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Introduction

The course Atomic Physics offers a systematic introduction in atomic structure theory. Ironically, it
deals with the internal structure of what was once was considered to be “the smallest unit of matter”
[I11]. The exchange of energy between atoms and their environment is not part of the course as this
forms a huge topic in itself. Furthermore, the course is not simply about the physics of the hydrogen
atom. Hydrogen is only the first of the more than 100 elements listed in the periodic system (see
Appendix . Moreover, many more atomic forms can be created by ionizing the elements or by
combining charged particles into exotic atoms like positronium or muonium. In many cases the
understanding of such atoms calls upon physical principles which play no role in hydrogen.

Atomic Physics builds on the great scientific advances of the 19" century in the theory of
Classical Mechanics and Electromagnetism. It took the discovery of the electron (S particle) by
Joseph Thomson in [30] and the helium nucleus (o particle) by Ernest Rutherford in [I05] before
the foundation of the modern atomic structure theory could be established by Niels Bohr [18] 19, 20].
The Bohr atom was proposed in the language of the “old quantum theory”. We use the well-known
modern quantum mechanics as developed by Erwin Schrédinger and Paul Dirac [109, [34]. Actually,
the advances in atomic physics over the passed century mark, more in general, the discovery of deep
new insights in physics, often achieved in close dialogue with experiment. For Atomic Physics we
made a selection of some of the finest of these advances, keeping in mind the main goal of the course:

Understanding the structure and properties of all atomic systems.

This goal may seem ambitious at first sight but fortunately many-electron atoms have inherited a
lot from the simple hydrogen atom. For instance, all atoms remain close to spherical in symmetry
because the electrostatic interaction is dominant. So, by adding only a few new ingredients our
goal can be reached for all but a few notable exceptions. Moreover these ingredients are already
well-know for most students: quantum statistics and the Pauli principle. The two electrons of the
helium atom teach us how these concepts emerge from experiment. Furthermore, we learn about
exchange, which is a new symmetry - absent in classical physics. Along the way we say farewell to
exact solutions, but in return we learn beautiful new concepts, such as the selfconsistent field of
Hartree and Fock [62] 63, [47, [1T2] and the many-body formalism of Jordan and Wigner [70]. Without
entering into numerical details we learn how to analyze the energy levels of valence electrons, in
particular the theoretical underpinning of the three Hund rules, which formulate the criteria for the
atomic ground state [65]. In this way we succeed in our goal for most of the elements of the periodic
system and many more exotic atomic variations. To understand the intriguing exceptions we need
the Hartree-Fock numerics but this falls outside the scope of the course.

Outline

The course consists of 12 lectures covering 9 chapters, 4 of which focus on the mathematics of the
material. Our task is organized while keeping in mind the hierarchy of electrostatic interaction
phenomena as sketched in the principal structure scheme shown on the next page. In all cases the
electrostatic interaction is dominant but the theory depends strongly on the presence or absence of

XV
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principal structure scheme

atom/ion

electrostatic interaction
‘ Al

“one-electron” two-electron “N-electron”
Pauli principle, exchange Pauli principle
* | exchange
“hydrogen-like” “helium-like”
“hydrogenic” “alkali-like” “heliogenic” “earth-alkali-like”
no screening * weak screening *
strong screening strong screening strong screening

Hierarchy of electrostatic interactions in atoms/ions as a guideline for their description.

Pauli exclusion and exchange as well as the level of screening of the nuclear charge by core electrons.
The first 5 lectures focus on hydrogen-like, one-electron atoms, the rest of the course covers the many-
electron case with increasing levels of complexity. The pivoting point is the helium atom (Chapter
6), which perfectly serves to introduce the role of the Pauli principle and the exchange interaction,
which dominate the later chapters. To clearly separate the story line from the background material
we include a set of appendices with supplemental information.



Quantum motion in a central potential field

The motion of particles in a central potential plays an important role in atomic and molecular
physics. To understand the properties of the hydrogen atom we rely on careful analysis of the
motion of the electron in the Coulomb field of the nucleus. Likewise, many properties related
to interactions between atoms, such as collisional properties, can be understood by analyzing the
relative atomic motion under the influence of central forces.

In view of the importance of central forces we summarize in this chapter the derivation of the
Schrodinger equation for the motion of two particles, say of masses m; and my, interacting through
a central potential V(r), » = |r; — ra| being the radial distance between the particles. For such
potentials, purely depending on the relative distance between the particles, it is (in the absence of
externally applied fields) practical to eliminate the center of mass motion of the pair and represent
the relative motion by a single particle of reduced mass m,. = mims/(m1+msz) in the same potential
field (see Appendix. To further exploit the symmetry we can separate the radial motion from the
rotational motion, obtaining the radial and angular momentum operators as well as the hamiltonian
operator in spherical coordinates (Section . Knowing the Hamiltonian we can write down the
Schrodinger equation (Section and specializing to specific angular momentum values we obtain
the radial wave equation. The radial wave equation is the central equation for the description of the
radial motion associated with specific angular momentum states.

The approach just described amounts mathematically to the method of separation of variables
for solving differential equations. This suggests to extend the discussion to cylindrical coordinates,
as this opens - with little additional effort - a window onto related problems like quantization of
electronic orbitals into Landau levels as well as the description of the flow fields of quantized vortices.
In these cases the central potential is absent but the solutions are rotational in character; hence,
show a form of central symmetry.

1.1 Hamiltonian

The classical Hamiltonian for the motion of a particle of (reduced) mass m, in the central potential
V(r) is given by the sum of the kinetic and potential energy,

H=1m.v*+V(r), (1.1)

where v = 1 is the velocity of the particle with r its position relative to the potential center. In
the absence of externally applied fields p = m,v is the canonical momentum of the particle and the

Hamiltonian can be written a )

P
H =
0 2m,.

+V(r). (1.2)

1In the presence of an external electromagnetic field the non-relativistic momentum of a charged particle of mass
m and charge g is given by p = mv 4 gA, with mv its kinetic momentum and gA its electromagnetic momentum.
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To exploit the central symmetry we separate the radial motion from the angular motion by writing
the Hamiltonian in the form (see Problem [1.1)

- 2m,,

2
Hy— 1 <p§ + 1;2) LV (r£0). (1.3)

Here p, = #-p (see Fig. is the radial momentum, with # = r/r the unit vector in radial direction,
and L = r x p the orbital angular momentum with respect to the potential center. As Eq. (|1.3)
is well-defined only outside the origin any result based on this expression should be tested for its
validity at the origin.

Problem 1.1. Derive the vector relation (see also Appendix @
(F-p)*+(F xp)* =p”. (1.4)

Solution. In the Einstein notation with summation over repeating indices the cartesian components of
 x p are given by (¥ x p); = €i;x7;jpr, where 4,5,k € {z,y, 2z} and €% is the Levi-Civita tensor

1 for even permutations of z,y, z
Eijk = 0 fori=jori=korj=k (1.5)

—1 for odd permutations of x,y, z.
Using the summation convention, the contraction of the Levi-Civita tensor is given by
€ijk€ilm = 0;10km — OjmOki.
Since L? = L;L; we obtain
(# x p)° = (ciju?ipr) (EitmPipm) = (8;10km — OimOkt) F5DkF1Pm

= (#;7;) (pepr) — 7ipi7kpr = P° — (F- D)% 0

1.1.1 Quantization of the Hamiltonian - basic commutation relations

The transition from classical mechanics to quantum mechanics is made by postulating that the dy-
namical variables for position and momentum correspond to the following hermitian operators in the
position representation, p — —ithV and r — §E| This is known as quantization by correspondence.
With this quantization rule, Eq. becomes the quantum mechanical Hamiltonian and takes the
familiar form of the Schridinger Hamiltonian for a particle in a central field,

52
B 2m,.

Ho = A+ V(r). (1.6)
Although the quantization went smoothly in this case, in general we should watch out for ambiguities
in the application of the correspondence rules. For instance, whereas in classical mechanics the
expressions p, = I - p and p, = p - ¥ are equivalent this does not hold for p, = —ih(V - ) and
pr = —ih (T - V) because & = r/r and —ihAV do not commute.

Up to this point we did not make any choice of coordinate system (metric). To deal with non-
commutativity for a given coordinate system the operator algebra has to be completed with commu-
tation relations for the operators. In arbitrary orthogonal curvilinear coordinates r = r(ry,---7rq)
of a d-dimensional euclidean vector space the gradient vector is given by

V = {h{ 0, - ,h; 04} = &1h 01 + -+ -+ &4h; O, (1.7)

1Here we emphasized in the notation that r is the position operator rather than the position r. As this distinction
rarely leads to confusion the underscore will be omitted in most of the text.
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where the unit vectors are defined by & = &, = 9,r/|0,r| and the scale factors by h,, = |J,r|, with
u € {ry,---rq}. Here 9,, = 9/0r, is a shorthand notation for the partial derivative operator. Note
that d,r = h, Q.

In cartesian coordinates we have r = (rq,---74) = (2,y,2). As the radius vector is given by
r = Xz + Jy + 2z it follows that 0,r = X, Oyr = ¥, 0.r = Z and h, = hy = h, = 1. Note that the
property h; = 1, with ¢ € {1,--- ,d}, is valid for an euclidean vector space of arbitrary dimension
d. The commutation relations for the components of the operators r; and p; = —thd; are obtained
by evaluating the action of the operator [r;,p;] on a smooth test function of position f(ry,r,,r.),

[Tiapj]f = 7lh (Tiaj — 3jri)f = 7’Lh (n@f — mﬁjf — fézj) = zhéwf (18)
Thus we derived the commutation relations

These commutation relations hold for cartesian coordinates. In general, the direction of the unit
vectors depends on position (h; # 1) and the commutation relations do not have this simple form.
A consequence of the commutation relations is that r and p do not commute with the
Hamiltonian Hy: for p we have [p;, Ho] = [ps, V()] # 0, for r we find an important relation between

pandr
[ri,Ho] = [ri, p*/2m,] = i(R/m,)pi, (1.10)

which can be written in the form (see also Problem
p = —i (my/h) [r, Ho). (1.11)

1.1.1.1 Laplacian in spherical coordinates

To explore the central symmetry of our problem we wish to write the laplacian from the Schrédinger
Hamiltonian in spherical coordinates {r,0,¢}. The relation between the cartesian coordinates and
the spherical coordinates of a point P = P(x,y,2) = P (1,6, ¢) is given by (see Fig.|1.1)

r=rsinfcos¢, y =rsinfsing, z = rcosb. (1.12)

Using 9,P = h,4a, with a € {r,0, ¢}, the angular dependence of the unit vectors is given byE|

= Xsinfcos ¢+ ysinfsin ¢ + zcosb (1.13a)
é:icochosqS—i—ycosesin(/)—Zsinﬁ (1.13b)
¢ = —Xsin¢ + § cos . (1.13¢)

Using P = #r = r we calculate h, = |0r/dr| = 1, hy = |0r/0¢| = r(sin? O sin? ¢ + sin? 6 cos® ¢)'/? =
rsin@ and hy = |0r/06| = r(cos? f cos? ¢ + cos? O sin? ¢ + sin? §)/2 = r (see also Problem|D.1]).
Hence, in spherical coordinates the gradient operator (|1.7) becomes

1
rsin 6

V:far+é%ag+¢3 . (1.14)

Evaluating the inner product V - V we obtain for the Laplace operator (see Problem

_i?+28 L 0 g0, 1 9?
~ Or2

A AR S A ——
r8r+r281n939 st 09 r2sin?0 0¢?

(1.15)

'n these lecture notes we use interchangeable notations for the radial unit vector: # = Q = (0, ¢).
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z P@m@ z2 s

-‘)

(r.0.0) - Rp

Figure 1.1: Illustration of spherical coordinates of a point P = P(x,y,2) = P (r,0,¢): (a) unit vector
convention; (b) vector diagram indicating the direction # and amplitude p, of the radial momentum vector.

Problem 1.2. Derive the expression (|1.15) for the laplacian in spherical coordinates.

Solution. Starting from the vector expression (|1.14]) for the gradient operator the laplacian is obtained by
evaluating the inner product

V- -Vy=t- (&f* O + [87»9]169 + [aré]%eagb) 0

ﬁ\»—t

6. ([89f‘]8 49,01 39+[39¢] 1nea )¢

1
rsin @

é- ([8¢f]@r n [(9(7)9]%5‘9 + a(qursilnead)) .

In applying the product rule we used the notation duv = [Quv + u[@v] In domg so, we left out , many terms
that yield zero by orthogonality of the unit vectors. Using 0, = Or 0 =0,.¢ =0 and 9t = 0, 90 = —
&gqb =0 and 0y = @ sinb, 8¢0 ¢ cos, 8¢¢ = —#sinf — O cos the expression further simplifies to

V-vw:£w+1<a+1%>¢+—if
T T )

(sm08 +cos€ Op + 1 82)1/).
in 0

rsinf

Collecting the terms we obtain for the Laplace operator

2 1 o cos 0 1 2
A=3+20+ 0 0 ;
r+r +r2 9+7“251n9 9+r251n29 ¢
which can be written in the form (1.15). |

1.1.1.2 Laplacian in cylindrical coordinates

To describe central symmetry in two-dimensional systems or systems with cylindrical symmetry it is
important to be aware of the expression for the laplacian in cylindrical coordinates P = P(x,y,z) =
P(ri,¢,z). As illustrated in Fig. the relation between the cartesian coordinates and the cylin-
drical coordinates is given by the expressions

T=r)cosp, y=r)sing, z=z. (1.16)

Using 9,P = h,a, with a € {r, ¢, z}, the angular dependence of the unit vectors is given by

f) =4+%Xcos¢p+ ysing (1.17a)
¢ = —%sind + §coso (1.17b)
5 =2 (1.17¢)



1.1. HAMILTONIAN 5

Figure 1.2: Illustration of cylindrical coordinates of a point P = P(x,y,2) = P (r.1, ¢, z) with unit vector
convention.

Using P =%, r| + 22z we have P2 = r? + 22 and calculate h,, = |0P/0r,| =1, hy = |0P/0¢| =
71 (sin? ¢ + cos? ¢)/2 =, and h, = |0P/dz| = 1.
Hence, in cylindrical coordinates the gradient operator ((1.7)) is given by

V=%,0, +<Z>Tia¢+zaz. (1.18)
1

Evaluating the inner product we obtain for the laplacian (see Problem [1.3))

0? 1 0 1 92 0?
A = - 4~ 1.19
5‘r2l+71871+r2l8¢)2+822 ( )

Fixing the value of z this expression also serves to describe two-dimensional systems. In the form
(1.19) the laplacian is used to describe the flow field of quantized vortices in superfluids.

Problem 1.3. Derive the expression (1.19)) for the laplacian in cylindrical coordinates.

Solution. Starting from the vector expression (1.18) for the gradient operator the laplacian is obtained by
evaluating the inner product (here we set 7, — r for compactness of notation)

V.V = <ara + [0, B)- 8¢+[6z]6)

%M—A

R . S 1 .
¢ - ([(9¢1‘]6r + 8¢¢;6¢ + [8¢Z}8z> P
~ 1
+Z- <[82r] or + [8qu];a¢ + 0.2 82) .
In applying the product rule we used the notation duv = [Qu]v + u[av} In doing so, we left out many terms

that yield zero by orthogonality of the unit vectors. Using OF =0, =02 = 0. = 9. = 5.2 = 0 and
OpT = &, 845(1) = —TF+ Z 2z, 04Z = 0 the expression for Aty further simplifies to

1 1
V-V =03+ - (ar + a¢;a¢) Y+ 029
Thus, the Laplace operator can be written in the form (1.19). O

1.1.2 Angular momentum operator L

To obtain the operator expression for the angular momentum L = rXx p in the position representation
we use the correspondence rules p — —iAV and r — r. Importantly, although r and p do not
commute the transition to the quantum mechanical expression,

L=—il(rx V), (1.20)
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can be made without ambiguity because the correspondence rules yield the same result for L = r xp
and for L = —p x r. This is easily verified by using the cartesian vector components of r and p and
their commutation relations,

— (P XT); = —€ijkDjTh = —€ijkTkDj = EikjTkDj = EijkTiPk = (L X P); - (1.21)

Note that for j # k the operators r; and p, commute and for j = k one has ¢;;;, = 0.

Having identified Eq. as the proper operator expression for the orbital angular momen-
tum we can turn to arbitrary orthogonal curvilinear coordinates r = r(u,v,w). In this case the
gradient vector is given by V = {h;10,,h;10,,h;'0,} and the angular momentum operator can
be decomposed in the following form

a v W
L=—ih(rxV)=—3dh| r, Ty Ta . (1.22)
ht0, hy'0, hylOw
For spherical coordinates the components of the radius vector are r,, = r and r¢9 = rg = 0. Working

out the determinant in Eq. (1.22)), while respecting the order of the vector components r,, and h;, 13,
we find for the angular momentum operator in spherical coordinates

. (s 1 0 ~ 0

Importantly, as was to be expected for a rotation operator in a spherical coordinate system, L
depends only on the angles # and ¢ and not on the radial distance r.

1.1.3 The operator L,

The operator for the angular momentum along the z direction is a differential operator obtained by
taking the inner product of L with the unit vector along the z direction, L, = z-L. From Eq. (1.23)
we see that

~ 1 0 - 0
L,=ih((z-0 — —(Z2-9)= | . 1.24
(@0 ey (1.24)
Because the unit vector <;3 = —Xsin¢ + ycos¢ has no z component, only the ¢ component of

L will give a contribution to L,. Substituting the unit vector decomposition 8 = X cosfcos¢ +
¥y cosfsin ¢ — zsin € we obtain

0
L. = —ih—. 1.2
ihs (1.25)
The eigenvalues and eigenfunctions of L, are obtained by solving the equation
0
—iha—qs@m(qb) =mh ®,,(0). (1.26)

Here, the eigenvalue m is called the magnetic quantum number for the projection of the angular
momentum L on the z axisﬂ The eigenfunctions are

O (0) = ame™?. (1.27)

Assuming the solutions of the Schrédinger equation to be single-valued functions of positionEI
the wavefunction has to be invariant under rotation over 27 about the z axis; i.e., we have to

n this chapter we use the shorthand notation m for the magnetic quantum numbers m; corresponding to states
with orbital quantum number . When other forms of angular momentum appear we will use the subscript notation
to discriminate between the different magnetic quantum numbers; e.g., Im;, sms, jm;, etc..

2For a discussion of the single-valuedness see [80, 52]
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impose the boundary condition e? = e(#+27)  Thus we require e??" = 1, which implies

m € {0, £1, £2,...}. In other words we quantized the rotation about the z axis. As the orienta-
tion of the coordinate system was not defined up to this point, the chosen z direction is called the
quantization axis. With the normalization

/0 (@) do =1 (1.28)

we find the same normalization coefficient for all values of the m quantum number, a,, = (27r)71/ 2,

1.1.4 Commutation relations for L., L,, L, and L2

The three cartesian components of the angular momentum operator are differential operators satis-
fying the following commutation relations

[Li, L] = iheijuly < [La,Ly,) =ihL., [L,, L.] = iAL, and [L., L,] = ihL,. (1.29)

These expressions are readily derived with the help of some elementary commutator algebra (see
Appendix . We derive the relation [L,, L,] = ihL. explicitly; the other commutators are
obtained by cyclic permutation of x,y and z. Starting from the definition L; = e;;,7;pr Wwe use
subsequently the distributive rule , the multiplicative rule and the commutation

relation (1.9)),

[La, Ly] = [yp> — 20y, 2pe — xp=] = [Yp2, 2Da) + [2Dy, Tp2]
=Y [Pm Z] Pz — [Pm Z] Py = Zh(xpy - ypw) =ihL,. (130)

A scalar operator always commutes with itself. This well-known commutation rule does not hold
for vector operators. Two vector operators A and B only commute if all components of A commute
with all components of BE| Hence, L does not commute with itself (see Problem [1.4)).

The components of L commute with L2,
[L.,L*] =0, [L,,L?] =0, [L,, L% =0. (1.31)
We verify this explicitly for L.. Using the relation
L’=L-L=L2+L)+L? (1.32)

we obtain with the aid of the multiplicative rule (M.29c)

[L.,L?] =0
[Lm Lz] = [LZ7 Ly]Ly + Ly [L27Ly} = _iFL(LILy + LyLm)
L., Li] =L, Ly|Ly + Lg[L., L] = +ih(LyLy + Lo Ly).

By adding these terms we find [L.,L*] = 0 as well as [L., L2 4+ L}] = 0.
Problem 1.4. Vector operators differ from classical vectors. Show that

L x L =1L, [L,L]#0, [L° L% =0.

1 The commutator of two vectors is a second order tensor. This becomes evident in the Einstein notation [A, B] <
[A;, Bj] = A;Bj — BjA; & ABT — (BAT)T, where ()7 represents matrix transposition.
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1.1.5 The operators L

The operators

Ly=L,+il, (1.33)
are obtained by taking the inner products of L with the unit vectors along the z and y direction,
Ly =(%-L)+xi(y-L). In spherical coordinates this results in

Lo
sin @ 0¢

‘ W AL e A S . ] 0
L =ih ([(xﬂ) +i(y-0)] - &)+ ) 89) (1.34)
as follows directly with Eq ). Substituting the unit vector decompositions ¢ = —Xsin ¢+¥ cos ¢
and 6 = Xcosfcosp+ y005961D¢ — Zsin 0 we obtain

; o , 0
_ i
Ly =he (z cot 95‘41) + 80) (1.35)

These operators are known as shift operators and more specifically as raising (L) and lowering (L_)
operators because their action is to raise or to lower the angular momentum along the quantization
axis by one quantum of angular momentum (see Section [1.1.6).

Several useful relations for L follow straightforwardly. Using the commutation relations
we obtain

[L.,Ly]=[L,,Ly) +i[L,,L,) =4hL, +hL, = +hL,. (1.36)

Further we have
LiL_=L2+L—i[Ly, L) =L+ L, +hL,=L"—L2+hL, (1.37a)
L Ly=L2+L+i[Ly, L)) =L+ L. —hL,=L*—L2—hL., (1.37b)

where we used again one of the commutation relations (1.29)). Subtracting these equations we obtain
[Ly,L_]=2hL, (1.38)

and by adding Eqgs. (1.37)) we find

L?=L?+3(LyL_+L_Ly). (1.39)

1.1.6 The operator L2

To derive an expression for the operator L? we use the operator relation (1.39). Substituting
Eqgs. (1.25) and (1.35) we obtain after some straightforward manipulation

I 1 9 o)
2 2
=T G20 002 o7 5in 60— 1.
e Lm%} 967 " 56 o0 Smeao} (1.40)
The eigenfunctions and eigenvalues of L? are obtained by solving the equation

1 & 1 0 9
gl 20 Y (6, ¢). 1.41
Lin203¢2 T noo0 Smeag} Y(0,¢) = ARY (0, ) (1.41)

Because the operators L? and L, commute they share a complete set of eigenstates (see Problem
[F.I); i.e., the shared eigenfunctions Y'(6,¢) must be of the form Y (0,¢) = P(6,$)®,,(¢), where
the function ®,,(¢) is an eigenfunction of the L, operator. Because of Eq. this implies that
L.P(6,¢) =0, which can only be satisfied for arbitrary value of 6 if the variables 6 and ¢ separate:
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P(6,¢) = P(0)Q(¢). In turn this requires L,Q(¢) = 0, which can only be satisfied if Q(¢) is a
constant. Thus, we conclude that the shared eigenfunctions Y'(, ¢) must be of the form

Y(0,9) = P(6)®m(0)- (1.42)
Evaluating the second order derivative 92/9¢? in Eq. (1.41)) we obtain

1 0 0 m?
— —sinf— — ——+ | P(#) =0. 1.43
Lineaasm o0 sin20+ ] ©) (1.43)
As this equation is real its solutions are real functions of the variable . Introducing the notation
A=1(1+41) and u = cos @ (with 6 restricted to the interval 0 < § < ) this equation takes the form

of the associated Legendre differential equation (M.36)),

d? d m?
_ 2 2 el _ m —
[(1 u?) T~ 2u +1(1+1) 1u2} P (u) = 0. (1.44)

Since 0 < 6 < 7 we have sinf = v/1 — 2 > 0. The solutions are determined up to a constant factor,
which has to be fixed by convention. For m = 0 the Eq. reduces to the Legendre differential
equation and its normalized solutions are the Legendre polynomials, defined by

1 d
T 200 dut
The solution P;(u) is a real polynomial of degree | € {0,1,2---} with [ zeros in the interval —1 <
u < 1. The Legendre polynomials of lowest degree are

Py(u)=1, Pi(u)=u, Py(u)=3(3u"-1). (1.46)

Py(u) (u® — 1)L, (1.45)

Note that the sign of the highest power term is chosen to be positive. For m # 0 the solutions are
the associated Legendre functions P™(u), real functions which can be written as the product of a
positive function (1 —u?)"™/? and a polynomial of degree (I —m), parity (—1)!~™ with (I —m) zeros
in the interval —1 < u < 1. For m = 0 we define P (u) = P;(u). For m > 0 the P/"(u) are obtained
by differentiation of the Legendre polynomials

PIM(u) = ()" (1= ), (1.47)

The parity of the P (u) is given by

P (~u) = (1) P (u) (1.48)
and the above definitions fix the normalization,
1
2 (I+m)
PP du= —— 2 1.4
/7Jl<u)] “ 2041 (1 —m)! (1.49)

As Eq. depends on m? we also can define solutions for m < 0. Obviously, P, (u) and
P/™(u) are in essence the same but for the P, (u) we still have to define sign and normalization.
Unfortunately, several competing conventions can be found in the literature. In this course we use
a positive sign and adhere to the convention in which the normalization is valid for both
positive and negative m. This is realized by extending the P/"(u) to negative m by the relation

(1)7”8 - )

m)!
where 0 < m < [. The inclusion of the phase factor (—1)"™ in both Eq. and is referred to
as the Condon and Shortley phase convention [29]. It implies that the phase factor (—1)™ is present
for positive m but absent for negative m. Note that the P/"(u) are nonzero only for —{ < m < [
i.e., the index m can assume 2! + 1 possible values for a given value of [.

B (w)

P (u), (1.50)

I Beware of other phase conventions for the P/™(u), they affect the recursion relations.
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1.1.6.1 Spherical harmonics - Condon and Shortley phase convention

At this point we define the spherical harmonics of degree | and order m (cf. Section [M.9.1)
Y™ (0, ¢) = AP (cos 6)e™? (1.51)
as the joint eigenfunctions of L? and L, in the position representation,

L?Y™(0,¢) = I+ 1)h* Y, (0, ) (1.52)
L.Y"(6,¢) = mhY;™ (0, ¢). (1.53)

The prefactor A, is a normalization constant. Combining the normalization integrals (1.28) and

(M.46) we obtain
m . l2l+]‘(l7 ”)! m imae
}/l (0,@6) = ?mpl (COSG)Q , (154)

with — < m < [. The Condon and Shortley phase convention assures that the shift operators
satisfy the following relations

LaY™(0,0) = V(I F m) (I £ m + 1) hY;"(6,6)
= VI +1)—m(m+1)hY"(0,¢), (1.55)

with a positive sign in front of the square root for all values of [ and m. Egs. (1.55) are readily
obtained with the aid of Egs. (1.35) and the recursion relations (M.49). The parity of the Y™ (6, ¢)
under inversion in 3D, # = (6,¢) = —F = (7 — 0, ¢ + 7), is independent of m and given by

Y (1) = (-1 (®) (1.56)

as follows with Eqs. (1.54) and (1.48); i.e., the parity is even for ! even and odd for I odd. This
makes parity into a property defining selection rules in atomic transitions.

1.1.7 Orbital angular momentum in Dirac notation

The observables of the orbital angular momentum are represented by the operators L2 and L.. In
Dirac notation (cf. Appendix [F.1.1)) their shared basis is defined by

L2 |1, m) = I(1 + 1)A? |, m) (1.57a)
L. |l,m) =mh|l,m), (1.57b)

where the |I,m) are abstract state vectors in Hilbert space, with | and m the rotational quantum
numbers. The spherical harmonics

Y(0,6) = V" (8) = (#ll,m) (158)

are the corresponding wavefunctions in the position representation using spherical coordinates. The
action of the shift operators Ly is given by

Li|l,m)=+11+1)—m(m+1)h|l,m+1), (1.59)

with a positive sign in front of the square root for all values of [ and m. The latter requirement
constitutes the Condon and Shortley phase convention for the eigenstates |I, m) (cf. Section [1.1.6.1]).
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1.1.8 Radial momentum operator p,

Thus far we succeeded in quantizing the Schrodinger Hamiltonian Hg and the angular momentum
L. Let us now turn to the radial momentum p, = # - p. Here we have a difficulty because the
correspondence rules are not unambiguous in this case. In classical mechanics the expressions
pr =1 -p and p. = p - ¥ are identities but since ¥ = r/r and —iAV do not commute this is not the
case for p, = —ih(V - #) and p, = —ihi (¥ - V). There is a way around this problem. Since we know
how to quantize p? and (# x p)2 , we infer with the aid of Eq. that the radial momentum must
be given by

p? = (t-p)° =p>— (f xp)’ = —h2A - L?/r?. (1.60)
Substituting Egs. (1.15)) and (|1.40) this yields
92 290 0 1 0?
2., 32 _ _
o= (L2 DY om (2 e P . e
Hence, up to a sign, the radial momentum in spherical coordinates is given by
g 1 10
= —ih| =4+ = = —ith=— . 1.62
pry ih <8r + 7') v Zhr or (r) (1.62)

We shall use the sign convention of Eq. (1.62)). This implies the commutation relation
[r,pr] = ih. (1.63)

Importantly, since L is independent of 7 and p, is independent of # and ¢, we find that p? commutes
with both L, and L2,
2 _ 2 721 _
[p7,L.] =0 and [p2,L*] =0. (1.64)

In Problem it is shown that p, is only hermitian if one restricts oneself to the sub-class of
normalizable wavefunctions which are regular in the origin; i.e.,

lim ry(r) =

r—0

This additional condition is essential to select physically relevant solutions for the (radial) wave-
function. Here we mean by physically relevant that the wavefunction satisfies not only the laplacian
in spherical coordinates (which is not defined in the origin) but also the laplacian in cartesian
coordinates (which is defined throughout space).

Problem 1.5. Show that p, is hermitian for square-integrable functions 1 (r) only if they are regular at
the origin, i.e. lim, o 7% (r) = 0.

Solution. For p, to be hermitian we require the following expression to be zero for any wavefunction ¢
within its Hilbert space:

(b.pet) = ()" = —in [ {w L9y 1y (m*)} P2drde
:_m/{ -9 () + 1 (w*)] drdQ

__‘ P 2
= zh/ar r|” drdQ.

For this to be zero we require
"0 2 2700
[ ol ar = )7 =

Because 9(r) is taken to be a square-integrable function; i.e., [ |r1/)\2dr = N with N finite, we have
lim, 00 7(r) = 0 and lim,_,or(r) = xo0, where xo is (in general) finite. Thus, for p, to be hermitian
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we require ¥ (r) to be regular in the origin (xo = 0) on top of being square-integrable. However, square-
integrable eigenfunctions of p, can also be irregular at the origin and have complex eigenvalues, e.g.

70exp[—oz7"} _ _ﬂgrexp[—ar] _ Z_haexp[—ar]‘ -
r r Or r r
Problem 1.6. Show that the radial momentum operator can be written in the form
1 /a R th Ir r

Verify that in two dimensions p, cannot be written in the form given on the r.h.s..

1.2 Schrédinger equation

1.2.1 Schrodinger equation in spherical coordinates

We are now in a position to write down the Schréodinger equation of a (reduced) mass m, moving
at energy F in a central potential field V(r)

{ 1 (p% + 1;22) + V(T)] W(r,0,¢) = Eb(r,0,0). (1.66)

2m,.

Because the operators L? and L, commute with the Hamiltoniarﬂ they share a complete set of
eigenstates with that Hamiltonian (See Problem ; i.e., the shared eigenfunctions ¢(r, 8, ¢) must
be of the form ¢ = R(r, 0, $)Y;™(0, ¢), which implies L2R(r, 0, ¢) = 0 in view of Eq. (1.52)). This can
only be satisfied for arbitrary values of r if the radial variable can be separated from the angular
variables, R(r,0,¢) = R(r)X (0, ¢). In turn this requires L>X (6, ¢) = 0, which implies that X (0, ¢)
must be a constant. Thus, we conclude that the shared eigenfunctions ¥(r, 8, ¢) must be of the form

¢(T> 0, ¢) = Rnl(T)Y—lm(Gv ¢), (167)

where the quantum number n appears to allow for more than one solution of given /. Hence, using

Eq. (1.52)) and substituting Egs. (1.61) and (1.67)) into Eq. (1.66|) we obtain

[ o ( 5?:2 zai + Z(Z; 1)) +V(’“>} Ry (r)Y;™(0,¢) = ERy (r)Y™(6, ¢). (1.68)

2m,.

Here the term
I(1+1)h?

Veor(r) 2m,.r?
T

(1.69)

is called the rotational energy barrier and represents the centrifugal energy at a given distance from
the origin and for a given value of the angular momentum. Because the operator on the left of
Eq. is independent of 6 and ¢ we can eliminate the functions Y;" (6, ¢) from this equation.
The remaining equation takes the form of the radial wave equation.

[h’z (_d2 2d I(l+1)

2m, dr?2  rdr r2

) + V(r)] Rpi(r) = ERy(r), (1.70)

where the solutions R,,;(r) must depend on 7 but be independent of § and ¢. Note that the solutions
do not depend on m because the Hamiltonian does not depend on L,. This is a property of central
potentials.

INote that L. commutes with L2 (see Section 1.1.6); L. and L2 commute with r and p, (see Section 1.1.8)).
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Reduction to one-dimensional Schrodinger equation

Eq. (1.70)) is the starting point for the description of the relative radial motion of any particle in a
central potential field. Introducing the quantities

e=2m,E/h* and U(r)=2m,V(r)/h, (1.71)
Suppressing the quantum number n, Eq. (1.70]) can be written in the compact form

I(1+1)
7.2

2

R/ + =R+ |e—U(r) — R, =0, (1.72)
r

where the prime refers to a derivative with respect to r. Eq. (1.61) suggests to introduce so-called

reduced radial wavefunctions
xi(r) =rR(r), (1.73)

which allows us to reduce the radial wave equation ([1.70]) to the form of a one-dimensional Schrédinger

equation
(1+1)
r2

2m,.

h2

X!+ (E-V) - x: = 0. (1.74)

The 1D-Schrédinger equation is a second-order differential equation of the following general form
X"+ F(r)x =0. (1.75)

Equations of this type satisfy some general properties. These are related to the Wronskian theorem,
which is derived and discussed in Appendix [M.13]

Not all solutions of the 1D Schrédinger equation are physically acceptable. The physical solutions
must be normalizable; i.e., for bound states

/7’2 \R(r)|? dr :/\X(r)|2dr =N, (1.76)

where A is a finite number. However, there is an additional requirement. Because the Hamiltonian
is only valid outside the origin (r # 0) the solutions of the radial wave equation are not
necessarily valid at the origin. To be valid for all values of r the solutions must, in addition to be
being normalizable, also be regular in the origin; i.e., lim,_,orR(r) = lim,_q x(r) = 0. Although
this is stated without proof we demonstrate in Problem that normalizable wavefunctions ) (r)
scaling like R(r) ~ 1/r near the origin do not satisfy the Schrodinger equation in the origin. All
this being said, only wavefunctions based on the regular solutions of Eqgs. and can be
valid solutions for all values of 7, including the origin.

Problem 1.7. Show that a normalizable radial wavefunction scaling like R(r) ~ 1/r for r — 0 does not
satisfy the Schrédinger equation in the origin.

Solution. Next we turn to solutions ¢ (r) = Ri(r)Y;™ (0, ¢) of the Schrédinger equation for the motion of
a particle in a central field. We presume that the wavefunction is well behaved everywhere but diverges like
Ri(r) ~ 1/r for r — 0. We ask ourselves whether this is a problem because - after all - the wavefunction is
normalizable. However, the divergent wavefunction R;(r) is defined everywhere except in the origin. This
is more than a technicality because it implies that the Schrodinger equation is not satisfied in the origin.
Using Problem [0 we find

Amh?

B 2m.

4 (r),

which is zero everywhere ezcept in the origin. Apparently, by solving the Schrédinger equation after separa-
tion in radial and angular variables we have generated a solution that does not satisfy the original equation
(which is valid everywhere in space - including the origin). O

(— L V(r) — E) W(r) =

2m,
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Problem 1.8. Show that for a normalizable radial wavefunction scaling like R(r) ~ 1/r for r — 0 the
kinetic energy diverges in the origin.

Solution. We first write the radial wavefunction in the form Ro(r) = (xo(r)/r), where xo(r) is nonzero in
the origin, lim, o xo(r) = Xx0(0) # 0. Calculating the kinetic energy we find

2

2
T
_/ o(NY5 (0,9) 5= ARo(NY3 (6, 9) dr > =5 -x3(O) lim | AN
I roim [ Looydr =
N 2mrXO €30 v T R

Problem 1.9. Use the Gauss theorem to demonstrate the relation A (1/r) = —47nd (r).

Solution. We first integrate this expression on both sides over a small sphere V' of radius € centered at the

origin,
/Aldr*747r
v T B

Here we used fv 0 (r)dr = 1 for an arbitrarily small sphere at the origin. The Lh.s. also yields —4w as
follows with the divergence theorem (Gauss theorem)

lim A dr = hm dS V, = lim dS (—%) = lim 47> <——) = —4r. O
S r €

e—0 e—0

1.2.2 Schroédinger equation in cylindrical coordinates

In systems with cylindrical symmetry about the z axis (see Fig.|1.2]) the motion separates into motion
parallel to the z axis and motion in planes orthogonal to the z axis,

p?=(2-p)° +(EL pL)’ + (FL xpL)’, (1.77)

where ¥, is defined in Eq. (1.17a) and Z is independent of position; p, is the momentum in the
zy plane. The quantization rule for the linear momentum in the z direction, p,¢ = Z-p¢p —
—ihz - V¢ = —ihd,¢, can be applied without ambiguity and we have for the p? operator

p?=(2-p)° = —h9?/02". (1.78)

With regard to the motion in planes orthogonal to the z axis we run into the same dilemma as
we encountered with spherical coordinates. The quantization rules for ¥, - p; = pJ -, are not
unambiguous since £, - V¢ # V| - T ¢ (the direction of the unit vector ¥, depends on position).
This dilemma can be circumvented in the same way as we did for p, in Section By rewriting

Eq. in the form

p;, = (#1-p1)* =P’ — (L xp1)* — (2-p)’ (1.79)
we obtain an expression where p,, is expressed in quantities for which the correspondence rules can
be applied without ambiguity: p? — —h*A and &, x p; — —ihf; x V. Note that for cylindrical
coordinates the angular momentum along the symmetry axis, L, =r,; X p, satisfies the property

0

Replacing the dynamical variables by their operators Eq. (1.79) takes the form
1 02 02
2 2
N N Y —— — . 1.81
Pr, ( 3 O¢? 8z2> (1.81)
Substituting Eq. ([1.19) for the laplacian we obtain
0? 1 0
2 2
=—h — . 1.82
Pr, (aTJ_+’I"J_8’f'J_) (1.82)
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At this point we can quantize the Hamiltonian and starting from Eq. ((1.77)) the Schrédinger equation
takes the form

R o o
ari ry, Or, 022

2
) + sz +V(re, o, Z)] Vi, ¢,2) = Ep(ri,¢,2).  (1.83)

2m,. 2m,r4

If the potential only depends on the r; variable, V(7 , ¢, z) = V(r, ), we have separation of variables

for the axial, radial and angular motion and we find for the radial Schrédinger equation in this case

h? ( d? 1 d 2
_|_

oty n(r) =E . 1.84
d?“i rodry TQL +V(TL)) RLZ(TL) Rnl(rL) ( 8 )

2m,.

Reduction to one-dimensional Schrodinger equation

Suppressing the quantum number n and using the definitions (|1.71)) the radial wave equation ([1.84)

takes the compact form
2

1
R/ +—R|+ [5 —U(ry) - ”” R =0, (1.85)
r1 TL

where the prime refers to a derivative with respect to r) . Introducing the functions

yi(r) =P Ry(ry), (1.86)

also in this case the radial wave equation is reduced to the form of a one-dimensional Schrodinger
equation,
2m,. 1/4 — m?

1
/-
h? i

1.3 Symmetry properties, conserved quantities and good quantum numbers

To conclude this chapter we return to the Schrédinger Hamiltonian,

h2

- 2m,.

Ho = A+ V(r), (1.88)
and discuss the main findings of the chapter against the background of the symmetry properties
of this Hamiltonian. In general, the symmetries of a physical quantity are defined by the set of
coordinate transformations that leave this quantity invariant. With each symmetry we associate an
operator that generates the corresponding coordinate transformation. The transformations may be
continuous (e.g., translation and rotation) or discrete (e.g., reflection and inversion). For instance,
an equilateral triangle is invariant under rotation over 120° about an axis through the center of mass
and perpendicular to the plane of the triangle; this reveals a three-fold symmetry under rotation (a
finite rotation symmetry in this case). The mathematical discipline for the investigation of symmetry
properties is called Group theory [120].

What are the symmetries of the Schrodinger Hamiltonian? For the potential energy term this is
self evident from the notation because the central potential V(r) depends only on the radial distance
r = |r| to the atomic center of mass. This manifestly being the case, V(r) is said to be manifestly
invariant under any transformation that does not affect |r|. This is the case for all rotations about
the origin, all reflections about a plane through the origin and for inversion about the origin. For
the kinetic energy term the symmetry under such operations is certainly not manifest and we need
to have a closer look.

As an example we consider the space (or parity) inversion operator P. This operator transforms
the position r into position —r, which is equivalent to sign reversal of the cartesian coordinates
(r - —x,y = —y, 2 = —z). As this operation conserves |r|, the potential energy is invariant under
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space inversion. To determine the inversion symmetry of the kinetic energy operator we write the
laplacian in cartesian coordinates,
0? 0? 0?

A= 57 + 97 + 52" (1.89)
As this expression only contains second derivatives with regard to position it also is invariant under
sign reversal. In other words the Schridinger Hamiltonian conserves parity for any interaction that
conserves parity. Note that by inverting twice we obtain the unit operator, P2 = 1. In group theory
P and P? are said to be the elements of a group of order 2: the inversion group (P? is the identity
element). In the language of quantum mechanics we say that P commutes with the Hamiltonian.
This implies that P is a hermitian operator; hence, its eigenvalues are real. As P? = 1 these
eigenvalues are 1 (even parity) or —1 (odd parity). The radius vector is odd under parity (such
vectors are called polar vectors). Angular momentum is even under parity (such vectors are called
azial vectors or pseudovectors). As P commutes with Hg, also the energy eigenstates must be parity
eigenstates. This property was already noticed in Section

What about rotational symmetry? From the commutation of L, with Hy we find by using the
product rule for differentiation

(50— Hays ) vir.6.0) = (%’f)w 0(r,6,6) = 0. (1.90)

Because this relation is valid for any function ¥(r, 0, ¢) it implies the invariance of Hy under an
infinitesimal rotation about the z axis, o
0

o (1.91)

As the quantization axis was chosen in an arbitrary direction, this invariance of Hg holds for any

infinitesimal rotation about the origin. Inversely, it is this invariance that makes L, commute with

Ho, which implies that L, is a conserved quantity (see Appendix . The operator L, can be

identified with the operator for an infinitesimal rotation about the z axis as introduced above. The

Hamiltonian is also invariant under any finite rotation about the origin because any such rotation

can be realized by an infinite sequence of infinitesimal rotations about the origin. The infinite set

of all rotations about the origin constitutes the elements of a continuous group: the full rotation

group.

In this course we raise awareness for the symmetry properties but do not enter into the sys-
tematics of group theory. With regard to rotation we emphasize that for the Hamiltonian Hq the
expectation values of L2 and L, are conserved whatever the radial motion, showing that L? and L,
are observables (observable constants of the motion). This means that the corresponding eigenvalues
and eigenstates can be measured simultaneously to arbitrary precision and are uniquely determined
by the quantum numbers [ and m;. Whenever a quantum number is conserved, it is called a good
quantum number of the Hamiltonian under consideration. As a counter example we consider p2. As
p2 does not commute with 7 (see Section , it does not commute with the Hamiltonian. This
means that p? is not a conserved quantity and no good quantum number can be identified with the
radial kinetic energy. This is no surprise from the physical point of view because the radial motion
is oscillatory.



Hydrogenic atoms

The notion hydrogenic refers for atomic systems in which exactly one elementary charge is orbiting
the nucleus [14]. Aside from the hydrogen isotopes hydrogen (H), deuterium (D) and tritium (T), ions
like singly ionized helium (He™), doubly ionized lithium (Li®>T) and exotic atoms like positronium
(electron bound to a positron) and muonic hydrogen (muon bound to a proton) belong to this
class. Hydrogen-like behavior is more common. It occurs in one-electron atoms. This is the class of
atoms in which a single electron dominates the atomic properties. This class includes of course the
hydrogenic atoms but more typically involves many-electron atoms with one distinct outer electron,
the valence electron. Many-electron atoms behave at best hydrogen-like because the nuclear charge
is partially screened by one or more shells of core electrons. For instance, hydrogen-like behavior is
observed in one-electron Rydberg atoms. These are atoms in which the valence electron is excited
to a weakly bound state. Other examples are the alkali-like atoms. Aside from the alkali (group
I) atoms lithium (Li), sodium (Na), potassium (K), rubidium (Rb) and cesium (Cs) also the singly
charged ions of “two-electron” atoms (group II) such as the ions of magnesium (Mg"), calcium
(Ca'), strontium (Sr*) and barium (Ba™) are alkali-like.

In the present chapter we focus on the non-relativistic theory of hydrogenic atoms. We analyze
the electronic motion under influence of the Coulomb interaction with a point-like nucleus; i.e., for
the so-called Bohr atom. We obtain the principal structure of the atom. The typical energy level
separation turns out to be a factor a? smaller than the electron rest mass energy, which justifies
the non-relativistic Ansatz (o ~ 1/137 is the fine-structure constant).

The subsequent task will be to include relativistic corrections. This is the subject of Chapter
Relativistic effects give rise to the atomic fine structure and manifest themselves most prominently
as magnetic forces. As these forces are much weaker than Coulomb forces they may be neglected in
describing the principal structure. Importantly, being weak does not mean unimportant. Magnetism
is crucial for the understanding of many physical phenomena and of seminal importance for major
technological applications. As we show in Chapter [ the weakness of the magnetic interaction is
convenient from the theoretical point of view because it allows an analytic description of many
magnetic properties with the aid of perturbation theory. As magnetism is intimately related to
angular momentum, the properties of angular momentum in its quantum mechanical context are
summarized in Chapter [3] Before turning to Chapter [4 also a refreshment of the operational skills
on perturbation theory (Appendix may prove well invested.

2.1 Hydrogenic atoms

Hydrogenic atoms consist of a single electronic charge orbiting a positively charged nucleus. It was
demonstrated by Ernest Rutherford in 1911 that the nucleus is orders of magnitude smaller than
the size of the atom [I05]. After this discovery the atom was visualized as a miniature planetary
system in which the nucleus could be approximated by a point charge. The conceptual step to the

17
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modern atom was made by Niels Bohr in 1913 [I8, 19} 20]. By quantization of the planetary motion
Bohr formulated the famous Bohr model for the atom which explains the optical spectrum of atomic
hydrogen and defines the principal structure of the atom. In this section we solve the Bohr atom
with the method developed by Erwin Schrédinger in 1926 [I09]. To start the discussion we note that
the Coulomb interaction between electron and nucleus gives rise to a central potential. Hence, the
hamiltonian operator to calculate the energy eigenvalues in the absence of externally applied fields
is of the general form and will be referred to as the Schrédinger Hamiltonian for the atom,

2 2 2
P h Ze
7o 2m,, +V(r) 2m, dmegr (2.1)
Here r is the electron-nuclear radial distance and m,. the reduced mass,
my =me/(1+me/M), (2.2)
with m. ~ 9.1 x 103! Kg the electronic and M the nuclear rest mass. The quantity
Ze?
Vir) = — - _ 2.3
(1) = —eplr) =~ (23)

is the electrostatic energy; i.e., the potential energy of the electronic charge, —e, in the electromag-
netic scalar potential (Coulomb potential) of the nucleus

Ze

o(r) = o (2.4)

where Ze is the nuclear charge, with e being the elementary charge and Z the number of protons
in the nucleus; Z is called the atomic number or nuclear charge number. Furthermore, eg = 1/j10c?
is the vacuum permittz'm'tyﬂ po = 4mah/e?c the vacuum permeability and ¢ = 299792458 ms~! the
defined value of the speed of light in vacuum. The reduced mass has typically a value close to the
mass of the free electron but can be substantially smaller for exotic atoms like positronium.

As V(r) represents a central potential energy field, the motion of the electron can be described
by a Schrédinger equation of the type (|1.66))

2
o (7 5) V0] 000.0) = Butro.0), (25)
my r
where p, is the radial momentum operator, L the angular momentum operator and E the total
energy of the system (see Section . The Hamiltonian commutes simultaneously with L? and L.
Therefore, these operators share a complete set of eigenfunctions with the full Hamiltonian and, as
discussed in Section [1.1] can be written in the form of a product of the type

¢nlm(ra 05 ¢) = Rnl (7’)Yim(9, ¢)7 (26)

where n is the principal quantum number for the radial motion to be determined later in this chapter.
The wavefunctions (2.6) are called atomic orbitals. Substituting this expression in Eq. (2.5]) we obtain
the radial wave equation

B @ 24 11+
2m, dr?2  rdr r2

) N V(T)] Ro(r) = ERw(r). (2.7)

ISince the redefinition of the SI in 2019, the vacuum permeability and vacuwm permittivity are no longer constants
but depend on a measured quantity, the fine-structure constant «. This made the names magnetic constant and
electric constant obsolete.
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Table 2.1: Comparison of Hartree (27.2eV) and Rydberg (13.6eV) atomic units.

SI Hartree' Rydberg
) dmeoh? dregh?
length unit: m a= 5 a= 5
mre mre
h? h?
energy unit: J Ey = 5 = 2hcRy; FEgr = 3 = heR
m,a 2m,a
length: r p=r/a p=r/a
energy: E e=F/Ey e =F/Ry
Ze? Z Z
V(r): - Ulp)=-= Ulp) = —22
() pa (=7 () = =27
R I(l+1) I(1+1) I(1+1)
Vrot(r) 2mr 7"2 Urot(p) = 7 Urot(p) = p2
h? 2 2d 1 d? 1 d?
Heraa(r) o (drg rdr) Hrad(p) = "2 d2" Hraa(p) = s

tHartree a.u. correspond to setting m, = e = i = 1/4weg = 1; this implies a = Ey = 1.

The term [(l 4+ 1)/r? represents the centrifugal energy in electronic motion (see Section [1.1)) and
Ryi(r) is called the radial wave function. There is a standard convention to refer to the value of the
orbital quantum number [

= 2 (2.8)

12 3 45 6 7 8 9 10 11 12 13 14 15
pd f g h i« kI m n o q r t u
In this convention one refers to s orbitals (I = 0), p orbitals (I = 1), d orbitals (I = 2), etc.. This
nomenclature has its origin in atomic spectroscopy, with the first four orbital labels referring to the
terms sharp, principal, diffuse, and fundamental. When it adds to the readability of equations one

sometimes writes Ry,s(r), Rup(r), Rpa(r), - - -, rather than R,o(r), Ru1(r), Rp2(r), - -.

2.1.1 Atomic units

The 1D Schrédinger equation is made dimensionless by turning to atomic units (a.u.). For this
purpose Eq. (1.74) is multiplied by a2, where a is a characteristic length to be determined. If we
choose a such that

mya? mra Ze%a Z
V(r)=— =-——=U 2.9
h2 (T) hg 471'607" p (p)7 ( )
where p = r/a is the dimensionless radius, we find that
dmegh?
a == o = (me/mp)ag = (1+me/M)ao (2.10)

where ag = 4megh?/mee? (= a/4nRs) =~ 5.2 x 10~ m is the Bohr radius. Note that the proton
charge radius, r, ~ 8.4x 1070 m, is almost 5 orders of magnitude smaller. The characteristic length
a obtained with this procedure is called the atomic unit of length. The corresponding Hartree atomic
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unit of energy is defined as

Rh? 1 e? 9 o 2hcRo
= —_— = r = 2h R =,
mpra?  4rmeg a @ mee M =g +me/M

Ey = (2.11)

where the dimensionless constant « = €2 /4reghe = h/mecag = 1/137 is the fine-structure constant,
and Ry = Roo/(1 4+ me/M) and Ro = a?mec/2h the finite-mass/infinite-mass Rydberg constants,
respectively. Note that 4ma?a = uge?/m,. The Hartree energy is defined as Ej, = a’mec® ~
4.36 x 10718 J ~ 27.2 eVE| This shows that the characteristic energy scale of the atom is o2 times
smaller the rest mass energy of the electron. In other words, relativistic phenomena play a minor
role in the description of the orbital motion of the electron. Sometimes the Rydberg atomic unit
is usedE| 1Ry ~ 13.6 eV, twice as small as the Hartree and corresponding to the ionization energy
of the hydrogen ground state. Hartree and Rydberg atomic units are compared in Table 21} The

operator for the dimensionless radial kinetic energy H,.q(r) is given by

mya? mya® k2 d? 2d 1 d?
() = _4_zdy__ L@ 2.12
h? Hraa(r) R2 2m, < dr? r d7‘> 2p dpzp (2.12)
Defining the energy of bound states as negative, ¢ = —x2 (with & > 0), we find for the energy in
the dimensionless form )
mpa
e=—K>= 5 E. (2.13)
Hence, in Hartree atomic units the radial wave equation can be written compactly as
R!J2+R,/p+Z/p—1(1+1)/2p° — K2R, = 0, (2.14)
where we suppressed (for the time being) the quantum number n and write
Ri(p) = Ri(r/a) = a®*Ry(r) = a®/?Ry(pa) (2.15)

for the radial wavefunctions redefined as unit-normalized dimensionless functions of p,

/R%(r)ﬁdr = /R%(p)pzdp =1. (2.16)

The primes in Eq. (2.14) represent derivatives with respect to the variable p. Note that in Hartree

atomic units (a — 1, p = r/a — ) the expressions for R;(r) and R;(p) coincide. A similar equation
can be based on the Rydberg atomic unit of energy, 1Ry = hcRy;.

Problem 2.1. Show that in Hartree atomic units a =1, Eg =1, ¢ = 1/a, Ry = a/4w.

2.1.2 Solving the radial wave equation

In this section we solve the radial wave equation (2.14)) in dimensionless form using Hartree atomic
units. Recalling the substitution

xi(p) = pRi(p), (2.17)
we first reformulate Eq. into the form of a 1D Schrodinger equation,
X{+2[Z/p—11+1)/2p> — k7] X1 = 0. (2.18)
For p — 0 the rotational term is dominant and the 1D equation may be approximated by
X!+ [+ 1)/ % =0, (2.19)

INote the difference between the Hartree a.u., By = h?/mra? = Ep, /(1 + me/M), and the Hartree energy, Ej,.
2Typically we use the Hartree a.u.; when occasionally using the Rydberg a.u. this is explicitly indicated.
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with solutions ¥;(p) ~ p!T!, regular in the origin for all values of . Likewise, for p — co we may
neglect the Z/p and (I + 1)/p? terms and obtain (for all values of ()

Xi' = 2kix1 =0, (2.20)

with solutions x;(p) ~ e*"‘”’\/ﬁ, which are finite for large p. This suggest to write

Xilp) = pHHle P2 (p) (2.21)

and search for a function w;(p) that allows us to connect the short-range expression of the wave
function to the long-range one. The desired function must satisfy the condition @;(0) = 1 and be
algebraic for r — oco. Substituting the expression for x;(p) into Eq. we obtain the following
nonlinear differential equation for w;(p),

pw) +2[(1+1) — V2 kpl] + 2[Z — (1 + 1)V2 K]y = 0. (2.22)

Hence, the condition @;(0) = 1 implies @](0) = v2k;y/(l + 1), where v = (I + 1) — Z/(v/2 Kk1).
Dividing Eq. 1) by 2v/2 k; and turning to new variables, 1; — w; and p — x, where

wy(z) =y (p) and = = 2v2 kyp, (2.23)
we obtain the Kummer equation,
aw + [B = @w; — yw; = 0, (2.24)

where § = 2(l +1). The derivatives are now with respect to the variable z and the boundary
conditions become w;(0) = 1 and w;(0) = ~/B. For non-positive values of 7 the solutions of
Eq. (2.24)) are confluent hypergeometric series (Kummer functions) [I]

L (y +p)0(B) v A+
wla) =B O0I8) = ) TG gt T B 2 - 229
If ~ is a non-positive integer, v(k,,;) = —n', this series turns into a polynomial of degree n’ > 0
" T(p—n)T P
wi(x) = B (| Bfr) = 3 o OO (2.26)

L(=n")T(8 + p) p!

For non-integer values of  the series is not truncated and has an essential singularity for x — co. As
we are only interested in normalizable wave functions it is conventional to use Laguerre polynomials

of degree n’ (see Appendix [M.11]) rather than Kummer functions,

L+ DT(B) 5

wy(x) = , (). 2.27
() = Sy L @) (227)
The truncation condition for the series, v(k,/;) = —n' < 0, allows us to normalize the radial
wave function and provides us with the quantization condition
Z Z
Kng) = (1+1) — =—n'<0 & V2ky=———. 2.28
7( l) ( ) \/ilin/l = ! n+1+1 ( )

Note that the energy eigenvalues depend on two quantum numbers, n’ and I. The integer n’ is
known as the radial quantum number. Its value corresponds to the number of zeros of the Laguerre
polynomial; i.e., the number of nodes in the radial wavefunction outside the origin. In view of the
experimental practice since the discovery of the Balmer formula in 1885 and the prominent role
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of the Bohr theory [I8| [19] 20] since 1913, the radial quantum number is not used in the common
scientific literature; preference is given to the principal quantum number, a historical mix of the
quantum numbers n’ and [,

n=n+1+1. (2.29)

Recalling the definitions (2.23) we find with the aid of Eq. (2.28) x = 2Zp/n. The radial wavefunction
corresponding to the quantum numbers n and [ is of the form

Rut(p) = Awiple=20/mwy(2Zp /), (2.30)

where A,; is a normalization constant. As w;(x) is a polynomial of degree n’ =n —1—1 > 0, the
orbital angular momentum quantum number satisfies the condition

I<n-—1. (2.31)

Since the formulation of the Bohr theory, electrons with the same principal quantum number are
said to belong to the same electron shell. The shells are labeled K, L, M, N,O, P,Q,--- in order of
increasing principal quantum number n = 1,2, 3, - -. Electrons sharing the same quantum numbers
for n and [ are called equivalent electrons and occupy a (sub)shell. Specifying the number of electrons
per subshell one obtains the electron configuration. For example, with one electron in the 1s shell
the configuration of hydrogenic atoms in their ground state is (13)1, usually abbreviated to 1s.

2.2 Energy levels and degeneracy

In terms of the principal quantum number the quantization condition (2.28)) takes the famous form

of the Bohr formula [18],
2

Z
=53 Hartree, (2.32)

with n > 1. Restoring the dimensions we obtain for the energy eigenvalues

Ve a’mec?Z? 1 Z? Z?

En = _a2mT02ﬁ = _mﬁ = _hCR]VIﬁ = ——F Ry (233)
Note that the atom has an infinite number of bound states. Writing F,, ~ %me <v2> we infer that
a?Z? ~ ((v/c)?). States with a large principal quantum number are called Rydberg states and
atoms excited to those states are called Rydberg atoms. Eq. defines the complete spectrum of
the hydrogen atom according to the Schrodinger theory. It shows degeneracy of the energy levels,
which means that different states have the same energy. For states of given [ the degeneracy is 21+ 1
because the energy eigenvalues are independent of the the quantum number m;. Degeneracies of
this type are called essential. In contrast, degeneracies of states with different quantum numbers
(e.g., states of given n but differing in ) are called accidental. With the condition I < n — 1 the
degeneracy of the level E,, is given by the arithmetic series

n—1
d@+1) =11+ @n-1)n=n% (2.34)
=0

The atomic energy levels are illustrated in Fig.2.IJa along with the names of some well-known
atomic transitions between hydrogenic levels: Lyman « (L,) and Balmer-a (H, ). In the case of op-
tically induced transitions the change in state of the atom is accompanied by a simultaneous change
of the light field. This happens through exchange of a photon between the atom and field in such
a way that the total energy and momentum are conserved. Energy-level diagrams discriminating
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Hydrogen Adsorption Spectrum
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Figure 2.1: (a) Atomic energy level diagram (Term diagram) of hydrogen. Indicated are the first transitions
of both the Lyman series (Lo) and the Balmer series (Hy). (b) Balmer spectrum of hydrogen observed in
absorption (upper) and emission (lower).

between various quantum numbers (like in Fig.a) are often referred to as Term diagmmsﬂ This
practice finds its origin in the assignment of the energy levels in optical spectroscopy (see Fig.b)
in which spectral lines are assigned to terms in a series of transitions sharing the same final (or
initial) state. The first series of this type was discovered empirically by Balmer in 1885 for the
spectral lines of hydrogen in the visible part of the spectrum. The Balmer series is defined by
all optical excitations from (or decay to) the n = 2 level. Analogously, the Lyman series involves
the transitions to (or from) the hydrogen ground state (n =1). In 1888 Rydberg generalized the
expression for the Balmer series into the Rydberg formula, which yields the wavelength (in vacuum)
of any transition between two hydrogenic energy levels,

(-]

where n > ng, with ng being the principal quantum number of the common and lowest level in all
transitions considered; i.e., the defining level of the series. The corresponding energy splitting is
given by

1
— =-R
)\n M

AE, = E, — Ey = hc/An. (2.36)

If ng refers to an initial state, the atom is excited from the common level Ey = E,, to one of the
levels E,, under absorption of a photon of energy hw, = E, — E0E| In astronomy, such transitions
are observed as dark lines in the spectrum of stellar light (see Fig.b—upper) and demonstrate the
presence of cold (dark) interstellar gas between the observer and a distant star. Inversely, if ng refers
to a final state, the atom is de-excited from one of the levels E,, to the level Ey under emission
of a photon of energy hw, = E, — Fy. This is observed in spectroscopic studies of glowing hot
interstellar clouds (in regions of star formation), where the emission appears as bright lines against
a dark background in the spectrum of the glow (see Fig.[2.1p-lower).

1Term diagrams were introduced by the astrophysicist Walter Grotrian in 1928. The formal definition of the
notion Term is given in Section @

2Here we neglect the recoil shift, a small shift of the optical transition frequency with respect to the value wy,. It
results from the conservation of linear momentum in the emission of a photon.
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2.3 Eigenfunctions of the bound states
Combining Egs. (2.30)) and (2.27)) we find for the radial wavefunctions
Rui(p) = N, 222 n) 4312 ple= 2o In 2L (27 /n). (2.37)

Note that the normalization factor A,; used in Eq. (2.30) has been replaced by the normalization

factor N&l/ . Substituting this expression into Eq. (2.
we find with the aid of Eq. (M.83)

16) and changing to the variable x = 2Zp/n

2nT(n+1+1)

[e'e] o 2
Ny = /0 L2042, [Liljll_l(x)] de=Ji(n—1-1,21+1) = D)

(2.38)

A few important cases are N1z = 2, Nop, = 24, N3zq = 720 and Ny = 40320. The integral
Jiln —1—1,21 + 1 is a generalized normahzatlon integral as defined by Eq. (M.81] m Inspecting
the solution Eq. , we find that x;(p) ~ p"e 4P/ for p — oco. This is 1ndependent of |
because asymptotically the Coulomb term, 27/p , always dominates over the —I(I + 1)/p? term
in the Hamiltonian (all radial wave functions behave asymptotically as s waves). For p — 0 the
radial wavefunction vanishes for all values I > 0. For the case | = 0 the probability density (see
Appendix of the radial wavefunction at the origin is

R2.(0) = 4(Z/n)?. (2.39)
As an example we calculate the lowest hydrogenic radial wavefunctions for the cases n = 1,2, 3 and

arbitrary Z. The results for the hydrogen atom are obtained by setting Z = 1. Substituting the
quantum numbers n and ! into Egs. (2.37)) and ( we find

Ris(p) = Z3/22¢=%¢ (2.40a)
Raslp) = (2/2)*% (1 = Zp/2)2e~#0/? (2.40b)
Rap(p) = (2/2)°/% \/1/3(Zp/2)2e= 27/ (2.40¢)

Ryo(p) = (2/3)°/% [1 = 2(Zp/3) + 2(Zp/3)?] 2¢~27/* (2.40d)
Rap(p) = (2/3)** \/8/9 [1—7(Zp/3)] (Zp/3)2e= 2013 (2.40¢)

Rsa(p) = (2/3)°% \/2/45(Zp/3)2e= 20/ (2.40f)

In all cases [ R2,(p)p?dp = 1. Some examples are shown (for Z = 1) in Fig.

2.3.1 Dirac notation

In many cases it is convenient to adopt the Dirac notation |nim) for the electronic orbital eigenstates
of hydrogenic atoms. In this notation the Schrédinger equation (2.5)) takes the compact form

Ho [nlm) = E, [nlm) . (2.41)
The relation with the eigenfunctions in the position representation is given by
Ypim (r) = (r|nlm) = (r|nl) (F]lm), (2.42)

with (r|nl) = rRy;(r) and (£|lm) = Y™ (¥).
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Figure 2.2: The lowest order hydrogenic radial wavefunctions plotted in atomic units as a function of radial
distance. Note that for a given value of the orbital quantum number [ the number of nodes increases with
the principal quantum number n.
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Figure 2.3: Radial distribution functions for the lowest hydrogenic wavefunctions. For the 1s wavefunction
the radial distribution reaches a maximum at the Bohr radius (p = 1).

2.4 Diagonal matrix elements

2.4.1 Radial averages
The expectation value of an operator A for an atom in eigenstate |nlm) is given by
(A) = (nlm|Alnlm) . (2.43)

In many cases of practical importance the operator A depends analytically on the radial distance
to the nucleus, A = A(p). Operators of this type are diagonal in the representation {|nim)}.
Importantly, (A) separates into the product of a radial and an angular integralEl

@nnml=L/dpp?ému»Au»anp)/Wmm<Qn2d9,

which reduces, given the normalization of the spherical harmonics, to a purely radial integral,

mmm:/@mmﬁMmem

(2.44)

(2.45)

'n these lecture notes we use interchangeable notations for the radial unit vector: # = Q = (0, ¢).
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Here Xni(p) is a reduced radial wavefunction as introduced in Section By separating the radial
from the angular integral we obtain a reduced matriz element; i.e., it depends on n and [ but not
on m (see Problem . Like an ordinary matrix element it is an integral over the radial variable
but differs by the presence of the additional weight factor p2. The function

Xai(p) = p*R2(p) (2.46)

is called the radial distribution function of the state |nl) and expresses the radial distribution of
the probability density to find the electron at distance p from the origin. For the lowest radial
wavefunctions these are shown in Fig.[2:3]

2.4.1.1 Atomic size

As a first example we calculate the average radius of the hydrogen ground state |1s) with the aid of

Eq. (2.404),
(P)1s = /p[?pe_p]de = 4/p3e_2pdp = i/x?’e_xdx =1I(4) =3 (2.47)

Comparing with Eq. we find that (r),, = %a, which is 50% larger than the Bohr radius,
ap ~ 5.2 x 107" m. As the proton size is orders of magnitude smaller, r, ~ 8.4 x 107!6 m, this
justifies in hindsight our Ansatz of treating the nucleus as a point charge. Compact relations for
the radial averages <pk>nl in atomic units can be obtained by expressing Eq. in terms of the
integrals .J, (n’, 2l + 1) defined in Eq. (M.81)),

1 Nk [ w 2
(P")0 = N (ﬁ) /O g? P [LIL (2)] de
B (l)k Jrp1(n—1-1,2141)
- \2Z)  Shi(n—1-1,21+1) °

(2.48)

In particular we obtain for a number of important special cases with the aid of Egs. (M.82)-(M.85)

(bt = 5307 ~ 10+ 1) (0 = (2.490)
2 L o o _2 Z2 1
(%)t = gz’ [5n® +1 = 31(L+ 1)] 0 = E T (2.49D)
z? 1

()t = (2.49)

n3(I+1)(1+1/2)1
By substituting n = 1, I = 0, Z = 1 we regain the result (r) = 3/2a for the average radius of the
hydrogen ground state in atomic units. With Egs. (2.49a)) and (2.49b) the variance in the radial
position is calculated to be

(0= )t = (Pt — (V21 = T 02002 +2) = 21+ 1)7). (2.50)

As another example of a radial average we calculate the average radial kinetic energy for the
hydrogen ground state |100) in Hartree atomic units

1 92 d?
- —_9 = L (=P
< 2p 3p2'0>1s /dppe dp? (pe™)
= 4/pe*2ﬁdp - 2/p26*2ﬂdp =T(2)-1irE)=1. (2.51)

This expression may be generalized for arbitrary hydrogenic eigenstates (see Problem .
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Problem 2.2. Show that Eq. (2.45)) is a reduced matrix element in the sense of the Wigner-Eckart theorem
(cf. Appendix |L.2).

Solution. The scalar operator A(p) is an irreducible tensor operator of rank zero. Using the sum rule of
Appendix the reduced matrix element is given by

1
[(nll|Allnd)|* = D [{nlm|Alnim)*.

m=—1
Substituting Eq. (2.45)) we have 2] + 1 equal terms and obtain
(A)nr = [(nl||AllnD)? /(2L + 1),

which is independent of m and, as such, a reduced matrix element in the sense of the Wigner-Eckart theorem.
For zero-order tensors the use of this theorem is overkill because the angular integral not only factors out
of the integral but evaluates to unity - see derivation of Eq. (2.45]). m|

Problem 2.3. Show that the radial kinetic energy of the state |nlm) is given by
1 6° Z2 {1  1(1+1)
- = — |- —— .. 2.52
< 2p8p2p>nz n? [2 n@+n] " (2.52)
Solution. Changing to the variable x = 2Zp/n we have
- 2
Ru(p)p’dp = Nyy'a® e [0 (2)] do

and after angular integration we are left with the radial average,

L & 1 2Z\* [ 141 w2 o d® b1 a2t
<_5672p>nl:_2/\/m <7> /0 @ e Ly L (@) s [T e T Ly T (2)]de.

In view of the orthogonality relation (M.76) we have to retain only those derivatives which are proportional
to [L2H ()],

[Lilj_zl_l(:c)]z mlJ’le*E/Z;—leHe*wﬂ = g2Hlem® I+ Dz = (1 +1)+ 12) [L2H'1 (:c)]z

T n—Il—1

“L2MHL () Z:;JQ L2+ (g) [2w1+167z/2%wz+167z/2] s —g?HlemT (n — [ — 1) [L21+1 (:r)]2

n—l—1 n—l—1
2
L2 (@) Sl L @) (a1 e2) 0.
Here we used the expansions (M.80b) and (M.80c). Collecting the selected terms we obtain

1 9? 2 2% [ oi1 [y 2 -1 1
(apan), = wraa ), e [Bte)] (e e - o)

2 Joi(n—1-1,20+1) Jo(n—1—1,21+1) 1}

Z
=2 1 9 +1 2 _ =
n2{ (U + )Jl(n—l—1,2l+1) + nJl(n—l—l,Ql—i—l) 2

Substituting the expressions for the J,(m, a) from Appendix we find Eq. (2.52]). |
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2.4.2 Angular averages

Angular distributions can be written as an expansion over spherical harmonics Y,!(#) for which the
angular averages are easily calculated using the Gaunt integral (see Problem [L.4) [53],

(Y (®)im = (Im|Yy! (F)[1m)

/Yq )Y (7)) di (2.53)
(1) (24 1) %:”(égé)( ! ’”). (2.54)

—-maqm

This average is non-zero only for ¢ = 0 and k = even in the interval 0 < k < 2I. See Eq. (K.21)) and
the selection rules for 3; symbols.

2.4.2.1 Examples

The angular averages of the lowest-order spherical harmonics are found by using the expressions for
the Wigner 35 symbols - see Eq. (M.59)),

(YO tm) = [ 4~ (2.55)

{Im|Y? (#)[lm) = 0 (2.55b)

oy Eim) = LD I 8 (2550

Problem 2.4. Show that for s orbitals (Im|Y,?(#)|lm) is non-zero only for k = g = 0.

Solution. To calculate the angular average of Y;?(£) we use Eq. (2.54). The angular average is nonzero if
the 3j symbols are nonzero; i.e., for 0 < k < 2. For s orbitals (I = 0) this implies 0 < k < 0. Hence, for
k > 0 the angular averages all vanish. For k = 0 we find

(00]Yy (£)[00) = 1/1/47(00]00) = /1 /4. m
Problem 2.5. Show that the s-wave angular average of sin? § is (00|sin? #|00) = 2/3.

Solution. First we express sin? 0 in spherical harmonics

in2g = 2 _ 2, /4T yo
bm@—g 3V 5 Y2 (0, ¢)

Then the angular average follows with Eq. (2.55c)),

1(141) —3m?2

2
(Im| sin® 0)lm) = 3T -1

2
3

For s waves (I = m = 0) this yields 2/3. It may speak for itself that there are simpler ways to average sin® 0
over a sphere. This problem merely serves to demonstrate the general case. a

2.5 Off-diagonal matrix elements

2.5.1 Transition dipole matrix elements

In this section we investigate the matrix elements (n'l'm’|d |nlm) of the electric-dipole operator

d=—er=—capt (2.56)
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between eigenstates of the Schrodinger Hamiltonian. The electric-dipole operator has odd parity; i.e.,
the operator changes sign when replacing the radius vector r by —r. Since the electronic eigenstates
carry the parity of the Y;*(f) - see Eq. - the expectation value of the electric-dipole operator
averages to zero, (nlm|d|nim) = 0. This reflects the absence of a permanent electric-dipole moment
for hydrogenic eigenstatesEI Hence, the atomic-dipole matrix is off-diagonal.
The off-diagonal matrix element
D., = (|d|g) (2.57)

is called the transition-dipole moment of the e <+ g transition between atomic states. As D, is
generally a complex vector it may be written as the product of a generally complex unit vector @
and a real prefactor Deg,

D¢y = Degt. (2.58)
Because the dipole operator is hermitianﬂ D., = Dy, we have
[Deg|* = [Dye|? = DZ,. (2.59)

With regard to the eigenstates |g) = |nim) and |e) = |n/I'm’) of hydrogenic atoms, the transition
dipole moment is given by
Dyt mim = —ea(n'U'm!|p# |nim) . (2.60)

Decomposing the hydrogenic wavefunctions into the product of radial and angular states, ¥4(r) =
Ry (r)Y™ (), the matrix elements of the transition dipole separate into a radial and an angular
contribution,

Dn’l’m’,nlm = _eaRn’l’,nl <llm/| r |lm> . (261)

The radial contribution is given by the integral - compare with Eq. (2.45]

o0
Rutnt = [ SorvpXo(p)dp. (2.62)
0
Note the property
Rn/l’,nl = Rnl,n’l’ . (263)

The angular contribution is given by
(I'm!| # |lm) = / YV (R) £ Y (R)dE. (2.64)

Note that this integral is zero if the parity of the integrand is odd. This reveals that the electric-
dipole transition requires a change of parity of the electronic state.
2.5.2 Angular matrix element - spherical basis

To find an explicit expression for the angular matrix element we decompose the radial unit vector
#, as defined in Eq. (1.13a), in the spherical basis[]

a A 1/a A —1/4 Axy 0 /5
= dn/3 [0, Y] (F) + 05, Yy (F) + a5y (7)) (2.65)
where the spherical unit vectors are defined by
~ 1/A N N 1/A N “ N
Gy = —\/;(x—}—zy), a_; = —|—\/;(x—zy), 0y = 2. (2.66)
IStates sharing the same principal quantum number but differing in orbital angular momentum are degenerate
in the case of the Schrédinger Hamiltonian. Linear combinations of such states do have a permanent electric dipole
moment. This moment becomes nonstationary when the degeneracy is lifted by some perturbation.

2Note that (r|r|r’)* = r'6(r' —r) = ré(r — ') = (r'|r|r).
3This is readily verified: G+1 - r = F1/1/2[(]- 1) £ i(§ - r)] = Fry/1/2eF¢sin6; Gg-r =% - r = rcosb.
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The decomposition (2.65) is called the standard (or spherical) decomposition of the radial unit vector
F. Substituting Egs. (2.66) into Eq. (2.65) we regain the cartesian decomposition of ¥ as given in
Eq. (1.13a)). The orthonormality relations for the spherical unit vectors are

a

with 4,5 € {—=1,0,1}. Note that tiy; = —0*, G_; = —0%, and 6y = G, which is summarized by
the expression

f, = (—1)%a" (2.68)

a
The reverse transformation is given by

——\/7 (Gy1 —0-q) y= —&—\/7 (g +10-1)i, 2Z=1g. (2.69)

The angular matrix element is readily evaluated in the spherical decomposition. Using the Gaunt
integral for the product of three spherical harmonics, see Eq. (M.59)), we obtain ,

I'm/|#|lm) = q——lﬁ* U'm'| /4w /3Y(E) |lm)
/ 11 11
/!
*Zq__ﬂl (D™ @+1)2r+1) (OOO) < >

-m/ gm
= ﬁ:ﬂ—mAl/m’,lma (270)

where the modulus of the angular integral is given by

/ / U 1 l
Al’m’,lm _ (_1)m +max(l,1") max(L ll) ( , ) 6[’,l:tl' (271)

-m' ' m' —mm

Note the property /
Avmsim = (=1)™ 7" At (2.72)

The last step in Eq. follows from the projection rule of 3;5 symbols, ¢ +m —m’ = 0, which
implies that only one of the three terms of the spherical decomposition gives a nonzero contribution
to the matrix element (I’m’|# |lm). This selection rule expresses the conservation of angular mo-
mentum along the quantization axis. The factor d;/ ;41 expresses the electric-dipole parity selection
rule for one-electron atoms. It arises as the property of a 35 symbol - see Eq.

l/ 11 ’ Inax(l l/) — 2.73
1 max(l,l") [ S R = I = + 1. .

2.5.3 Transition dipole and transition strength

Thus we established that the transition dipole can be written in the general form (2.58]),

A %
Dn’l’m/,nlm = Dn/l/m’,nlmumlfmy (274)
o . . .
where @, is a spherical unit vector and
Dn’l’m/,nlm = —e€a Rn’l/,nlAl’m/,lm~ (275)

The quantity

|Dn/l/m/,nlm|2 = D,?Llll =€ GQR n'l’, lAl' 1 (276)

is called the n’'l'm’ <> nlm (atomic-dipole) transition strength. Note that D,y m/ nim can be written

in the form
Doy im = —ea (n''m/| /4w / pY m m)( ) |ndm) . (2.77)

m’,nlm m
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m=—1 m =20 m = +1

Figure 2.4: Depending on the change in magnetic quantum number of the atom, electric-dipole transitions
are referred to as sigma-plus (Am = 1), sigma-minus (Am = —1) or pi (Am = 0) transitions.

As the operator \/éﬁ/i’)riﬁ(m,*m)(f‘) is a standard component of the irreducible vector operator r
(cf. Section and Appendix [L.1.2]) we can apply the Wigner-Eckart theorem (L.24)),

- . U 1 l
Dyt mim = —ea (—1)! (n'U'||\/47 /3 p Y1 (#)||nl) < , ) . (2.78)

m' ' m' —m m

Comparing Egs. (2.78)) with (2.75) and (2.71) we obtain once and for all the expression for the
reduced matrix element in the standard representation {L?, L.}

<’I’L/l/| ‘ \ 47T/3 pY1 (f‘)”?’ll> = :|:\/ max(l, l/) 6[’,li1Rn’l’,nl- (279)

2.5.4 Selection rules for electric-dipole transitions - spin of the photon

Since e*a*R7,;, ,; is positive-definite, the transition-dipole is only non-zero if Ay im is non-zero;
i.e., if the condition

U 1 l
(_ , m> oy i+1 #0 (2.80)

m' m' —m

is satisfied. The parity selection rule (2.73) is enforced by the Kronecker symbol ;s ;1. Together
with the properties of the 35 symbol Eq. (2.80)) yields the selection rules for electric-dipole transitions

Al=+1, Am=0,=+1, (2.81)

where Al =1’ — 1 and Am = m’ —m. Transitions in which the magnetic quantum number increases
(decreases) are called o (0_) transitions; transitions with Am = 0 are called 7 transitions (see
Fig..

If the transition is induced by the electromagnetic field, the change in angular momentum of the
atom is compensated by a change in angular momentum of the field (to conserve the total angular
momentum). This happens in the exchange of a photon between atom and field. From the selection
rule Al = £1 we infer that the emitted (or absorbed) photon always carries a single unit of angular
momentum. This angular momentum is called the spin of the photon (s = 1). From the selection
rule Am = 0,41 we infer that the quantum number mg for the projection of the photon spin on
the quantization axis of the atom is given by ms = Am = 0,+1. The probability to observe the
photon as a particle with polarization unit vector € is given by |é - ﬁ;‘n,_m|2. Further discussion of
optical transitions is best given after the interaction of atoms with the electromagnetic field has
been introduced.

2.5.5 Examples of electric-dipole transitions in hydrogen:
2.5.5.1 Lyman transitions:

Let us calculate the radial and angular integrals for a couple of important cases. First we consider
excitation from (or decay to) the electronic ground state (np <> 1s). These transitions define the
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=T
1 1 1
\/ s
=0
0

(a) (b)

Figure 2.5: Angular contribution to the transition strength for: (a) sp transitions; (b) pd transitions. The
squared angular matrix element of the reference transition (the weakest of the set) is 1/3 (for sp) and 1/15
(for dp). Note that the sum of the transition probabilities is the same for all upper (or lower) levels.

Lyman series. Setting [ = 0 in Eq. (2.80] the selection rule for these transitions becomes

< vl 0> £0. (2.82)

—-m'm' 0

In other words we require I’ =1 and m’ = —1,0, 1.

Substituting the expressions for Ry,(p) and Rnp(p) from Eq. 1] into the radial integral 1)
and changing to the variable = 2Zp/n the radial integral becomes

_ 1 [(n=2)! rn\2 4 —(n+1)x/273
Rans = 7 (’Il+]_)' (2) /.TL' (& Ln72(.'1?)d.’13 (283)

This integral is evaluated by repetitive use (3x) of the recursion relation (M.80al),
n—2 n’ n”
/ wte”HUTRLE L(wyde =Y > > / whe= (VT2 (1) da (2.84)
n'=0n""=0 k=0

Note that the number of recursions required is equal to the upper index of the Laguerre polynomial.
Evaluating the integral and summations we obtain

(Tl _ 1)7175/2
Rnp,ls = (1/Z)Z4n7/2 (n - 1)771_"_5/2 n > 2. (285)
The angular integral yields (see also Fig. [2.5ja)
o 1 10
AP—)S = Alm’,OO = (_1) + (_m/ m/ O) = % (286)

In particular we find for the Lyman « transition strength (2p,,, <> 1s) - see Problem|2.6
D3, =0.55493¢%a® /2. (2.87)

Note that this results holds for transitions is independent of the choice of m/’.

2.5.5.2 Balmer transitions:

The second example is the Balmer series, which is defined by ezcitation from (or decay to) the first
excited electronic state (n = 2 level).
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np < 2s transitions (n > 2) ) 3
Substituting the expressions for Ros(p) and R,,(p) from Eq. (2.37) into the radial integral (2.62)
and changing to the variable © = 2Zp/n the radial integral becomes

Runzs = 527\ ) (5) / (1 — na/4)e+22/43 (). (2.88)

The integral is evaluated by repetitive use (3x) of the recursion relation (M.80al),

/304(1 —na/4)e” DAL (2)de = Z Z Z/ —nx/4)e” DAL (2)dr. (2.89)

=0n""=0 k=0

Evaluating the integral and summations we obtain

—(1/2)3v/3 n=2

Rnp 2s — (Tl - 2)n—3 (290)
* 1/7)28/2n7/? Y2 > 2.
+(1/2) V2n ( —-1) (n + 2)n+3 n
The angular integral yields for all sp transitions (see also Fig. a)
m 1 10

Aps = A 00 = (-1)™ <_m’ m 0) =5 (2.91)

In particular we find for n = 3 the 2s <> 3p contribution to the Balmer-a transition strength,
D3, 5, = 3.131€%a*/ 27, (2.92)

ns <> 2p transitions

Substituting the expressions for Ra,(p) and R,.(p) from Eq. (2.37) into the radial integral (2.62)
and changing to the variable z = 2Zp/n the radial integral becomes

1
Ropsop = n®/?
2= 3976

The integral is evaluated with the aid of the recursion relation (M.80a)),

n—1
/m4e_(”+2)x/4L£71(x)dx = Z /x4e_("+2)x/4Lk(m)dx. (2.94)
k=0

e~ (HD/Apl (1) da, (2.93)

Evaluating the integral and summations we obtainﬂ

—(1/2)3\/5 n=2

Rns,Zp = 7 n9 2 )n73 (295)
Z)27\/2/3n°/ +2n+3 n # 2.
The angular integral yields for all sp transitions (see also Fig. a)
011

Ago,1m = (—1)™H! =4/ 2.96
00,1m = (—1) 0 —mm 3 (2.96)

Note that for n = 1 we regain the 1s <> 2p,, (Lyman «) transition strength - see Eq. (2.87))
D3, 1, = €a’RY, 5, ASo 1 = 0.55493 ¢%a® /2. (2.97)

1For n =1 the transition is part of the Lyman series - compare with Eq. (2.85).
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Likewise, we find for n = 3 the 3s <> 2p,,» Balmer-« transition strength,
D3, o, = €a’R3, 5, A%0.1m = 0.29353¢%a®/Z°. (2.98)

A new aspect comes into play when dealing with incoherent sums over (initial or final) states. A
well-known example is the calculation of spontaneous emission rates from a given magnetic sublevel.
This involves a sum over the final states contributions. Summing over the magnetic sublevels of the
p level we find

s—>p Z AOO 1m — +- (299)

m=—1

Using this sum rule we obtain for the total transition probability

D3, ,, = €%a®R3, 5, Z Ao 1 = 0.88060 %a? /22 (2.100)

m=—1

nd <> 2p transitions

Substituting the expressions for Ra,(p) and R,a(p) from Eq. (2.37) into the radial integral (2.62)
and changing to the variable z = 2Zp/n the radial integral becomes

,(n 3)! / 6o—(n+2)z/45
= 1 nt2)az/dp . 2.101
nd 2p = / 32\/> TL+2 n—3(x)d$ ( 0 )

The integral is evaluated by repetitive use (5x) of the recursion relation

n!'

/az:f‘e*"+2 eALS (x)de = Z Z Z Z Z/ Se=(n+2)2/4L, (1)d. (2.102)

=0n/"=0n'"=0n""=0 k=0

Evaluating the integral and summation we obtain

(n—2)"=3 [(n—3)!

R = (1/2)2°/2/3n°(n* — 1 2. 2.103
nd,2p = (1/Z) /3n°(n )(n+2)n+3 (n+2)! n= ( )
The angular integral yields for d <> p transitions
: 11 2 (4 —mn?
w10 = (=17 V2 =(-1)™"™ 2.104
Ao = (=17VE (o, 2 ) = e A (2.1040)

o 1 1 2 R Y= 0<m <2
A2m’,1:|:1 = (_1) m \/5 (j:l , 1 I) = (—1) m 3? s (2104b)
m F1—-—m /2—37750-&-771 -9 < m’ < 0.

For the case n = 3 we find for the 3d,,” < 2p,, Balmer-a transition strengths - see Problem
D§d7rl/,2pm = e2a2R§d,2p'A2m’ im — = 22.543 A2m’ 1m€ a2/Z2' (2105)

Summing over the magnetic quantum numbers of the p or d level we obtain the sum rules

Z A 1 = Z Aty = % (2.106)

m=—1 m=—2

Interestingly, this sum is independent of the choice of the initial magnetic sublevel m’ as is illustrated
in Fig. We return to the use of sum rules when discussing electric-dipole transitions in the
presence of fine structure (Section and hyperfine structure (Section. For the case n = 3
we find for the 3d,, — 2p and 2p,, — 3d Balmer-« transition probabilities

D34, 2p = D342p,, = 9.0172€%a% /2% (2.107)
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Problem 2.6. Verify the general expressions for 1s <> np, 2s <> np and 2p < nd transitions by direct
substitution of Egs. (2.40) into Eq. (2.62) for the 1s <> 2p (Lyman «), the 2s <> 2p and 2p > 3d transitions
in hydrogen.

Solution. By direct substitution of Egs. into Eq. we calculate
Rop,1s = /Ooo p° Rap(p) Ris(p)dp = +1.29027/Z
Rop2s = /Ooo p° Rap(p)Ras(p)dp = —5.19616/Z
Rop3d = /0 - p° Raa(p)Rap(p)dp = +4.74799/Z.

These values are used in the formulas for 1s <> np, 2s <> np and 2p <> nd transitions. O
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Angular Momentum

In Chapter |1f we solved the Schrodinger equation for the motion of a particle in a central potential
field. Exploiting the central symmetry we found separate equations of motion as a function of r, 8
and ¢ and established that the radial and angular motions are quantized. For the angular motion
this was expressed by the eigenvalue equations for the operators L2 and L,. In this second chapter
on the mathematics of the atom we develop another line of reasoning. We start by demonstrating
that the properties of quantized angular momentum follow directly from the commutation relations
. In particular, the eigenvalues of L? and L. and the properties of L, and L_ are obtained
without solving the Schrodinger equation. This leads us to generalize the discussion: whenever we
meet a vector operator J of which the cartesian components, J;, J, and J;, are hermitian operators
satisfying commutation relations of the type , the quantization properties of its observables
are immediately known. We shall find that these commutation rules define an algebra that not
only reproduces the properties obtained in Chapter [1| but also allows for different (non-classical)
kinds of angular momentum. In Section [3.2] we introduce the matrix representation for angular
momentum operators in vector spaces of arbitrary dimension. For the two-dimensional case we
obtain the Pauli matrices, identifying spin as a s = % form of angular momentum. In Section@ we
turn to the measurement of angular momentum. We introduce the vector model and the concept of
polarization; i.e., the expectation value of the atomic angular momentum averaged over an ensemble
of atoms. In Section [3.4] we introduce the vector addition of two angular momenta to form a total
angular momentum. We define the coupled and the uncoupled representation and introduce the
Clebsch-Gordan transformation between these two. We are free to chose one of these representation
but as soon we have coupling between the angular momenta this choice is leveraged by conservation
rules (see Section . In Section we investigate the relation between rotations in real space
and unitary transformations in Hilbert spaces. We find for the spin s = % case that the angular
momentum operators S, Sy and S, can be written as differential operators representing infinitesimal
rotations about the z, y and z axis, respectively. We arrive in Section at the formal definition
of the angular momentum operator .J, as an infinitesimal rotation about the direction 4. Without
the above justification this is the starting for many applications of angular momentum theory in the
literature as it implies the proper commutation relations and with this all properties of quantized
angular momentum. We find that half-integral angular momenta have rotation properties that do
not exist in classical physics.

Introductions in the theory of quantized angular momentum are given by Albert Messiah [82] [83]
and in dedicated books on Angular Momentum by Morris E. Rose [104] and A.R. Edmonds [40].
The classics by Ugo Fano and Giulio Racah on Irreducible Tensorial Sets [43] and by Eugene P.
Wigner on Group Theory [I31] put emphasis on the mathematical basis of the theory.

37
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3.1 Angular momentum algebra

In this section we demonstrate that the vector operator J has the properties of an angular momentum
operator if its cartesian components (J,, J, and J, in some frame of reference S) are hermitian
operators satisfying the commutation relations

[Jo, Jy) = ihJ., [J,,J.] = ihJ, and [J.,J,] = ihJ,. (3.1)

Using the inner product rule
P =0+ +J2, (3.2)

it is straightforward to show that J? commutes with J, - see Eq. (1.31). Therefore, J? and .J, share
a complete set of eigenstates (see Problem [F.1)). Adopting the Dirac notation we denote this joint
basis by {|\,m)} and the corresponding eigenvalue equations take the form

J2 |\, m) = A% |\, m) and J, |\, m) = mh|\,m), (3.3)

where the eigenvalues A and m are real numbers still to be determined. Note that, equally well we

could have chosen the joint basis of J? and J,, (or J? and Jy). By selecting J? and J, we adopted the

z axis of our coordinate system S as the quantization axis in the real space of observation; the basis

{|\,m)} that diagonalizes J? and .J, simultaneously defines the standard representation {J?,J.}.
Like in the case of orbital angular momentum we proceed by introducing shift operators

Jr = Jp £idy. (3.4)
For convenience of reference we also give the inverse relations
Jo=3(Js+J2) and J,=—it(Jy —J). (3.5)
Note that J; and J_ are hermitian conjugates, as follows from the hermiticity of J, and J,,

0I5 1x) = XN 2 [x) + O] iy |x)
= (Xl Jz XY =il Iy X)) = (X T- X)) (3.6)

where |x) and |x’) represent arbitrary angular momentum states. With the aid of the commutation
relations (3.1)) it is straightforward to derive commutation relations for the shift operators - compare

Egs. (1.36) and (1.38)),

[J., J1] = £hJy and [J4, J_] = 2kJ,. (3.7)

Furthermore, we can derive the following operator identities - cf. Egs. (1.37]),
J Jy=J3*—J2—hJ, (3.8a)
JpJ_ =32 —J2 4+ hJ.. (3.8b)

Adding these equations we obtain the inner product rule
I =J2+ LI Jo+ T (3.9)

The shift operators are introduced because they enable us to construct the subspace V) of the
angular momentum Hilbert space corresponding to the eigenvalue A. To elucidate this point we note
that J; is an operator that raises the eigenvalue mh by one unit of angular momentum about the
quantization axis; i.e., if |A,m) is an eigenstate of J, with the eigenvalue m# also Jy |\, m) will be
an eigenstate of J, but with eigenvalue (m + 1)#,

JoJp (A m) = (Jrmh+ RJy) A, m) = (m+ 1)RJ4 [\, m). (3.10)
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This follows directly from the commutation relations (3.7). Comparing Eq. (3.10) with the generic
eigenvalue relation (3.3) we find

JeAhm)=cy (A, m)R|A,m+1), (3.11)

where ¢4 (A, m) is a (generally complex) constant to be determined. Likewise, we find that J_ is an
operator that lowers the eigenvalue by A,

J_|Am)=c_ (A, m)R|\,m—1). (3.12)

Thus we established that for a given eigenvalue A the operators J4 act as construction operators by
which new angular momentum eigenstates of the subspace V) can be generated.

We are now in a position to determine the constants cy (A, m). As we shall see this leads us
to the quantized spectrum of A and m. First we derive a relation between c; and c_ using the
property that J; and J_ are hermitian conjugates,

cr A\,m) = (G,m+ 1] (Jy/h)|j,m) = G,m| (J_/h) [5,m+1)" =c~ (A, m+1). (3.13)

We proceed by deriving two expressions for the expectation value (A, m|J_J |\, m). Using Egs.

(3-11), (3.12) and (3.13) we obtain

Nm| J_Jy [Am) =c_ (Am+1)cy (\,m)h* = |cp (\,m)|*h% (3.14)
On the other hand from Eq. it follows that
Nm| J_Jy [Am) = (\m|I?—J2 = hJ, |\, m) = [\ —m(m+ 1)] k% (3.15)
Equating Egs. and we find the condition
0< ey A,m)|>=X—m(m+1). (3.16)

Repeating the derivation starting from J,.J_ we obtain in a similar way
0< e (A m)[2=X—m(m—1). (3.17)

To assure that the conditions (3.16]) and are not violated, the construction of the subspace V),
by the operators J4 has to be terminated at some point; i.e., we require the existence of a maximum
and a minimum value of m, —j < m < j. The only way in which these bounds follow logically
from the algebra is if the conditions cy ()\,j) = 0 and c_ (A, —j) = 0 are simultaneously satisfied.

Together with Egs. (3.16)) and (3.17)) this leads to the condition
A=4G+1)=340G+1). (3.18)

Hence, we find j = j and since m has to vary in integral steps, the condition —j < m < j implies
that j and m have to be either both integers (0,1,2,---) or half-integers (%, %, -++). Other values of
7 and m are not allowed because the construction procedure would not be truncated by the algebra
and result in violation of the conditions and . For the coeflicients we find the relation

lex (GG +1),m) [P =4 +1) —m(m £1). (3.19)

Simplifying the notation, ¢4+ (j(j + 1),m) — Cj +m, and choosing the phase of C;,, such that it
always represents a non-negative real number we obtain the coefficients in the Condon and Shortley
phase convention [29],

Cim=ViG+1)—mm+1) =G —m)([G+m+1). (3.20)

This convention represents a generalization of the phase convention introduced in Section [1.1.6.1
to the case of arbitrary angular momenta. In view of Egs. (3.11]) and (3.12]) this convention assures
that the basis states {|j,m)} are constructed with the same relative phase.
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3.1.0.1 Summary:

A vector operator J is called angular momentum operator if its cartesian components (J,, J,, and J,
in some frame of reference S) are hermitian operators satisfying the following commutation relations

[Ji, J;] = iheiji T, (3.21)

with ¢, j, k € {z,y, z}. Choosing the quantization axis along the z direction of a cartesian coordinate
system in the euclidean space of observation, the eigenvalue equations of an arbitrary angular
momentum operator J can be written in the form,

J2|j,m) = j(j + 1)B* |4, m) (3.22a)
The quantum numbers j and m are called rotational quantum numbers. They are either both integral
or half-integral. The quantum number m is often referred to as the magnetic quantum number and

is restricted to the interval
—Jj<m< . (3.23)

The kets |7, m) correspond to the basis vectors in the standard representation {J? J.} of ad = 2j+1
dimensional subspace V¢ of Hilbert space, with d = 1,2, 3, - --. Using the Condon and Shortley phase

convention the shift relations (3.11)) and (3.12) become
Ji|j,m) = Cjamhl|j,m=£1) (3.24a)

where the shift coefficients C; +,, are non-negative and real,

Citm =i +1) —m(m=E1), (3.24b)
with the symmetry properties
Cjam = Cjgm-1. (3.24¢)
In this convention all sublevels |j, m) can be constructed from |7, j) by repeated action of the lowering
operator,
. (j +m)! (L)j"" -
|4, m) GG —m)i \ T 1,7) (3.24d)

This expression is readily verified by induction. Note that the shift operators conserve the phase.
Therefore, for given j, all |j, m) carry the same phase. Furthermore, the shift operators satisfy the
following commutation relations:

[Ji,Ji] =0, [Jo, Js] =420J., [J.,Je] = £hJs. (3.25)

3.1.1 Shift operators versus standard components of vector operators

With respect to the cartesian basis the angular momentum operator J can be written as
J=%J, +3J, +2J., (3.26)

where J,, Jy, J, are the cartesian components. An inconvenience of the cartesian decomposition is
that the properties of the angular momentum are best accessed by the operators J,, J; and J_.
Thus we are lead to re-express J, and J, in terms of the shift operators. Substituting Egs. (3.5

into ([3.26]) we find
J=5&—i9)Jy +5 & +9)J- +2J.. (3.27)
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Here we recognize the spherical unit vectors (2.66]),

L RN A TS AR (3.28)
Rewriting this expression in the form
J=u,J +05Jo+ 0" J (3.29)

we obtain the standard (or spherical) decomposition of J. The standard components Ji1, Jo, J-1
are defined by[l]

To = J.: Jo =3 id,) = 7/ (3.30)

As the standard decomposition of J maps one-to-one onto the standard decomposition of the radial

unit vector ¥, see Eq. (2.65)), the standard components J,,, have the same transformation properties
as the Y{™(#),

I =0 - I ~ @y, - T =Y (F). (3.31)

With the standard decomposition we implicitly adopt the Condon and Shortley phase convention.
More generally, operators that transform like the Y™ (#) are called spherical tensor operators of
rank 1 = 1 [I03]. Tensor operators of rank 1 are called vector operators, those of rank I = 0 scalar
operators. The standard decomposition can be generalized to hold for spherical tensor operators of
any rank and is used in unified approaches for the calculation of matrix elements in systems with
angular momentum (see Appendix. We return to the transformation properties of J in Section

3.2 Matrix representation of angular momentum

The dimension of a d = 2j + 1 dimensional subspace V¢ becomes most explicit in the matrix
notation, where an arbitrary state of angular momentum is represented by a normalized column
vector of dimension d and the angular momentum operators by d x d matrices. In the case of orbital
angular momentum this dimension is an odd integer because the quantum number j is an integer.
In general, the dimension of the vector space can be odd (integral angular momentum) or even
(half-integral angular momentum). In the present section we shall determine some of these matrices
starting from the eigenvalue equations . In Section they will be rederived using a formal
generating procedure.

3.2.1 Example: the case [ = 1 - spherical basis

First we discuss an example of integral angular momentum. We shall use the spherical basis {|I, m;)},
well known from the eigenstates of orbital angular momentum. In the matrix representation the
states are represented by column vectors of odd dimension d = 2]+ 1. The example is given for the
case | = 1 where the basis vectors correspond to m; € {—1,0,1} and are given by

1 0 0
Lu=1{o0], po=(1}|, L-=[o]. (3.32)
0 0 1

The angular momentum operators L,, with a € {%, z}, are represented by 3 x 3 matrices of elements
(I';mj|Lq|l,m;), which can be determined with the aid of Egs. (3.22b)) and (3.24)). Using Eq. (3.22b)
we find for the L, operator

10 0
L,=h[{00 0 |. (3.33)
00-1

IBeware of the subtle difference between Ji1 and Ji
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As the L, operator is diagonal in this representation, the spherical representation is called the
diagonal representation. Using the same approach we find with Egs. (3.24)) for the shift operators

010 000
Li=v2h|o001|, L_=v2h[100|. (3.34)
000 010

The expressions for L, and L, follow from the definitions of the shift operators,

, (010 L, (00
Le=— 101, Ly=——i0 —i|. (3.35)
V2 \ 510 V2\o i o

It is readily verified that these 3 x 3 matrices indeed satisfy the commutation relations ,
and . Note that the operators L, are traceless, tr L, = 0, with u € {z,y, 2z}, where the trace
of the matrix is defined by Eq. . Furthermore, it is straightforward to show with Eq.
that L? = 2h21, where 1 is the unit matrix. Hence, also Eq. is satisfied; note that L? and
L, are both diagonal.

3.2.2 Example: the case [ = 1 - cartesian basis

Of course we are free to choose any set of three orthogonal unit vectors to span the [ = 1 angular
momentum Hilbert space. For the case [ = 1 the cartesian basis deserves our attentionﬂ

1 0 0

This basis is obtained from spherical basis by the same unitary transformation as the one that
separates the spherical harmonic Y™ () into its real and imaginary part - see also Eq. (M.55))

==L =L-D). )= S(L)+L-D). =10 (630

Note that these vectors are normalized and orthogonal. The angular momentum operators L,, with
a € {£, z}, are represented by 3 x 3 matrices of elements (u'|Ly|u), with u,u’ € {|z),|y),|2)}. Using
Eq. (3.22b|) we find for the L, operator:

Lz|x> = Z|y>a Lz|y> = —i|l‘>, LZ|Z> = 0. (337>

Having these relations it is straightforward to determine L, operator in the cartesian representation
—i

0—i0
L.=h|i00]. (3.38)
000

Note that the representation is no longer diagonal. Likewise, using Eqs. (3.24) we find the following

properties for the shift operators

Lila) =+l2), Laly) =il2), Lil) = VI1,+1) = —[z) — ily) (3.392)
Loja)=—|2), L_ly)=ils), L_|2)=v2|L,-1)=+z)—ily). (3.30b)

1Beware that these three unit vectors represent a basis of Hilbert space and have nothing to do with the cartesian
basis of the real space (e.g. the laboratory-fixed frame) in which the angular momentum is observed.
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From these relations we find for the shift operators in the cartesian representation

00 -1 001
Li=h|00—=i]|, L_=h| 0 0-i]. (3.40)
1i 0 ~1i 0

Using the definitions of the shift operators we obtain the matrix representations of L, and L,,

000 00
Le=h|00-i|, L,=n| 000]. (3.41)
0i 0 —i 00

It is readily verified that these 3 x 3 matrices indeed satisfy the commutation relations 7
and . Furthermore, using Eq. ED it is straightforward to demonstrate the operator identity
L? = 2hr°1. Hence, also Eq. (1.57a)) is satisfied. Note that the matrices L, are again traceless,
tr L, = 0, with u € {z,y, 2z}, as they should be because the trace of a matrix is invariant under
unitary transformation.

3.2.3 Example: the case s = 1/2 - Pauli spin matrices

For the case of half-integral angular momentum we shall use (in this example) the notation |s, ms). In
the matrix representation the states are represented by column vectors of even dimension d = 2s+1.
In particular, for the case s = % the basis vectors correspond to mg € {—%, %} We shall meet this
case when discussing the intrinsic angular momentum of the electron, the electron spin S. It is good
to emphasize already at this point that the case s = % is of more general importance because it can

be used to describe any quantum mechanical two-level system. The basis vectors areE|

H=m=ih=(g). F=-w=i-n-(}). (3.42)

The operators Sy, S_ and S, are given by 2 x 2 matrices, which are easy to determine using
Egs. (3.22b)) and (3.24)) in accordance with the phase convention ({3.20))

/2.0 01 00
son(0) son(0L). son(P0). st

S = 1ho, (3.44)

Defining

the corresponding matrices for the cartesian components of o are given by

e () e (M) e (10, (s

These matrices are called the Pauli spin matrices. They are traceless, tr o, = 0, idempotent, o2 = 1,
have negative determinant, det o, = —1, and satisfy the relation

0u0y = 10uy + 1€upw0w, With u,v,w € {xvya Z)} (346)

This combination is unique for s = % We can also decompose the Pauli matrix o along a quanti-
zation axis in the arbitrary direction # = (6, ¢) = (x, y, 2),

o

t-o=uz0, +yoy+ 20, (3.47)

n quantum information science one uses the notation |0) = |t) and |1) = |1) for the basis vectors that define
the possible superposition states of the qubit.



44 CHAPTER 3. ANGULAR MOMENTUM

where x = sinf cos ¢, y = sinfsin ¢ and z = cos § are the cartesian components of the unit vector
t, cf. Eq. . The operator o, is said to measure the angular momentum of the s = % system in
the direction . Note that with the substitution & — Z we have x = y = 0 and z = 1, regaining o,
as we should. In terms of the spherical components o, ,0_ and o, the component o, can be written
in the form

or = 3(x —iy)oy + 3(z + iy)o_ + z0.. (3.48)

In matrix notation o, becomes

z  r—1y cosf sinfe
.= ) = . , , 3.49
7 (x—i—zy —z ) (sm@ew5 —cos ) (3:49)

as follows immediately by substitution of the Pauli matrices into Eq. (3.47). Note that

o2 =1 (3.50)
This does not come as a surprise because by choosing the quantization axis along the direction ¥ we
have o, — o0, and Eq. (3.46)). A valuable operator identity is (see Problem (3.1])

(0-A)(oc-B)=A-B+io-(AxB), (3.51)
where A and B are vector operators that commute with o.
Problem 3.1. Prove the relation
Solution. Since A and B commute with o we have in Einstein notation
(o0-A)(o-B) =0u0,A.B,.

Using the property (3.46]) this becomes
(0 A) (0 B) = 18,40 AuBy + i0weuwwAuBy = 1A, By + icw (A x B), |

which can be rewritten in the desired form. O

3.3 Vector model and polarization

In this section we elaborate on the measurement of angular momentum. We already established
that the angular momentum of a physical system is a vector quantity, which, in a cartesian frame
of reference, can be written in the form

J=%J,+9J, +2J.. (3.52)

In classical physics the state of angular momentum can be determined to arbitrary precision by
measuring the magnitude, direction and sense of the vector J. For closed mechanical systems this
quantity is conserved in time (cf. Appendix . In quantum mechanics, the best we can do is
prepare the system in an eigenstate, |j,m), where j defines the magnitude and m the projection
(including sense) of the angular momentum with respect to the quantization axis. The direction
remains undetermined in this process. Formally, it makes no sense to ask for the direction because
the components of J do not commute. This makes J,, J, and J, into incompatible operators,
which means that (by lack of a common basis) the components of the vector operator J cannot be
determined simultaneously to arbitrary precision (cf. Appendix .

A way to visualize the difference between angular momentum in classical physics and in quantum
mechanics is the semi-classical vector model illustrated in Fig.[3:I]e. In this model, the angular
momentum is represented by a semi-classical vector of quantized magnitude, \/{J2) = \/j(j + 1)h,
and quantized projection on the z axis, (J,) = mh. Importantly, the same projection is obtained for
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______

(0) (a) (0

Figure 3.1: (a) Vector model for a system with angular momentum J for the case j = 2; (b) Preparing the
system in the state |2,2) the direction of the vector J is restricted to a cone of possible values, all sharing
the same quantized projection onto the z axis. The quantum numbers j and m are conserved - the direction
on the cone is uncertain. (c) The polarization of the state |2,2) is given by P = (J/jh) = z.

all vectors on the cone of possibilities shown in Fig.[3.Ip. This indicates that, whereas any vector on
the cone corresponds to a classically distinguishable state, quantum mechanically the direction on
the cone is undetermined (all directions are equally probable). One may argue that it makes little
sense to draw a vector for a direction that cannot be determined. However, as we shall see later, the
operator J transforms under rotation exactly like the classical angular momentum vector. Although
the direction itself has no observable meaning, changes in the direction (e.g., caused by precession of
J about the quantization axis) can be (and have been) observed experimentally (cf. Section [3.7.2)).
Moreover, we shall find that also the addition of angular momentum operators proceeds as in the
case of classical vectors (under the constraint of quantization - see Section . All this being
said, vector diagrams offer a valuable geometric tool for visualizing the addition and rotation of
angular momenta under the constraint of quantization.

In a typical (state-selective) measurement, the state in which a system is prepared is destroyed by
projection on the state of observation. So, to gain more information about the state of a system, the
best we can do with a state-selective detector (a detector that discriminates between the eigenstates)
is repeat the measurement with identically prepared systems until the desired precision is reached. In
this way we can determine the expectation values (J,), (Jy) and (J.), which define the components
of the polarization vector of the angular momentum state prepared,

P = (J/jh) = ((Jo/jh), (Jy/ iR}, (J:/h)) - (3.53)
If the operators J;, J, and J, commute with the Hamiltonian of the system the polarization is
conserved in time (cf. Appendix [F.2).

Let us have a look at a few examples. For particles prepared in the state |2, 2) with respect to the
quantization axis z, we calculate P = (0,0, 1) = Z and the particles are said to be fully polarized in
the z direction (see Fig.c). When prepared in the state [2,1) we find P = (0,0, 3) = 12; i.e., the
particles are partially polarized in the z direction. For the state |2,0) we calculate P = (0,0,0) = 0.
In this case the particles are called unpolarized.

Problem 3.2. Calculate for the angular momentum state |j, m) the following quantities:
<J12>7 <‘]§>7 <‘]zz>7 <JZ>7 <Jy> and <JZ>

Discuss the relation (J2) + (JZ2) = (J?) in the context of the semi-classical vector model.

3.3.1 Ensemble average and density matrix

Next we have a closer look at the measurement of the polarization vector. Typically one creates a
beam of particles, for the above example all prepared in the state |¢) = |2,2). Ideally, the particles
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are prepared one by one and observed sequentially using a detector that discriminates between the
eigenstates {|j,m)} with respect to the quantization axis z. To determine (J,/jh) we measure the
probability density to observe the particle in the eigenstate |j, m),

P = \<J,mlw>\2’ (3.54)

subject to the Parseval relation

> Pm=1 (3.55)

This type of measurement is called a state-selective measurement (or filtration). Repeating the
measurement many times we find the polarization from the ensemble average, which is the statistical
average over a lot of quantum measurements,

P = (/i) = ((Ja/gh), (Jy/ 3R, (J=/5h)) - (3.56)

If all particles are prepared in the same state (as in the above example) we speak of a pure ensemble.
Pure ensembles satisfy the property {(J/jh)) = (J/jh). The magnitude of the polarization vector is
called the degree of polarization,

p= \/<<J:r/jh>>2 + (Jy /3R + (J=/3m)>. (3.57)

This degree can vary between zero and unity, 0 < p < 1. For a pure ensemble prepared in the
state |¢) = |2,¢) the detector will only measure particles in the channel |2,¢); i.e., Pp, = dpm.q,
which implies (J./jh) = q/2 and (J,/jh) = (J,/jh) = 0, and confirms the values obtained in
the examples given above. The degree of polarization is p = ¢/2.

More generally one can create beams with a mixture of particles in various angular momentum
states. In this case we speak of a mized ensemble. The mixture may contain a bias towards certain
states or be completely random. The state may vary from particle to particle but (for a given
mixture) the statistical average remains well defined. For random ensembles all states are equally
probable, which implies (J,/jh) = (Jy/jh) = (J./ik) = 0, whatever the quantization axis. In
this case the degree of polarization is zero, p = 0, and the beam is called unpolarized.

Density matrix and statistical operator

The density matrix formalism provides an alternative method for calculating the polarization of
angular momentum systems (cf. Appendix [F.3). For a pure ensemble of particles prepared in the
state |[¢) the probability density for observing a particle in the eigenstate |j, m) is given by

where p,, = [j,m)(j,m| is the density operator subject to the closure relation 1 = 3"  p,, and
Parseval relation (cf. Appendix [F.3]),
trp=1. (3.59)

For the eigenstate |¢)) = |7, j) the expectation value (J,) is given by

(J.) = trpd. = (@lj,m)(Gm|J.|v) = jh.

m

When dealing with a mixed ensemble of angular momentum eigenstates, the density operator is
replaced by the statistical operator of the ensemble {|j, m)}

0= Zwmpm, (3.60)
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where w,, is the statistical weight of the state |j, m) from the ensemble. Without active preparation
of a specific state the ensemble is random and w,, has the same value for all m in the interval
—j < m < j. For ensemble averages the Parseval relation relation is replaced by the trace over the
statistical operator,

tro=1. (3.61)

For a random ensemble of angular momentum states the degree of polarization is zero, p = 0 (see

Problem .

Problem 3.3. Show that for a random ensemble of angular momentum states the degree of polarization is
zero, p = 0.

Solution. Consider a random ensemble of angular momentum states. Since the ensemble is random, the
probability to observe the system in the state |j, m) is the same for any quantization axis and for all values
of m, wm = 1/(2j 4+ 1). Then, the degree of polarization is zero because the ensemble average of J. vanishes
for any quantization axis,

() = trod. = wn S0, alds mYGmI L, @) = we S m = 0. O

m,q

3.3.2 The case s = 1/2 as a two-level system - relation with the Bloch sphere

It is appropriate to pay special attention to polarization in s = % systems, the most prominent
among the angular momentum systems. The s = % system is a two-level systems, the simplest
type of discrete quantum system. Many properties of these systems are derived in Appendix[G} An
arbitrary state |x) of a two-level system is determined by four parameters, three of which correspond
to observable quantities. Denoting these by 6, ¢ and normalization N’ = 1, the state |x) can be

written in the form - see Appendix[G.2.2]
IX) = cos(6/2) |1) + " sin(6/2) |1) , (3.62)
where the probability amplitudes to observe the system in the eigenstates |1) and |1) are given by
a1 = (1] x) = cos(8/2) and as = (L] x) = e*?sin(8/2). (3.63)

Here ¢ represents the relative phase of the two eigenstates. Furthermore, the amplitude of the spin-
up state is chosen to be real in the convention of Appendix|[G.2.2] The angles 6 and ¢ correspond to
the polar and azimuthal angles of the polarization vector P, as follows by calculating the cartesian
components of its components, P; = (25;/h) = (0;) with i € {z,y, 2},

P, = (02) = 5(x|o— + 04|x) = a1a5 + ajay = sinfcos ¢ (3.64a)
P, ={oy) =i3(x|lo- — oi|x) = i(a1a} — afas) = sinfsin ¢ (3.64b)
P, = {0,) = (x|o:|x) = a1a] — azal = cosé. (3.64c)

The polarization vector P is a real three-dimensional vector pointing to a point on the surface of
the Bloch sphere - see Fig. In this context and P is called the Bloch vector of the s = % system.
Each point on the surface of the sphere corresponds to one of the spin states described by Eq. (3.62)).

3.3.3 Two level system (s = 1/2) in the density matrix formalism

Let us start with the pure state |y) defined by Eq. (3.62)). This state can be used to represent an
arbitrary state of a two-level system. The density operator for |x) is given by the 2 x 2 matrix

1 [14cosf sinfe ¢
= = i . 3.65
P =X 2 < sinfe’® 1 —cosh ) ( )
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Note that {x|p|x) = 1. This reflects the normalization of the state. It is evident that this matrix
can be separated into a unit matrix and a traceless part,

1 10 +cosf sinfe
= = - + ) . 3.66
P =10 2 [(O 1) (sin@e”’ —cosf )] (3.66)

Recalling Eq. (3.49) we find that the density operator can be written in the compact form
p:%(1+f‘~0'). (3.67)

Using the vector relation ([3.51)) we find
0% =p. (3.68)

This idempotence of the density operator is a property of pure states (see Appendix [F.3)). The
components of the polarization vector are given by the trace

(Pi) = tr(poi) = (1] poi [1) + (L] poi [4) (3.69)

where i € {z,y, z}. Substituting the density and Pauli matrices we regain Eq. for the polar-
ization vector of |x). Eq. is the general form for the density matrix of a two-level system.

To illustrate the use of the expression we recalculate Py for the arbitrary spin state
(3.62). For this we need the density matrix py of the state |[+), for which the polarization is given
by P = (0,0,1) = 2, which means that

p+=2(1+0.). (3.70)
Using this operator we calculate with the aid of Egs. (G.6)) and (3.64c)
P = (Xlp+ [x) = 5 (14 (02)) = 5 (1 + as|* = |azf?) = |aa|*. (3.71)
Indeed this result coincides with that of Eq. (3.75)), as it should.
Specializing Eq. (3.62) to the following special directions on the Bloch sphere, z,y, —x, —y
(0 =m/2, $ =0,7/2,7,3w/2) we obtain (see Fig.|G.1))
e =/5 (0 +11) and [1)_, = /311 = 1)
1)y = /30 +i[4)) and 1), = \/3(1) — i [1).

For the negative z direction the result depends on the angle ¢ chosen for the plane of rotation.
Rotating about the positive y axis we have —z <> (6 = m, ¢ = 0) and obtain

(3.72)

M_. =11 (3.73)

The density matrices pyy and py; follow directly from Egs. (3.72) and are given by

1/11 1/1 —2
o = — d = . 74
p=5(11) =5 (1 ) (3.74)

Note that these density matrices are idempotent and have unit trace as required for pure states.
The probability P, can be expressed as the expectation values of the density operators p; =

1) (11,
Py = |al\2 = (xlp+Ix) = (p+), (3.75)

and a similar relation holds for P_.
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Problem 3.4. Consider the state |x) of a s = 1 angular momentum system with polarization vector P.
Show that |x) is an eigenstate of the operator o,

orlx) = [x),
where o, = P - o is the operator measuring the angular momentum in the direction & = P.
Solution. Rewriting Eq. we have
P-o=2p—1=o0,=2|x)(x| -1

Hence, or[x) = (2[x){(x| = 1) [x) = [x)- o

3.4 Addition of two angular momenta

In many cases of practical importance, quantum mechanical systems are characterized by more
than one type of angular momentum; for instance the orbital and spin angular momenta of a single
electron, or the angular momenta of two electrons in a many-electron atom. To analyze such cases
we consider a closed mechanical system of two independent angular momenta, j; and j,, as well as
the total angular moment of the system,

J=7,+17, (3.76)
As j, and j, act in independent sectors of Hilbert space, they satisfy the commutation relations

41,321 = 0. (3.77)

The eigenstates of the angular momentum j; are specified as |j;m;) in the standard representation
{42, 4. }.with i € {1,2}.

3.4.1 The uncoupled basis of j; and j,

In view of the commutation of the operators j; and j, commute, also the operators jf, J1. and j%,
j2 » have to commute and this implies the existence of a joint basis (see Problem [F.1)) of eigenstates
which can be written in the form of an ordered product, the Kronecker-product (a tensor product)

ljima; jame) = [jima)1 ® [jama)a, (3.78)

where the eigenstates of j; are denoted by |jim1)1 and those of j, by |jama)e. This convention is
illustrated by the following examples:

37 ljma; jama) = Ji(ji + 1)R®|jyma; jamea) (3.79a)
Jiz [Jima; jama) = mih|jima; jama), (3.79b)

with ¢ € {1,2}. The basis {|jim1;jamz)} is called the uncoupled basis of the Hilbert space of the
pair. For given values of j; and jo this basis spans a (251 + 1)(2j2 + 1)-dimensional space, which
represents the Hilbert space of the tensor j; ® j,. In general, the states do not commute under the
Kronecker-product,

ljima)1 ® [jama)a # [jama)2 @ [jima)1, (3.80)
which means that we have to specify the order of the product, which is called coupling order of 3,
and j,. Importantly, for the special case m; = j; and mg = j2 the Kronecker product is independent
of the coupling order,

lj1d1)1 @ |j2j2)2 = |j2j2)2 @ |j1j1)1- (3.81)
This is a property of so-called stretched states, which will be introduced in Section [3.4:2] For the
special case j; = % and jo = 1 their independence of the coupling order is demonstrated in the

example below. Note that, for given states |j1m1)1 and |jama)a, Egs. (3.79) are independent of the
coupling order.
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Example 3.1. The product space in matrix notation

Consider two angular momenta, j; and j,, acting in vector spaces of dimension d; = 2 and dy = 3,
respectively (i.e., j1 = % and jo = 1). The corresponding eigenstates are given by

1 0
and
1 0 0
n+n=(o], mo={1], L-v=[ o |. (3.82b)
0 0 -1

In the uncoupled representation the eigenstate |%,+%; 1,0) is given by the Kronecker product
|1,+1) ®1,0). Note that |3, +3) and |1,0) do not commute under the Kronecker product,

0 0
1 1
geneno=(g)ol 1) A 1)e(y)-noeka e
0 0

For the doublet state |1,+1) the Kronecker product |%,+3) ® |1,0) opens a three-dimensional

subspace for the triplet state |1,0). Likewise, for the triplet state |1,0), the Kronecker product

[1,0) ® |%, —|—%> opens a two-dimensional subspace for the doublet state \%, —|—%> In both ways we

obtain a 6-dimensional Hilbert space (for the tensors j; ® j, and j, ® j, respectively). Note that
the states |1,+3) and |1,1) are special because for m; = j; and my = j, the Kronecker product is

independent of the coupling order, a property of stretched states (see next section

1 1
1 1
3+ @I,1) = <O> @lo]=(0]e (0) =1L1) ®I3,+3)- (3.83)
0 0

3.4.2 The coupled basis of 5, and j,

Realizing that j; and j, individually satisfy commutation relations of the type (3.1)) and commute
with each other it is straightforward to show that also the total angular momentum, given by the
vector sum

satisfies the commutation relations (3.1]). This immediately implies that J satisfies all properties of
quantized angular momentum as summarized in Section [3.1] In particular we have

J2|JM) = J(J + 1)h?|J M) (3.85a)
J|IM) = MR|JM), (3.85Db)

with M restricted to the interval
—J<M<J (3.86)

At this point we have established that the vector addition is subject to the constraint that also
the resultant vector be quantized. Since 55 and j3 commute with both .J, and J? (see Problem
we infer that the quantum numbers ji, jo, J and M are compatible (see Section ; i.e., they
define the basis {|(j1j2)JM)}, the so-called coupled basis of the standard representation {.J2,.J,}.
With the notation (j1j2) we specify the values as well as the coupling order of the two angular
momenta (see Section [K.3.1)). Often one writes {|j1j2JM)} or, simply {|JM)} when the coupling
order and values of j; and jo are irrelevant or known from the context. For given values of ji, jo
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parallel (stretched) antiparallel

Total angular momentum

b (e < J < i+
J=j 4y 4 -Rl ST <t
-J<M<J

Example:

-;lff }HJ:&,ZJ
J2 —

Figure 3.2: Vector addition of quantized angular momenta. The quantization conditions limit the number
of possible resulting vectors. This is illustrated for the example of the angular momenta j; = 2 and jo = 1
(compare with Fig.[3.2). The state with mi = j1 and ma = j2 (i.e., M = j1 + j2 = 3) is called the state of
parallel coupling or the stretched state as it represents the largest total angular momentum projection that
can be constructed by quantized vector addition.

and J, the operator J acts in a (2J + 1)-dimensional subspace of the product space of the tensor
J1 ® Jo, with the quantum number J restricted to the interval (see Problem [3.5)),

lj1 — J2l < J <1+ Jo (3.87)

Denoting the lesser of j; and jo by j< = min{ji,j2}, the quantum number J can take 2j. + 1
values (see Problem . This is illustrated geometrically in Fig.|3.2l Geometry helps to swiftly
analyze the coupling options. More subtle properties (like phase relations) require the algebra of
commutation relations - see Section [K.2.1]

Since angular momentum states of different J are orthogonal, the dimension of the 2j. + 1
allowed values of J add up to (2j1 + 1)(2j2 + 1) as is demonstrated in Problem [3.6] Formally, the
product space of j; ® j,, represented by the uncoupled basis, {|jimi;jamz)}, is called reducible
because it can be decomposed into the direct sum of 2j. + 1 drreducible subspaces, one for each
allowed value of J and represented in the coupled basis {|(j1j2)JM)}. As we shall find in Section
the irreducible subspaces of the coupled representation are invariant under rotations about a point.
Importantly, the coupled basis and the uncoupled basis are defined irrespective of the presence (or
absence) of a coupling mechanism.

Example 3.2. Angular momentum addition in matrix notation

Let us return to the example of two angular momenta, 3, and j,, acting in vector spaces of dimension
dy = 2 and dy = 3, respectively (j; = % and jo = 1) - see Example Before we can add
the operators j; and j, in the matrix representation they have to be written as operators in the

d1 X d2 = 6-dimensional Hilbert space of the Kronecker product j; ® 75,
J=7,91;+1; ®7, :il +12’

where 1;, and 1;, are the identity matrices of the two and three dimensional subspaces in which j,
and j, act, respectively. In this notation the operator J, takes the form

50000 0
03 000 0
Lo 100 10 100 00200 0

— S 2 — T2
Jzﬂlzﬂzzh(o;)@ ool +(()1)‘8’71 Al Bl I R R
- 000 0-10
00000 -2
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Triangle inequality - stretching of angular momenta and pure states

The principle of quantized vector addition is illustrated in Fig.[3.2] The quantum numbers of the
vector J satisfy the triangle inequality. The largest possible value of J,

Jmax :jl +j23 (388)

is the result of so-called parallel coupling of the angular momenta, pictorially referred to as the state
of stretched angular momentum. Likewise, the smallest possible value,

Jmin = |.71 - j2‘7 (389)

corresponds to the state of antiparallel coupling. Hence, the allowed total angular momenta differ
in the level of stretching. Antiparallel coupling corresponds to minimal stretching and becomes zero
stretching for j; = jo. Parallel coupling corresponds to mazximal stretching. Complete stretching is
ruled out by the quantization condition, it is only possible in the classical limit. If either j; or ja
(not both) is half-integral, J also has to be half-integral and, therefore, nonzero. In all other cases
J can also take the value zero. Note that, j; + jo + J is always integral.

Importantly, the eigenstates of the uncoupled basis {|j1,m1; j2, ma)} are also eigenstates of J,.
This implies the selection rule

M = my + mo. (3.90)

The maximum and minimum values of M, M = +(j; + ja2), correspond to pure states (unique
eigenstates of the uncoupled representation with unit relative phase imposed by convention). In
particular this holds for the so-called stretched state, which is the state of largest total angular
momentum and projection along the quantization axis,

l71 + J2, g1 + J2) = |j1, g1 Ja, J2)- (3.91)

Problem 3.5. Let 5, and j, be two commuting angular momentum operators and J = j; 4+, the resulting
total angular momentum. Show that the 2j- + 1 allowed values of J satisfy the inequality

l71 — g2] < J < i+ jo.

Solution. The maximum value of J corresponds to the stretched state J = ji + j2; hence, M < J = j1 + jo.
Next we search for the minimum value of J. Without loss of generality we presume that j; > j2. Considering
first the case of integral M, we know that for any allowed value of J the minimal value of | M| must be zero,
M = my + m2 = 0. Since we have 2j, 4+ 1 possible values of mo we find for the degeneracy of the value
M=0

N(J)=2ja+1=2j+1.

This corresponds to all possible vector additions (i.e, allowed values of J) consistent with the quantization
rules. Counting down 2j; + 1 values, starting from J = ji1 + j2, we arrive at the minimum value J = j; — ja.
This corresponds to the condition J > (j1 + j2) — 2j2 = j1 — j2. The same result is obtained in a similar
fashion for half-integral M. a

Problem 3.6. Show that the coupled basis and uncoupled basis have the same dimension.

Solution. First we recall that the uncoupled basis {|jimi;j2me2)} spans a product space of dimension
d = (2j1 +1)(2j2 + 1). For a given value of J the coupled basis {|(j1j2)J, M)} spans a (2J + 1)-dimensional
subspace of this product space. Without loss of generality we presume that ji > j2. Summing over the
242 + 1 subspaces of this type we regain

d=> 1201 +ja—n)+ 1] = (22 + 1) x 201 +72) + 1] = >_n = (252 + 1)(2j1 + 1). 0

n=0 n=0
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3.4.3 Clebsch-Gordan basis transformation

The coupled basis is related to the uncoupled basis by a basis transformation known as the Clebsch-

Gordan transformation. For a system of two spin—% particles this is demonstrated in Problem

For arbitrary angular momenta this transformation is given by
J1 J2
g d M)y = > > |jima; jama) (Gima; jama|jrja T M), (3.92)
mi=—jimz=—j2

where the use of the closure relation

J1 J2
1= > ) [iima;jama)(jima; jams| (3.93)
mi=—j1ma=—7j2
does not go unnoticed. Recall that the pair state is subject to an ordering convention. The coef-
ficients (jimq; jomalji1j2J M) are called Clebsch-Gordan coefficients (CGCs). As Jz = ji. + jo. is
diagonal in both the coupled and the uncoupled representation we find the selection rule

M =mq+ mo (394)

as a property of the CGCs - the so-called projection rule. The Clebsch-Gordan transformation can
be represented by a square matrix. This matrix is unitary and can be written in block-diagonal form
with one block for each physically relevant value of M (see Problem. The inverse transformation
is given by
Jiti2 J
imasdama) = Y Y |juda M) (Grje M|jima; jams), (3.95)
J=lj1—j2|M==J
where we recognize
Jitjz2 J
1= Z Z j1j2d M) (jrjaJ M. (3.96)
J=[j1—j2|M==J
The CGCs are usually written in the shorthand form

(Jimy; jama|jrje M) < (jima; jama|J M), (3.97)

where the coupling order is implicitly defined by the properties of the Kronecker product (we return
ordering issues in Section [K.3.1)).
From the inner products of Egs. (3.92) and (3.95)) with their hermitian conjugates we obtain

J1 J2
Z Z (J' M| jyma; jama) (Gima; jomg [JM) = 6505 darrar 6(j1j2 ) (3.98a)
mi1=—Jimaz=—7J2
Ji+j2 J
S0 Gumh; iamb  JM)(TM|jimas jama) = Sy Smyms (3.98b)

J=li1—go| M==J

where 6(j1j2.J) is a logical function of the property A(j1j2.J) - see Eq. (K.12)); it is true, 6(j1j2J) = 1,
if the triangle inequalities are satisfied, i.e., for A(j1j2J) > 0, and false, 6(j1j2J) = 0, if they are
violated, i.e., for A(j17j2J) = 0. Taking into account the projection rule the Egs. reduce
to a set of 2J + 1 subexpressions, one for each physically relevant value of M,

J1

> (I Mljima; ja, M = ma)(jima; ja, M — my |TM) = 6,05 6(jrj2]), (3.99a)
mi=—ji

Ji+7i2

> (i, M —mh [TM)(TM|jimas o, M = m1) = Smym, - (3.99b)

J=|j1—7j2|
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Problem 3.7. Find the unitary matrix U transforming the uncoupled basis {|j1m1; j2m2)} into the coupled
basis {|jij2JM)} for a system of two spin-3 particles. Write the matrix in block-diagonal form, with one

block for each physically relevant value of M € {—1,0,1}.

Solution. Starting from the Clebsch-Gordan transformation (3.92) and using Tablewe find the unitary
matrix (UUT = 1 - see Appendix |N.2.1)

11,1) |11) 1 0 0 0
11,0) 1) 012 /12 0
=U h U = O
10,0) ay | 0 V12 —\/12 0
1, -1) | W) 0 0 0 1

3.5 Addition in the presence of coupling - conservation rules

Let us continue with the closed mechanical system of two angular momenta introduced above.
Let j, and j,, with [j;,75] = 0, be these angular momenta and H; and Hs the Hamiltonians of
the orthogonal subsystems. As discussed in Appendix the angular momenta are conserved
quantities if they commute with their Hamiltonian,

(51, H1] =0 and [j,, Hao] = 0. (3.100)

If Hy = Hi + Ho is the Hamiltonian of the combined system, it follows from the commutation
relations (3.100]) that also the total angular momentum J = j; + j, is a conserved quantity,

[3, Ho] = 0. (3.101)

This is no surprise: given the homogeneity and isotropy of free space, the linear and angular momenta
of a closed mechanical system are always conserved. Importantly, note that 5, and j, commute with
each other, [§1,75] = 0, but not with J (only the components along the quantization axis do). This
shows that the three conserved quantities j;, j5 and J do not share a joint basis. For this reason
the properties of j; and j, are most conveniently evaluated in the uncoupled basis, {|jim1;jama)},
whereas the coupled basis, {|j1j2J M)}, is the preferred basis to analyze J.

In typical situations, the simultaneous conservation of j;, j, and J is broken when a so-called
coupling term, H', enters the Hamiltonian

H=Hi+Hs+H. (3.102)
Let us analyze two examples. First we consider a case of mutual coupling,
H =aj, J,- (3.103)

Being mutual, this coupling is internal and the system remains mechanically closed, so we know
that J has to remain conserved. This is confirmed by the commutation relation [J, ] = 0, which is
valid because J commutes with 7, - 75, although, individually, 7, and 75 do not commute with j; - j5
(see Problem . This shows that j; and j, are no longer conserved, although the magnitude of
these vectors (i.e., the quantum numbers j; and js) as well as their vector sum, J, still are. This is
expressed by the commutation relations

7,12l =0, [Jz 142l =0, [J%,41-j2] =0 and [j7,3°] =0, (3.104)

with ¢ € {1,2} (see Problems . Hence this coupling is best analyzed in the coupled basis,
{lj1j2JM)}. The behavior of the physical system is sketched in Fig.: J; and j, precess about
J. In the semi-classical picture, the angle between j, and j, is conserved because the system cannot
lower its interaction energy (hamiltonian evolution is dissipation free).
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M =my +mo

H' =aj; g, H =aj,-B+azj, B
(a) (b)

Figure 3.3: Two examples of coupling of the angular momenta j, and j, : (a) In the presence of the mutual
coupling mechanism H' = a j, - §5, the angular momenta j, and j, precess about J = j; + j,. This gives
rise to time-varying projections of j, and j, on the z-axis but J as well as the projections j, -J and j, - J
remain conserved. In other words: ji, j2, J and M are good quantum numbers; (b) In the presence of
coupling to an external field in the z-direction, H' = a1, - B + a2j, - B, the angular momenta j, and j,
precess individually about the z-axis. Since the projections ji, and j2. remain conserved, ji, mi, j2 and
mg are good quantum numbers. Note that only in the absence of any coupling the three angular momenta
J1, Jo and J are simultaneously conserved.

As a second example we consider a coupling term of the Zeeman type (see Section |4.3.3)),
H =15, B+ azj, - B. (3.105)

In this case the angular momenta are individually coupled to the external magnetic field B. The
external field breaks the spherical symmetry of free space and by choosing the quantization axis
along B we find that only the z components of j; and j, remain conserved,

[jlz»H] =0 and [.7227H] =0. (3106)

The physical system is sketched in Fig.b: the angular momenta j; and j, precess individually
about the B field. Since j; and j, are no longer conserved also J is no longer conserved. In this case
only the magnitude of the vectors j; and j, (i.e., the quantum numbers j; and j3) as well as their
projections (i.e., the quantum numbers m; and ms) are constants of the motion. This behavior is
best captured by the uncoupled basis, {|j1m1;jame)}.

Summary

In the absence of any coupling all three angular momenta j,, j, and J are simultaneously conserved;
i.e., j1, mi1, j2, me as well as J and M are good quantum numbers - whatever the quantization axis.
In the presence of pure j, -j, coupling both J and J, are conserved; i.e., J and M are good quantum
numbers - whatever the quantization axis. In the presence of pure Zeeman coupling only ji,, jo.
and J, are conserved; i.e., mi, mo and M = my + my are good quantum numbers with respect to
the direction of the symmetry-breaking field.

Coupling of the J levels

Note that in both of the above coupling cases the commutation relation [J,,H] holds. So, also in
the simultaneous presence of both couplings,

H =01, B+ azjs B+aj;-js, (3.107)

the operator J, = ji, + j2, corresponds to a conserved quantity; i.e., M is a good quantum number.
For B — 0 the eigenstates are given by the coupled representation, {|j1j2J M)}, whereas for B — oo
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this becomes the uncoupled representation, {|jimi; jams)}, with M = m; + mso. For intermediate
fields the basis can be denoted by {|j1j2m)}, where H'|j1jom) = € (B)|j1j2m) and the definition
of |j1jom) depends on the field. Decomposing |jijom) with respect to the coupled basis we find

|71j2m) = Z |7172J M) (j1j2J M |j1jom) = ZQJ(B) lj1j2dm), (3.108)
M 7

where the a;(B) = (j1j2J M|j1j2m) are field-dependent coefficients. This shows that for intermedi-
ate fields |j1j2jm) can be written as a linear combination of all coupled states |j1j2JM) for which
M = m. This is called mixing of the J levels by the Zeeman coupling.

Problem 3.8. Let us denote two angular momenta by j; = L and j, = S, and their vector sum by
J =L+ S. Derive the following three inner product rules,

L-S=1L,S:+LyS,+L.S. (3.109a)
L-S=L.S.+3%(LyS-+L_Sy) (3.109b)
L-S=1(J?-L%-8%. (3.109¢)

Solution. Rule (a) is simply the definition of the inner product in cartesian coordinates. Using the defini-
tions for the shift operators we have

LiS_ = (Ly+iLy) (Se —iSy) = LuSs + LySy + i (LySa — LSy)
L Sy = (Ly —iLy) (Se +i8y) = LuSs + LySy — i (LySs — L S,) .

Adding these expressions and using rule (a) we obtain after rearrangement of terms rule (b). Note that the
L.S. operator as well as the operators L. S_ and L_S; conserve the total angular momentum along the
quantization axis m; = m; +ms. Rule (c) follows straightforwardly from the inner product J? = (L+S)? =
L? 4 S? 4 2L - S because L and S commute (they act in independent sectors of Hilbert space). a

3.6 Angular momentum and infinitesimal rotations

3.6.1 Rotations versus unitary transformations

In Section we found that the decomposition of the angular momentum operator J maps
uniquely onto that of the radius vector r. To further explore the properties of J we ask our-
selves how this vector operator transforms into an operator J’ by changing from one quantization
axis to another. Such a change can be implemented by a proper rotation of the coordinate system
about the origin. This is a rotation in which the handedness of the coordinate system is conservedﬂ
A rotation of the coordinate system is called a passive rotation to distinguish it from active (i.e.,
physical) rotations, in which the physical system is rotated (i.e., the “contours” of the wavefunction)
and the coordinate system is fixed.

So let us consider the proper rotation R by which the right-handed cartesian coordinate system
S transforms into §'; i.e., the direction ¥ = (z,y,z) of a vector with respect to S changes into

¥ = (2/,y', 2") with respect to S’ under conservation of the handedness of the coordinate system,

¥ = Rf. (3.110)

This transformation holds, in particular, for the quantization axis. Equivalently, we can fix the
coordinate system and apply the inverse rotation to J,

J =R'J. (3.111)

LA proper rotation, R, is an orthogonal transformation (R~! = RT) with unit determinant (det R =1) - see

Appendix
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The existence of the inverse is evident from a physical point of view. Mathematically, it follows
from the nonzero determinant - see Appendix [N] For proper rotations det R = 1. Comparing the
two approaches we obtain the following equivalent expressions for the passive rotation R:

J(#) = R7'J(#) = J(RE) = J(¥). (3.112)
In particular we have
. J=1-7. (3.113)

Since the vector J stands for an operator we ask for the effect of a change of quantization axis
on the angular momentum states. A new quantization axis comes with a new set of basis states,
{lj,m)"}. These are the joint eigenstates of J'? and J. and are related to the original basis of the
operators J? and J, {|j,m)}, by a norm-conserving basis transformation,

X)" = ulx). (3.114)

Here |x) is an arbitrary angular momentum state within the invariant subspace V271 of the oper-
ators J’ and J. Note that the operator u represent a passive transformation. It is norm conserving
because |x) and |x)’ correspond to the same state with respect to two different bases (corresponding
to the quantization axes # and 1/, respectively),

(xIx) = "(x0" = (xlululx) = w'u = 1. (3.115)

This identity shows that the transformation must be unitary, « = w~', which implies that the
inverse transformation is given by

uflx) = |x) (3.116)
As the expectation values of physical quantities must be invariant under passive rotations, we require
"I = () (3.117)

In particular, this holds for observables. Substituting Eq. (3.116)) and its h.c. in the r.h.s. of
Eq. (3.117)) we obtain
‘O X)) = (xludul[x)". (3.118)

As this expression holds for arbitrary |y)’ we arrive at the conclusion that under the rotation (3.110))
the transformation of the operator J involves the same unitary operator as used for the states |x)|'|

J =uJul (3.119)

We now return to the two inner products of Eq. . Substituting Eq. into the Lh.s. of
Eq. and Eq. into the r.h.s., we arrive at an expression relating the rotation R of the
cartesian coordinate system S (in real space) to the corresponding unitary transformation u (in
Hilbert space),

JRi=uJu -t (3.120)

For three subsequent rotations this expression becomes
J-Ry(Ro(Ri ) = us(us(ug Jul)ub)ul-£. (3.121)

So, once we have an expression for R = R3Ro Ry (see Section|3.6.2)), the corresponding unitary trans-
formation, u = ugu,u,, follows from Eqgs. (3.120) and (3.121). This is the subject of Section [3.6.3]

1Some authors prefer not to introduce passive rotations for the states and use Eq. (3.114) to indicate an ac-
tive transformation. In this equivalent approach Eq. (3.117) is replaced by (x|J’|x) = '(x|J|x)’ and the similarity
transformation (3.119)) takes the form J’ = uf Jw.
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Towards generating representations

Eq. is the stepping stone for finding actual expressions for the (unknown) unitary transfor-
mations u in Hilbert space by linking them to (known and often familiar) expressions for proper ro-
tations R in the real space of the laboratory. For instance, using cartesian components, J!, = uJ, u',
the transformation is given by

J,=%,-J=Rt, - IJ= [R'ub,-T=D [R'udu=> [Rluy, (3.122)
I "

12

with p,v € {x,y,2}. Here we used the property (N.13) of orthogonal matrices, R~* = R”. Hence,
u and R are related by
T, =uJ,ul = (R, (3.123)
n

The unitary transformations u can be represented by square d x d matrices, where d = 25 + 1 is the
dimension of the subspace of J in Hilbert space. The rotations R are represented by 3 x 3 matrices
[R]v- So, we could explore the correspondence between u and R as expressed by Eq. starting
from the 9 elements of the matrix [R],,. Although this approach is a good idea for systems with
cubic symmetry (as happens in crystalline solids), for atoms (with their dominant central symmetry)
we can do better by using a representation of R in terms of only 3 elements, the Fuler angles «, 3,
(see Section . In Section we will show that in this case the transformation is given by

+1
J(; :@Jq@T = Z Jq"@;’q(aaﬁ77)' (3124>
q'=—1

In the language of group theory it is said that the representation [R],, can be reduced to the
representation @[},q(a, B,7). In this representation J, € {J_1, Jo, J41} are the standard components
of J. Since an arbitrary rotation about a point cannot be represented by a set of less than 3 elements,
the representation @;,q(a, B,7) is called irreducible. .

3.6.2 Rotation in the euclidean space - Euler angles

First we discuss rotations of the coordinate system about the origin as expressed by Eq. (3.110f). In
matrix notation this passive rotation takes the form

X X
vy |=R(vy], (3.125)
z z

where x,y,z and z’,3/, 2’ are the cartesian coordinates of the position vector before and after the
transformation, respectively. According to the Euler rotation theorem any proper rotation of the
coordinate system S can be decomposed into three subsequent proper rotations about specified
axes, as illustrated in Fig.[3.4] Throughout these lectures we adopt the z — y — z rotation sequence
convention of Rose [104] (see Fig.[3.4). First, a positive rotation R,(a) of S to S’ over the angle «
about the positive z direction is given b,

cosa sina 0
R.(a) = | —sina cosa 0 | . (3.126)
0 0 1

1The sense of rotation in the direction # is called positive if the coordinate system, S, rotates in the same way as
a right-handed screw advances in the direction . By convention, the rotation angle increases for a positive rotation.
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Figure 3.4: (a) an arbitrary passive rotation can be decomposed into three subsequent positive rotations of
a coordinate system over the Euler angles «, 8 and «y called yaw, pitch and roll in aviation; (b) the same
three Euler rotations shown for a coordinate system attached to an imaginary ball for clarity of illustration.
All figures show the orientation after rotation over the angle indicated by the arrow. The right-handedness
of coordinate system and positive sense of rotation, in combination with the z — y — z rotation sequence for
the Euler angles correspond to the convention of Rose [I04] (beware of other conventions in the literature).

In aviation this rotation is called yaw and corresponds to a change of heading. Second, a positive
rotation R, (3) of &' to 8 over the angle 8 about the y’ axis (the y axis of ') is given by

cosf3 0 —sin
Ry,B)=[ 0 1 0 : (3.127)
sinf8 0 cosf

In aviation S is called the pitch angle. Finally, a rotation R, () of §” to & over the angle v
about the 2z axis (the z axis of §”) is, analogously to R.(«), given by

cosy sinvy 0
R.i(y)=| —siny cosy 0 | . (3.128)
0 0 1

In aviation + is called the roll angle. Note that R.(«), Ry (8) and R~ () are orthogonal matrices
with determinant +1. Hence, in using the Euler angles, the rotations are specified with respect to
the coordinate system fixed to an observer (the pilot) experiencing the rotations,

¥ = R(a,8,7) = Ru(7) Ry (3)R. () . (3.129)
Evaluating the matrix product we find

—sinasin~y + cos a cos B cosy cosasiny + sinacos B cosy —sin S cosy
R=| —sinacosvy —cosacosfsiny cosacosy —sinacossiny sin[sin~y . (3.130)
cos asin 3 sin asin 3 cos f3

Interestingly, a pure pitch 3 about the 3’ axis can be decomposed into three subsequent rotations
in the laboratory-fixed frame S (see Fig.a),

Ry/(B) = R.(a)Ry(B)R.(—a). (3.131)

Likewise, a pure roll v about the 2" axis can be decomposed into three subsequent rotations in the

frame S’ (see Fig.[3.5p),
R (v) = Ry (B)Rar (7) Ry (—B). (3.132)
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Figure 3.5: (a) the Euler rotation R(f,y’), i.e., pure pitch of the coordinate system S’ = (z',v,2'), is
equivalent with three subsequent rotations of the frame S = (z,, 2); (b) the Euler rotation R(vy,z"), i.e.,
pure roll of the coordinate system S” = (z”,y",2"), is equivalent with three subsequent rotations of the
frame S’. All figures show the orientation after rotation over the angle indicated by the arrow.

Substituting Eqgs. (3.131) and (3.132) into Eq. (3.129) and using the commutation of R,(a) and
R./(7) (note that the z axis coincides with the 2’ axis) we find that the rotation R (over subsequently
the Euler angles «, 8 and «) can also be realized by three rotations about two laboratory-fixed axes:
by the angle v about the z axis, followed by S about the y axis and « about the z axis,

R(e, 8,7) = R.(a)Ry(B) R (7). (3.133)

Comparing Egs. (3.133) and (3.129) we note that the same angles appear («, 3,7) but in reverse
order.

To conclude this section we point out that the set of all passive rotations in real space of a sphere
about its center constitutes a group. If the general element of this group is given by R(a, 8,7), we
find that R(—v, —03, —«) is its inverse and R(0,0,0) is the unit element. Furthermore, the set is
closed under the group operation and successive operations are associative. This group is called the
special orthogonal group SO(3); i.e., the group of all orthogonal coordinate transformations with
determinant +1 in the three-dimensional real space.

3.6.3 Unitary transformation in Hilbert space for the case s = 1/2

Let us now leave real space and turn to the unitary transformations (3.114]) and (3.119) in Hilbert
space corresponding to the rotations R (the z axis being the quantization axis). In view of the
special importance of two-level systems we demonstrate this for the case s = % In Section our
findings will be generalized to the case of arbitrary angular momentum. For s = % Eq. 1) can
be written as a transformation of the Pauli matrices,

o Rt =uou' i (3.134)

To start the discussion we point out that the most general unitary 2 x 2 matrix is of the form (see
Problem (3.9

uE\/ZU:i\/K<_(Z* ai), (3.135)
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where aa* + bb* = 1 and A = detu can be expressed in the form of a phase factor (A = €%). The
matrix U, with det U = 1, is called the special unitary matm':c It is fully defined by the pararneterb
a and b (C’ayley Klein parameters) Substituting Eq. (3.135)) into the r.h.s. of Eq. (3.134) we obtain
an expression for the most general unitary transformatlon of o, =0"T,

t f-:( Ao+ Ayy+ Az B,z + Byy+ B.z (3.136)
(

uoul -
B,x + Byy + B.2)* —(Azz+ Ayy+ A2)

where the coefficients A; and B;, with ¢ € {z,y, z}, are defined in terms of the matrix elements a
and b by the following fundamental expressions

Ay = ab* +ba* Ay = —z: (ab* —ba*) A, = aa* — bb* (3.137)
B, =a?>—-b* By=—i(a®*+b?) B.=—2ab.
Note from Eq. that the phase factor A = e% has dropped out of the analysis. This means
that we are free to choose A. The obvious choice is A = 1, which means that the analysis can be
restricted to the special unitary matrix U.
To determine the U, («) corresponding to the Euler rotation R,(c) we substitute Eq. into
the matrix equation and obtain after some matrix manipulation

' o -2 ey —jetvy
o R, (a)f = <e_“’x + ety . > . (3.138)

It is instructive to compare this expression with the non-rotated form of o, as given in Eq. (3.49 .

Equating the matrices and (3.136) gives 4, = A, = 0,4, = 1 en B, = ew B =
—iew‘,Bz = 0. Further comparison with the fundarnental expression for A, in yleldb
A, = aa* — bb* = 1. In combination with the property aa* + bb* = 1 we find b = O Substi-
tuting this result into the fundamental expression for B, we find B, = a? = €'®. Thus, we arrive at

a = e'*/? and obtain for the special unitary matrix corresponding to R, (@)

eia/2 0
U.(a) =+ 0 e—ia/2 ) (3.139)
Note that the positive and negative solution are connected by a rotation over 2,
—U,(a) =U,2m)U,(a) =U(a+2m) = U_,(—a — 27). (3.140)

Apparently, after rotating over 2w we evolve from one solution to the other.

Likewise, for the Euler rotation R, (/) we obtain A, = sin 3, A, =0, A, = cos 3 and B, = cos f3,
B, = —i, B, = —sin 3. Comparing the result for B, and B, with the fundamental expressions in
we find cos 8 = 2a® — 1, which implies a = cos(3/2). The comparison of 4, and A, with the
fundamental expressions in yields sin 8 = 2ab*, which after the substitution of the result for
a leads to b = sin(5/2). Thus we obtain for the special unitary matrix corresponding to R, ()

L ( cos(B/2) sin(3/2)
Uy(8) =+ <— sin(3/2) cos(ﬂ/?)) ’ (3.141)

which satisfies the same rotation property as Eq. ,
—Uy(B) = Uy(2m)U (27) = Uy(B + 2m) = U_, (= — 2). (3.142)

Next we turn to the general case. From Eq. we know that an arbitrary rotation of the
coordinate system can be written as the product of three proper rotations over the Euler angles «,
f and v,

R(a, 8,7) = R.(a)Ry(B)R. (7). (3.143)
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The corresponding unitary transformation is found by applying the product rule (3.121)) to Eq. (3.134)),

Ula,8,7) = U.(@)Uy (B)U- (7) (3.144)
B el /20 cos(B/2) sin(B/2) e’z 0
(70 o) (S oo ) (o o) (3:145)

The set of all 2 x 2 unitary matrices with determinant +1 constitutes a group: the special unitary
group, SU(2). Writing the general element of this group as +U(«, 3,7), we find for U, 8,7)
that U(—~, —f, —«) is its inverse and U(0,0,0) is the unit element; for —U(«, 3,7) the inverse is
—U(—,—p,—a) and —U(2m,2m, 27) the unit element. For both branches, the set is closed under
the group operation and successive operations are associative. As the unitary operators U(a, 8, 7)
and —U(«, 3,7) are connected by Euler rotations over 27 we can equally well work with one branch,
using either U(a, 8,7) or —U(av, 8,7) to represent the rotation, provided we double the domain of the
Euler angles from an interval of 27 to an interval of 4. This is sometimes compared to transforming
a circular band into a Mébius band. From here on we shall use +U (v, 8, 7) along with the 47 domain.
One may argue that there is a certain elegance in using U(q, f,y) rather than —U(«, 3,) because
the former connects to the unit matrix for «, 8,7 — 0 (rather than for «, 3,7 — 27) but this is
already a matter of taste.

Eq. (3.134) defines a double-valued function on the domain defined by the elements of SO(3),
R(a, B,7) — £U(a, B,7). In this sense, SU(2) has “twice as many elements” as SO(2). More
precisely, there exists a two-to-one homomorphism from SU(2) onto SO(3)E|

+U(a, 8,7) = R(a, B,7).

The group SO(3) is said to be doubly covered by SU(2). The double covering can be reduced to a
single cover by extending the domain of the Euler angles to 4w. We return to the physical significance
of this double covering in Section [3.7.3

Problem 3.9. Show that any unitary 2 X 2 matrix u can be written in the form

uw=+VA ( °. b*> :
—b* a
where aa® +bb* = 1 and A = detu = €' with & an arbitrary phase factor.

Solution. Since w is unitary the determinant of u* can be expressed as A* = detu* = det uw =detu ! =
A~ This implies |A]?> = 1 and, hence A = ¢'¢, generally an arbitrary phase factor. To demonstrate that
the most general unitary 2 x 2 matrix can be expressed in the given form we start from

ab
u= .
- cd
Using Eq. (N.23) for the inverse we can equate u' and u ™!

a* c\ a1 (d =b
var ) T T TAl—ca )

Thus we find d = a*A and ¢ = —b*A and

a b +aA~H? £pA~1/?
e = :I: A .
“ (—b*A a*A) v ( TV AY? 4q* A2

Redefining +a A™Y2 — a and b A™Y/2 — b we obtain the desired result. a

LA homomorphism is a map from one space to another in which the algebraic structure is conserved.
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3.6.4 Infinitesimal rotation operators - the case s = 1/2

Let us have a closer look at the unitary transformation (3.139) corresponding to a passive rotation
over the angle o about the z axis,

ia/2 0

e

Uz(a) = ( 0 e-ia/? > : (3.146)
Using the well-known relation e** = cos ¢ 4 isin ¢ we can write U, () in the form

U.(a) = Lcos(a/2) + io, sin (a/2). (3.147)

Note the appearance of the Pauli matrix o,. The change of U.(«) by an infinitesimal passive
rotation about the z axis is given by the partial derivative with respect to o and evaluates to

%(:;OEO‘) = (i0/2)U. (). (3.148)
Since U, (0) = 1 the above expression shows that o, satisfies the relation
io./2 = 2V (3.149)
oo |,_o

Hence, the Pauli matrix o, can be obtained from the unitary transformation U,(a) in the limit
« — 0. For arbitrary « the differential equation (3.148)) is solved by the exponential operator

U. () = 7=/, (3.150)

In other words, to determine U, («) for an arbitrary angle a all we need to know is the operator
i0,/2. For this reason io, /2 is called the generator of rotation about the z axis. In the language of
group theory io, /2 is one of the generators of the group SU(2) and U, («) is a representation of one
of the elements of this group.

Since our choice of quantization axis was arbitrary Eq. suggests the generalization

U, () = €'¢77/2, (3.151)

where U, (p) is the unitary transformation for a passive rotation (of the s = 1 system) over the
angle ¢ about the direction ¥, with o, = - 0. The correctness of this generalization follows in a
few steps by expansion of the exponential operator - see Problem [3.10}

Uy (@) = #/27r = 1 cos (¢/2) + io,sin (p/2). (3.152)

Note that by specializing tor — z and r — y we immediately regain the unitary matrices
and (3.141)), respectively. For other directions the matrices are more complicated because
o, only has a simple form along the x, ¥y and z axes. In any case, the half-angle notation nicely
reminds us of the domain doubling of the Euler angles.

Problem 3.10. Show that the unitary operator U,(¢) for the passive rotation of a s = 1 system over the
angle « about the direction ¥ can be written in the form

/D7 — 1 cos (/2) + oy sin (a/2) .

Solution. For s = ; we have

Ur(a) = €50 /% = eite/2or  $° i (o/2)" o7

n!
n

Since 02 = 1, see Eq. (3.50), we have 02" = 1 and 62" = 5, and the expansion can be separated into its
even and odd terms,

ei@/Dor 2130 (=" (a/2)"" +ioe 3 (=1)" (a/2" "

(2n)! @2n+1)!

Recognizing the expansions for the sine and the cosine, this expression takes the desired form. O
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3.6.5 Infinitesimal rotation operators - generalization

Let us return to Eq. . This expression holds for unitary transformations corresponding to
passive rotations over a finite angle. Its validity is restricted to the case s = % because the sine/cosine
decomposition relies on the property 02 = 1 of the Pauli matrix (see Problem . Interestingly,
this restriction does not hold for infinitesimal rotations. As we shall see below, an infinite product
of infinitesimal rotations also leads to the exponential relation , even if the condition 02 = 1
is not imposed.

To demonstrate this generalization, we analyze U,.(¢) as the product of n subsequent rotations
over the angle ¢/n (about the direction f). For n — oo this product becomes an infinite product of
infinitesimal rotations,

Ur(p) = lim [U,(p/n)]". (3.153)
n—roo
For infinitesimal angles Eq. (3.152f) reduces to
Ur(©/n)|nooo =14 (i9/2n)|n— 0007 (3.154)
Recalling Eq. (3.44) we substitute io,./2 = iS,./h. Evaluating the infinite product (3.153)) we find
Ur(p) = lim (1 + ifSr/h) = ¢i#Sr/h, (3.155)
n—oo n

This result is obtained without imposing the condition 62 = 1 (see Problem [3.11). Rearranging
Eq. (3.154) we find that any operator iS,./h that satisfies the relation (3.154]) can be interpreted as
the operator for an infinitesimal small rotation about the direction r,

. T Ur((p/n) -1 _ 6UT(@)
1S, /h = nh_)rrgo o/ = 5,

(3.156)

»=0
Problem 3.11. Show that the unitary operator U,(p), corresponding to a passive rotation over the angle
¢ about the direction ¥, can be written as an exponential operator of S, =t -S

Ur(p) = lim (1 +i%s, /h) _ iesi/n
n—o0 n
irrespective of the value of the quantum number s.

Solution. The unitary operator for an infinitesimally small (but nonzero) passive rotation over the angle
(¢/n)|n—oo about the direction F, is given by

Ur(@/mlnsoo = 1+ (1S M)l
Substituting this expression into (3.153) we obtain
. P no "~ (n) . o n\ n!
Urle) = Jim (1 +i780/0)" = lim 3 <k> (35, /)" with <k> = Hin— by

Substituting the values for the binomial coefficients we obtain

Ur(p) = lim [<1+i¢5r/h+w ! (iwsr/h)2+w% '

n— 2! n?
1 ) n—1 1 . n
s n— = (ipSr/h)" T 4 — (ipSk/R)" ) .
n n
Rewriting this expression as an expansion in powers of (1/n) it becomes

Ur(¢) = lim (1 +ipS, /h+ %(1 - %) (108 /h)? + (1 — % + %) (ipS, JB)? + - )

n— oo 3!

1 1
L+ipSe/h+ o (ipS, /h)” + 3 (ipSr/h)> + -+,

where all terms depending on n have vanished. In the last line we recognize the expansion of the exponential
operator - see Eq. (M.31)). As no presumptions are made with respect to the actual value of the spin, this
result holds for any value of s. m]
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3.7 Angular momentum

3.7.1 Introduction

In Section we established that a vector operator J caries the properties of angular momentum
(as introduced in Chapter [1) if its cartesian components J;, J,, and J, are hermitian operators that
satisfy the commutation relations . In the present section we shall make a fresh start and define
angular momentum as an infinitesimal rotation imposed on a physical system. As we shall see, this
definition leads in a few steps to conditions of Section [3.1

To set the stage, we consider a stationary state of the Schrédinger Hamiltonian, ¥, (r), where
r = (r,0,¢) is the position with respect to the center of rotation (in spherical coordinates). We
introduce an operator U, (A¢) to impose on ¥,;,, a passive rotation over the angle A¢ about the z
axis. At this point U, (A¢) is unknown but has to be unitary in order to conserve the normalization
of the state under rotation. Then, the change of ¥y, by an infinitesimal passive rotation about
the z axis can be expressed in terms of U, (A¢) by evaluating the partial derivative of 1)y, with
respect to @,

8¢nlm (Tv 97 d)) = lim wnlm (7", 07 ¢ + Ad)) - ¢nlm (T‘, 07 (ZS)

o A§—0 A¢
IRT] Uz (A¢) wnlm (7”’, 07 ¢) — wnlm (7', 07 QS)
o Aligo JANG)
T U. (A¢) -1
= Twnzm (r,0,9). (3.157)

As this expression holds for arbitrary ¢, (r) the partial derivative can be expressed in the form

0 _ iy Uz(0/n) =1 _ 0U.(¢) (3.158)

9 noe o/n 96 |y_o

Here we defined A¢ = ¢/n, with integer n. In this notation, the (unknown) unitary operator
U, (¢/n) |n—oo corresponds to a passive rotation over the infinitesimal angle 6¢ = (¢/n) |n—oo
about the z axis.

At this point we leave the mathematical convention of passive rotations to give preference to
physical rotations of the system. In this way we conform ourselves to the convention of Chapter
in which the orbital angular momentum, L = r X p, is defined as a right-handed rotation of the
physical system. This change of convention is simple to implement because a physical rotation over
the angle o about the arbitrary direction & is equivalent to a passive rotation over the angle —a
about the same axis. Then, the unitary operator P, (a)) corresponding to a physical rotation over
the angle o about the direction & is defined as

P, (a)=U, (—a). (3.159)
As an aside we mention that by inverting the direction of & we have
P_,(a) =P, (—a) =U, (a) . (3.160)

Recalling Eq. (1.25) we find that the operator for orbital angular momentum about the z axis is
given by

.0 . PA(¢/n)—1  OP.()
L, = fzha—(ﬁ = zhnlgréo py =1ih 96 ¢=07 (3.161)

where an explicit expression for P,(¢) remains to be obtained. Note that L, is hermitian.
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P
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Figure 3.6: Infinitesimal rotations do not commute. Upper part: (al) rotation of a ball about the y axis;
(a2) rotation about the z axis. Lower part: (bl) rotation of the ball about the z axis; (b2) rotation about
y axis; (b3) additional rotation required to obtain the same orientation as shown in (a2). All figures show
the orientation of the ball after rotation over the angle indicated by the arrow.

3.7.2 Differential operators - formal definition of angular momentum operators

In the previous section we found that orbital angular momentum can be represented by a unitary
operator which imposes an infinitesimal rotation on the wavefunction of a physical system. The
expressions (3.156|) and (3.161]) suggest to define any type of angular momentum in terms of a
differential operator,

—iJ,/h = lim Palp/n) =1 _ OFu(y)

Jim == 3y (3.162)

=0

Here P, (¢/1) |n—oo is the unitary operator corresponding to the physical rotation over the infinites-
imal angle 0 = ¢/n|,— o about the direction & and 1 is the unit operator. Inverting Eq. (3.162))
we obtain for P,(d¢) the operator identity

P, ((p/’/l) |n—>oo =1- (7'<P/n)|n—>oo<]a/h (3163)

Note that this expression is unitary (P! = P;!) provided the operator
J.=4a-J (3.164)

is hermitian (JI = J,). The unitary operator for a rotation over the finite angle ¢ about the
direction & is given by the following infinite product of infinitesimal operators (see Problem ,

Pulp) = Tim (1- z'fJa/h)" = eieda/n, (3.165)
n— o0 n

The significance of Eqgs. — can hardly be over-emphasized because the properties
of angular momentum follow in a few lines from the definition . To convince ourselves,
all we need to do is show that the criteria for angular momentum operators (as introduced in
Section are satisfied; i.e., J, has to be hermitian (as we already established above) and the
cartesian components J;, J, and J, have to satisfy the commutation relations . As we will
make no assumption about the type of system under rotation such as the dimension of the subspace
in which P,(p) operates, our definition holds for any type of angular momentum.

To obtain the commutation relations we use a geometrical argument by noting that in-
finitesimal rotations do not commute. This is illustrated in Fig.[3.6] In the upper part of the figure
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(al) we first rotate a ball over the angle d,, = ¢, /n about the y axis and (a2) subsequently 0, = 5 /n
about the = axis. In the lower part (b1) we first rotate over the angle ¢,, about the x axis and (b2)
subsequently d, about the y axis. Comparing (a2) and (b2) we find that in the latter case it takes
a small additional rotation 6,0, = ¢, /n? to realize the orientation of (a2). In the limit n — oo
this additional rotation is about the z axis as indicated in (b3),

Jim [Po(pa/n)Py(0y/n) = P:(¢opy/n?)Py(py/n)Pa(a/n)] = 0. (3.166)
Expanding the exponential operators to lowest non-vanishing order in 1/n we obtain
(Paipy/n?) (Jydo — Judy) [P +i (uipy/n?) J./h=0 & [Jy,J,] =ihJ. (3.167)
and by cyclic permutation we find also the other commutation relations of the set . From this
point on all properties of angular momentum follow from the algebra developed in Section [3.1

Example 1 - hydrogenic wavefunctions

At this point we are in the position to calculate actual rotations. First, we demonstrate this for a
rotation of the orbital wavefunction ¥, (r, 0, ¢) about the z axis. Specializing to orbital angular
momentum we calculate

Pz (‘p>wnlm (T7 9; ¢) = e_iWLZ/hwnlm (’I“, 9, ¢) = e_imsa/h'(/}nlm (’I“, 07 ¢) ; (3168)
where we used L,¥nim = —ihOpUnim = mhn, (see Section . In particular, we have

Pz(Qﬂ')wnlm (T7 0, ¢) = Vnim (Tv 0, ¢)

Example 2 - angular momentum states in Dirac notation

Turning to the general case, we consider the eigenstates {|j, m)} of the angular momentum operators
J2 and J,. In this case the effect of an arbitrary rotation about the direction a is given by

Pu()lj,m) = > |3, m") (G, m’|e= "7/ " j,m). (3.169)

The unitary matrix .
[Pa( @) = (G |7/, m), (3.170)

is called a linear representation of the rotation operator, P,(¢). In principle, the operators P,(y),
1 and J, operate on vectors of the full Hilbert space of J? and J, but as the P,(yp) do not mix
states differing in j we can restrict ourselves - for given j - to the corresponding d = 25 + 1
dimensional subspace V¢ of Hilbert space. This block-diagonal form of the matrix is called
the irreducible form of the angular momentum representation. In particular, the eigenstates |7, m)
transform in accordance with one of the irreducible representations of the full rotation group (the
one corresponding to the value j). Recalling the identity (3.159), we note that by specializing the
matrix to the case j = % we regain the Egs. (]3.139[) and q3.141D.

For a given basis {|j,m)} the unitary transformations P,(¢) (corresponding to proper rotations
about the direction & in real space) can be generated with the aid of Eq. . The set of all
P,(¢) constitutes a group, the group SU(2). The general element of this group is Pa(p), Pu(—¢)
is its inverse and for ¢ = 0 we obtain the unit element. Moreover, the set is closed under the
group operation. The operators J, are called the generators of the group. The rotation matrices
[Pa()],m are called representations of the group. Depending on the dimension d = 2j 4 1 of the
basis {|j, m)} the operators P,(p) generate d = 1,2, 3,--- dimensional irreducible representations of
the group SU(2). Note that in Section the above was already established for the special case
s = % without introducing differential operators. This case is called the fundamental representation
of the group SU(2).
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3.7.3 Integral versus half-integral angular momentum

We are now equipped to analyze the effect of a physical rotation on a system of arbitrary angular
momentum. This will lead us to an important insight in the difference between integer and half-
integer angular momenta. We consider for this purpose a system of angular momentum j, with
{|j,m)} being the basis defined by the operators J? and J,. An arbitrary state |x) of this system
can be decomposed in the form

Ix) = Z | |7, m) (7, mlx)- (3.171)

m=—j

Now we apply a physical rotation of this system over 2w about the z axis. Setting & — Z and
© — 27 in Eq. (3.165)) we find for the corresponding unitary transformation

J
P.(2m)|x) = e 2™y = D7 e m) (5, m]x). (3.172)

m=—j

Note that each term contains the same phase factor, +1 for integral j and —1 for half-integral j.
Thus we obtain

|x) for integral j

P.(2m)[x) = { (3.173)

—|x) for half-integral j.

Note that for integral j the rotation properties are regular; i.e., all eigenfunctions of the decom-
position are in phase after rotation of the physical system over 27. This is readily verified for the
spherical harmonics derived from the Schrodinger equation in Section In contrast, for half-
integral angular momentum we find P, (27 + ¢) = —P.(¢) and we have to rotate over an additional
27 (47 in total) to recover the original state |y). This was first demonstrated in 1975 in famous
neutron interferometry experiments [99, [[30]. Obviously, in the real space of the laboratory the
range of angles 0 < ¢ < 27 is not distinguishable from the range 27 < ¢ < 4w. Therefore, the
unitary transformations of the group SU(2) capture a property of half-integral angular momenta
that is absent in the real space rotation matrices of the group SO(3) - spin differs from classical
rotation. For a given physical rotation over the angle ¢ (about the z axis) we can equally well choose
P.(¢) or —P,() to describe the corresponding unitary transformation. Recall that we arrived at
same conclusion in Section [3.6.3] Apparently, the “wavefunctions” of half-integral spin systems are
double-valued functions as was first noticed by Wolfgang Pauli [90]. These wavefunctions are called
spinors to distinguish their rotation properties from those of the (single-valued) states of integer
angular momenta (the spherical harmonics). Experimentally this double valuedness is of no conse-
quence because the global phase of the state does not affect the expectation values of the angular
momentum operators. In Section|3.8] we discuss how to generate matrix representations for unitary
transformations of arbitrary angular momenta and illustrate this for the examples s = % and s = 1.

Importantly, the double covering is of no consequence for unitary transformations of the operators
because the transformation involves U and UT symmetrically. This causes the sign of U to
drop out of the transformation; i.e., it does not affect expectation values - as expected for observables.
In contrast, the double covering has important consequences for the states as these become double
valued as expressed by Egs. (3.140) and (3.142)). So, whereas the operators transform like classical
angular momentum operators, the transformation properties of the states have no classical analogue.

3.7.4 Physical rotation of angular momentum systems - general case

Our next task is to generalize the discussion to include rotations about arbitrary axes. According to
the Euler rotation theorem, any passive rotation R can be written as three subsequent coordinate
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Y0, 1/2,0) = P,(0) P, (n/2) P,(0)

Figure 3.7: Passive rotations (middle) versus physical rotations (right) of the wavefunction ¥(r) over 90°
about the positive y axis in laboratory space. The cartesian coordinate system is right handed, with the
y axis pointing into the paper as indicated by the ® symbol. The corresponding unitary transformation
in Hilbert space is denoted by the operator 2*(0,7/2,0), which can be expressed as the product of three
unitary transformations of ¥ corresponding to proper rotations about axes of the laboratory fixed frame.

rotations over the Euler angles «, § and ~:
R(a, B,7) = Ror (V) Ry (B)R2 () = R.(a) Ry (B) R (7). (3.174)

The corresponding physical rotation is equivalent to three subsequent Euler rotations of the physical
object in opposite direction - see Fig.[3.7]

Rp(—a, =B, —7) & R(a, B,7). (3.175)

Note that Rp(—a, —8,—v) # R~ *(a, B,7) = R(—~, —3, —a); i.e., the physical rotation, Rp, is not
to be confused with the inverse passive rotation, R~!. Turning to the unitary transformation U
corresponding to the passive rotation R, we write R(«, 3,v) = U(a, f,7) (see Sections and

13.7.1]), we find _ ‘ A
Uler, B,7) = Ux()Uy (B)U () = e'*7=/MetPIu et =/, (3.176)

Physical rotation convention

As in most of the literature the rotation angles «, 3, v are defined in terms right-handed physi-
cal rotations, we change to the convention of Section [3.7.1} in which the unitary transformation
corresponding to the physical rotation Rp(a, f,7) is denoted by

P(a, .7) = P=(0)Py(B)P(y) = e~/ e 0 u/ == /T, (3.177)

The relation between both conventions is given by P(«, 8,7) = U(—«, —f, —7).
The rotation matrices 2, |
Knowing the unitary matrices corresponding to the Euler rotations we can write the unitary trans-
formations corresponding to an arbitrary physical rotation as
+J
) =Ph)="Y_ lim)Gm'[Plj,m){Gmlx). (3.178)

m,m’=—j
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The rotation matrix element is commonly denoted by

mom (@ B,7) = (G, m/|[P(e, B, 7)1, m). (3.179)
In view of the diagonality of P, the rotation matrix simplifies to
(@ 8,7) = (G, m/[e 7Py (B)e™ M m) = e Od,, (B)e™ ™, (3.180)

where the matrix @’ , (B) is given by

& (B) = (G| P ). (3.181)

lems L

It is straightforward to evaluate this matrix for any integral or half-integral value of j (see Prob-
m:and 4| for the case j = 3). A general formula for the matrix elements d’ , (8) was
derived by ngner [131]

2

@, (3) = Y CD VG m = m)lG o+ m)l — m)

(G +m — k)G —m—k)E!(k—m +m)!
x [cos (B/2) ™ ™ [sin (8/2)) ™ (3.182)

where the summation runs over all values of x for which the factorials are meaningful. Note that
the @, (B) are real, which explains, in hindsight, the preference for the z — y — z rotation sequence
- see Fig.[3.4 The Wigner formula is easily embedded in computer algebra to manipulate angular
momenta of arbitrary size on their generalized Bloch sphere. In practice this means that the rotation
matrices constitute a systematic tool to decompose any angular momentum state with respect to
any direction of an arbitrary right-handed coordinate system.

Problem 3.12. Show that for physical rotations about the z, y and x directions the unitary transformations
are given by

Pz(a) = P(av()’ 0)7 Py(ﬂ) = P(OwBaO)v PI(/B) = P(—%TFUB, %W)

3.7.5 Spherical tensor operators - irreducible tensor operators

Substituting an eigenstate into Eq. (3.178)), |x) — |k, ¢), we obtain an expression for the transfor-
mation of eigenstates under rotation

Ik, q) = k) Do (c, B,7). (3.183)
q/
Turning to the position representation, (£|k,q) = Y(#) and (£|k,q) = YI(¥'), we obtain the

transformation properties of the V!(£),

YI(#) qu £) 78 (. B,7). (3.184)

In particular, for £ = Z only the term ¢’ = 0 contributes to the summation - see Eq.[M.55|- and we
find the following relation between the spherical harmonics and the rotation matrices:

. 2k+1
qu(r/) = An @0 q( 7577)? (3185)
where ' = R(«, 5,7)z. In Section we established that the standard components of J transform
like the Y{!(#). So, using the correspondence (3.31]) we find for the transformation properties of the
standard components of J

+1
= > g Dygla.B,7). (3.186)

q¢'=-1



3.8. GENERATING ANGULAR MOMENTUM REPRESENTATIONS 71

Combining this expression with Eq. (3.119) we arrive at Eq. (3.124]) as announced at the end of
Section [3.6.1

+1
Ty = P, 8,7 PN, 8.79) = Y Ty Dyq(a.B,7). (3.187)

qg=-1

The above procedure can be generalized by introducing spherical tensor operators T®*) as opera-
tors with standard components that transform like Y,?(#) [I03]. This restricts the rank of the tensor
to integer values, k € {0,1,---}. Replacing in Eq. 3.184: the Y,/(£) by the standard components
Tkﬁq € {Tk,fk» R 7Tk,k} we obtain

+k
Tpy = PTePt = > Tuy 2}, (3.188)
q'=—k

Importantly, as the .@5, q(oz7 B,7) are also defined for half-integer k the procedure can be further
generalized to hold for any irreducible tensor operator Ty,. As was demonstrated by Giulio Racah
[95] these operators satisfy the following commutation relations:

[ ey Thpq]l = ¢ T g (3.189a)
[Je, Thgl = VE(k+1) —q(q+ 1) AT g41- (3.189b)

This property is demonstrated in Problem Irreducible tensor operators act within the invariant
subspace of a pure angular momentum state (for given j, the subspace spanned by the basis {|j, m)},
with —j < m < j - see Section . Angular momentum operators are irreducible tensor operators
of rank 1 (T1,4 — J,). For these operators the commutation relations reduce to those of
angular momentum (cf. Appendix . The simplest class of irreducible tensor operators are the
spherical tensor operators of rank 0. These are known as scalar invariants. They have a single
component, Tpo, which is invariant under rotation (2§, = 1),

Too = PTooPT = Tyo. (3.190)

Note that the Hamiltonian of systems of identical particles cannot involve irreducible tensor oper-
ators of half-integral rank since these would give rise to transitions between bosonic and fermionic
states, which contradicts the experimental observation that the statistical nature of particles is
rigorously conserved (cf. Section .

3.8 Generating angular momentum representations

To demonstrate the procedure for generating representations we discuss a few examples. The unitary
matrix P,(y) for a rotation over an angle ¢ about the Z direction is generated by the operator
e~ 7=/ The matrix representation follows with Eq. . For the diagonal representation this
takes a minimal effort,

[Pz(sp)]m’,m = <j7m/‘e_sz/h|j7 m) = e_wmém’,m (3.191)
and using the definition (3.162)),
0P,
J, =1ih M , (3.192)
9o |,z
we obtain .
[']z]m’,m = mhém/7m6_lwm|¢:0 = mh(sm’7m- (3193)

This could have been written down immediately since

[Jz]m’,m = <Jv m/|JzU7 m> = mham’,m- (3-194)
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The added value of the formalism becomes evident when asking for the matrix representation of
non-diagonal angular momentum operators. For instance, the unitary operator P,(¢) corresponds
to a physical rotation over an angle 6 about the § direction. In this case the matrix representation
follows with the Wigner formula,

[Py(e)]m/’m = (4, m/|e—i9Jy/ﬁ|j7 m) = dznlm(@). (3.195)

and

&, (6
G|yl m) = i Qmem @)

o (3.196)

0=0

3.8.1 Example - the case j =1/2

To demonstrate the procedure for generating representations we first consider the example of angular
momentum j = % and rederive the results of Section The unitary matrix P,(y) for a rotation
over an angle ¢ about the Z direction follows with Eq. (3.191)). For j = % we find

e~/2
P.(p) = 0 el ) (3.197)

To determine J, we turn to the definition (3.162)). First, we calculate the derivative of P, (),

OP.(¢) e (—(i/2)e"'“”/2lw—o 0 ) — (1/2 0 ) . (3.198)

I

0 (i/2)e*/?| ,—o 0 —1/2

Substituting this result into Eq. (3.162)) we obtain for the angular momentum operator

oP.(o)|  _ 1 ((1) _01) . (3.199)

J, =1ih ———=
2 8@

p=0

The corresponding eigenvectors are

n=(5). w=(7) (3.200)

There are various equivalent ways to proceed. First of all we can use again the method demon-
strated for J,. To determine J, we start from the unitary operator P,(f), representing a physical
rotation over an angle 6 about the ¥ direction. For j = % the operator P,(6) follows with Eq. (3.195))

() = 42 0) = (cos (6/2) —sin (9/2)) . (3.201)

P, m’m sin (9/2) COos (9/2)

Yy

Using the definition (3.162)) we calculate the derivative of P, (),

_ 1 [ —sin(0/2)|o=0 —cos(0/2)p=0 \ _ 1 (0 —1
o ( cos (0/2) [e=0 —sin(0/2) |9_0> T2 (1 0 ) : (3.202)

0P, (9)
00

0=0

Substituting this result into Eq. (3.162)) we obtain for the angular momentum operator

g, = ih 2P :;h(? OZ>. (3.203)

O

»=0
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3.8.1.1 Transformation of the cartesian components of J
An alternative approach to obtain J, and Jy, is by unitary transformation of J, and J,,
Jo = Py(m/2)J.P}(7/2) (3.204a)
J, = P.(n/2)J,Pl(n/2). (3.204b)
The unitary operator P, () corresponds to a physical rotation over an angle ¢ about the Z direction -
see Eq. (3.191)); for j = % it is given by Eq. 1} Likewise, the unitary operator P,(6) corresponds

to a physical rotation over an angle § about the y direction - see Eq. (3.195)); for j = % it is given
by Eq. (3.201). Using ¢ = 7/2 in P.(y) and 6 = 7/2 in P,(¢) the unitary operators become

P.(n/2) = ﬁ(lgz 11) P,(n/2) = \/2(1 ‘11) (3.205)

Substituting these expressions into Egs. ((3.204]) we find

01
széh(l()), J, =

The shift operators follow from the definitions ((3.4)),

01 00
J+h<00> and J_h<10). (3.207)

With these expressions we generated the results of Section The commutation relations
and as well as the shift relations are satisfied. Using Eq. we calculate J2 = %h21,
where 1 is the unit matrix. This not only shows that Eq. 1) is satisfied but also that J? is
invariant under rotation - like any scalar operator (cf. Appendix [L)). This is not surprising because
\/(J?) is a measure for the magnitude of J. Once the matrices for J, and J. are known the matrix
expressions for P,(¢) = U.(—p) = e~ “’:/" and P,(p) = U,(—¢) = e~¥’s/" can also be derived
by expansion of the exponential operators. This is demonstrated in Problems [3.13] and

h (0 _i> . (3.206)

1 0

[

3.8.1.2 Transformation of the angular momentum eigenstates

As an example we derive some expressions for the eigenstates of the s = % system with respect an
arbitrary quantization axis starting from the states |1) and |1) defined in Egs. (3.42). A change of
the quantization axis from z = (0,0) to & = (6, ¢) is realized by a rotation of the coordinate system
over the Euler angles v = 0, f = —6 and a = —¢. The corresponding unitary transformation is
given by

7' (v, B,7) = P.(¢)P,(0)P-(0). (3.208)

Substituting Egs. (3.197) and (3.201)) we obtain

e""/2 cos (0/2) —e /% sin (0/2) )

e/2sin (0/2)  €'*/? cos (6/2) (3.209)

2'%($,0,0) = (

Thus, the spin-up and spin-down states with respect to an arbitrary quantization axis in the #
direction are given by

1), = 2Y%($,0,0) |1) = e~/ (ei(‘;ossir(le(/HQ/)Q) ) (3.210a)
1), = 2'%(6,6,0) 1) = 7/ <€wsézs(?(9//22)) > : (3.210b)

Note that with Eq. (3.210a) we regained Eq. (3.62).
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Problem 3.13. Show by expansion of the exponential operator e**®*/" that the two-dimensional unitary

transformation corresponding to a rotation over an angle o about the z axis is given by

ia/2
e 0
Uz(a) = < 0 e—ia/2> :

Solution. We start with the expansion of the exponential operator,
1 1
U.(a) = e%=/" = 1 + iaS., [+ 5 (ias. Jh)? + 3 (iaS. /h)* +

The even and the odd terms can be factorized in a form containing a common matrix,

(0. /1)*" = (ia/2)" (é (1)> L (S /R = (a2 <(1) _01> .

Next we recall the expansions of the sine and the cosine,

cos p = Z 2n' Z:
o - 2n+1

ising = ZQn—Fl o z_:zmr

Summing the even and odd terms separately we obtain

U.(a) = cos(a/2) ((1) (1)> + isin(a/2) <é _01> .

Using the relation e'? = cos ¢ + isin ¢ we arrive at the desired expression. |

Problem 3.14. Show by expansion of the exponential operator e"#5u/" that the two-dimensional unitary

transformation corresponding to a rotation over an angle 8 about the y axis is given by

[ cos(B/2) sin(8/2)
Uy(B) = (—sin (B/2) cos (5/2)> .

Solution. The proof goes along the same lines as in Problem We start with the expansion of the
exponential operator. In the present case the even and the odd terms factorize differently in the following
way,

7

Recalling the expansions of the sine and cosine we obtain after summing over the even and odd terms

10 . 01
Uy(ﬁ)—cosﬁ/Q(O 1) + sin 3/2 <1 0).

Adding the two contributions we arrive at the desired expression. a

3.8.2 Example: [ = 1 orbital angular momentum

To demonstrate the procedure for generating representations we consider the example of [ = 1
orbital angular momentum and rederive Eq. (| - The unitary matrix P, () is generated by the
operator e~ *L=/" The matrix elements follow with Eq. (3.170),

e~em/h for m’ =m

0 for m’ # m. (3:211)

()t = (0= #5221, o) = {
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For [ =1 we obtain

e 0 0
Pip)=| 0 10 |. (3.212)
0 0e¥

To determine L, we turn to the definition (3.162)). First, we calculate the derivative of P, (),

—ie" %] ,—0 0 0 100
oP, ’
8(90) _ 0 0 0 J=-ilooo0 |. (3.213)
? le=0 0 0 €| ,—0 00-1

Substituting this result into Eq. (3.162)) we obtain for the angular momentum operator

10 0
L.=ih 8%(@) ~nfloo o0 |. (3.214)
7 om0 00 -1

This is indeed the expression given by Eq. (3.33).
The unitary matrix P,(¢) is generated by the operator e~ Ly/h  The matrix elements follow

with Eq. (3.170), ) :
[Py(e)]m’,m _ <], m/|€_10Jy/h|jam> = dzn’m(e) (3215)

For [ = 1 we obtain
3(1+ cosd) —\/gsinﬁ (1 —cosb)
P,(0) = \/gsine cos 6 —\/gsinﬁ . (3.216)
(1 —cosb) \/gsirﬂ (1+ cos®)
To determine L, we use the definition . First, we calculate the derivative of P, (),

N[

N[
o[

P (6 —%sin@\gzo —\/gcosma:o %Sin9|9=o 0—-1 0

P,

59() = \/gcoséﬂgzo —sin 0= —\/gcosﬂg:o :\/g 10 —-1]. (3217)
58in 0]p—o 5c080|g—g —35sinbly—o

Substituting this result into Eq. (3.162) we obtain for the angular momentum operator

0—2 0

:\@h i 0 —i|. (3.218)
=0 0i 0

.. OP,(0)
Ly, =ih 59

0
Note that this is the expression given in Eq. (3.35).

3.8.2.1 Transformation of the angular momentum eigenstates

As an example we derive some expressions for the eigenstates of the [ = 1 system with respect an
arbitrary quantization axis starting from the state |1,1) = |1,1), defined in Egs. (3.32). A change
of the quantization axis from z = (0,0) to & = (0, ¢) is realized by a rotation of the coordinate
system over the Euler angles v = 0, f = —6 and @ = —¢. This is equivalent to a physical rotation
of the wavefunction over the Euler angles v =0, § = 6 and a = ¢ (see Fig.|3.7). The corresponding
unitary transformation is given by

2"($,0,0) = P.(¢)P,(0)P.(0). (3.219)
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Substituting Eqgs. (3.212) and (3.216)) we obtain

1(1+cosf)e "¢ f\/gsin Ge=" 1(1— cosf)e=™
P'(¢,0,0) = \/gsiné’ cos —\/gsinﬁ . (3.220)
2(1 = cosf)e’ \/gsin e'? L1+ cosf)e’?

For example, by unitary transformation we find

) 1 —v2 1 1 ) 1
X)e=2'0,7/2,0)[1,1) &5 | V2 0 V2| |0 |=2]V2 (3.221a)
1 V2 1 0 1)
L V2 —i 1 L
X)y =2 (7/2,7/2,0)[1L,1) & o | V2 0 —vZ ][0 ]=5(V2] . (3.221D)
i V2 i 0 i

Y
This amounts to the decomposition of the state |1,1) with respect to quantization axes along the x
and y directions (of the laboratory-fixed frame), respectively. The corresponding density matrices
are p|yy,and pjy  follow directly from these expressions

e V2 1 ) 1 —iv2 -1
Pro. =7 | V2 2 V2 and p, =7 (V2 2 —ivZ | . (3.222)
1 V2 1 -1 W2 1

Note that these density matrices are idempotent and have unit trace as required for pure states.

3.8.2.2 Transformation of the cartesian components of J

An alternative approach to obtain J, and Jy, is by unitary transformation of J, and J,
Jo = Py(m/2)J.P}(r/2) (3.223a)
Jy = P.(m/2)J,Pl(7/2). (3.223b)

The unitary operator P, () corresponds to a physical rotation over an angle ¢ about the Z direction -

see Eq. (3.191)); for j = 1 it is given by Eq. (3.212)). Likewise, the unitary operator P,(§) corresponds
to a physical rotation over an angle 6 about the y direction - see Eq. (3.215)); for j = 1 it is given
by Eq. (3.216). Using ¢ = 7/2 in P.(¢) and 6§ = 7/2 in P,(f) the unitary operators become

—i 00 e -2 1
P(r/2)=[ 010, P,(r/2)= 3 V2 0 V2 . (3.224)
00 1 V2 1
Substituting these expressions into Egs. (3.223)) we find
010 0—i 0
Jo=y/sh| 101 ), Jy=+/3h|i 0 —i]. (3.225)
010 04 0

The shift operators follow from the definitions ((3.4)),

010 000
J=Vv2h[{001 ]| and J_ =+v2hn[100 |. (3.226)
000 010

With these expressions we generated the results of Section [3.2.1]
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Problem 3.15. Consider the following (normalized) j = 1 angular momentum state (defined with respect
to a quantization axis in the xdirection of the laboratory)

1
Qe =15 | V2
0

T

Note that |), can be prepared by filtering of the state |x). from Eq. (3.221a)), followed by renormalization.
Questions: (a) decompose |(), with respect to a quantization axis in the z direction, (b) calculate its
polarization in X, ¥, and z direction and (c) show that

(3% = (32 + (I + (32 =i + DA%,

Solution. (a) To analyze |(), with respect to the z direction, we rotate the wavefunction of this state over
the angle —7/2 about the y direction (bringing its quantization axis into the z direction),

) 1A 1 V2 1 1 : 3 ax
€)= 2°(0,-7/2,0)[C)= & 5 3 V2 0 V2 V2 | = 5 V2| =| ao
1 —v2 1 0/ -1 ). a1 )

Hence, the probability amplitudes to observe the eigenstates |1,1), |1,0) and |1, —1) are, respectively

a1:<171|§>:\/gv a0:<1’0‘§>:_\/%7 a’*1:<17_1|’£>:_ %

9

9 1
127

|ao|2 = 2 and |a,1|2 = Note that the Parseval relation,

The respective probabilities are |a;|? = 5 5+

la1|? + |ao|® + |a—1|* = 1, is satisfied.
(b) The polarization vector of the state [§) = a1 [1,1) +ao[1,0) +a—1[1,—1) is given by - see Eq. (3.53)

P = (J/jh) = ({&lJ2/5hIE), €1y /3NE), (€1 T=/GIE)) -

— Using Jo = 3(J4 + J-), we calculate (J-/jh)|€) = 3v2 (a0 |1,1) + (a—1 + a1) |1,0) + ao |1, —1)). Since
a1, ap and a—_1 are real coefficients we find

(€102/3hl€) = V3 (ara0 + aoa—1) = 1V3 (V2 + Lv2) = -1,

— Likewise, using J, = 3i(J4—J_) we calculate (J, /jh)|€) = 3iv2 (a0 |1, 1) + (a—1 — a1) |1,0) — a0 |1, —1)).
Since a1, ap and a_; are real coefficients we find

<£|Jy/]m£> = %Z\/i (alao + apa—1 —aiap — aoa_1) =0.
— Finally we calculate the diagonal term
(€lJ:/jnlg) = (a¥ —a2y) = 3.

Thus we arrive at
P = (J/jh) = (-5.0,3) .

(¢) Since J2, J2 and J? are diagonal operators we calculate (using the Parseval relation)

(3% = @2 + (I + (I2) = (laa* + Jaol* + a—1|*) j(G + DA* = j(j + 1)A*, m
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Fine Structure

In Chapter [2] we introduced the term fine structure for small deviations from the principal atomic
structure. The deviation from the Bohr formula can be a small shift or involve the splitting of an
energy level. A common feature is that the shift or splitting is much smaller than the separation
from adjacent Bohr levels. Interestingly, fine-structure splittings were already recorded a century
before the Bohr formula was derived. In 1814 Joseph von Fraunhofer studied the solar spectrum
and noted the famous doublet splitting of the D lines of sodium (Na) at 589.5 nm [49]. We shall
find that in the alkali elements this splitting arises from slight differences in screening of the nuclear
charge by the core electrons (see Section .

The fine structure of atomic hydrogen has a completely different origin. Revealing this origin
has been one of the great puzzles of modern physics - competing phenomena had to be unraveled
and important new physics had to be discovered. The first step was made by Arnold Sommerfeld,
who showed in 1916 that relativistic correction of the kinetic energy gives rise to a doublet splitting
of the correct order of magnitude [I15]. A rigorous relativistic description was possible only after
Paul Dirac formulated his relativistic quantum theory for the electron in 1928 [36]. In this theory
the appearance of spin and the associated magnetic moment were identified as intrinsic relativistic
phenomena. Aside from relativistic corrections also radiative corrections are essential to explain the
detailed fine structure of the hydrogen atom. In 1947 Willis Lamb and Robert Retherford measured
a small shift between the 2s and 2p level in hydrogen that could not be explained by the Dirac
theory [74]. In the same year Hans Bethe demonstrated that this so-called Lamb shift arises from
the zero-point fluctuations of the quantized electromagnetic field [13]. This has been one of the
key ingredients that led to the formulation of modern quantum electrodynamics (QED) in which
relativistic quantum mechanics and electrodynamics are unified in a single theory. These theories
have been tested in highly-charged hydrogenic ions as heavy as '#¥Sn*%+ [84].

Unfortunately, both the Dirac theory and QED fall outside the scope of this introductory course.
We adopt the phenomenological point of view in which the consequences of the Dirac theory (like
spin) are postulated. This has the advantage that the elements of atomic spectroscopy can be
introduced without facing the full complexity of the atom at once. Following the historical sequence
of events we introduce the relativistic corrections to the kinetic and potential energy of the electrons
and discuss the properties of spin as well as the origin of spin-orbit coupling. This phenomenological
approach can be justified as being a mapping of the Dirac theory onto an effective Hamiltonian which
can be evaluated with perturbation theory.

Atoms consist of orbiting and spinning charges. Therefore, it is not surprising that these ingredi-
ents affect the atomic structure at the fundamental level. They manifest themselves as classical and
non-classical forms of magnetism. The best known magnetic phenomenon is the splitting of spectral
lines by an applied magnetic field. This was discovered by Pieter Zeeman in 1897 and known as the
Zeeman effect [134]. In zero field, the electronic magnetism manifests itself in spin-orbit splitting.
The importance of magnetic interactions reaches far beyond atomic physics into condensed mat-
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ter physics and chemistry. Magnetic interactions between atoms are crucial for the understanding
of molecular binding and cohesion in solids and find important applications, for instance in med-
ical imaging. Interestingly, although decisive for major applications, in atomic physics magnetic
interactions appear as weak perturbations of the principal atomic structure.

In the coming sections we introduce the atomic fine structure of one-electron atoms.. We start
with hydrogenic atoms and identify four contributions to the level shift (see Fig‘.. We distinguish
between orbital- and spin-related coupling to magnetic fields (Sections. The spin and orbital
dynamics are combined in spin-orbit coupling (Section . This is a velocity-induced phenomenon
and embodies the central issue of the chapter. We discuss how, in hydrogenic atoms, the various
shifts enter on equal footing (Section, whereas in alkali-like atoms the spin-orbit shift dominates
the physics (Section . This is explained by the role of core electrons which effectively screen the
valence electron from the nuclear charge. The last section of the chapter deals with the competition
between spin-orbit and Zeeman coupling (Section .

4.1 Relativistic and radiative shifts

4.1.1 Relativistic mass correction

Close to the nucleus the electrons are accelerated to relativistic velocities. This gives rise to lifting
of the degeneracy of energy levels of different [ but equal n. The relativistic shifts are small but
comparable to the Zeeman splitting. The relativistic Hamiltonian of a spinless particle of rest mass
m moving in a central field V(r) is given by

2p? + m2ct + V(r). (4.1)

Subtracting the rest energy mc? and the potential energy V(r) we obtain the kinetic energy T, which
can be expanded in even powers of v/c,

L <p2>2+-~. (4.2)

2m  2me2 \ 2m

The second line shows how the mass of the moving body depends on v/c. For weakly relativistic
velocities the expansion can be used to calculate the relativistic correction to the kinetic energy
by perturbation theory. In particular, using the reduced mass m,. of the electron in a hydrogenic
atom we can write the atomic Hamiltonian in the form

p?
2m.,

H—me® =T+ V(1) = 2 4+ V(r) + HDS = Yo + Hm, (4.3)

where Hj is the (non-relativistic) Schrédinger Hamiltonian (2.1)) with eigenstates R, (r) given by
Eq. (2.37). The perturbation H*®* can be expressed in terms of Ho and V(r)

mass __ 1 p2 ? _ 1 p72" L2 ? _ 1 2
Hr - — < > - ( + - —m [Ho - V(’I")} . (44)

2m,c2 \ 2m, 2m,c? \ 2m, = 2m,r? -

We now calculate the splitting of the Bohr level n by the relativistic mass correction. Since H"*%
commutes with L? and L., the relativistic mass correction is diagonal in the rotational basis {|im;)};
i.e., [ and my are “good” quantum numbers. This makes explicit diagonalization of the perturbation
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Figure 4.1: Fine-structure effects in hydrogenic atoms. From left to right are shown the unperturbed level
at By = —iRM and the cumulative effects of subsequently the relativistic mass correction shift AFEZ**%
the Darwin shift AEY, the spin-orbit shifts AEQLf forj=1+ % and the Lamb shift. The latter cannot be
understood with classical fields but requires quantum electrodynamics (QED). On the far right the Balmer
transitions are shown. The dashed line is forbidden as a single photon electric-dipole transition.

matrix superfluous and reveals the rotational basis as the optimal basis to evaluate the perturbation
(see Appendix. Although states of different n are coupled by the perturbation (H™?* does not
commute with Hg) this is of no consequence as long as the second order correction is negligible (n
is a “good quantum number to first order in perturbation theory”). The latter is satisfied as long
as the first-order shifts are small in comparison to the level separation of the principal structure.
Under these conditions the level shifts can be calculated in hydrogenic basis, {|nlm;)}, using the
well-known expression from ordinary first-order perturbation theory - see Appendix [H.3.1]

AENSS = (nlmy|H | nlmy). (4.5)

nlm

Using the hermiticity of #( as well as the eigenvalues of the Schrodinger Hamiltonian we obtain

ass 1

A = =5 (nlmu| [Ho = V()] [nlm) (4.6)
1

= *W[E?L — 2B, (nlmy|V(r)|nlmy) + (nlmy| V2 (r)|nlmy))]. (4.7

Let us evaluate the relativistic shift AE for hydrogenic atoms. Using the radial wavefunc-

tions given in Section [2.3] we find that the shift is independent of the quantum number m;. After
integration over the angles 6 and ¢ it takes the form

AEmass — _ 1 [E?LQEn/ V(r)Ril(r)rzdr+/ V2(r)R2,(r)r?dr| . (4.8)
0 0

2m,.c2

Before evaluating the integral we note that the electrostatic interaction can be expressed in terms
of the fine-structure constant o =~ 1/137, V(r) = —(e*/4neo)Z/r = —a®*m,c®*Za/r. Then, using
Eq. (2.33) for E, and Egs. (2.49) for (1/p) and (1/p?) we obtain

En
AE™S = B, —" 14 2a*m,.c*Z/E, (1/p) + (a2mT02Z/En)2 (1/p*)]

2m,-c2

272 m?7Z  [2m2\° 7% 1
:EnL 1222 L () 2

4n? Z n? Z nd3l+1/2

o?Z? (3 n

:_En7ﬂ<4_l+%b). (4.9)
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This is a celebrated result - obtained by Arnold Sommerfeld in 1916 [I15]. Note that it validates our
use of first-order perturbation theory because the shifts are small compared to the level spacing of the
principal structure, AE™3S /E, ~ o?. More interestingly, it shows that the relativistic corrections
depend on the orbital angular momentum quantum number [ and are biggest for states with low
. This [ dependence lifts the accidental degeneracy of states with different angular momentum
(see Fig.[4.1). Physically this is to be expected: the smaller the value of [, the closer the electron
approaches the nucleus, the faster the motion and the larger the relativistic shift.

4.1.2 Darwin term

The relativistic velocity of the electron close to the nucleus also affects the Coulomb interaction.
It turns out that under weakly relativistic conditions the Dirac equation can be reduced to a
Schrodinger-type equation in which the effective Coulomb interaction is weaker. This is expressed
by a correction term in the effective Hamiltonian known as the Darwin term,

eh?

Darwin __ :
H, = Sm2e2 divE. (4.10)

The Darwin term has no classical analogue but it can be made plausible. The Dirac theory has the
property that relativistic electrons exhibit a rapid quiver motion called Zitterbewegung [110, 55] over
distances of the order of the (reduced) Compton wavelength, Ac = h/mec = aag ~ 3.86 x 10713 m.
This length is a factor a smaller than the Bohr radius, agp ~ 5.29 x 10~!! m, but much larger than
the proton rms charge radius r, ~ 8.4 x 107'% m. If we postulate this Zitterbewegung we can
estimate the magnitude of the Darwin term by heuristically delocalizing the electron presuming a
centrally symmetric charge distribution o(r’) of size of the Compton wavelength and normalized
to the total charge, [ o(r’)dr’ = —e. In this model an effective electrostatic energy is obtained by
averaging over the charge distribution. For a nucleus of charge Ze at position r the average is given
by

V(r) = Ze/g(r’)go(r —r')dr'. (4.11)

Here
1 1

=—— 4.12
dmeg |r — 1| (4.12)

p(r—1)
is a monlocal scalar potential, nonlocal because the electron is delocalized as is accounted for by
integrating over the dummy variable r’. Obviously, the model cannot provide more than an order
of magnitude estimate. So, we replace the electron by a uniformly charged solid sphere of radius R,

with the charge density given by
3e

AT R3’
To evaluate the integral we choose r and r’ relative to the center of the charge distribution as
illustrated in Fig. Using the multipole expansion we find with the aid of the orthogonality
relation for Legendre polynomials that for a spherical charge distribution only the [ = 0
contribution is nonvanishing and obtain for the electrostatic potential (see Problem

1 e 1 e 2 R
- °_ S 4.14
P = et T Tmeo 2R [ (R) r } n (4.14)

To obtain the Darwin term we rewrite the potential energy in a form introducing a short-range
correction to the pure Coulomb law

o(r') = 0o = (4.13)

Ze? 1

V() = Zeplr) =~

V'(r). (4.15)

INonspherical nuclei give rise to the electric hyperfine interaction.
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Figure 4.2: Electrostatic scalar potential (see a) and electric field (see c¢) of a uniformly charged solid sphere
of total charge ¢ and radius R (see c). The dashed vertical arrow shows how the electrostatic potential can
be obtained by correcting the Coulomb law for distances r < R.

Comparing Egs. (4.14)) and (4.15)) we find that the correction is given by

Ze? 1 2 2R
/
= — —_— — 5 T - < . °
V'(r) Ines 3R (3 2, ) forr <R (4.16)

We calculate the Darwin correction of the Bohr level n in the same way as the relativistic mass
correction. We use ordinary first-order perturbation theory in the hydrogenic basis {|nim;)},

AED>Y — (] |V (r) [nlmy). (4.17)

Since V'(r) commutes with L? and L, this perturbation is diagonal in the rotational basis {|lm;)};
ie., I and m; are “good” quantum numbers. Since V'(r) does not commute with Hg, states of
different n are coupled by the perturbation but this is of no consequence as long as the second-
order shift is negligible (n is a “good quantum number to first order in perturbation theory” - see
Appendix . In the position representation we find

. Ze? 1 2 2R
apn o | (3 Bk ) Ry(MY™®)Pdr - withr <R (4.18)

Since V'(r) has central symmetry the angular part evaluates to unity. Since r < R < ag the radial
wavefunction can be replaced by its value in the origin and the Darwin correction is given by

. Ze? 1 R r2 2R Ze? R?
AEDarwln ~ _ 7R2 0 / |G J S — 2d — —RQ 0). 4.19
4reg 2R nl( ) 0 R2 r r-ar 47eg 10 nl( ) ( )

Importantly, this expression shows that the Darwin shift only affects s states because for nonzero
angular momentum the radial wavefunction vanishes in the origin (see Fig.. The result
can also be obtained by using the concept of a contact interaction; i.e., an interaction for which
the strength scales with the probability density of the electronic wavefunction at the position of the
nucleus. Note that by including the following contact interaction directly into the Hamiltonian

2 p2
~ Zi&g(r) (4.20)

Darwin
H
" €0 10

we regain the Darwin shift (4.19) after averaging over the electronic Wavefunctionﬂ With insider
knowledge of Eq. (4.10) we choose R?/10 = A% /8 and obtain

2 2
Darwin __ Ze h
H"' 2,2

g0 8mzic

5(r). (4.21)

INote the relation 6(r) = 47s(r)r2.
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This results also follows directly from Eq. (4.10). In the Dirac theory the electron is point like and
its Coulomb potential in the field of the nuclear charge given by p(r) = Ze/4megr. Since E = -V
and Al/r = —4xd(r) the Darwin term (4.10) takes the form (4.21)).

To conclude the section we calculate the total relativistic correction. For the Darwin correction
we use fi/mec = aaq and recalling Eq. (2.39) for the radial wavefunction in the origin we obtain

1 € 72 0?72 a’Z?

AEParvin — ————n=—E,——n. 4.22
4dmeg ag 2n? n? " n? " ( )
Combining the two relativistic corrections
Hr _ H;nass + f)]_ll?arwin7 (423)
we obtain the total relativistic shift
222 3
5L (_ ) for 1> 0
rel m Darwin n 4 l + 1/2
AES = AEY® + AE,; = (4.24)
5,22 (3 for 1 =0
—F, ——n or ( = Vu.
n? 4
The relativistic splitting between the nl and ns levels is given by
2772
el oz (21 —1
AEL s = 3 <2l+1 Ry (4.25)

In atomic hydrogen the relativistic splitting between the 2p and 2s levels is AE;Z&QS = 7.296 GHz.
As we shall see in the coming sections the relativistic corrections discussed here are of the same
order of magnitude as typical magnetic corrections.

Problem 4.1. Show that for a uniformly charged solid sphere (radius R, total charge q) the electrostatic
potential can be written as the sum of a pure Coulomb potential plus a correction term for distances r < R,

1 ¢ 1 q 7\ 2 R
-1 4 13- (7) DL
() 4meg T + 4dmeg 2R [ R T‘:|T<R
Solution. The electrostatic potential is given by

o) = o [ AL

Tdmeo ) r—v|

For a uniformly charged solid sphere of total charge g the charge density is go = 3¢/47wR>. As the charge
distribution is spherical we can evaluate the integral by restricting ourselves to the first term of the multipole

expansion (M.41)). Thus, we obtain

T 2
QO gr2dy + oodnr'dr’ = 4 {3 — (1) } r<R
/ o(r') ., r Jo 2R R
A" g — .
r
- QO grr2dr’ = g r > R,

0

where r. = max{r,r’}. Adding and subtracting q/r for distances r < R we obtain after putting the
prefactor the desired expression (see Fig. [4.2)). O

4.1.3 Lamb shift

Quantum electrodynamics (QED) is outside the scope of this introductory text but a flavor of its
origin can be obtained from Welton’s picture for the Lamb shift. Welton argued that the zero-point
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fluctuations of the quantized electromagnetic field will give rise to quiver motion of the electrons
relative to the nucleus. This quiver motion will reduce the Coulomb interaction of the electrons
with the nucleus because, like the Zitterbewegung in the case of the Darwin correction, the zero-
point motion will tend to delocalize the electron. Thus, also in the present case we shall represent
the electron by a centrally symmetric charge distribution o(r’) normalized to the total charge,
[ o(r")dr" = —e. Therefore, we simply presume the charge to be uniformly distributed over a solid
sphere of radius Ry,. Hence, the Lamb shift can be estimated in the same way as the Darwin shift,
which leads to the result ) o
Lamb Ze RL 2

AE = Treo 10 R:,(0). (4.26)
This means that the Lamb shift only affects the s states. Without further explanation we state that
the radius can be estimated to be Ry ~ \/3704)\0, which means that the Lamb shift is a few percent
of the Darwin shift.

4.2 Hamiltonian for electronic motion in magnetic fields

In the presence of an externally applied magnetic field B the motion of a charged particle is affected
by the Lorentz force, F = q(E 4+ v x B), with ¢ the charge of the particle and v = 1 its velocity.
Unlike the electrical force F = ¢E, the Lorentz force is a velocity dependent force. It is an example of
a generalized force for which a generalized potential function may be defined such that the canonical
description of classical mechanics remains valid (see Problem. The generalized potential function
for a particle of charge ¢ is given by

U(r,v,t) =q(p—v-A). (4.27)

Here @(r,t) is the scalar potential and A(r,t) the vector potential of the electromagnetic field, with
B=V x A and E= -V — JA/Jt expressions for the magnetic and electric fields, respectivelyﬂ

Like the force, also the momentum of charged particles is affected by the B field. The generalized
momentum is given by the canonical expression p; = 0L/0v;, where L =T — U is the Lagrangian,
with T the kinetic energy and U the generalized potential function of a system. Substituting
T = 2mv? for the kinetic energy and Eq. for the generalized potential energy we obtain for

2
the canonical momentum

p =mv +gA, (4.28)

which shows that a particle of mass m and charge ¢ does not carry only kinetic momentum mv but
also electromagnetic momentum qA.
To calculate the energy eigenstates of the atom in the presence of magnetic fields we have to
quantize the classical Hamiltonian
H=p-v-L. (4.29)

Substituting the Lagrangian we obtain
2 L5 L 5
H=mv"+qA -v— gmv +qlp—v-A)= gmv + qo(r), (4.30)

which is seen to coincide with the familiar expression (1.1). To prepare for quantization we rewrite
the classical Hamiltonian in terms of the canonical momentum

H= o (p—aAP +qp(r) (4.31)

INote that the expressions for the fields indeed satisfy the Maxwell equations V-B =0 and V x E = —9B/0t
because V - (V x A) = 0 for any vector A and V x Vi = 0 for any scalar .
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With the identification p — —iAV we obtain the quantum mechanical Hamiltonian for a charged
particle in a classical electromagnetic field

H= ﬁ(—mv —qA)? +qo(r). (4.32)

To obtain the well-known Zeeman Hamiltonian we write Eq. (4.32) in the fornﬂ

2
H = —h—A+ ihq
2m 2m

2
(V- A)+ (A V)] + =A%+ q(r). (4.33)
This expression may be simplified using the gauge freedom: A is not uniquely defined. Because we
have V x Vx = 0 for any choice of scalar potential y, any vector potential A = A’4+Vx results
with B = V x A in the same magnetic field. Hence, by choosing Ay = —V - A’ the vector potential
can be made divergence-free

V- -A=0 (4.34)

This choice for the vector potential is called the Coulomb gauge, also known under the name radiation
gauge. It is the preferred gauge for atomic physics [2§]. In the Coulomb gauge, the Hamiltonian

([4.33) takes the form
h2
H=—g A+ V(r)+ A v+ —A2 (4.35)

where V (r) = g p(r) is the Coulomb energy of the charge q.
Specializing further to a uniform magnetic field the vector potential can be written a&ﬂ

A=1Bxr. (4.36)

This relatlon is readily verified by direct substitution in B = V x A. Substituting Eq. (4.36) into
Eq. (4.35)) we obtalrﬂ

2
H="Ho— —L B+ 8muB2 (4.37)

where Hg is the Schrodinger Hamiltonian, the second term stands for the orbital Zeeman coupling
(cf. Section [4.3.3]) and the third term for the atomic diamagnetism (cf. Section [4.3.2]). The operator
r| = rsinf represents the component of the radius vector perpendicular to the direction of B.

Problem 4.2. Show that the force F = ¢(E + v x B) acting on a charge ¢, moving at velocity v in an
electromagnetic field given by E (¢) and B (t), may be described as arising from a generalized potential
function U(r,v,t) = q¢(¢ — v - A), where ¢ (r) is the scalar potential (Coulomb potential) and A(r,t) the
vector potential of the electromagnetic field.

Solution. In order to satisfy the laws of classical mechanics a system should satisfy the Lagrange equations,

doL oL _
dt&ql E)qi o

(4.38)

where £(¢;, ¢i,t) = T(¢s, G, t) — U(qs, Gs, t) is the Lagrangian and {q:, ¢;, t} the generalized coordinates, with
i € {1,2,--- ,1} the coordinate index and ! the number of degrees of freedom of the system. Substituting
the Lagrangian into Eq. (4.38)) the Lagrange equations take the form

dor 8T _ aU i(@U

a a(h - a(ﬁ - _8Qi 8(]7,) Q (ql,qza t) (439)

INote that, in general, V and A do not commute, (V-A)¢p=¢(V-A)+(A-V)o.
2Note that V- r =3 and (B - V)r = B.
3With Eq.(L.22) we obtain 2ihA -V = ih(B x r) -V =B - (r x ihV) = —B - L.

Note that (r x B)? = r2sin2 0 B2 = r? B-B.
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To solve our problem we turn to the case of a single body of mass m. In cartesian coordinates, the kinetic
energy of the body is given by T = 1ms? where r; represents its position, with i € {z,y, 2}, and 7; its
velocity. Evaluating the 1.h.s. of Eq. the Lagrange equations for the motion become m#; = Q;(rs, 74, t),
which is just the Newton equation of motion if Q; is interpreted as a generalized force. Thus our task is

reduced to demonstrating that the Lorentz force is obtained by evaluating the generalized force

oU d (oU
Qi(ri,vi t) = o + o <8vi> , (4.40)

starting from the generalized potential function U(r,v,t) = q(¢ — v - A), which with the summation con-
vention takes the form U = g [¢ (r) — v;A; (r,t)]. The first term of Eq. (4.40) yields

—0;U = q [—aitp =+ vj&-Aj (I‘, t)] . (4.41)

and the second term can be written as

d <8U> _ 4 (850(&15) _ v, (nt)) = gL 4 00

dt \Ov; )~ Tdt \ ou ov; dt
_ 0A; (r,t) | OA;i(r,t)dr;\ _ _ oA
=—q ( o o, dt ) q[—0:A; (r,t) — 750; A (r,1)]. (4.42)

Combining Egs. (4.41)) and (4.42)) we obtain for the generalized force
Qi =q [—&«p — 0LA; + ’UjaiAj — ’l}jain] . (443)

Recalling the expression for the E field in terms of the scalar and vector potentials, E = -V — 0A /0t, we
recognize in the first two terms within the brackets of Eq. (4.43) the E;-component of the E field,

E; = -0, — 04 A;. (4.44)

Likewise, using B = V x A, we recognize in the last two terms the component (v x B), of the v x B field,
(v x B), = €ij1v;(V X A)p = €ijuerimvi01Am = v;0;A; — v;05A;. (4.45)

Hence, Eq. can be rewritten as Q; = [EZ + (v x B)J, which is indeed the expression for the Lorentz

force as had to be proved. O

4.3 Hydrogen-like atom in an external magnetic field

4.3.1 Effective magnetic moment

Let us consider a hydrogen-like atom at position r passing through a non-uniform magnetic field
B(r) as is sketched for a cloud of atoms in Fig. Suppose that the atom is in eigenstate |nlm)
with respect to the quantization axis defined by the direction of B. If this direction does not change
along the trajectory of the atom (or changes adiabatically; i.e., sufficiently slowly), the atom stays
in the same eigenstate and its energy can be regarded as a state-dependent effective potential,

2
e
U(E) = (o)t + 3o (L BE i+ g )t B (1) (4.46)
To obtain this expression we substituted the charge ¢ = —e and the reduced mass m,. of the electron

into the Hamiltonian (4.37). The use of ordinary first-order perturbation theory in this context is
justified in Section The presence of the field gradient results in a force on the atom,

U
grad B = s grad B. (4.47)

F = —gradU(r) = ~3B
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mj =1
m; =0

mj = +1

Figure 4.3: Stern-Gerlach apparatus for determining the magnetic moment of atoms by measuring the
magnetic force induced by the gradient of |B(r)|: (a) for atoms with unit total electronic angular momentum
J =1 three spots are observed. Note that v; < 0; i.e., atoms with magnetic moment polarized parallel to the
magnetic field are deflected towards high field (high-field seekers); those with magnetic moment anti-parallel
towards low field (low-field seekers); in state my = 0 the atoms are not deflected; (b) magnet configuration
with a constant magnetic field gradient along the vertical direction in the symmetry plane.

Hence, the force depends on the gradient of the absolute value B(r) = |B(r)| and can be used to
measure [, the effective magnetic moment. This method is called the Stern-Gerlach method [116].
The effective magnetic moment is given by the first derivative of the effective potential

ou

feff = — 55 = —(eh/2m,)m; — (e®/4m,) (r])B. (4.48)

The second derivative
_U_ 4 2 4.49
QM*@*(G/TW)(TQ (4.49)

is known as the magnetic polarizability (magnetizability). To obtain these results we approximated
the field as uniform over the size of the atom.

Eqs. (4.46) and (4.48]) suggests to rewrite the Hamiltonian (4.37) in the form of an effective
Hamiltonian for a classical magnetic dipole in a magnetic field,

H=Ho—py B~ 514, B, (4.50)

where
pr = —(e/2m,)L (4.51)

represents the operator of a permanent magnetic moment and is called the orbital magnetic moment,
and
Haia = — (€% /4m,) 1* sin® 6 B = —anB, (4.52)

is the operator for an induced magnetic moment known as the diamagnetic moment. As expected
for an induced moment, g4, opposes the direction of the applied magnetic field B; also p; and L
point in opposite directions, in this case caused by the negative electron charge.

The reEllation between the magnetic moment p; and the angular momentum L will be written in
the form

pr =L =—grpp (L/R), (4.53)
where L/h is the dimensionless angular momentum operator (L in units of i). The coefficient
vL = —e/2m, = —grup/h, (4.54)

relating the magnetic moment g, to the angular momentum L in Eq. (4.51)), is called the gyromag-
netic ratio of the orbiting electron. Its value coincides with that of an orbiting classical body of
charge —e and mass m,. The quantity

pp = eh/2m, (4.55)

n these lectures we define gyromagnetic ratios always in the same way: positive if the magnetic moment is
parallel to the angular momentum. The electron g factors (gr, and ge) are (traditionally) defined as positive numbers.
In contrast, the nuclear g factors will be defined to have the same sign as the nuclear gyromagnetic ratio.
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is the Bohr magneton (up =~ 9.27 x 10724 J/T). The prefactor g, is called the orbital g factor.
Note that gy is defined as a positive dimensionless number. Specification of the g factor is the
conventional way to compare small differences in orbital magnetic moment between the elements.
The orbital g factor can be expressed in terms of the electron-to-nucleus mass ratio

gr =me/my = (1 +me/M) ~ 1. (4.56)

4.3.2 Diamagnetic coupling
Atomic diamagnetism finds its origin in the third term of the Hamiltonian (4.50)),

Hdia = — 3 Haia - B = 2oy B> (4.57)

For hydrogenic atoms in s states, |nlm;) = |n00) = |ns), which are eigenstates of the Schrodinger
Hamiltonian H,, the magnetic polarizability can be calculated with the expression for ordinary
first-order perturbation theory

o' = (ns|an|ns) = (€2/4m,.)(00] sin? 6]00) (r2),,s. (4.58)
The angular average evaluates to (00| sin? 8|00) = 2/3 (see Problem; the reduced matrix element
for the radial average follows with Eq. (2.49)). For [ = 0 we obtain
2 2.2

Oz(ls) _ 717 e a
M Z212m,

(5n? +1). (4.59)

Note that the diamagnetism of the hydrogen ground state is extremely small; for a 1T applied field
the induced moment is only g, = (ea?/h)gupB ~ 4 x 10~ %up. However, it is important for
high-n Rydberg atoms (n 2 50) because the polarizability scales with n.

For materials, the magnetic polarizability is related to the diamagnetic susceptibility x4, which
is a dimensionless number determining the diamagnetic magnetization (magnetic moment per unit
volume) for a given applied field, My;, = x%*H. For dilute systems (in which the mutual interaction
between the atoms may be neglected) the magnetization at position r is simply the product of the
diamagnetic moment and the atomic (number) density n(r),

Muia = n(r)giq- (4.60)
Using Eq. (4.52) and B = poH we find for the diamagnetic susceptibility of dilute systems
x%a = —pgans n(r). (4.61)
4.3.3 Orbital Zeeman coupling

The orbital Zeeman effect finds its origin in the second term of the effective Hamiltonian (4.50))
which is known as the orbital Zeeman Hamiltonian

Ny =—py - B, (4.62)

where p; is the orbital magnetic moment operator . Note that Eq. coincides with the
expression for the energy of a classical magnetic dipole moment in a magnetic field.

Let us analyze how the degeneracy of the magnetic sublevels is lifted by applying a magnetic
ﬁeldE| Since L? and L, commute with Hy the orbital Zeeman Hamiltonian is diagonal in the
hydrogenic basis, {|nim;)}; i.e., the orbital Zeeman shift is given by

AEz = (nlmy|Hz|nlm) = (Imy|Hz|lmy). (4.63)

1Pure orbital Zeeman splitting is not observed in atomic systems. It always comes in combination with spin-orbit

interaction (see Section [4.5.1]).
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Figure 4.4: (a) Semi-classical vector model of angular momentum for the case | = 2. The diagram shows
the 20+ 1 projections of the semi-classical vector L along the direction of the magnetic field (z-direction); (b)
The (20 4 1)-fold degeneracy of the energy-levels is lifted when applying a magnetic field (Zeeman effect-in
the absence of electronic spin). For 1 Bohr magneton the splitting amounts 1.4 MHz/Gauss (67 pK/Gauss);
(c) The projections stay constant in time, also in the presence of Larmor precession which has the same
angular frequency (wy) for all m; values.

Hence, | and m; are good quantum numbers and, for given [, the Zeeman operator acts in a (20 +1)-

dimensional sector of Hilbert space. The relativistic corrections do not affect the magnetic shifts

and diamagnetic corrections may be neglected as long as the magnetic field is sufficiently small.
Substituting Eq. into the Zeeman Hamiltonian becomes

HZ = —’yLL~B:gL,U,BB (Lz/h), (464)

where the z direction is again chosen along the direction of the B field. This Hamiltonian expresses
the coupling of L to the B field (orbital Zeeman coupling). In this notation the Zeeman shifts of
the 2] + 1 magnetic sublevels are given by

AEZ = —’)/LB <lml| Lz |lml> = gLuBBml. (465)

Comparing Egs. (4.67) and (4.65) we note that, classically spoken, pt; is never parallel to B (see
Fig.[4.4ja). The quantity referred to as the magnitude of the orbital magnetic moment (short: the
orbital moment) is defined as

pr = gole/2me) (| Lz |I) = grpsl. (4.66)

It corresponds to the mazimum observable magnetic moment (for given /) and should not be confused
with the operator p; or with the semi-classical magnitude of the orbital moment,

(u3) = V| py - gy, [ime) = gr(e/2me) /(| L2 [lmg) = grps /10 +1). (4.67)

As mentioned in Section the effective magnetic moment of a given magnetic sublevel is defined
as the derivative of the Zeeman energy with respect to magnetic field. With Eq. (4.65) we find

pret = —O[AEZ(B)]/0B = —grpupmi. (4.68)

For the purely orbital Zeeman coupling peg is a constant for given value of m; but in more general
cases of magnetic coupling it will depend on magnetic field (cf. Section . For an effective
magnetic moment of 1 Bohr magneton, pog = pup =~ 9.27 x 10724 J/T, the level shift corresponds to
1.4 MHz/Gauss (67 pK/Gauss). With Eq. we have established that in a magnetic field the
(21 + 1)-fold orbital degeneracy is lifted, with the lowest energy corresponding to the lowest value
of the magnetic quantum number (m; = —I). This is illustrated in Fig.b.



4.3. HYDROGEN-LIKE ATOM IN AN EXTERNAL MAGNETIC FIELD 91

4.3.4 Larmor precession
In a semi-classical picture, the Zeeman Hamiltonian (4.62)) gives rise to a torque,
dL(t)/dt = p;, x B, (4.69)

tending to line up the magnetic moment with the magnetic field giving rise to precession about B
because hamiltonian evolution is dissipation free. This is known as Larmor precession. Substitut-
ing Eq. into Eq. the expression for the torque describes the precession of the angular
momentum vector L about the field direction,

dL(t)/dt = v, L x B. (4.70)
Rewriting this expression in the form
dL/dt = wy, x L (4.71)
we find that the angular momentum L precesses about B at angular frequency
wr =—7.B. (4.72)
This is illustrated in Fig. {.4lc. The precession frequency is known as the Larmor frequency,
wr, = |wi| = grusB/h. (4.73)
In terms of the Larmor frequency the Zeeman energy can be written as
AEyz = —hypBm; = gpugBm; = hwpm,. (4.74)

Quantum mechanically, the precession follows from the Heisenberg equations of motion. In this
approach all time-dependence is contained in the Heisenberg operator L(t) = UT(t,t)LU(t, o),
where U (t,to) = exp[—i(t — to)Hz/h] is the evolution operator (see Appendix [F.2)). As the Zeeman
Hamiltonian is time independent, the precession of L(t) is described by

dL(t)/dt = — (i/h) [L(t), Hz]. (4.75)
Writing the Zeeman Hamiltonian in the form Hz = —v;, L - B the equation of motion becomes
dL(t)/dt = (i/) o [L (), L(t) - B. (4.76)

To evaluate this expression we consider the time evolution of the angular momentum components
L;(t). With the aid of the commutation relations (1.29)) and using the Einstein summation conven-
tion we have [L;, Ly] = —e;;x4hL; and Eq. (4.76]) becomes

dL;/dt = (i/h)yr|[L;, Ly Bi] = (i/h) yi|Li, Lk) Br = vr.€ijkL; Bi. (4.77)
Returning to the vector notation this becomes
dL(t)/dt = yr, [L(t) x BJ. (4.78)
This expression may be rewritten in two equivalent forms
dL/dt = p; x B and dL/dt = wy, x L. (4.79)

Here the operator L is found to be described by the well-known equation of motion (4.71]) from
classical mechanics describing the precession at angular frequency wj, of a spinning top of angular
momentum L under the influence of the torque p; x B.
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Figure 4.5: Observation of half-integral angular momentum atoms by the Stern-Gerlach method.

4.3.5 Spin

Spin was postulated by Goudsmit and Uhlenbeck in 1925 to provide a physical interpretation for the
appearance of half-integral quantum numbers in the analysis of the atomic spectra [122] [123]. At
the time of the proposal spectroscopic evidence for the existence of half integral quantum numbers
was available and particularly elegantly demonstrated in the atomic beam experiment of Stern and
Gerlach with silver atoms - see Fig.|4.5[[54]. Building on the spectroscopic evidence Pauli had already
established the double-valuedness of the electronic wavefunction (see Appendix which points
to the presence of an additional quantum number for the electron (a fourth degree of freedom) but
he refrained from giving an interpretation. In his words the double-valuedness was “not describable
classically” [90]. In their postulate Uhlenbeck and Goudsmit attribute this degree of freedom to
self-rotation of the electron with angular momentum 1/2 in units of i and a gyromagnetic ratio
twice as large as the orbital value —e/2m..

Superficially, the presence of electron spin may not come as a surprise because it is well known
from classical mechanics that an orbiting satellite will generally show solid body rotation. However,
in 1925 the modeling of the electron as some rotating cloud of charge had a two decade history of
disappointment. It was not clear what was holding the charge together and to generate the required
magnetic moment special relativity had to be violated; i.e., the cloud had to rotate so fast that
locally the speed of light was exceeded. A difficulty of all mechanical models was that they even
failed to provide a self-consistent description for the gyromagnetic ratio. The postulate of Goudsmit
and Uhlenbeck was no exception in this respect: on the one hand the g factor of the electron had
to have the value 2 (to describe the Zeeman effect in high fields - see Section ; on the other
hand using this value to estimate the zero-field splitting the calculated value was a factor of 2 too
large (by itself this would imply a g factor of 4). Therefore, it is not surprising that the postulate
only started to gain acceptance after it was demonstrated by Thomas that the proper relativistic
analysis yields the value 2 in both cases (see Section [117, 119]. However, it remained to be
explained why spin represents a fized quantity of angular momentum (called the intrinsic angular
momentum) rather than variable amounts as observed for classical bodies.

In 1928 the mentioned properties were captured in the famous Dirac theory for the electron [36].
In this theory the spinning electron emerges as a manifestly non-classical object. It represents the
first example of an elementary particle on which the standard model is based. In this respect the
postulate marks the beginning of particle physics. The electron is an elementary particle of mass
me, elementary charge ¢ = —e and spin s = % Within experimental error the particle is of zero size
[50] and without electric dipole moment [64]. The particle spin, together with its magnetic quantum
number mg = i% defines the spin state of the electron. A difficulty of the Dirac theory is that the
energy contained in the electric field of a point charge diverges. It took until 1948 before this problem
was resolved with the development of quantum electrodynamics (QED) by Tomonaga, Schwinger and
Feynman. Close to the singularity the electromagnetic energy density becomes so large that virtual
excitation (see Appendix of electron-positron pairs becomes substantial. These virtual pairs
constitute electric dipoles that live only briefly but long enough to be polarized by the electric field.
This is known as vacuum polarization. The induced electric field counteracts the Coulomb field of
the electron in such a way that the divergence can be eliminated and the experimental values of the
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electron charge and mass are obtained.

In view of the above it is evident that we should not think simplistically about the electron.
This being said, the essential atomic physics can be explained without entering in the origin of spin
and so we shall do; after all, the spin was postulated to successfully represent the properties of the
atom. An exceptionally lucent account of the early developments that led to our current notion of
spin is given in the book The Story of Spin by Tomonaga [121].

4.3.6 Spin Zeeman coupling

The spin manifests itself by its magnetic moment

My =S = —gepn (S/N), (4.80)

where S is the electron-spin operator and

Ye = —gep/h (4.81)

the electron gyromagnetic ratio, 7./2m ~ —2.8025 MHz/Gauss, with pp the Bohr magneton and
ge the electron g factor defined as a positive number. Hence, like g and L also p, and S point in
opposite directions. In analogy to the orbital case the magnitude of the intrinsic magnetic
moment (short: the intrinsic moment) is defined as the maximum observable moment,

fte = 5gepiB- (4.82)

Advanced analysis based on the Dirac theory for the electron predicts go = 2. Experiment
shows g, to be slightly larger, g. ~ 2.002 319. Therefore, the electron is said to have an anomalous
magnetic moment [73],

ge = 2(1 + a). (4.83)

The deviation is known as the electron anomaly, a. = (9o — 2) /2 ~ «/27, with numerical value
ae ~ 1.15965 x 1073 [87]. The electron anomaly finds its origin in the zero-point fluctuations of
the electromagnetic field. The free-electron value differs slightly from that of electrons bound in
atoms. It continues to be subject of intensive experimental and theoretical research as it provides
an important test of quantum electrodynamics (QED). In contemporary experiments the spin state
of a single electron is measured without destroying the state by observing spin-flip events of a
trapped electron in real time [87, 50} [60]. This is an example of a Quantum Non Demolition (QND)
experiment. It has demolished old wisdom [92] that it is fundamentally impossible to observe the
magnetic moment of an electron by a Stern-Gerlach-like experiment [32].
Knowing the magnetic moment, the spin Zeeman Hamiltonian takes the generic form

Hz =—p,-B. (4.84)
Substituting Eq. (4.80) we obtain
Hz = (9epn/h) S B = geppB (S2/h), (4.85)

where the z direction is again chosen along the direction of the B field. This Hamiltonian expresses
the coupling of S to the B field (spin Zeeman coupling). The Zeeman Hamiltonian (4.84]) gives rise
to a torque, which can be written in two equivalent forms

dS/dt = p, x B and dS/dt = w. x S, (4.86)

where w. = —v.B is the angular frequency vector. The torque tends to line up the magnetic moment
with the magnetic field but (in view of the absence of dissipation) this gives rise to precession about
B at frequency

We = |we| = gepnB/h = (9e/9L)wL, (4.87)
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where wy, is the Larmor frequency and gy, the orbital angular momentum g factor.

We analyze the level splitting by the spin Zeeman coupling in the same way as we did for the
orbital Zeeman couplingE Since S8? and S, commute with Hg, L? and L., the spin Zeeman operator
is diagonal in the hydrogenic basis extended by a spin sector {|nlm;)} — {|nlm;sms)},

AEyz = (nlmysms|Hz|nlmisms) = (smg|Hz|sms). (4.88)

Hence, s and mg are good quantum numbers, with s = % for one-electron atoms. In general, the
spin Zeeman operator acts in a (25 + 1)-dimensional sector of Hilbert space. Substituting Eq. (4.85)
for Hz the spin Zeeman shift becomes

AEz = —v.B(smg|S.|sms) = geipms B = (9e/9r)mshwr,. (4.89)

Like the orbital Zeeman energy, also the spin Zeeman energy can be expressed in a form containing
either the Bohr magneton pp or the Larmor frequency wy. For a spin-up electron (g. ~ 2 and
ms = %) the effective magnetic moment equals 1 Bohr magneton, just like in the case of the orbital
Zeeman coupling (17, ~ pe). Thus, in this case the Zeeman shift is 1.4 MHz Gaussﬂ To observe the
characteristic two spot Stern-Gerlach image of a Spin—% system (see Fig. the effective magnetic
moment must be close to 1 Bohr magneton along the semi-classical trajectory of the atoms (in
Section we show that this condition is satisfied for B > |Buyg|, where |Byg| is the hyperfine
crossover field).

4.3.7 Zeeman Hamiltonian for the electron

At this point we can formulate the Zeeman Hamiltonian for the electron, which describes the in-
teraction of the electron with an externally applied static magnetic field. Combining Egs. (4.84),

(4.62) and (4.57) we find,
Hz = —(p, +pg) B+ jau B (4.90)

Later, in Chapter [pl a nuclear contribution will be added to obtain the Zeeman Hamiltonian for
the complete atom. The Zeeman Hamiltonian is an effective hamiltonian. It can be used with
perturbation theory as long as the electronic wavefunctions are not substantially distorted by the
applied field. This is the case for a large class of experiments in atomic physics laboratories. It
breaks down under extreme conditions. Near neutron stars the magnetic field can be millions of
times stronger than the strongest fields, 100-1000 T, that can be achieved in laboratories on earth.
In these lectures we restrict ourselves to perturbative conditions.

4.4 Fine-structure Hamiltonian

4.4.1 Addition of orbital angular momentum and spin

As long as we may neglect the interaction with the environment the atom represents a closed
mechanical system and the total angular momentum is a conserved quantity. In general, this total
angular momentum is the result of several contributions. In the description of the atomic fine
structure we restrict ourselves to orbital angular momentum (L) and spin (S). The total angular
momentum is given by the vector sum

J=L+S. (4.91)

1Pure electron spin Zeeman splitting is observed in isotopes of chromium, Cr, and molybdenum, Mo (see Sec-

tion[10.2.2)). In one-electron atoms spin Zeeman coupling does not occur without hyperfine interaction (see Chapter 5.

Note that we are dealing here with level shifts, not to be confused with the Zeeman shift of spin-flip transition
frequencies, which are twice as big (for spin 1/2).
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Figure 4.6: Addition of angular momenta allowing for L - S coupling. The states (so-called LS Terms),
are written in the spectroscopic notation (Term notation) as n (QSH)Lj, where n is the principal quantum
number, s the quantum number for the electronic spin, and j the quantum number for the total electronic
angular momentum J (which is a conserved quantity in the absence of coupling to the environment). The
symbol L stands for the total orbital angular momentum L = S, P, D, F--- for [ = 0,1,2, - -, respectively.
Note that the angular momentum projections L, and S, are proportional to J,. This provides the geometric
foundation of the Wigner-Eckart theorem as applied to vector operators.

Starting from the commutation relations for L and S separately it is straightforward to show that
also J obeys commutation relations of the type (1.29)),

[Jz, Jy] = iRJ,, [Jy, J.] = ihJy and [J,, J;] = ihJ,. (4.92)

Recalling Section this implies that J satisfies all properties of quantized angular momenta,
32 [isj,mg) = §(G + )R [Lsj,mj) (4.93)
I |lsj,my) = mjh|lsj,m;), (4.94)

with m; restricted to the interval

—Jj <mj <. (4.95)
In many cases the values of [ and s are irrelevant or obvious from the context. In such cases these
quantum numbers are usually omitted from the notation, writing simply |7, m;) rather than |isj, m;).

As shown in Section the value of j is restricted by the values of [ and s; j can take all values
differing by one unit of angular momentum in the interval as expressed by the triangle inequality

—s|<j<l+s. (4.96)

Note that j is positive definite for half-integral spin (the vector sum can only become zero if the two
angular momenta are equal in magnitude and opposite in sense). The action of the shift operators

Jy are given by (see Eq.[3.20)

Tiljomg) = \J3 (G +1) = my(m; £ 1)h|jm; = 1). (4.97)

Since the components of J commute with the Schrodinger Hamiltonian, the total electronic
angular momentum is a conserved quantity. Also, when extending the Hamiltonian by a so-called
internal coupling term of the type H' oc L - S the total angular momentum J remains conserved
(just as we expect for a closed mechanical system). In the latter case, L and S exert a torque
on each other, which results (given the absence of dissipation) in a joint precession of L and S
about J as is illustrated in Fig.[f.6] This is expressed by the commutation relations demonstrated

in Problems (see also Section [3.5).
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For given value of j the operator J acts in a (2j 4+ 1)-dimensional subspace of the (20 + 1) (2s + 1)-
dimensional product space defined by the so-called uncoupled basis {|lm;sms) = |lm;) ®|sms)}. The
sum of the (25 + 1)-dimensional subspaces of all values of j allowed by the triangular inequality can
also be represented by the so-called coupled basis {|lsjm;)}. The coupled and the uncoupled basis
are related by a unitary transformation (see Problem

Problem 4.3. Prove the following commutation relations [L? L -S] = [S®,L - S] = 0.

Solution. Decomposing L-S we find [L?, L-S] = [L?, Ly S.]+[L?, LySy]+[L?, L.S] = 0 because [L?, L;S;]
Li[L2,S;] + [L?, L;]S; = 0 for i € {=x,y, z}. [S?,L-S] = 0: Idem replacing L? by S. O

Problem 4.4. Prove the commutation relation [J,,L - S] = 0.

Solution. Decomposing L - S we find [J.,L-S] = $[J.,J?] — 1[J.,L?] — 1[J.,S?] = 0 because [J.,J°] = 0,
[J.,L?] = [L.+ S.,L*] =0 and [J,,S?] = [L. + S:,S%] = 0. o

Problem 4.5. Prove the commutation relation [J?, L - S] = 0.

Solution. Decomposing J? we find [J?,L - S] = [L3,L-S] 4+ [S%,L-S] + 2[L-S,L - S] = 0 because
[L2,L-S] =[S%L-S] =0 (see Problem[4.3) and [L-S,L-8] = (L-S)? - (L -S)* = 0. O

Problem 4.6. Prove the commutation relations [J?,L?] = [J?,S?] = 0, where J = L 4 S.

Solution. Decomposing J* we find [J?, L% = [L? L?] + [S? L?] + 2[L - S,L?] = 0 since [L - S, L% = 0 (see
Problem ; further [L?,L?] = 0 (any scalar operator commutes with itself) and [S?, L] = 0 because S
and L operate in orthogonal vector spaces. [J2, S2] = 0: Idem replacing L% by S2. a

Problem 4.7. Show that [L,,L-S] # 0 and [S.,L - S] # 0 although [J,,L-S] = 0.

Solution. Decomposing L - S we find (using the summation convention) [L.,L - S] = [L.,L.,S,] =
L,[L.,S.]+ [L:, L,]Sy = [L., L.]Sy. Because [L.,L,] = 0 for v = z we have [L.,L-S] = [L., L3]Sz +
[Ls,Ly)Sy = ih(LySz — LaSy) # 0. Likewise, we find [S., L - S] = ih(LzSy — LySa) # 0. 0

4.4.2 Velocity-induced magnetic field

As is well-known from classical electrodynamics, a particle moving at velocity v in the presence of
an electric field E experiences a velocity-induced magnetic field, which is given by

B=(Exv)/c, (4.98)

where c¢ is the speed of light. This follows from a special-relativistic analysis in the limit where
Lorentz contraction can be neglected (cf. Appendix E[) Nonrelativistically, this result can also be
obtained with the aid of the Biot and Savart law by considering the current resulting from the
relative motion of the nucleus with respect to the electron. Taking the relativistic point of view, an
electron orbiting at velocity v in the electric field E of a nucleus will experience the velocity-induced
field and its spin magnetic moment will couple to it. This coupling is similar to the spin Zeeman
coupling and is known as spin-orbit coupling. To estimate this coupling we note that the electric
field of the nucleus at the position of the electron is given by

_rde(r)
r dr

E=-Vyp(r) = , (4.99)

where o(r) is the electromagnetic scalar potential of the nucleus. Substituting L = m,.(r x v) for
the orbital angular momentum, the velocity-induced magnetic field can be written as

1 1de(n)
mpc2r dr

B, = (4.100)
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This expression holds for all hydrogen-like atoms. For hydrogenic atoms o(r) is a simple Coulomb
potential. For alkali-like atoms the nuclear charge is screened by a spherical shell of core electrons
(see Section for a phenomenological introduction of screening phenomena). A way to account
for the screening is to replace the Coulomb potential by a screened Coulomb potentialﬂ

olr) = o 220

= 4.101
dreg ( )

where e Z,;(r) is called the effective nuclear charge for an electron (the spectator electron) in the
nl shell at distance r from the nucleus. Close to the nucleus screening is absent, at large distance
screening by the core electrons is maximal,

lim Z,(r)=2Z and lim Z,(r)=Z.=1+ Zion- (4.102)
r—0 r—00

Here e Z, is called the Rydberg charge of the atom/ion of ionic charge e Z;,,. The Rydberg charge
is the effective nuclear charge in the limit of perfect screening by the core electrons and is used for
the description of atoms/ions excited to Rydberg states. For neutral atoms Z. = 1, for a singly
charged ion Z. = 2, etc.. In the hydrogenic case (Z;,, = Z — 1) screening is absent at all distances;
ie., Zn(r) = Z = Z.. Since the derivative of the scalar potential determines By, it is convenient to
introduce the spin-orbit screening function Z,(r),

dr — 4megr?
As long as Z,,(r) decreases monotonically with increasing r we have
Zn(r) = Zn(r) —rdZy(r)/dr > 0, (4.104)

with Z,;(r) = Z in the hydrogenic case (for any state |x) of the electron).

Treating the nucleus heuristically as a uniformly charged solid sphere of radius r,, and total charge
Ze, the electric field E(r) corresponds to a Coulomb field, for r < r,, attenuated proportionally to
r (see Fig.. Hence, the velocity-induced magnetic field can be written as

e L
an(r)@—— for r > r,
47 my 3
B, = (4.105)
po € L
Z——— for r < rp,
4Tt my T3

where pg is the magnetic permeability of vacuum.. Note that the finite core size prevents the
divergence of the E and B fields for » — 0. Classically, the field experienced by the electron as a
result of its orbital motion at nuclear distance r = ag is large, as follows from the prefactor

po e h

——— ~ 12517 T. 4.106
4T me a3 ( )

Quantum mechanically we have to average over the orbital wavefunction, which results in a reduc-
tion of this field. Calculating the modulus of the velocity-induced magnetic field using first-order
perturbation theory we obtain for an electron in the state |x) = |nlmy)

B, = y/(nlmy|B% |nlm;) = Z—;%(Z(r)/r3>nl \/(Zml| (L/h)2 [lmy). (4.107)

1'We restrict ourselves to centrally symmetric screening potentials.
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Figure 4.7: (a) Vector diagram showing the precession cone of the electron spin S in the velocity induced
field Br. Note that the spin precesses in the same direction as the orbital motion L. The so-called Thomas
rotation of the electron rest frame proceeds in the opposite direction at rate w,; (b) Orbital motion in three
inertial frames analyzed under galilean relativity (8" = 6); (c) idem under special relativity; note that the
Thomas rotation is clockwise in the xy plane of the orbit, 56 = 6" — 6 > 0.

Turning to dimensionless quantities L/A and p = r/a, with a = (me/m,)ag, and neglecting the
finite size of the nucleus we obtain by substitution of Eqgs. (2.49¢|) and (1.52)) for the hydrogenic case
wo e h zZ* I(1+1)

po e hZ- yIUED gy
B arm @B Uy 0

0 for I = 0.

For [ > 0 Eq. (4.108)) is well-behaved. For instance, for the 2P level of hydrogen (Z =1, n=2, [ =1)

we calculate By ~ 0.74 T. For [ = 0 the internal field tends to diverge but taking into account the

nonzero nuclear size this divergence turns out to be an artifact of the pure Coulomb field. Using

Eq. (4.105) (for r < r,) the divergence is avoided and By, turns out to be zero as a result of the
. 2

angular averaging, (00| (L/%)”]00) = 0.

(4.108)

4.4.3 Spin-orbit coupling and Thomas precession

The velocity-induced field By, exerts a torque on the magnetic moment of the orbiting electron.
This is called spin-orbit coupling. Just as for the spin-Zeeman coupling the torque gives rise to
precession of the electron spin about the direction of the magnetic field,

(dS/dt)rest = s X B, = —ge(e/2m.)S x Br. (4.109)

In view of Eq. B/, points in the same direction as the angular momentum L (see Fig.[1.7a).
Eq. (4.109) holds for the electron rest frame! (in which the nucleus orbits about the electron). For
convenience the nucleus is taken to be at rest in the laboratory.

To quote Llewellyn Thomas: “There is, however, an error in the above reasoning” [117]. We
overlooked the centripetal acceleration a = dv/dt, which is essential to keep the electron in its orbit
(see Fig.b). The repair requires some special relativity. As shown in Problem the curvature
of the orbit gives rise to a pure rotation of the moving electron rest frame with respect to the

laboratory frame at the rate w, = —wy (for the configuration of Fig.b), where
v Xa
= —. 4.110
wr = = 5 (4.110)

This is a purely kinematical effectﬂ i.e., it arises independently from the origin of the curvature (so
it also exists for B, = 0). Note that in the absence of a magnetic field also spin precession must be

Isee Appendix
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absent in the electron rest frame, B = 0 < dS/d¢t = 0. This is a consequence of the conservation
of angular momentum in an inertial system. However, absence of precession in the electron rest
frame implies the presence of precession in the laboratory frame. This is called Thomas precession
[I17, 119]). In hindsight this precession is not surprising for an observer in the laboratory because
the force that curves the orbit implies a torque on the spinning electron.

For By, # 0 we have two independent mechanisms resulting in precession about the same axis
but in opposite direction (for the configuration of Fig.b). The net precession rate is given by

(dS/dt),,, = (dS/dt),,., — wr x S. (4.111)

rest

Substituting Eq. (4.109) we can write the precession rate in the form

(dS/dt),,, = —ge(e/2me)S X B + 8 X wr = —ge(e/2m.)S x Brsg, (4.112)
where wr
B,s=B,— —~—— 4.11
s E ge(e/Qme) ( 3)

is the effective internal field, the spin-orbit field as experienced by the electron spin.
In the atom the acceleration is in radial direction,

az—Lyyp) = rdeln) (4.114)

m, myr dr
Hence, the Thomas precession is given by
e 1dp(r) L
2m2c2 r dr

For the spin-orbit field we find using Egs. (4.113]), (4.100)), and (4.115)

1 me 1 1d
Brg——(1-—"e Lde(r)y, (4.116)
ge My ) mpc?r dr

wr = (4.115)

Approximating gem,./me ~ 2 we notice that the Thomas precession reduces the spin-orbit field by
~ 50%.

Problem 4.8. Show for the configuration of Fig.[L.7b that in special relativity the electron rest frame rotates
with respect to the nuclear rest frame at the angular frequency

vXxa
2¢2

Wy = —

Solution. To describe the motion of an electron orbiting about a nucleus we introduce three inertial frames,
S, 8" and S” , in Fig.J&7p labeled by their origins o, o', and o”, respectively. The electron position in the
three frames is denoted by r,r’,r”, where r = (z,y, 2). Note that the position of the origins in their own
frame is (0,0, 0), which corresponds to the zero vector of the individual frames,

U 17
ro=r, =1, =0.

The 2 axes are taken to be normal to the plane of the orbit (z = 2’ = 2”). Let us suppose that at t = 0
the electron is at position r on the negative y axis of the inertial system S (as sketched in Fig.b). We
place our self at this position (the laboratory fixed frame for a nucleus at rest) and follow the motion of the
electron at rest in S”’. We consider the situation in which S’ moves with respect to S at velocity v along the
x direction and S” moves with respect to S’ at velocity v along the y direction as illustrated in Fig.[&.7p.
The inertial frames S and S’ are related by the Lorentz transformation

=q(x—vt) & z=5"(2' +ot)
y cy=y
vV (t—vx/c?) & t=~"(t +vz'/c?),

.'L‘/
y/
t,
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1
where v/ = (1 —v?/c?)” 2. Likewise, the inertial frames S’ and S” are related by the Lorentz transformation

Z ’ ’ /
r = < T =T

y” — ,_Y//(y/ _ ,U/t/) PEN y/ — ,_y//(y// + Ult//)
t” — ,Y//(t/ _ ’Ul’y//CQ) o= t/ — ’y”(t” + ’U/y”/C2),

’

1
where v/ = (1 —v'?/c?)” 2. The angle @ (with respect to the x direction) by which the electron is observed
from the origin of the laboratory-fixed frame is given by

con 6 — g _ M _ yg” _ ,y//(y;/” +’Ult//) _ 'y”v't" _ i"i
T Tt ’Y’ [I;,, + ’Ut/] ,.Y/ [x;/” + ’U’y”(t” + U/yg”/c2)] ’y/’l}’y”t" ’Y, v .

Here we used y/x = y, /zo+ because inertial systems are defined up to a translation (homogeneity of free
space - see Appendix [D.1). Furthermore, we used the origin property (z7.,y..,25:) = (0,0,0). On the
other hand, the angle 8" (respect to the " direction) by which the origin o is observed from the position of
the electron is given by
tan 0” = _y” = y—g = ’y”(yﬁ, — U/t/) = ’Y”[yo — ’U,ryl(t — UxU/CQ)] — _U,’Y,’Y//t _ //1/.
-z oz A V(2o — vt) —~'vt v

Here we used y"/x" = y. /z, and (2o, %Yo, 2,) = (0,0,0). Note that in the non-relativistic limit § = 0"
because 7,7 — 1 for v,v" — 0, just as expected for galilean relativity. For vj, < v < ¢ we have tan ~ 6
and tan @’ ~ 0" and obtain in special relativity

1\ v 02\ 0?2 v w
AG:G”—Q: nm_ 2 \Yv _ 1 vyv v v
K v ) v + v2 ) 2c2 v 22
For the motion along the orbit we have a = dv/dt. Since, for ¢ — 0, the acceleration a points along the y
direction (towards the center of curvature) we may approximate v’ = v = adt and write

va
00 = @(%.

Note that the direction of rotation is clockwise in the xy plane. Furthermore, since v and a are orthogonal
at t = 0 and the result must independent of the initial position (homogeneity of space and time) we obtain

for the rotation rate
60  vxa

Cr=5t T T 2

O

4.4.4 Spin-orbit interaction

Substituting the expression for the spin-orbit field (4.116]) into the spin-Zeeman Hamiltonian (4.84)
we obtain the Hamiltonian describing the spin-orbit interaction

His = —p,-Bus = g.(e/2m.)S - Brs = £(r)L - S, (4.117)

This Hamiltonian expresses the coupling between L and S (spin-orbit coupling). The function £(r)
is the coupling strength,

an(r)
f
(g Dedp(r) |0y T
)=~ 2m2c® v dr Z (4.118)
" 507?3 for r <7,

where the prefactor can be written in various equivalent forms,

1 e Poo o 1 4 d°
~ Moo Lo, 207 4119
o 2m2c? dreg 4w LT e G ( )

as follows by approximating g. = gem,/m. ~ 2 and the use of Eqs. (4.54)), (2.11) and (2.13).

Importantly, we note that £(r) > 0 if Z,;(r) > 0. Furthermore, note the appearance of the fine-

structure constant (o~ 1/137) in the energy scale a*m,.c?.
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4.4.5 Fine structure Hamiltonian for hydrogen-like atoms

We are now in a position to write down the Hamiltonian for the magnetic fine structure of hydrogen-
like atoms; i.e., for an electron, of charge ¢ = —e and intrinsic magnetic moment g, moving in the
central field of the atomic nucleus and in the presence (or absence) of an externally applied magnetic
field,

h? the e?
A+V(r)+H, ——(A-V)+ 5

T my my

A% —p, - (B+Brs). (4.120)

H=—3

This expression holds in the Coulomb gauge, V - A = 0. From left to right we recognize first the
Schrédinger Hamiltonian Hg and its relativistic correction H,., the A -V term describes the motion
of the electron in the vector potential of an externally applied magnetic field B (for a uniform field
A= %B xr). The last term is the spin Zeeman coupling, involving both the external field B and the
spin-orbit field Brg. We start by considering the atom in the absence of an external field (B = 0);
i.e., for a vanishing vector potential (A = 0). In Section [£.7] we discuss fine structure in the presence
of an external field (B # 0).

4.5 Fine structure in zero field

4.5.1 Effective Hamiltonian and spin-orbit splitting
In the absence of external fields the fine-structure Hamiltonian (4.120)) reduces to the form

H="Ho+H, +£(r)L-S, (4.121)

where Hg is the Schrodinger Hamiltonian and H, stands for the relativistic correction. The spin-
orbit interaction causes the n2-fold degeneracy of the principal atomic structure to be lifted in zero
field. This is called spin-orbit splitting and is illustrated for 2P terms in Fig. Since £(r) does not
commute with Hy and H,., the spin-orbit interaction couples states of different principal quantum
number. Hence, to calculate the splitting, we have to turn to perturbation theory (of a degenerate
level). Fortunately, both £(r) and L - S commute with L2, S2, J2? and J, (see Problems
and . This makes the spin-orbit interaction diagonal in the coupled angular momentum
basis, {|lsjm;)}; ie., I, s, j and m; are good quantum numbers. Since ! remains a good quantum
number, the parity of the angular momentum state is not affected by the spin-orbit interaction. For
a manifolds of given n, the spin-orbit shift can be calculated using the well-known expression
from ordinary first-order perturbation theoryE|

AE#? = (nlsjm;|Hps|nlsjm;) = (Cnl/h2)<lsjmj|L - Slisjm,;), (4.122)
where (,; is a radial integral known as the spin-orbit coupling constant,

Latm,.c2(Z(r)/p*)n for 1 >0
o e 2 MrC 4.123
Gt = (§()n { finite for [ = 0. ( )

The divergence expected for the I = 0 radial integral is avoided ((,; = finite) provided we account
for the nonzero nuclear size. The coupling constant has the properties of a so-called reduced matrix
element: it depends on the quantum numbers n and [ but not on m; (see Problem. Its numerical
value is positive (¢ > 0) in hydrogen-like atoms. In mangy-electron atoms the coupling constant
can also become negative (see Section . The radial integral (Z(r)/r®),; can be determined
numerically but generally not without a substantial effort because the determination of Z,;(r)

IThe coupling to different n levels enters only to second or higher order in perturbation theory. In first order
only the states within the manifold of given n contribute (n is a good quantum number to first order in perturbation

theory - see Appendix [H.3).
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Figure 4.8: Fine-structure splitting for a n 2P Term (l=1,s= %) Shown are the unperturbed level as

well as the spin-orbit splitting into the n 2P3/2 (stretched) and 2P1/2 manifolds. The splitting is drawn for
the regular (hydrogen-like) case (Cnp > 0). Note that the center-of-gravity of the levels is conserved in the
splitting. The magnitude of the splitting, AWj, satisfies with the Landé interval rule.

requires knowledge of the effective charge distribution and this in turn depends on the screening.
On the other hand, using the spin-orbit shift rules (see Section below), it is straightforward
to determine the integral experimentally from a measurement of the spin-orbit splitting in zero
magnetic field.
In view of the discussion above it is convenient to write the atomic Hamiltonian in the following
approximate form,
H =Ho+ Hy + (Gu/P*)L - S, (4.124)

where the numerical constant ¢,; is defined by Eq. (4.123)). Eq. (4.124) is an effective fine-structure
Hamiltonian that holds for given values of the quantum numbers n and [. It has the advantage
over Eq. that it offers the possibility to determine (,; experimentally as a phenomenological
constant. Importantly, for the last term of the Hamiltonian not only [ but also n is a good
quantum number. This is an approximation: calculations based on Eq. are equivalent with
calculations based on the actual Hamiltonian as long as the principal structure of the atom
is accounted for only to first order in perturbation theory. This is a good approximation as long the
fine-structure splitting of a level of given n is small compared to the principal-level splitting, which
is the case for (,,; < Fn+1 — Eyp. As this condition is satisfied in many practical cases, we shall use
the effective Hamiltonian to describe the fine structure of hydrogen-like atoms.

4.5.2 Shift rules for spin-orbit coupling in zero field

Using the operator identity
L-S=}(J*>-L*>-8% (4.125)

the spin-orbit shift of the LS manifold with quantum number j evaluates to
AByS = 56uli(G+1) =11 +1) = s(s +1)]. (4.126)

Note that for positive coupling constant (¢,; > 0) the energy of the LS manifolds increases with j.
This is called regular (i.e., hydrogen-like) ordering of the j levels; for (,; < 0 the order of the j
levels is called inverted. The manifold of highest multiplicity (j = jmax = [ + s) corresponds to the
so called stretched state of the LS coupling scheme. From Eq. we derive three shift rules for
the spin-orbit manifolds of given j, [ and s (see Fig.[4.8):

e the shift of the stretched state (j = jmax = + §) is given by

AELS = CGuls. (4.127)
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e the relative shift of two adjacent j manifolds follows the Landé interval rule:

AW, = AEES — AEES | = Gujs. (1,12

where j< is the quantum number of the manifold with the highest multiplicity of adjacent
pairs, .j> = max(jmj - 1) = .]

o the weighted mean of the energies of all j manifolds of a given LS coupling scheme coincides
with the energy of the (21 + 1) (25 4 1)-fold degenerate unperturbed level (see Problem [4.9)),

l+s
1
e 2i + 1)AELS — 0. 4.129
(21+1)(2s+1),zl:|(wr JAB (4.129)
Jj=|l—s

This is called the center-of-gravity rule.

The fine structure of all hydrogen-like atoms is determined by the angular momentum properties of
a single electron. Hence, the electronic states are electron spin doublets (s = %) of varying orbital
angular momentum. To facilitate verbal discussion the manifolds are usually referred to in the Term
notation; e.g., 125, 22P, 32D, etc.E| In doublet terms the coupling of the spin to the orbital angular
momentum can result in only two values of total angular momentum: j =1+ % (parallel coupling;
e.g., TLQPS/Q) and j' =1 — % (anti-parallel coupling; e.g., ’I'szl/g). For these two cases we have

+3Gul (G=1+3)
for [ >0
AEM =-1¢,0+1) (j=1-13) .
n,J 257 2
0 for I = 0.

(4.130)

Note in this example that for hydrogen-like atoms ({,; > 0) the state with the highest multiplicity
has indeed the highest energy (as mentioned above). Note further that the interval rule holds,

AWigyys = AEr%f—‘—l/Q - AE£,§—1/2 = Gull+ %) (4.131)
The sum of the level shifts is given by
AE£,§+1/2 + AErfﬁgﬂ/z = _Cnl/2 (4~132)
and the center of gravity of the levels is indeed zero,
20+ 2) Cul/2 —21¢ (14 1) /2 =0. (4.133)

Problem 4.9. Show that the center of gravity of the fine-structure manifold coincides with the energy of
the unperturbed level.

Solution. Note that the trace is independent of the choice of representation,
tr (Hps) = tr (U " HosU) = tr (UU “His) = tr (His),

where U is a unitary transformation between the two bases and we used (in the second step) the matrix
property (N.26) that the trace of a product of operators is invariant under cyclic permutation of the opera-
tors. Rather than working in the coupled basis {|nlsjm;)} we choose the uncoupled basis {|nlm;sms)} to

calculate the trace (4.129)),

s l
tr (Hes) = Z Z (Cor/B?) (Imysms|L - S|lmysms).

mg=—sm;=—1

1In the most general context a Term is defined as a manifold of states spanning the angular momentum subspace
of given L and S; for hydrogen-like atoms L =1 and S = s = %
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Using the inner product rule (3.109b)) and noting that only the L.S. terms are diagonal we find

S

!
tr (Hrs) = Z Z Cnimyms = 0.

ms=—sm;=—1

For the center of gravity we have to normalize on the (2] 4 1) (2s + 1)-fold degeneracy of the unperturbed
level but obviously this does not change the result if the center of gravity is zero. o

4.5.3 Fine structure of hydrogenic atoms

For the special case of hydrogenic atoms the orbital integrals can be solved analytically. Setting
Z,(r) = Z in Eq. (4.118]) we obtain for the coupling strength

£(r) = 2a'm,c S (4.134)

Hence, the coupling constant follows from Eq. (4.123))

Lotm,.?Z (p=3),y forl1>0
Cu=1" (4.135)
finite for I = 0.
Evaluating the radial integral, see Eqs. (2.49)), this becomes
Z4 1 a’Z? 1
Latm,? = =— E, for 1 >0
Cu=13 2+ D) P TRV RS (4.136)
finite for [ =0,

where F,, is the zero-order energy given by Eq. (2.33)); for I = 0 we took into account the finite
nuclear size. Thus, using Eq. (4.131]) we find for the fine structure splitting
a?Z? 1 ozt 1

A = - E = H f : 4.1
Wig1/2 Ty o0 011 artree  for [ >0 (4.137)

The numerical value of this splitting is 10.949 GHz (experimental value: 10.969 GHz). Using
Eqgs. (4.130]) we find for the level shifts

a?z? n 1
FE, Z =14+ 1
2 Errmaen: Vo) or =0
AByS = +a222E n_ 1L (j=1-1) (4.138)
n2 "I+ 1)) 2 2
0 for I = 0.

Remarkably, adding Egs. (4.24]) and (4.138)) brings us a single expression for the fine-structure shift
which depends on only two quantum numbers (n, j) rather that three (n,l, s),

a?Z? (3 n

AE, ;= AE'* + AELS = —En——s- (4 - ¥ 1/2) : (4.139)
For 5 = % this expression corresponds to the | = 0 relativistic shift of Eq. whereas for j = Z:I:%
it gives the fine-structure splitting for [ > 0. Interestingly, the value j = 5 is obtained for [ = 0 but
also for [ = 1 (using j =1 — %) This results in an “accidental” degeneracy of the 2P1/2 and 251/2
levels in hydrogenic atoms but is absent in the hydrogen-like atoms at large. Furthermore, note that
the energy splittings of the fine structure are typically a factor a? smaller than the energy splitting
of the principal structure (o ~ 1/137 is the fine structure constant).



4.6. FINE STRUCTURE OF ALKALI-LIKE ATOMS IN ZERO FIELD 105

Py :Ps 2
22p — [ o o 2P ———— e —
2= 2% 2x . I ™ 2% 2 , AWs/o = 3¢,y
~7GHZT By S Bn e p 3/2= 5GCn
e > ==, | T s
~2cV
| nES ZS1 2
1 - = _ =
(@) () (a) (b)
hydrogen alkali

Figure 4.9: Term diagram showing the difference in fine structure between hydrogen and alkali-like atoms:
(a) without spin-orbit splitting, (b) with spin-orbit splitting. The hydrogen fine structure is characterized
by two levels with a splitting of only ~ 7 GHz, whereas in the alkali case one observes three levels and the
splitting is much larger (~ 2eV). These differences originate in the absence or presence of screening of the
nuclear charge by core electrons (which is less effective for s electrons than for p electrons).

4.6 Fine structure of alkali-like atoms in zero field

4.6.1 Introduction

Historically, the accidental degeneracy of the 22P; /5 and 235 /5 levels in hydrogen played an im-
portant role in the development of quantum mechanics. In atomic spectroscopy this degeneracy
manifests itself as a fine-structure splitting into two levels (*P; /2 and P, 2/ 25, /2, not considering
the small Lamb shift). In alkali atoms this degeneracy is absent and three levels are observed (%P3 /25
2p, 2 and 25, s2). Furthermore, as illustrated in Fig. the 225-22P splitting in hydrogen is only
~ 7TGHz (see Section whereas in the alkalies it is ~ 2eV, more than four orders of magni-
tude larger. In hindsight, these differences had to be understood before the electron spin could be
postulated [12I]. It slowed down progress and became a great scientific puzzle: why is it that two
quantum numbers suffice to describe hydrogen (n, j) but a third one is required for the alkalies (n
and [ and s)?

To understand the alkali atoms we have to understand the physics of screening by core electrons.
Core electrons are present in the alkalies but absent in the hydrogenic case. Our approach will be
mostly phenomenological. Starting from the experimental values in the NIST Atomic Level Database
[72] we develop a qualitative picture of the atomic structure in which electron shells provide the
underpinning of the periodic system of the elements. This means that we shall temporarily jump
ahead, using features from the physics of many-electron atoms for which the theory will be presented
in Chapters [7] through After discovering the enormous impact of the core on the principal
structure of the atom (Section we turn in section to the consequences for spin-orbit
coupling. Throughout the discussion of screening Hartree atomic units will be used.

4.6.2 Screening by core electrons - effect on principal structure

Alkali and alkali-like atoms differ from hydrogenic atoms by the presence of core electrons. As will
be shown in Section [I0.2] the electron core is spherical, so it does not affect the central symmetry
of the atom; i.e., the rotational structure is not affected. In contrast, the radial structure changes
dramatically as the core electrons seriously modify the charge distribution within the atom. It
may speak for itself that this affects the radial distribution function of the orbitals with immediate
consequences for the binding energies of the electrons.

To introduce the phenomenology of screening we show in Fig.[£.10lc and Fig.[d.11Ja the energy
levels of the valence electron in alkali atoms next to those of hydrogenﬂ The levels are labeled by

IBeware that we focus on the similarities between the behavior of the wvalence electron in the alkalies and the
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Figure 4.10: (a) Energy levels of the alkali atoms for different states of the wvalence electron next to those
of hydrogen. The data are taken from the NIST Atomic Spectra Database Levels Data [72]. Note that the
binding energies in the alkali atoms remain close to those of the hydrogenic electron in spite of enormous
differences in nuclear charge. In particular, for [ — oo and/or n — oo the levels converge to those of H.
This similarity is the result of screening of the nuclear charge by the core electrons. In the data for Rb, Cs
and Fr the fine-structure splitting of the 52P, 6 %P and 72P terms becomes resolved on the eV energy scale
of the diagram. (b) Quantum defect plot of the same data [29]. Note that for [ > 3 the alkali atoms behave
hydrogenic; i.e., the screening by the core electrons is perfect. Furthermore, for a given atomic species the
quantum defect is independent of the principal quantum number, §,; >~ J;.

the principal quantum number (n) for given value of the angular momentum (s, ,p, d, ---). Note
that the alkali levels cover roughly the same range of energies as those of hydrogen in spite of the
enormous difference in nuclear charge: Z = 1 in hydrogen (H) and Z = 87 in francium (Fr). This
points to efficient screening of the nucleus by the core electrons. The key idea is illustrated for
potassium (K) in Fig.b. The electron core acts as a cloud of negative charge in-between the
nucleus and the valence electron. In classical electrodynamics such a charge distribution is called
space charge. In quantum mechanics the space charge arises as a mean field of negative charge
distributed according to the probability density of the electronic orbitals (see Fig.|4.12)). This mean
field lowers the electrostatic potential around the nucleus, thus giving rise a screened Coulomb
potential with (in atomic units) an effective nuclear charge Z,(r) as introduced in Section [1.4.2}

4.6.2.1 Screening constant and efficiency versus quantum defect

In the simplest description of screening, for each orbital nl the amount of screening is specified by a
single number, the screening constant o,;. For an atom of nuclear charge Z, the screening constant
is related to the effective nuclear charge,

an =7 - Onl- (4140)

As a rule of thumb, o, equals the number of core electrons involved in the screening. So, we expect:
Zis ~ Z (no core) Zys ~ Z — 2 (1s* core), Zo, ~ Z — 4 (1s2s% core), Zss ~ Z — 10 (1s22522p
core), Zsp ~ Z —12 (1522522p°®3s? core), etc.. In terms of Z,,; the energies of the principal structure
are given by

2

an
Enl = “5n2 (4.141)

hydrogenic electron of the Bohr atom. Core electron excitations are not included in this diagram.
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Figure 4.11: (a) Energy levels of potassium (K) compared to those of hydrogen. The deviations from the
hydrogenic values are quantified by the quantum defects ds, dp, dq and dy; (b) Quantum defects result from
incomplete screening of the nucleus by core electrons. This manifests itself as an effective nuclear charge,
Zni = Z — oni (the nuclear charge Z lowered by the screening constant o,;). In the Rydberg limit the
screening is maximal (Z,; = Z.) and the screening efficiency 6ni = oni/opn becomes unity. The relation
between d,; and Z,,; (and o,;) follows by equating Egs. and for the same energy level.

Note that binding energy of the valence electron scales quadratically with Z,,;/n.

Another way of characterizing screening is by specification of the quantum defect 6,,; (also known
as Rydberg correction). This quantity turns the principal quantum number, the integer n, into an
effective principal quantum number, the positive real number

ny =n—0p. (4.142)

The quantum defect is a measure for the deviation from the hydrogenic distribution of levels. A list
of quantum defects for wvalence electron levels in alkali atoms is given in Table Note that, for
a given alkali species, d,,; shows little dependence on the principal quantum number, §,; >~ § > 0.
On the other hand §; decreases rapidly with [ as is illustrated in Fig.[A.10p. Hence, by measuring a
few quantum defects (Js, 0p, 04, - --) the whole level diagram can be reconstructed using the Bohr
formula for the binding energies but with n; replacing n,

VA Vs 1
Enl = 2n2‘2 =52 = 5l/n)2. (4.143)
Here Z, stands for the Rydberg charge introduced in Section [£.:4.2} for neutral atoms Z. = 1, for
singly charged ions Z, = 2, etc..

Interestingly, for n > 1 the ratio of the level shift (with respect to the hydrogenic value) over
the level separation value goes to a constant. The limiting value is called the Rydberg limit. This
limit can be determined by expanding Eq. to leading order in powers of d,;/n. For the level
shift with respect to the hydrogenic value we find

2

Z
— 0+ (n>1). (4.144)
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Table 4.1: Fine-structure-avaraged quantum defects for selected atomic energy levels. The table is based
on the NIST Atomic Spectra Database Levels Data [72]. Metastable helium (He*) will be discussed in

Section@

EL [ne ni 8 Zns 6s |np 0h Op  Znp 6p |Ma Ry 64 Zna  6a
H |1l 1000 0000 1 1 |- - — — — |- — — - -
He*| 2 1.689 0.311 1.18 0.82| 2 1.938 0.062 1.03 0.97| — — - - -
Li | 2 1.589 0.411 1.26 0.87| 2 1.959 0.041 1.02 0.99| — — - - -
3 2596 0.404 1.16 0.92| 3 2.956 0.044 1.02 0.99| 3 2.999 0.001 1.000 1
Na | 3 1.627 1.373 1.84 0.92| 3 2.117 0.883 1.42 0.96| 3 2.990 0.010 1.003 1
4 2.643 1.357 1.51 0.95| 4 3.133 0.867 1.28 0.97| 4 3.988 0.012 1.003 1
K |4 1.770 2.230 2.26 0.93| 4 2.234 1.766 1.79 0.96| 3 2.854 0.146 1.051 1
5 2.801 2.199 1.79 0.96| 5 3.265 1.735 1.53 0.97| 4 3.797 0.203 1.054 1
Rb |5 1.805 3.195 2.77 0.95| 5 2.288 2.712 2.19 0.97| 4 2.767 1.233 1.446 0.99
6 2.845 3.155 2.11 0.97| 6 3.325 2.675 1.80 0.98| 5 3.706 1.294 1.349 0.99
Cs | 6 1.869 4.131 3.21 0.96| 6 2.351 3.649 2.55 0.97| 5 2.552 2.448 1.959 0.98
7 2.920 4.080 2.40 0.97| 7 3.395 3.605 2.06 0.98| 6 3.534 2.466 1.698 0.99

Since d,; > ¢; for n > 1, the level separation, Acy = €(nq1) — €nt, is given by

z; z; z;
Agy = -0 AnFtl_0)F +-- (n>1). (4.145)

In the Rydberg limit the ratio de,;/Aey,; converges to the quantum defect,

lim 2L g, (4.146)

n—00 AEn]

The screening constant is a good absolute measure for screening but often a relative measure is
desired. As maximal screening is obtained for valence electrons in the Rydberg limit,

Unl:Z_ZnZSZ_ZcEUmaX7

nl

a good relative measure for the screening is the screening efficiency, defined as

bt = Ot [0 = (Z — Zo) /(2 — Ze). (4.147)

nl

This quantity varies from 0 in the absence of screening to 1 for perfect screening. The screening
efficiencies for the valence electron of the alkali atoms are included in Table For the ground
state of lithium (Li), with only two screening electrons, it is 87%. For all other alkali states the
screening is over 90% and increases with increasing values of n and . The latter does not come as a
surprise because for large n and [ the valence electron resides at larger distances from the nucleus
and the charge overlap with the electron core will be small.

The relation between the effective nuclear charge, Z,,;, and the quantum defect, d,,, follows by
equating Egs. (4.141]) and (4.143)),

Since e, scales quadratically with Z,;/n the levels become hydrogenic (with respect to Z.) for
n > 1. Furthermore, since §; decreases for increasing [ the binding energy also becomes hydrogenic
for [ > 1. This means that, for large | and/or n, the screening of the nucleus by the core electrons
becomes close to perfect and the energy levels can be calculated by replacing Z with Z. in the
Bohr formula. A simple screened Coulomb potential may be constructed showing the absence of
a dependence on n (for given Z) as well as the decline of screening with increasing ! [9]. At the
advanced level, the quantum defect is a key element in the theory of Rydberg atoms [51].
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Figure 4.12: Radial distribution functions of hydrogenic wavefunctions give an impression of the electronic
charge distribution. In the lithium atom (Li) the 1s orbital is a core orbital which is drawn for the unscreened
nuclear charge (Z = 3). We compare two valence electrons, both drawn for Z = Z. = 1: (a) the 2s electron
penetrates deeply into the core which points to poor screening from the nucleus; (b) the 2p electron hardly
penetrates into the core. This points to close to perfect screening. Note that screening corrections giving
rise to deviations from the hydrogenic shape are not included in this plot.

In terms of the quantum defect the screening efficiency is given by

_ ZC (5711/?7,
Z —7Z.1 —5nl/n'

(4.149)

=1

This expression shows that, for given Z, Z. and n, a smaller quantum defect corresponds to better
screening efficiency, with the screening becoming perfect for [ > 1 and/or n > 1. When comparing
configurations differing in Z and Z. and/or n, the correspondence is not so intuitive. For the neutral
lithium (Li) atom and the calcium jon (Ca™) in the same electron configuration, the same screening
efficiency is obtained for a smaller quantum defect in the ion (see Problem .

4.6.2.2 The phenomenology of screening

Equipped with the tools for characterizing the screening we are prepared to analyze the level dia-
grams of Fig. We start with the example of lithium (Li). In this case we have Z = 3 and the
valence electron is screened from the nucleus by the 1s2 core (o, ~ 2, for n > 2). Hence, for perfect
screening we expect for the effective nuclear charge Z,,; = Z — 0y, ~ Z. = 1. The experimental
values are found in Table Apparently, the screening is close to perfect for the 2p, 3p and 3d
orbitals (Z,; ~ 1) but incomplete for the 2s and 3s orbitals. This is consistent with the mean field
picture because s orbitals extend all the way to the nucleus (where screening is negligible), whereas
orbitals with higher angular momenta (p, d, f,---) fall off towards the characteristic central node
(see Section [2.3). As illustrated in Fig.[f.12] the radial distribution of the 2p electron surrounds
the 1s core like a halo whereas the 2s electron electron has a sizable overlap with the core. This
points to incomplete screening for the 2s electron which explains the stronger binding in Fig.[4.10]
As visible in Fig.[4.9] the corresponding difference in binding energy is typically 2 eV for the alkalies.

This preferential binding of electrons in s orbitals (or better: low-l orbitals) becomes manifest
when studying the level ordering for the entire group of alkalies in Fig.[£.10] In hydrogenic atoms
the binding energy decreases with increasing principal quantum number but this ordering is lost in
the heavier alkalies. In the case of Na the binding of the 4s orbital is stronger than that of the 3d
orbital (€45 < £34), for K this becomes €45,€4p < €34 and even e5, < €34. These deviations from the
hydrogenic ordering have important consequences for the ground state configurations of the alkali
atoms and, more in general, for the structure of the periodic system (cf. Chapter .

What would happen to the screening if we could increase the nuclear charge? It may speak
for itself that the atom would contract but is the ordering of the energy levels affected? Questions
like this can be answered by studying the level diagram of the singly ionized alkaline-earth ions
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Figure 4.13: (a) Energy levels of the alkaline-earth ions for different states of the walence electron next

to those of hydrogenic helium. The data are taken from the NIST Atomic Spectra Database Levels Data
[72]. Note that the binding energies remain close to that of the hydrogenic electron in He' as the result of
screening by the core electrons. In particular, for I — oo and/or n — oo the levels converge to those of He™;
(b) Quantum defect plot of the same data. For [ > 3 the ions behave hydrogenic; i.e., the screening by the
core electrons is maximal. Note the close similarity with Fig.[-10} i.e., the alkaline-earth ions behave alkali
like. A qualitative difference with the alkali atoms is the appearance of the metastable D levels in Ca™,
Sr* and Ba' which can be used to create optical qubits for quantum information processing [108].

shown in Fig. 4.13] These ions are isoelectronic (i.e., have the same number of electrons) with the
adjacent alkali atom in the periodic system but the nuclear charge has increased from Z in the atom
to ZT = Z + 1 in the ion. In the simplest model for screening also the effective nuclear charge
increases by one: Z:[l ~ Z. + 1. The corresponding relative increase, Z:{Z/an = (Zm+1)/Zpn, is
largest for the outer orbitals because Z,; falls off towards Z, in the Rydberg limit,

Zr)z.> 77y > (Z+1)/Z. (4.150)

The ratio Z:{l /Zn > 1 implies a contraction of the electronic orbitals of the ion relative to that of
the atom (in the same electron configuration). Recalling Eq. the inequalities suggest
that the contraction increases progressively (i.e., more than linearly) with growing distance from
the nucleus, the largest contraction being expected for the valence orbitals. The emerging physical
picture is one in which the valence electron is pulled towards/into the electron core (if present).

To further explore the phenomenology of screening we have a closer look at the singly ionized
alkaline-earth ions. For these ions we have Z} = 2, like in hydrogenic helium, He™. This means that
the Rydberg charge has doubled with respect to the neutral atom; i.e., to first approximation the
binding energy of the valence electron has to increase by a factor 4. This is confirmed by Fig.[£.13]
For comparison the levels of the Het ion are included in the figure. Apart from the larger binding
energies, the level diagram is quite similar to that of the alkali atoms. For the [ dependence this
becomes evident by comparing Figs. [f.10b and [£.13p. The hydrogenic-helium limiting behavior is
implicit in Eq. because it depends on ZF (not on Z) : 6, — 0 for [ > 1 and §,;/n — 0 for
n> 1.

A numerical comparison between atoms and ions (see Table shows that in all cases the
screening efficiency, as defined by Eq. , is smaller in the ions. This is in accordance with
the physical picture of progressive contraction in which the valence electron is pulled into the core.
Closer inspection of Table reveals some interesting differences between atoms and ions. For the
lowest d levels the quantum defect increases (i.e., the ion is less hydrogenic than the atom) but for
the lowest s and p levels the opposite occurs. So, aside from the tendency of pulling the valence
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Table 4.2: Fine-structure-averaged quantum defects of the valence electrons in isoelectronic pairs of alkali-
like atoms. The table is based on the NIST Atomic Spectra Database Levels Data [72].

ElL |ns ni 0 Zns/ns 65 |np 0y 6 Znp/np Gp |Ma Ay Oa Zna/na  6a
Li | 2 1.589 0.411 0.63 0.87|2 1.959 0.041 0.51 0.99| — - -

Bet | 2 1.729 0.271 1.16 0.84| 2 1.954 0.046 1.02 098] — — - - -
B2t | 2 1.797 0203 1.67 0.83|2 1.958 0.042 1.53 0.97| - — - - -
Na |3 1.627 1.373 0.61 0.92| 3 2.117 0.883 0.47 0.96] 3 2.990 0.010 0.33 0.999
Mgt |3 1.903 1.097 1.05 0.88| 3 2265 0.735 0.88 0.94| 3 2.970 0.030 0.67 0.998
At | 3 2075 0925 1.45 0.87| 3 2372 0.628 1.27 092| 3 2950 0.050 1.02 0.995
K |4 1770 2230 0.56 0.93| 4 2234 1.766 0.45 0.96| 3 2.854 0.146 0.35 0.997
Ca®™ | 4 2141 1.859 093 0.90| 4 2497 1.503 0.80 0.93| 3 2.312 0.687 0.86 0.97
Sc*t | 4 2382 1.618 1.26 0.89| 4 2.682 1.318 1.12 0.92| 3 2225 0.775 1.35 0.94
Tt | 4 2557 1.443 156 0.87| 4 2.822 1.178 1.42 091| 3 2.244 0.756 1.78  0.93
V44 2693 1.307 1.86 0.87| 4 2931 1.069 1.77 0.90| 3 2.284 0.716 2.19 0.91
Cr°t | 4 2802 1.198 2.14 0.86| 4 3.020 0.980 1.99 0.89| 3 2326 0.674 2.58  0.90
Rb | 5 1.805 3.195 0.55 0.95|5 2288 2712 044 0.97| 4 2.767 1.233 0.36  0.99
Srt | 5 2221 2779 0.90 0.93| 5 2.604 2396 0.77 0.95| 4 2.432 1.569 0.82 0.96
Cs | 6 1.869 4.131 0.53 0.96| 6 2.351 3.649 0.43 0.97|5 2552 2448 0.39 0.98
Bat | 6 2332 3.668 0.86 0.94|6 2721 3.2