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We discuss focusing of Bose-Einstein condensates after release from a confining potential. It is
shown that in the presence of a linear inward velocity field along the axial direction an elongated
condensate will contract axially while expanding in the radial direction under conditions of free
flight. We discuss the conditions under which such a focus can be observed and show that
this is virtually impossible for collisionless thermal clouds. This difference allows an effective
separation of the condensate from the surrounding thermal cloud. The focal size reflects the
momentum uncertainty in the condensate.

1.1 Introduction

Since the first observation of Bose Einstein condensation (BEC) coherent atom optics has devel-
oped into an important field [1], providing tools for the investigation of macroscopic quantum
phenomena in dilute atomic gases below their critical temperature (TC). Many properties of
quantum gases can be extracted by studying the interference between overlapping Bose-Einstein
condensates after expansion from magnetic or optical traps [2]. With atom interferometry and
quantum information processing as long term goals, atom waveguides as well as atom chips are
being developed [3, 4, 5]. Mirrors, beam splitters and beam shaping optics of various types have
been demonstrated [6, 7, 8]. Bloch et al. [9] demonstrated the focusing of an atom laser beam
by a harmonic potential. Focusing in free flight has recently been observed in Amsterdam [10]
during the ballistic expansion of an elongated condensate after release from a Ioffe-Pritchard
quadrupole trap.

In this contribution we discuss the focusing method introduced in ref. [10]. We show that
this method provides focusing for a condensate while the surrounding thermal cloud is not
focused. This enables improved observation of small condensate fractions near TC as well as
small thermal fractions well below TC . From the focal size an estimate for the phase coherence
length can be obtained.

1.2 Focusing principle

To describe the principle of focusing of a condensate in free flight (see Fig.1.1a), we consider
a cloud of atoms confined in an axially symmetric harmonic trapping potential with angular
frequencies ωz (axial) and ωρ (radial) and small aspect ratio β ≡ ωz/ωρ � 1. We presume the
cloud to dilate periodically in shape with angular frequency ωQ in such a way that a linear ve-
locity field vz(z) = −αz(t)z is present along the z-axis, . At time t = 0 the gas is released from
the trap by the sudden removal of the trapping potential. For t ≤ 0 the axial size, normalized to
its value at release, is given in linear response by

bz(t) = 1 − az sin ωQt, (1.1)

where az is the rescaled axial amplitude of the oscillation. For the oscillation shown in Fig.1.1b,
the axial size at t = 0 is contracting and we look for a focus at some later time t > 0.
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Figure 1.1: a) BEC-focusing observed as a contraction of the Thomas-Fermi size as a function of time; b) Evolution
of the axial size before and after trap release at t = 0 for an oscillation amplitude az = 0.4. Solid line: condensate
evolution for ζ = 0.41; Dotted line: evolution of collisionless thermal cloud or oscillator ground state (η = 1)
for ζ = 0.41; c) Black squares: experimental data of ref. [10]; Grey curve: fit of Eq.(1.5) to the black squares,
corresponding to ζ = 0.37 and η = 0.20; Dashed line: plot of Eq.(1.3) for ζ = 0.37. Dotted line: as dashed line but
showing the optical resolution limit (see [18]) of ref. [10].

Let us first consider a pure Bose-Einstein condensate driven on the low-frequency mode of a
quadrupole shape oscillation for which ωQ ≈ 1.58 ωz [11, 12]. At t = 0 the axial size is given by
the equilibrium Thomas-Fermi radius, Lz =

[

2µ/mω2

ρ

]1/2

, where µ is the chemical potential
of the gas and m the atomic mass. Within the Thomas-Fermi approximation the evolution of
the axial and radial sizes of the cloud is given by the scaling equations [11, 13]

b̈i =
ω2

i

bibzb2
ρ

, with i ∈ {z, ρ}, (1.2)

subject to the initial conditions bz(0) = bρ(0) = 1, ḃz(0) = −azωQ and ḃρ(0) ' 0. As β � 1 we
find to a good approximation for the radial expansion bρ(t) = [1+ω2

ρt
2]1/2. The axial expansion

at t � 1/ωρ is given by

bz(t) = |1 − ζωzt| , (1.3)

where the contraction parameter ζ is defined as ζ = (azωQ/ωz − βπ/2). The result is shown
as the solid line in Fig.1.1b. Hence, for ζ > 0 the axial size decreases to produce a (one-
dimensional) focus at time tfocus = 1/(ζωz). This is the case if the axial contraction velocity
at release, −azωQ, dominates over the axial expansion velocity βπωz/2 induced by the ‘kick’
during the initial stages (t . 1/ωρ) of the expansion, i.e. az > β. As the radial size remains
finite and Lz decreases, around tfocus the chemical potential is restored and the focus reaches a
minimum size bz(tfocus) = 2β2, independent of the value of az. This result is obtained by using
the approximation bρ ≈ bρ(tfocus) ≈ ωρtfocus and integrating Eq.(1.2) for i = z. Matching the
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resulting slope ḃz ≈ [2ω2

zb
−2

ρ (tfocus)b
−1

z (tfocus)]
1/2 with the contraction velocity ḃz(1/ωρ . t �

tfocus) we get the mentioned result. The compression can be very tight, e.g. 2β2 ≈ 4 × 10−3 for
the conditions of ref. [10]. In such cases the optical resolution of the imaging system used for
detection is likely to limit the minimum observable focal size as was reported in ref. [9].

1.3 Focal broadening

Beyond a certain expansion time the kinetic energy of the original condensate can no longer
be neglected as it gives rise to spreading of the condensate wavefunction. This effect may be
accounted for by writing

bz(t) ≈
[

(1 − ζωzt)
2 + η2ω2

zt
2
]1/2

, (1.4)

where η is a parameter determining the size of the focal waist. Note that for η = 1, Eq.(1.4)
represents the spreading of a minimum uncertainty wavepacket released under conditions of
axial contraction. Notice further that in this case no appreciable focusing is observed (see dotted
line in Fig.1.1b ) except for shape oscillations driven far outside (ζ > 1) the linear regime. In
general, Eq.(1.4) gives rise to substantial focusing only if ζ > η (at ζ = η the condensate is
compressed by 30%). The condition ζ > η is satisfied for elongated Thomas-Fermi condensates
at T = 0, because the momentum spread is strongly reduced compared to that of the oscillator
ground state. This situation is described by approximating the waist parameter with the value
η = }ωz/2µ. Then, for t < t0 = 2β2mL2

z/}, the spreading can be neglected even with respect
to the compression minimum 2β2Lz. For the conditions of ref. [10] we calculate t0 ≈ 7 ms.

For similar reasons it is virtually impossible to focus a collisionless thermal cloud. To illus-
trate this we consider a simple Boltzmann gas at temperature T with an oscillation described for
t < 0 by Eq.(1.1) and released from the trap at t = 0. If the collisional mean free path is much
larger than the radial size of the cloud, the expansion proceeds ballistically and the momentum
of the individual atoms is conserved (free expansion). The scaled axial size evolves according
to

bz(t) =
[

(1 − azωQt)2 + ω2

zt
2
]1/2

, (1.5)

which represents the convolution of two gaussians: the density profile of equilibrium width
lz = [2kBT/mω2

z ]
1/2 and the velocity distribution of equilibrium width αz = [2kBT/m]1/2

which is locally shifted by the imposed velocity field vz(z) = −azωQz. In the absence of a
shape oscillation (az = 0) this expression reduces to the well-know result used in time-of-flight
analysis of collisionless thermal clouds [2, 14]. Presuming the same value of ζ = azωQ/ωz as
for the condensate (i.e. the solid line in Fig.1.1b), the thermal cloud is represented by the dotted
line in Fig.1.1b.

Returning to elongated condensates we point out that at temperatures above the phase fluc-
tuation temperature, T > Tφ = 15 (}ωz)

2N/32µ, equilibrium phase fluctuations will dominate
the focal broadening [15, 16, 17]. In this case the waist parameter may be approximated by
η ≈ (Lz/Lφ)

2
}ωz/µ ≈ (lh/Lφ)

2, where Lφ is the phase coherence length and lh = [}/mωz]
1/2

the axial harmonic oscillator length.

1.4 Applications of BEC focusing

The first application concerns the focus observed by Shvarchuck et al. [10] and reproduced in
Fig.1.1c. The grey line represents a fit of Eq.(1.4) to the data and yields ζ = 0.37 and η = 0.20.
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In this experiment the focus is strongly broadened, bz(tfocus) � 2β2 exceeding the optical
resolution limit of 3.3 µm (see Fig.1.1c) [18]. Hence, for the conditions of this experiment we
may write η ≈ (lh/Lφ)

2 and find a phase coherence length of Lφ ≈ 0.45 lh ≈ 1µm.
Condensate focusing offers improved detection of small condensate fractions. Near the focus

the axial condensate size is compressed by a factor 1/bz(tfocus). In time-of-flight absorption
imaging, the signal-to-noise can be improved accordingly by choosing the time of detection
equal to tfocus. This is advantageous, particularly close to TC where the condensate fraction is
small and has to be detected against the background of a large thermal cloud.

Condensate focusing also provides some advantage in detecting small thermal clouds as
the separation time of the two components is reduced. Therefore, in time-of-flight absorption
imaging detection can be shifted to shorter expansion times when the drop in optical density of
the thermal cloud (Dth ∝ 1/ωρωzt

2

sep) is less and an improvement in the signal-to-noise ratio of
a factor of two can be obtained.

1.5 Conclusion

We have demonstrated, how BEC focusing leads to compression of the Bose-Einstein con-
densed fraction of an ultracold sample, while leaving the non-condensed part unaffected. This
separation allows easier observation of both components. We also showed how a detailed anal-
ysis of the focal size can provide information on the phase coherence properties of a condensate
in the trap. The concepts described in this contribution can be extended to two dimensions. It
will be interesting to see to what extent this can be made into a practical tool in coherent atom
optics.
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