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The fastest possible collective response of a quantum many-body system is related to its excitations
at the highest possible energy. In condensed-matter systems, the corresponding timescale is typically
set by the Fermi energy. Taking advantage of fast and precise control of interactions between
ultracold atoms, we report on the observation of ultrafast dynamics of impurities coupled to an
atomic Fermi sea. Our interferometric measurements track the non-perturbative quantum evolution
of a fermionic many-body system, revealing in real time the formation dynamics of quasiparticles
and the quantum interference between attractive and repulsive states throughout the full depth of
the Fermi sea. Ultrafast time-domain methods to manipulate and investigate strongly interacting
quantum gases open up new windows on the dynamics of quantum matter under extreme non-
equilibrium conditions.

Non-equilibrium dynamics of fermionic systems is at
the heart of many problems in science and technology,
from the physics of neutron stars and heavy ion collisions
to the operation of electronic devices. The wide range of
energy scales, spanning the low energies of excitations
near the Fermi surface up to high energies of excitations
from deep within the Fermi sea, challenges our under-
standing of the quantum dynamics in such fundamental
systems. The Fermi energy EF sets the shortest response
time for the collective response of a fermionic many-body
system through the Fermi time τF = h̄/EF , where h̄ is
the reduced Planck constant. In a metal, i.e. a Fermi
sea of electrons, EF is in the range of a few electronvolts,
which corresponds to τF on the order of 100 attoseconds.
Dynamics in condensed matter systems on this timescale
can be recorded by attosecond streaking techniques [1]
and the initial applications were demonstrated by prob-
ing photoelectron emission from a surface [2]. However,
despite these spectacular advances, the direct observation
of the coherent evolution of a fermionic many-body sys-
tem on the Fermi timescale has remained beyond reach.

In atomic quantum gases, the fermions are much heav-
ier and the densities far lower, which brings τF into
the experimentally accessible range of typically a few
microseconds. Furthermore, the powerful techniques of
atom interferometry [3] now offer the exciting opportu-
nity to probe and manipulate the real-time coherent evo-
lution of a fermionic quantum many-body system. Such
techniques have been successfully used, e.g. to measure
bosonic Hanbury-Brown-Twiss correlations [4], demon-
strate topological bands [5], probe quantum and ther-
mal fluctuations in low-dimensional condensates [6, 7],
and to measure demagnetization dynamics of a fermionic

gas [8, 9]. Impurities coupled to a quantum gas pro-
vide a novel and unique probe of the many-body state.
Strikingly, they allow direct access to the system’s wave
function when the internal states of the impurities are
manipulated using a Ramsey atom-interferometric tech-
nique [10, 11].

We employ dilute 40K atoms in a 6Li Fermi sea to mea-
sure the response of the sea to a suddenly introduced im-
purity. For near-resonant interactions, we observe coher-
ent quantum many-body dynamics involving the entire
6Li Fermi sea. We also observe in real time the forma-
tion dynamics of the repulsive and attractive impurity
quasiparticles. In the limit of low impurity concentration,
our experiments confirm that an elementary Ramsey se-
quence is equivalent to linear-response frequency-domain
spectroscopy. We demonstrate that our time-domain ap-
proaches allow us to prepare, control, and measure many-
body interacting states.

Our system consists of a small sample of typically
1.5×104 40K impurity atoms immersed in a Fermi sea of
3×105 6Li atoms [12, 13]. The mixture is held in an opti-
cal dipole trap (Fig. 1A) at a temperature of T = 430 nK
after forced evaporative cooling. Because of the Li Fermi
pressure and a more than two times stronger optical po-
tential for K, the K impurities are concentrated in the
central region of the large Li cloud. Here they experi-
ence a nearly homogeneous environment with an effec-
tive Fermi energy of εF = kB × 2.6µK [13], where kB
is Boltzmann’s constant. The corresponding Fermi time
τF = 2.9 µs sets the natural time scale for our experi-
ments. The degeneracy of the Fermi sea is characterized
by kBT/εF ≈ 0.17. The concentration of K in the Li sea
remains low, with n̄K/n̄Li ≈ 0.2, where n̄Li (n̄K) is the
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FIG. 1. Illustration of the experimental setup and procedure.
(A) Li (blue) and K (red) atoms are held in a crossed-beam
optical dipole trap. The magnetic field coils (gold) and the rf
coil (blue) are used to manipulate the atoms. (B) An rf π/2
pulse is used to prepare the K atoms in a superposition of
internal Zeeman states as shown on a Bloch sphere. A second
rf pulse is used to probe the final state.

average of the Li (K) number density sampled by the K
atoms [13].

The interaction between the impurity atoms in the in-
ternal state K|3〉 (third-to-lowest Zeeman sublevel) and
the Li atoms (always kept in the lowest Zeeman sub-
level) is controlled using a rather narrow [13] interspecies
Feshbach resonance near a magnetic field of 154.7 G
[12, 14]. We quantify the interaction with the Fermi
sea by the dimensionless parameter X ≡ −1/κFa, where
κF = h̄−1√2mLiεF is the Li Fermi wavenumber with mLi

the Li mass, and a is the s-wave interspecies scattering
length. While slow control of X is realized in a stan-
dard way by variations of the magnetic field, fast control
is achieved using an optical resonance shifting technique
[12]. The latter permits sudden changes of X by up to
about ±5 within a time shorter than τF /15 ≈ 200 ns.

Our interferometric probing method is based on a two-
pulse Ramsey scheme (Fig. 1B), following the suggestions
of Refs. [10, 11]. The sequence starts with the impurity
atoms prepared in the spin state K|2〉 (second-to-lowest
Zeeman sublevel), for which the background interaction
with the Fermi sea can be neglected. A first, 10-µs-long,
radio-frequency (rf) π/2-pulse drives the K atoms into a
coherent superposition between this non-interacting ini-
tial state and the state K|3〉 under weakly interacting
conditions (interaction parameter X1 with |X1| ≈ 5).
Using the optical resonance shifting technique [12], the
system is then rapidly quenched into the strongly inter-
acting regime (|X| < 1). After an evolution time t, the
system is quenched back into the regime of weak interac-
tions and a second π/2-pulse is applied. The population
difference N3−N2 in the two impurity states is measured

as a function of the phase of the rf pulse [12]. The con-
trast |S(t)| and the phase ϕ of the resulting sinusoidal
signal is finally determined as a function of t. In the
limit of low impurity concentration, the complex func-
tion S(t) = |S(t)|e−iϕ(t) can be interpreted as the overlap
of the interacting and the non-interacting components of
the system’s wavefunction [10]. The squared amplitude
|S(t)|2 is then equivalent to the common definition of a
Loschmidt echo [15, 16].

We first consider the interaction conditions where pola-
ronic quasiparticles are known to exist [17]. Figures 2A-
D show the evolution of the contrast and the phase mea-
sured in the repulsive and the attractive polaron regimes,
where X = −0.23(6) and X = +0.86(6), respectively.
For short evolution times of up to about 4τF , we observe
both contrast signals to exhibit a similar initial parabolic
transient, which is typical of a Loschmidt echo [16]. For
longer times, this connects to an exponential decay of the
contrast and a linear evolution of the phase. In Ref. [12],
we showed that the long-time decay of the contrast in
this regime can be interpreted in terms of quasiparticle
scattering. Here, the linear phase evolution corresponds
to the energy shift of the quasiparticle state, for which we
obtain +0.29(1)εF for the repulsive case in Fig. 2C and
−0.27(1)εF for the attractive case in Fig. 2D. Remark-
ably, while the long-time behavior reflects the quasipar-
ticle properties, the observed initial transient reveals the
ultrafast real-time dynamics of the quasiparticle forma-
tion.

On resonance, for the strongest possible interactions,
the quasiparticle picture breaks down. Here our mea-
surements, displayed in Fig. 2E and 2F for X = 0.08(5),
reveal the striking quantum dynamics of a strongly in-
teracting fermionic system forced into an extreme non-
equilibrium state. The contrast |S(t)| shows pronounced
oscillations reaching zero, while the phase ϕ(t) exhibits
plateaus. The revivals of the contrast |S(t)| indicate
partially reversible entanglement between the internal
state of the impurity and the Fermi sea [10]. This pro-
cess involves the whole Fermi sea and occurs on the
fastest timescale available to the collective dynamics of a
fermionic system.

To further interpret our measurements we employ
two different theoretical approaches: the truncated ba-
sis method (TBM) [13] and the functional determinant
approach (FDA) [11]. The TBM models our full exper-
imental procedure assuming zero temperature and con-
sidering only single particle-hole excitations. This ap-
proximation, known as the Chevy ansatz [18], has been
successfully used to predict the properties of quasipar-
ticles in cold gases [17]. The predictions of the TBM
are represented by the blue lines in Fig. 2. This method
accurately describes the initial transient, as well as the
period of the oscillations of S(t) on resonance. While
the zero-temperature TBM calculation naturally overes-
timates the contrast in the thermally dominated regime
(t > 6τF ), it accurately reproduces the observed linear
phase evolution and thus the quasiparticle energy. The
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FIG. 2. Impurity dynamics in the Fermi sea. (A and C) Contrast |S(t)| and phase ϕ(t) of the interference signal depending
on the interaction time t in the repulsive polaron regime for X = −0.23(6), with the rf pulse applied at X1 = −3.9. (B and
D) Same quantities in the attractive polaron regime for X = 0.86(6) and X1 = 5.8. (E and F) Same quantities for resonant
interactions (X = 0.08(5), X1 = 4.8). The solid blue lines show the results of the TBM calculations. The solid (dashed) red
lines show the results of the FDA calculations at the measured (at zero) temperature. The shaded regions reflect the combined
experimental uncertainties in X, kBT and εF . The errors in the experimental data are typically smaller than the symbol size.

FDA is an exact solution for a fixed impurity at arbitrary
temperatures taking into account the non-perturbative
creation of infinitely many particle-hole pairs. The FDA
calculation is represented by the solid red lines in Fig. 2.
We see remarkable agreement with our experimental re-
sults, which indicates that the effects of impurity mo-
tion remain small in our system. This observation can
be explained by the fact that our impurity is sufficiently
heavy so that the effects of its recoil with energies of
about 0.25 εF [13] are masked by thermal fluctuations.
To identify the effect of temperature, we performed a
corresponding FDA calculation for T = 0 and show the
results as the dashed lines in Fig. 2. Here, we see a slower
decay of |S(t)|, which follows a power law at long times
[13] under the idealizing assumption of infinitely heavy
impurities.

Time-domain and frequency-domain methods are
closely related, as is well known in spectroscopy. In the
limit of low impurity density, where the interactions be-
tween the impurities can be neglected, S(t) is predicted
to be proportional to the inverse Fourier transform of
the linear excitation spectrum A (ω) of the impurity [19].
To benchmark our interferometric method, we measure
A (ω) using rf spectroscopy similar to our earlier work
[20], but with great care to ensure linear response [13].
The measured excitation spectra are shown in Fig. 3.
In the repulsive and attractive polaron regimes, we ob-
serve the characteristic structure of a peak on top of a
broad pedestal [17]. While the peak determines the long-
time evolution of the quasiparticle, the pedestal is asso-
ciated with the rapid dynamics related to the emergence
of many-body correlations. For resonant interactions, the
rf response is broad and nearly symmetric about ω0, im-
plying that the zero crossings of S(t) are accompanied

by jumps in its phase by π, as is seen in Fig. 2E and
2F. Based on the observed spectral response, we inter-
pret the oscillations of S(t) in Figs. 2E and 2F as arising
from simultaneous excitations of the two branches of our
many-body system corresponding to the two humps in
the rf spectrum.

A detailed comparison of our time- and frequency-
domain measurements reveals the powerful capability of
our approach to prepare and control many-body states.
This is revealed in Fig. 3, where we show the Fourier
transform of the S (t) data from Fig. 2 as the gray curves.
We observe that time-domain measurements where the
rf pulses are applied in the presence of weakly repul-
sive interactions (Fig. 3A) emphasize the upper branch
of the many-body system while in the attractive case
(Fig. 3B,C), the lower branch is emphasized. We explain
this observation by the action of the rf pulses to prepare
weakly interacting polaron states [13]. Compared to the
non-interacting initial state used in the frequency-domain
spectroscopy, these polarons have an increased wavefunc-
tion overlap with the corresponding strongly interacting
repulsive and attractive branches, leading to the observed
shift in the spectral weight. Our measurements demon-
strate that the control over the initial state of many par-
ticles can be used to precisely manipulate quantum dy-
namics in the strongly interacting regime. This unique
capability of time-domain techniques opens up a wide
range of applications, including the study of the dynam-
ical behavior near the phase transition from a polaronic
to a molecular system [17] and the creation of specific
excitations of a Fermi sea down to individual atoms [21].

Our interpretation of the results in Figs. 2 and 3 re-
lies on the assumption that our fermionic impurities are
sufficiently dilute so that any interactions between them
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FIG. 3. Rf spectroscopy of an impurity in the Fermi sea. (A and B) show the rf spectra for the repulsive (X = −0.23(6)) and
the attractive (X = 0.86(6)) interactions, respectively. (C) shows the rf spectrum for resonant interactions (X = 0.08(5)). The
spectral data are normalized to unit integral. The gray lines correspond to the numerical Fourier transform of the S(t) data
from Fig. 2. The width of the gray curve reflects the combined experimental errors in the S(t) data.
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FIG. 4. Observation of induced impurity-impurity interac-
tions. Resonant dynamics of the contrast is shown for X =
−0.01(5), X1 = 5.2, εF = kB × 2.1(1) µK, kBT/εF = 0.24(2)
and different impurity concentrations n̄K/n̄Li. The black,
green, and blue squares correspond to n̄K/n̄Li = 0.53, 0.33,
and 0.20, respectively. The red circles correspond to the linear
extrapolation of the complex S(t) data to the limit of a sin-
gle impurity, taking into account the errors in the data. The
inset reproduces this extrapolation together with the highest-
concentration data points. The red line shows the result of
the FDA calculation. The shaded region reflects the combined
experimental uncertainties in X, kBT and εF .

can be neglected. We can extend our experiments into a
complex many-body regime where the impurities interact
both with the Fermi sea and with each other, by increas-
ing the impurity concentration [13]. Figure 4 shows the
time-dependent contrast measured for kBT = 0.24(2)εF
and n̄K/n̄Li =0.20, 0.33, and 0.53. An extrapolation of
the S(t) data to zero concentration (open red circles) lies
close to the data points for n̄K/n̄Li =0.20, which is the
typical concentration in our measurements, and agrees
with the FDA calculation. This confirms that the physics
that we access in the measurements with a small sample

of fermionic impurities is close to that of a single impu-
rity, which we posit to be a consequence of the fermionic
nature of the impurities. When the impurity concentra-
tion is increased, we find that the contrast for t > 5τF
is decreased and the period of the revivals of |S(t)| is
prolonged. We interpret this as arising from effective in-
teractions between the impurities induced by the Fermi
sea [22, 23]. Such interactions between fermionic impuri-
ties are predicted to lead to novel quantum phases [24].

Our results demonstrate the power of many-body in-
terferometry to study ultrafast processes in strongly in-
teracting Fermi gases in real time, including the forma-
tion dynamics of quasiparticles and the extreme non-
equilibrium dynamics arising from quantum interference
between different many-body branches. Of particular in-
terest is the prospect of observing Anderson’s orthogonal-
ity catastrophe [11, 13] by further cooling the Li Fermi
sea [25] while pinning the K atoms in a deep species-
selective optical lattice[26].
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S1. THEORETICAL DESCRIPTION

In this section, we summarize the approaches that we developed to theoretically model the results of our interfer-
ometric Ramsey experiments. We first discuss the microscopic model that we use to describe the narrow Feshbach
resonance of the Li-K mixture, and then we outline how we calculate the time evolution of the system within two
approaches: the Truncated Basis Method (TBM) and the Functional Determinant Approach (FDA). In this section,
we assume that a ‘perfect quench’ is performed, where the impurity is initially non-interacting with the Fermi sea
and there are no interactions during the radio-frequency (rf) pulses. A discussion of the role played by interactions
during the rf pulses is deferred to Section S3.

S1.1. Narrow Feshbach resonance model for Li-K mixtures

In our experiment, the K impurities are concentrated in the central region of the Li Fermi gas where they experience
a nearly uniform Li environment (see Section S5.A). Hence we consider in our model K impurities that are immersed
in a Li Fermi gas of uniform density. The Li-K mixture is prepared at magnetic fields near a closed-channel dominated
Feshbach resonance between the Li|1〉 and K|3〉 states that occurs near 155 G. The narrow character of this resonance
is a consequence of the limited strength of the coupling of atoms in the open channel to a closed-channel molecular
state. To describe this system we use the two-channel Hamiltonian

Ĥ =
∑
k

εk,Liĉ
†
kĉk +

∑
k

εk,Kd̂
†
kd̂k +

∑
k

[εk,M + εM (B)] b̂†kb̂k

+
g√
V

∑
k,q

χ(k)
(
b̂†qĉq/2+kd̂q/2−k + d̂†q/2−kĉ

†
q/2+kb̂q

)
, (1)
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where the first line defines the non-interacting Hamiltonian Ĥ0. Here, V is the total system volume, ĉ†k (ĉk) creates

(annihilates) a Li fermion with momentum h̄k and single-particle energy εk,Li = h̄2k2

2mLi
, and d̂†k (d̂k) creates (annihilates)

a K impurity atom in the K|3〉 state with dispersion εk,K = h̄2k2

2mK
, where we define k ≡ |k|. The closed-channel molecule

is created (annihilated) by b̂†k (b̂k). It has the dispersion εk,M = h̄2k2

2(mK+mLi)
, and a bare energy relative to the scattering

threshold, εM (B) = δµ(B −Bc). Here δµ is the differential magnetic moment between the open and closed channels,
and Bc denotes the threshold crossing of the bare molecular state [27].

Close to the Feshbach resonance, the scattering length a diverges and the interaction between the K impurities
and the Li atoms is predominantly mediated by exchange of the closed-channel molecule. We therefore neglect the
background scattering potential in the open channel [14]. The strength of the coupling between the open and closed
channels is given by g, and we take a form factor χ(k) = 1/[1 + (r0k)2], which accounts for the finite extent r0 of the
closed-channel wave function ∼ e−r/r0/r.

The parameters of the model δµ, Bc, g, and r0 are fully determined by known experimental parameters. First,
the differential magnetic moment has recently been measured to be δµ = h×2.35(2) MHz/G [12]. Second, close to
resonance, the scattering length may be parametrized as

a = abg

(
1 +

∆B

B0 −B

)
≈ abg

∆B

B0 −B
, (2)

where B0 is the center of the Feshbach resonance with width ∆B = 0.880 G and background scattering length
abg = 63.0 a0 [14]. To connect with our model, we consider the on-shell two-body scattering amplitude f(k), which
for the Hamiltonian (1) is given by [28]

f(k) =
µredg

2χ(k)2

2πh̄2

[
− h̄

2k2

2µred
+ εM (B)− g2µred

4πh̄2r0[1− ikr0]2

]−1

, (3)

where µred = mLimK/(mLi + mK) is the reduced mass and k is the relative scattering wave vector. Using the low
energy expansion f−1(k) ≈ −a−1 + 1

2reffk
2 − ik, with reff the effective range, we thus identify

a =
1

1
2r0

+ 2R∗µredδµ(B −Bc)/h̄2 , (4)

reff = −2R∗ + 3r0 − 4r2
0/a, (5)

where R∗ ≡ h̄4π/(µ2
redg

2) is the range parameter of the Feshbach resonance [29, 30]. Comparing Eqs. (2) and (4)
yields

R∗ =
h̄2

2µredabgδµ∆B
, (6)

B0 −Bc =
1

2
∆Babg/r0. (7)

Equation (6) relates R∗, and thus the coupling constant g, to the known experimental parameters. The extent of
the closed-channel wave function r0 in turn follows by comparing Eq. (7) to the theoretical prediction from quantum
defect theory [31, 32], B0 −Bc = abg∆B/ā, where ā = 0.955lvdw and lvdw = 40.8 a0 is the van der Waals length [14].
Thus we obtain r0 = ā/2. Finally, B0 was obtained in Ref. [12], allowing the determination of Bc.

S1.2. Truncated Basis Method

To model a mobile impurity as in the experiment, we consider an approximate wave function for the zero-momentum
impurity that incorporates the scattering of a single particle out of the Fermi sea:

|ψα〉 = α0d̂
†
0 |FS〉+

∑
q

αqb̂
†
qĉq |FS〉+

∑
k,q

αk,qd̂
†
q−kĉ

†
kĉq |FS〉 . (8)

Here, the first term on the right hand side describes the product state of the impurity K atom at zero momentum and

the ground state of the non-interacting Li Fermi sea |FS〉 =
∏
|k|<kF ĉ

†
k |0〉, where kF is the Fermi momentum, which

is related to the Fermi energy by εF = h̄2k2
F /(2mLi). The last two terms correspond, respectively, to the impurity
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binding a Li atom to form a closed-channel molecule, and the impurity exciting a particle out of the Fermi sea, in
both cases leaving a hole behind. When using the TBM, we focus on zero temperature in order to capture the purely
quantum evolution of the impurity. For convenience, within this model we also take r0 → 0, which formally requires
taking the bare crossing Bc → ∞ to keep a finite. This approximation is justified, as R∗ exceeds r0 by about two
orders of magnitude.

Truncated wave functions of the form (8) have been used extensively in the study of Fermi polarons in ultracold
atomic gases, starting with the work of Chevy [18]. While most of the previous work has focused on equilibrium
properties, recently it has been proposed that these wave functions may be extended to dynamical problems using a
variational approach to obtain the equations of motion [33], for instance to calculate the decay rate of excited states.

Here, we adapt the use of truncated wave functions for the Fermi polaron to the calculation of the dynamical
response of the impurity to an interaction quench. For a perfect quench and at zero temperature, the quantity
measured in experiment corresponds to the overlap between the interacting and non-interacting states of the system,
i.e., we have [10, 11]

S(t) = 〈ψ0(t)|ψint(t)〉 = 〈ψ0| eiĤ0t/h̄e−iĤt/h̄ |ψ0〉 . (9)

Here |ψ0〉 ≡ d̂†0 |FS〉 is the initial non-interacting state of energy E0, and ψint(t) is the state after a quench at time
t = 0 from zero to finite impurity interactions with the Fermi sea. Formally expanding in a complete set of states for
the single impurity problem, the Ramsey signal (9) then becomes

S(t) =
∑
j

|〈ψ0|φj〉|2 e−i(Ej−E0)t/h̄, (10)

where |φj〉 is an eigenstate of the interacting Hamiltonian with energy Ej . However, this requires one to solve the
entire problem which is generally not possible for a mobile impurity. Thus, within the Truncated Basis Method
(TBM), we restrict the Hilbert space to wave functions of the form (8) and diagonalize the Hamiltonian within this
truncated basis. As we shall see, this truncation permits an extremely accurate description of the initial quantum
dynamics of the impurity.

For small t, we expand e−iĤt/h̄ to find

S(t) ≈ 1− (t/τF )2 (1 +mLi/mK)2

3πkFR∗
, (11)

with τF the Fermi time. This reveals that the short-time dephasing dynamics of S(t) is completely determined by the
two-body properties, which are captured exactly by the TBM. As we will see below, the TBM describes the impurity
behavior also beyond the two-body timescale since higher order correlations and multiple particle-hole excitations take
longer to build up. Indeed, for a mobile impurity and for sufficiently weak attraction where the attractive polaron is
the ground state, the TBM correctly describes the long-time behavior S(t)→ |α0|2e−iεpt/h̄. Here, |α0|2 is the polaron
residue (squared overlap with the non-interacting state) and εp is the polaron energy, which are both accurately
determined using a wave function of the form (8) [34].

With the TBM we consider zero temperature in order to isolate the quantum dynamics of the impurity. To better
model the experiment, in principle one can extend the TBM to finite temperature by taking the initial state to be a
statistical thermal distribution involving multiple impurity momenta. However, a more convenient approach at finite
temperature is described in the next section.

S1.3. Functional Determinant Approach

At times t substantially exceeding τF , the full description of the impurity dynamics requires the inclusion of multiple
particle-hole pair excitations as well as the effect of finite temperature, both of which present a theoretical challenge.
In order to study and describe both effects, we employ the Functional Determinant Approach (FDA) [11, 35–37].

In the FDA the impurity is treated as an infinitely heavy object. In this limit, the FDA provides an exact solution
of the dynamical many-body problem at arbitrary temperatures and times. The justification of the infinite mass
approximation, which will be discussed in more detail in Section S2, is rooted in two observations. First, in our
experiment, the mass of the K impurities is much larger than that of the Li atoms (mass ratio mK/mLi ≈ 6.7) which
constitute the surrounding Fermi gas. Therefore, the recoil energy gained by the K impurities due to the scattering
with a Li atom is small. We estimate the typical recoil momentum kR by averaging over all possible scattering
processes on the Fermi surface, yielding kR = 4kF /3. From that we obtain an estimate for the typical recoil energy
ER = 16

9
mLi

mK
εF ≈ 0.25εF , which determines a typical time scale τR = h̄/ER ≈ 4τF , up to which one expects recoil
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to have a minimal effect on the many-body quantum dynamics, cf. Section S2.2. Second, at times exceeding the
thermal time scale τT = h̄/(kBT ), which in our experiment is given by τT ≈ 6τF , thermal effects due to the averaging
over various statistical realizations become relevant. The resulting thermal fluctuations disrupt the coherent quantum
propagation of the impurity, and hence, for times t > τT , mask the effect of recoil [38].

To a good approximation, we may thus take the limit of infinite impurity mass, which admits the mapping of Eq. (1)
onto the bilinear Hamiltonian

Ĥ = εM (B)m̂†m̂+
∑
k

εkĉ
†
kĉk + g

∑
k

χ(k)[m̂†ĉk + m̂ĉ†k]. (12)

Here, m̂† is the creation operator of the localized closed channel molecule and the interaction is described by the
annihilation of a Li atom converting the empty impurity molecular state into an occupied one. By taking the limit
mK →∞ we obtain a modified reduced mass µ′red = mLi, which differs by a factor of 40/46 from the experimental one.
This needs to be taken into account when identifying the microscopic parameters. To ensure, in particular, that the
off-diagonal coupling g in Eq. (12) remains of the same strength as in the experiment, a reduced resonance parameter
R′∗ = (40/46)2R∗ has been used, which we do for all data shown in the main text. Using these identifications, the
model Eq. (12) also accurately describes the short-time dynamics as given by Eq. (11), cf. Fig. 2 in the main text.

The calculation of time-resolved, many-body expectation values such as Eq. (9) at arbitrary temperature presents
a theoretical challenge. However, for the model (12), we are able to calculate the time-resolved Ramsey response
in an exact way using the FDA [11, 37]. This is based on the observation that for bilinear Hamiltonians thermal
expectation values in the many-body Fock space can be reduced to determinants in the single-particle space by virtue
of the identity

tr[ρ̂ eŶ1eŶ2 . . .] = det[1− n̂+ n̂ eŷ1eŷ2 . . .]. (13)

Here Ŷ1, Ŷ2, . . . are many-body operators, ŷ1, ŷ2, . . . are their single-particle counterparts, ρ̂ is the many-body density

matrix describing the state of the system, and n̂ = 1/[eβ(ĥ0−µ) + 1] is the occupation operator defined in the single-
particle space, with µ the fermion chemical potential. A specific example for Eq. (13) is the perfect quench Ramsey
response, which at finite temperature is given by [11]

S(t) = tr[ρ̂ eiĤ0te−iĤt] = det[1− n̂+ n̂ eiĥ0te−iĥt]. (14)

Here, Ĥ0 =
∑

k εkĉ
†
kĉk is the free Hamiltonian of the Li Fermi gas and Ĥ is the Hamiltonian in the presence of

impurity scattering given in Eq. (12), while ĥ0 and ĥ are their single-particle counterparts. A numerical evaluation of
Eq. (14) then only requires a calculation of the single particle orbitals and energies in order to obtain the single-particle
determinant.

S2. ROLE OF PHYSICAL PROCESSES ON DIFFERENT TIME SCALES

The combination of both our theoretical approaches allows us to accurately model the physics at various time scales
in our experiment. Making use of the fact that the FDA and the TBM differ distinctly in their treatment of multiple
particle-hole excitations, the impurity mass, and finite temperature, we can use a comparison of their predictions to
determine the role of these processes and effects in the many-body non-equilibrium dynamics of our experiment. To
keep the analysis transparent, in this section we still assume that a perfect quench is performed.

S2.1. Multiple particle-hole excitations

In order to analyze the role of multiple particle-hole excitations, we first consider the limit of a fixed (infinitely
heavy) impurity at zero temperature. In this scenario, the FDA yields the exact solution of the impurity problem.
Since, in this case, the TBM only differs from the FDA by its neglect of multiple particle-hole excitations, a comparison
of the predictions of the two methods allows us to isolate the effect of these excitations.

In Fig. 5 we display the predictions for the Ramsey response using the two theoretical approaches. We find that
both theoretical predictions agree extremely well at short times. In particular, for both the amplitude and phase
of S(t), our results imply that multiple particle-hole excitations start to influence our observables at a time scale of
around 6τF , and only become prominent beyond 10τF . Thus, at shorter time scales, multiple particle-hole excitations
can be neglected when predicting the results of the Ramsey measurements.
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FIG. 5. Effect of multiple particle-hole fluctuations. Taking the idealizing limit of zero temperature and infinite impurity
mass, we compare the Ramsey response for a perfect quench (top: amplitude, bottom: phase) obtained exactly with the FDA
(red, long dashed) to the one obtained with TBM (blue, short dashed) for (A, C) X = −0.23, (B, D) X = 0.86, and (E, F)
X = 0.08. For this comparison, we take r0 = 0 and kFR

′∗ = 1.1(40/46)2.

We note that the fixed impurity scenario is a worst-case scenario for the TBM: At T = 0, the infinitely heavy
impurity is subject to the orthogonality catastrophe with an associated power-law decay of the Ramsey contrast at
long times [39]. This decay, which arises due to an infinite number of particle-hole fluctuations and which leads to
a vanishing quasiparticle weight, is exactly incorporated in the FDA. By contrast, in the long-time limit, the TBM
predicts the saturation of |S(t)| to a constant value (see Fig. 5), corresponding to a spurious finite residue. However,
for a mobile impurity at zero temperature, recoil becomes relevant. These recoil effects lead to the absence of the
orthogonality catastrophe [38], and thus to an increased accuracy of the TBM in the case of finite impurity mass.

Generally, one expects that the relevant time scale for multiple particle-hole excitations is closely related to the
Fermi time τF . As discussed above, we find that such excitations become relevant for a description of S(t) only at
around 6τF or beyond. This observation can be understood in a twofold way. First, in the equilibrium case it was
found that contact interactions in the Fermi polaron problem lead to an approximate cancellation of terms involving
identical fermions, thus suppressing the emergence of multiple particle-hole fluctuations [40]. Our observation may
hence be interpreted as a generalization of these findings to the non-equilibrium case. Second, the spectrum of the
Fermi polaron problem features a dominant contribution involving the excitation of fermions from the bottom of the
Fermi sea to the Fermi surface [11]. As discussed in Ref. [11], these excitations manifest themselves as oscillations
with period 2πτF in the Ramsey contrast |S(t)|. Such a bottom of the band excitation is also present in the truncated
wavefunction (8), and indeed the remarkable agreement of the TBM with the exact solution from the FDA up to the
time 2πτF suggests that this effect can be captured by single-particle hole excitations.

S2.2. Impurity mass

As discussed in the main text, our experimental findings are well described by the static impurity approximation,
although the impurity has finite mass. To quantify the effect of the finite impurity mass, we study here the case of zero
temperature. This allows us to isolate the effect of finite impurity recoil from the influence of thermal fluctuations,
which will become dominant beyond times τT ≈ 6τF , as discussed in the section below. In order to estimate at
which time scale recoil becomes important, we make use of the capability of the TBM to describe impurities of
arbitrary mass. Furthermore, our analysis in Sec. S2.1 shows that the TBM yields highly accurate results for the
short-time dynamics of S(t). Accordingly, in Fig. 6 we display the Ramsey response for a static impurity and for
the experimentally relevant impurity mass, both calculated within the TBM. We see that for both amplitude and
phase, the impurity motion only results in a small difference in the Ramsey signal at times t <∼ 4τF . Physically, this
time scale corresponds to the effective recoil time τR associated with Li collisions on K atoms, which we estimated in
Sec. S1.3 to be τR ≈ 4τF , in agreement with our findings here. At times exceeding τR, we find that the dynamics is
indeed affected by the finite impurity mass. However, at such times, thermal fluctuations dominate the behavior in
experiment, as we now discuss.
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FIG. 6. Effect of the impurity motion on the short-time dynamics. Amplitude (top) and phase (bottom) of the perfect
quench zero temperature Ramsey response S(t) as a function of time for (A, C) X = −0.23, (B, D) X = 0.86, and (E, F)
X = 0.08. We compare the results of the TBM obtained for mK = (40/6)mLi and kFR

∗ = 1.1 (solid) with the TBM results
for fixed impurities mK →∞ and kFR

′∗ = 1.1(40/46)2 (dashed).

S2.3. Temperature
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FIG. 7. Effect of finite temperature on the impurity dynamics. We compare the Ramsey signal (upper panels:
amplitude, lower panels: phase) for an infinitely heavy impurity obtained from an exact FDA calculation at zero (long dashed)
and finite temperature (solid curves). The ordering of the graphs is as in the main text: (A, C) X = −0.23, T/TF = 0.17, (B,
D) X = 0.86, T/TF = 0.16, and (E, F) X = 0.08, T/TF = 0.18. We assume a perfect quench and choose r0 = 0 as well as
kFR

∗ = 1.1, i.e., kFR
′∗ = 1.1(40/46)2.

At long times, the time evolution reduces to a simple exponential decoherence of S(t). The time scale at which
this crossover to exponential decay takes place is given by the thermal time scale τT . In our experiment, where
T/TF ≈ 0.15, this corresponds to τT ≈ 6τF and, hence, we observe both regimes within the dynamical range probed
in our experiment.

In this section, we use finite-temperature FDA calculations to gauge the role of temperature in the impurity dynam-
ics. To this end we compare the results for the Ramsey signal at zero and finite temperature for the experimentally
realized parameters. The results are shown in Fig. 7. We indeed find that at times ∼ 6τF the time evolution at
finite temperature starts to deviate from the purely quantum behavior. Finite temperature leads to an exponential
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decoherence of the Ramsey signal and has the consequence that thermal fluctuations dominate over the impurity
motion at times t >∼ 6τF [38]. Hence they mask the effect of impurity recoil as discussed in Sec. S1.3.

Overall, the conditions in our experiment give rise to three competing time scales. Multiple particle hole excitations
become relevant for our measurement of S(t) at around 6τF , the recoil time is τR ≈ 4τF , and the thermal scale is
set by τT ≈ 6τF . A comparison of these scales reveals the reason for the remarkable agreement between the FDA
and experiment: Recoil is only weakly probed at short times t < τR, while its effect is washed out by the thermal
fluctuations at long times t > τT ≈ τR.

S3. ROLE OF INTERACTION DURING FINITE-LENGTH RF PULSES

In this section, we analyze the role of the ‘imperfect’ interaction quench in our experiments, where residual inter-
actions are present during the rf pulses. Furthermore, we discuss how our findings pave the way towards the use of
our experimental techniques to exert control over many-body states in real time.

S3.1. Idealized versus realized Ramsey scenario

π/2
rotation

interaction
parameter

π/2
rotation

measure-
ment

trf

10.0 μs 1.5 μs variable time 1.5 μs 10.0 μs

trfttwait twait

X1 X1X

interacting state

non-interacting state

N3

N2

φrf

FIG. 8. Schematic of the experimental Ramsey procedure. The K atoms start out in the hyperfine state K|2〉, which
is effectively non-interacting with the Fermi sea. A 10 µs (3.4 τF ) long square π/2 pulse is applied in the presence of weak
interactions between the K|3〉 atoms and the Li atoms, quantified by the interaction parameter X1. We then use optical control
of our Feshbach resonance to rapidly (in less than 200 ns (0.08 τF )) quench the system into the strongly interacting regime
(interaction parameter X). After a variable interaction time t we optically shift the interaction strength back to X1, and then
close the Ramsey sequence by a second π/2 pulse. We vary the phase of this pulse by shifting the phase of the rf source by φrf

before the second pulse is applied.

Thus far, we have assumed the idealized scenario of a perfect two-pulse Ramsey scheme. In this case, the initial spin
state of the impurity (K|2〉 in the experiment) is non-interacting with the Li Fermi sea and there are no interactions
during the applied rf π/2 pulses.Each pulse then yields a perfect rotation on the Bloch sphere, e.g., the initial state

K|2〉 is transformed into the spin-state superposition (K|2〉 + K|3〉)/
√

2. For such a perfect Ramsey sequence, the
measured Ramsey signal S(t) gives the overlap between the time-evolved interacting and non-interacting states of the
system [10, 11], yielding Eqs. (9) and (14) for zero and finite temperature, respectively. In this idealized scenario, the
Fourier transform of S(t) corresponds to the excitation spectrum of the system in linear response [41],

A(ω) = Re

∫ ∞
0

dt

π
eiωtS(t), (15)

where ω is the frequency of the applied field.
In our experiments, however, residual interactions are present during the π/2 pulses, which take a finite time to be

completed. As shown in the illustration of our experimental sequence in Fig. 8, the state K|3〉 can already interact
with the Li cloud during the π/2 rotation, which potentially affects the observed dynamics of the system. Specifically,
this stage of the experiment is performed at a detuning from the Feshbach resonance which corresponds to a weak
interaction strength X1 between the impurities and the Fermi sea (cf. Section S3.2 and Fig. 8). After preparing
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the superposition state of the impurity spin, we quench the system to strong interactions (interaction parameter X)
by optically shifting the Feshbach resonance [12]. We previously focussed on the complex non-equilibrium dynamics
resulting from the strong interactions X during the time t. In the following, we analyze the effect of the residual
interaction X1 during the finite-duration π/2 spin rotations. In particular, we investigate the impact of these weak
interactions during the rf pulses on the Ramsey response S(t) and the spectrum A(ω) as obtained from the Fourier
transform Eq. (15).

S3.2. Modelling of rf pulses within TBM

In this section, we extend our modelling of the zero-temperature impurity dynamics within the TBM to directly
simulate the entire experimental procedure, as illustrated in Fig. 8. In order to model the rf pulses, we explicitly
include both K|2〉 and K|3〉 spin states, as well as the rf field. This modifies the Hamiltonian, Eq. (1), to Ĥ = Ĥ+ Ĥrf

with the additional term

Ĥrf =
Ω

2i

∑
k

(
eiφrf d̂†k,2d̂k,3 − e

−iφrf d̂†k,3d̂k,2

)
+
∑
k

(εk,K + h̄(ωrf − ω0))d̂†k,2d̂k,2. (16)

Here, we have used the rotating wave approximation. Ω corresponds to the strength of the rf field, φrf is the variable

phase of the second rf pulse, and d̂†k,σ creates a particle in the state K|σ〉 with momentum h̄k. Note that d̂†k ≡ d̂†k,3
in the original two-channel Hamiltonian (1). The interactions during the rf pulses cause a shift in the transition
frequency between the K|2〉 and K|3〉 states from the bare transition frequency ω0 to ω0 + ε1/h̄, where ε1 is the
polaron energy at interaction parameter X1. As described in Sec. S5.B, we account for this shift by adjusting the
frequency of our rf pulses to ωrf = ω0 + ε1/h̄.

According to the last term in Eq. (16), the shift in the frequency of the rf source from ω0 to ωrf causes the
observed signal to accumulate an additional phase (ωrf − ω0)t during the interaction time t. To account for this,
we introduce the phase φ = φrf + (ωrf − ω0)t. We then determine |S(t)| and the phase ϕ(t) by noting that the
Ramsey signal (N3 − N2)/(N3 + N2) corresponds to a sine-wave function of φ plus an offset, i.e., it takes the form
F (t) + |S(t)| cos(φ− ϕ(t)) with F (t) a real, φ-independent function. This mirrors the experimental procedure, where
F (t), |S(t)|, and ϕ(t) appear as fit-parameters for the Ramsey signal, see Sec. S5.B.

FIG. 9. Role of the residual interactions within TBM. We present the zero-temperature response S(t) and the corre-
sponding spectrum A(ω) for the perfect quench (dashed blue) and the actual experimental sequence shown in Fig. 8 (solid
blue). As in the main text, we take kFR

∗ = 1.1 and the interaction parameters: (A, C) X = −0.23, X1 = −3.9, (B, D)
X = 0.86, X1 = 5.8, and (E, F) X = 0.08, X1 = 4.8. For comparison, in (B, D, E, F), we represent by black dotted lines the
scenario where the initial state before the quench is approximated as a weakly attractive polaron — see Sec. S3.2 for details.
The spectra have been convolved with the experimental Fourier-limited rf spectral lineshapes, which are Gaussian-shaped with
width σ, where στF = 0.03 for X = 0.86, −0.23, and στF = 0.1 for X = 0.08.
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Within the TBM, we determine the approximate eigenstates and eigenvalues of Ĥ within the more general class of
truncated wavefunctions:

|ψrf〉 =
(
α0,3d̂

†
0,3 + α0,2d̂

†
0,2

)
|FS〉+

∑
q

αqb̂
†
qĉq |FS〉+

∑
kq

(
αkq,3d̂

†
q−k↓ĉ

†
kĉq + αkq,2d̂

†
q−k,2ĉ

†
kĉq

)
|FS〉 .

To model the experimental quench sequence illustrated in Fig. 8, we apply a series of time evolution operators to the
initial state consisting of a K|2〉 atom and the Li Fermi sea. At the end of the sequence we then extract the number of
K atoms in states K|2〉 and K|3〉, respectively. We include explicitly the rf pulses, the wait times, and the interaction
time t during which the system is strongly interacting. The results of this procedure are displayed in Fig. 2 of the
main text. Here, we account for slight additional experimental decoherence by scaling the prediction for |S(t)| as
described in Section S.5C.

In the upper panels of Fig. 9 we compare the Ramsey response obtained by simulating the actual experimental
sequence (solid line) with that of the perfect quench scenario (dashed line). We see that the residual interactions X1

in experiment can indeed influence the quantum evolution of the impurity. The difference in the responses can be
straightforwardly explained by assuming that the main effect of X1 is to produce a weakly interacting initial state.
Specifically, for weak attractive interactions X1 > 0, the Ramsey response can be approximated as

S(t) ' Z 〈ψX1
| e−iĤt/h̄ |ψX1

〉 , (17)

where |ψX1
〉 is the ground state of the Hamiltonian (1) at interaction parameter X1, and Z is the corresponding

polaron residue. Note that we cannot formally construct a similar expression for the repulsive case X1 < 0, since the
repulsive polaron is a metastable state, involving multiple eigenstates of the Hamiltonian.

Referring to Fig. 9, the excellent agreement between the approximation (17) and the full Ramsey signal provides
strong evidence that the residual interactions X1 produce a weakly attractive initial state. This is further supported
by the spectrum A(ω) shown in the bottom panels, where we see that the residual interactions enhance the attractive
polaron peaks for X = 0.08 and 0.86. A similar enhancement of the repulsive polaron peak is observed for X = −0.23.
Hence we conclude that the explicit modelling of the impurity dynamics using the full Hamiltonian Ĥ = Ĥ + Ĥrf is
not essential for the description of the dynamics during the initial π/2 spin rotation and instead one can fully describe
the time evolution using the Hamiltonian (1).

S3.3. Modelling of experimental procedure at finite temperature within FDA

The interplay between the residual interactions and finite temperature presents a further theoretical challenge. In
the following, we use the FDA to simulate the experimental protocol (Fig. 8) at finite temperature. To achieve this,
we exploit the finding from Sec. S3.2 that the detailed dynamics of the rf-driven oscillations between the K|2〉 and
K|3〉 states can be ignored when calculating S(t). Thus, we assume that the initial π/2 rotation effectively produces

a spin superposition (K |2〉+ K |3〉)/
√

2, independently of the residual interaction X1 of the impurity in the state K|3〉
with the Fermi sea. To account for the dynamics due to the weak interaction X1, we then let the system evolve under
this interaction for a hold time th = trf/2 + twait, which models the dynamics at weak interaction X1 as the result
of a sudden switch-on of this interaction at the midpoint of the π/2 pulses. After the hold time th, the final quench
to the strong interactions X is performed. For the measurement of the Ramsey contrast, this sequence is reversed.
Theoretically, this yields the modified time-dependent overlap

S(t) = tr
[
ρ̂ eiĤ0(2th+t)e−iĤ1the−iĤXte−iĤ1th

]
, (18)

where Ĥ1 and ĤX denote the Hamiltonian (1) at interaction strength X1 and X, respectively. Using the FDA, the
expression Eq. (18) is evaluated exactly according to Eq. (13) at the experimental temperature. As can be inferred
from Eq. (18), this simplified model of the experimental protocol corresponds to a sequence of interaction quenches.

In the upper panel of Fig. 10 we compare the result for |S(t)| at the experimental temperatures obtained for the
experimental sequence (solid lines) to the result for an idealized, i.e., perfect quench, Ramsey sequence (dashed lines).
Similarly to the case of zero temperature, we see that the time evolution at X1 has an experimentally observable
effect on the dynamics. In particular, it generates an additional decoherence of the Ramsey signal already at t = 0,
as well as an enhancement of the oscillations in |S(t)| for resonant interactions – see Fig. 10E.

For the calculation of the FDA results shown in Fig. 2 of the main text we use the same procedure as described
above. We account for slight additional experimental decoherence by scaling the prediction for |S(t)| as described in
Section S.5C. We also note that the phase ϕFDA(t) of the Ramsey signal S(t) = |S(t)|e−iϕFDA(t), as determined from
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FIG. 10. Role of the residual interactions in the Ramsey sequence at finite temperature. Upper panels: we
compare the perfect quench Ramsey response (dashed) with a simulation of the experimental sequence (solid). Lower panels:
we compare the linear-response excitation spectrum (dashed) with the Fourier transform of the signal obtained using the
experimental sequence (solid). As in the main text, we take kFR

∗ = 1.1 and the interaction parameters: (A, C) X = −0.23,
X1 = −3.9, (B, D) X = 0.86, X1 = 5.8, and (E, F) X = 0.08, X1 = 4.8. The temperatures are T/TF = 0.166, 0.158, 0.177,
respectively.

Eq. (18), differs from the experimentally measured phase ϕ(t) due to the detuning of the rf frequency from ω0. They
are related by ϕ(t) = ϕFDA(t) − (ωrf − ω0)(2twait + trf). Similar to the previous section and to the experiment, we
take ωrf − ω0 = ε1/h̄.

As outlined in Section S3.1, in the idealized Ramsey scenario the Fourier transform A(ω) of S(t) is equivalent to
the rf absorption in linear response, cf. (15) [11]. Similarly to our T = 0 analysis in Sec. S3.2, we now study the
effect of the residual interactions X1 on the spectral decomposition of S(t). To this end we compare the two signals
A(ω) for the perfect quench with the result obtained for the experimental sequence as modelled by Eq. (18). We show
the comparison of the spectra obtained in the idealized (dashed) and experimentally realized scenario (solid) in the
lower panel of Fig. 10. As for our T = 0 results discussed above, we find only a small difference between the two
finite-temperature spectra. Therefore, in agreement with the experimental observation, cf. Fig. 3 in the main paper,
under the condition of |X1| ≈ 5 we see that the weak interactions during the rf pulses have an observable but small
effect on the predicted spectra.

In accordance with the results from the TBM shown in Fig. 9, we find from the evaluation of Eq. (18) that weak
interactions X1 lead to a small shift of spectral weight into the corresponding dominant polaron branches. This shift
of spectral weight is also observed experimentally, see Fig. 3 of the main text.

S3.4. Stronger interactions during rf pulses: illustration of quantum state preparation

The shift of spectral weight towards the attractive or repulsive branches of the spectrum, cf. Figs. 9 and 10, may be
interpreted as follows: The residual interactions present during the initial π/2 impurity spin rotation serve to produce
an interacting many-body quantum state. As such, this procedure can be viewed as an adiabatic preparation of an
attractive or repulsive polaron. Compared to the noninteracting state, this polaron has an increased wavefunction
overlap with the corresponding branch of the strongly interacting system. When the system is then quenched into
the regime of strong interactions, the increased overlap results in the corresponding shift of the spectral weight. An
intriguing question is then whether such an approach can provide a novel way to experimentally control the spectral
decomposition of quantum states.

To investigate this possibility, we increase the interaction during the π/2 rotations, corresponding to decreasing
|X1|, and determine the effect on A(ω). In the upper panel of Fig. 11 we show the spectra obtained by linear-response
rf spectroscopy (green squares). Similar to Fig. 3 of the main paper, we compare this result to the Fourier transform
of the Ramsey signal S(t) (gray shading), as obtained from the experimental sequence described in Fig. 8. We also
compare our experimental result to the prediction from the FDA, where the dynamics has been modelled as described
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FIG. 11. Control of the spectral decomposition of many-body quantum states. Upper panel: We compare the
experimentally measured rf spectrum at the interaction parameter X (green squares) to the Fourier transform of S(t) obtained
using the measurement procedure illustrated in Fig. 8 with initial interaction parameter X1 (gray shading). Lower panel: we
compare the theoretical prediction from the FDA for the linear-response excitation spectrum (green) to the Fourier transform of
the signal obtained by simulating the experimental sequence according to Eq. (18). (A, C) X = 0.14, X1 = −2.2, kFR

∗ = 1.09,
T/TF = 0.174. (B, D) X = −0.25, X1 = 1.7, kFR

∗ = 1.1, T/TF = 0.17.

by Eq. (18). As in the main text, we find excellent agreement between experiment and theory. Indeed, both feature
a strong shift of spectral weight to regions of the spectrum that are adiabatically connected to the dominant polaron
branches at interaction X1. Furthermore, when comparing A(ω) in Fig. 11, with the spectrum for |X1| ≈ 5 in Figs. 9
and 10, it is clear that the amount by which the spectrum is shifted can be controlled by the strength of the interaction
during the rf pulses. This strongly supports the assertion that the initial interactions can be used to precisely control
the many-body dynamics. Our experimental techniques thus allow for a precise, dynamic control of the spectral
decomposition of quantum states in future experiments.

The excellent agreement between theory and experiment also demonstrates that our theoretical approaches can
be used to explore experimental ramps in combination with interferometric protocols in order to find, for instance,
optimized spin and interaction trajectories.

S4. UNIVERSAL FEATURES OF IMPURITY DYNAMICS AND RELATION TO ORTHOGONALITY
CATASTROPHE

For impurities localized in space, which, for instance, can be achieved by species-selective three dimensional optical
lattices, our experimental setup allows one to study universal features exhibited by the Anderson orthogonality
catastrophe [39]. The orthogonality catastrophe was originally studied in the context of x-ray absorption spectra in
metals, where high-energy x-ray photons create atomic core holes by photoemission of inner-shell electrons [41]. These
core holes produce a scattering potential for the electrons in the conduction band, leading to characteristic power-law
edges in the absorption spectra with an exponent that is universally determined by the scattering phase shift at the
Fermi surface [39]. However, impurities, phonons, residual interactions between the electrons, and a lack of knowledge
of microscopic parameters makes it difficult to unambiguously determine the universal features of the orthogonality
catastrophe in typical solid state materials [42]. In contrast, the Hamiltonian in our experiment is well characterized
on all relevant energy scales, and therefore the full dynamic response of the system can be reliably calculated by
theory and probed by the ultrafast experimental techniques demonstrated in this work. This enables one to obtain
fundamental insights into universal features of the orthogonality catastrophe, which are difficult to access in other
systems.

To illustrate how the orthogonality catastrophe would manifest itself in an ultracold atomic gas experiment, the
response of infinite mass impurities calculated using the FDA for the perfect quench scenario is shown in Fig. 12.
First, at short times and for a range parameter of the Feshbach resonance R∗ > 0, we see that the Ramsey contrast
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FIG. 12. Universal features of the dynamical orthogonality catastrophe. We show the Ramsey contrast for an infinitely
heavy impurity obtained within the FDA. (A) The zero-temperature Ramsey contrast exhibits a power law decay, shown on a
double logarithmic scale. We change the Feshbach resonance range kFR

∗ and interaction parameter X in such a way that the
scattering phase shift at the Fermi surface is constant leading to a constant exponent of the power law tail. The data corresponds
to a fixed phase shift δkF = 1.4 with the choices (X, kFR

∗) = (1, 1.12) (dashed red), (X, kFR
∗) = (0.58, 0.56) (dotted blue), and

(X, kFR
∗) = (0.15, 0) (solid green). (B) Ramsey contrast at various temperatures on a double logarithmic scale. We choose

temperatures T/TF = 0 (blue), 0.05 (green), 0.15 (orange), 0.4 (red) at fixed values X = 1 and kFR
∗ = 1.12. The inset shows

the same data on a logarithmic-linear scale to emphasize the appearance of exponential tails at finite temperature.

decays quadratically for all scattering parameters and temperatures considered, in accordance with Eq. (11). The
main universal feature associated with the orthogonality catastrophe is expected in the long-time dynamics at T = 0:
Here, the Ramsey response is predicted to exhibit power law tails, which depend only on the scattering phase shift at
the Fermi surface [11, 39]. This is explicitly verified in Fig. 12A where we fix the scattering phase shift at the Fermi
surface but change the scattering parameters. While the response at intermediate times depends on the scattering
parameters, we see that the long-time evolution approaches a universal power law that only depends on the phase
shift at the Fermi surface. We note that the long-time dynamics is universal: It is the same for a system with a broad
resonance where R∗ = 0 (solid line in Fig. 12A), as it is for our system with a finite range parameter (dashed and
dotted lines).

When the temperature is non-zero, as in the experiment, thermal fluctuations alter the power law dephasing
dynamics at sufficiently long times. Instead, exponential tails due to thermal decoherence appear as another universal
feature of the dynamics [11, 39, 43, 44]. The exponential tails are illustrated in Fig. 12B. The effects of thermal
decoherence could be countered by employing the recently developed cooling methods [25], opening the door to
observing the orthogonality catastrophe in a cold-atom system.

Finally, we note that in our experiment temperature becomes relevant at a time scale similar to those associated
with recoil and multiple particle-hole excitations. It is a challenge for theoretical approaches to exactly account for
both recoil and higher order particle-hole excitations [38]. However, experiments at lower temperatures which take
advantage of the tunability of the impurity mass using optical lattices would be ideally suited to probe the competition
between these effects. Such ultracold-atom experiments would hence provide important insight into this long standing
theoretical question.

S5. EXPERIMENTAL AND DATA ANALYSIS PROCEDURES

In this section we discuss the procedures used to record and analyze the data presented in this work. We detail
the cooling and preparation of our atomic samples, the details of the rf pulses used in our Ramsey sequences, the
methods used to analyze the data and the method that we use to vary the concentration of the K atoms.

S5.1. Sample preparation

The atomic samples are prepared by forced evaporation of Li atoms from a Li-K mixture held in an optical trap,
where the K atoms are sympathetically cooled by the Li environment. This preparation procedure is described in
detail in Refs. [45, 46]. At the end of the forced evaporation, the Li and K atoms are transferred into an optical
trap composed of two crossed 1064-nm laser beams, as described in Ref. [12]. The measured radial and axial trap
frequencies of the Li atoms are fr,Li = 941(5) Hz and fz,Li = 134(1) Hz, respectively. The measured radial and axial
trap frequencies of the K atoms are fr,K = 585(3) Hz and fz,K = 81(1) Hz, respectively.
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Figure(s) NLi NK T εF /h
σ(EF )
εF

n̄Li n̄K

(105) (104) (nK) (kHz) % 1012cm−3 1012cm−3

2A, 2C, 3A 3.5(4) 0.95(10) 435(25) 54.6(2.7) 7.4 8.9(7) 1.8(3)

2B, 2D, 3B 3.3(4) 1.0(1) 410(25) 53.9(2.4) 7.1 8.7(6) 2.0(3)

2E, 2F, 3C 3.5(4) 1.0(1) 460(30) 54.1(2.4) 7.7 8.8(6) 1.7(3)

11A 3.1(4) 1.0(1) 430(30) 52.0(2.9) 7.7 8.2(7) 1.8(3)

11B 2.9(3) 1.05(10) 425(35) 50.8(2.1) 7.7 8.0(6) 2.0(3)

4 2.35(30) 2.5(1) 520(25) 44.2(2.3) 10.4 6.5(5) 3.4(3)

TABLE I. The total number of the Li atoms NLi, the total number of the K atoms NK, the sample temperature T , the effective
Li Fermi energy εF , the standard deviation σ(EF ) of the local Li Fermi energy across the trap, the trap-averaged Li and K
number densities n̄Li and n̄K in our measurements.

At the end of the preparation procedure, the Li and the K atoms are in their lowest Zeeman states Li|1〉 and
K|1〉. Before the Ramsey sequence, the K atoms are transferred to the K|2〉 state using an rf pulse. Following this rf
transfer, the Li and K atoms are thermalized by holding them for 750 ms in the crossed-beam optical trap. While the
interaction between the Li|1〉 and K|2〉 atoms, characterized by the scattering length a12 = 63a0 [14], is sufficient to
ensure thermalization during this hold time, it can be neglected during the Ramsey experiments. The temperature
of the atoms is determined by releasing the atoms from the trap and observing the free expansion of the K cloud.

Due to the Li Fermi pressure and the more than two times stronger optical potential for K, the K cloud is much
smaller than the Li cloud [45], and therefore samples a nearly homogeneous Li environment. Because of the small
variation of the Li environment sampled by the K atoms, we introduce the effective Li Fermi energy εF as

εF =
1

NK

∫
EF (r)nK(r)d3r . (19)

Here, nK(r) is the local K number density at position r in the trap, and

EF (r) =
h̄2
(
6π2nLi(r)

)2/3
2mLi

(20)

is the local Li Fermi energy as determined by the local Li number density nLi(r). We quantify the small inhomogeneity
of the Li environment experienced by the K atoms by the standard deviation of the local Li Fermi energy

σ(EF ) =

(
1

NK

∫
(EF (r)− εF )2nK(r)d3r

)1/2

. (21)

We also introduce the average Li and K number densities n̄Li and n̄K sampled by the K atoms as

n̄Li,K =
1

NK

∫
nLi,K(r)nK(r)d3r . (22)

In contrast to the Li atoms, the K atoms in our measurements remain non-degenerate, with kBT/E
K
F (0) > 1.2,

where EK
F (0) is the local potassium Fermi energy in the center of the trap when all K atoms are in the same internal

state.
For all measurement presented in this work, Table I lists the total numbers of the Li and K atoms, their temperatures

and trap-averaged densities, as well as the effective Li Fermi energies and their standard deviations. Throughout our
measurements, these parameters remain nearly constant, with the exception of the measurements shown in Fig. 4.
Here, in order to investigate the effect of the K concentration, the total number of the K atoms is increased from
about 1× 104 to 2.5× 104. The attendant increase in the thermal load during the Li evaporation results in a decrease
of the Li atom number and an increase in the temperature of the final atomic sample.

Note that, in contrast to our previous work [12], our present experiments have been optimized for large optically
induced interaction shifts (|X −X1| ≈ 5). These shifts are produced by switching one of the crossed trapping beams
from a beam with a low peak intensity and small size to a beam with a large intensity and large size propagating in
the same direction. In our previous work [12], as well as in the measurements shown in Fig. 11, the waists, positions
and intensities of the two beams are adjusted so as to yield mode-matched trapping potentials, preventing excitations
of the center-of-mass and breathing collective modes of the atomic clouds. In the measurements presented in Figs. 2,
3 and 4, a larger beam intensity was used in order to produce a larger optical shift, resulting in some excitation of
the breathing modes.
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The maximal interaction time in our Ramsey measurements of 60 µs is much smaller than the shortest period of
a collective oscillation (about 500 µs). We calculate that, during our short interaction time, the oscillations of the
breathing modes cause at most a 6% variation of εF around its initial value specified in Table I, without any significant
effect on the measurements presented here.

S5.2. Rf pulses

We apply rf pulses in the Ramsey procedures by discretely gating a continously running rf source. To record the
atomic populations N3 and N2 as a function of the phase of the second rf pulse, we change the phase of the rf source
by a variable amount φrf before applying this pulse.

The weak interactions between the K atoms in the K|3〉 state and the Li atoms corresponding to the interaction
parameter X1 cause the transition frequency between the K|2〉 and the K|3〉 states to differ from the transition
frequency ω0 in the absence of the Li atoms. We compensate for this effect by adjusting the frequency ωrf of the
rf source to be resonant with the K|2〉−K|3〉 transition at the time when the rf pulses are applied. For the data in
Figs. 2A, 2B, 2C, (ωrf −ω0)τF is equal to +0.06, −0.07, −0.05, respectively. For the data in Fig. 11C and 11D where
the interaction of the K atoms during the rf pulses is stronger, (ωrf − ω0)τF is equal to +0.11 and −0.16.

The shift in the frequency of the rf source from ω0 to ωrf causes the signal S(t) to accumulate an additional phase
(ωrf−ω0)t during the interaction time t. To account for this added phase, we introduce the phase φ = φrf +(ωrf−ω0)t.

S5.3. Analysis methods

We determine the contrast |S(t)| and the phase ϕ(t) by fitting the Ramsey signal (N3−N2)/(N3 +N2) as a function
of the phase φ to a sine wave with an offset i.e. F (t) + |S(t)| cos (φ− ϕ(t)). Decoherence during the rf pulses, as
well as imperfections of the rf pulses and the atom detection, cause the contrast for t = 0 to be slightly smaller than
unity. When comparing theoretical results from Figs. 9 and 10 to the experimental data in Fig. 2, we account for
this effect by scaling the theoretical predictions for |S(t)| by an overall factor η. For each calculation, this factor is
determined by fitting the prediction for |S(t)| to the three data points with the the shortest interaction times. We
obtain 0.92 < η < 1, which corresponds to an additional loss of contrast that is of the same order as the decoherence
during the rf pulses predicted by the FDA (see Fig. 10).

To compute the Fourier transform of the experimental S(t) data, we use piecewise linear interpolations of logS(t)
and ϕ(t) between the individual data points. Outside of the range of the data, we set S(t) = 0. To determine the error
of the Fourier transform, we sample the values of S(t) and ϕ(t) at each data point from Gaussian distributions whose
means and standard deviations correspond to the measured values and errors, respectively. We use the standard
deviation of the computed values of the Fourier transform for each value of ω as an estimate of the error indicated by
the shaded areas in Figs. 3 and 11.

S5.4. Varying the K concentration

We study the effects of the impurity concentration by varying the number of the strongly interacting K atoms.
If this were done by changing the total number of the K atoms in the experiment, the change in the thermal load
on the Li atoms during forced evaporation would result in a correlated variation in the number of Li atoms and the
sample temperature (compare the settings for Fig. 2 and Fig. 4 in Table I). To avoid these systematic effects, in the
measurements presented in Fig. 4, we keep the total number of the K atoms constant and vary the fraction of the K
atoms that participate in the Ramsey sequence. We accomplish this by changing the intensity of the rf pulse that
transfers the K atoms from the |1〉 state to the |2〉 state before the Ramsey procedure. During the subsequent 750
ms preceding the Ramsey sequence, the K atoms collisionally thermalize with the much larger Li cloud, resulting in
an incoherent mixture of K|1〉 and K|2〉 atoms at a constant temperature. When referring to these measurements,
we use n̄K not for the average density of all K atoms, but for the density of those K atoms that participate in the
Ramsey sequence.

We minimized the small effects of long-time drifts in the temperature, the atom numbers and the trapping potential
by varying the experimental parameters in a specific order. For each K concentration and interaction time, we recorded
data for 4 different phases of the second rf pulse in order to obtain S(t). For each interaction time, the data with
different K concentrations were recorded in immediate succession. The data sets for different interaction times were
then recorded in a random order.
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S6. LINEARITY OF RF RESPONSE

The response of atoms to an applied rf field is linear if the fraction of the atoms transferred from one state to
another is proportional to the intensity of the field. Linearity can be ensured by using a sufficiently weak rf pulse
that is also much longer than the inverse width of the relevant spectral features. The narrowest spectral features in
the present work are the polaron peaks in Figs. 3A and 3B with rms widths 0.06 h̄/τF and 0.09 h̄/τF , respectively. To
record these polaron spectra, we used Blackman-shaped rf pulses [47] whose duration trf = 300µs ≈ 100 τF is much
longer than the inverse widths of the polaron peaks.
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FIG. 13. Linearity of the rf response in the repulsive polaron regime. (A) Fraction of the K atoms transferred from
state K|2〉 to the state K|3〉 for X = −0.13(6) as a function of the intensity Irf of an rf pulse with duration trf = 300µs. (B)
Fraction of the K atoms transferred for X = −0.23(6) as a function of the duration trf of the rf pulse for the rf pulse intensity
Irf = 0.79 Iπ. Vertical dashed lines correspond to Irf = 0.79 Iπ and trf = 300µs, respectively. The pulse frequencies are adjusted
to resonantly excite the repulsive polaron. The blue solid lines indicate linear fits to the data in the ranges indicated by the
same lines. The blue dashed lines show extrapolations of these fits.
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FIG. 14. Linearity of the rf response for resonant interactions. Fraction of the K atoms transferred from state K|2〉 to
the state K|3〉 by an rf pulse with duration trf = 100µs for X = +0.02(6). For the black data points, the intensity of the rf
pulse is adjusted to obtain a π-pulse in the absence of Li atoms. The red data points correspond to a 50% lower intensity of
the rf field.

We checked the linearity of the response by varying the intensity Irf of the applied rf field. Fig. 13A shows the fraction
of the K atoms transferred from the K|2〉 to the K|3〉 state in the repulsive polaron regime, under conditions similar
to those in the measurements shown in Fig. 3A. The frequency of the rf pulse is adjusted so that (ωrf − ω0)τF = 0.3,
corresponding to peak response and resonant excitation of the repulsive polaron. The rf intensity is measured in
units of the intensity Iπ that results in a π-pulse for noninteracting K atoms. For intensities up to the intensity
Irf = 0.79 Iπ, which is used in the measurements shown in Figs. 3A and 3B, we observe that the transferred fraction
of the K atoms stays essentially proportional to the intensity of the pulse.
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In the linear-response regime, the atomic response is predicted to be proportional to the duration of the rf pulse.
Fig. 13B shows the fraction of the K atoms transferred in the repulsive polaron regime by rf pulses with Irf = 0.79 Iπ,
as a function of the pulse duration. The frequency of the rf pulse is adjusted so that (ωrf − ω0)τF = 0.3, in order to
obtain the peak response, as in Fig 13A. For pulses with duration up to 300 µs (indicated by the dashed line), we
observe that the transferred fraction of the K atoms stays essentially proportional to the duration of the pulse.

Note that the maximal transferred fraction exceeds 0.5. We explain this observation by the coupling of the initial
non-interacting K state to multiple interacting K states by the rf pulse, which manifest themselves as the polaron
peak and the broad pedestal in our spectra.

The spectra for resonant Li-K interactions shown in Figs. 3B, 11A, 11B were recorded using Blackman-shaped rf
pulses with duration of trf = 100µs (approximately 35 τF ). The intensity of these pulses was adjusted to 50% of that
needed to produce π pulses for noninteracting K atoms. We verified the linearity of the rf response by comparing
the spectra recorded using this rf intensity to those recorded using the intensity needed to produce full π pulses for
noninteracting K atoms (Fig. 14). Our observations are in good agreement with linear response.
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