.92) becomes∑

α

d

dt

∂L
∂vα

=
d

dt

∑
α

∂L
∂vα

= 0. (A.93)

Apparently, in a closed system the quantity

P =
∑
α

pα (A.94)

with

pα =
∂L
∂ṙα

(A.95)

is a constant of the motion. The quantity P is called the canonical momentum of the system and pα
is the canonical momentum of particle α. Hence, for closed systems the canonical momenta of the
individual particles always add up to the total momentum of the system, irrespective of the absence
or presence of generalized forces between the particles. With (A.76) it immediately follows that

ṗα =
∂L
∂rα

. (A.96)

It is straightforward to generalize (A.95) and (A.96) to holonomic systems with scleronomous con-
straints,

pi =
∂L
∂q̇i

(A.97a)

ṗi =
∂L
∂qi

(A.97b)

with i ∈ {1, · · · f}.

Example: velocity-independent potential functions

In the special case of systems with only velocity-independent interactions between the particles (e.g.,
gravitational forces) the canonical momentum only depends on the kinetic energy and we find the
well-known expression

pα = mαvα. (A.98)

The hamiltonian is given by

E =
∑
α

mαv2
α − L, (A.99)

which becomes after substitution of the lagrangian (A.74)

E = T + V. (A.100)

A.5.4 Conservation of angular momentum in closed systems

In view of the isotropy of space the lagrangian of a closed system must be independent of the
absolute orientation of that system; i.e., (A.74) must be invariant under rotation of the system over
an angle Ω about an axis in direction Ω̂ through the origin of the inertial frame of observation,

r′α = rα + Ω× rα. (A.101)
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Under such a rotation also the velocity vector changes direction

v′α = vα + Ω× vα. (A.102)

Thus we are led to compare two lagrangians, defined with respect to two inertial frames rotated
with respect to each other over an infinitesimally small angle δΩ so that δrα = r′α − rα = δΩ× rα
and δvα = v′α − vα = δΩ× vα. For this rotation we have

δL =
∑
α

∂L
∂rα
· δΩ× rα +

∑
α

∂L
∂ṙα
· δΩ× ṙα + · · · . (A.103)

Hence, a necessary condition that the lagrangian be invariant under an arbitrary rotation (about
an axis through the origin) is ∑

α

(
rα ×

∂L
∂rα

+ ṙα ×
∂L
∂ṙα

)
= 0. (A.104)

Here we used the permutation rules for the vector products (see Appendix E). Turning to canonical
variables the condition becomes∑

α

(rα × ṗα + ṙα × pα) =
d

dt

∑
α

(rα × pα) = 0. (A.105)

Apparently, in a closed system the quantity

L =
∑
α

(rα × pα) , (A.106)

with
Lα ≡ rα × pα, (A.107)

is a constant of the motion. The quantity L is called the angular momentum of the system and
Lα is the angular momentum of particle α, both with respect to the origin of the inertial system.
Although the value of L depends on the choice of origin, the conservation holds irrespective of this
choice.

A.6 The Hamilton formalism

In the Lagrange formalism the dynamical evolution of mechanical systems is expressed in terms
of the dynamical variables q ≡ (q1, · · · , qf ) and q̇ ≡ (q̇1, · · · , q̇f ) with the aid of the lagrangian
L(q, q̇, t) and the Lagrange equations. With this approach we identified the sum over the canonical
momenta p ≡ (p1, · · · , pf ) as a conserved quantity of a closed mechanical system. In the Hamilton
formalism the dynamical evolution is described in terms of the dynamical variables q and p; i.e.,
the dependence on q̇ is eliminated from the formalism and replaced by a dependence on p.

A.6.1 Legendre transformation of lagrangian - hamiltonian

To replace the dependence on q̇ by a dependence on p we use a Legendre transformation of the
function L(q, q̇, t) into the function

H(q,p, t) = p · q̇− L(q, q̇, t). (A.108)

The function H(q,p, t) is called the function of Hamilton or hamiltonian of the system. Note that
with the sign convention of (A.108) the hamiltonian represents the energy of the system

E = H(q,p, t). (A.109)
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To convince ourselves that the hamiltonian has the desired properties we consider the total differ-
ential

dH = −dL+ d(
∑
i

piq̇i). (A.110)

For the total differential of the lagrangian L(q, q̇, t) we have with the aid of (A.97a) and (A.97b)

dL =
∑
i

∂L
∂qi

dqi +
∑
i

∂L
∂q̇i

dq̇i +
∂L
∂t
dt =

∑
i

ṗidqi +
∑
i

pidq̇i +
∂L
∂t
dt. (A.111)

The total differential of the transformation term is

d(
∑
i

piq̇i) =
∑
i

q̇idpi +
∑
i

pidq̇i. (A.112)

Substituting (A.111) and (A.112) into (A.110) we obtain

dH = −
∑
i

ṗidqi +
∑
i

q̇idpi +
∂L
∂t
dt. (A.113)

Thus we have verified that H is indeed a function of q and p. From the total differential we obtain

ṗi = −∂H
∂qi

(A.114a)

q̇i = +
∂H

∂pi
(A.114b)

with i ∈ {1, · · · f}. These equations are called the Hamilton equations of motion. In view of their
symmetrical form they are called the canonical equations of motion.

Energy conservation

From (A.113) we further infer
∂H

∂t
=
∂L
∂t
. (A.115)

Together with (A.109) this shows that the energy is conserved if the lagrangian (hence, also the
hamiltonian) do not depend explicitly on time; i.e., for ∂H/∂t = 0.

Example: charged particle in an electromagnetic field

As an example of a system with a time-independent generalized potential function U(r, ṙ) we consider
the motion of a charged particle in a static electromagnetic field. As we showed in Example A.3.4
the force on a charged particle can be written as the gradient of a generalized potential function

U(r, ṙ) = q[ϕ(r)− v ·A(r)] (A.116)

and the lagrangian is of the form (A.33). As the kinetic energy is given by

T (ṙ) = 1
2mv2, (A.117)

the lagrangian becomes
L(r, ṙ) ≡ 1

2mv2 − q[ϕ− v ·A]. (A.118)

From this we calculate the canonical momentum

p ≡ ∂L
∂v

= mv + qA. (A.119)
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Thus we found that the canonical momentum consists in this case of two contributions; the first
term is called the kinetic momentum and the second term the electromagnetic momentum. The
hamiltonian is given by

H = v · p− L = mv2 + qA · v − 1
2mv2 + q(ϕ− v ·A) = 1

2mv2 + qϕ. (A.120)

The potential energy is given by
V (r) = H − T = qϕ(r). (A.121)

Expressing (A.120) in terms of the canonical variables r and p we obtain with the aid of (A.119)
the hamiltonian of the system,

H =
1

2m
(p− qA)

2
+ qϕ. (A.122)

A.7 Center of mass and relative coordinates

A.7.1 Center of mass motion of a closed system

In Section A.5.3 we found that the momentum of a closed mechanical system with velocity-independent
interparticle forces,

P =
∑
α

mαṙα, (A.123)

is conserved in time. However, this quantity is not conserved when changing from one inertial frame
to another. Obviously, the velocity of the particles depends on the inertial system in which the
velocity is measured. Hence, also the kinetic momentum depends on the inertial system. To analyze
this dependence we change from the inertial frame S to a new inertial frame S ′ in which the origin
of old frame is moving at velocity V. This change of inertial system is described by a galilean
transformation,

r′α = rα −Vt (A.124a)

ṙ′α = ṙα −V. (A.124b)

The observed difference in momentum between both inertial systems is given by

P′ = P−
∑
α

mαV. (A.125)

This expression reveals the existence of an inertial frame in which the momentum is zero, P′ = 0.
Thus we find for the momentum in an inertial system moving with velocity V with respect to the
zero-momentum frame,

P =
∑
α

mαV. (A.126)

In other words, the momentum of the entire system behaves like that of a single particle with mass

M =
∑
α

mα. (A.127)

This quantity is called the total mass of the system. Introducing the position vector

R =
∑
α

mαrα/
∑
α

mα (A.128)

we find the relation
P = MṘ = MV. (A.129)
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The vector R is called the center of mass of the system. Hence, in the zero-momentum frame the
center of mass is at rest.

It is also instructive to compare the total angular momentum in the frame S ′ with that in the
frame S. Using Eq. (A.124a) the total angular momentum in the frame S ′ can be expressed as

L′ =
∑
α

(rα × p′α)−Vt×
∑
α

p′α, (A.130)

where Vt is the position of the origin of S as observed in S ′. The second term vanishes if we choose
for S ′ the zero-momentum frame. To proceed we multiply both sides of Eq. (A.124b) by the particles
mass,

p′α = pα −mαV. (A.131)

Substituting this expression into Eq. (A.130) we find

L′ = L−
∑
α

(mαrα ×V) . (A.132)

In terms of the position and momentum of the center of mass this becomes

L = L′ + R×P. (A.133)

Thus we recognize two contributions to the angular momentum of the system: L′ is called the
intrinsic angular momentum, which is the angular momentum with the center of mass at rest, and
R ×P is the angular momentum resulting from the center of mass motion in the inertial frame of
reference.

A.7.2 Relative motion in a closed system of two atoms

To deal with interatomic interactions and collisions between particles one introduces relative coor-
dinates. The position of particle 1 relative to particle 2 is given by

r = r1 − r2. (A.134)

Taking the derivative with respect to time we find for the relative velocity of particle 1 with respect
to particle 2

v = v1 − v2. (A.135)

Let us analyze in some detail the case of a system of two particles. The total momentum of the pair
(the center of mass momentum) is a conserved quantity and given by

P = p1 + p2 = m1v1 +m2v2 = m1ṙ1 +m2ṙ2. (A.136)

The total mass is given by the sum of the two particles masses, M = m1 + m2. With the relation
P = MV, where V = Ṙ is the center of mass velocity, we find for the position of the center of mass

R = (m1r1 +m2r2)/(m1 +m2). (A.137)

Adding and subtracting (A.136) and (A.135) allows us to express v1 and v2 in terms of P and v,

P +m2v = (m1 +m2) v1 (A.138a)

P−m1v = (m1 +m2) v2. (A.138b)

With these expressions the total kinetic energy of the pair, E = ε1 +ε2, can be split in a contribution
of the center of mass and a contribution of the relative motion

E =
1

2
m1v

2
1 +

1

2
m2v

2
2 =

1

2
m1

(P +m2v)
2

(m1 +m2)
2 +

1

2
m2

(P−m1v)
2

(m1 +m2)
2 =

P2

2M
+

p2

2mr
, (A.139)
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p
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Figure A.1: Center of mass and relative momenta for two colliding atoms: left : equal mass; right : unequal
mass with m1/m2 = 1/3.

where
p = mrv = mr ṙ =

mr

m1
p1 −

mr

m2
p2 (A.140)

is the relative momentum with
mr = m1m2/(m1 +m2) (A.141)

representing the reduced mass of the pair. Because both P and E are conserved quantities in elastic
collisions also p2 must be conserved. This implies that in elastic collisions the relative momentum
p = |p| is conserved, but not its direction. Adding and subtracting (A.134) and (A.137) we can
express r1 and r2 in terms of R and r,

r1 = R +
m2

M
r and r2 = R− m1

M
r. (A.142)

Similarly combining (A.136) and (A.140) we can express p1 and p2 in terms of P and p,

p1 =
m1

M
P + p and p2 =

m2

M
P− p. (A.143)

The vector diagram is shown in Fig. A.1.

Problem A.2. Show that the Jacobian of the transformation dr1dr2 =
∣∣∣ ∂(r1,r2)
∂(R,r)

∣∣∣ dRdr is −1.

Solution. Because the x, y and z directions separate we can write the Jacobian as the product of three 1D
Jacobians. ∣∣∣∣∂ (r1, r2)

∂ (R, r)

∣∣∣∣ =
∏

i=x,y,z

∣∣∣∣∂ (r1i, r2i)

∂ (Ri, ri)

∣∣∣∣ =
∏

i=x,y,z

∣∣∣∣∣1 m1/M

1−m2/M

∣∣∣∣∣ = −1. 2

Problem A.3. Show that the Jacobian of the transformation dp1dp2 =
∣∣∣ ∂(p1,p2)
∂(P,p)

∣∣∣ dPdp is −1.

Solution. Because the x, y and z directions separate we can write the Jacobian as the product of three 1D
Jacobians. ∣∣∣∣∂ (p1,p2)

∂ (P,p)

∣∣∣∣ =
∏

i=x,y,z

∣∣∣∣∂ (p1i, p2i)

∂ (Pi, pi)

∣∣∣∣ =
∏

i=x,y,z

∣∣∣∣∣m1/M 1

m2/M −1

∣∣∣∣∣ = −1. 2

A.7.3 Kinematics of scattering

In any collision the momentum P is conserved. Thus, also the center of mass energy P2/2M is
conserved and since also the total energy must be conserved also the relative kinetic energy p2/2mr

is conserved in elastic collisions, be it in general not during the collision. In this section we consider
the consequence of the conservation laws for the momentum transfer between particles in elastic
collisions in which the relative momentum changes from p to p′, with q = p′ − p. Because the
relative energy is conserved, also the modulus of the relative momentum will be conserved, |p| = |p′|,
and the only effect of the collision is to change the direction of the relative momentum over an angle
θ. Hence, the scattering angle θ fully determines the energy and momentum transfer in the collision.
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Using (A.138) the momenta of the particles before and after the collision (see Fig. A.1) are given by

p1 = m1P/M + p −→ p′1 = m1P/M + p′ (A.144a)

p2 = m2P/M − p −→ p′2 = m2P/M − p′. (A.144b)

Hence, the momentum transfer is

∆p1 = p′1 − p1 = p′ − p = q (A.145a)

∆p2 = p′2 − p2 = p− p′ = −q. (A.145b)

The energy transfer is

∆E1 =
p′21
2m1

− p2
1

2m1
=

(m1P/M + p′)
2

2m1
− (m1P/M + p)

2

2m1
=

P · q
M

(A.146a)

∆E2 =
p′22
2m2

− p2
2

2m2
=

(m2P/M − p′)
2

2m2
− (m2P/M − p)

2

2m2
= −P · q

M
. (A.146b)

In the special case p1 = 0 we have

P = p2 =
−p

1−m2/M
= −M

m1
p (A.147)

or
p = −mrv2. (A.148)

The momentum transfer becomes

q =
√

q2 =

√
(p′ − p)

2
=
√

2p2 − 2p′ · p = p
√

2− 2 cosϑ. (A.149)

For small angles this implies
ϑ = q/p. (A.150)

The energy transfer becomes

∆E1 =
P · q
M

= −p· (p′ − p)

m1
=

p2

m1
(1− cosϑ) =

m2
r

m1
v2

2 (1− cosϑ) , (A.151)

where θ is the scattering angle. This can be written in the form

∆E1 = 1
4ξm2v

2
2 (1− cosϑ) , (A.152)

where

ξ =
4m2

r

m1m2
=

4m1m2

(m1 +m2)
2 (A.153)

is the thermalization efficiency parameter. For m1 = m2 this parameter reaches its maximum value
(ξ = 1) and we obtain

∆E1 = 1
2E2 (1− cos θ) . (A.154)

For m1 � m2 the efficiency parameter is given by ξ ' 4m1/m2.



B

Various concepts from Quantum Mechanics

In this appendix we give a summary of formal quantum mechanics for purposes of internal reference.
For a proper introduction the reader is referred to one of the major textbooks on quantum mechanics,
such as those by Paul Dirac [19], Albert Messiah [46, 47], Gordon Baym [5], Claude Cohen Tannoudji,
Bernard Diu and Franck Laloë [10], Eugen Merzbacher [45], and Jun John Sakurai [61].

B.1 Dirac formalism

B.1.1 Introduction

In the formulation of Dirac, the dynamical state of a physical system is established by observation of
its dynamical variables (e.g., the position of a particle, its translational momentum, orbital angular
momentum with respect to a point of reference, spin, energy, . . . ). Each dynamical variable A
corresponds to a hermitian operator A which defines a complete orthonormal set of eigenstates
{|ai〉} called kets, representing the basis vectors of a complex vector space, the Hilbert space of the
dynamical system. A hermitian operator with the mentioned properties is called an observable.
The set of eigenstates {|ai〉} is called a representation of the Hilbert space, often referred to as the
representation {A}. The representation {A} serves to describe measurements of the observable A.
The measurement is expressed by the eigenvalue relation

A|ai〉 = ai|ai〉, (B.1)

where ai is the eigenvalue corresponding to the eigenstate |ai〉. Observables are characterized by a
spectrum of real eigenvalues. The kets are abstract state vectors which provide a representation-free
notation for the states. In this introduction we focus on discrete representations (e.g., the standard
representation {L2, Lz} of orbital angular momentum - cf. Appendix B.1.4). The discussion can be
extended to continuous representations in which summations are replaced by integrations and in the
orthonormality condition the Kronecker symbol becomes a Dirac delta function - cf. Appendix B.1.3.

By completeness we mean that an arbitrary state |ψ〉 of the system can be represented by the
linear superposition,

|ψ〉 =
∑
i

|ai〉〈ai|ψ〉, (B.2)

where 〈ai|ψ〉 is the inner product of the vectors |ψ〉 and |ai〉; i.e., the projection of |ψ〉 onto |ai〉.
This is called the superposition principle. In matrix notation 〈ai| is written as a row vector and
|ψ〉 as a column vector. In the Dirac formalism, the vectors 〈ai| are called bras. They are related
to the kets by hermitian conjugation (antilinear transposition - in matrix notation the column
vector is transformed into a row vector with the coordinates replaced by their complex conjugates;
i.e., 〈φ|ψ〉∗ = 〈ψ|φ〉). The orthonormality of the basis is expressed by the property 〈aj |ai〉 = δij .
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The inner product 〈ai|ψ〉 represents the amplitude, short for probability amplitude, to observe the
eigenstate |ai〉 when the system prepared in the state |ψ〉. The corresponding density, short for
probability density or occupation density, is given by

Pi = |〈ai|ψ〉|2. (B.3)

The completeness of the representation {A} is expressed by the Parseval relation (which is a prob-
ability sum rule), ∑

i

Pi =
∑
i

|〈ai|ψ〉|2 = 1 (B.4)

and the closure relation (which is a decomposition sum rule),

1 =
∑
i

|ai〉〈ai|. (B.5)

Here 1 is the identity operator.
Presuming |ψ〉 to be normalized, 〈ψ|ψ〉 = 1, the quantity

〈A〉 = 〈ψ|A|ψ〉 (B.6)

is called the expectation value of the operator A. For |φ〉 = A|ψ〉 we write 〈ψ|A† = 〈φ|, where A† is
called the hermitian conjugate of A. This implies the relation

〈ψ|A|ψ〉∗ = 〈ψ|A†|ψ〉, (B.7)

which is real for hermitian operators (A† = A). If the matrix elements 〈bi|A|bj〉 of the operator A
are known in some representation {B}, the expectation value is given by

〈A〉 =
∑
i,j

〈ψ|bj〉〈bj |A|bi〉〈bi|ψ〉. (B.8)

For the representation {A}, defined above, the matrix is diagonal, 〈ai|A|aj〉 = aiδi,j , and Eq. (B.8)
reduces to

〈A〉 =
∑
i

〈ψ|ai〉ai〈ai|ψ〉 =
∑
i

aiPi. (B.9)

This result is also intuitively correct: the expectation value corresponds to the sum of the eigenvalues
weighted by the probability to have that eigenvalue.

Two dynamical variables A and B are called compatible if they can be measured simultaneously
to arbitrary precision; i.e., share a complete set of eigenstates. This is the case if and only if the
corresponding operators A and B commute. Operators that do not commute are called incompati-
ble. In general, the shared basis is not uniquely defined, because two eigenstates can have the same
eigenvalues. This is called degeneracy. To obtain a unique basis a complete set of commuting ob-
servables A,B,C, · · · is required, together providing all quantum numbers of the dynamical system.
This is called the representation {A,B,C, · · · }.

Problem B.1. Show that two commuting observables A and B share a complete set of eigenstates.

Solution. Consider the eigenvalue equations for the operators A and B,

A |α, k〉 = α |α, k〉 and B |β, l〉 = β |β, l〉 ,

where {|α, k〉} is a complete set of kα-fold degenerate states corresponding to the operator A and {|β, l〉}
a complete set of lβ-fold degenerate states corresponding to the operator B. In search for a joint basis we
know that the eigenstates of A can be expressed in the eigenstates of B

|α, k〉 =
∑
β

lβ∑
l=1

|β, l〉 〈β, l|α, k〉 =
∑
β

|β〉 ,
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where

|β〉 ≡
lβ∑
l=1

|β, l〉 〈β, l|α, k〉 .

Note that |β〉 is a linear combination of degenerate eigenstates of B, all with eigenvalue β. This implies that
|β〉 itself is an eigenstate of B with eigenvalue β as follows from

B |β〉 ≡
lβ∑
l=1

B |β, l〉 〈β, l|α, k〉 =

lβ∑
l=1

β |β, l〉 〈β, l|α, k〉 = β |β〉 .

Next we show that |β〉 is also an eigenstate of A. Since [A,B] = 0 we have

B(A |β〉) = AB |β〉 = Aβ |β〉 = β(A |β〉).

Hence A |β〉 is also an eigenstate of B with eigenvalue β. Having the eigenvalue β this eigenstate has to be
of the form, A |β〉 = λ |β〉. This shows that |β〉 is also an eigenstate of A. The corresponding eigenvalue λ
has to be equal to α as follows from∑

β

A |β〉 = A |α, k〉 = α |α, k〉 =
∑
β

α |β〉 .

Note the eigenstates |β〉 are also shared by the operator H ′ = A−B,

H ′ |β〉 = (α− β) |β〉 .

This expression shows that the operator H ′ can lift the lβ-fold degeneracy of the eigenstate |β〉. 2

B.1.2 Density operators

The density matrix formalism provides an alternative to the familiar representation of quantum
mechanical states by linear combinations of eigenvectors spanning a Hilbert space. The central
quantity of the density matrix formalism is the density operator. For a quantum mechanical
system in the state |ψ〉 the density operator is defined as

ρ ≡ |ψ〉〈ψ|. (B.10)

Note that this operator is hermitian, ρ† = ρ, as well as idempotent, ρ2 = ρ. Being a hermitian
operator ρ can be represented by a square matrix which explains the interchangeable use of the
names density operator and density matrix. If the density operator is known we can determine the
state of the system (up to a global phase factor) by solving the eigenvalue equation

ρ|ψ〉 = ρ0|ψ〉. (B.11)

The solution with eigenvalue ρ0 = 1 corresponds to the state of the system. In this state, the
expectation value of the density operator is unity,

〈ρ〉 = 〈ψ|ρ|ψ〉 = 1. (B.12)

Being a hermitian operator ρ is free of the phase ambiguity of the state vectors; i.e., a quantum
mechanical state is fully defined by its density matrix.

To demonstrate the calculation of properties of the system in state |ψ〉, we ask for the expectation
value of an arbitrary operator A,

〈A〉 = 〈ψ|A|ψ〉. (B.13)

In some arbitrary representation {B}, this expectation value can be rewritten (using the closure
relation) in the form

〈A〉 =
∑
i

〈ψ|A|bi〉〈bi|ψ〉 =
∑
i

〈bi|ψ〉〈ψ|A|bi〉. (B.14)
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Recognizing the density operator ρ = |ψ〉〈ψ| we find that the expectation value of A for the system
in the state |ψ〉 is given by

〈A〉 =
∑
i

〈bi|ρA|bi〉 = tr ρA. (B.15)

Note that tr ρA = trAρ. As the representation was chosen arbitrary, the trace is invariant under
unitary transformation (a property of square matrices - see Appendix D.2.1). This is expressed by
the representation-free form of Eq. (B.15).

To compare the two formalisms a bit further, we reconsider the Parseval relation for the state
|ψ〉 in the arbitrary representation {B},

1 =
∑
i

|〈bi|ψ〉|2 =
∑
i

Pi, (B.16)

where
1 =

∑
i

ρi (B.17)

is the closure relation in the representation {B} and Pi represents the probability density to observe
the system in the eigenstate |bi〉. Note that Pi can be written in two equivalent forms:

Pi = 〈ψ|bi〉〈bi|ψ〉 = 〈bi|ψ〉〈ψ|bi〉. (B.18)

In the state formalism we write

Pi = 〈ψ|bi〉〈bi|ψ〉 = 〈ψ|ρi|ψ〉, (B.19)

which is interpreted as the expectation value of the projection operator ρi = |bi〉〈bi|. In the density
matrix formalism, Pi is interpreted as the diagonal matrix element of the density operator,

Pi = 〈bi|ψ〉〈ψ|bi〉 = 〈bi|ρ|bi〉. (B.20)

The representation {B} being arbitrary, the Parseval relation takes the representation-free form

tr ρ = 1. (B.21)

The added value of the density matrix approach becomes clear when analyzing the properties
of a (real or fictitious) ensemble of states with known probabilities of occurrence. A well-known
example is the canonical ensemble from statistical physics. This is a fictitious ensemble defined by a
canonical distribution over the energy eigenstates of a physical system. A set of measurements of the
spin of particles from an unpolarized beam is an example of a real ensemble with equal probability
for the spins to point in any direction. In ensembles we have no information about the actual states
of the particles but only about the probability of occurrence of these states. For this reason the
density matrix is said to represent a mixed state (short for a statistical mixture of states) rather than
a pure state (short for a linear superposition of eigenstates). The relative probability of occurrence
of a state of the ensemble {|κ〉} is given by the statistical weight wκ, a number between zero and
one (0 ≤ wκ ≤ 1), and subject to the normalization condition∑

κ

wκ = 1. (B.22)

The definition is given for a discrete ensemble but is readily generalized to the continuous case. Note
that orthogonality is neither mentioned nor required for the states of the ensemble {|κ〉}.

Knowing the probabilities {wκ}, we can calculate the quantum statistical average for an arbitrary
operator A,

〈〈A〉〉 =
∑
κ

wκ〈κ|A|κ〉. (B.23)



B.1. DIRAC FORMALISM 279

Note that this is the ensemble average of the expectation values 〈A〉κ = 〈κ|A|κ〉. Choosing an
arbitrary representation {B}, we can use its closure relation to write the quantum statistical average
in the form

〈〈A〉〉 =
∑
κ

wκ
∑
i

〈κ|A|bi〉〈bi|κ〉 =
∑
i

∑
κ

wκ〈bi|κ〉〈κ|A|bi〉 =
∑
i

〈bi|%A|bi〉, (B.24)

where
% ≡

∑
κ

wκ|κ〉〈κ| =
∑
κ

wκρκ (B.25)

defines the statistical operator of the ensemble {|κ〉}, which represents the density matrix of a
statistical mixture of states. Using the statistical operator the quantum statistical average can be
written in the representation-free form

〈〈A〉〉 = tr %A. (B.26)

Substituting A→ 1 we find that for mixed states the Parseval relation (B.21) is replaced by

tr % = 1. (B.27)

Substituting A → ρκ ≡ |κ〉〈κ| we obtain the probability to observe the (pure) state |κ〉 in a mea-
surement on the ensemble,

〈〈ρκ〉〉 = tr %ρκ =
∑
i

〈bi|%|κ〉〈κ|bi〉 = 〈κ|%|κ〉 = wκ. (B.28)

Thus, using the density matrix for mixed states, we can calculate quantum statistical averages
using the same methods as obtained above for the density matrix of pure states - see Eq. (B.15).1

The key difference between pure and mixed states is revealed when calculating tr %2. For pure states
the density matrix is idempotent, ρ2 = ρ, and we have

tr ρ2 = tr ρ = 1. (B.29)

For mixed states this is replaced by the inequalities.

0 ≤ tr %2 ≤ (tr %)2 = 1. (B.30)

B.1.3 Continuous bases - position and momentum representation

For a particle in the arbitrary state |ψ〉 the wavefunction ψ(r) represents the probability amplitude
to observe the particle at position r. The ψ(r) defines the state |ψ〉 in the position representation
and r stands for the position coordinates. In the Dirac formalism the same probability amplitude is
obtained by projecting the state vector |ψ〉 onto the eigenstate |r〉 of the position operator r,

ψ(r) = 〈r|ψ〉. (B.31)

The set {|r〉} forms a basis of the Hilbert space of the particle because |ψ〉 is completely defined by
specifying the probability amplitude ψ(r) for all values of r,

|ψ〉 =

ˆ
dr |r〉〈r|ψ〉. (B.32)

This shows that the closure relation is given by

1 =

ˆ
dr |r〉〈r| (B.33)

1Many authors do not distinguish between 〈〈A〉〉 and 〈A〉 as all relevant information is contained in the form of %.
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and the Parseval relation takes the form of the normalization integral,

1 =

ˆ
dr|〈r|ψ〉|2 =

ˆ
|ψ(r)|2dr. (B.34)

To find the orthogonality relation for the position representation we note that the probability am-
plitude to observe the particle at position r′ is given by

ψ(r′) =

ˆ
dr 〈r′|r〉ψ(r). (B.35)

Since |ψ〉 was chosen arbitrary this implies

〈r′|r〉 = δ(r− r′), (B.36)

which is the Dirac deltafunction in three dimensions.
In search for the momentum representation we consider the Fourier transform

ψ(p) =

ˆ
dr e−ip·r/~ψ(r). (B.37)

The inverse transform is given by

ψ(r) = (2π~)−3

ˆ
dp eip·r/~ψ(p). (B.38)

In the plane wave eip·r/~ we recognize the wavefunction of a free particle in state |p〉,

〈r|p〉 = eip·r/~. (B.39)

Substituting this expression into the Fourier transform (B.37) we find with the aid of the closure
relation (B.33)

ψ(p) =

ˆ
dr 〈p|r〉〈r|ψ〉 = 〈p|ψ〉. (B.40)

Substituting this expression into the inverse transform we obtain

|ψ〉 = (2π~)−3

ˆ
dp |p〉〈p|ψ〉. (B.41)

Since |ψ〉 was chosen arbitrarily, this shows that the set {|p〉} forms the basis of the momentum
representation for the Hilbert of the particle. The wavefunction ψ(p) = 〈p|ψ〉 represents the prob-
ability amplitude that the particle is measured with momentum p. The closure relation is given
by

1 = (2π~)−3

ˆ
dp |p〉〈p| (B.42)

and the Parseval relation becomes,

1 = (2π~)−3

ˆ
dp|〈p|ψ〉|2 = (2π~)−3

ˆ
|ψ(p)|2dp. (B.43)

To find the orthogonality relation we note that the probability amplitude to find the particle with
momentum p′ is given by

ψ(p′) = (2π~)−3

ˆ
dp 〈p′|p〉ψ(p). (B.44)

Since |ψ〉 was chosen arbitrary we obtain

〈p′|p〉 = (2π~)3δ(p− p′). (B.45)

Using the closure relation (B.33) as well as Eq. (B.39) we find the expressionˆ
dr〈p′|r〉〈r|p〉 =

ˆ
dr ei(p−p

′)·r/~ = (2π~)3δ(p− p′). (B.46)
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B.1.4 Discrete basis - orbital angular momentum

As an example of a discrete basis, we discuss the case of orbital angular momentum. The three
cartesian components of the angular momentum operator L satisfy the commutation relations

[Lx, Ly] = i~Lz, [Ly, Lz] = i~Lx and [Lz, Lx] = i~Ly. (B.47)

These are the generic commutation relations for any type of angular momentum. The Hermitian
operators that uniquely define the state of orbital angular momentum are the operators L2 and Lz.
Their shared basis {|l,ml〉} is defined by

L2 |l,ml〉 = l(l + 1)~2 |l,ml〉 (B.48a)

Lz |l,ml〉 = ml~ |l,ml〉 , (B.48b)

where the |l,ml〉 are abstract (i.e., representation-free) state vectors in Hilbert space, with l and ml

the rotational quantum numbers. The basis {|l,ml〉} is called the standard representation {L2, Lz}
of angular momentum. The spherical harmonics

Y mll (θ, φ) ≡ Y mll (r̂) = 〈r̂|l,ml〉 (B.49)

are the corresponding wavefunctions in the position representation of spherical coordinates.

B.1.5 Spin coordinates, spinor states and spinorbitals

The “wavefunction” χ(σ) of the spin of a particle in the angular momentum state |χ〉 is obtained
by projection of |χ〉 onto one of the eigenstates {|σ〉} of the sz operator,

χ(σ) = 〈σ|χ〉 =

s∑
ms=−s

〈σ|s,ms〉〈s,ms|χ〉, (B.50)

where σ assumes discrete values in the interval s ≤ σ ≤ s. Hence, the function χ(σ) is a function of
the discrete variable σ, the spin coordinate. For a particle in spin state χ the spinor χ(σ) represents
the probability amplitude to detect the particle in the eigenstate σ. For s being half-integral it
is called a 2s + 1 component spinor (to distinguish its rotation properties from scalar and vector
functions). The basis states are denoted by the unit spinors

χms(σ) ≡ 〈σ|s,ms〉 = δms,σ, (B.51)

where ms assumes discrete values in the interval s ≤ ms ≤ s. For the special case of s = 1
2 the

eigenstates are often written in the arrow notation, χ+1/2(σ) ≡ χ↑(σ) and χ−1/2(σ) ≡ χ↓(σ).

As an example we consider the case s = 1
2 , where the summation runs over the values ms ∈

{− 1
2 ,+

1
2},

χ(σ) = χ↑(σ)〈+ 1
2 |χ〉+ χ↓(σ)〈− 1

2 |χ〉. (B.52)

Note that χ(σ) = 〈± 1
2 |χ〉 for σ = ± 1

2 . In the matrix representation the s = 1
2 spinors take the form

of a column vector,

χ(σ) =

(
〈+ 1

2 |χ〉
〈− 1

2 |χ〉

)
= 〈+ 1

2 |χ〉
(

1

0

)
+ 〈− 1

2 |χ〉
(

0

1

)
. (B.53)

and the basis vectors take the form (up to a not observable phase factor)

χ↑(σ) =

(
1

0

)
and χ↓(σ) =

(
0

1

)
. (B.54)
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The spinor concept is readily extended from discrete spinor functions to spinor fields. Such
an extension is essential to describe particles with both motional and spin degrees of freedom (for
example the electron). Since s and r are commuting observables they must share a complete set of
basis functions, obtained as the tensor product of their eigenstates

|r, σ〉 ≡ |r〉 ⊗ |σ〉. (B.55)

The tensor product assures that for every eigenvalue of one operator the state can assume all
eigenvalues of the other operator. An arbitrary state can be written in the form

ψ (r, σ) = 〈r, σ|ψ〉 = ϕ (r)χ(σ), (B.56)

where ϕ (r) = 〈r|ϕ〉 is the wavefunction in the position representation and χ(σ) = 〈σ|χ〉 a discrete
spinor.

For the case s = 1
2 this implies

ψ (r, σ) = ϕ (r) 〈+ 1
2 |χ〉χ↑(σ) + ϕ (r) 〈− 1

2 |χ〉χ↓(σ). (B.57)

In matrix form this becomes

ψ (r, σ) =

(
ψ (r,+1/2)

ψ (r,−1/2)

)
= ψ (r,+1/2)

(
1

0

)
+ ψ (r,−1/2)

(
0

1

)
, (B.58)

where ψ (r,±1/2) is a double-valued function representing the probability amplitude to observe the
particle at position r in spin state | ± 1

2 〉.
If a particle is prepared in the motional state |ϕ〉 = |k〉 and spin state |χ〉 = |↑〉 the Eq. (B.57)

takes the form of a spinorbital
ψk↑ (r, σ) = ϕk (r)χ↑(σ). (B.59)

In terms of spinorbitals the spinor field becomes

ψ (r, σ) = ψk↑ (r, σ)χ(+ 1
2 ) + ψk↓ (r, σ)χ(− 1

2 ), (B.60)

where χ(± 1
2 ) is the probability amplitude to observe the particle in spin state

∣∣± 1
2

〉
.

B.2 The Schrödinger and Heisenberg pictures of time evolution

In this section we discuss two alternative views on the time evolution in non-relativistic quantum
mechanics. These are known as the Schrödinger and the Heisenberg picture. To introduce these
pictures, we start by recalling that the state of a quantum mechanical system is postulated to be
uniquely defined by a state vector in Hilbert space (see Appendix B.1.1). At any point in time a
quantum mechanical state can be written as a linear superposition of eigenstates. This superposition
is (in general) not stationary but evolves in time. In the Schrödinger picture we postulate that the
time evolution is uniquely defined by a linear transformation,

|ψS(t)〉 = U(t, t0)|ψS(t0)〉, (B.61)

where |ψS(t)〉 is the state of the system at time t. The linearity implies that |ψS(t)〉 is given by a
linear superposition of independently evolving eigenstates; i.e., the superposition is conserved but
the coefficients vary in time. The operator U(t, t0) is called the evolution operator of the system and
accounts for the time dependence of the states over the interval t0 → t. By definition U(t0, t0) = 1.
To assure the postulated uniqueness of the state evolution, the transformation has to be norm
conserving,

〈ψS(t)|ψS(t)〉 = 〈ψS(t0)|ψS(t0)〉. (B.62)
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Only in this way we can be sure that a system, initially in state |ψS(t0)〉, arrives with unit probability
at time t in the state |ψS(t)〉. Substituting the transformation (B.61) into (B.62), we find that the
norm is conserved if and only if U†U = 1; i.e., the evolution has to be unitary,

U†(t, t0) = U−1(t, t0) = U(t0, t). (B.63)

In view of the uniqueness of the time evolution, U(t, t0) can be written as a product of unitary
operators,

U(t, t0) = U(t, tn)U(tn, tn−1) · · ·U(t2, t1)U(t1, t0). (B.64)

This shows that the set {U(t, t′)} forms a group under multiplication, with unit element U(t, t) and
inverse U(t′, t). In particular, as t is a continuous variable, U(t, t0) can be written as an infinite
product of infinitesimal evolution operators U(t + δt, t). Infinitesimal unitary operators with the
property U(t, t) = 1 can be expressed in the form

U(t+ δt, t) = 1− (i/~)H(t)δt = e−iH(t)δt/~ for δt→ 0, (B.65)

where H(t) has to be a hermitian operator to assure the unitarity of U. The factor 1/~ has been
included for future convenience. Note that (for any point in time) the evolution operator commutes
with the hamiltonian,

[U(t+ δt, t),H(t)] = 0. (B.66)

Using U(t, t) = 1, we rewrite Eq. (B.65) in the form

lim
δt→0

U(t+ δt, t)− U(t, t)

δt
= −(i/~)H(t). (B.67)

Multiplying both sides with U(t, t0) we obtain the differential equation 1

i~
∂

∂t
U(t, t0) = H(t)U(t, t0), (B.68)

subject to the boundary condition U = 1 for t = t0. This equation can be rewritten in the form of
an integral equation by integration over the finite time interval t0 → t,

U(t, t0) = 1− (i/~)

tˆ

t0

dt′H(t′)U(t′, t0). (B.69)

This form for the evolution operator is particularly suited for generating iterative solutions for
application in time-dependent perturbation theory.

As the time dependences of U(t, t0) and |ψS(t)〉 are related by the equation

i~
∂

∂t
|ψS(t)〉 =

[
i~
∂

∂t
U(t, t0)

]
|ψS(t0)〉 (B.70)

we find for the time dependence of the state vector

i~
∂

∂t
|ψS(t)〉 = H(t)|ψS(t)〉, (B.71)

1The time derivative of the operator U(t, t′) is defined as

∂

∂t
U(t, t′) ≡ lim

δt→0

U(t+ δt, t′)− U(t, t′)

δt
.
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with the boundary condition that at t = t0 the system is in the state |ψS(t0)〉. In this differential
equation we recognize the familiar form of the time-dependent Schrödinger equation. In view of this
formal similarity the hermitian operator H is called the hamiltonian of the quantum mechanical
system. In hindsight this explains the factor 1/~ included in Eq. (B.65). This being said, it should be
emphasized that Eq. (B.71) was obtained from the postulates without any reference to the Hamilton
formalism of classical mechanics. It shows that the hamiltonian can be defined, also in the absence
of any correspondence to a classical system, as the hermitian operator that assures unitary evolution
of the system.

Recalling that U(t, t0) can be written as an infinite product of infinitesimal operators we distin-
guish three cases

• Time-dependent hamiltonian with the property [H(t),H(t′)] 6= 0.

U(t, t0) ≡ lim
δt→0

e−iH(t−δt)δt/~ · · · e−iH(t0)δt/~ (B.72)

• Time-dependent hamiltonian with the property [H(t),H(t′)] = 0. Using the properties of
exponential operators (see Appendix C.8)

U(t, t0) ≡ lim
δt→0

e−iH(t−δt)δt/~ · · · e−iH(t0)δt/~ = e
−(i/~)

´ t
t0
H(t′)dt′

(B.73)

• Time-independent hamiltonian H = H0 (conservative system). In this case we write δt ≡
(t− t0)/n and obtain with the aid of Eq. (C.32a)

U(t, t0) ≡ lim
n→∞

[
e−(i/~)H0(t−t0)/n

]n
= e−iH(t−t0)/~. (B.74)

B.2.1 Schrödinger picture

In this section we summarize the primary features of the Schrödinger picture. The evolution of the
physical system is contained in the time dependence of the state vector,

|ψS(t)〉 = U(t, t0)|ψS(t0)〉, (B.75)

where |ψS(t)〉 is the Schrödinger state of the system at time t. In the Schrödinger picture we write
AS for the operator that represents the dynamical variable A. Similarly, we shall write AH when
turning to the Heisenberg picture. An exception is made for the hamiltonian because, as we shall
see, this operator is the same in both pictures. For this reason we simply write H rather than HS
or HH . The time dependence of the state vectors is governed by the Schrödinger equation,

i~
∂

∂t
|ψS(t)〉 = H(t)|ψS(t)〉, (B.76)

subject to the boundary condition that at t = t0 the system is in the state |ψS(t0)〉. According
to the postulate of quantum measurement (see Appendix B.1.1), the expectation value of AS(t) is
given by

〈AS(t)〉 =
〈ψS(t)|AS(t)|ψS(t)〉
〈ψS(t)|ψS(t)〉

. (B.77)

As the evolution is norm conserving, the time derivative of the expectation value is given by - see
Problem B.2

i~
d

dt
〈AS(t)〉 = 〈[AS(t),H(t)]〉+ i~〈 ∂

∂t
AS(t)〉. (B.78)

Here the first term arises from the time development of the state and the second one from that of
the operator. Note that the latter is only nonzero if the operator depends explicitly on time.
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Problem B.2. Show that the equation of motion for the expectation value of a (generally time-dependent)
operator AS(t) is given by

i~ d
dt
〈AS(t)〉 = 〈[AS(t),H(t)]〉+ i~〈 ∂

∂t
AS(t)〉.

Solution. The answer is obtained by differentiation of (B.77) using the Leibniz integral rule (C.28). Since
the norm of the state is conserved we obtain the following three terms,

d

dt
〈AS(t)〉 =

[
∂

∂t
〈ψS(t)|

]
AS(t)|ψS(t)〉+ 〈ψS(t)|

[
∂

∂t
AS(t)

]
|ψS(t)〉+ 〈ψS (t) |AS(t)

[
∂

∂t
|ψS(t)〉

]
.

The first and the third term are evaluated using the Schrödinger equation (B.76) and its hermitian conjugate.
The second term is zero unless the operator has an explicit time dependence. Thus we obtain

i~ d
dt
〈AS(t)|〉 = −〈ψS(t)| [H(t)AS(t)−AS(t)H(t)] |ψS(t)〉+ i~〈ψS(t)|

[
∂

∂t
AS(t)

]
|ψS(t)〉,

which can be rewritten in the form of the desired expression. 2

B.2.2 Heisenberg picture

The Heisenberg picture is obtained by a unitary transformation of the Schrödinger states and oper-
ators in the Hilbert space. This unitary transformation is chosen such that it exactly removes the
time dependence from the Schrödinger state |ψS(t)〉 by evolving it back to t = t0,

|ψH〉 ≡ U†(t, t0)|ψS(t)〉 = |ψS(t0)〉. (B.79)

The same unitary transformation puts a time dependence on the operators,

AH(t) = U†(t, t0)AS(t)U(t, t0). (B.80)

Note that with this transformation the Heisenberg and Schrödinger pictures coincide at t = t0,

AH(t0) = AS(t0) and |ψH〉 = |ψS(t0)〉. (B.81)

Importantly, since U(t, t0) commutes with the hamiltonian H(t), the transformation to the Heisen-
berg picture leaves the hamiltonian invariant. For this reason we omit the subscript and simply write
H(t). It is straightforward to show, using Eq. (B.77), that the expectation value 〈AH〉 coincides with
〈AS〉 at any time t and is given by

〈AH(t)〉 =
〈ψH |AH(t)|ψH〉
〈ψH |ψH〉

=
〈ψH |U†(t, t0)AS(t)U(t, t0)|ψH〉
〈ψH |U†(t, t0)U(t, t0)|ψH〉

= 〈AS(t)〉. (B.82)

As, by construction, |ψH〉 does not depend on time, the time dependence of 〈AH (t)〉 is fully de-
termined by the time dependence of AH (t). The latter is known as the the Heisenberg equation of
motion. By differentiation of (B.80) we obtain - see Problem B.3

i~
d

dt
AH(t) = [AH(t),H(t)] + i~

∂

∂t
AH(t), (B.83)

where
∂

∂t
AH(t) ≡

(
∂

∂t
AS(t)

)
H

= U†(t)

[
∂

∂t
AS(t)

]
U(t). (B.84)

The correspondence (B.82) shows that the Heisenberg equation of motion is completely equivalent
to the Schrödinger equation.
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Problem B.3. Consider the Heisenberg operator AH(t) = U†(t)AS(t)U(t). Show that the equation of
motion of this operator is given by

i~ d
dt
AH(t) = [AH(t),H(t)] + i~ ∂

∂t
AH(t).

Solution. By differentiation of 〈AH(t)〉 we obtain three terms using the Leibniz integral rule (C.28)

d

dt
〈AH(t)〉 = 〈

[
∂

∂t
U†(t)

]
AS(t)U(t) + U†(t)

[
∂

∂t
AS(t)

]
U(t) + U†(t)AS(t)

[
∂

∂t
U(t)

]
〉.

The first and the third term are evaluated using the differential equation (B.68) and its hermitian conjugate.
The second term is zero unless the operator has an explicit time dependence. As the Heisenberg states are
time independent we can assign all time dependence to the Heisenberg operators,

i~ d
dt
AH(t) ≡ −U†(t) [H(t)AS(t)−AS(t)H(t)]U(t) + i~U†(t) ∂

∂t
AS(t)U(t).

As H(t) commutes with the evolution operator this expression simplifies to

i~ d
dt
AH(t) = [AH(t),H(t)] + i~U†(t) ∂

∂t
AS(t)U(t).

Defining
∂

∂t
AH(t) ≡

(
∂

∂t
AS(t)

)
H

≡ U†(t)
[
∂

∂t
AS(t)

]
U(t)

we arrive at the desired expression. 2

B.2.3 Interaction picture

Rather than removing the full time dependence, we can also use a unitary transformation that
removes only part of it. It may speak for itself that this can be done in many ways. A particularly
valuable variant arises when the hamiltonian of the system can be separated into two parts,

H(t) = H0 +H1(t), (B.85)

where H0 is the time-independent hamiltonian of a closed system and H1(t) is a (generally time-
dependent) perturbation representing some interaction with an external field. To analyze this case,
we consider the unitary transformations

|ψI(t)〉 = U†0 (t)|ψS(t)〉, (B.86)

and
AI(t) = U†0 (t)AS(t)U0(t). (B.87)

Here U0(t) is the evolution operator corresponding to H0,

U0(t) = e−iH0(t−t1)/~, (B.88)

which is the solution of the differential equation

i~
∂

∂t
U0(t) = H0U0(t), (B.89)

under the boundary condition U0(t) = 1 for t = t1. With this definition, the state |ψI(t1)〉 coincides
with the Schrödinger state |ψS(t)〉 for t = t1. As we are free to choose the time t1, we conveniently
choose t0 = 0.

The above transformations define the interaction picture and the states |ψI(t)〉 are called the
intermediate states. The operator AI(t) is called the intermediate operator. Note that U0(t) removes
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all H0-related evolution from the state but leaves the part related to H1(t). For small H1(t) this
means that |ψI(t)〉 is “almost” stationary. It follows with the aid of Eqs. (B.86) and (B.77) that the
expectation values 〈AI〉 and 〈AS〉 coincide at all times,

〈AI (t)〉 =
〈ψI(t)|AI(t)|ψI(t)〉
〈ψI(t)|ψI(t)〉

=
〈ψI(t)|U†0 (t)AS(t)U0(t)|ψI(t)〉
〈ψI(t)|U†0 (t)U0(t)|ψI(t)〉

= 〈AS(t)〉. (B.90)

The time dependence of the intermediate states can be obtained by differentiation of Eq. (B.86) -
see Problem B.4,

i~
∂

∂t
|ψI(t)〉 = HI(t)|ψI(t)〉, (B.91)

where HI(t) is defined by

HI(t) ≡ U†0 (t)H1(t)U0(t), (B.92)

which is consistent with the general case (B.87). In complete analogy with the derivation of the
Heisenberg equation of motion we obtain by differentiation of (B.87) the intermediate equation of
motion,

i~
d

dt
AI(t) = [AI(t),H0] + i~

∂

∂t
AI(t), (B.93)

where
∂

∂t
AI(t) ≡

(
∂

∂t
AS(t)

)
I

= U†0 (t)

[
∂

∂t
AS(t)

]
U0(t). (B.94)

Hence, just like the time evolution of AH follows from the full hamiltonian, the time dependence of
AI follows from the partial hamiltonian H0.

As also the time evolution driven by HI(t) has to be uniquely defined the evolution of the
intermediate state over the interval t0 → t can be written in the form

|ψI(t)〉 = UI(t, t0)|ψI(t0)〉, (B.95)

where UI(t, t0) is a unitary operator and the solution of the differential equation

i~
∂

∂t
UI(t, t0) = HI(t)UI(t, t0), (B.96)

under the boundary condition UI(t0, t0) = 1. This differential equation can be rewritten in the form
of an integral equation,

UI(t, t0) = 1− i

~

ˆ t

t0

dt1HI(t1)UI(t1, t0). (B.97)

In search for a relation between UI(t, t0) and U(t, t0) we write, with the aid of Eqs. (B.86) and
(B.75), the intermediate state in the form

|ψI(t)〉 = U†0 (t)|ψS(t)〉 = U†0 (t)U(t, t0)|ψS(t0)〉 = U†0 (t)U(t, t0)U0(t0)|ψI(t0)〉. (B.98)

Comparing this expression with Eq. (B.86) we obtain the following relation between the full and the
intermediate evolution operator,

UI(t, t0) = eiH0t/~U(t, t0)e−iH0t/~. (B.99)

Note that in the intermediate picture the time dependence is divided between the states and
the operators. Its operators resemble the Heisenberg operators - compare Eqs. (B.83) and (B.93),
whereas its states resemble the Schrödinger states - compare Eqs. (B.76) and (B.91).
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Problem B.4. Show that the equation of motion for the expectation value of a (generally time-dependent)
intermediate operator AI(t) is given by

i~ ∂
∂t
|ψI(t)〉 = HI(t)|ψI(t)〉.

Solution. Differentiating (B.86) we obtain with the aid of Eqs. (B.89) and (B.76)

i~ ∂
∂t
|ψI(t)〉 =

[
∂

∂t
U†0 (t)

]
|ψS(t)〉+ i~U†0 (t)

∂

∂t
|ψS(t)〉

= −H0U
†
0 (t)|ψS(t)〉+ U†0 (t)H(t)|ψS(t)〉.

Using Eq. (B.86) and its inverse, this becomes

i~ ∂
∂t
|ψI(t)〉 = −H0|ψI(t)〉+ U†0 (t)H(t)U0(t)|ψI(t)〉.

Since H0 = U†0 (t)H0U0(t) and H1(t) = H(t)−H0 this corresponds to

i~ ∂
∂t
|ψI(t)〉 = U†0 (t)H1(t)U0(t)|ψI(t)〉.

Defining HI(t) ≡ U†0 (t)H1(t)U0(t) we arrive at the desired form. 2

B.2.4 Constants of the motion and “good” quantum numbers

The dynamical variable A of a quantum mechanical system is called a constant of the motion if the
expectation value 〈AS〉 is independent of time, whatever the state of the system. This implies that
the Heisenberg operator AH is stationary as follows by differentiation of (B.82),

d

dt
〈AS〉 = 〈 d

dt
AH〉 ≡ 0 ⇒ d

dt
AH = 0. (B.100)

Furthermore, expressing the Heisenberg equation of motion for the operator AH in terms of the
corresponding Schrödinger operator AS we find with the aid of Eqs. (B.83) and (B.66)

i~
d

dt
AH = U†(t, t0)[AS ,H]U(t, t0) + i~U†(t) [∂AS(t)/∂t]U(t). (B.101)

This shows that the dynamical variable A is a constant of the motion if AS does not depend explicitly
on time, ∂AS(t)/∂t = 0, and commutes with the hamiltonian, [AS ,H] = 0.

In particular, suppose that at t = t0 the system is in the eigenstate |a〉 of AS with eigenvalue a.
In this case we have 〈AS〉 = a and a is called a “good” quantum number if this expectation value is
conserved in time. This invariance is satisfied if |a〉 is also an eigenstate of H (i.e., if [AS ,H] = 0).
If a is a good quantum number the time development of the state is given by

|ψ(t)〉 = exp[−(i/~)εa(t− t0)] |a〉 , (B.102)

where exp[−(i/~)εa(t − t0)] is called the dynamical phase of the state. This shows explicitly that
eigenstates are stationary up to the development of the dynamical phase.

Example: To illustrate these concepts we consider a system at t = 0 in the state

|ψ0〉 = |a〉 =
√

1/2 (|α〉+ |β〉) , (B.103)

which is itself not an eigenstate ofH but a linear combination of the (normalized) eigenstates |α〉 and
|β〉 of H with eigenvalues εa and εb, respectively. By integrating the time-dependent Schrödinger
equation we obtain for the time dependence of the state

|ψ(t)〉 = e−(i/~)Ht |a〉 =
√

1/2
[
e−(i/~)εαt |α〉+ e−(i/~)εβt |β〉

]
. (B.104)
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Note that for t = 0 we regain Eq. (B.103). Projecting |ψ(t)〉 onto the state |a〉 we find that the
occupation of |a〉 will oscillate in time between 1 and 0 at the frequency corresponding to the energy
splitting εa − εb between the levels,

|〈a |ψ(t)〉 |2 = 1
2 + 1

2 cos[(εα − εβ) t/~]. (B.105)

Note that the hamiltonian is an example of a constant of the motion,

〈ψ(t)|H |ψ(t)〉 = 1
2 (εα + εβ) . (B.106)

Let us now turn to the operator A, with |a〉 representing the eigenstate corresponding to the eigen-
value a,

A |a〉 = a |a〉 . (B.107)

When is A is constant of the motion (and a a good quantum number)?

• If [A,H] = 0 we find with the aid of Eq. (B.104),

〈ψ(t)|A |ψ(t)〉 = a. (B.108)

Hence, in this case A is a constant of the motion (and a is a good quantum number).

• If [A,H] = −B 6= 0 we find with the aid of Eq. (C.32b)

〈ψ(t)|A |ψ(t)〉 = 〈a| e(i/~)HtAe−(i/~)Ht |a〉
= a+ 1

2! (i/~) 〈a|B |a〉 t+ 1
3! (i/~)2 〈a| [H, B] |a〉 t2 + · · · . (B.109)

Hence, in this case A is not a constant of the motion (and a not a good quantum number).

Problem B.5. Show by explicit calculation the equivalence of the Heisenberg equation of motion and the
Schrödinger equation for the example of a particle of mass m moving in the conservative potential energy
field V(r).

Solution. At t = 0 the particle is in the state |ψH〉. As the hamiltonian does not depend on time and the
position operator r does not depend explicitly on time, the time development of the Heisenberg position
operator r(t) = rH(t) is given by Eq. (B.101) in the form

i~ d
dt

r(t) = [r(t),H], with H = −
p2

2m
+ V(r).

Using r(t) = U†(t, t0)rU(t, t0) and recalling Eqs. (B.66) and (B.68) we have

i~ d
dt
U†(t, t0)rU(t, t0) |ψH〉 = U†(t, t0)[r,H]U(t, t0) |ψH〉 .

Multiplying from the left with U(t, t0) and turning to Schrödinger states this becomes

i~U(t, t0)
d

dt
U†(t, t0)r |ψ(t)〉 = [r,H] |ψ(t)〉

With the aid of the differential equation (B.68) this becomes

−Hr |ψ(t)〉+ i~ d
dt

r |ψ(t)〉 = [r,H] |ψ(t)〉 .

Turning to the position representation this becomes the Schrödinger equation,

i~ d
dt
〈r |ψ(t)〉 = H0〈r |ψ(t)〉 , with H0 = 〈r|H|r〉 = − ~2

2m
∆ + V(r). �
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B.3 Conservation of normalization and current density

The rate of change of normalization of a wave function can be written as a continuity equation

∂

∂t
|Ψ(r, t)|2 + ∇ · j = 0, (B.110)

which defines j as the probability current density of the wave function. With the time-dependent
Schrödinger equation

i~
∂

∂t
Ψ(r, t) = H Ψ(r, t) (B.111a)

−i~ ∂
∂t

Ψ∗(r, t) = H Ψ∗(r, t) (B.111b)

we find

∂

∂t
|Ψ(r, t)|2 = Ψ∗(r, t)

∂

∂t
Ψ(r, t) + Ψ(r, t)

∂

∂t
Ψ∗(r, t)

=
1

i~
[Ψ∗(HΨ)−Ψ(HΨ∗)] . (B.112)

Hence,

∇ · j =
i

~
[Ψ∗(HΨ)−Ψ(HΨ∗)] . (B.113)

Hence, together with the continuity equation this equation shows that the normalization of a sta-
tionary state is conserved if the hamiltonian is hermitian.

For a Hamiltonian of the type

H = − ~2

2m
∆ + V (r) (B.114)

the Eq. (B.113) takes the form

∇ · j = − i~
2m

[
ψ∗(∇2ψ)− (∇2ψ∗)ψ

]
= − i~

2m
∇ · [ψ∗(∇ψ)− (∇ψ∗)ψ] . (B.115)

Hence, the continuity equation is satisfied by defining the probability current density as

j = − i~
2m

(ψ∗∇ψ − ψ∇ψ∗) . (B.116)

The probability current density is a real quantity,

j = Re

[
−i~
m

ψ∗∇ψ

]
= Re [ψ∗vψ] , (B.117)

where v = p/m = (−i~/m)∇ is the velocity operator , in which we recognize the well-known
correspondence rule p→− i~∇.

Writing ψ as the product of a position-independent amplitude |ψ| and a position-dependent phase
factor, ψ = |ψ|eiφ, we have

j =
i~
2m

(ψ∇ψ∗ − ψ∗∇ψ) =
i~
2m
|ψ|2

(
eiφ∇e−iφ − e−iφ∇eiφ

)
= |ψ|2 (~/m)∇φ. (B.118)

Keeping in mind the flux relation j = nv, we identify n = |ψ|2 as the probability density and

v = (~/m)∇φ (B.119)

as the probability-flow velocity.



C

Properties of functions, series and integrals

C.1 Finite sums of powers

The best known example is the arithmetic series:

n∑
k=1

ak = 1
2n(an + a1), with an+1 = an + v, (C.1)

where v is called the difference between successive terms. In particular, for ak = k this becomes

n∑
k=1

k = 1
2n(n+ 1). (C.2)

Related finite sums are

n∑
k=1

k2 = 1
6n(n+ 1)(2n+ 1) (C.3)

n∑
k=1

k3 = 1
4n

2(n+ 1)2. (C.4)

Sums of powers of (generally complex) numbers:

n∑
k=1

knzk =

(
z
d

dz

)n
z − zn+1

1− z
. (C.5)

The best known example is the geometric series

n∑
k=1

ak = a1
1− rn

1− r
, with an+1 = ran. (C.6)

The factor r is called the ratio of the series; i.e., the ratio of two subsequent terms. Other examples
of summations of this type are

n∑
k=1

kzk = z
1− (n+ 1)zn + nzn+1

(1− z)2
(C.7)

n∑
k=1

k2zk = z
1 + z − (n+ 1)2zn + (2n2 + 2n− 1)zn+1 − n2zn+2

(1− z)3
. (C.8)

291
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C.2 Gamma function

The gamma function is defined for the complex z plane excluding the non-positive integers

ˆ ∞
0

e−xxz−1dx = Γ (z) . (C.9)

For integer values z − 1 = n = 0, 1, 2, · · · the gamma function coincides with the factorial function,

ˆ ∞
0

e−xxndx = Γ (n+ 1) = n! (C.10)

Some special values are:

Γ (−1/2) = −2
√
π = −3.545, Γ (1/2) =

√
π = 1.772, Γ (1) = 1

Γ (−3/2) = 4
3

√
π = 2.363, Γ (3/2) = 1

2

√
π = 0.886, Γ (2) = 1

Γ (5/2) = 3
4

√
π = 1.329, Γ (3) = 2

Γ (7/2) = 15
8

√
π = 3.323, Γ (4) = 6.

(C.11)

Some related integrals are

ˆ ∞
0

e−x
2

x2n+1dx =
1

2
n! (C.12)

ˆ ∞
0

e−x
2

x2ndx =
(2n− 1)!!

2n+1

√
π. (C.13)

A useful integral relation is

ˆ ∞
0

e−`x
n

xmdx =
1

`(m+1)/n

ˆ ∞
0

e−x
n

xmdx. (C.14)

C.3 Polylogarithm

The polylogarithm Liα(z) is a special function defined over the unit disk in the complex plane by
the series expansion

Liα(z) = PolyLog[α, z] ≡
∞∑
`=1

z`

`α
(|z| < 1), (C.15)

where α is an arbitrary complex number. By analytic continuation the polylogarithm can be defined
over a larger range of z. For z and α on the real axis and for α > 1 the polylogarithm are given by
the Bose-Einstein integrals

FBE
α (z) =

1

Γ (α)

ˆ ∞
0

xα−1

z−1ex − 1
dx (z < 1) (C.16)

and the Fermi-Dirac integrals

FFD
α (z) =

1

Γ (α)

ˆ ∞
0

xα−1

z−1ex + 1
dx (z ≥ −1). (C.17)

Recurrence relations:

Liα(z) = z
d

dz
Liα+1(z) ⇔ Liα(eu) =

d

du
Liα+1(eu). (C.18)
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C.4 Bose-Einstein function

The Bose-Einstein (BE) integrals are defined for real z and α > 1 as

FBE
α (z) =

1

Γ (α)

ˆ ∞
0

xα−1

z−1ex − 1
dx (z < 1). (C.19)

The integrals can be expanded in powers of z on the interval 0 < z < 1,

FBE
α (z) =

1

Γ (α)

∞∑
`=1

ˆ ∞
0

xα−1z`e−`xdx =

∞∑
`=1

z`

`α
= gα (z) = Liα(z), (C.20)

where Liα(z) is the polylogarithm. For non-integer values of α the BE-integrals can also be expanded
in the form1

FBE
α (e−u) = Γ (1− α)uα−1 +

∞∑
n=0

(−1)n

n!
ζ(α− n)un, (C.21)

where the expansion in powers of u = − ln z is valid on the interval 0 < u < 2π. For integer values
α = m ∈ {2, 3, 4, · · · } the BE-integrals the expansion is

FBE
m (e−u) =

(−u)
m−1

(m− 1)!

(
1 +

1

2
+

1

3
+ · · ·+ 1

m− 1
− lnu

)
um−1 +

∞∑
n=0
6=m−1

ζ(m− n)

n!
un, (C.22)

with convergence for 0 < u ≤ 2π.

C.5 Fermi-Dirac function

The Fermi-Dirac (FD) integrals are defined for real z and α > 1 as

FFD
α (z) =

1

Γ (α)

ˆ ∞
0

xα−1

z−1ex + 1
dx (z ≥ −1). (C.23)

The integrals can be expanded in powers of z on the interval 0 < z ≤ 1,

FFD
α (z) =

−1

Γ (α)

∞∑
`=1

ˆ ∞
0

xα−1 (−z)` e−`xdx = −
∞∑
`=1

(−z)`

`α
= fα (z) = −Liα(−z), (C.24)

where Liα(z) is the polylogarithm.

C.6 Riemann zeta function

The Riemann zeta function is defined as a Dirichlet series

lim
z→1

gα (z) = ζ (α) =

∞∑
`=1

1

`α
. (C.25)

Some special values are:

ζ (1/2) = −1.460, ζ (3/2) = 2.612, ζ (5/2) = 1.341, ζ (7/2) = 1.127,

ζ (1)→∞, ζ (2) = π2/6 = 1.645, ζ (3) = 1.202, ζ (4) = π4/90 = 1.082.

1For a derivation see J.E. Robinson, Phys. Rev. 83, 678 (1951).
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C.7 Selected integrals and rules

For γ > 0 and ε > 0 ˆ ε

0

√
x (ε− x)

γ−1
dx =

√
πΓ(γ)

2 Γ (3/2 + γ)
ε1/2+γ (C.26)

The Leibniz integral rule for moving boundaries is given by

d

dt

ˆ b(t)

a(t)

f(x, t)dx =

ˆ b(t)

a(t)

∂

∂t
f(x, t)dx+ f(x, t)

d

dt
b(t)− f(x, t)

d

dt
a(t) (C.27)

In particular, for definite integrals with fixed boundaries this integration rule becomes

d

dt

ˆ
f(x, t)dx =

ˆ
∂

∂t
f(x, t)dx. (C.28)

C.8 Commutator algebra

If A,B,C and D are four arbitrary linear operators the following relations hold:

[A,B] = − [B,A] (C.29a)

[A,B + C] = [A,B] + [A,C] (C.29b)

[A,BC] = [A,B]C +B [A,C] (C.29c)

[AB,CD] = A[B,C]D +AC[B,D] + [A,C]DB + C[A,D]B (C.29d)

0 = [A, [B,C]] + [B, [C,A]] + [C, [A,B]] . (C.29e)

Commutators containing Bn:

[A,Bn] =

n−1∑
s=0

Bs [A,B]Bn−s−1 (C.30a)

[A,Bn] = nBn−1 [A,B] if B commutes with [A,B]. (C.30b)

The exponential operator is defined as:

eA ≡
∞∑
n=0

An

n!
. (C.31)

Expressions for exponential operators:

eAeB = eA+B+ 1
2 [A,B] if A and B commute with [A,B] (C.32a)

eABe−A = B + [A,B] + 1
2! [A, [A,B]] + 1

3! [A, [A, [A,B]]] + · · · (C.32b)

eABe−A = B + [A,B] if A commutes with [A,B] (C.32c)

eABe−A = eγB if [A,B] = γB, with γ a constant, (C.32d)

Existence theorem (Baker-Campbell-Hausdorff): the product of two exponential operators is again
an exponential operator,

C = ln[eAeB ] = A+B + 1
2 [A,B] + 1

12 ([A, [A,B]] + [B, [B,A]]) + · · · . (C.33)
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C.9 Legendre polynomials

The associated Legendre differential equation is given by,[(
1− u2

) d2

du2
− 2u

d

du
− m2

1− u2
+ l(l + 1)

]
Pml (u) = 0 (C.34)

For m = 0 this equation is called the Legendre differential equation and its solutions are the Legendre
polynomials, defined by the Rodrigues formula:

Pl(u) =
1

2ll!

dl

dul
(u2 − 1)l. (C.35)

Pl(u) is a real polynomial of degree l ∈ {0, 1, 2 · · · }, parity

Pl(−u) = (−1)lPl(u) (C.36)

and having l zeros in the interval −1 ≤ u ≤ 1. The Legendre polynomials of lowest degree are

P0(u) = 1, P1(u) = u, P2(u) = 1
2 (3u2 − 1) (C.37)

P3(u) = 1
2 (5u3 − 3u), P4(u) = 1

8 (35u4 − 30u2 + 3). (C.38)

The Legendre polynomials are generated by expansion of the function

1

|r− r′|
=

1√
r2 − 2urr′ + r′2

=
1

r>

∑
l

(
r<
r>

)l
Pl(u), (C.39)

where r> = max{r, r′} and r< = min{r, r′} with r = |r| and r′ = |r′|; further u = r̂ · r̂′ = cos θ,
with θ the angle included by the unit vectors r̂ and r̂′. The expansion (C.39) is called the multipole
expansion.

For m 6= 0 the solutions of Eq. (C.34) are called the associated Legendre functions Pml (u). For
m = 0 they coincide with the Legendre polynomials. For m > 0 the Pml (u) are obtained by
differentiation of the Pl(u),1

Pml (u) = (−1)m(1− u2)m/2
dm

dum
Pl(u). (C.40)

Note that P 0
l (u) ≡ Pl(u). The differentiation fixes the relative sign of the polynomials of different

power. These functions consist of the product of a function (−1)m(1− u2)m/2 and a polynomial of
degree (l −m), parity (−1)l−m with (l −m) zeros in the interval −1 ≤ u ≤ 1. For crossing from
positive to negative m the sign and normalization are fixed by convention,2

P−ml (u) = (−1)m
(l −m)!

(l +m)!
Pml (u), (C.41)

where 0 ≤ m ≤ l. The Pml (u) are nonzero only for −l ≤ m ≤ l; i.e., the index m can assume 2l + 1
possible values for a given value of l. Particular cases are

P 0
l (u) = Pl(u), P ll (u) = (−1)−l(2l − 1)!!(1− u2)l/2. (C.42)

1Here the phase factor (−1)m is introduced to simplify the definition of the spherical harmonics. This convention
is implemented in Mathematica but deviates from the convention used in most texts on quantum mechanics. Beware
that differences in phase convention affect the recurrence relations (C.46) and (C.47).

2Note that the phase factor oscillates like (−1)m for m > 0 · · · but is always 1 for m ≤ 0. This is the signature
of the Condon and Shortley phase convention [11].
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The orthogonality of the Pml is expressed by

ˆ 1

−1

Pml (u)Pml′ (u)du = 0 (l 6= l′) (C.43a)

ˆ 1

−1

Pml (u)Pm
′

l (u)du = 0 (m 6= m′). (C.43b)

The normalization of the Pml is expressed by

ˆ 1

−1

[Pml (u)]
2
du = 2

ˆ 1

0

[Pml (u)]
2
du =

2

2l + 1

(l +m)!

(l −m)!
. (C.44)

The following recurrence relations hold for −l ≤ m ≤ l:

(2l + 1)uPml (u) = (l −m+ 1)Pml+1(u) + (l +m)Pml−1(u) (C.45)√
1− u2Pm+1

l (u) = −(l −m+ 1)(l +m)
√

1− u2Pm−1
l (u)− 2muPml (u). (C.46)

and

(1− u2)
d

du
Pml (u) = −luPml (u) + (l +m)Pml−1(u) (C.47a)

= (l + 1)uPml (u)− (l −m+ 1)Pml+1(u) (C.47b)

= −muPml (u)−
√

1− u2Pm+1
l (u) (C.47c)

= +muPml (u) + (l −m+ 1)(l +m)
√

1− u2Pm−1
l (u). (C.47d)

C.9.1 Spherical harmonics Y ml (θ, ϕ)

The spherical harmonics are defined as the joint, normalized eigenfunctions of L2 and Lz. Their
relation to the associated Legendre polynomials is given by

Y ml (θ, ϕ) =

√
2l + 1

4π

(l −m)!

(l +m)!
Pml (cos θ)eimϕ, (C.48)

with −l ≤ m ≤ l. The orthogonality relation is
ˆ
Y m∗l (r̂)Y m

′

l′ (r̂)dr̂ = δl′lδm′m. (C.49)

Using Eq. (C.41) we find that the complex conjugation is given by

Y m∗l (r̂) = (−1)
m
Y −ml (r̂). (C.50)

The parity under space inversion, r̂ = (θ, ϕ)→ −r̂ = (π − θ, ϕ+ π), is given by

Y ml (−r̂) = (−1)
l
Y ml (r̂). (C.51)

Alternatively, the spherical harmonics can be defined using only associated Legendre functions of
positive m ,1

Y ml (θ, ϕ) = ε

√
2l + 1

4π

(l − |m|)!
(l + |m|)!

P
|m|
l (cos θ)eimϕ with ε =

{
(−1)

m
for m ≥ 0

1 for m < 0.
(C.52)

1Note that the phase factor (−1)m is only included for positive m. This is the signature of the Condon and
Shortley phase convention [11].
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Note that the spherical harmonics with even l have even parity and those with odd l have odd parity.
The lowest order spherical harmonics are:√

4π
2l+1Y

m
l (θ, ϕ)− spherical

√
4π

2l+1Y
m
l (x, y, z)− cartesian

Y 0
0 = 1 ⇔ 1

Y 0
1 = cos θ ⇔ z/r

Y ±1
1 =∓

√
1
2 sin θ e±iϕ ⇔∓

√
1
2 (x± iy) /r

Y 0
2 = 1

2

(
3 cos2 θ − 1

)
⇔ 1

2

(
3z2 − r2

)
/r

Y ±1
2 =

√
3
2 sin θ cos θ e±iϕ ⇔

√
3
2 (x± iy) z/r2

Y ±2
2 =

√
3
2

1
2 sin2 θ e±2iϕ ⇔

√
3
2

1
2 (x± iy)

2
/r2

Y 0
3 = 1

2

(
2 cos3 θ − 3 cos θ sin2 θ

)
⇔ 1

2

(
5z2 − 3r2

)
z/r3

Y ±1
3 =∓

√
3
16

(
4 cos2 θ sin θ − sin3 θ

)
e±iϕ⇔∓

√
3
16 (x± iy)

(
5z2 − r2

)
/r3

Y ±2
3 =

√
15
2

1
2 cos θ sin2 θ e±2iϕ ⇔

√
15
2

1
2 (x± iy)

2
z/r3

Y ±3
3 =∓

√
5
2

√
1
8 sin3 θ e±3iϕ ⇔∓

√
5
2

√
1
8 (x± iy)

3
/r3.



(C.53)

Note that the phase factor oscillates like (−1)m for m = 1, 3, 5, · · · 0 but is always 1 for m < 0; this
is the signature of the Condon and Shortley phase convention.

The addition theorem relates the angle θ12 between two directions r̂1 = (θ1, ϕ1) and r̂2 = (θ2, ϕ2)
relative to a coordinate system of choice,

2l + 1

4π
Pl(cos θ12) =

l∑
m=−l

Y m∗l (r̂1)Y ml (r̂2). (C.54)

The product of two spherical harmonics can be expressed in terms of Wigner 3j symbols

Y ml (r̂)Y m
′

l′ (r̂) =

l+l′∑
L=|l−l′|

L∑
M=−L

(−1)M
√

(2l + 1)(2l′ + 1)(2L+ 1)

4π

×
(
l l′ L

0 0 0

)(
l l′ L

mm′M

)
Y −ML (r̂), (C.55)

An important relation is the integral over three spherical harmonics [25]

ˆ
Y m1

l1
(r̂)Y m2

l2
(r̂)Y m3

l3
(r̂)dr̂ =

√
(2l1 + 1)(2l2 + 1)(2l3 + 1)

4π

(
l1 l2 l3
0 0 0

)(
l1 l2 l3
m1 m2 m3

)
. (C.56)

In Dirac notation we have

〈l′m′|Y qk (r̂) |lm〉 = (−1)m
′

√
(2l′ + 1)(2k + 1)(2l + 1)

4π

(
l′ k l

0 0 0

)(
l′ k l

−m′ q m

)
. (C.57)
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Some special cases are:

• k = 0: The 3j symbols are zero unless l′ = l and m′ = m; hence, we find

〈l′m′|
√

4π Y 0
0 (r̂) |lm〉 = δl′,lδm′,m (C.58)

• k = 1: The first 3j symbol is zero unless l′ = l ± 1; hence, we find

〈l′m′|
√

4π/3Y q1 (r̂) |lm〉 = (−1)m
′+max(l,l′)

√
max(l, l′)

(
l′ 1 l

−m′ q m

)
δl′,l±1 (C.59)

• k = 2: The first 3j symbol is zero unless l′ = l, l ± 2; hence, we find

〈l′m′|
√

4π/5Y q2 (r̂) |lm〉 =


(−1)m

′+l+1

√
l (l + 1) (2l + 1)

(2l + 3)(2l − 1)

(
l 2 l

−m′ q m

)
l′ = l

(−1)m
′+l

√
3

4

l + l′

l + l′ + 1

√
max(l, l′)

(
l′ 2 l

−m′ q m

)
l′ = l ± 2.

(C.60)

C.10 Hermite polynomials

The Hermite differential equation is given by

y′′ − 2xy′ + 2ny = 0. (C.61)

For n = 0, 1, 2, . . . the solutions satisfy the Rodrigues formula

Hn(x) = (−1)nex
2 dn

dxn
(e−x

2

). (C.62)

These solutions are polynomials of degree n known as Hermite polynomials. Examples:

H0 (x) = 1 H4 (x) = 16x4 − 48x2 + 12

H1 (x) = 2x H5 (x) = 32x5 − 160x3 + 120x

H2 (x) = 4x2 − 2 H6 (x) = 64x6 − 480x4 + 720x2 − 120

H3 (x) = 8x3 − 12x H7 (x) = 128x7 − 1344x5 + 3360x3 − 1680x .

(C.63)

The generating function is

e2tx−t2 =

∞∑
n=0

Hn (x)
tn

n!
. (C.64)

Useful recurrence relations are

Hn+1 (x) = 2xHn (x)− 2nHn−1 (x) (C.65)

H ′n (x) = 2nHn−1 (x) (C.66)

and the orthogonality relation is given by

ˆ ∞
−∞

e−x
2

Hm (x)Hn (x) = 2nn!
√
πδmn . (C.67)
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C.11 Laguerre polynomials

Generalized Laguerre polynomials satisfy the following differential equation

xy′′ + (α+ 1− x)y′ + 2ny = 0. (C.68)

For n = 0, 1, 2, . . . the solutions satisfy the Rodrigues formula1

Lαn(x) =
1

n!
exx−α

dn

dxn
(e−xxn+α) (C.69)

=

n∑
m=0

(−1)m
(
n+ α

n−m

)
xm

m!

=

n∑
m=0

Γ(α+ n+ 1)

Γ(α+m+ 1)

(−1)m

(n−m)!

xm

m!
(C.70)

These polynomials are well-defined also for real α > −1 because the ratio of two gamma functions
differing by an integer is well-defined, (β)n = β(β + 1)(β + 2) · · · (β + n− 1) = Γ(β + n)/Γ(β). The
Laguerre polynomials of lowest degree are given by

Lα0 (x) = 1, Lα1 (x) = α+ 1− x, Lα2 (x) = 1
2 (α+ 1)(α+ 2)− (α+ 2)x+ 1

2x
2. (C.71)

Some special cases for α = 0 and α = −n are

L0(x) = 1, L1(x) = 1− x, L2(x) = 1− 2x+ 1
2x

2, L−nn (x) = (−1)n
xn

n!
. (C.72)

The generating function is

(−1)
m
tm

(1− t)m+1 e
−x/(1−t) =

∞∑
n=m

Lmn (x)
tn

n!
. (C.73)

The generalized Laguerre polynomials satisfy the orthogonality relationˆ ∞
0

xαe−xLαn(x)Lαm(x)dx = 0 for m 6= n (orthogonality relation) (C.74)

ˆ ∞
0

xαe−xLαn(x)dx = Γ(α+ 1)δ0,n . (C.75)

Useful recurrence relations are:

xLαn(x) = (2n+ α+ 1)Lαn(x)− (n+ α)Lαn−1(x)− (n+ 1)Lαn+1 (C.76)

d

dx
Lαn(x) = −Lα+1

n−1(x) = −[1 + Lα1 (x) + · · ·+ Lαn−1(x)]. (C.77)

Series expansions:

Lα+1
n (x) =

n∑
m=0

Lαm(x) (C.78a)

d

dx
Lαn(x) = −

n−1∑
m=0

Lαm(x) (C.78b)

d2

dx2
Lαn(x) =

n−2∑
m=0

(n−m− 1)Lαm(x). (C.78c)

1Different definitions can be found in the literature. Here we adhere to the definition of the generalized La-
guerre polynomials as used in the Handbook of Mathematical functions by Abramowitz and Stegun (Eds.), Dover
Publications, New York 1965. This definition is also used by MathematicaTM.
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Further, it is practical to introduce a generalized normalization integral

Jν(m,α) =

ˆ ∞
0

xα+νe−x[Lαm(x)]2dx. (C.79)

Some special cases are given by

J0(m,α) =

ˆ ∞
0

xαe−x[Lαm(x)]2dx =
Γ(α+m+ 1)

m!
(C.80)

J1(m,α) =

ˆ ∞
0

xα+1e−x[Lαm(x)]2dx =
Γ(α+m+ 1)

m!
(2m+ α+ 1) (C.81)

J2(m,α) =

ˆ ∞
0

xα+2e−x[Lαm(x)]2dx =
Γ(α+m+ 1)

m!
[6m(m+ α+ 1) + α2 + 3α+ 2] (C.82)

J−1(m,α) =

ˆ ∞
0

xα−1e−x[Lαm(x)]2dx =
1

α

ˆ ∞
0

xαe−x[Lαm(x)]2dx =
Γ(α+m+ 1)

m!

1

α
(C.83)

The integrals Jν(m,α) with ν > 0 are obtained from Eq. (C.80) by repetitive use of the recurrence
relation (C.76) and orthogonality relation (C.74); integrals Jν(m,α) with ν < 0 are obtained from
Eq. (C.80) by partial integration and use of the recurrence relation (C.77), the orthogonality relation
(C.74) and the special integral (C.75).
Selected ratios for m = n− l − 1 and α = 2l + 1 :

J4/J1 =
1

n
[35n2(n2 − 1)− 30n2(l + 2)(l − 1) + 3(l + 2)(l + 1)l(l − 1)] (C.84)

J3/J1 = 2
[
5n2 + 1− 3l(l + 1)

]
(C.85)

J2/J1 =
1

n

[
3n2 − l(l + 1)

]
(C.86)

J1/J1 = 1 (C.87)

J0/J1 =
1

2n
(C.88)

J−1/J1 =
1

2n

1

2l + 1
(C.89)

J−2/J1 =
1

8

1

(l + 1)(l + 1/2)l
(C.90)

J−3/J1 =
1

32n

3n2 − l(l + 1)

(l + 3/2)(l + 1)(l + 1/2)l(l − 1/2)
. (C.91)

C.12 Bessel functions

C.12.1 Spherical Bessel functions and Hankel functions

The spherical Bessel differential equation is given by

x2y′′ + 2xy′ +
[
x2 − l(l + 1)

]
y = 0. (C.92)

The general solution is a linear combination of two particular solutions, solutions jl (x), regular
(as xl) at the origin and known as spherical Bessel functions of the first kind, and solutions nl(
x), irregular at the origin and known as spherical Bessel function of the second kind (also called
Neumann functions). The spherical Bessel functions and the Neumann functions are real. The
general solution can also be written as a linear combination of two complex functions called Hankel
functions of the first (+) and second (−) type,

h±l (x) = nl (x)± ijl (x) (C.93)
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or, vice versa

jl (x) =
1

2
i
[
h−l (x)− h+

l (x)
]

(C.94a)

nl (x) =
1

2

[
h−l (x) + h+

l (x)
]
. (C.94b)

The spherical Bessel functions and Neumann functions are real and Hankel functions can be ex-
pressed in the form

jl (x) = Rl
sinx

x
+ Sl

cosx

x
(C.95)

nl (x) = Rl
sinx

x
− Sl

cosx

x
(C.96)

h±l (x) = (Rl ± iSl)
e±ix

x
, (C.97)

where Rl and Sl are polynomials in 1/x with real coefficients. In the case of Rl the polynomial is
of degree l and has parity (−1)l; the polynomial Sl is of degree l − 1 and has parity (−1)l−1. For
real x the polynomial (Rl ± iSl) is of the form

Rl ± iSl =

l∑
s=0

(±i)s−l

2ss!

(l + s)!

(l − s)!

(
1

x

)s
. (C.98)

For real argument x the functions jl (x) and nl (x) are real and the Hankel functions satisfy the
relation

h±l (x) = h∓l (x)∗.

The parity relations for the spherical Bessel, spherical Neumann and spherical Hankel functions are

jl(−z) = (−1)ljl(z) (C.99)

nl(−z) = (−1)l−1nl(z) (C.100)

h±l (−z) = (−1)l−1h∓l (z). (C.101)

An integral representation of the spherical Bessel function is

jl (kr) = 1
2 (−1)l

ˆ 1

−1

eikr cos θPl(cos θ)d cos θ (C.102)

Some special cases are given by

• Lowest orders:

j0 (x) =
sinx

x
, n0 (x) =

cosx

x
, h±0 (x) =

e±ix

x
,

j1 (x) =
sinx

x2
− cosx

x
, n1 (x) =

cosx

x2
+

sinx

x
, h±1 (x) =

(
1

x2
∓ i 1

x

)
e±ix

x
.

(C.103a)

• Asymptotic forms for x→∞

jl (x) ∼
x→∞

1

x
sin(x− 1

2 lπ) (C.104a)

nl (x) ∼
x→∞

1

x
cos(x− 1

2 lπ) (C.104b)

h±l (x) ∼
x→∞

e±i(x−
1
2 lπ)

x

[
1± i l(l + 1)

2x

]
. (C.104c)
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• Asymptotic forms for x→ 0

jl (x) ∼
x→0

xl

(2l + 1)!!

[
1− x2

2(2l + 3)
+ · · ·

]
(C.105a)

nl (x) ∼
x→0

(2l + 1)!!

(2l + 1)

(
1

x

)l+1 [
1 +

x2

2(2l − 1)
+ · · ·

]
. (C.105b)

• Orthogonality relations
ˆ ∞

0

jl (k1r) jl (k2r) r
2dr =

π

2k2
1

δ(k1 − k2) (C.106)

ˆ ∞
−∞

jl (x) jl′ (x) dx =
π

2l + 1
δl′l. (C.107)

Relation to Ricatti functions

The Ricatti functions ̂l (x), n̂l (x) and ĥ±l (x) are defined as

̂l (x) = xjl (x) (C.108a)

n̂l (x) = xnl (x) (C.108b)

ĥ±l (x) = xh±l (x). (C.108c)

Relation to Bessel functions

The spherical Bessel functions are related to half-integer Bessel functions

jl (x) =

√
π

2x
Jl+ 1

2
(x) for l = 0, 1, 2, . . . (C.109)

nl(x) = (−)l
√

π

2x
J−l− 1

2
(x) for l = 0, 1, 2, . . . (C.110)

C.12.2 Bessel functions

The Bessel differential equation is given by

x2y′′ + xy′ +
(
x2 − n2

)
y = 0. (C.111)

The general solution is a linear combination of two particular solutions

y = AJn(x) +BJ−n(x) for n 6= 0, 1, 2, · · · (C.112a)

y = AJn(x) +BYn(x) for all integer n (C.112b)

where A and B are arbitrary constants and J±n(x) are Bessel functions, which are defined by

J±n(x) =

∞∑
p=0

(−1)
p

(x/2)2p±n

p!Γ (1 + p± n)
. (C.113)

The Yn(x) are Neumann functions and are defined by

Yn (x) =
Jn(x) cosnπ − J−n(x)

sinnπ
for n 6= 0, 1, 2, · · · (C.114)

Yn (x) = lim
p→n

Jn(x) cos pπ − J−n(x)

sin pπ
for n = 0, 1, 2, · · · . (C.115)
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Extracting the leading term from the Bessel expansion (C.113) results in

J±n(x) =
(x/2)±n

Γ (1± n)

(
1− (x/2)2

(1± n)
+ · · ·

)
. (C.116)

The generating function is of the form

ex(z−1/z)/2 =

∞∑
n=−∞

Jn(x)zn, (C.117)

in particular for z = 1
∞∑

n=−∞
Jn(x) = 1.

Some differential recurrence relations are for any n ∈ Z

2J ′n(x) = Jn−1(x)− Jn+1(x) (C.118a)

2n

x
Jn(x) = Jn+1(x) + Jn−1(x) (C.118b)

d

dx
[xnJn(x)] = xnJn−1(x). (C.118c)

Some integral recurrence relations are for any n ∈ Z
ˆ
xn+1Jn(x)dx = xn+1Jn+1(x) (C.119)

ˆ
x−n+1Jn(x)dx = −x−n+1Jn+1(x). (C.120)

Completeness relations for any m 6= 0

J2
0 (x) + 2

∞∑
n=1

J2
n(x) = 1 (C.121)

∞∑
n=−∞

Jn+m(x)Jn(x) = 0. (C.122)

Addition relation

Jn(x+ y)

∞∑
m=−∞

Jm(x)Jn−m(y) (C.123)

Special cases:
Bessel functions with negative integer index

J−n(x) = (−1)nJn(x) for n = 0, 1, 2, · · ·
Y−n(x) = (−1)nYn(x) for n = 0, 1, 2, · · · .

Bessel function of n = 1/4

J1/4(x) =
(x/2)1/4

Γ (5/4)
(1− (x/2)2Γ (5/4)

Γ (9/4)
+ · · · ) (C.124)

J−1/4(x) =
(x/2)−1/4

Γ (3/4)
(1− (x/2)2Γ (3/4)

Γ (7/4)
+ · · · ) (C.125)
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Asymptotic expansions:

Jn(x) '
x→∞

√
2

π

1

x
cos
(
x− nπ

2
− π

4

)
(C.126)

Yn(x) '
x→∞

√
2

π

1

x
sin
(
x− nπ

2
− π

4

)
(C.127)

Integral expressions for µ+ ν + 1 > λ > 0

ˆ ∞
0

1

rλ
Jµ(kr)Jν(kr)dr =

kλ−1Γ (λ) Γ
(
µ+ν−λ+1

2

)
2λΓ

(
µ−ν+λ+1

2

)
Γ
(
µ+ν+λ+1

2

)
Γ
(
ν−µ+λ+1

2

) . (C.128)

Special cases 2µ+ 1 > λ > 0

ˆ ∞
0

1

rλ
[Jµ(kr)]

2
dr =

kλ−1Γ (λ) Γ
(

2µ−λ+1
2

)
2λ
[
Γ
(
λ+1

2

)]2
Γ
(

2µ+λ+1
2

) . (C.129)

C.12.3 Jacobi-Anger expansion and related expressions

The Jacobi-Anger expansions are is given by

eiz cos θ =

n=∞∑
n=−∞

inJn(z)einθ (C.130)

eiz sin θ =

n=∞∑
n=−∞

inJn(z)ein(θ−π/2) =

n=∞∑
n=−∞

Jn(z)einθ, (C.131)

where n assumes only integer values. Using
´ π
−π e

inαdα = δn,0 this leads to the following integral
representation of the Bessel function

ˆ π

−π
eiz sin θe−imθdθ =

n=∞∑
n=−∞

Jn(z)

ˆ π

−π
einθe−imθdθ = Jn(z), (C.132)

in particular

J0(z) =

ˆ π

−π
eiz sin θdθ =

ˆ π

−π
eiz cos θ′dθ′. (C.133)

This relation can be rewritten in several closely related forms

eiz sin θ = J0(z) +

n=∞∑
n=1

Jn(z)[einθ + (−1)ne−inθ] (C.134)

cos(z sin θ) = <(eiz sin θ) = J0(z) + 2

n=∞∑
n=2,4,···

Jn(z) cos(nθ) (C.135)

sin(z sin θ) = =(eiz sin θ) = 2

n=∞∑
n=1,3,···

Jn(z) sin(nθ). (C.136)
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C.13 The Wronskian and Wronskian Theorem

Let us consider a second-order differential equation of the following general form

χ′′ + F (r)χ = 0 (C.137)

and look for some general properties of this eigenvalue equation. The only restrictions will be that
F (r) is bounded from below and continuous over the entire interval (−∞,+∞). To compare full
solutions of Eq. (C.137) with approximate solutions the analysis of their Wronskian is an important
tool. The Wronskian of two functions χ1(r) and χ2(r) is defined as

W (χ1, χ2) ≡ χ1χ
′
2 − χ′1χ2. (C.138)

Problem C.1. If the Wronskian of two functions χ1(r) and χ2(r) is vanishing at a given value of r, then
the logarithmic derivative of these two functions are equal at that value of r.

Solution. The Wronskian W (χ1, χ2) is vanishing at position r if χ1χ
′
2 − χ′1χ2 = 0. This can be rewritten

as
d lnχ1

dr
=
χ′1
χ1

=
χ′2
χ2

=
d lnχ2

dr
.

Hence, the logarithmic derivatives are equal. 2

Problem C.2. Show that the derivative of the Wronskian of two functions χ1(r) and χ2(r), which are
(over an interval a < r < b) solutions of two differential equations χ′′1 + F1(r)χ1 = 0 and χ′′2 + F2(r)χ2 = 0,
is given by

dW (χ1, χ2)/dr = [F1(r)− F2(r)]χ1χ2.

This is the differential form of the Wronskian theorem.

Solution. The two functions χ1(r) and χ2(r) are solutions (over an interval a < r < b) of the equations

χ′′1 + F1(r)χ1 = 0 (C.139)

χ′′2 + F2(r)χ2 = 0, (C.140)

Multiplying the upper equation by χ2 and the lower one by χ1, we obtain after subtracting the two equations

dW (χ1, χ2)/dr = χ1χ
′′
2 − χ2χ

′′
1 = [F1(r)− F2(r)]χ1χ2.

In integral form this expression is known as the Wronskian theorem,

W (χ1, χ2)|ba =

ˆ b

a

[F1(r)− F2(r)]χ1(r)χ2(r)dr. (C.141)

The Wronskian theorem expresses the overall variation of the Wronskian of two functions over a given
interval of their joint variable. 2

Problem C.3. Show that the derivative of the Wronskian of two functions χ1(r) and χ2(r), which are (over
an interval a < r < b) solutions of two differential equations χ′′1 + F1(r)χ1 + f1(r) = 0 and χ′′2 + F2(r)χ2 +
f2(r) = 0, is given by

dW (χ1, χ2)/dr = [F1(r)− F2(r)]χ1χ2 + f1(r)χ2 − f2(r)χ1.

Solution. The two functions χ1(r) and χ2(r) are solutions (over an interval a < r < b) of the equations

χ′′1 + F1(r)χ1 + f1(r) = 0 (C.142)

χ′′2 + F2(r)χ2 + f2(r) = 0, (C.143)

Multiplying the upper equation by χ2 and the lower one by χ1, we obtain after subtracting the two equations

dW (χ1, χ2)/dr = [F1(r)− F2(r)]χ1χ2 + f1(r)χ2 − f2(r)χ1.
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In integral form this expression becomes

W (χ1, χ2)|ba =

ˆ b

a

[F1(r)− F2(r)]χ1χ2dr +

ˆ b

a

[f1(r)χ2 − f2(r)]χ1dr. (C.144)

The Wronskian theorem expresses the overall variation of the Wronskian of two functions over a given
interval of their joint variable. 2

For two functions χ1(r, ε1) and χ2(r, ε2), which are solutions of the 1D-Schrödinger equation
(C.137) on the interval a < r < b for energies ε1 and ε2, the Wronskian Theorem takes the form

W (χ1, χ2)|ba = (ε1 − ε2)

ˆ b

a

χ1(r)χ2(r)dr. (C.145)

Similarly, for two functions χ1(r) and χ2(r), which are (on the interval a < r < b) solutions for
energy ε of the 1D-Schrödinger equation (C.137) with potential U1(r) and U2(r), respectively, the
Wronskian Theorem takes the form

W (χ1, χ2)|ba =

ˆ b

a

[U2(r)− U1(r)]χ1(r)χ2(r)dr. (C.146)

C.14 Total differentials and partial derivatives

In this section we consider the function u, which is function of the variables x, y and z,

u = u(x, y, z) (C.147)

in the presence of a single constraint
g(x, y, z) = 0. (C.148)

In thermodynamics the constraint is given by the equation of state of the system under consideration.
In view of the constraint we can express x, y, z and u in terms of (y, z), (y, z) or (x, y), respectively,

z = z(x, y) or y = y(x, z) or x = x(y, z) (C.149)

u = u(x, y) or u = u(x, z) or u = x(y, z). (C.150)

C.14.1 Total differential

The total differential (also called exact differential),

dz =

(
∂z

∂x

)
y

dx+

(
∂z

∂y

)
x

dy (C.151)

can always be written in the form

dz = A(x, y)dx+B(x, y)dy, (C.152)

where

A(x, y) ≡
(
∂z

∂x

)
y

and B(x, y) ≡
(
∂z

∂y

)
x

, (C.153)

which implies (
∂A

∂y

)
x

=

(
∂B

∂x

)
y

=
∂2z

∂x∂y
. (C.154)

Properties:
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Path invariance: The integral
´
A(x, y)dx +

´
B(x, y)dy is independent of the integration path in

the x, y plane but only depends on the value of the function z at the beginning and the end point,

ˆ x2,y2

x1,y1

A(x, y)dx+

ˆ x2,y2

x1,y1

B(x, y)dy =

ˆ z2

z1

dz = z2 − z1, (C.155)

where z1 = z(x1, y1) and z2 = z(x2, y2).
Minus 1 rule: The variables x, y, z satisfy the relation (see Problem C.4)(

∂x

∂y

)
z

(
∂y

∂z

)
x

(
∂z

∂x

)
y

= −1. (C.156)

Problem C.4. Derive the minus 1 rule.

Solution. This rule follows by substituting the total differential

dy =

(
∂y

∂x

)
z

dx+

(
∂y

∂z

)
x

dz (C.157)

into Eq. (C.151)

dz =

(
∂z

∂x

)
y

dx+

(
∂z

∂y

)
x

(
∂y

∂x

)
z

dx+

(
∂z

∂y

)
x

(
∂y

∂z

)
x

dz. (C.158)

Since (
∂z

∂y

)
x

(
∂y

∂z

)
x

= 1 (C.159)

the differential is only satisfied if (
∂z

∂x

)
y

+

(
∂z

∂y

)
x

(
∂y

∂x

)
z

= 0, (C.160)

which can be rewritten in the form of the minus 1 rule. 2
Inversely, the expression (C.152) is in general not a total differential. Interpreting A(x, y) and B(x, y)

as partial derivatives,

A(x, y) ≡
(
∂zA
∂x

)
y

and B(x, y) ≡
(
∂zB
∂y

)
x

, (C.161)

we find that in general (
∂A

∂y

)
x

6=
(
∂B

∂x

)
y

. (C.162)

For this case we use the notation:
d&z = A(x, y)dx+B(x, y)dy. (C.163)

Only if the condition (C.154) holds the functions zA(x, y) and zB(x, y) are equal (up to a constant) and
Eq. (C.152) becomes a total differential.
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D

Square matrices

D.1 Nomenclature and notation

In this section a summary is given of nomenclature and properties of complex matrices of order
n× n. An arbitrary matrix A and its inverse are written as

A ≡ (aij) and A−1 ≡ (aij)
−1 ≡ (āij), (D.1)

where aij and āij represent the elements of these matrices with the convention that the upper or
contravariant index is the row index and the lower or covariant index is the column index. We
define the index order, upper precedes lower. Conforming to the standard matrix notation, the first
index is the row index of the matrix (aij) and the second index the column index. The transposed
matrix

AT ≡ Ã ≡ (ãij) = (aji ) (D.2)

is obtained by exchanging rows and columns, the complex conjugate

A∗ ≡ (aij)
∗ = (ai∗j ) (D.3)

by taking the complex conjugate of all elements, and the hermitian conjugate or conjugate transpose

A† ≡ (aij)
† = (aj∗i ) = Ã∗ (D.4)

is obtained by complex conjugation of the transposed matrix. The trace of the matrix A is defined
as

trA =

n∑
i=1

aii. (D.5)

The determinant of the matrix A is defined by the Leibniz expansion

|A| ≡ detA = det(aij) =
∑
P

(−1)pai1
1
· · · ain

n
= εi1,···ina

i1
1
· · · ain

n
, (D.6)

where the summation runs over all permutations P of the indices (i1, · · · iN ) = (1, · · ·N) and p ∈
{even, odd} is the order of the permutation; εi1,···in is a generalized Levi-Civita symbol.

With each element aij of the matrix we can associate a cofactor , cofactor(aij), which is defined as

the minor (sub-determinant) detAij corresponding to the sub-matrix Aij of that element, including

its sign (−1)i+j . The determinant detA can be expanded in terms of its minors detAij , c.q. cofactors,
with respect to row i,

detA =

n∑
i=1

(−1)i+jaij detA =

n∑
i=1

aijcofactor(aij). (D.7)
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This is called the Laplace expansion. Replacing the elements of the transposed matrix by their
cofactors we obtain the adjoint matrix, in which the elements are the cofactors of the transposed
matrix

Adj(aij) = cofactor(aji ) = (−1)i+j detAji . (D.8)

For square matrices we define the following special cases:

complex : hermitian A = A† ⇔ aij = aj∗i (D.9)

unitary A−1 = A† ⇔ āij = aj∗i (D.10)

real A = A∗ ⇔ aij = ai∗j (D.11)

real : symmetrical A = Ã ⇔ aij = aji (D.12)

orthogonal A−1 = Ã ⇔ āij = aji (D.13)

D.2 Properties

If the inverse exists, the matrix A satisfies the following properties:

• The determinant of an n × n matrix (aji ) is invariant under addition to a given column (or
row) a scalar multiple of another column (or rows)∣∣∣∣∣∣∣

a1
1 · · · an1
...

...

a1
n · · · ann

∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣
a1

1 + kaj1 · · · an1
...

...

a1
n + kaj1 · · · ann

∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣
a1

1 · · · an1
...

...

a1
n + ka1

i · · · ann + kani

∣∣∣∣∣∣∣ . (D.14)

• The determinant of a triangular n× n matrix (aji ), i.e. aji = 0 for i > j (or j > i), is equal to
the product of the diagonal elements,∣∣∣∣∣∣∣

a1
1 · · · an1

0
. . .

...

0 0 ann

∣∣∣∣∣∣∣ =

n∏
i=1

aii . (D.15)

This follows from the Leibniz expansion because the only nonzero product of n matrix elements
is the diagonal one.

• The determinant of the blockdiagonal (n+m) × (n+m) matrix of the n × n matrix A and
the m×m matrix B is equal to the product of the determinants of the matrices A and B,

∣∣∣∣AC0 B

∣∣∣∣ =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a1
1 · · · an1 c11 · · · cm1
...

...
...

...

a1
n · · · ann c1n · · · cmm

b11 · · · bm1
0

...
...

b1m · · · bmm

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= detAdetB. (D.16)

This follows from the Leibniz expansion because the only nonzero product of n + m matrix
elements are the ones containing only elements of the submatrices A and B. Note that the
r.h.s. is independent of C because the elements of the submatrix C appear in the determinant
only in combination with elements of the zero block.
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• The product rule for the determinants of two n× n matrices, A and B,

det AB = detA detB. (D.17)

• The determinant of A is non-zero

detA = det(aij) = ∆ 6= 0. (D.18)

Proof: Because the inverse exists, (āij) = (aij)
−1, we have (aij)(ā

i
j) = 1. Thus we obtain with

the aid of the product rule 1 = det[(aij)(ā
i
j)] = ∆ det(āij). This implies ∆ 6= 0.

• The determinant of A−1 equals the inverse of the determinant of A,

detA−1 = det(āij) = ∆−1. (D.19)

Proof: Because the inverse exists we have (with the aid of the product rule) 1 = det[(aij)(ā
i
j)] =

∆ det(āij) with ∆ 6= 0. This can be rewritten in the form (D.19).

• The determinant of A∗ equals the complex conjugate of detA,

detA∗ = det(ai∗j ) = det(aij)
∗ = ∆∗. (D.20)

Proof: det(ai∗j ) = εi1,···ina
i1∗
1
· · · ain∗

n
= (εi1,···ina

i1
1
· · · ain

n
)∗ = [det(aij)]

∗.

• The determinant of A is invariant under transposition

det Ã = detA. (D.21)

Proof: det(aij) = εi1,···ina
i1∗
1
· · · ain∗

n
= εi1,···ina

1
i1
· · · anin = det(aji ).

• Kronecker property:

aikā
k
j = δij and āii′a

i′

j = δij (D.22)

Proof:1 1 = (aij)(ā
i
j) = (aikā

k
j )⇒ (aikā

k
j ) = δij and 1 = (āij)(a

i
j) = (āika

k
j )⇒ āika

k
j = δij .

• The elements of the inverse matrix are given by

āij = ∆−1Adj(aij), (D.23)

where Adj(aij) is the adjoint matrix of (aij), i.e. Adj(aij) = cofactor(aji ) = (−1)i+j det(Aji ).

Proof: Let B = (αij) = Adj(aij) be the adjoint matrix of (aij). Then, the product of the
matrices A and B is given by

AB = (aij)(α
i
j) = (aikα

k
j ) =

n∑
i=1

aikcofactor(ajk) = (δij) detA = 1 ∆. (D.24)

To arrive at the result we used Eq. (D.7) and further
∑n
i=1 a

i
kcofactor(ajk) = 0 for i 6= j.2

Rewriting Eq. (D.24) we obtain at A−1 = B/∆, which had to be proven.

1Note that aikb
k
j 6= aki b

j
k. Therefore we need a convention. In matrix multiplication we use the column on row

summation convention (cij) = (aij)(b
i
j) = (aikb

k
j ). This means that we sum over the column index of the left matrix

and the row index of the right matrix.
2Note that this expression corresponds to a determinant with two identical columns.
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• The trace of the commutator of two (n× n) matrices, A and B, is zero,

tr [A,B] = 0 (D.25)

Proof: The trace trAB of the product of the matrices A and B is given by

trAB = tr(aikb
k
j ) =

n∑
i,k=1

aikb
k
i =

n∑
i,k=1

bki a
i
k = tr(bki a

i
l) = trBA.

Since [A,B] = AB −BA and tr (A+B) = trA+ trB this completes the proof.

• The trace of the product of three (n× n) matrices A, B and C is invariant under cyclic
permutation of these matrices,

trABC = trCAB = trBCA (D.26)

Proof: This follows by direct application of property D.25.

D.2.1 Unitary matrices

Let U = (ui
′

i ) be a unitary n × n matrix, U−1 = U† ≡ Ũ∗ ⇔ ūii′ = ui
′∗
i . The unitarity implies the

following properties:

• Kronecker property: The Kronecker property takes the following form

ui
′∗
i uij′ = δi

′

j′ and uii′u
i′∗
j = δij . (D.27)

Proof: Substituting the unitarity condition ūii′ = ui
′∗
i in Eq. (D.22) yields the desired result.

• Determinant - The determinant of a unitary n×n matrix U equals a complex number of unit
norm,

∆ ≡ detU = eiϕ. (D.28)

where ϕ ∈ R. For the special case ϕ = 0 the matrix U is called the special unitary matrix.
Proof: Using the properties D.20, D.30 and D.19 we find ∆∗ = detU∗ = detU† = detU−1 =
1/∆→ |∆|2 = 1, which implies (D.28).

• Matrix inversion rule: The elements of the inverse matrix are given by

ui∗i′ = e−iϕcofactor(ui
′

i ), (D.29)

Proof: This follows from Eq. (D.23) by substitution of ∆ = eiϕ.

• Determinant of hermitian conjugate: The determinant of U† follows with Eq. (D.21),

detU† = det Ũ∗ = detU∗ = e−iϕ. (D.30)

Proof: This follows from Eq. (D.21) and substitution of ∆ = eiϕ.

• Invariance of determinant under unitary transformation: The determinant of an arbitrary
n× n matrix A is invariant under unitary transformation

detUAU† = detA. (D.31)

Proof: Using the properties D.17 and D.28 we find det UAU†) = detU detA detU† =
eiϕ detAe−iϕ = detA.

• Invariance of trace under unitary transformation: The trace of an arbitrary n × n matrix A
is invariant under unitary transformation

trUAU† = trA. (D.32)

Proof: Using the properties D.26 and D.10 we find trUAU† = trU†UA = trU−1UA = trA.



E

Vector relations

E.1 Inner and outer products

(u,v,w) = u · (v ×w) = v · (w × u) = w · (u× v) (E.1)

u× (v ×w) = (u ·w)v − (u · v)w (E.2)

u× (v ×w) = − (v ×w)×u (E.3)

(u× v) · (w × z) = (u ·w)(v · z)− (u · z)(v ·w) (E.4)

E.2 Gradient, divergence and curl

E.2.1 Helmholtz theorem

Any vector A can be separated in an irrotational part A‖ and a rotational (solenoidal) part A⊥,
defined by

A = A⊥ + A‖ with ∇ ·A⊥ = 0 and ∇×A‖ = 0. (E.5)

E.2.2 Vector identities with a single vector differential operator

∇ · (Aφ) = (A ·∇φ) + φ(∇ ·A) (E.6)

∇× (Aφ) = −(A×∇φ) + φ(∇×A) (E.7)

∇ · (A×B) = B · (∇×A) + A · (∇×B) (E.8)

∇× (A×B) = (B ·∇)A−B(∇ ·A)− (A ·∇)B + A(∇ ·B) (E.9)

∇(A ·B) = (B ·∇)A + (A ·∇)B + B× (∇×A) + A× (∇×B) (E.10)

Examples:

∇ · r = 3⇔ ∂iri = 3 (E.11)

∇× r = 0⇔ εijk∂jrk = 0 (E.12)

(A ·∇)r = A⇔Ai∇irk = Ak (E.13)

∇ · ṙ = ∇× ṙ = (A ·∇)ṙ = 0 (E.14)

Combining Eqs. (E.10), (E.12) and (E.13) we find

∇(r ·A) = A + (r ·∇)A + r× (∇×A). (E.15)
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Similarly we find by combining Eqs. (E.10) with Eq. (E.9)

∇(ṙ ·A) = (ṙ ·∇)A + ṙ× (∇×A) (E.16)

d

dt
A =

∂

∂t
A + (ṙ · ∇)A. (E.17)

Special case:
∇rn = nrn−1 (r/r) = nrn−1r̂. (E.18)

For n ≥ 0 this expression is valid everywhere, including the origin. For n < 0 the expression is
irregular in the origin. In particular we have

∇1

r
= − r

r3
. (E.19)

Since

∇|r− r′| = r− r′

|r− r′|
= −∇′|r− r′| (E.20)

(as is easily verified in cartesian coordinates) we can generalize Eq. (E.18) to

∇|r− r′|n = n|r− r′|n−1 r− r′

|r− r′|
= −∇′|r− r′|n. (E.21)

E.2.3 Expressions with second derivatives

∇× (∇φ) = 0 (E.22)

∇ · (∇×A) = 0 (E.23)

∇× (∇×A) = ∇(∇ ·A)−∇2A (E.24)

Expressions for the laplacian:

∆rn = ∇ ·∇rn = nrn−2 (∇ · r) + nr·∇rn−2 = 3nrn−2 + n(n− 2)rn−2. (E.25)

We distinguish three cases:

∆rn = n(n+ 1)rn−2 is regular everywhere

{
for n ≥ 0 also at the origin

for n < 0 outside at the origin
(E.26)

Note that for n = −1 this expression yields ∇2(1/r) = 0 everywhere outside the origin. The case
n = −1 is special at the origin because the laplacian produces a flux out of any sphere centered
around the origin. With the Gauss divergence theorem we calculate for this flux

−
ˆ

∇
(
1/r3

)
r · dr = −

¸ (
1/r3

)
r · r̂dS = −4π. (E.27)

Thus, ∆r−1 can be regarded as a distribution and we write

∇2(1/r) = −4πδ(r). (E.28)
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ABS
Asymptotic Bound States, 91

Accumulated phase, 92
Action integral, 260
Addition theorem, 297
Adiabatic

change, 18
compression, 19
cooling, 18, 19
heating, 19

Adjoint matrix, 310
Allan and Misener, 246
Angular

variables, 42
Angular momentum, 269

cartesian components, 37, 281
commutation relations, 37, 281
decomposition in orthogonal coordinates, 36
decomposition in spherical coordinates, 36
magnetic quantum number, 36
operator, 31, 35

L - orbital, 32
orbital, 32
projection, 36
quantization axis, 38
states in Dirac notation, 40
z-component, 36

Anti-bonding molecular state, 132
Antisymmetrization

operator, 175
Anyon, 167
Asymptotic

bound states, 136
phase shift, 51, 52, 59

Atom
distinguishability, 103
size, 1
traps, 2

Atoms
unlike, 165

Average

ensemble, 279
quantum statistical, 278

Background
phase shift, 64
scattering length, 70, 148

Baker-Campbell-Hausdorff formula, 294
Barrier parameter, 79
Basis

vectors, 275
BE, see Bose-Einstein
BEC, 223

Relation to superfluidity, 246
Bernoulli

principle, 256
Bessel function

ordinary, J±n(x), 302
Ricatti, ̂l(x), 302
Riccati, 53
spherical, 51
spherical, jl (x), 300

Bethe-Peierls boundary condition, 63, 77, 78
Binary

interactions, 1
scattering events, 28

Bogoliubov
Ansatz, 234
excitation spectrum, 242

Bohr
radius, a0, vii

Bohr radius, 83
Boltzmann

constant, 6
equation, 154, 155

collision term, 155
collisional gas, 155
collisionless gas, 153

factor, 8
gas, 16
statistics, 208

Bonding molecular state, 132

321



322 INDEX

Born approximation, 89
Bose-Einstein

condensation, 208, 220
distribution function, 207
function, 293
statistics, 207, 208, 211

Boson, 164
Bosons, 166
Bound state

asymptotic, 91
resonance, 131
virtual, 74
weakly bound, 71

Bound-state
resonance, 65

Bra, 〈, 275
Breit-Wigner

distribution, 66
Broad resonance, 143, 144
Bulk modulus

bulk modulus, 245

Canonical
distribution

N-particle, 6, 8
single-particle, 6

ensemble, 5
partition function, 9

N-particle, 16
single-particle, 16

Cartesian
coordinates, 33

Center of mass, 272
Central

density, 10, 18
potential, 1, 2, 23, 31, 42, 104
symmetry, 1, 22

Centrifugal
barrier, 48
energy, Vrot(r), 42

Characteristic length, 61, 67
Chemical potential, 8, 204, 232

classical gas, 18
Classical

action integral, 260
limit, 219, 228
mechanics, 253
particle, 253
state, 260
statistics

deviation from, 208, 219

turning point, 50
Classically inaccessible, 50
Closed channel, 145
Closure

relation, 276
Cofactor, 309
Collision

cross section, 2, 47
elastic, 273
rate, 2
time, 18

Collisionless
limit, 165

Collisionless gas, 2
Collisionless regime, 18
Commutation relation

angular momentum, 37
position momentum, 33

Commutator
algebra, 37, 294

Compatibility
of dynamical variables, 276

Complete set
commuting observables, 276
eigenstates, 275

Completeness
of basis states, 275

Complex conjugate, 309
Compressibility, 245
Compton

wavelength, λC , vii
Condensate, 208, 223

density, 234
elementary excitations, 241
radius, 236
wavefunction, 234

Condensate fraction, 221, 223
Condensed matter physics, 235
Condon and Shortley

phase convention, 39, 40, 295, 296
Configuration

space, 254, 257
standard ordering convention, 173

Configuration space, 1, 13
Confinement, 2
Conjugate transpose, 309
Conservation

angular momentum, 268, 269
canonical momentum, 268
energy, 266, 267, 273
momentum, 267, 273
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Conservative
force, 256, 257
potential, 263
system, 267

Constant of the motion, 46, 288
angular momentum, 269
canonical momentum, 268
energy, 267

Construction
operator, 177

Construction operator formalism, 177
Construction operators, 178
Continuity condition, 59
Contravariant, 309
Cooling

adiabatic, 19
evaporative, 19

Coordinates
cartesian, 33
center of mass, 272
cylindrical, 34
generalized, 254
polar, 32, 33, 36
position, 167, 279
relative, 272
spin, 167, 281

Correlation
length, 191

Correlation function
single-particle, 189, 195

Correlation operator, 180
Correlations

kinematic, 168
Correspondence rule

momentum, 32, 290
position, 32

Coupled channels, 145
Covariant, 309
Creation operators, 178
Criterion for BEC, 225
Critical

temperature (Tc), 219
velocity, 247

Landau, 247
Cross section, 2, 57

collision, 47
differential, 113, 114, 156, 160
energy dependence, 47
partial, 113, 120
total, 113, 155, 160

Current density, 113

Cylindrical
coordinates, 34

d’Alembert
principle, 255

De Broglie wavelength, 4, 28, 164
thermal, 10, 28

Degeneracy, 276
exchange, 165
parameter, 10, 17, 18, 219, 228

evaporative cooling, 21
local, 209

quantum, 10, 208, 219, 228
regime, 28

Degree
Legendre polynomials, 295

Degree of freedom, 253
Delta function potential, 94
Density

central, 18
Distribution for Bose gas, 209
distribution for fermions, 227
entropy, 214
matrix, 277
number, 214
of occupation, 276
operator, 277
probability, 276

Density fluctuations, 185
Density matrix

one-body, 189, 196
Density of states, 13
Determinant

cofactor, 309
minor, 309
sub-determinant, 309

Deuterium
ortho, 169
para, 169

Deuteron, 73, 78, 169
Differential

exact, 306
total, 306

Differential cross section, 114
Differential equation

spherical-Bessel, 51
Dilute gas, 1
Dimple trap, 14, 19
Dirac

formalism, 275
notation, 40
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Dirichlet
series, 293

Discrete set of states, 5
Dispersion

linear, 242
quadratic, 242
relation, 241

Distinguishable
atoms, 103

Distinguishable atoms, 103
Distorted wave, 52, 54
Distribution

Bose-Einstein, 207
canonical, 6
equilibrium, 161
Fermi-Dirac, 208
Maxwellian, 11

Distribution function
two-body, 23

Dynamical
evolution, 253
phase, 240, 241
variable, 257, 275

compatibility, 276
Dynamical phase, 288
Dynamics, 253

εijk - Levi-Civita tensor, 32
Effective

attraction, 98
hard sphere diameter, 60, 61, 72
potential

for Feshbach resonance, 140
rotational barrier, 48

range, 47, 67, 81, 85
expansion, 57, 67, 81
square well, 67, 80

repulsion, 98
volume

definition, 10
harmonic trap, 12

Eigenstate
complete set, 275

Eigenvalues, 167
Einstein

summation convention, 32
Elastic

scattering, 103
Electrostatics, 93
Elementary excitations, 241
Energy

complex, 49
conservation, 267
internal, 8, 204
kinetic, 256
potential, 267
reduced, 49
resonance, 141
shift

caused by pair interaction, 98
Ensemble

average, 279
summation

unrestricted, 204
Entropy, 7, 18, 204

density, 214
removal, 17

Equation of state
Van der Waals, 25

Equilibrium distribution, 161
Ergodic hypothesis, 3
Ergodicity, 3
Euler

equation, 244
Euler-Lagrange

equations, 261
Evaporative cooling, 19
Evolution

dynamical, 253
Exact differential, 306
Exchange

degeneracy, 165
Exchange operator, 167
Excitation

Bogoliubov spectrum, 242
Excluded volume, 25, 26
Expansion

multipole, 295
Extension, 180

FD, see Fermi-Dirac
Fermi

hole, 198
Fermi energy, 229
Fermi’s golden rule, 156
Fermi-Dirac

distribution function, 208
function, 293
statistics, 208, 211

Fermion, 164
Fermions, 166
Feshbach
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resonance, 142
resonance field, 144
resonance width, 144

Feshbach coupling strength, 148
Feshbach resonance, 142, 145, 148

criterion, 149
shift, 139

Feshbach-Fano partitioning, 131
Field

operator, 184
Field operators, 184
Flow

irrotational, 240
potential, 240
rotation free, 240

Fluid
bulk modulus, 245
compressibility, 245

Fock space, 178
Force

conservative, 256, 257
generalized, 258
reaction, 254

Formalism
density matrix, 277

Franck-Condon factor, 136
Free-molecular gas, 2
Fugacity, 192, 209, 215, 218, 227
Fugacity expansion, 215, 218, 227
Full rotation group, 46

Galilean
invariance, 262
principle of relativity, 262
transformation, 262, 271

Gamma function, 292
Gas

Boltzmann, 16
collisional properties, 1, 48, 103
collisionless, 2
dilute, 1
free-molecular, 2
homogeneous, 2, 212
hydrodynamic, 2
ideal, 2, 3, 222
inhomogeneous, 2, 212
kinetic properties, 48
metastable, 28
nearly ideal, 1, 61
non-thermal, 2
pairwise interacting, 1

parameter, 61, 83
quasi-classical, 3
single-component, 2
thermodynamic properties, 16, 48
weakly interacting, 1, 61, 83
weakly interacting classical, 27

Gaussian shape, 12
Generalized

coordinates, 254
electromagnetic potential, 259
force, 258
potential function, 258
velocity, 254

Gibbs factor, 206
Gibbs paradox, 6
Good quantum number, 46, 288
Grand canonical

distribution, 203
ensemble, 204

Grand Hilbert space, 178
Grand partition function, 211
Grand partition sum, 204
Grand potential, 214
Gross-Pitaevskii equation, 234
Ground state

occupation, 207

Halo state, 63, 78, 91
Hamilton

formalism, 269
integral principle, 260

Hamiltonian
central field, 31

Hankel function
Riccati, 53

Hankel functions
h±l (x), 300

Hard sphere
diameter, 47, 72
potential, 56

Harmonic
trap, 14, 19
trapping potential, 12

Harmonic oscillator
ground state, 235
length, 235

Healing length, 236
Heat reservoir, 5, 160, 204
Heisenberg

equation of motion, 232, 285
picture, 282, 285
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uncertainty relation, 9
Helium, 1, 246
Helmholtz

theorem, 313
Hermite

differential equation, 298
polynomials, 298

degree, 298
Hermitian

conjugate (h.c.), 309
matrix, 310
operator, 41, 275

Hilbert space, 275
Hole

Fermi, 198
Holonomic system, 253
Homogeneous

space, 253
time, 253

Homogeneous gas, 2
Hydrodynamic, 2
Hydrogen, 133

ortho, 169
para, 169

Ideal gas, 2, 3, 222
Identical atoms, 173
Identity

operator, 276
Incompatible

operators, 276
Index

column, 309
contravariant (upper), 309
covariant (lower), 309
order, 309
resonance, 65, 80
row, 309

Indistinguishability, 173
Indistinguishable

atoms, 103
Inert gas, 1
Inertial

reference frame, 253
Inhomogeneous gas, 2
Integral

quantum statistical, 210
Integral rule

Leibniz, 294
Interaction

binary, 2

energy, 28, 98, 101
pairwise, 2, 23, 231
point-like, 93
range, 47, 81
strength, 24, 47, 61
volume, 24, 25

Interatomic
distance, 28
potential, 1

Internal energy, 8, 204
Invariance

manifest, 45
under galilean transformation, 262
under rotation, 46

Inversion
operator, 45

Inviscid flow, 240
Irregular solution, 51, 53
Irrotational

vector, 313
Irrotational flow, 240
Isentropic change, 18
Isotropic, 1, 253

Jacobi-Anger
expansion, 304

Kapitza, P.L., 246
Ket, 〉, 275
Kinematics, 253

scattering, 273
Kinetic state, 1

Lagrange
equations, 257, 258, 261
formalism, 260

Lagrangian, 257
Laguerre

polynomials, 299
degree, 299
generalized, 299

Landau
criterion for superfluidity, 246
critical velocity, 247

Landau, L.D., 246
Legendre

associated polynomials, 39, 295
differential equation, 39
polynomial

degree, 295
parity, 295

polynomials, 295
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Leibniz
integral rule, 294

Length
characteristic, 61
correlation, 191
harmonic oscillator, 235
scattering, 61

Length scales, 28
Lennard-Jones potential, 25
Level

virtual, 74
Levi-Civita tensor - εijk, 32
Levitation, 2
Liouvill theorem, 153
Local density approximation, 209
Logarithmic derivative, 20, 59
Lorentz

force, 259
Lorentz lineshape, 66
Lowering operator, 38

Mass, 263
center of, 272
point-like, 253
reduced - mr, 31, 273

Matrix
adjoint, 310, 311
complex conjugate, 309
conjugate transpose, 309
hermitian, 310
hermitian conjugate, 309
inverse, 309
Laplace expansion, 310
order, 309
orthogonal, 310
real, 310
representation, 281
symmetrical, 310
transposed, 309
triangular, 310
unitary, 310

determinant rule, 312
inversion rule, 312
Kronecker property, 312
special, 312
transformation, 312

Matter wave, 28
Maximum density, 10
Maxwellian distribution, 11
Mean-free-path, 2
Mechanical system

closed, 266
conservative, 267

Mechanical work, 8, 204
Metastable

gas, 28
Microstate, 3
Minor (sub-determinant), 309
Mixed state, 279
Molecular chaos, 155
Moment of distribution

first moment, 11
second moment, 11

Momentum
angular, see Angular momentum, 269
canonical, 268
conservation, 268
electromagnetic, 271
kinetic, 271
operator, 32
radial, 32, 42
representation, 280
space, 1, 13
transfer, 273

Most probable momentum, 10
Motion

free, 253
subject to constraint, 253

Multipole expansion, 295

Narrow resonance, 143, 144
Nearly ideal gas, 1, 61
Neumann function

Riccati, 53
spherical, 51

Neutron, 78, 169
Newton

equation of motion, 254
Non-condensed fraction, 220
non-degenerate regime, 28
Non-thermal gas, 2
Nonholonomic system, 253
Number

operator, 178
state, 177

Number density, 214
Number-density operator, 185

Observable, 46, 275
Occupation

density of, 276
number representation, 177, 178
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phase space, 9, 153, 155
Occupation number

representation, 164
Occupation number representation, 177, 179
Off-diagonal order

long-range, 193
Open channel, 145
Operator

antisymmetrization, 175
construction, 177
density, 184, 277
derivative, 283
exchange, 167
field, 184
hermitian, 167, 277
idempotent, 277
identity, 276
lowering, 38
norm conserving, 167
observable, 168
parity, 45
permutation, 168
Raising, 38
shift, 38
space inversion, 45
symmetrization, 175

Optical theorem, 115
Orbital

spin-orbital, 169
Order

off-diagonal, 193
Order parameter, 234
Ortho-deuterium, 169
Ortho-hydrogen, 169
Orthogonal

matrix, 310
Oscillator

harmonic, 15
linear, 15

p wave, see Scattering
Pair correlation function, 24
Pair-correlation

function, 197
Pairwise interactions, 1
Para-deuterium, 169
Para-hydrogen, 169
Paradox of Gibbs, 6
Parameter

barrier, 79
Parity, 119, 124, 125, 127

associated Legendre functions, 39, 295
conservation, 46
even, 46
Legendre polynomials, 119, 295
odd, 46
of permutation, 172
operator, 45
spherical harmonics, 40, 296

Parseval relation, 276
Partial-wave expansion

definition, 106
plane wave, 107

Particle
classical, 253
mass, 263
reservoir, 204

Partition function
canonical, 6, 8, 9

Partition sum
grand, 204

Pauli
exclusion principle, 163, 168, 172

Permutation, 172
parity, 172

Permutation operator, 168
Perturbation theory, 101
Phase

dynamical, 240, 241, 288
Phase convention

Condon and Shortley, 39, 40, 295, 296
Phase shift

asymptotic, 51, 52, 59
background contribution, 64
p-wave, 83
power-law potentials, 89
resonance contribution, 64

Phase space, 1, 260
continuum, 5
density, 9
occupation, 9, 153, 155

Phase transition
gas to liquid, 27

Physically relevant solutions, 41
Plane wave

solutions, 164
Plane wave solutions, 4
Point charge, 93
Point interaction, 93
Polylogarithm, 292
Position

coordinates, 167
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operator, 32
representation, 32, 279

Potential
central, 2, 23, 103
conservative, 263
contact, 231
delta function, 94, 101
effective

for Feshbach resonance, 140
rotational barrier, 48

energy, 263, 267
field, 263
flow, 240
hard sphere, 48
interatomic, 1
isotropic, 1
Lennard-Jones, 25
piece wise constant, 58
power-law, 87
pseudo, 93
radius of action, 1
range, 1, 28, 47, 81
shape, 14
short-range, 1, 2, 23, 48, 81, 231
singlet, 132
spherical well, 48, 58, 78
triplet, 132
uniform, 263
Van der Waals, 1, 25, 47
well depth, 58
zero-range, 63, 76

Power-law
potentials, 87
trap, 14

dimple, 14, 19
harmonic, 14, 19
isotropic, 14
spherical linear, 14
square well, 14

Predissociation, 131
Pressure, 8, 204

ideal classical gas, 17
weakly interacting classical gas, 27

Principle
Bernoulli, 256
d’Alembert, 255
Hamilton, 260
statistical, 3, 5
superposition, 275

Probability
amplitude, 276

density, 276
Proton, 78
Pseudo potential, 93
Pseudovector, 46
Pure potential flow, 240

Quantization
axis, 37
by correspondence, 32

Quantum
degeneracy, see Degeneracy
gas

degenerate, 28
non-degenerate, 28

resolution limit, 9
statistical average, 278
statistics, 209

Quantum number
good, 46, 288
l, ml - orbital angular momentum, 40, 281
vibrational, 62

Quantum statistical
integral, 210
phenomena, 173

Quantum statistics
neutral atom, 164
nucleus, 164

Quasi-classical
approximation, 212
behavior, 10
continuum, 3

Quasi-classical approximation, 208
Quasi-classical approximation-D-dependence, 210
Quasi-equilibrium, 27
Quasi-static change, 18

Radial
distribution function

classical, 24
momentum, 32
wave equation, 31, 42, 48

Radius
Bohr, a0, vii
thermal, 236
Thomas-Fermi, 236

Radius of action, 1, 58
see range of interaction potential, 81

Raising operator, 38
Range, 78

effective, 47
square well, 67, 80
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of interaction potential, 28, 47, 81
of potential, 1
Van der Waals, 82, 89

Reaction forces, 254
Recombination

three-body, 131
Reduced

energy, 49
mass - mr, 31, 273
radial wave equation, 43
radial wavefunction, 43

Regular solution, 51, 53
Regular wavefunctions, 41
Relative coordinates, 272
Relativity

galilean principle, 262
Representation

momentum, 280
occupation number, 164, 177
of Hilbert space, 275
position, 279

Representation-free notation, 275, 281
Resonance, 71, 74

at threshold, 65, 69
bound state, 91
bound-state, 65
Breit-Wigner, 64, 66, 79
energy, 65, 141
Fano, 131
Feshbach, 131
index, 65, 80
near threshold, 66
optical, 66
phase shift, 64
position, 149
s-wave, 64, 79
scattering length, 70
shape, 48, 90
spectral width, 66, 80
virtual bound state, 66
width, 149
zero-energy, 64, 65, 70

Reversible process, 18
Rheonomous, 253
Riccati

Bessel function, 52
Hankel function, 53

Riemann
zeta function, 293

Riemann surface
bound states, 50

negative sheet, 50
positive sheet, 50
virtual states, 50

Rodrigues formula, 295
Rotational

barrier, 48, 89
energy, 48
energy barrier, 42
quantum numbers, 40, 281

Rotational constant, 134
Run-away evaporative cooling, 21

S matrix, 52
s wave, see Scattering
s-wave

resonance, 64, 79
s-wave regime, 50
Scattering

amplitude, 57, 103, 105, 107, 111, 112, 114,
119–121, 156, 157

forward, 115
imaginary part, 110
partial wave, 110
s-wave, 111
singlet and triplet, 124, 125, 127

angle, 105
azimuthal, 105
integration, 114

channel, 124
open and closed, 131, 145

elastic, 103
isotropic, 160
length, 47, 60, 61, 79, 90, 91, 98, 103, 116,

131, 231
approximation, 67–70, 72
average, 91
background, 148
background contribution, 70
l-wave, 83
near Fesbach resonance, 148
near resonance, 87
relation to binding energy, 63
s-wave, 47, 83, 120
triplet, 148
weakly bound s-level, 63, 87

matrix, 52
p-wave, 120
parameters, 51
plane, 105
resonance, 86

Schrödinger
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equation, 4, 42, 48, 164
hamiltonian, 32
picture, 282

Scleronomous, 253
Second quantization, 164, 177, 187
Selection rule

electric-dipole transitions, 40
Semi-classical approximation, 217
Separation

of angular variables, 38
of radial and angular motion, 31, 105

Shape resonance, 48, 90
Shift operators, 38
Short-range, 1

potential, 48
potentials, 81

Single-component gas, 2
Singlet potential, 132
Size

atomic, 1
Size of atom cloud, 2, 28
Slater

determinant, 169, 171
Slater determinant, 174
Solenoidal

vector, 313
Sound, 242
Space

configuration, 254, 257
field free, 266
homogeneity, 253
inversion operator, 45
isotropy, 253
phase, 260
velocity, 257

Space inversion, 157
Spectrum

of eigenvalues, 275
Speed of an atom, 2
Speed of sound, 242
Spherical

coordinates, 32, 33, 36
harmonics, 296

addition theorem, 297
Spherical linear trap, 14
Spin

coordinate, 281
coordinates, 167
relation with statistics, 163

Spin-polarized hydrogen, 133
Spin-statistics theorem, 163, 166

Spinor, 281
discrete, 282
field, 282

Spinorbital, 169, 282
Square well, 14
Standard ordering convention, 173
State

classical, 260
halo, 91
mixed, 279
statistical mixture, 279

State inversion, 157
Statics, 253
Statistical

mixture, 279
operator, 205, 279
principle, 3, 5

Statistics
anyon, 167

Superfluidity, 246
Superposition principle, 275
Symmetrization

operator, 175
Symmetry

space inversion, 157
state inversion, 157
time reversal, 157

T matrix, 156
Tensor

product, 282
Thermal

cloud, 208, 218, 221, 222
De Broglie wavelength, 10, 28
equilibrium, 1

deviation from, 160
radius, 236
relaxation, 160
relaxation time, 160, 161
wavelength, 28

Thermal radius, 12
Thermalization, 160

in fermionic gases, 120
time, 19

Thermodynamic
limit, 234
properties, 8, 211, 214

Thermodynamic limit, 221
Thermodynamics

of a gas, 1
Thomas-Fermi
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approximation, 235
profile, 236
radius, 236

3j symbols, 297
three-body recombination, 131
Time

homogeneity, 253
Time reversal, 157
Total differential, 306
Total-number operator, 182, 183
Transformation

galilean, 271
Transposed matrix, 309
Transposition, 172
Trap

harmonic, 12
magnetic, 12

Trap parameter, 14
Trapped gas

central density, 10
cloud size, 28
effective volume, 10
maximum density, 10
thermal radius, 12

Triplet potential, 132
Two-body distribution function, 23

unitarity, 116
Unitarity limit, 115
Unitary

matrix, 310
Universal

form, 78
two-body scattering, 140

Universality
scattering length, 63

Unlike
atoms, 103, 165

Vacuum state, 179
Van der Waals

coefficient, 90
equation of state, 25, 27
potential, 1, 25, 47, 90
range, 82, 89

Variable
dynamical, 257

Vector
axial, 46
irrotational, 313
polar, 46

pseudo, 46
relations, 313
rotational, 313
solenoidal, 313

Velocity
operator, 290
probability-flow, 290
space, 257

Vibrational
quantum number, 62

Virial coefficient
second, 27

Virtual
bound state, 66, 74
displacement, 255
level, 66, 74

Wall-free confinement, 2
Wave

distorted, 105
incident, 104
number, 4, 28, 49, 164
scattered, 104
vector, 4, 164

Wavefunction
distorted, 52

Wavelength
Compton, λC , vii
De Boglie, 10, 28
De Broglie, 164

Weakly bound s-level, 63
Weakly bound state, 71
Weakly interacting, 1, 61, 83
Well

depth, 58
parameter, 61

Wigner
3j symbol, 297
solid, 28

Work
mechanical, 8, 204

Wronskian
theorem, 54, 305

Zero-energy
resonance, 64, 65, 70

Zero-range potential, 63, 76
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