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Introduction

This course deals with the properties of atomic quantum gases at ultra-low temperatures
and atomic hydrogen as a primary example. As hydrogen is known, to the public at
large, mostly for the various ways in which it participates in violent processes, it must
be emphasised right from the start that we will meet in this course atomic hydrogen
as a delicate substance that behaves much alike an inert gas. In the four oral lectures
presented in Stirling, three topics where emphasised: (a) the position of hydrogen
among the quantum gases, (b) experiments with magnetically trapped hydrogen and
(¢) quantum adsorption of atomic hydrogen on the surface of liquid helium. In the
written version of these lectures the attention is concentrated on the first two topics.
The third topic has been described in educational detail by the present author in the
lecture notes of the Les Houches summer school of 1990 [1].

Rather than outlining the peculiarities of atomic hydrogen, emphasis will be put on
general properties of quantum gases. Building on the extensive experience of various
research groups with the low temperature gas phase of atomic hydrogen, many inter-
esting aspects could be illustrated with well established (and sometimes very familiar)
experimental and theoretical results. The main topics of the course are described in two
sections: properties of weakly interacting Bose gases in external potential fields (sec-
tion 2) and evaporative cooling (section 3) as a prominent method to achieve ultra-low
temperatures in trapped atomic gases. The text starts with an introductory summary
of basic properties of spin-polarised hydrogen. Comprehensive reviews that may serve
for further introduction to atomic hydrogen as a quantum gas were written by Greytak
and Kleppner [2] and by Silvera and Walraven [3]. Also several articles in the book
Bose-Finstein Condensation [4] may be valuable to meet the dilute Bose gases in a
broader context.

In the final stages of preparation of the manuscript the observation of Bose-Einstein
condensation in ultra-cold atomic rubidium vapor was announced by Cornell and Wie-
man at JILA in Boulder [5]. This exciting result adds a very timely aspect to the article.
It is hoped that the emphasis on general properties will make the paper valuable to a
wide audience as an introduction to a fascinating field.
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Figure 1.1: The hyperfine structure of the 1.5 manifold of the hydrogen atom. E, is the
Zeeman energy, 7 = cosf and € = sin 8; the other symbols are defined in te text.

1.1 Single atom properties

Atomic hydrogen (H) is a bosonic atom composed of an electron tightly bound to a
proton and having a 25, /2 electronic ground state. Due to the presence of nonzero
nuclear spin the ground state has hyperfine structure. The electronic and nuclear
magnetic moment follow from p, = —gepps and p, = gpuni, respectively, where
pp is the Bohr magneton, py the nuclear magneton and g., g, are the associated g
factors (defined as positive numbers). In terms of these quantities the gyromagnetic
ratios are defined by ve = geptp/h &~ 1.76 x 1011s™1T=1 and v, = gpun/h =~ 2.68 x
103s7 1T, where 277 is the Planck constant. The Hamiltonian describing the ground
state hyperfine structure is given by the expression

H = (gepts — gnpni) B +api-s (1.1)

where a,/(27h) ~ 1420 MHz is the hyperfine interaction constant. The Hamiltonian
(1.1) for s = % and 7 = % leads to the well known energy level diagram shown in Figure
1.1 with a zero-field hyperfine splitting equal to aj, [6]. In zero field f =i+ s and my
are good quantum numbers, whereas in high fields (B > ap/pte ~ 50.7 mT) this holds
for ms, m; and my.

By convention the ground state hyperfine levels are labeled a, b, ¢ and d in order
of increasing energy in small magnetic field. The ¢ and d levels cross at B = 16.7 T.
The b and d states are pure spin states, the a and ¢ states are hyperfine-mixed linear
combinations of the high field basis states |mg, m;):

la) = sin@[14) —cosf|L ), [B) =14 1.2)
[c) =cos[] ) +sin0[L 1), |d)=]11) '

where tan20 = ap/[R(ve + 7p)B] . The simple arrows 1 and | refer to the magnetic
quantum number of the electron spins and crossed arrows } and { to that of the proton
spins.
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The gas phase is characterised by the spin-polarisation of the constituent atoms.
Unpolarised gas is referred to as H, up or down electron-spin-polarised gases as HT
and H|, respectively. Further, one distinguishes the doubly (both electron and proton
spin) polarised gases, consisting predominantly of b-state (H]{) or d-state (H]}) atoms.
Sometimes it is convenient to describe the atoms by the direction of the force caused
by a magnetic field gradient. For this purpose the terminology high-field-seekers (for
H|) and low-field-seekers (for HT) is used. The first experiments with spin-polarised
hydrogen were done with H| [7]. In these lectures hydrogen is used as an example to
introduce the properties of ultra-cold atomic gases confined near the field minimum
of magnetostatic traps. Therefore, the discussion will be restricted primarily to the
low-field-seeking gas, HT.

1.2 Interatomic interactions

The interaction between two H atoms depends on their spin states. Thus, the four
125, /2 hyperfine states give rise to 16 potential energy curves. However, for the col-
lisional motion a description in terms of two potential curves is often sufficient. The
dominant interaction is the Coulomb interaction, which is usually written in a spin-
dependent form as the sum of a direct (Vp) and an exchange (J) contribution

Hipy = Vp(ri5) + J(rij)si-84, (1.3)

where 7;; = |r; —r;| is the internuclear distance between atoms ¢ and j at position r;
and rj. The Hamiltonian (1.3) conserves the total spin S = s;+s; and gives rise to a
singlet (S = 0) potential, V5 = Vp + iJ, and a triplet (S = 1) potential, V; = Vp — %J,
which correspond, respectively, to the X—lﬁj and the b33} electronic states of the
quasi-molecule. The exchange interaction J = V, — V, vanishes exponentially with
the interatomic distance. The X—lﬁj and the b-3%F states are known to high accuracy
8, 9]. Both V;(r) and V;(r) are shown schematically in Figure 1.2. The triplet potential
has a very shallow attractive minimum, only 6.5 K deep, located at 7, ~ 4.16 A. The
zero crossing of this potential occurs at an interatomic distance rg =~ 3.68 A and is
thus rather large for a small atom like H. A convenient fitting function for the triplet
potential is presented in the literature [10].

For two H atoms in the ‘pure’ hyperfine d state (or similarly for two atoms in the
b state) we have full spin polarisation and the atoms interact purely via the triplet
potential. Collisions between two ¢ state atoms cannot be described in terms of a pure
triplet or singlet potential but involve a mixed state due to the asymptotic presence
of the hyperfine interaction. Neglecting some triplet-singlet crossover near r;; = 5.8
A (where J(ri;) = a3) the interaction (1.3) enables a fairly accurate description of
hyperfine transitions due to ‘spin-exchange’. A full account using a coupled-channel
approach has been given [11].

The next interaction to consider is the magnetic dipole-dipole interaction

HO ~ A
m[ﬂi C gy — (- Tig) (g - Tl (1.4)

ij

Hdip =
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Figure 1.2: The singlet and triplet interatomic potentials as calculated by Kotos and
Wolniewicz. Figure (b) shows the lifting of the electrion-spin degeneracy by a magnetic
field on a magnified scale with respect to Figure (a).

where p; and p; are the electronic spin-dipole moments of atoms ¢ and j at relative
position rj; = r; — r;, with modulus 7;; and direction unit vector r;;. This interaction
is responsible for the magnetic relaxation in d-d collisions and ultimately limits the
stability of H] in a magnetic trap. Note that the operator (1.4) does not induce triplet
to singlet transitions as it conserves the total spin of the two interacting electrons
(property of s = 1/2 system only!). The relaxation is associated with a change in total
spin projection Mg which is possible because Hy), is a second rank tensor (in contrast to
eqn. (1.3), which is isotropic) and therefore allows transfer of spin angular momentum
to the orbital angular momentum of the atomic motion. For all interatomic distances
relevant at low temperature the electron spin-dipole interaction is even weaker than the
hyperfine interaction. To very good approximation the relaxation may be calculated
in first order perturbation theory, using Vi(r) to describe the relative atomic motion
(distorted wave Born approximation). Spin-dipole interactions between an electron
spin on one atom and a proton spin on the other atom are weaker by a factor vp,/7e
and unimportant in magnetostatic traps. The nuclear spin-dipole interaction is weaker
by another factor 4,/7. and is negligible in H for any practical purpose.

1.3 Stability considerations

In the context of the present paper we are mainly interested in the stability of the
trappable, i.e., low-field-seeking gas, HT. A general treatment of the decay kinetics of
atomic hydrogen, including two-body and three-body phenomena, was first given by
Kagan et al. [12]. An introductory discussion is given in the review by Silvera and
Walraven [3]. For magnetically trapped H the stability was analysed and calculated
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in specialised papers (see [13, 11]). Here the discussion will be restricted to a brief
summary.

The main causes for decay of HY are spin exchange and magnetic dipolar interactions
between the atoms. Spin exchange is most efficient (provided the hyperfine mixing angle
is not too small) but only leads to relaxation in collisions between two ¢ state atoms.
For c-d collisions spin-exchange only proceeds via odd partial waves which are not
populated at temperatures below 1 K (see section 2.2). Hence, in the case of d-d and
c-d collisions, relaxation proceeds more slowly because it is induced by the relatively
weak dipolar interaction. This implies a preferential depletion of the c-state component
and ultimately leads to a pure d-state gas [13]. For a pure d-state sample the decay
rate is given by the expression

Taiw = 10{Gaa), (1.5)

ip
where (Ggq) is the loss rate constant for dipolar relaxation averaged over the trap. In
the notation of Reference [11] the rate constant may be expressed as Ggg = 2G4, +
G4, + G%,. 4 This notation shows the various contributions to the rate in terms of
the detailed initial and final hyperfine states. Note that the relaxation events can
produce atoms both in trapped and untrapped hyperfine states. Importantly, in the

low temperature limit, kT < aj, the dipolar rate constant (and thus also T(;;) is

temperature independent. For the trap used in Amsterdam [14] with ng = 102 cm™3

and T = 10 mK the average yields (Ggg) =~ 2 x 10715 cm?/s and Taip ~ 1000 s. For
spin-exchange in a pure c-state gas under the same conditions one calculates (G..) ~
10713 cm3/s and 7, = 20 s. Here the rate constant may be expressed as G = 2GS, +
Goae T GSpq- The dipolar relaxation rate has been measured both in Amsterdam [15]
and at MIT [16]. The results are in agreement with theory. Thus far, the spin exchange
rates have not been established experimentally in magnetic traps.

Unlike in other systems [17], such as the cold alkali vapors, three-body recombina-
tion is completely negligible in a pure d-state gas. This finds its origin in the extremely
weak elastic potential that does not allow dimerisation. Three-body recombination in
d-state hydrogen can only occur in combination with an electronic spin flip induced by

the spin-dipole interaction [12].
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Quantum gases

Let us now turn to a more general level and consider a thermal gas of cold atoms at
number density n and temperature 1'. Assuming the atoms to interact pairwise via an
isotropic central potential U the Hamiltonian has the following form

h? 5
H= —%;Vi +ZU(Tij)~ (2.1)

i<j

In such a gas the characteristic thermal momentum %k is given by k ~ A~!, where

A = [277R%/(mkpT)]}/? is the thermal de Broglie wavelength (ATY? ~ 17.4 AKY?
H). If the temperature is sufficiently low, quantum mechanical effects determine the
behaviour of the gas phase and the gas is referred to as a quantum gas. We raise the
question ‘what makes a gas into a quantum gas?’ and analyse the difference between
H and other experimentally investigated quantum gases, such as the optically cooled
alkali systems or the metastable inert gases. Three quantum indicators will be analysed
for this purpose. These are the zero-point motion of atoms (section 2.1), non-classical
scattering in binary collisions (sections 2.2 and 2.3), and quantum degeneracy effects
(section 2.4).

Before entering into this analysis, it should be emphasised that stable quantum
gases do not exist. All stable substances condense into solid or liquid phases at temper-
atures approaching absolute zero. The quantum gases are therefore at best metastable,
heavily oversaturated, vapors. Spin-polarised hydrogen is the only exception to this
rule: it behaves at all temperatures as a fluid above its critical point. In this sense
hydrogen is the only ‘true’ quantum gas. The metastability of spin-polarised hydro-
gen is therefore also of a different nature than that of other quantum gases. Because
the spin-dipole interaction is so much weaker than the Van der Waals interaction, the
spin-dipole induced recombination rate is very slow [12], 10 orders of magnitude slower
than the dimerisation rate in caesium [17]. It is interesting to note here that, unlike
the three-body processes such as dimerisation, two-body processes such as spin-dipole
relaxation do not impose a fundamental limit on the densities that can be achieved
in ultra-cold gases. Although the gas may survive longer at lower densities, it also
takes longer to establish thermal (quasi-)equilibrium. The highest density that can
be studied experimentally with hydrogen is therefore determined mostly by practical
considerations such as the minimum time required to do a meaningful measurement. In

for

9
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other quantum gases this density is limited by the dimerisation rate. In the following
sections we take a practical attitude and address the properties of quantum gases as if
these were stable. This means that we consider quantum gases on a time scale short
as compared to their lifetime.

2.1 True quantum gases

The first quantum indicator that we consider is the importance of kinetic energy in
substances at T = 0 K, i.e., the importance of zero-point motion. This is conveniently
done within the quantum theory of corresponding states (QTCS) in which the Hamil-
tonian (2.1) is rewritten in the following dimensionless form [18, 19]

- _%”ZWQ + 3w ), (22)

where 1 = h?/mer? and

u*(r;) = U(riy) /e with  rf =ri;/ro. (2.3)
The QTCS applies to any class of systems that share an interaction potential of a
given shape characterised by two parameters, one which sets the energy scale (¢) and
the other the length scale (rg). This holds, for instance, for all systems that may
be described by a Lennard-Jones potential. Interestingly, the difference between the
various systems in a given class (characterised by a potential of a given shape) appears
exclusively through the quantum parameter 7 in front of the kinetic energy term of
the Hamiltonian (2.2). The kinetic energy term gives rise to a positive contribution
to the energy of the ground state, the potential energy contribution is negative except
for very high densities where the repulsive cores dominate the interaction. For n — 0
the kinetic energy is negligible and the ground state energy is minimal for conditions
corresponding to a classical solid at its equilibrium density. With increasing 7 this solid
will melt to form a quantum liquid. Further increasing n the ground-state energy will
become positive at any density. This means that the liquid will become unbound: there
is no many-body bound state. We are dealing with a true quantum gas that has to be
confined by walls or in a trap to maintain constant density.
The ground-state energy of a many-body system described by Hamiltonian (2.1) is
given by
Eo= (V| H|T) /(¥ D), (2.4)

where | W) is the ground state. For the quantum liquids and gases Ey has been calculated
with variational wavefunctions of the Jastrow type, approximating the ground state of
an N-body system by a product of 1 N(INV — 1) pair wavefunctions f(r;;)

‘P:F(Tl,”-,TN) = Hf(?“w) (25)

1<j



2.2. QUANTUM ASPECTS IN BINARY COLLISIONS 11

Then we have
h2
WH| =Y [ [PV frg) + Ulrg)ldn - dew. (26)
1<J
This expression is obtained after integration by parts and repetitive use of the relation
ViF = F3,.;In f(ri;). Introducing the pair correlation function

N(N —=1) [--- [Wdrg---dry.

= 2.
9(r) n? [ [W2dry---dry. (27)
one obtains for the ground state energy per atom
h2
Eo/N = 1n / 9(r) =5V n f(r) + U(r)dr. (2.8)

For a given choice for the Jastrow function f(r), for example the form [20]

f(r) = expl=3(bro/r)] (2.9)

(with only a single variational parameter b), one can calculate g(r) by a cluster expan-
sion method [21] or a Monte Carlo procedure [22] and then find Ey/N by integration
of Equation (2.8) and variation of the parameter b.

It was established [21] that Lennard-Jones Bose systems have a positive ground
state energy for n > 0.46. Comparing the Lennard-Jones quantum parameters for
various substances

H D “‘He H, Li Na Cs
n 055 0275 018 8x1072 2x103 5x107* 3x107°

shows that only spin-polarised hydrogen satisfies this condition. H is therefore the only
substance that can remain gaseous under equilibrium conditions, i.e., the only true
quantum gas. All other substances tend to form many-body bound states, usually crys-
talline solids. This may seem paradoxical in view of many practical experiments which
have been done with the optically cooled alkali systems. At this point the metastability
of all ultra-cold gases enters as an essential ingredient in the discussion and allows us
to put the various systems in relative perspective. Although spin-polarised H has an
intrinsically gaseous ground state, due to the presence of depolarisation mechanisms
spin polarisation will never be complete and H is at best a metastable gas. Expanding
the discussion to metastable systems in quasi-equilibrium it will follow from the next
section that also systems with n < 0.46 can show gaseous behaviour as long as the
formation of the many-body bound state can be excluded kinetically.

2.2 Quantum aspects in binary collisions

2.2.1 s-wave scattering regime

Let us leave many-body behaviour for a while and turn to quantum mechanical aspects
of the relative motion of a pair of atoms under the influence of the interaction potential
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U (V; for spin-polarised H). The standard treatment involves partial waves of different
angular momentum [ (see for instance section 132 in [23])

Y = X APy (cos 8) Ry (r), (2.10)

where the Ry, are wavefunctions satisfying the radial Schrodinger equation and the A
are constants

[—d?/dr® +1(1 +1)/r* +V(r) — k*]r Ry () = 0. (2.11)

Here V(r) = (m/h2)U(r), k = (mE/h?)'/? is the wavenumber corresponding to the
relative energy E and m (1.6735x 1027 kg for H) the mass of the atoms. For sufficiently
large values of 7 the V term may be neglected in Equation (2.11), which implies that the
solutions always have the same asymptotic form 7Ry (r) ~ sin(kr— %lﬂ—i—m) for r — oo.
For V(r) = 0 the phase shifts 7; are identically zero, in any other case the 7 have to be
evaluated explicitly. The amplitude f(0) for scattering over an angle § by the potential
U is fully determined by the asymptotic behaviour of the wavefunction ¥ and may
therefore be expressed in terms of the 7. Using the expansion

£(6) = %y(20 + 1) fPy(cos ), (2.12)

the partial amplitudes f; are related to the phases m; by f; = (e*™ — 1)/2ik.

For I > 0 the third term of Equation (2.11) dominates over the (repulsive) second
term only for distances r < Ry, where Ry (~ 4.7 A for spin-polarised H) is the range
of the interaction (radius of action) defined by R = V(Ry). This means that for

kRy < 1 (2.13)

the V term may be neglected in Equation (2.11) (for these k values the classical turning
point R, for the radial motion is much larger than Ry). Therefore, all scattering has
to result from the [ = 0 channel. In the gas phase, where k ~ A1, the condition (2.13)
is satisfied for

A > Ry. (2.14)

The range of temperatures corresponding to condition (2.14) defines the s-wave scatter-
ing regime. For hydrogen this regimes covers temperatures 7' < 1 K. Under these con-
ditions we are dealing with a pure quantum gas with only isotropic scattering through
the s-wave channel.

For s-waves and for & — 0 the phase shift is given by the following asymptotic
expression

1
k cot ng(k) ~ - + 1rek? fork — 0 (2.15)

where «a is the s-wave scattering length and 7. the effective range of interaction. For
the V; potential of hydrogen we have a = 1.33 ap and 7. = 323 ag (see [24, 25]). For
k < [3ar.]"Y/? Equation (2.15) reduces to 1 ~ —ka. Note that this inequality hardly
differs from condition (2.13) so that in the s-wave scattering regime the amplitude of
scattering in any direction €2 becomes

f ) = fo= sinny ~ —a, (2.16)
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independent of both & and 2. For bosons the differential cross section is given by the
expression

do(Q) = |f(Q) + f(—=Q) d2 = 4| fo[* dC2. (2.17)

Integrating over a hemisphere yields the total elastic cross section o = 8ma? (~ 1.3 x
1071% em? for spin-polarised H).

The formal expression for the [-wave amplitude of scattering in the direction Q is
given by

filk, Q) = — / i(ker) V() R (r)r2dr (2.18)

where j; is a spherical Bessel function (see for instance [26]). The asymptotic expression
for Ryg coincides with the corresponding expression for s-wave scattering of hard spheres
of diameter a:

Rio(r) =~ (kr) tsink(r —a) =~ 1 —a/r, (kr — 0, 7 — o). (2.19)

Hence the wavefunction equals unity everywhere except in a small region of radius Ry
around the scattering center.

2.2.2 Binary collision approximation

As long as the density is sufficiently low, the properties of gases may be described in
terms of binary collisions with asymptotic wavefunctions of the type discussed above.
Such gases are known as ‘nearly ideal gases’. This pair approximation is valid when
collisions within the range of interaction with a third atom are of negligible importance,
i.e., when the mean particle separation n~1/3 is much larger than the range of the
interaction

n'PRy < 1 (2.20)

(n < 10?Y em~3 for spin-polarised H). More generally, if no other length scales of order
Ry or smaller have to be considered one may replace U by a point interaction, or pseudo
potential

U(r) =wveé(r) with vy = (47h?/m)a. (2.21)

Note that by substituting Equation (2.21) into Equation (2.18), observing that Ryo(r) =
jo(kr) in the absence of a phase shift, the scattering amplitude is found to be —a
as in Equation (2.16). The microscopic theory for nearly ideal Bose gases has been
developed under the condition (2.20) using the quantity na® as a small parameter, the
gas parameter [27]. For spin-polarised hydrogen we calculate von/kp ~ 40 nK with
n = 10 cm™3. Interestingly, as a tends to grow with growing mass, vg has, usually,
more or less the same value.

2.3 Quantum statistical aspects

Large and heavy atoms, such as rubidium and caesium, can also form quantum gases,
even though they fail to satisfy the corresponding states criterion mentioned in sec-
tion 2.1. To understand why, one has to analyse how the quantum mechanical aspects



14 CHAPTER 2. QUANTUM GASES

of binary collisions translate themselves in the properties of a gas. In the coming sec-
tions this will be done for swave Bose gases. It will be shown that the ground-state
energy per atom, Eg/N, is (to leading order) linearly dependent on both the density
of the atoms and their scattering length. Thus, in contrast to the corresponding states
prediction for quantum gas behaviour, heavy atoms with positive scattering length can
also satisfy the Fy > 0 condition, i.e., behave as a quantum gas. The case of negative
scattering length is special. Such systems want to lower their energy by contracting.
This adds another level of metastability to the discussion which is not addressed further
in this introductory context. Preference is given to showing that the interactions are
experienced differently by ground-state atoms than by atoms in excited states of mo-
tion. All this assumes, of course, that the density fluctuations that give rise to triple,
quadruple or higher order collisions can be neglected. This assumption is certainly true
on time scales short as compared to the lifetime of the gas clouds.

2.3.1 Bose symmetrisation

Equation (2.21) represents a very powerful approximation for calculating many-body

properties of low-density gases. Before turning for this purpose to a formal many-body

description we first have a look how effects related to Bose symmetrisation come about.
For a pair of atoms the wavefunction is written as

¢1,2 — %efikyrlefikg‘rg — %efiK~Refik4r7
where K=k, + ko, R :%(r1 + ra) are the center of mass wavevector and position
vector, respectively. Similarly k :%(k1 —kg), r =r; — ry are the relative wavevector
and position vector corresponding to the reduced mass. V is the normalisation volume.
The expression (2.22) is ideal for mathematical manipulation but does not include
the proper correlations at short distances. However, as long as we are not interested in
properties that vary over a length scale of order Ry, this objection may be circumvented
by turning to the point interaction (2.21). Note further that the wavefunction (2.22) is
not yet symmetrised. Both aspects will be considered here explicitly in calculating, to
leading order in the density, the energy associated with the interaction potential V; that
gives rise to the elastic scattering in the gas. In the individual scattering events the
direction of the relative momentum changes from k to k' (Jk| = |k’|). The momentum
transfer is q =k — k.
(a) We first consider the case k; = ko. Then Equation (2.22) has the proper sym-
metrisation for bosons and with Equation (2.21) the perturbation matrix element of
elastic interaction with momentum transfer q is given by the following expression

(2.22)

Ulg) = %/V v6(r)e' 4T dr, (2.23)

where the R dependence has been integrated out. Because the relative momentum
is zero (k =0) we also have q = 0 (elastic scattering) and Equation (2.23) is easily
integrated using to yield U(0) = vy/V. We see that the elastic interaction energy is
positive (i.e., effectively repulsive) for a > 0.
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A particularly interesting special case is a gas of N bosons in a volume V with
ki = ko = -+ = ky = 0 which corresponds to Bose condensed ideal gas at T = 0.
With %N(N - 1) = %NQ pairs (N > 1) and assuming pair-wise interaction the total
energy is Fy = %NQI?(O). The energy per atom is found to be

Eo/N ano (2.24)

(b) We now turn to the case k; # ko. Then, Equation (2.22) has to be symmetrised
while conserving normalisation. This leads to

1 K- 1 ikr —ik-r
wl,szeilKRﬁ(ek +e k ) (225)

and we obtain instead of Equation (2.23)

q,Q V/ voé(r) 3] el L (IQT | 7T | Tl gy (2.26)

where Q = k + k. Hence, we have (g, Q) ~ 2vg/V provided the approximation (2.21)
is valid (kRp, QRo < 1). For a Bose condensed gas of N atoms with all except N/ < N
in the condensate we find for the interaction energy per non-condensate atom

E'/N'" = nuy, (2.27)

twice as big as Equation (2.24).

2.3.2 Many-body formalism

The differences in treatment between singly and multiply occupied states in many-body
systems, as illustrated in the above example, are conveniently handled in the number
representation (second quantisation). The peculiarities of Bose systems become here
explicit through the definition of the number states, the construction operators and
the commutation rules. The symmetrised many-body state |¥) = |n1,ng,---) with n;
bosons in state |¢) and X;n;, = N is given by

1/22 ’n17n27 bl (228)

1,12, ) = (N‘m'm

where the sum runs over all possible permutations P of the unsymmetrised product
states |ny,ma,---). In second quantisation, using field operators 9 (r) and ¥(r), the
potential energy operator has the following form (see for instance section 64 of [23])

= & [ vy drodpt (r1)d (r2) Ulry — r2)th(r2)1h(r1) (2.29)

which may be rewritten as

= 5 J Jdr1droU(r1 —r2) §lri, r2), (2.30)
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where g(r1,ra) = (1)t (r2)e(r2)¢(r1) is the correlation operator. Choosing a par-

ticular basis ¢(r) = 3, 5 (r)az the expectation value of g becomes
9r1m2)= 3 @i ()i (r2)p(ra)ig(v1) (Pl afafagay |T) (2:31)
kipg

The only non-zero terms in the summation correspond to the combinations k = p, [ = ¢q
and k£ = ¢,] = p. Using the Bose commutation relations [aha;g,} = by we find for
plane wave basis functions

2
V lc;él

In a thermal gas typical values of wavevectors k, [ are of order A~1. Hence, for Equa-
tion (2.32) two regimes should be distinguished. Within the quantum correlation range,
|r1 — ra] < A, the two-point correlation function g is twice as big as outside this range
where the effect of the oscillating terms averages out. For the operator U (2.30), repre-
senting the elastic interactions, this implies that at (low) temperatures where A > Ry,
Bose correlations should be taken into account. Note that we arrived at the same con-
clusion in section 2.2, see Equation (2.14), in a different context. Equation (2.32) shows
that the Bose correlations are present independent of the existence of any interaction.
Replacing U by a point interaction of the type (2. 21) the operator U can be ex-
pressed in terms of the operator density Z(r) =¢f(r)¢f(r)i(r)¢(r) that enables the
determination of the interaction energy as a function of position, for example in inho-
mogeneous systems. By integrating over position the full operator U is obtained,

U = g fdr Z(r). (2.33)

Using the Bose commutation relations and retaining only those terms that yield a
non-zero contribution to Equation (2.31) we find

Z\% W ikl — 142 lor ()| i (x)|* g (2.34)
Py

Splitting-off the ground state explicitly

Pi(r) = di(x) + & (x) = @i(r)al + D pilr)al (2.35)
k=40
we have R R
Z(I‘) = ‘900( )‘ no[no — 1 —|—4n0 an +Z(k7l)7£0(r) (236)
k=0
where 7i,(r) =| ¢r(r) |* A, with 7y = aLak Using >y oAk = 1/ = = N — fip with

Np > ny, and retaining only terms of order n'? or larger we find

(U) = v [dr[3nd(r) + 2no(r)n’ (r) + n*(x)]. (2.37)
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Note by comparing the special cases ng = 0 and n’ = 0 the difference of a factor 2
(at equal density) for the interaction energy per unit volume. This difference has the
same origin as the difference between eqs. (2.24) and (2.27). It embodies a stabilising
effect for the Bose condensate ng(r) at positive values of vg. For vy < 0 it points to a
destabilising factor.

2.4 Quantum degeneracy in inhomogeneous Bose gases

The current interest in Bose gases mostly concerns the nearly ideal gas in the pres-
ence of an externally applied confining potential (r) In relation to atomic hydrogen
this problem was first addressed at the beginning of the last decade by Walraven and
Silvera [28] and further investigated by Goldman et al. [29] and Huse and Siggia [30].
Later, after the first trapping proposals for hydrogen were published [31, 32] the topic
was discussed by Lovelace and Tommila [33], Bagnato et al. [34] and in relation to
stability considerations by Hijmans et al. [35]. Most recently dynamical aspects were
investigated using time-dependent mean field solutions for the condensate [36]. All
these authors considered quasi-homogeneous conditions as defined by the inequality

ET > nvg > hw. (2.38)

The low density case nvg < hw, investigated in relation to the stability of gases with
negative scattering length [37], is not considered in the present text.

It is the purpose of the coming sections to show that at temperatures above the
critical temperature for Bose-Einstein condensation, 1, the elastic interactions do not
affect the density distribution of the gas to any appreciable extent (i.e., can be ne-
glected), but that even slightly below 7, they are of major importance to determine
the shape of the Bose condensate.

2.4.1 Ideal Bose gas in confining potential

To introduce the notation, first the case of an ideal Bose gas in an external potential is
briefly summarised. The single particle eigenstates {¢x(r)}, labeled by index k, with
eigenvalues ¢ satisfy the following Schrédinger equation

2
(D A+ U or(x) = i) (239

With the grand ensemble the thermodynamic properties of the gas follow from the
statistical operator

po = expl(~0 + N — Ho)/KT] = 5 expl(u¥ — Ho) /KT (2.40)

qar

with normalisation Tr(po) = 1. Here Qg is the thermodynamic potential (that nor-
malises the trace of the density matrix), Hy is the Hamiltonian operator of the ideal



18 CHAPTER 2. QUANTUM GASES

gas, i is the chemical potential and N is the number operator. The grand canonical
partition function is defined by

Zgr = exp|Qo/kT] = Tr{exp|(uN — Ho)/KT)). (2.41)
The Hamiltonian Hy is diagonal in the number representation of the basis {@y(r)}

Ho(r) = 3" i lon() Tripois). (2.42)
k

Evaluating the statistical average we find Tr(pon,) = i, where

1

e ey (243)
The 7N are the mean occupation numbers for the ideal Bose gas. By choosing the
chemical potential such that ), iy = IV, the ensemble describes a trapped gas of NV
atoms at temperature 7. At high temperatures ¢ has to be chosen large and negative.
With decreasing temperature the chemical potential has to be chosen larger and larger
until, at a finite temperature (7;), it approaches ep. Because expression (2.43) diverges
for p = eg, the value of p will never grow beyond eg. An arbitrarily large ground
state occupation is obtained by choosing p sufficiently close to 9. Therefore, below
T,, the value of y is fixed and mean occupation numbers 7 no longer depend on N
but only on T. Their sum o0, = N " represents a finite number, vanishing with
decreasing temperature. Hence, at 1T, the ground state occupation Ny starts to become
a macroscopic fraction of the total number of trapped atoms:

No=N =) . (2.44)
k=0

This phenomenon, in which, at finite temperature, the statistics favours a macroscopic
occupation of the ground state, is known as Bose-Einstein condensation (BEC).

Density distributions and BEC: For future reference it is useful to have a closer
look at the density distribution n(r) of a trapped Bose gas. With a large number of
oscillator states occupied (quasi-homogeneous case) the ideal gas expression (2.43) may
be approximated by a continuum expression for the distribution function

1

fe) = z lexp|—e/kT] — 1

= i 2t exp[—Le /KT, (2.45)
=1

here also written as an expansion in terms of the fugacity z = exp[p/kT] (with z < 1
in the absence of a condensate), and normalised on the total number of trapped atoms

N = [dep(e) f(e)- (2.46)

Here
p(e) = (27h) 3 [drdp 8] — U(r) — p*/2m)] (2.47)
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is the density of states in the quasi-classical phase space (r,p). By changing to the
continuum distribution we have implicitly set eg = 0. Substituting eqs. (2.45) and
(2.47) into Equation (2.46) and integrating over the momentum space we obtain

1 At
N =3 / dr ; 75 exPl—LU(K) KT, (2.48)

where A is the thermal wavelength. This expression fixes the value of the chemical
potential for any given temperature. Writing N = [drn(r), we find for the density
distribution

n(r) = 5022z exp|-U(r) [KT]}. (2.49)

Throughout this paper the usual notation go(z) = 3.%°; /£ is used. For the center
of a (deep) trap (r = 0) Equation (2.49) can be written in the following form

n(0)A® = gy/a(2). (2.50)

This quantity is known as the degeneracy parameter of the trapped gas. Well above
T. we have the non-degenerate regime in which the degeneracy parameter is small,
the fugacity expansion may be approximated by its first term, gs /2(,2) ~ z, and the
chemical potential can be expressed as

@ = kT In[n(0)A?] (2.51)

(note that g is large and negative). At the onset of BEC the degeneracy parameter
reaches its critical value, n(0)A3 = g3/2(1) = 2.612, and p = 0. Clearly, the critical
density for BEC is first reached in the center of the trap. The degeneracy parameter
is the same for any type of trap as long as the continuum approximation is valid and
Ep = 0 [34]

The shape of the density distribution (2.49) changes with temperature. For T' < T,
it has a fixed form which, in the absence of an adjustable chemical potential g, can
only accommodate a fixed number of atoms

N =5 [ v gsafexpl—tr)/KT1} (2.52)

(for any given temperature). Above T, the distribution changes form until Equa-
tion (2.49) reaches its classical form,

n(r) = n(0) exp[-U(r)/kT], (2.53)

in the non-degenerate regime (i.e., for z < 0.1). For H at density n = 104 cm— BEC
occurs at T, ~ 30 pK. Note that for these numbers the conditions (2.14), (2.20) and the
Lh.s. of Equation (2.38) are extremely well satisfied. Note further that at this density
the mean free path, given by A ~ 1/na, is of order 10 cm, much larger than the typical
size of a trapped gas cloud.
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Example: BEC in harmonic traps: It is instructive to consider BEC for the
example a specific type of trap. For this purpose we first rewrite Equation (2.47) in

the form
_ 27(2m)*/? YRS
p(@) = W /u(r)ge dI' g —Z/{(I‘) (254)

which implies that the density of states may be expressed as

p(e) = Apre'/*e (2.55)
for square (6§ = 0), harmonic (6§ = %) and spherical-quadrupole (6 = 3) traps, for

spherically symmetric power-law traps with U(r) r3/8 and all power-law traps that
may be written as U(x,y,z) ~ |z + |y|Y/%2 + |2|'/% with 6 = 37, 8. In Equation
(2.55) Apyr, is a trap dependent constant.

For the case of an isotropic harmonic potential

U(r) = Imw?r?, (2.56)

where r = |r| and w is the single atom oscillator frequency, we calculate

p(e) = 1(1/hw)3e. (2.57)

For T' < T, the fugacity equals unity and the number of above condensate particles is
found by integration of Equation (2.46) using Equation (2.45) and substituting Equa-
tion (2.57) to yield N’ = (kT/hw)3g3(1). Thus, condensate fractions Ng/N = 1—N'/N
close to unity are to be expected at temperatures even mildly below 1. At 1, we have
N’ = N, and, therefore,

KL= (N/g3(1))*hw = 0.941 NP ho. (2.58)

Hence, to satisfy the inequality (2.38) appropriately at BEC, typically N 2 10° atoms
are needed. With fewer atoms the quasi-homogeneous approximation starts to break
down.

2.4.2 Nearly ideal Bose gas in a confining potential

In a nearly ideal Bose gas, i.e. if the gas parameter is small (see section 2.2.2), the anal-
ysis is done with a statistical variational method that leads to a mean field expression
for the motion of the trapped atoms. Under condition (2.38) it follows with thermody-
namic perturbation theory (see for instance [38]) that the thermodynamic potential €
satisfies the following inequality

Q<O =Q¢+Tripo(H — Hp)). (2.59)

Here g is the thermodynamic potential of the ideal Bose gas described by the Hamilto-
nian Hy which is used here as a trial Hamiltonian and pg is the statistical operator of the
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non-interacting gas defined by Equation (2.40). Choosing the number representation of
the single particle basis {¢(r)} we can derive using Equation (2.41)

= —k;TZ lor(r)[*In[1 — eW—er)/KT), (2.60)
Using operator densities, the full Hamiltonian is written as

. 2 ~ ~
A(e) = 31 (1)~ A+ U YE) + o Z(0). (2.61)

Here approximation (2.21) was assumed to be valid. For inhomogeneous systems this
requires the additional condition that interaction range should be much smaller than
size of the oscillator ground state.

(a) No condensate (T' > T¢).

We first consider the case of a weakly interacting gas without Bose condensate. In this
case the energy density of the thermodynamic potential 2(r) can be written as

() = +Zwk {—h—Mu( ) — ek} i) Tr{pofe) +
+vo Z |<Pk 5T {pong[fy — 1) +
+UOZ\9% ) @i (x)|* T ponigiin) }- (2.62)
k£l

Evaluating the statistical averages we find Tr{pofi) = fig, Tr(pong[nx — 1)) = 2n3 and
Tr{ponrni) = ngnhy, where the 7 are the mean occupation numbers for the ideal Bose
gas. For the interacting gas a better distribution function can be found by variation of
the 7 in order to minimize (r):

= @Z(r){—%A +U(r) + 2upn(r) — e tor(r). (2.63)

The minimum is reached if BQ(T)/ Ong = 0 for all values of k simultaneously, i.e. if the
following set of Hartree-Fock equations (coupled through the condition n(r) = >, |
©r(r) |* ng) is satisfied

2
{—h—A U(E) + 200n(r) Yor (1) = exeon(r). (2.64)

The egs. (2.64) are known as the Ginzburg-Gross-Pitaevskii equations for an inhomo-
geneous Bose gas in the absence of a condensate [29, 30].

It is straightforward to show that the correction of U(r) by the mean field of the
gas is negligible in the non-degenerate regime. For this we calculate the mean field
correction to first order using the density distribution n(r) of the ideal Bose given
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by Equation (2.49). Expanding the potential energy terms in the Ginzburg-Gross-
Pitaevskii equation around the origin

_ I 99 91/2(2) 2von(0)
U(r) + 2vgn(r) = 2v9n(0) + 5T 1 G2z) KT

we find that the mean field correction consists of an energy shift 2v9n(0) and a change
of the spring constant of the oscillator of order 2vgn(0)/kT which is very small in view
of condition (2.38). Note that in the non-degenerate regime we have gy /2(2)/g3/2(2) ~
1. Only very close to BEC, where the ratio g;/2(2)/g3/2(2) diverges, the mean field
correction to the spring constant may not be neglected and Equation (2.49) should be
replaced by the self-consistent expression

(2.65)

n(r) = 30372 {expl( — 2eon(r) — U(r) /KT, (266)

which is expected to be correct as long as the self-consistent potential varies sufficiently
slowly that quasi-classical solutions to the Ginzburg-Gross-Pitaevskii equations are
justified. The degeneracy parameter becomes in this case

n(0)A = gy o {expl(y1 — 200n(0) ) /KTT} (2.67)

and the onset of BEC, marked (as in the non-interacting case) by the condition n(0)A3 =

g3/2(1), occurs at
= 2von(0). (2.68)

In terms of the total atom number the BEC criterion is given by the following self-
consistent expression

N, = / drn(r) = % / dr gs o {exp[(2uon(0) — 2von(r) —U(x) )/KT]},  (2.69)

which shows that, in comparison to ideal gases, repulsive Bose gases require more atoms
to Bose condense at the same T,.

(b) With condensate (T' < T).

Below T, we use the same variational procedure for Q(r) but, since in the presence
of a condensate we have . = g¢ and Tr(pong) is diverging, we should single out the
ground state from the ensemble average. We first single out the ground state in the
Hamiltonian (2.61) using Equation (2.36) and setting (fg) = N — 3740 Tr(pofux) = No
and (fg(fp—1)) = No(Ng—1) =~ N¢ (assuming Ny > 1) before the ensemble average is
evaluated in expression (2.62) for the thermodynamic potential. Variation with respect
to ng yields, for k # 0, the same result for dQ(r)/dny as obtained above T, i.e.,
Equation (2.61) with n(r) = ng(r) + n'(r). Variation of Ny gives rise to a different
expression in which the exchange effects discussed in sections (2.3.1) and (2.3.2) again
show up:

e ,
—aaQ]\(fo) = ¢S(T){—;—mA +U(r) + volno(r) + 2n'(r)] — plepo(r). (2.70)
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Consequently, below T, we have the following set of Hartree-Fock equations
hQ
{=5- A +U(r) +volno(r) + 20/ (r)}po(r) = peolr) (2.71)
h2
{=g A+ U() + 2uofo(r) + 7 ()] Yo (r)

erpr(r) (B#0).  (272)

For T — 0 the Equation (2.71) reduces to the Ginzburg-Gross-Pitaevskii equation for
the many-body ground state [39, 40]. To find the expression for the chemical potential
in the presence of a condensate we have to solve Equation (2.71). This is particularly
simple for the quasi-homogeneous case since the condition nvg > fww enables us to
neglect the kinetic energy term in Equation (2.71). Thus we find

p=U(r) + vo[no(r) + 2n'(r)] (2.73)
and because p should be constant over the sample we have
w = vg[no(0) + 2n/(0)]. (2.74)

Note that for Ny — 0 this equation reduces to Equation (2.68). Assuming the size of
the condensate to be small as compared to the thermal size of the sample we may set
n'(r) = n'(0) everywhere within the condensate and combine egs. (2.73) and (2.74) to
derive the following expression for the density distribution of the condensate

vonp(0) — U(r)

Vo

no(r) = (for |r| <l). (2.75)
For |r| > I, we have no(r) = 0. The approximation n/(r) &~ n/(0) is readily verified for
the example satisfied of the harmonic confining potential (2.56) where the 1/e thermal
Gaussian width is given by Iy, = [2kT"/mw?]*/2. With Equation (2.75) the condensate
radius is calculated to be I, = [2vgno(0)/mw?]Y/2. Thus with condition (2.38) it follows
that [ < ly, i.e., the condensate manifests itself (also in the presence of interactions)
as a spatially segregated high density phase in the center of the trapping potential.
This is illustrated in fig.2.1.

Equation (2.75) presents a very important result for inhomogeneous Bose gases
under quasi-homogeneous conditions. It shows that, for a given number (Np) of atoms
in the condensate, the density in the center of a condensate depends inversely on vy. In
the absence of kinetic energy the condensate tends to be compressed by the confining
potential. This leads to the divergence of the density in the case of an ideal gas. This
unphysical divergence occurs because of the continuum approximation, which neglects
the finite width of the oscillator ground state. The above analysis has shown that,
below T, it is essential to include the repulsive interaction. Above T, the presence
of the interaction is much less important, actually almost negligible, because, under
condition (2.38), the thermal motion counteracts the compression.

Figure 2.1 clearly shows one of the most fascinating and novel aspects of Bose
condensates in inhomogeneous traps: The condensate appears as a small high-density
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dhirrtp

Figure 2.1: The density distribution for atomic hydrogen in the trap used in Amsterdam
as a function of temperature near T.. The condensate shows up as a sharp feature in
the center of the distribution.

cloud of atoms in the center of the trapped gas and is, therefore, almost completely
spatially separated from the non-condensate part. Thus we have the unique situation
of a ground state surrounded by a cloud of excitations. It was shown in very recent
BEC experiments with 8’Rb at JILA [5] that it is possible to remove this cloud of
excitations rapidly while keeping the condensate. This implies cooling speeds which
are limited primarily by the time required to remove the excited atoms and not by
intrinsic properties such as the thermalisation time.



Evaporative cooling

3.1 Introduction

Evaporative cooling is a very powerful cooling method based on the preferential re-
moval of atoms with an energy higher than the average energy per trapped atom and
on thermalisation by elastic collisions. The evaporation process leads, under suitable
conditions, to an increase in phase-space density, and was suggested for this purpose
as a means to attain Bose-Einstein condensation (BEC) in atomic hydrogen [31, 41].
Presently, the method has been applied to a wider class of ultra-cold gases.

In this section the essential features of evaporative cooling will be discussed for Bose
gases in the non-degenerate quantum regime. It will be assumed that the atoms are
confined in a static potential well, Z/(r), from which they escape with unit probability
as soon as their total energy, e, exceeds a threshold value, &, which is chosen to be
much larger than the average energy per atom in the trap. As the most energetic atoms
are removed in this way the gas will cool.

The basic assumption underlying the physical picture described above is ‘sufficient
ergodicity’: It is assumed that the distribution of atoms in phase space (position and
momentum) depends only on their energy. This will be the case, for example, in a
trap with ergodic single-particle motion, in which case all parts of the equipotential
hypersurface corresponding to the total energy of the atom are sampled with equal
probability. However, as for many traps the single-particle motion is (partly) non-
ergodic [42], interatomic collisions are usually essential to assure ‘sufficient ergodicity’.

In practical situations the escape can be arranged in various ways: by passing over
a potential barrier [43, 44], by adsorbing onto a pumping surface [45, 46] or by optical
[14] or RF [48, 49] pumping of the atoms to non-trapped states. If the evaporation is
to be eflicient it is essential that the escape occurs on a time scale short compared to
the collisional time, i.e., that the mean free path A is much larger than the size of the
gas cloud [,

A (3.1)

One easily verifies that for H at density n = 104 cm™2 (close to the highest density
achieved in a trap), the mean free path, given by A ~ 1/ne, is of order 10 c¢m, indeed
much larger than the typical size of a trapped sample. Spatial restrictions can limit
the escape probability of energetic atoms and reduce the evaporative cooling power,

25
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in particular in the case of non-ergodic single particle motion [42]. In this respect we
discuss here ‘full-power evaporation’, evaporation limited only by the rate at which
elastic collisions promote atoms to the escape energy.

Inevitably, the cooling of the gas will cause the evaporation process to slow down
as fewer and fewer atoms can acquire the threshold energy. Eventually, the cooling
rate is balanced by a competing heating mechanism or becomes negligibly small. The
process just described will be referred to as ‘plain’ evaporative cooling, as opposed to
‘forced evaporative cooling’ where evaporation is forced to continue by lowering the
escape threshold as the gas cools.

The principle of evaporative cooling was first demonstrated experimentally at MIT
in the group of Greytak and Kleppner [50] who studied plain evaporative cooling by the
escape of spin-polarised hydrogen atoms across a magnetic potential energy barrier. It
was established, by measuring the quantity of gas remaining in the trap after a certain
holding time, that this procedure causes the gas to cool to a temperature well below
the temperature of the surrounding walls. The dynamics of this type of evaporative
cooling was further studied optically [45, 46].

Forced evaporative cooling was also first applied to hydrogen [16, 51, 43, 44] and
enabled temperatures as low as 100 4K and densities as high as 8 x 101¥ cm™3. This
corresponds to nA? ~ 0.4, within one order of magnitude from the degenerate quantum
regime. The need for sophisticated detection methods to establish density and temper-
ature is limiting the progress towards lower temperatures here. An optical version of
forced evaporative cooling of H] was demonstrated in Amsterdam [14].

Recently, evaporative cooling methods were successfully applied to optically pre-
cooled (and magnetically trapped) gases of sodium [48] and rubidium [49], both using
RF-induced evaporation. In the final stage of preparation of the manuscript for the
present paper BEC was announced for 8"Rb at JILA by the group of Cornell and Wie-
man [5] and by the group of Hulet at Rice University for "Li [52]. In both experiments
evaporative cooling played a decisive role.

3.2 Truncated energy distributions

By its very nature (atoms in thermally accessible states are removed from the sample)
evaporative cooling is an intrinsically non-equilibrium process in which a temperature,
strictly speaking, cannot be defined. However, if the average energy per trapped atom
is much smaller than the evaporation threshold, most interatomic collisions lead to a
thermal redistribution of the energy over the trapped states. Thus, keeping in mind
the discussion of section (2.4.2) (that, if the conditions kT > kT, > nvg are satisfied,
interaction effects are of minor importance) it is very appealing to assume that a quasi-
equilibrium distribution will be established having the form (2.45), but with the tail of
energies € > ¢; lacking:

fle)= ize exp|—Lle /ET| 9(ey — €). (3.2)
=1
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Here ¥(x — xp) is Heaviside’s unit step function, zero for z < x¢ and unity for x > .
Such a distribution is characterised by three independent parameters: the truncation
(escape) energy, e, the quasi-temperature, 7', and the degeneracy parameter, z. In
the limit ¢, — oo, the parameters 7' and 2z reduce to the equilibrium temperature
and fugacity, respectively. From Equation (3.2) it is clear that the truncation mostly
affects the first term in the expansion. Being further aware that the thermodynamic
properties are only mildly affected by degeneracy effects above the critical temperature
for BEC, it is plausible that the essential aspects of evaporative cooling down to T,
can be obtained with the expression for the energy distribution of the non-degenerate
regime

fle) = ze s/ *FT (e, — €), (3.3)

where z is determined by the normalisation condition (2.46) which becomes with (3.3)
et
N = z/ de p(e) e /T (3.4)
0

Unlike (2.50), due to the truncation, the expression for the fugacity differs from the
equilibrium expression (i.e., 2 # n(0)A%). However, we can still formally write the
degeneracy parameter as

2 = ngA3, (3.5)

choosing A = [27h? /mkT]"/? to coincide in the limit &, — oo with the equilibrium
expression for the thermal wavelength. With this procedure ng is a density, determined
by the normalisation condition (3.4) and (only) coinciding in the limit e, — oo with
the density n(0) in the trap center.

The truncated exponential form has been used as a starting point for several de-
scriptions of evaporative cooling [53, 44, 47, 46]. It was shown by numerical solution
of the Boltzmann equation [56], that for non-degenerate Bose gases the evaporation
process, indeed, rather accurately conserves a quasi-equilibrium energy distribution
of the form (3.2), a property noticed earlier in numerical simulations of evaporation
experiments with trapped H at MIT [54].

One should be aware that the presence of the truncation edge affects all thermal
properties. For example, to calculate the average thermal speed, the thermal wave-
length, or the internal energy it is not sufficient to know the quasi-temperature (7'), as
these quantities also depend on the truncation energy (e;). In spite of this complication,
once the truncated energy distribution (3.3) is adopted, a thermodynamic description
of the sample follows naturally, with ; as one of the thermodynamic variables. In addi-
tion, the Boltzmann equation for the trapped gas can be radically simplified, allowing
an explicit calculation of the rate of evaporation for different kinds of traps [56].

3.3 Thermodynamic properties

In this section we discuss a number of thermodynamic properties relevant for the de-
scription of evaporative cooling using the truncated exponential energy distribution
(3.3) as a starting point. For the power-law traps defined in section (2.38) this can be
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done very explicitly. In more general cases the classical canonical partition function of
the truncated distribution turns out to be a central quantity. This can be seen directly
from Equation (3.4), which can be rewritten as

N =ngA3¢ (3.6)

with .,
C:/O de p(e) e~/ (3.7)

Substituting expression (2.47) for the density of states and introducing the classical
single particle Hamiltonian, H(r,p) = U(r) + p?/2m, we obtain

¢ = (2rh) 3 /dpdr e HEP)/KTy(e, — H(r,p)] , (3.8)

which is the classical canonical partition function with the (truncated) region of phase
space, U(r) + p?/2m > &, excluded.

3.3.1 Density distribution and effective volume

The density distribution n(r) of the gas over the trap is obtained by evaluating, in
Equation (3.6), only the momentum integral of the partition function and can be written
as [55]

n(r) = noe*u(r)/kTP(%, n(r) ), (3.9)

where P(a,n) is the incomplete gamma function (see appendix 3.5.4) and n(r) =
(et —U(r))/kT. Thus, for the truncated distribution, the true density in the trap
center is given by

n(0) = noP(3,m) < no, (3.10)

where the parameter n = 7,(0) = &;/kT will be referred to as the truncation parameter
and the (true) effective volume of the gas cloud is given by the expression

Vary = N/n(0) = fdn(x)/n(0). (3.11)

Although the exact knowledge of Vs is of practical importance, for example for the
experimental determination of N, often it is more convenient to use a reference volume,
Ve, defined in terms of the parameter ng

Vo= N/ng = A = A3/ "de p(e) es/FT (3.12)
0

The volume V; has very nice properties which result from its simple relation to the par-
tition function. Moreover, since the degeneracy parameter for truncated distributions
involves ng and not n(0), see Equation (3.5), it may be better not to introduce n(0) at
all into the formalism.

Power-law traps: For the special case of a power-law trap the exponent 8, introduced
in Equation (2.55), reappears in the expression for the partition function

(= APL/O Cde V70 /T (o P(3 +6,7). (3.13)
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Here the limiting value, (oo = App [KT]%/ 2+5F(% + ), corresponds to an infinitely deep
trap (i.e., 7 — o0o) and I'(a) is the Euler gamma function. In particular, for (infinitely)
deep harmonic traps, the partition function is given by (s = 3 (K1'/ hw)? .

The quasi-classical reference volume follows directly with Equation (3.12):

Ve = Ao P(3 + 6,m). (3.14)

Notice for deep power-law traps that they have a particularly simple temperature de-
pendence of their reference volume,

Vexx T® for n— oo. (3.15)

3.3.2 Internal energy

The internal energy (total energy) of a non-degenerate trapped gas of N atoms under
(quasi-)equilibrium conditions is given by

€t
E= nOAS/ deepe) e =/FT, (3.16)
0

This expression can be rewritten in terms of the partition function (3.7)

10¢
E=NkT*=—> 3.17
a form, very well-known from statistical mechanics, that is seen to remain valid under

quasi-equilibrium conditions in the trap. Substituting ¢ = V,/A3 it follows that

E = (3 +4)NKT (3.18)

5 (aw@> . (3.19)
olnT ).,

The tilde symbol is used to remind us that the scaling parameter 4 depends on the
truncation energy (g;) and further has a (slight) 7' dependence, ¥ = (T, ¢;), due to
the truncation or due to a density of states which deviates from the pure power-law
density of states introduced in section 2.4.1. In cases where the momentum and position
integrals in the partition function (3.8) can be separated, the terms %NkT and ANKT
in Equation (3.18) may be interpreted as kinetic and potential energy contributions to
the total energy, respectively.

Note that Equation (3.18) remains valid also if the separation of momentum and
position integrals is not possible. Therefore, it can serve as a good starting point for a
general description of the quasi-equilibrium thermodynamic properties of trapped gases
in terms of three independent variables: the total number of trapped atoms (IV), the
quasi-temperature (7') and the truncation energy (g;) or, equivalently, the truncation
parameter (7). This description is the subject of section 3.5.

where
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Power-law traps: For power-law traps it follows with egs. (3.19) and (3.14) that
the scaling parameter 4 depends only on the ratio of & and T, i.e., on the truncation
parameter (7)),

S+7=(E+6RE +6,m). (3.20)

By definition R(a,n) = P(a + 1,n7)/P(a,n), see further section 3.5.4. With Equa-
tion (3.20) the internal energy is found to be

E =ER(3+6n), (3.21)

where Foo = (% + 0)NET is the internal energy of a sample of N atoms in thermal
equilibrium in an infinitely deep trap. Note that the internal energy is independent of
the details of the trap and depends only on the thermodynamic variables N, T and &;
and on the scaling behaviour of the density of states (characterised for power-law traps
by the § parameter).

3.4 Kinetics of evaporation from a trap

Various questions arise from the intrinsic feature of particle loss in evaporative cooling.
First of all one may have doubts about the efficiency of the cooling process. One may
wonder whether there is any appreciable amount of sample left after it has been cooled
to an interesting temperature or that the sample losses are excessive and disabling to
the experimentalist. A related question concerns the choice of g;. It may be obvious
that the extracted energy per evaporating atom is larger for larger ¢ but if this results
in an impractically long cooling time the evaporation is of little use. Actually, what is
meant by impractically long? Is this determined by the patience of the experimentalist,
by instrumental limitations or by intrinsic properties of the gas? Starting from a kinetic
equation, these and other questions and their relation to the shape of different traps
will be discussed in the coming sections. Several characteristic parameters appear in
this discussion: (a) the truncation parameter, n = ;/kT, expressing the escape energy
in terms of the quasi-temperature, (b) the ‘spilling’ parameters 5 , describing the scaling
of the reference volume with ¢; and a measure for the spilling of atoms when ramping-
down the escape threshold to force the evaporation and (c) the thermalisation ratio
expressing the ratio of elastic collisions to loss collisions and thus determining whether
or not thermal (quasi-)equilibrium can be established within the lifetime of the sample.

3.4.1 Kinetic equation

For a Bose gas in the s-wave regime and under sufficiently ergodic conditions (see
section 3.1) the Boltzmann equation can be reduced to a kinetic equation for the dis-
tribution function f(e) = noA3 exp[—e/kT] of a particularly simple form [56].

. mao
plea) f(eq) = 573 /dsldggdsgé[gl +e9 —e3 —&4) X (3.22)

p(minler, e2,e3,e4)){ f(e1) f(e2) — fles) fea)}-
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This equation represents the detailed balance between collisions in which atoms with
energy €1 and ez produce atoms with energy e4 (under conservation of energy and
momentum) and collisions in which atoms with energy 4 are lost from the distribution
while producing atoms with energy &1 and e (conserving energy and momentum).
Equation (3.22) describes the time evolution of the energy distribution function f(e)
as a result of the elementary collisional processes: s-wave collisions with cross section
o = 8ma? (see section 2.2). Notably, this expression only involves the density of states
of the atom with the lowest energy involved in each collisional process. This property
was first used in the BEC literature to describe the kinetics of Bose condensation in
homogeneous systems in relation to excitons [57] and in spin-polarised hydrogen [58, 59].

Equation (3.22) was derived for inhomogeneous systems to calculate the rate of
evaporation from a trap (see section 3.4.2) and to study, by numerical solution, the
time evolution of the shape of the truncated energy distribution [56]. In this way the
use of the quasi-equilibrium approximation (3.3) could be justified.

3.4.2 Evaporation rate

By definition, the evaporation rate equals the rate of loss of atoms to non-trapped
states (g4 > &¢) as a result of collisions between trapped atoms, and is thus given by
the following expression

Ny = — / °° des ples) f(ea). (3.23)

In the truncated Boltzmann approximation we see that if ¢4 > &; > £1, €5 only the gain
term in the kinetic equation (3.22) contributes and that €3 = &1 + 9 — &4 is necessarily
the lowest energy involved in any collision involving escape of one of the atoms. Hence,

mo

. €t €t €t
Ny = -2 / des / des / dey p(es) f(e1) fle) (3.24)
n h 0 £3 €3+€t*€2

where the domain of integration is determined by the requirements that 1,22 < &¢ and
€1+ &9 — €3 = &4 > &;. Evaluating the integral is straightforward and yields

Ny = —n% voe MV, (3.25)

with & = [8kT/7m]/? defined to coincide in the limit  — oo with the equilibrium
expression for the mean thermal speed, and V., is the reference volume for evaporation
defined by

A3
kT
Hence, the characteristic evaporational decay time 7.y, defined by the expression 7.,! =
—Ngy/N, can be written as

Voo = o [ depe)l(e, — e~ K)o 1 k== (3.26)
0

7ot =nvoe Wy V. (3.27)

Here it was used that all atoms that acquire, as a result of an elastic interatomic
collision, an energy satisfying the evaporation condition (g4 > &) are lost from the
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trap with unit probability. The volume ratio V¢, /V. can vary between zero and infinity
and may be calculated numerically for any type of trap once the density of states is
known. Note that the egs. (3.25) and (3.27) hold for given values of N, T and ¢;. Clearly,
for a proper description of evaporative cooling of a trapped cloud of gas we have to
bring into the picture how the evaporation process affects N and T for fixed (plain
evaporation) or time-varying (forced evaporation) value of the truncation parameter
e¢t. We return to this point in section 3.5.

Equation (3.27) can be interpreted as a collision rate multiplied by an escape proba-
bility. However, the usual discussion associated with such an interpretation, concerning
the influence of the thermalisation rate on the escape probability, is avoided by deriv-
ing expressions directly from the Boltzmann equation. All limitations with regard to
the validity of Equation (3.27) are contained in the limitations to validity of the quasi-
equilibrium approximation (3.3) and these limitations are known to be small for the
quasi-homogeneous non-degenerate Bose gas discussed here [56].

Power-law traps: For these traps (introduced in section 2.4.1) the ratio Vg, /Ve can
be expressed analytically in terms of incomplete gamma functions

Veo/Ve=1— (3 +8R(2 +6,7). (3.28)

Taking notice of the asymptotic behaviour of the volume ratio

2
m(n_@ and Vi, /Voxn—2—6 (n—oo)  (3.29)
one may say, somewhat handwaving, that in many practical cases the assumption
Vew/Ve &~ 1 is not a bad approximation to estimate the order of magnitude of the
evaporation rate.

Veo/Ve =~

3.4.3 Forced evaporation

Thus far ¢; was assumed to be constant, i.e., we only considered plain evaporation. In
forced evaporation the escape threshold is slowly lowered in order to have the evapora-
tion proceed at the desired rate. The evaporation process is very sensitive for the value
of the truncation parameter (1) because it appears in the exponent of the expressions
(3.25) and (3.27). Inevitably, the lowering of ; gives rise to an additional loss, not
related to collision induced escape (evaporation), but to the change in escape condition
itself. Therefore, in forced evaporation, the loss of atoms from the trap consists of two
contributions,

N = Ney + Ng. (3.30)
The first term is the evaporation loss rate discussed in the previous section. The second
term is the truncation loss rate, only non-zero for de;/dt < 0,

Nt = p(é‘t)f(é‘t)ét. (331)

Rewriting in terms of the partition function, p(er)e™" = (9¢/0et)r, and substituting
the expression ¢ = V./A? we obtain

Nt/N:é ét/5t7 (332)
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where the scaling parameter 5 is defined by

£= (‘311?1‘;>T (3.33)

Note that é ~ O for deep traps. Equation (3.32) expresses the relation between the

characteristic time for atom loss due to truncation (1), deﬁned by the expression 7, ! =

—(N;/N), and the ramp-down time (Tmmp) defined by 7,41, = —(é¢/e;) and is easily

rewritten for this purpose as Tt_l = fT,Tamp Hence, f is a measure for the spilling of
particles by the ramping procedure.

The overall decay time of the sample due to forced evaporation (7) can be written
as the sum of two terms,

=t (3.34)

representing the rates of evaporation and truncation, respectively. In view of this result,
we may distinguish two regimes:

o Quasi-static ramping (T{l < 751). In this regime the evaporation threshold ¢
is ‘slowly’ reduced and the atom loss is mainly due to evaporation. This is the
regime of ‘pure’ forced evaporatlve cooling (N Nev) in which both N and T
change. In the limit Tt — 0 we have plain evaporation.

e Fast ramping (filtering) (7, * > 7_,1). In this regime essentially all particle loss
is due to the truncation (N = Nt) The quasi-temperature remains constant but
the internal energy, F, is reduced as the most energetic atoms are filtered from
the sample (see next section).

Power-law traps: Rewriting Equation (3.33) for power-law traps we obtain
E=E+6)[1-RE+6n) (3.35)

It is noteworthy that, for power-law traps, the sum of the two partial derivatives of the
reference volume V, reduces to a particularly simple form,

5+€=6. (3.36)

For the special case of harmonic traps the condition for quasi-static ramping may
be expressed by an inequality for the product of the trap frequency (w) and the ramp-
down time (Tramp) in terms of three characteristic ratios, the truncation parameter, the
ratio of quasi-thermal wavelength to the s-wave scattering length and the ratio of the
quasi-temperature and level splitting

WTramp > % (%)2 (2—5)2 %. (3.37)
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3.4.4 Loss of internal energy

The rate at which the internal energy of the trapped gas decreases during the evapo-
ration process is composed of two contributions,

E =By + Ey. (3.38)
The first contribution (Eev) is the evaporation term, resulting from the interatomic
collisions and representing the energy removed with the evaporating atoms. The second
term (Et) gives the contribution due to a changing truncation energy, only present for
de¢/dt < 0. In plain evaporation only the term E’w contributes. If g; is varied the
truncation losses are given the following expression

Et = &t p(@t)f(é‘t)é‘t =&t Nt. (339)

The internal energy loss due to evaporation follows from evaluation of the following
integral

Fow = — / " dee plen) flen). (3.40)

With the same procedure as used in the previous section for calculating the evaporation
rate (Ney), see Equation (3.25), we find

By = Ny et + (1 — Xew/ Vi) KT, (3.41)

where

3 re
Xey = Ii:\_T / de p(e)[KTe™5/*T — (¢ — e 4+ kT)e™=t/*1], (3.42)
0

The volume ratio X,,/Ve, can vary between zero and unity and is easily calculated
numerically for arbitrary traps once the density of states is known. Like egs. (3.25) and
(3.27) also Equation (3.41) is valid for given N, T and ¢;. Equation (3.41) expresses the
physical picture that atoms escaping from the trap reduce the internal energy by an
amount slightly larger than the energy of the truncation edge &;.

Power-law traps: For these traps (see section 2.4.1) the ratio X¢y/Vey can be ex-
pressed as

Xew _ PG +81) Ve
= (g o) (3.43)
Vew P(g + 6, 77) Vew
and the asymptotic behaviour is given by
n
Xey/Vep =1 — — 0) and Xy /Vey ~ — 00). 3.44
/ T 10 [V omgmy (=00 (340

3.4.5 Relaxation heating and the thermalisation ratio

Just like evaporation leads to cooling because only the most energetic atoms escape,
magnetic relaxation will lead to heating because in this process the low-energy atoms are
preferentially removed. Because spin relaxation is a two-body process (see section 1.3)
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the relaxation rate is proportional to the square of the gas density. Thus, the atoms
are lost preferentially from the central region of the trap (region of highest density)
where the atoms have lower-than-average energy. We assume here that all relaxation
products leave the trapped gas: high-field-seeking atoms are ejected from the trap in
accordance with their nature and the atoms in ‘trapped’ spin states because the recoil
that accompanies (inelastic) relaxation events makes the atoms too energetic to be
confined in the trap.

The rate of change of the number of trapped atoms due to spin relaxation can be
written as

Nyet = — / &Pr G(r)n?(r) (3.45)

where the rate constant G is assumed to be independent of temperature (low temper-
ature limit). Neglecting a possible position dependence (e.g. field dependence) of the
rate constant and defining a characteristic relaxation time 7, by T;ell = —(N,,el /N),
Equation (3.45) can be reexpressed as

Trel = 10GVoe/ Ve, (3.46)

where the reference volume for binary collisions is given by

Vo = / &1 [n(r) /no]2. (3.47)
The associated rate of change of internal energy,
Erel = Nrel(% + 5’2)]{T (348)

where 4o = [T//(2Va¢)|0Vae/OT is the scaling parameter for the collision reference vol-
ume. One may show that 42 < 4. Therefore, the relaxation effectively acts as a heating
mechanism.

As both relaxation and evaporation are two-body processes their density dependence
is identical. This allows us to combine egs. (3.41) and (3.48) into a single expression
for the energy loss rate,

Eev + Erel = Nev {77 + (]- - Xev/‘/ev) + (% + ;)’/2)/7?']]{11 (349)

where R is the thermalisation ratio (the ‘ratio of good-to-bad collisions’), defined by
the expression R = Ngy/Nyer. Substituting egs. (3.27) and (3.46) the thermalisation

ratio can be written as oV
vo
R=——e" 3.50
G ‘/23 € ? ( )

notably independent of ng. Similarly one can write one combined expression for the
atom loss rate due to binary collisional processes

New + Nypet = Neo[1 +1/R]. (3.51)

Since the elastic collision rate scales with T2 whereas G is temperature indepen-
dent (at low temperature) the thermalisation ratio decreases with decreasing temper-
ature according to R oc T1/2. Therefore, it is also useful to define a characteristic
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temperature T, at which an atom has equal probability to experience an inelastic or
an elastic collision (in a full thermal distribution):

2
W, — TG
1602

(3.52)
For hydrogen the thermalisation ratio is anomalously small as a result of the small s
wave cross section. Substituting the values for HT in low magnetic fields one calculates
T, ~ 1.4nK.

In many practical cases the thermalisation ratio will be large, R > % + 72, so that
the relaxation corrections may be neglected in eqgs. (3.49) and (3.51). In view of this,
the author has chosen not to contaminate the equations in the coming sections with
these straightforward corrections, discussing the physics as if relaxation is absent.

3.5 Thermodynamics of evaporative cooling

With expressions for the particle loss and energy loss at our disposal we can return
to the thermodynamical aspects and calculate the change of density (ng) and the rate
of cooling T/T of the evaporating gas cloud. Two new scaling parameters will be
introduced for this purpose. The efficiency parameter, &, relates the quasi-temperature
to the number of atoms remaining in the trap after a certain evaporation time, T' oc N&.
The scaling parameter 5 expresses how the density ng changes with quasi-temperature
during cooling.

3.5.1 Plain evaporative cooling

We first consider the case of plain evaporative cooling. Is is seen from egs. (3.17) and
(3.7) that, for a given trap, the internal energy only depends on three independent
variables N, T" and &;. Therefore, during any change of state in which these variables
remain well defined, the internal energy change may be described by

dE = C., dT + ji., AN + W., de, (3.53)

where C;, = (0E/OT)y, is the heat capacity at constant escape energy and for a
fixed number of trapped atoms, p., = (OE/IN)r., is like a ‘chemical potential’ of
evaporation at constant escape energy and W, = (0F/0e;)n 1 is a heat of truncation
at constant quasi-temperature and for a fixed number of atoms. With Equation (3.18)
it follows immediately that

C., = (3 +7+T(0%/07).,) Nk and pe, = (3 +7) kT. (3.54)

This shows that ., is nothing else than the average energy per remaining atom during
evaporation, p., = E/N.

For plain evaporative cooling, i.e., evaporative cooling at constant escape energy &;,
the third term in Equation (3.53) does not contribute to the internal energy change,
leaving only two independent thermodynamic variables, N and 7.
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Power-law traps: In this case the heat capacity at constant escape energy becomes
Cp = CRG +6,{(E+ORE +6m) — 3 +ORE+6m),  (3.55)

with Coo = (2 + &) Nk.

3.5.2  Forced evaporative cooling

In forced evaporative cooling the escape threshold (e¢) is lowered with decreasing tem-
perature, thus allowing the evaporation to proceed at a desired rate. An approximately
constant evaporation rate is obtained by keeping the truncation parameter () constant.
Therefore, rather than describing the evaporation with Equation (3.53), in the case of
forced evaporative cooling it is more convenient to use n rather than &; as the third
independent thermodynamic variable and to write changes of the internal energy by

dE = CpydT + i, AN + W, dn, (3.56)

where Cy = (OE/OT)y, is the heat capacity at constant truncation parameter p, =
(OE/ON)r,, is like a ‘chemical potential’ of evaporation at constant truncation param-
eter and W, = (OFE/0n)n 1 is a heat of truncation at constant quasi-temperature and
for a fixed number of atoms. With Equation (3.18) it follows immediately that

Cy= (3 +5+T(05/0T),) Nk and p, = (3 +7) kT. (3.57)

Note that p, = pe, = E/N for the non-interacting Bose gas considered here.

For the special case of forced evaporative cooling at constant n the third term in
Equation (3.56) does not contribute to the internal energy change, leaving only two
independent thermodynamic variables, N and 7. In this special case the expressions
for forced evaporative cooling coincide with those of plain evaporative cooling provided
Cs, is replaced by C,.

Power-law traps: It follows with expression (3.20) for the 4 parameter that the
chemical potential of evaporation and the heat capacity at constant truncation param-
eter are given by

Cp/Nk = (3 +8)R(Z+6.1n). (3.58)

3.5.3 The scaling parameters & and B

From section 3.4.4 we know the rate at which internal energy is removed from the
sample by the escape of atoms. For quasi-static truncation of the distribution function
the change of the internal may be expressed in terms thermodynamic variables of
choice, N, T and ¢; or N, T and 7. Here two special cases will be discussed: (a)
plain evaporative cooling and (b) forced evaporative cooling at constant n. In both
cases the thermodynamic properties depend only on two independent variables, NV and
T, and the rate of change of internal energy may be expressed in the same form,

E=C;T+EN)N, (3.59)
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where the subscript of C; is used to indicate plain or forced conditions, with i € (g¢,7)
in accordance with egs. (3.54) and (3.57), respectively. Equating Equation (3.59) with
Equation (3.38) and using the property that for evaporation at constant 7 the quantity
é¢/e; may be replaced by T/T" we find

dnT (1= Xew/Veo) = (3 +79)
&= = =, (3.60)
dInN  Ci/NE+ (1 — Xep/Ven)&;

where the second terms in the denominator is only present in the case of forced cooling
as is expressed by the Kronecker delta in the definition, fz = o nf of the parameter fl
Here f is the spilling parameter introduced in section 3.4.3. The scaling parameter & is
an important quantity, expressing the efficiency of the cooling process. If & is negative
the evaporation gives rise to heating. For & > 0 this scaling parameter tells us how the
quasi-temperature drops with atom loss during the evaporation process.
A related quantity, the scaling parameter B, tells us how the quasi-density scales
with the quasi-temperature
~ dlnng
 dInT"

Using the identity 7n9/ng = N /N — V. /Ve and the scaling behaviour of the reference
volume V, with quasi-temperature and escape energy, given by V,/V, = 3T /T +£ /ey,
we find (noting that for forced evaporative cooling at constant n the quantity &;/e; may
be replaced by T/T ) the following expression for 3

(3.61)

== G+E) (362

To have cooling with increasing ng the scaling parameter B should be negative, corre-
sponding to the condition & > 1/(§ +&;) or, equivalently, the (recursive) condition

C/N]f“‘ézn( ev/‘/ev)éi
7 +&

The lowest 1 value at which this condition is satisfied will be called ng.

NI [V

n> ( + ’7) - (1 - Xev/vev) (363)

3.5.4 Run-away evaporation

Even with the truncation parameter constant and equal to 1y (i.e., for constant ng)
the forced evaporation rate at constant n will slow down with falling temperature due
to the thermal speed dependence of the atomic collision frequency ngv . In order to
prevent this, the density ng should increase at least inversely proportional to T/2. This
process in which the cooling rate speeds up is known as run-away evaporation. Using
the identity d(lnngT'/?)/dt = ng/no + %T/ T, the condition for run-away evaporation
is seen to be given by the expression
dln noTl/ 2 1

TR ZE—(1+§)+§<0, (3.64)
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e, da >1/(5+¢&— 1), so that for this case the recursive condition (3.63) should be
replaced by the condition

N Co/NE + (1 — Xop/Vir )€

= — (1 — Xeo/Ver). 3.65
e (1~ Xeo/ Vi) (3.65)

n>(3+49)
The lowest 1 value at which this condition is satisfied will be called the critical trun-
cation parameter 7.

Ezamples

Plain evaporative cooling: To have cooling at initially constant ng, the parameter
5 for the scaling of ng with temperature should be equal to zero at the start of the
cooling process, i.e., the truncation parameter n should be equal to 79. Substituting
the expressions (3.20), (3.55) and (3.41) for 4, C,, and Xg,/Ve,, respectively, into
Equation (3.63), and using Equation (3.28) for V,/Ve, we can solve for .

We first discuss the case of a 3D harmonic trap (6 = %) Here we calculate g =
2.9. With this value for ng we can inspect values for the thermodynamic quantities:
E/NET =18, C,,/Nk = 0.44 and calculate the ratios Xy, /Ve, = 0.6 and Ve, /Ve = 0.5.
Then we can calculate the scaling parameters 4 = 0.29 with Equation (3.20) and & = 3.4
with Equation (3.60) to verify that indeed the scaling parameter /3 is zero (i.e., & = 1/7).
Then, the (initial) characteristic cooling time can be calculated with the following
expression

A _
——=—ngvoe "V, /Vex0.1ngvo. (3.66)
Ty
Initially ng remains constant as the quasi-temperature drops. However, since ¢; is
constant this leads to an increase in truncation parameter and ng will start to increase
while the cooling rate is cut-off exponentially.
For several power-law traps, characterised by their § value, the results for plain

evaporation (constant &;) are summarised below:

0 3 2.5 2 1.5 1 0.5

no 225 2.39 259 291 350 5.05
a 50 45 39 34 30 3.0

For plain evaporation the spherical quadrupole traps (§ = 3) are clearly favourable.
Even for a truncation parameter as low as 2.25 the density grows monotonously for
these traps. Also the large efficiency parameter @, indicating that the temperature falls
with the fifth power of the number of atoms remaining in the trap, is spectacular. This
means that the spherical quadrupole trap is best suited to load a trap to the onset of
evaporative cooling.

Forced evaporative cooling at constant 7: Turning to forced evaporative cooling
we consider two cases: (a) forced evaporative cooling at constant ng (i.e., n = 1) and
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(b) forced evaporative cooling at the onset of run-away evaporation (i.e., n = 7). In

both cases we consider power-law traps, so we may use the simplifying relation y+& = 6
(see section 3.4.3). The efficiency parameter (&) may then be expressed as

1
b= ——, (3.67)
o0+ 4
where B has the value 0, for forced evaporative cooling at constant ng, or —%, at the

onset of run-away evaporation.

(a) For forced evaporative cooling at constant ng the evaporation process starts, as in
the case of plain evaporation, with n = 9. Lowering &; proportional to T', thus keeping 7
constant, causes the density ng to remain constant as can be seen from Equation (3.63)
where T" does not appear explicitly. The difference from plain evaporative cooling
shows up in the value for the efficiency parameter (&) which is readily calculated with
Equation (3.67) by setting 3 equal to zero.

0 3 2.5 2 1.5 1 0.5

n 225 239 259 291 350 5.05
a 1/3 2/5 1/2 2/3 1 2

Not surprisingly, the particle loss due to the ramp-down procedure is most pronounced
for traps with the largest density of states near the truncation edge. This shows up in
the efficiency parameter, &. Similar behaviour can be found for the spilling parameter,
£.

(b) Choosing 7 constant and equal to 7. the cooling not only starts at constant nyo
but also continues at constant ngo. This is the onset condition for run-away evaporation.
As in the previous example the expression (3.67) holds, but now, in accordance with
Equation (3.64), we require that the scaling parameter 5 is less than —%. For 3D
harmonic traps it follows with Equation (3.65) that n, = 4.59 and E/NkT = C,/Nk =
2.41. The volume ratios are given by X, /Ve, = 0.42 and V,,/V. = 1.37. For the scaling
parameters we calculate 5 = 0.912, é = 0.588 and & = 1. The cooling rate may be
expressed as

T 1 _ _
——==——Fn0Te " Ve /Ve = 0.034ng0 7, (3.68)
T 35— N
which is a factor 3 slower than the initial cooling rate given in expression (3.66) but
has the advantage that the exponential throttling with falling quasi-temperature has
been eliminated. Note that 7, ' = 1.47,,!. This means that we are at the edge of the
quasi-static ramping regime and that more than half of the atoms are lost by spilling.

Comparing the various power-law traps for evaporation forced at run-away condi-

tions we find the results compiled in the table below

0 3 2.5 2 1.5 1 05

ne 317 343 384 459 659 oo
a 2/5 1/2 2/3 1 2 -
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Both examples of forced evaporative cooling show that high-6 traps require the smallest
truncation parameter to move at the desired slope through the ng — T" phase diagram.
This is a nice feature because it enables fast cooling. However, by comparing the &
parameters we see that the low-6 traps are more efficient. This raises the question
how the various traps compare (under forced evaporative cooling at constant 7) for
equal values of the truncation parameter. This comparison was made for n = 4.59, the
critical truncation value for run-away evaporation in harmonic traps. The results are
presented below

0 3 2.5 2 1.5 1 0.5
a 054 0.64 0.79 1 131 1.8

Note that also at equal i the harmonic traps are more efficient than spherical quadrupole
traps. However, since in this case the high-6 traps are operated well inside ‘the run-
away regime’ (n ~ 1.57.) the evaporation speeds up (due to a strong increase in ng
and related to the strong T dependence of the effective volume). This run-away may
be an important advantage in cases where short cooling times are required.

Appendix: Incomplete gamma functions

The incomplete gamma function is defined by

1
=—— [ dtt*let, 3.69
['(a) /0 ( )

where I'(a) is the Euler gamma function. P(a,n) grows monotonically from zero to one
for increasing n > 0. P(a,n) can be expressed as a series expansion

P —pt .
(a,m) =e nmzol“m+a+1) (3:70)
which reduces for integer a = 1,2,3,--- to
-1 77m
Pla,n)=1—e" ZO — (3.71)

Expansion in terms of 1/7 :

M (a—1) (a—1)(a—2)
Pla,n)=1—¢e" [1+ + +--- 3.72
(a,n) T(a) p 7 (3.72)
The derivative of P(a,n) with respect to 7 is given by
dP(a,n) _a e !
——~ =—[P(a,n) — Pla+1,n)] = —— 3.73
S~ Sip(a,n) - Pl 1) = 1 (3.73)
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and, hence
Pla+1,n) s 1
! =——=1—-¢" . .74
M= "ply ~ 1 T ) Pl T
A useful recursion relation for R(a,n) functions is
1 a+1
=1+ 1— R(a+1,n)]. 3.75
o 1 R(a+ 1) (3.75)
The derivative of R(a,n) with respect to 7 is given by
OR(a, R(a,
é‘; D BO R — (a+ DR~ 1), (3.76)
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