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We investigate collective oscillations of nondegenerate clouds of 87Rb atoms as a function of density in an
elongated magnetic trap. For the low-lying M =0 monopole-quadrupole shape oscillation we measure the
oscillation frequencies and damping rates. At the highest densities the mean free path is smaller than the axial
dimension of the sample, which corresponds to collisionally hydrodynamic conditions. This allows us to cover
the crossover from the collisionless to the hydrodynamic regime. The experimental results show good agree-
ment with theory. We also analyze the influence of trap anharmonicities on the oscillations in relation to
observed temperature dependencies of the dipole and quadrupole oscillation frequencies. We present conve-
nient expressions to quantify these effects.
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I. INTRODUCTION

Collisional hydrodynamics has gradually become an im-
portant issue for the understanding of experiments with di-
lute quantum gases. When the atomic mean free path is
smaller than the characteristic dimensions of typical elon-
gated atomic clouds, the gas properties depend on the local
density field and exhibit collisional hydrodynamics rather
than the collisionless dynamics of a nearly ideal gas �1,2�.
For Bose gases and Bose-Fermi mixtures it is difficult to
penetrate deeply into this collisional hydrodynamic regime
as three-body molecule formation will give rise to the fast
decay of the samples �1�. Therefore, the transition region
between collisionless and hydrodynamic conditions is also of
substantial practical importance.

The hydrodynamic flow of classical fluids was described
as early as 1755 by the equation of motion of Euler �3�.
The opposite limit of collisionless flow is equally well
understood since the work of Maxwell and Boltzmann
and the investigation of rarefied gas dynamics around the
turn of the last century �2�. The transition regime between
collisionless and hydrodynamic conditions deserves special
attention as the crossover behavior is often nonintuitive
as was already noted by Knudsen in 1908 �4�. With the avail-
ability of trapped ultracold gases there is a renewed interest
in the collisional hydrodynamics. For nondegenerate quan-
tum gases in harmonic traps the absence of the familiar
wall-boundary condition of zero hydrodynamic flow at the
sample edges gives rise to a very close phenomenological
similarity with the superfluid hydrodynamics of Bose-
Einstein condensates �1,5–7�. Collisional hydrodynamics
also has to be considered in two-component Fermi gases near
intercomponent Feshbach resonances, where the intercompo-
nent scattering length is tuned to large values in order to
optimize thermalization �8–11�.

The onset of collisional hydrodynamics in a quantum gas,
to the best of our knowledge, was first observed at MIT in
measurements of the damping and frequency shifts of the
low-lying M =0 quadrupole shape oscillation of cigar-shaped
samples of the 23Na quantum gas, just above the Bose-
Einstein transition temperature Tc �12�. Similar results were
obtained at the ENS-Paris with clouds of metastable triplet
helium �He*� �13�. A demonstration of the collisional cross-
over was given at JILA by measuring, for varying density,
the damping of the center of mass oscillations of two distin-
guishable clouds of 40K, passing in antiphase �14,15�. At
AMOLF we showed how hydrodynamic conditions affect
the BEC-formation process in elongated samples and can
give rise to substantial shape oscillations of the condensates
being formed �16,17�. Further, hydrodynamic conditions
were shown to give rise to an anisotropic expansion of ther-
mal Bose gases after switching off the confining field, which
has important consequences for time-of-flight thermometry
�18,19�. Hydrodynamic effects were observed more pro-
nouncedly in the expansions of two-component Fermi gases
tuned near an intercomponent Feshbach resonance �8–10�.
Also the investigation of the macroscopic dynamics of two-
component Fermi gases in the BCS-BEC transition region
requires detailed understanding of the hydrodynamics
�20–23�.

In this paper we study the crossover from collisionless to
hydrodynamic conditions in nondegenerate clouds of 87Rb
by measuring both the frequency shift and the damping of
the low-lying M =0 quadrupole shape oscillation as a func-
tion of density. In accordance with theory �5–7�, the fre-
quency shifts down from 2�z in the collisionless regime to
1.55�z for collisionally hydrodynamic clouds, with �z the
axial frequency of our trap. Most of the shift occurs over a
narrow range of densities around the crossover density,
where the mean free path becomes comparable to the axial
size of the sample. At this density also the strongest damping
is observed. All our data were taken for temperatures
T�2Tc to avoid precursor phenomena close to the BEC tran-
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sition �24�. Hence, although the collisions are quantum �i.e. s
wave�, the gas is statistically classical. As we observed a
temperature dependence of the oscillation frequencies, we
derive theoretical expressions to include the influence of trap
anharmonicities, which cause this effect. These expressions
allow a numerical evaluation for regular potentials. Further,
they allow us to derive convenient analytic approximations
that apply to any elongated Ioffe-Pritchard trap.

II. BACKGROUND

For quantum gases well above the degeneracy tempera-
ture, all oscillatory modes are solutions to the classical Bolt-
zmann equation �1,25�

�f

�t
+ v · �rf +

F

m
· �vf = Icoll�f� , �1�

where f = f�t ,r ,v� is the phase-space distribution function
with r= �rj�= �x ,y ,z� and v= �v j� the position and momentum
vectors, m is the atomic mass, and F�r�=−�rU�r� the force
of the trapping potential U�r�; Icoll�f� is the classical colli-
sional integral. For the case of s-wave collisions with an
energy-independent elastic-scattering cross section � the col-
lision integral takes the form

Icoll�f� =
�

4�
� dv1 d���v1 − v��f1�f� − f1f� �2�

and describes, for a given position and time, the effect of
elastic collisions between a pair of atoms with initial veloci-
ties v and v1 and final velocities v� and v1�. The solid angle
�� gives the direction of the final relative velocity with re-
spect to the initial one.

For isotropic harmonic traps the normal modes are multi-
poles of order �L ;M� �6�. Oscillations in the dipole mode
�L=1� are commonly used for measuring trap frequencies by
observing the motion of the center of mass of trapped clouds
as a function of time. In harmonic traps these oscillations are
undamped, since for any pair of atoms also their center of
mass oscillates at the trap frequency �. As noted in Refs.
�6,7�, Boltzmann obtained in 1897 the surprising result that
for isotropic harmonic traps also the monopole �or “breath-
ing”� mode �L=0� is undamped, oscillating at frequency 2�,
independent of the density. The next normal mode solutions
are shape oscillations �L�2�. In the hydrodynamic limit they
are �like the dipole mode� both irrotational and divergence
free �6,7�, and therefore also undamped. They oscillate at
frequency 	L� �26�. In the collisionless regime they are
again undamped but oscillate at frequency L�. This differ-
ence in frequency results in damping in the transition regime
�27� due to the collisional relaxation towards equilibrium.

For elongated harmonic traps, with axial direction z and
radial coordinate �= �x2+y2�1/2, we distinguish three �L=1;
M =0, ±1� dipole modes, oscillating uncoupled and un-
damped at frequencies �z and ��. In the hydrodynamic limit,
the monopole mode is coupled to the �L=2; M =0� quadru-
pole mode. Decoupling in terms of irrotational solutions
yields �5–7�

�2 = 1
3 �5��

2 + 4�z
2 ± 	25��

4 + 16�z
4 − 32��

2�z
2� . �3�

In the experiment described in this paper, we study the low-
lying M =0 coupled monopole-quadrupole mode, corre-
sponding to the minus sign in Eq. �3�. In this mode the radial
size oscillates in antiphase with the axial size. For shortness
we will refer to it as the “quadrupole” mode with frequency
�Q in all regimes, although in the collisionless limit the axial
and radial motion decouple and the overall behavior is to be
considered as a superposition of “one-dimensional �1D�
breathing modes”, showing dephasing behavior. This dephas-
ing can be avoided by exciting a pure axial oscillation. As
follows directly from Eq. �3�, in the limit of very elongated
clouds �����z� we have �Q=	12/5�z
1.55�z.

The transition regime is less obvious. Describing the os-
cillation phenomenologically by e−i�t the crossover takes the
form �27�

�2 = �cl
2 +

�hd
2 − �cl

2

1 − i�	̃
, �4�

where �=��+ i�� is the complex quadrupole frequency for a
given thermal relaxation time 	̃; �hd and �cl are the �real�
frequencies of this mode in the hydrodynamic ���	̃
1� and
collisionless ���	̃�1� limits, respectively.

To have an intuitive picture of the solutions of Eq. �4� one
can separate the real and imaginary parts of � and make the
identification ��Q=��, �=−���. For � /�Q
1 we can ap-
proximate the imaginary part of the solution by the conve-
nient form

� �
	̃

2

�hd
2 − �cl

2

1 + �cl
2 	̃ 2 , �5�

which underestimates the maximum damping by 23%. The
solution for the real part of Eq. �4� can be heuristically, but
fairly accurately �±0.3% � described by

�Q � �hd + ��cl − �hd��2/��arctan��cl
2 	̃2� . �6�

We define the “crossover point” as the point where maxi-
mum damping occurs and the frequency is at the intermedi-
ate value �Q= 1

2 ��cl+�hd�. From Eqs. �5� and �6� this is seen
to occur at the relaxation time 	̃= 	̃0, where 2�z	̃0=1.

Equation �4� can be obtained from the Boltzmann equa-
tion in the relaxation time approximation �28,29�, where the
collisional integral is replaced by

Icoll�f� � − �f − f le�/	 . �7�

Here 	 is the relaxation time and f le= f le�t ,x ,v� the local
thermal distribution, which has an isotropic momentum dis-
tribution �30�. For harmonic traps one has �28�

	−1 =
	2

5
	c

−1, where 	c
−1 = 	2n0v̄th� �8�

is the elastic collision rate at the trap center �25�, with
v̄th= �8kBT /�m�1/2 the mean thermal velocity at temperature
T, n0 the central density.

To arrive at Eq. �4� the relaxation time has to be renor-
malized by a factor that depends both on the cloud shape and
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the mode considered. For the M =0 quadrupole mode in very
elongated harmonic traps one finds 	̃=6/5	 �28,29�.

III. EXPERIMENT

In our experiment we typically load 1010 atoms from the
87Rb source described in Ref. �31� into a magneto-optical
trap. After an optical molasses stage we optically pump the
atoms into the fully stretched �5S1/2, F=2, mF=2� hyperfine
state and transfer the cloud into a Ioffe-Pritchard trap with
frequencies �z /2�=7 Hz and �� /2�=8 Hz and central field
B0=37 G. Any remaining population in the mF=1 magnetic
sublevel is removed by the gravitational sag. Then, we radi-
ally compress the cloud, changing the trap parameters to
�� /2�=19 Hz at B0=8 G. After a thermalization time of
100 ms we add, in a linear ramp over 0.5 ms, a magnetic
field Bm=487 mG, rotating at a frequency of �m=7 kHz or-
thogonally to the trap axis, using the approach described in
Ref. �32�. This gives rise to a time-averaged-potential �TAP�
field with offset B0,m��Bm

2 +B0
2�1/2 and frequencies

��,m = ��

�1 + 0.5b2�1/2

�1 + b2�3/4 , �9�

�z,m = �z
1

�1 + b2�1/4 , �10�

where b=Bm /B0 is the modulation depth �32�.
We continue the compression to �z,m /2�=16.8 Hz,

��,m /2�=474 Hz and B0,m=634 mG �B0=406 mG, b=1.2�.
Then, we cool the sample by forced rf evaporation to the
final temperature of a few microkelvin. After reducing the
density to the desired level by laser depletion �33�, the
sample is thermalized during plain evaporation periods of up
to 2.5 s, which is sufficiently long even for our lowest den-
sities. We then raise the rf-shield energy by a factor of 7 to
avoid evaporation losses during the measurements.

It is important to note here that the harmonic range �0,m
where Eqs. �9� and �10� hold, is proportional to the ampli-
tude of the rotating field: �0,m=Bm /, where  is the radial
gradient of the Ioffe quadrupole field. For regions outside the
harmonic range the frequencies revert to the unmodulated
ones �34�. This implies a minimum required value for Bm to
assure that the harmonic radius of the TAP field exceeds the
thermal size of the sample.

A. Excitation of the quadrupole mode

To excite the quadrupole mode we remove the modulation
field Bm and observe the oscillation in a static potential. The
advantage of the TAP approach is the rapid switching be-
tween trap frequencies, which is possible because both Bm
and B0 are generated by trim coils. The main currents of the
Ioffe-Pritchard trap remain untouched. Further, this approach
offers definite knowledge of phase and amplitude. After
transfer into the static potential the cloud starts to oscillate
inwards as a cosine function with zero phase offset as can be
seen in Fig. 1.

As we remove the modulation, we simultaneously in-
crease the central field to B0=900 mG in order to keep ��

constant. The procedure is done with a linear ramp of dura-
tion 	sw=230 �s. This is slow enough to avoid switch-off
depolarization and still much faster than the axial oscillation
time �z
	sw

−1
�Larmor. Thus, after switching �z, the gas
finds itself diabatically in an axially tighter potential. The
axial trap frequency has increased to �z /2�=21.1 Hz, which
changes the aspect ratio to �� /�z
23 and puts us well into
the elongated trap limit of Eq. �3�.

In this way we excite a pure axial oscillation, at least in
the collisionless limit. In the hydrodynamic limit, in prin-
ciple, both the low-lying and the high-lying monopole-
quadrupole modes could be excited. However, since even at
our highest densities, radially we remain in the collisionless
regime, the high-lying mode cannot be excited due to the
lack of coupling.

If the extent of the cloud prepared in the TAP-modulated
magnetic field reaches significantly beyond �0,m, its density
profile deviates from a Gaussian. Transferring that distribu-
tion in the described way into the static magnetic field leads
to excitation of higher modes. If additionally the thermal size
of the cloud also exceeds the harmonic range of the static
potential �which is not related to �0,m�, both anharmonicities
will add to the excitation of higher modes. However, these
modes oscillate at much higher frequencies and damp ac-
cordingly faster than the quadrupole mode under investiga-
tion.

For our highest-density samples, together with the
condition T�2Tc, we have �0,m�10 �m, which implies
a required TAP amplitude Bm�350 mG. The value of
Bm=487 mG, used in the experiment, represents our techni-
cal limit, and corresponds to the harmonic 1/e size of a
thermal cloud at a temperature of 9 �K. To assure that fitted
values for frequency and damping are unaffected by higher

FIG. 1. Typical quadrupole oscillation traces for fitting fre-
quency and damping; raw data acquired at a temperature of 2 �K:
�a� Low density data �n0=1.7�1011 cm−3� with a fit function �gray
line� resulting in �Q /�z=2.0 and � /�z=0.01. Each point represents
the average of three absorption images. �b� High density data
�n0=1.1�1014 cm−3� with a fit function �gray line� resulting in
�Q /�z=1.6 and � /�z=0.22. Each point represents the average of
15 phase contrast images. The error bars represent the error in the
mean.
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modes, we neglect the first two cycles of oscillation traces
acquired at temperatures above 7 �K, and the first cycle for
traces acquired above 4 �K. For lower temperatures also the
first cycle is analyzed. Note that the precise reproducibility
of the starting phase of our oscillations allows this procedure
without degrading the quality of the fits.

B. Description of the trapping field

During the observation of the quadrupole oscillation the
cloud resides in a potential given by U�r�=�B�B�r�−B0�
+mgy for the chosen Zeeman level in this experiment. Here
�B is the Bohr magneton and g the gravity acceleration along
the vertical direction �y direction�. For elongated Ioffe-
Pritchard traps the modulus of the trapping field B�r� is ac-
curately described by �35,36�

B�x,y,z� = 	�B0 + �z2�2 + 2�x2 + y2� + 4�xyz , �11�

where B0=0.9 G and =353 G/cm are defined above and
2�=274 G/cm2 is the axial curvature. To our knowledge 
and � were constant throughout the measurements to within
0.1%; B0 was monitored to be constant to within 1%. Ex-
panding Eq. �11� around the trap center and keeping the lead-
ing nonlinearities �36�, the potential can be written as

U��,z� = 1
2m��z

2z2�1 − 1
2�2/�0

2� + ��
2�2�1 − 1

4�2/�0
2�� + ¯ ,

�12�

where m�z
2=2�B�, m��

2=�B2 /B0 and �0=B0 /=25 �m
the harmonic radius �37�.

C. Detection procedure

Two imaging methods are used to observe the oscillations.
For our highest-density samples we use phase-contrast imag-
ing with red-detuned light. For densities n0�5�1013 cm−3 a
proper contrast is obtained at a detuning of −3 GHz, where
the detection is essentially nondestructive �38�. This allows
us to register the oscillations in a sequence of 31 images at
5 ms intervals, taking advantage of the fast “kinetics” imag-
ing mode of our camera �39�. For lower densities the phase
contrast method cannot be used because, at the �smaller� de-
tunings required to maintain adequate phase contrast, photo-
association losses disturb the measurements �40�.

For densities n0�5�1013 cm−3, we used repetitive
absorption imaging on the �5S1/2 ,F=2�↔ �5P3/2 ,F=3� tran-
sition �D2-line� �42�, varying the holding time of the cloud
after excitation of the oscillation. The images were taken in
situ, just before releasing the cloud from the trap �43�.
We apply the usual method of background subtraction
and level normalization to process the images �45,46�. To
retrieve the column density profile n2�y ,z� and the axial
and radial Gaussian 1/e sizes Le and Re, we fit a two-
dimensional Gaussian expression to the optical thickness dis-
tribution of our images. The central density follows with
n0=n2�0,0� /	�Re

2 and, with Eq. �8�, the relaxation time can
be expressed as

�z	̃ =
3

2

�z

��

� �

n2�0,0��
. �13�

Note that this expression does not depend explicitly on the
gas temperature. The collision cross section is �=8�a2 in
the zero temperature limit and is calculated with the value
a=98.98�4�a0 for the s-wave scattering length �47�.

To acquire sufficient statistics, at least 30 images are
taken to retrieve one oscillation trace for a given density and
each trace is acquired at least three times. Because the cross-
over happens over a narrow range of densities, great care
was taken to reproduce the initial conditions from shot to
shot. This is done by adjusting the density using laser deple-
tion in a feedback loop with the experimental result of the
previous shot �33�. Although this procedure increases the
shot to shot fluctuations, long-term drift is virtually elimi-
nated. With this procedure the atom number could be long-
term stabilized within a standard deviation of better than 1%.
By fitting the expression for an exponentially damped cosine
function to the trace �see Fig. 1�, we retrieve the experimen-
tal values for the frequency �Q and damping rate � of the
quadrupole mode for the selected density.

D. Accuracy of density and temperature determination

The absolute accuracy of n2�0,0� is estimated to be
30% �48�. The phase contrast images are calibrated against
absorption images of expanded clouds taken 15 ms after re-
lease from the trap at zero detuning. This procedure pre-
sumes the conservation of atom number during the expan-
sion.

In our analysis we account to leading order for the
corrections associated with trap anharmonicities. For tem-
peratures much lower than the harmonic temperature
T0=�BB0 /kB=60 �K, Eq. �12� becomes sufficiently accurate
to describe the cloud shape. In this limit the column density
on the trap axis �to leading order in the x integration� can be
expressed for z2
2kBT /m�z

2 as

n2�0,z� � n2�0,0�exp�−
m�z

2z2

2kBT
�1 − 1

2T/T0�� , �14�

where T /T0= �x2� /�0
2=kBT /�BB0 with �x2�=kBT /m��

2 the
variance of the thermal distribution of the cloud along the x
axis in the harmonic limit.

From Eq. �14� we estimate the 1/e-axial-size Le that
will be obtained by fitting a Gaussian to the axial column
density profile of the cloud, Le=L / �1− 1

4T /T0� with L defined
by L2=2kBT /m�z

2 �49�. The temperature follows with the
expression

− kBT � 1
2m�z

2Le
2�1 − 1

2T/T0� . �15�

Hence, for a temperature of 6 �K the harmonic approxima-
tion overestimates the temperature by 5%. The correction
in the central column density is smaller. Numerically we es-
tablished that the fit of a 2D Gaussian underestimates the
central column density by 1.4% at T /T0=0.1. As these
corrections are small, there is no need to go beyond the lead-
ing order of anharmonic correction to retrieve these quanti-
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ties. For measuring oscillation frequencies the situation is
different because these can be measured to high precision.

Mean-field broadening of the distribution is small
�50�. Calculating the variance �z2�= 1

2L2 using the recursive
expression for the density to first order in mean field
Umf�r�=2v0n�r�, leads for T
T0 to

1
2m�z

2L2 � kBT + Emf, �16�

where Emf=v0�n2�r�dr /�n�r�dr=v0n0 /	8 is the trap aver-
aged interaction energy with v0= �4��2 /m�a the interaction
coupling constant �1�. Equivalently, treating the mean field as
an effective potential we may write

kBT = 1
2m�z

2L2�1 − �� , �17�

where �=Emf/ �kBT+Emf� is the mean field correction
constant. For the data point with the highest mean field
�n0=1.1�1014 cm−3, T=2 �K� we calculate �=0.007.
Therefore, mean-field corrections are at least one order of
magnitude smaller that the anharmonic corrections and are
discarded in this paper.

IV. ANHARMONIC FREQUENCY SHIFTS

As we operate at temperatures well above Tc, we pay
special attention to the issue of trap anharmonicities. We fol-
low the path of argumentation as presented in �28,30� to
derive expressions for the anharmonic shifts. These are both
temperature and mode dependent and can also depend on the
density. The expressions are suitable for numerical evalua-
tion provided the first and second spatial derivatives of the
trapping potential are known.

To describe the dynamical evolution of an observable
�=��r ,v� it is multiplied by Eq. �1� and averaged over the
phase space

d

dt
��� − �v · �r�� −

1

m
�F · �v�� = −

��� − ���le

	
, �18�

where

����t� =
1

N
� ��r,v�f�t,r,v�d3r d3v , �19�

with N the number of atoms. By choosing the correct set of
observables, it is possible to obtain a closed set of equations
that describes the dynamics of these observables.

A. Dipole mode „L=1…

To investigate the effect of trap anharmonicities on the
dipole mode oscillation, we make the Ansatz

f�t,r,v� = f0�ri − ai,vi − ȧi� , �20�

where f0�r ,v�=C exp(−�mv2 /2+U�r�� /kBT) is the equilib-
rium distribution function with C the normalization factor
and ai=ai�t�. We choose �=vi and obtain the following set of
equations:

d

dt
�vi� −

1

m
�Fi�r�� = 0, �21�

where

�vi� = ȧi and �F�r�� = �F�r + a��0. �22�

Analogously to Eq. �19� we denote with ���0 the average
on the phase space using the equilibrium distribution f0�r ,v�.
Expanding up to first order around the equilibrium position
ai=0, we obtain

äi +
1

m
�

j

�Uij� �0aj = 0, �23�

where Uij� =�2U /�ri�rj. Restricting ourselves to potentials
with �Uij� �0=0 for i� j, we obtain for the effective frequen-
cies of the dipole modes

�̃iD
2 =

1

m
�Uii��0. �24�

Substituting Eq. �12� for the potential into Eq. �24� we obtain
for the leading anharmonic shift in the z direction

�̃zD � �z�1 − 1
2T/T0� . �25�

This expression is shown as a dashed line in Fig. 2. The
integral in Eq. �24� is readily evaluated numerically using
Eq. �11� and requires as input parameters only the values for
, �, and B0. The resulting curve is shown as the solid line in
Fig. 2. The curve follows the trend of our measurements of
center-of-mass oscillations as well as data obtained in Paris
�51�.

The zero temperature limit of �̃zD is largely fixed by mea-
surements with Bose-Einstein condensates, which repro-
duced within 1% over a period of one year. Its value is used
to calibrate �z and the related � coefficient. We have no
explanation for the remaining deviations for the points taken
with thermal samples at higher temperatures �52�. We cannot
trace them back to insufficient mechanical or electronic sta-
bility of our trap. Nonexponential contributions to the damp-
ing may account for a systematic error in the frequency, but
should be less than 1%. We speculate that possibly the tem-
perature determinations of the phase contrast measurements
could be affected by a molecular contribution to the phase
contrast, which tends to narrow down the distribution and

FIG. 2. Scaled frequencies �̃D /�D for the axial dipole mode
versus temperature. The gray line corresponds to the evaluation of
Eq. �24�. The leading slope �dashed line� is given by Eq. �25�. Open
circles: phase contrast measurements; closed circles: absorption im-
aging measurements, both acquired with thermal clouds. Diamonds:
measurements with Bose-Einstein condensates, using absorption
imaging. Open squares: results acquired at ENS-Paris �51�.
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results in an underestimated value for the temperature. This
results from the distribution of pairs, that can photoassociate,
which is proportional to the square of the atomic density.

B. Surface modes (L=0, L=2)

In order to calculate the anharmonic shifts for the breath-
ing and the two quadrupole modes we make the Ansatz

f�t,r,v� =
1

� j
bj

	� j

f0� ri

bi
,
�vi − �ḃi/bi�ri�

�i
1/2 � , �26�

where bi and �i are time-dependent variables. The parameters
bi take into account shape deformation of the density cloud
whereas the parameters �i allow an anisotropic momentum
distribution which is crucial to calculate the correct frequen-
cies. We choose �=viri and obtain the following set of equa-
tions:

b̈i�ri
2�0 −

�i

bi
�vi

2�0 −
1

m
�Fi�bjrj�ri�0 = 0. �27�

We impose the stationary solution and find the relation

�vi
2�0 = −

1

m
�Fi�rj�ri�0. �28�

Then choosing �= �vi− �ḃi /bi�ri�2 yields

�̇i + 2
ḃi

bi
�i = −

�i − �̄

	
, �29�

where �̄= ��i�i� /3.
Let us now focus our attention on two extreme regimes.

1. Collisionless limit

In the collisionless limit �	→�� we obtain the relation

�i =
1

bi
2 , �30�

and finally,

b̈i +
1

bi
3

�Fi�rj�ri�0

m�ri
2�0

−
�Fi�bjrj�ri�0

m�ri
2�0

= 0. �31�

Linearizing these equations and looking for solution of
the form e−i�t we obtain the three frequencies. In order to do
this explicitly we define the quantities

Aii =
3

m

�riUi��0

�ri
2�0

, �32�

where Ui�=�U /�ri, Aij =0 for i� j and

Bij =
1

m

�rirjUij� �0

�ri
2�0

, �33�

where Uij� =�2U /�ri�rj; note that, in general, Bij�Bji. We
have to solve

�A + B − �̃2I� = 0, �34�

where I is the identity matrix, in order to obtain the frequen-
cies. For the quadrupole modes with M = ±2 we find

�̃Q2
2 = Axx − Axy + Bxx − Bxy , �35�

whereas for the modes with M =0 we have

�̃B
2 = � + 	�2 − � �36�

�̃Q
2 = � − 	�2 − � , �37�

where

� = �Axx + Axy + Azz + Bxx + Bxy + Bzz�/2, �38�

� = �Axx + Axy + Bxx + Bxy��Azz + Bzz�

− 2�Axz + Bxz��Azx + Bzx� . �39�

Here we used �Uij� �0=0 for i� j. An analytic approximation
for the leading anharmonic shift of the M =0 quadrupole
mode is obtained by substituting Eq. �12� for the trap poten-
tial,

�̃Q � �Q�1 − 1
2T/T0� , �40�

where �Q is the frequency in the harmonic limit. Note that at
this level of the approximation the relative shift coincides
with that of the dipole mode. The result of the numerical
averages based on Eq. �11� is shown as the lower solid line in
Fig. 3. The lower dashed line corresponds to the leading shift
given by Eq. �40�.

Comparison with the experimental points in Fig. 3 shows
agreement as far as the trend of the shift is concerned but a
systematic deviation for the slope. This discrepancy can be
eliminated by presuming that our axial trap frequency �z is
underestimated by 1.5%. However, such a correction cannot
be justified on the basis of the limited set of data for the
dipole mode �52�.

FIG. 3. Scaled frequencies �̃Q /�Q for the quadrupole mode
versus temperature. The gray sector corresponds to Eq. �37� evalu-
ated for the crossover regime �see Sec. IV B 3� with the collision-
less and hydrodynamic limits indicated. The dashed lines show the
leading slopes given by Eqs. �40� and �44�. All data points corre-
spond to collisionless conditions. The dotted line is used to scale all
quadrupole frequency data to zero temperature.
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2. Hydrodynamic limit

In the hydrodynamic regime �	→0� the local equilibrium

is always maintained, which implies that �i= �̄. In this case
we obtain the relation

�i = �̄ =
1

�i
bi

2/3
, �41�

and therefore

b̈i +
1

bi�� j
bj�2/3

�Fi�rj�ri�0

m�ri
2�0

−
�Fi�bjrj�ri�0

m�ri
2�0

= 0. �42�

By linearizing around the equilibrium we find the frequen-
cies for the M = ±2 modes and the two M =0 monopole-
quadrupole modes. In this case we have to define the Aij
matrix as

Aii =
5

3m

�riUi��0

�ri
2�0

and Aij = 2
5Aii. �43�

Note that Aij does not depend on j. The matrix Bij is the same
as in the collisionless case. Solving the determinant Eq. �34�
leads again to Eqs. �35�–�37� for the frequencies and Eqs.
�38� and �39� for � and �. Only the expressions for the
matrix elements Aij have changed. Substituting Eq. �12� for
the trap potential we find for the leading anharmonic shift of
the hydrodynamic M =0 quadrupole mode

�̃Q � �Q�1 − 3
8T/T0� , �44�

which has a slightly weaker slope than in the collisionless
case. The result of the numerical averages based on Eq. �11�
are shown as the upper solid line in Fig. 3. The upper dashed
line corresponds to the leading shift given by Eq. �44�.

A comparison with experiment requires densities
n0�4�1014 cm−3 at a temperature T=4 �K, to have
2�z	̃�0.1, which is about three times our maximum density.
At our highest density of n0=1.3�1014 cm−3, we calculate

a three-body decay rate of Ṅ /N=2	3Ln0
2
1 s−1, with

L=1.8�5��10−29 cm6 s−1 the three-body rate constant in the
Bose-condensed state �53�. At a three times higher density,
the decay rate renders the acquisition of data at approxi-
mately constant density impossible for 87Rb.

3. Crossover regime

In the crossover region, the same approach can be used,
but after linearizing, one has to look for solutions of the form
e−i�t with a complex �. For the M =0 modes this leads to the
equation

�C��� −
i

	
D�����E��� −

i

	
F���� = 0, �45�

where C���=���2−�cl:B
2 ���2−�cl:Q

2 �, D���= ��2

−�hd:B
2 ���2−�hd:Q

2 �, E���=���2−�cl:Q2
2 �, and F���= ��2

−�hd:Q2
2 �. Each term represents two equations since they con-

tain real and imaginary parts. For an elongated cigar-shape
trap it is possible to write the frequencies in the form of Eq.

�4� with rescaled relaxation time 	̃= ��cl:B
2 /�hd:B

2 �	, which
reaches the value 	̃=6/5	 in the harmonic limit. The numeri-
cally calculated results of temperature induced shifts, based
on Eq. �11� in the crossover regime, is represented by the
gray sector in Fig. 3.

A comparison with experiment is beyond the scope of this
paper because, after scaling to �Q, the two limiting cases
are spaced by only 1%. Therefore, not only �̃Q has to be
determined to an accuracy much better than 1%, but also
the scaling parameter �Q. In the limiting cases the latter is
fully determined by the trap frequency �i.e. �cl=2�z and
�hd
1.55�z�. However, in the crossover region knowledge
of 	̃ to much better than 1% is required to calculate �Q from
Eq. �6� to adequate precision.

V. RESULTS AND DISCUSSION

We took all our data with the same trap parameters and
the same excitation procedure, but at various temperatures.
Starting the evaporation with a large atom number and using
“tight” trapping parameters we could reach high densities
and thus study the full crossover. However, this choice for a
tight trap made us sensitive for anharmonic shifts as dis-
cussed in Sec. IV �54�. Therefore, we extrapolate all fre-
quency data to the zero-temperature limit ��̃Q→�Q� using
the dotted curve in Fig. 3. This yields the best estimate for
the value in the harmonic limit of our potential. The correc-
tion curve is based on the temperature dependence observed
for our data in the collisionless regime �2�z	̃�10, see Fig.
5�, where we may presume �Q=2�z. In this way systematic
deviations of our results from the curves in Figs. 4 and 5�b�
were substantially reduced.

In Fig. 4 we plot the observed, scaled damping rates � /�z
versus the extrapolated quadrupole frequencies normalized
to the axial trap frequency, �Q /�z. The drawn curve corre-
sponds to the crossover expression, Eq. �4� with �cl=2�z and
�hd=1.55�z. Plots of the same experimental data and the
exact solutions of Eq. �4� separately against 2�z	̃ are given

FIG. 4. Damping �raw data� versus frequency �extrapolated� for
the quadrupole mode. Open circles: data acquired at MIT �45�, ENS
�13�, and AMOLF �16�. The solid line is corresponds to the cross-
over expression Eq. �4�. The data to the left of the straight line are
obtained with phase contrast �Ph.C.� imaging, those on the right
with absorption �Abs.� imaging. The error bars represent a 95%
confidence interval of the fit.
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in Fig. 5�a� for � /�z and Fig. 5�b� for �Q /�z.
From the damping results �Fig. 5�a�� we obtain

2�z	̃0=1.0�1� for the experimental value of the crossover
point. Given the 30% absolute accuracy of our density deter-
mination this agreement is fortuitously good �see Sec. II�.

The determination of the crossover point from the
frequency crossover behavior is less straightforward, because
errors in the temperature determination add to the error
in the extrapolated frequency �Q. Further, as the frequency
corrections are all positive, they affect the determination of
2�z	̃0 from Fig. 5�b�. For the crossover region �0.1�2�z	̃
�10� the average applied frequency correction was
��Q /�z=2.6%, which changes the experimental value for
2�z	̃0 by a factor 0.85 to yield 2�z	̃0=1.0�1� �55�. This value
coincides with the result obtained from the damping data and
shows that our results are self-consistent.

In the collisionless regime anharmonicities can give rise
to dephasing induced damping. These effects were not cor-
rected for as they do not affect to leading order the determi-
nation of the crossover point. Here we briefly comment on

these effects. Roughly, one may argue that for a given anhar-
monic spread ��Q in frequencies the dephasing time �t will
be given by ��Q�t
2�. Hence, the dephasing related damp-
ing rate is ��=2� /�t
��Q. The cluster of data points at
2�z	̃
30 in Fig. 5�a� best illustrates the significance of the
correction as they were taken at the highest temperature
�9 �K�. For these points the anharmonic frequency shift ��Q

is 3.5% �see Fig. 3�. With �� /�z���Q /�z=0.035 this
suggests that the anomalously high damping rates observed
for these data points �Fig. 5�a�� may be entirely attributed to
dephasing effects. Near the crossover point the collisional
damping is much faster and dephasing corrections may be
neglected �� /���1/2����Q /��2
10−3.

We also verified that our shot-to-shot variations in the
density have a negligible effect on the measured damping
rate. The frequency shifts fastest at the density of the cross-
over point, where ���Q /�z� /���cl	̃�= �2/����cl−�hd� /�z


0.3 as follows directly by taking the first derivative of Eq.
�6� with respect to 	̃. As 	̃ scales inversely proportional to the
central density, a 1% variation in atom numbers results �at
constant temperature� in a 0.3% variation of the frequency,
which is much smaller than the one considered above and
therefore also negligible.

VI. SUMMARY AND CONCLUSIONS

With Figs. 4 and 5 we obtain good agreement between
experiment and the crossover theory. The frequency shifts
down from 2�z in the collisionless regime to 1.55�z for col-
lisionally hydrodynamic clouds, with �z the axial frequency
of our trap. Most of the shift occurs over a narrow range of
densities around the crossover point. The damping rate peaks
over the same range of densities. The determinations of the
crossover point from the frequency and the damping behav-
ior agree within 10%, 2�z	̃0=1.0�1�. The agreement with the
theory is limited by a 30% absolute uncertainty in density.
Further, we present a theory and experimental evidence for
anharmonic frequency shifts. The theory allows numerical
evaluation for potentials with known first and second spatial
derivatives. We show that for elongated Ioffe-Pritchard traps
knowledge of the central field B0 suffices to calculate the
leading anharmonic shifts with simple analytic expressions.
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