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Abstract

This thesis describes the project done for the graduation in experimental physics
at the University of Amsterdam. The report is twofold. We present the develop-
ment of a new type of spectroscopy. This Zeeman sideband spectroscopy is based
on modulating the magnetic field in a gaseous sample. The laser has been found
to be stable, less sensitive to external drifts as compared to previously known
types of spectroscopy, narrow bandwidth and cost effective. Based on this type
of spectroscopy we present a frequency stabilized laser source to be used in BEC
experiments. In the second part we present a model describing the magnetic
trapping potential. The algebraic model based on numerical calculations, is
found to be extremely useful for the experiments done. We present a new type
of TOP trap realized in a Ioffe-Quadrupole trap. As an application we present
the first realization of two BEC’s in a purely magnetic Ioffe-Quadrupole trap.
As a demonstration of the possibilities we briefly show the collisional process of
two BEC’s.



Contents

General Introduction 5

1 Bose Einstein Condensation 6

1.1 Historical . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.2 Apparatus needed to achieve BEC . . . . . . . . . . . . . . . . . 7
1.3 This project . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

I Spectroscopy 9

2 Diode Lasers 10

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2 Grating stabilized lasers . . . . . . . . . . . . . . . . . . . . . . . 11

2.2.1 Injection locking of lasers . . . . . . . . . . . . . . . . . . 12

3 Spectroscopy 14

3.1 Frequency locking . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.1.1 Atomic spectra . . . . . . . . . . . . . . . . . . . . . . . . 14

3.2 Saturation spectroscopy . . . . . . . . . . . . . . . . . . . . . . . 18
3.2.1 Lamb dips . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.2.2 Zeeman spectroscopy . . . . . . . . . . . . . . . . . . . . . 21
3.2.3 Zeeman sideband spectroscopy . . . . . . . . . . . . . . . 23

4 Experiment 27

4.1 Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

5 Results 30

5.1 Spectra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
5.1.1 Saturation spectrum . . . . . . . . . . . . . . . . . . . . . 30
5.1.2 Zeeman sideband spectrum . . . . . . . . . . . . . . . . . 30

5.2 Stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
5.2.1 Short/long-term stability . . . . . . . . . . . . . . . . . . 31
5.2.2 Environmental stability . . . . . . . . . . . . . . . . . . . 35

6 Conclusion 38

1



II TOP 39

7 Introduction 40

7.1 BEC’s in magnetic traps . . . . . . . . . . . . . . . . . . . . . . . 40
7.2 This project . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

8 Setup 43

8.1 Magnetic Trap Model . . . . . . . . . . . . . . . . . . . . . . . . 43
8.1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 43
8.1.2 Model derivation . . . . . . . . . . . . . . . . . . . . . . . 46
8.1.3 Numerical calculation . . . . . . . . . . . . . . . . . . . . 46
8.1.4 Fitting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

8.2 Model results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
8.2.1 Comparison with main Ioffe trap . . . . . . . . . . . . . . 49
8.2.2 Anharmonicities . . . . . . . . . . . . . . . . . . . . . . . 49
8.2.3 Influence of the endcaps . . . . . . . . . . . . . . . . . . . 50
8.2.4 Octopole aspects . . . . . . . . . . . . . . . . . . . . . . . 52

8.3 Dressed trap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

9 Applications of the model 56

9.1 Pinch-TOP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
9.2 Double TOP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

9.2.1 Experimental approach . . . . . . . . . . . . . . . . . . . 58
9.3 Elliptic trap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

10 Experimental Results 66

10.1 Verification of our model . . . . . . . . . . . . . . . . . . . . . . . 66
10.1.1 Field produced by Ioffe-helper coil . . . . . . . . . . . . . 66
10.1.2 Trap center shift . . . . . . . . . . . . . . . . . . . . . . . 66
10.1.3 Offset due to the TOP . . . . . . . . . . . . . . . . . . . . 67

10.2 Double TOP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
10.2.1 Displacement . . . . . . . . . . . . . . . . . . . . . . . . . 67
10.2.2 Axial trapping frequency in double trap . . . . . . . . . . 69
10.2.3 Anharmonic trap . . . . . . . . . . . . . . . . . . . . . . . 69

10.3 Double BEC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
10.3.1 Theory of determination of a BEC . . . . . . . . . . . . . 70
10.3.2 Experimental proof of BEC . . . . . . . . . . . . . . . . . 72
10.3.3 Lifetime in the split trap . . . . . . . . . . . . . . . . . . . 73

10.4 Colliding condensates . . . . . . . . . . . . . . . . . . . . . . . . 74

11 Conclusion 80

Appendices 81

A Bessel Functions 82

A.1 Frequency modulation . . . . . . . . . . . . . . . . . . . . . . . . 82

2



A.2 Amplitude modulation . . . . . . . . . . . . . . . . . . . . . . . . 83

B Laser setup 85

B.1 Slave mount . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

C Ioffe helper coil derivations 88

D Rubidium properties 91

3



4



General Introduction

5



Chapter 1

Bose Einstein Condensation

1.1 Historical

Bose Einstein Condensation (BEC) has been predicted by Einstein in the early
20’s [2] on the basis of the work of Bose [1]. The phenomenon is based on the
wave nature and bosonic properties of atoms. If an gas is cooled this implies
that its thermal velocity becomes lower. The Heisenberg relation states that the
uncertainty in the place and velocity are coupled. Therefore a lower, thus better
determined, thermal velocity implies a higher uncertainty in the position. The
uncertainty in the position is characterized by the thermal de Broglie wavelength
given by:

ΛT =

√

2πh̄2

mkBT
. (1.1)

Einstein stated that a phase transition occurs when this uncertainty becomes
of the interatomic spacing. The critical temperature at which the condensation
occurs follows from the criterium:

n(0)Λ3
T = ζ(3/2) = 2.612..., (1.2)

where n(0) is the density and ζ(3/2) the Riemann Zeta function. For atomic
gasses the critical temperature is at extremely low values. For example for
87Rbthe critical temperature is 1µK at a density of 1014 cm−3. In the past
decades technical developments, most notably laser cooling of alkali atoms, have
made it possible to realize these densities and temperatures. This led to the first
BEC realized at JILA by Cornell and Wiemann [3].
This enabeled a new elan of experiments exploring the properties of macroscopic
quantum object.
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1.2 Apparatus needed to achieve BEC

To achieve the high densities and low temperatures stated above a number of
different types of apparatus have to be used. Bose Einstein Condensates are
generally realized by means of optical cooling Magneto Optical Traps (MOT)1,
magnetic traps and evaporative cooling. A Magneto Optical Trap is a combina-
tion of a magnetic and optical potential confining the atoms. This combination
has proven to provide the desired cooling and confinement.

The condensation scheme as used at the Amolf institute consists of the fol-
lowing steps: 4 · 109 atoms are loaded into the magneto optical trap and sub-
sequently transferred to the magnetic trap. By increasing the confinement by
the magnetic trapping potential the cloud is compressed to higher densities
(∼ 7 · 1011 cm−3). The last step in the process to obtain a BEC is evaporative
cooling. This consists of selectively removing the highest energy atoms from
the trap. In this process the density of the cloud is further increased and the
temperature is lowered. After this stage a BEC is obtained in the trap.
A measurement of a BEC is generally done by switching the trapping potential
off and taking an absorption image of the cloud in free flight. Such a measure-
ment consists of flashing a laser beam with a frequency (slightly off) resonant to
a transition in the atom. A picture of the shadow of the condensate is then taken
with a CCD camera. This light destroys the condensate but the information
about the atom distribution is obtained2.

1.3 This project

This thesis describes the graduation project done at the Amolf institute. The
work consists of two parts: one describing a newly built laser system and one
of the modelling of the magnetic trapping potential.

Laser system As explained above lasers are used for trapping and cooling
atoms to obtain a BEC. The requirements for this type of lasers are very high.
At the Amolf institute the Bose Einstein Condensates consist of rubidium-87
atoms. The natural linewidth of the transitions in rubidium is about 6MHz. To
be able to perform accurate measurements a laser with the stability of the order
of 1MHz is favorable. A frequency stability of that order enables the possibility
to tune the laser on or off a resonant transition. This property is mandatory for
efficient trapping and detection of atoms.
The stabilization of the frequency is performed by external locking to an abso-
lute frequency measure. Atomic transitions in rubidium are used as an absolute

1The realization of a purely optical BEC has been reported by Barrett, et. al. [4]
2Another method used is phase contrast imaging. This provides the possibility to observe

the condensate in situ without destroying the condensate.
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frequency measure.

In this report we will describe the development of a new frequency stabilized
laser source. This is based on a newly developed type of spectrometer which
will be presented.

Magnetic trap The quantum nature of Bose Einstein Condensates gives rise
to various interesting phenomena. Due to the macroscopic nature these quan-
tum mechanical effects become observable.
By modulating the magnetic trapping potential one can manipulate a trapped
BEC. In this manner a BEC can be excited in various states. The research
into manipulating BEC’s, for example vortex formation and oscillation modes,
is currently a very active field. A part of the research program at the Amolf
institute consists of examining condensate shape oscillations. For this purpose
a model of the trapping potential has been developed. This model is an alge-
braic model with numerically derived coefficients. The model has gained new
insight in the possibilities of manipulating condensates in Ioffe-Quadrupole type
of traps. The first realization of two purely magnetic trapped condensates in a
Ioffe-Quadrupole trap will be presented.
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Part I

Spectroscopy
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Chapter 2

Diode Lasers

2.1 Introduction

The development of the laser started in 1917 when Einstein proposed stimulated
emission. Based upon the techniques realized in masers in the 50’s (for which
Townes, Basov and Prokhorov received the Nobel Prize in 1964) it took until
1958 when Townes and Schawlow proposed a technique for a monochromatic
coherent light source [5]. Two years later Maiman realized the first optical
maser (laser) in ruby. Maiman’s paper submitted to Physical Review Letters
was rejected and the first publication was a small article in Nature in August
1960 [6]. After this first realization lasers rapidly became a widely used tool in
research labs. In 1970 with the realization of the first continuous diode laser
lasers became a more reliable, cheap and easy to operate tool for fundamental
research. This ease of use made lasers also more applicable for commercial pur-
poses (eg. CD-players).

Tunable lasers enabled more possibilities in a wide range of experiments. In
atom-physics narrow linewidths are mandatory. Gas lasers width a linewidth as
low as 0.01Hz have been reported in literature[7]. However, they lack in tunabil-
ity and ease of use. Diode lasers provide the flexibility but the linewidth is larger
(∆f ∼ 50MHz). Temperature changes or current-density changes influence the
internal cavity of the diode largely. Consequently the resonant frequency can
be shifted over a large frequency range. A more detailed description on diode
lasers can be found in [8].

A common method to narrow the linewidth of a diode laser will be explained
in the following paragraph.
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2.2 Grating stabilized lasers

As pointed out above for diode lasers to be applicable to atom-physics one needs
to narrow the linewidth. A common method is to place a grating in front of
the diode. The grating is placed under an angle as can be seen in figure 2.1.
The angle is such that the strongest order reflection of the desired frequency is
reflected back into the diode. This setup is known as the Littrow setup.

Laser diode collimator lens

Littrow grating

a

Figure 2.1: A schematic representation of the Littrow setup. The Littrow grating
is a grating blazed at the desired angle. In our case α is about 45◦. The grating
is aligned such that the strongest order is reflected back into the laser diode.
This creates a extended cavity. The second strongest order reflection is sent to
the rest of the setup.

The grating selectively reflects the desired frequency from the broad spec-
tral range emitted by the diode. The reflected frequency is determined by:
sinα = kλ/2d, where α is the angle at which the grating is placed, k is the
diffraction order (generally the first order), λ the wavelength of the selected
frequency and d the grating constant. The wavelength selected by the angle of
the grating is fed back into the diode. If the gain is then above unity the diode
will lase at this frequency as well as its bandwidth.

Four factors determine the frequency at which the grating stabilized laser
lases, first there is the gain profile. This is typically of the order of 5000GHz for
the diodes used in our experiments. It can be shifted by changing the current
density or the temperature. Second there is the reflectivity of the grating back to
the diode. This is referred to as the grating profile. Its width can be calculated
from the formula: ∆νg ' c/(λnLg) where λ is the wavelength of the first order
reflection, Lg the illuminated grating length, n the order of the reflection and
c the speed of light. This results for our setup in ∆νg ' 50GHz. Finally there
are the two cavities. First the internal cavity created by the two facets of the
diode. The free spectral range (spacing of the modes) is in our case measured
to be ∼ 64GHz. Second there is the cavity spanned between the diode and the
grating. According to: FSRext = c/(2Lext) this is calculated to be 9.4GHz
with Lext the external cavity length (' 16mm). The relative width of the
four bandwidth factors is illustrated in figure 2.2. The resulting bandwidth is
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typically of the order of a few 100 kHz’s.

Figure 2.2: The final bandwidth of a grating stabilized laser is determined by
four aspects. The gain profile (denoted as the medium gain), the grating profile
and the free spectral ranges of the diode and the extended cavity (denoted as
internal mode and external mode). From these factors the emitted frequency
can be determined.

The second strongest reflection of the grating is used as a source (see figure
2.1). In this manner a narrow linewidth laser source is obtained.

The frequency of the grating stabilized laser can be adjusted by changing
the angle of the grating. In combination with changing the temperature and
the current of the diode one can obtain a frequency tunability over more than
the whole gain profile of the diode (typically of the order of 5000GHz). Due to
the sensitivity with respect to the temperature and the current of the diode one
needs to stabilize the temperature and the current the diode is being operated
at. An absolute measure of the frequency is also needed for long term stabiliza-
tion. This will be explained in the next chapter.

2.2.1 Injection locking of lasers

A narrow linewidth and adjustable frequency source can be achieved as seen
above. By using a grating to select a frequency much power is lost. To ob-
tain the desired amount of power an optical amplifier is needed. This can be
achieved by injection locking a second laser diode. The light from the grating
stabilized laser (the master laser) is fed into the second laser diode (the slave
laser). The preferred mode in the slave laser will be the one injected by the
master laser. The full power of the slave laser can thus be utilized. A laser
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source at the frequency and linewidth (∼ 100 kHz) of the master and power of
the slave (∼ 80mW) is thus obtained.

The slave should be able to follow the injected frequency. This is the case
when the frequency of free running diode is in the same region as the frequency
injected. This requires temperature and current stabilization of the slave laser.
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Chapter 3

Spectroscopy

3.1 Frequency locking

In the previous chapter the need for an absolute frequency measure has been
posed. Atomic transitions are fundamental and accurate references to determine
frequency characteristics of light. A sample of atoms will absorb light if the
frequency of the light as seen by the atoms corresponds to the energy difference
between two levels according to,

∆E = h̄ω. (3.1)

The absorption will be reduced if the light is detuned from this transition. An
absorption profile can be obtained by scanning the frequency of the light entering
for example a gaseous sample.

Generally, frequency stabilizing (‘frequency locking ’) works by electronically
adjusting the frequency if it is detected to be off-resonant. The derivative of
an absorption profile becomes negative if the frequency is off to one side and
positive if it is off to the other side. Thus one can correct the frequency by
feedback of this signal. Different methods how to obtain the derivative will be
explained in paragraph 3.2.1.

3.1.1 Atomic spectra

Line broadening

An atomic level has a certain distinct energy. If a transition occurs between
two levels the energy difference between these levels corresponds with an ex-
act frequency according to (3.1) . This is the frequency of a photon emitted
or absorbed by an atom undergoing this transition. However, there is also
a probability that light detuned from this resonant frequency is absorbed or
emitted. This results in a line profile. Different processes influence the width
and the shape of the line profile. These effects are called line broadening and
can be divided into two groups: homogeneous and inhomogeneous broadening.
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Homogeneous broadening implies that all atoms in a certain state have equal
probabilities for the broadening effects to occur. For inhomogeneous broadening
different broadening probabilities are assigned to different atom classes.

The most important homogeneous broadening of interest here is natural line
broadening. The natural line broadening is given by the lifetime of the excited
level Γ = 2/τ , with τ the lifetime of the excited state. The quantity Γ is known
as the natural linewidth. In this report Γ will denote the full linewidth1. Since
the lifetimes of the excited states are equal for all atoms in free space, natural
line broadening is a form of homogeneous broadening. It can be shown that
natural line broadening has a normalized Lorentzian profile [9]:

L(ω) =
1

2π

Γ

(ω0 − ω)2 + Γ2/4
. (3.2)

The most important inhomogeneous broadening in our case is Doppler broad-
ening. It is based on the velocity spread of the atoms. If an atom is moving
with velocity v with respect to the beam propagation the frequency seen by the
atom is shifted according to,

ω′ = ω(1− v

c
), (3.3)

where ω′ is the frequency seen by the moving atom, ω the laser frequency, v the
velocity component of the atom in the propagation direction of the beam and c
the speed of light. Since the velocity is not equal for all atoms the probability
to absorb light of angular frequency ω is not equal for all atoms, hence Doppler
broadening is a form of inhomogeneous broadening.

To obtain a high accuracy in frequency stabilization one needs to be able to
distinguish between closely spaced transitions which can be obscured by Doppler
broadening. Experimental methods to achieve this are pointed out in paragraph
3.2.1.

Line intensities

The shape of a total atomic spectrum is determined by the shapes of the in-
dividual lines but also by the line spacings and detection intensities. The line
spacings are directly calculated by formula (3.1) . Line intensities have to be
derived from relative transition probabilities. These probabilities can be calcu-
lated directly from the Clebsch Gordan coefficients associated with the atomic
transitions.

One should note that the transition probabilities depend on the polarization
of the light used. Light which is σ±-polarized can only drive transitions with
∆mF = ±1, with ∆mF the difference between the quantum numbers of the

1Generally Γ is used to describe the linewidth of a transition. However, the exact definition
varies between Γ being the full or half linewidth. In this thesis Γ describing a linewidth will
always correspond to the full linewidth.
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ground and exited Zeeman sublevel. Light which is π-polarized can only drive
transitions with ∆mF = 0.

Calculated spectrum

In this paragraph a theoretical spectrum will be calculated for 87Rb. The broad-
ening effects described above have been included.

We treat the absorption of a beam of monochromatic light passing through
a gaseous sample of 87Rbatoms. The atoms are thermally distributed, therefore
the velocity of the atoms is given by the Maxwell velocity distribution [10]

P (v) = 4π

(

m

2πkBT

)3/2

v2e
− mv2

2kBT , (3.4)

where P (v) is the probability to find an atom with velocity v, m is the mass
of the atom, kB is the Boltzmann constant and T is the temperature of the
gas. From this relation and (3.3) one can derive the broadening of a spectral
absorption line:

I(ω) = I0



1− e
−
(

c(ω−ω0)
ω0 vmp

)2

 (3.5)

where I(ω) is the intensity transmitted at angular frequency ω, c is the speed of
light, ω0 is the resonant frequency corresponding to the atomic transition and
vmp the most probable velocity given by vmp =

√

2kBT/m. The broadening
has a Gaussian profile with fullwidth:

∆ωD = 4
√
ln2ω0vmp/c. (3.6)

If we apply this to 87Rbwe find that the halfwidth of the doppler broadened
D2 line (see Appendix D) at room temperature is ∆ωD/(2π) ' 500MHz. The
hyperfine splitting of the lines is of the order of 50MHz. Therefore the Doppler
broadening needs to be suppressed in order to be able to resolve the hyperfine
structure.

If we assume the Doppler broadening is suppressed and use the Clebsch-
Gordan coefficients we can derive the 87RbD2 spectrum as seen in figure 3.1.
The properties of 87Rbused are described in Appendix D. This figure shows how
a spectrum would look like theoretically. However, an experimentally obtained
spectrum depends strongly on the experimental measuring method. An number
of effect have to be taken into account in a more detailed calculation of the
spectrum.

16



-4 -2 0 2 4

Relative frequency [GHz]

0.2

0.4

0.6

0.8

1

T
ra

n
s
m

it
te

d
 i
n

te
n

s
it
y

Relative frequency [MHz]

-400-600 -200 0

1

0.8

0.6

0.4

0.2

Figure 3.1: Theoretical example of a spectrum of the 87RbD2 line. The in-
set shows a magnification of the transitions from the F = 2 goundstate. This
spectrum does not include any experimental artifacts. It describes just the line
intensities and spacings.
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3.2 Saturation spectroscopy

Saturation spectroscopy is a widely used method to experimentally suppress
Doppler broadening. It is based on a selective saturation of an inhomogeneous
line profile. The basic concept is as follows. Suppose an intense monochromatic
beam with frequency ω is propagated through a gaseous sample and the sample
consists of two-level atoms with a resonance frequency ω0. According to (3.3)
the light is absorbed by atoms with velocity,

va = c

(

ω − ω0

ω

)

. (3.7)

The atoms in this velocity class are excited to an upper level. This generates a
Bennet hole[11] in the ground state population distribution at v = va (see figure
3.2a). The hole is of the shape of a Lorentzian. In absence of power broadening
it has a width of the natural linewidth of the transition. The depth depends on
the intensity of the beam.

v0

n(v)

v

n(v)

a

v0

va-va

a. b.

Figure 3.2: The Bennet hole. Due to the saturation of a Doppler-broadened
transition a hole in the number of atoms in the ground state appears. The hole
is centered at the velocity class due to the Doppler effect shifted into resonance
with the laser frequency. Figure a. shows the number of atoms for only the
pump beam. Figure b. includes the counter propagating probe beam.

3.2.1 Lamb dips

In order to detect the Bennet hole a second beam with the same frequency ω is
counter propagated through the sample. One beam (the pump beam) generates
a Bennet hole for the velocity class: v = −va (see figure 3.2b). The absorp-
tion of the second beam (the probe beam) generates a hole at the velocity class
v = +va. At the frequency ω = ω0 the velocity class v = 0 is excited by the
pump and the probe beam. The pump beam causes a Bennet hole in the ve-
locity class v = 0. Therefore less atoms are in the ground state of this velocity
class. Therefore the absorption of the probe beam is decreased. This causes a
Lamb dip in the absorption profile, named after W. Lamb who first described
this phenomenon theoretically [12].
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The profile is now given by [9],

α(ω) = α0(ω)

[

1− S0

2

(

1 +
(Γ/2)2

(ω − ω0)2 + (Γ/2)2

)]

, (3.8)

where α(ω) is the saturation spectroscopy absorption profile, α0(ω) is the Doppler-
broadened absorption profile without the pump beam, S0 the saturation param-
eter, Γ the natural linewidth. The saturation parameter is given by: S0 = I

Isat
,

where I is the intensity of the beam and Isat is the saturation intensity [13]. It
is clear that the Lamb dip profile is Lorentzian.

w
0

w

a  (w)
0

w
0

w

a(w)

(a) (b)

Figure 3.3: Figure a. shows the spectrum of a Doppler broadened transition.
Figure b. shows the double passed spectrum. Here a Lamb-dip appears corre-
sponding to the velocity class v = 0. The width of this Lamb-dip is determined
by the homogeneous broadening factors.

Crossover lines

Now let us look at a three level system with resonance frequencies ω1 and ω2

(see figure 3.4) and two counter propagating beams of frequency ω. The spacing
of the levels is small compared to the Doppler-width: ω2−ω1 ¿ ∆ωD. Suppose
the pump beam interacts with the velocity class vc = c(ω − ω1)/ω according
to (3.7) . The probe beam acting on the same velocity class is also shifted
according to (3.3) :

ω′ = ω
(

1− vc
c

)

= 2ω − ω1, (3.9)

with ω′ the frequency of the probe beam as seen by the atoms of the selected
velocity class vc. If ω is exactly in between ω1 and ω2 equation (3.9) results in

ω′ = 2

(

ω2 + ω1

2

)

− ω1 = ω2, (3.10)

i.e. the atoms absorb the probe light on transition 2. Thus the absorption
profile also has a dip in between two absorption lines. This is called a crossover
line.
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Figure 3.4: Schematic representation of the energy levels in a three level atom.
ω1 is the angular frequency corresponding to the energy difference between the
ground level and the lowest excited level. The angular frequency ω2 corresponds
to the transition from the ground state to the highest excited state. A crossover
line appears if the laser frequency ω is exactly in between the two resonant
frequencies.

The above example is called a V -crossover transition. Crossover lines can
also occur between the hyperfine states of the ground state. These transitions
are called Λ-transitions. In our treatment the hyperfine-splitting of the ground
state is large as compared to the Doppler profile. Therefore Λ-transitions are
not treated.

Dispersive signals

All locking schemes use a dispersive2 signal to lock on. A dispersive signal can be
obtained by modulating the laser frequency. This frequency modulation causes
a modulation in the transmitted intensity of the probe beam. The amplitude of
the intensity modulation is proportional to: d

dωα(ω). Where a negative d
dωα(ω)

implies a phase change of π with respect to the positive d
dωα(ω). The detected

signal of the probe beam is multiplied by the sign of the original modulation
signal. The phase flip changes the sign of the demodulated signal. The signal
also contains a component of twice the modulation frequency around the cen-
tral frequency. This component is filtered out by the multiplication. Thus a
dispersive signal is obtained.

The modulation of the laser frequency can be done by modulating the laser
current or by means of an acousto-optical modulator (AOM). The advantage of
the latter is that only one arm of the setup can be modulated. The disadvan-
tage is that an AOM is rather expensive. Treating this in detail goes beyond
the scope of this report. A more detailed description can be found in [9].

2In this context a dispersive signal is meant to implies a signal anti-symmetric close to the
center value.
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One obtains an error signal of the locking procedure by measuring the value
of the dispersive signal on the locking point. Deviations from zero indicate
frequency or electronic fluctuations. This will be used later in this thesis.

Calculations

Calculations of the spectra have been made to obtain insight into the measure-
ments. Nakayama calculated the relative magnitudes of the lines in Doppler-free
spectroscopy [14]. His model takes the optical pumping to different Zeeman sub-
levels into account. The approximation of a single cycle of optical pumping has
been made. The former treatment has been applied to 87Rbby Lee et al. [16].
We have compared Nakayama’s model and Lee’s results with measurements
done by us.

Nakayama’s model Nakayama’s model is based on calculating the electric
susceptibility of the atomic system induced by the light. The susceptibility is
given by

χ(pi)
pjpj
∼
∑

i,j

I(pi)
pjpj

exp
[

−(∆ωij/2ku)2
]

/(ω − ωij − iΓ), (3.11)

where the pump and probe transitions have frequencies ωi and ωj respectively,
∆ωij = ωi−ωj , ωij = (ωi+ωj)/2, k is the wave number of the laser light, and Γ is
the linewidth of the resonance signal. The sum is over all possible pump (i) and

probe (j) transitions. I
(pi)
pjpj is the relative magnitude of the transition with pi and

pj the polarization states of the pump and probe transitions respectively. I
(pi)
pjpj

is obtained from the Clebsch-Gordan coefficients corresponding with 87Rb(see
Appendix D).

The absorption coefficient α
(pi)
pjpj is proportional to the imaginary part of the

electric susceptibility,

α(pi)
pjpj
∼ Im

[

χ(pi)
pjpj

]

(3.12)

The absorption spectrum of the 87RbD2 line is calculated as seen in figure 3.5.
For a comparison of the calculated and measured spectra see chapter 5.1.

3.2.2 Zeeman spectroscopy

Zeeman polarization spectroscopy is based on the Zeeman shift of resonance
lines due to an applied magnetic field [17]. Furthermore the principle uses the
polarization properties of the light.

Linearly polarized light is double-passed through a gaseous sample as ex-
plained in section 3.2.1. The atoms can undergo σ+, σ− and π transitions by
absorbing this light. The σ± transitions correspond to a change in Zeeman
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Figure 3.5: Spectrum as calculated by Nakayama’s model. In the figure is indi-
cated which line corresponds with which transition.

sublevel by ∆mF = ±1. For π transitions the change in Zeeman sublevel is
∆mF = 0. After its pass through the sample is the probe beam split into its
σ+ and σ− components. The measured signals of the σ+ and σ− absorption
profiles are substracted. The contribution of the π transitions to the signal
always cancels. In the absence of a magnetic field σ+ and σ− transitions are
degenerate, therefore their signals cancel.

If a static magnetic field is applied parallel to the beam propagation, the
σ+ and σ− components experience a Zeeman shift in opposite direction. The
magnitude of the shift is proportional to the magnetic field, as will be seen below.
If the signals are substracted one obtains a dispersive signal (see figure 3.6). The
magnitude of the magnetic field is chosen such that the derivative is constant
around zero. The advantage of Zeeman spectroscopy over other methods is that
one does not need electronics or modulation to create a dispersive signal. This
type of spectroscopy is not sensitive to external magnetic fields. However, large
signals have to be substracted, even on resonance. Therefore the stabilization
is sensitive to drifts in the gains of the detector and stabilization electronics.

s
+

s
-

s
+

s
-

-

a. b. c.

Figure 3.6: The principle of Zeeman polarization spectroscopy. For all figures the
applied magnetic field is pointing along the direction of the laser beam. Figure a
and b show the opposite shift of both polarizations. After substraction the signal
is as in figure c. On this dispersive signal the laser can be locked.
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3.2.3 Zeeman sideband spectroscopy

Three methods to obtain a dispersive signal have been treated above:

- Lamb-dip spectroscopy, a dispersive signal is electronically obtained from
an absorption profile.

- Modulation spectroscopy, the laser frequency is modulated by means of the
laser current or by an AOM.

- Polarization spectroscopy / Zeeman spectroscopy, a static magnetic field
is applied and the dispersive signal follows from the opposite reactions of
the polarizations to the magnetic field.

The first and last methods are quite sensitive to external temperature and
magnetic field drifts. The detection in the second method filters low frequency
and DC fluctuations out. This is for similar reasons as for the newly developed
method as will be explained below. Therefore it is less sensitive to low frequency
fluctuations. This is very favorable since drifts (eg. due to temperature) are
important problems for long term stability. The disadvantage is that the laser
light is modulated in the whole system. By making use of an AOM this can
be circumvented, but this is a rather expensive and complex method. Four our
purpose long term stability is important. This is because measurements consist
of series of measurements over a timespan of hours. The laser has to have the
same properties during this time.

In the following a newly developed method will be explained which com-
bines the advantages of all the methods mentioned above. It is a combination
of modulation spectroscopy and Zeeman spectroscopy. It will be referred to as
Zeeman sideband spectroscopy.

Suppose a monochromatic light source propagating through a gaseous sam-
ple. The resonance frequency is shifted if a magnetic field is applied. The shift
can be expressed by [18],

EF,mF
(B) = (−1)F

[1

2
h̄ωhf +mF gFµBB

+
1

16
(4−m2

F )
(gsµBB)2

h̄ωhf

]

+ const. (3.13)

gF = (−1)F 1

2I + 1
gs (3.14)

where ωhf is the hyperfine splitting of the ground state, µB the Bohr magneton,
mF the Zeeman sublevel, gs the gyromagnetic factor of the electron (gS ' 2) and
gF is the total gyromagnetic factor. In the definition of gF F is the finestate of
the atom and I the nuclear spin. This formula is derived in the case of vanishing
orbital and nuclear angular momentum, and in weak fields: gsµBB ¿ h̄ωhf .
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The first term describes the hyperfine splitting of the ground state. The
second and third term represent the linear and quadratic Zeeman effects respec-
tively. At magnetic fields of the order of 300G both contributions are equal.
For our purpose the magnetic fields are of the order of 1G. Therefore we can
neglect the ‘quadratic Zeeman effect’. By making this assumption the energy
of the interaction with the magnetic field is given by:

Eint(t) = mF gFµBB(t) (3.15)

Absorption Crossection Let us now analyze what happens to the absorp-
tion profile when the magnetic field is fluctuated. In the experiments collimated
optical beams are used. These can be treated as plain waves. The intensity of a
plain wave through a gaseous sample is given by the Lambert-Beer expression:

Iω(x) = Iω(0)exp[−nσ(ω)x], (3.16)

with x the path length of the beam through the sample, n the density and σ(ω)
the frequency dependant absorption crossection,

σ(ω) =
πe2

2ε0mc

∑

i

Γ/2π

(ωi − ω)2 + Γ2/4
. (3.17)

Here Γ is the natural linewidth of the transitions, assumed to be equal for
all transitions, ωi is the resonance frequency for transition i and the sum is over
all possible transitions.

The laser frequency is only present in ω and the resonance absorption is only
present in ωi. Since the crossection depends on the difference squared, (ωi−ω)2,
they can be exchanged. Therefore we can conclude the following: If the reso-
nance frequency is modulated by an oscillating magnetic field the absorption is
the same as if the laser frequency was modulated. This is even irrespective of
any of the atomic properties! Because it is more straightforward the theoretical
treatment will be as if the laser light was modulated.

Sidebands Suppose the laser frequency is modulated with frequency ωM . The
electro-magnetic field of the laser at time t is given by

E(t) = E0 sin (ωt+A sinωM t) , (3.18)

where A is the amplitude of the frequency modulation, given by: A = ∆ω/ωM ,
∆ω is the maximum deviation of the modulated frequency. This equation can be
solved by making use of Bessel functions. The derivation is shown in Appendix
A. The result is given by

E(t) = E0

∞
∑

n=−∞

Jn(A) sin(ωt+ nωM t), (3.19)
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where, Jn(A) is the Bessel coefficient of order n and argument A [15]. From this
equation we see that for a frequency modulated signal sidebands appear. The
sidebands are located at frequencies: ω + nωM and have amplitudes Jn(A).

For an amplitude modulated signal given by,

E(t) = E0 cosωt(1 +m cosωM t) (3.20)

one derives (see Appendix A):

E(t) = E0

(

cosωt+
m

2
cos(ω − ωM )t+

m

2
cos(ω + ωM )t

)

, (3.21)

where m is the depth of modulation. The Bessel coefficients for frequency mod-
ulation (FM) and the components for amplitude modulation (AM) are shown
in figure 3.7a and 3.7b respectively.

ww-w
M

w+w
M

ww-w
M

w+w
M

FM AM

Figure 3.7: Amplitudes of different frequency components of frequency modu-
lation (FM) and amplitude modulation (AM). The height of the lines indicate
the amplitude of the corresponding frequency. Negative amplitudes correspond
to signals which have a phase difference of π relative to the positive values.

The absorption of all frequencies depends on the transfer function of the
absorption process. The transfer function is simply the natural line profile. The
frequency components of are barely absorbed ω + nωM for n ≥ 2. Multiplied
by its Bessel function the second order sideband contributes 2% to the total
signal. Therefore these frequencies are altered little by the absorption process.
They origin from the frequency modulation therefore their contribution to the
final signal is also frequency modulation. We are only interested in amplitude
modulation as will be explained below. Thus for small detunings these terms
are negligible and we will only treat the first order sidebands.

The absorbed signal can be decomposed in a FM and an AM part. The
amplitude of the AM part is a function of the detuning and can be described
by:
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S(δ) ∼ J−1(1) ·
1

(δ + ωM )2 + Γ2/4
+ J1(1) ·

1

(δ − ωM )2 + Γ2/4
(3.22)

where δ = ω−ω0. If both beams are absorbed by the same amount (the detun-
ing is zero) there is no amplitude modulation component.

The light intensity is measured with a photodiode. The photodiode detects
amplitude variations and not frequency variations. Therefore the signal is an
oscillating signal of frequency ωM . The amplitude of the signal on the photo-
diode is given by the sum of the amplitudes of all sidebands. By demodulating
the signal one obtains a dispersive signal of the laserlight.

Optimal modulation frequency The optimal modulation frequency is ex-
pected for the point of maximum response to changes in detuning. From (3.22)
we see that this happens when the derivative of the Lorentzian profile (3.2) is
maximal

d2

dω2
L(ω) = 0

d2

dω2
L(ω) =

Γ

2π

(

8(ω − ω0)
2

(Γ2/4 + (ω − ω0)2)3
− 2

(Γ2/4 + (ω − ω0)2)2

)

(3.23)

⇒ ωM,optimal =
Γ√
12

(3.24)

The optimal frequency is expected to be slightly lower. This is due to the
fact that the Zeeman state of the atoms is scrambled every time the magnitude
of the field is zero. In this process the excited levels are mixed and the saturation
decreases. The signal tends to decrease at modulation frequencies of the order
of the linewidth. The effect of the scrambling is expected to be small.
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Chapter 4

Experiment

4.1 Setup

The design goal of this setup was a highly stable laser with a small linewidth.
To obtain this stability the Zeeman sideband spectroscopy as described in the
previous chapter is implemented. Furthermore the laser is built on a separate
table. This table is placed with a rubber three-point mount in a box. The box
has been constructed of aluminium plates to be thermal conductive with the
temperature stabilized room. The box isolates the laser from acoustical noise
and thermal air flows. The box itself is placed on an air spring to isolate it from
vibrations on the ground. It has been shown that the laser stays locked even for
very strong vibrations on the ground. Furthermore a low beam height is chosen
to achieve higher stability.

Figure 4.1 shows a schematic diagram of the experimental setup used. Both
laser diodes are wavelength selected diodes from TOptica (type no. #LD-0785-
0080-1 ). The wavelength of the free running diodes is 780 nm. The maximum
output power is 80mW. The laser diodes are mounted in temperature stabilized
housings. The master laser is mounted in TOptica model DL100 which includes
the grating and piezo. The slave laser is mounted in a home built housing (see
Appendix B for more details). The current and temperature stabilizers used
were the TED 200 (by Profile) and the LDC 201 (Profile) respectively.
The grating in the DL100 can scan the wavelength from 776.16 nm to 783.6 nm.
An extra mirror has been mounted opposite and connected to the grating. By
changing the angle of the grating the output angle of the beam will not change.
The optical isolators are to prevent feedback to the laser diodes. The λ/2 plates
are included to set the polarization as needed for the isolators.
The Fabri-Perrot cavity is included to monitor the injection lock and single
mode operation. The 90% beam splitter is included because the power required
for the spectroscopy is only of the order of 2mW. The power split off is fed
into a fiber coupler for other purposes. Another great advantage of the highly
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Figure 4.1: Schematic diagram of the setup of the developed laser. See the text
for a detailed explanation.

reflective beam splitter is that 90% of the probe signal can be detected. The
telescope enlarges the beam. The total power in the laser can be bigger without
reaching the saturation intensity. This results in a larger signal. The Rb-cell is
filled with rubidium vapour and has a coil wound around the tube. The coil can
be driven a static current or modulation fields up to the MHz region. The 10%
beam splitter makes the probe beam weak compared to the pump beam. The
Wollastone prism splits the light into two beams depending on the polarization.
In combination with the λ/4 plate the σ+ and σ− beams are detected separately.

Detector For detection two different setups are used. The non-modulated
measurements are done with a single photodiode measuring only one polar-
ization. The Zeeman sideband measurements were done with a high speed
detector1. A simplified scheme is shown in figure 4.2. The detector consists
of two photodiodes which are separately amplified. The contributions of both
arms to the total signal is tuned with the variable resistor. The output signal
is connected via a transformer to filter the DC component out and subtract the
two signals. Both branches are identical. Changes in the environment of the
detector will affect both branches in the same manner. Therefore the stability
of this setup is by definition better than a non symmetric one.

1The high speed detector was designed and built by D. Verheijde from the Electronics
department of the Amolf institute
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Figure 4.2: Schematic diagram of the high speed detector. Both amplification
branches are identical, therefore any environmental fluctuations will affect both
branches in the same manner and cancel at the transformer. This makes the
detector less sensitive to the environment. All frequencies below 20 kHz are
filtered out. Therefore the detector is also not sensitive to abient light.
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Chapter 5

Results

5.1 Spectra

5.1.1 Saturation spectrum

Figure 5.1a shows the measured absorption profile as explained in paragraph
3.2.1. Figure 5.1b shows the calculated derivative of this data. The measure-
ment was made with a single photodiode measuring the σ+ polarization. The
setup is as shown in figure 4.1. No magnetic field was applied to the absorption
cell. In the figure it is indicated which line corresponds to which transition. The
crossover lines are much more prominent as compared to the pure lines. This ef-
fect can be explained due to the high intensities saturating the sample. Suppose
the pump and the probe beam interact with the same transition, generating a
pure absorption line. The pump beam saturates this transition. Therefore the
probe beam is little absorbed. Consider now the case of a crossover line (as
explained in paragraph 3.2.1). In this case the probe beam interacts with a
non-saturated transition. Therefore it will be more absorbed as compared to
the case of a pure line. In the complete spectrum of the rubidium D2line the
crossover lines will be more pronounced than the pure lines. These spectra differ
from the spectra as calculated in paragraph 3.2.1. This is due to the higher laser
power attenuating the pure lines as described above. Also the results by Lee, et
al. [16] as stated in paragraph 3.2.1 cannot be compared for the same reason.

5.1.2 Zeeman sideband spectrum

Figure 5.2 shows the same spectrum measured with Zeeman sideband spec-
troscopy. For this measurement again the setup as shown in figure 4.1 was
used. A magnetic field oscillating at a frequency of 238 kHz with an amplitude
of 2.5(2)G is applied to the sample.

The optimal modulation frequency was found to be 238 kHz. The signal
power could be increased to a frequency of 570 kHz by making use of a phase
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Figure 5.1: Saturation spectrum of the 87RbD2 line. The spectrum has been
measured with a single photodiode detecting only the σ+ beam. No magnetic
field was applied to the sample. Figure b. shows the derivative as calculated
from this spectrum.

shifter. However, this increased the signal power little. The signal power can
still be increased by optimizing a resonance circuit including the coil.
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Figure 5.2: Zeeman sideband spectrum of the 87RbD2 line. The spectrum has
been obtained as explained in the text. A magnetic field oscillating with a fre-
quency of 238 kHz with an amplitude of 2.5(2)G is applied to the sample.

5.2 Stability

5.2.1 Short/long-term stability

An accurate method to determine the short term frequency stability of a laser
is self-homodyne and self-heterodyne detection [19]. These methods are based
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on examining only the laser to be characterized. The principle is as follows:
the laser beam is split in two branches. One branch is delayed by a fiber. The
length of this fiber is at least the length corresponding to the coherence time of
the laser. A photodiode is illuminated with the delayed and non-delayed beam.
The beams interfere and a beat signal corresponding to the frequency difference
is detected by the photodiode. In the self-heterodyne case an AOM is included
to shift the laser frequency in one branch. This creates a frequency offset be-
tween the two branches, and thus a beat signal at the AOM frequency. This
makes it possible to detect the signal with a normal RF spectrum analyzer. In
the self-homodyne detection the beat frequency is electronically shifted up to
the RF regime. It goes beyond the scope of this thesis to describe the difference
in more detail1. The disadvantage of this method is that unpractically long
fibers are needed (of the order of 100m) to obtain a bandwidth of the order of
100 kHz. For long term stability even longer fibers are needed.

A more common method is to look at the interference signal of two compa-
rable lasers. Both lasers are locked on different lines. The two lasers are aligned
to illuminate one photodiode. The interference of both lasers results in a beat
signal. The frequency of this modulation is the frequency difference between the
two lasers. By analyzing this beat one can determine the combined stability of
the two lasers. If both lasers are identical the individual stability of the lasers
is just 1/

√
2 of the fluctuation in the beat signal.

The latter method has been used to determine the stability of the laser de-
veloped here. The second laser used as a frequency source is the previously used
master laser from now on named as old master. The newly developed laser will
be called the new master. As explained above it is only possible to determine
the combined stability. The linewidth of the old master has been measured
before. Therefore we can get an indication for the linewidth of the new master.
This makes this method is applicable.

Short term stability

Both lasers are locked to neighboring lines. The old master is locked by means
of unmodulated saturation spectroscopy. The new master by zeeman side-
band locking. The old master is locked on the crossover line between the
F = 2→ F ′ = 1 and the F = 2→ F ′ = 3 transitions. The new master is locked
on the crossover line between the F = 2 → F ′ = 2 and the F = 2 → F ′ = 3
transitions. As can be derived from figure D.1 these lines differ by 78.56MHz
in frequency. The distribution of the noise has been analyzed by measuring the
beat-signal with an rf spectrum analyzer. The spectrum is centered around the
78.56MHz standard frequency difference. Figure 5.3 shows an example of the
spectrum taken. The fit is to a Gaussian (an inverted parabola on a log-scale).

1Ludvigsen, etc al. [19] has described both methods in detail and compared the results of
it.
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The agreement of the fit shows that the noise at this detection bandwidth (=res-
olution bandwidth (RBW)) can be treated as Gaussian.
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Figure 5.3: Fit of the spectrum of the beat between two lasers. The fit corre-
sponds to a Gaussian noise distribution. The data points were taken with an RF
spectrum analyzer at a detection bandwidth of 10 kHz. The measured FWHM is
2.4MHz.

The full width at half maximum (FWHM) has been measured for different
detection bandwidths. The noise has been observed not to be Gaussian for
all detection bandwidths. Therefore a different approach has been used. The
FWHM was determined by averaging the data over 10 neighboring points. This
is justified because the width of the structure was at least of the order of 30
data points. The full width has been determined at the maximum signal minus
3 dB.

Figure 5.4 shows the FWHM of the measured power spectra as a function of
the detection bandwidth. From this plot we can derive most properties of the
stability of the laser. Starting from the right hand side of the plot, the mea-
surements are limited by the Fourier transform (1/f) limit of the measurements.
This is indicated by the dotted line. At a detection bandwidth of about 50 kHz
the noise-distribution is wider than the 1/f-noise only. The detection bandwidth
becomes of the order of the fluctuations of the frequency. During one scan the
laser center frequency stays constant. At this detection bandwidth the FWHM
of the noise distribution indicates the combined linewidth. At lower bandwidths
the laser center frequency jitters during the scan. Therefore a broader peaky
structure appears. The jitter at RBW = 30 kHz has a FWHM of the order of
2.4MHz.
The spectrum analyzer averages the spectrum over one bandwidth. At even
lower bandwidths the jitter stays visible in the spectrum. Therefore the points
with a detection bandwidth smaller than 30 kHz (the diamonds) can by prin-
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ciple not have a smaller FWHM as the measured 2.4MHz at RBW = 30 kHz.
Measurements at lower detection bandwidths are performed in a different man-
ner. This is explained in the next paragraph.

From the data at RBW = 50 kHz we derive the combined FWHM as
650(50) kHz. If we assume both lasers are identical we derive a full linewidth
of 650/

√
2 = 460 kHz for both lasers. The old master has previously been mea-

sured to have a linewidth of < 700 kHz. If we assume the linewidth of the old
master is unchanged the new master even has a smaller linewidth. We cannot
conclude anything about the separate linewidths of the lasers. However, the
found values are narrow linewidths for extended cavity diode lasers.

Long term stability

To examine the long term stability the beat frequency has been measured using
a RF counter repeatedly over a period of one measurement day. The measured
points have been analyzed for different time-intervals. The FWHM is found
by calculating the standard deviation of the fluctuations at a certain detection
bandwidth. The FWHM is then given by: FWHM = 2

√
2 ln 2σ, with σ the

standard deviation of the fluctuations. These points are plotted on the left part
of figure 5.4. From this we derive that the stability on an scale of hours is
of the order of 100kHz. The point at RBW = 9 · 10−5 Hz corresponds with
a time interval of 3.2 hours. This is typical for the longest continuous BEC
measurements done.

F
W

H
M

 (
k
H

z
)

Detection bandwidth, RBW [Hz]

1E-4 10 100 1000 10000 100000 1000000

0

500

1000

1500

2000

2500

3000

3500

4000

4500

Beat signal
1/f noise

Figure 5.4: The FWHM of the measured beat spectrum between two lasers. Dif-
ferent bandwidths have been taken to obtain information on the frequency sta-
bility on different timescales. The break indicates the difference between mea-
surements done with a RF spectrum analyzer and with a counter. Points left
from RBW = 30 kHz (the diamonds) have to be interpreted different (see text
for explanation). All points are averaged over two samples.
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5.2.2 Environmental stability

The purpose of the laser is to be used in BEC experiments. The old master laser
is built on the same optical table as the BEC experiment. For the BEC exper-
iments strong magnetic fields are used. The measurements are generally taken
from zero to tens of milliseconds after the magnetic trap has been switched off.
The switching off of the magnetic field produces vibrations on the optical table.
These vibrations arrive at the old master laser setup about 6ms after the trap
has been switched off. Figure 5.5 shows a typical measurement in BEC exper-
iments. It shows the expansion of a cloud for 0 − 14ms in steps of 1ms after
the trap has been switched off. The images are taken with a initial detuning of
−15MHz. It is clear that after 6ms atoms seem to disappear and appear again.
This is due to the detuning of the master laser changes due to the vibrations.
For example at 9ms the frequency is shifted far off resonance, and at 12ms it
is shifted closer to resonance. It has been proven that these pictures are repro-
ducible. However, the fluctuations are on a very fast timescale. Therefore it is
not possible to correct for these fluctuations in the measurements. Figure 5.6
shows the number of atoms analyzed from this series of measurements. It is
clear that accurate measurements involving the number of atoms after 6ms of
expansion time are impossible.

Figure 5.5: The expansion of a thermal cloud as measured with the old master.
The images are taken from 0 to 14ms expansion time in steps of 1ms. It is found
that the detuning changes in a reproducible manner after 6ms of expansion time.

In order to isolate the new laser from external vibrations the laser is built
on a suspended table. Figure 5.7 shows the error signals of the old and the new
master during one of these measurements. The figures are plotted on the same
frequency scale. The switching off of the magnetic trap occurs at t = 0. At
this point a peak in both error signals appear. This is due to an electromag-
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Figure 5.6: Number of atoms as analyzed from the images seen in figure 5.5.
The datapoints have been taken from 1 to 6ms in steps of 1ms and from 6 to
14ms in steps of 0.5ms. The number of atoms are for each point averaged over
two measurements.

netic pulse generated by the rapid switch off of the magnetic field of the trap.
After 6ms the detuning of the laser starts to make excursions of the order of
±10MHz. The new master is not affected by the switching off of the magnetic
trap. This makes accurate measurements possible.
One should note that the error signals can be very misleading. One effect is that
high frequency fluctuations can be filtered out by the detection electronics. The
electronics of the zeeman sideband locking has a frequency cutoff at f = 2.3 kHz.
The fluctuations as seen in figure 5.7a are of the order of 1 kHz. The oscillation-
frequency of these frequency fluctuations are smaller than the bandwidth of the
detector and its electronics. Therefore fluctuations of the magnitude as seen in
the old master would have been detected in the new master had they occurred.
Figure 5.7b shows that these fluctuations are not present on the new master.

A potentially misleading artifact is the conversion of the error signal to a
frequency scale. Suppose the detector electronics introduce amplitude varia-
tions in the signal. This signal is detected as a frequency variation and hence
corrected by the stabilizing electronics. The frequency is now altered such that
the detector outputs a signal with minimal fluctuations. This results in little
noise on the error signal but can have a big influence on the frequency noise.
Therefore these plots can be misleading. For frequency fluctuations one should
use the beating measurements as described in section 5.2.1.

The FWHM for the old master as taken from the error signal is found
to be: 2.8MHz (see figure 5.7a 2). For the new master we find: 0.83MHz.
This results in a combined full linewidth of 2.9MHz. This value is calculated
for the biggest detection bandwidth possible in the error signal measurement
(RBW = 1.7 kHz). Comparing with figure 5.4 this overestimates the combined
linewidth. However, the combined linewidth determined from the error signal is

2Only the first 20ms of the data in the figure have been taken into account
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only 500 kHz higher than the actual combined linewidth as determined by the
beating measurement. Therefore, by judging from the large differences in the
error signals it is most likely that the linewidth of the new master is smaller
than the linewidth of the old master.
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Figure 5.7: The error signal of the old (figure a) and the new (figure b) master.
The vertical scales denotes the frequency difference from the center frequency.
Both figures have the same frequency scale. These are derived from the slope of
the dispersive signal on the locking frequency. Both error signals have the same
amplitudes on a voltage scale. However the locking slope of the new master is
much more steep.
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Chapter 6

Conclusion

We can conclude this work in two parts. A new type of spectrometer has been
developed. Compared to known types of spectrometry the spectrometer is found
to be more stable, less sensitive to external magnetic fields and any DC-drifts
and very cost effective. By making use of this spectroscopy a very stable and
narrow linewidth laser has been built. It has widened the possibilities of the
Bose Einstein Condensation experiments at the Amolf institute. Accurate and
highly reproducible measurements over a timespan of hours can now be realized.
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Part II

TOP
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Chapter 7

Introduction

As seen in the general introduction high phase space densities are mandatory
to achieve Bose Einstein Condensation in dilute alkali gases. Magnetic traps
provide the tight confinement needed to obtain these densities.

7.1 BEC’s in magnetic traps

Tight confinements

The potential energy of an atom in a magnetic field is given by:

E = −µ ·B, (7.1)

with µ the magnetic moment of the atom, given by: µ = mF gFµBF̂, mF the
Zeeman state of the atom, gF the gyromagnetic factor and F̂ the unit vector in
the direction of the total angular momentum.
If we assume that the atoms are magnetically polarized, the potential energy is
proportional to the absolute value of the field. In this case tight confinement
can be obtained by a gradient in the magnetic field. This results in a V-shaped
potential. However, the atoms only stay polarized if the change in magnetic
field is smaller than the Larmor frequency. The Larmor frequency is given by:

ωL = γB, (7.2)

γ =
mF gFµB

h̄
, (7.3)

with B the magnitude of the external magnetic field. The atoms will move in
the trapping potential. Therefore the atoms will undergo transitions to other
Zeeman sublevels if it approaches the point where B is zero. This change in
sublevel can leave the atom in an untrapped state. The atom will be removed
from the trap. This process is called Majorana loss. Therefore the trapping
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potential should not have points in the vicinity of the atoms where the magnetic
field is zero.

Ioffe-Quadrupole traps

In Ioffe-Pritchard type of traps a dipole field is added orthogonal to a two dimen-
sional quadrupole field. The magnetic field has always at least the magnitude
of the minimum of the dipole field. The total field minimum appears on the
point where also the quadrupole field is zero. The axial confinement is generally
smaller than the radial confinement. Ioffe-Quadrupole traps have a cylindrical
symmetry and result in cigar-shaped condensates. This will be explained in
more detail in paragraph 8.1.1.

Time Orbiting Potentials

Another method to achieve no zero field points is by making use of a Time
Orbiting Potential (TOP) [21]. This makes use of only a quadrupole field in
three dimensions. However, a rotating bias field is added. The field is changed
on a timescale fast compared to one over the trapping frequency. Therefore the
atoms cannot follow the change in potential. The atoms will see a time averaged
potential (see figure 7.1). If the changing frequency of the trapping potential
approaches the Larmor frequency the atoms can undergo spin flips to untrapped
Zeeman states. Thus the Larmor frequency is the upper limit of the potential
changing frequency.

7.2 This project

The Bose Einstein Condensation setup at the Amolf institute uses a Ioffe-
Pritchard type of trap. We have developed a model of the trap to examine
all possibilities of manipulating the magnetic field. Previous treatments of the
Ioffe-Pritchard trap were done analytically. These models rely on symmetry as-
sumptions which are broken for non-symmetric current flows. Therefore a model
based on numerical calculations has been made. One should use an analytical
model to characterize an abstract trap or to develop a non existing trap. But in
the case of an existing trap one wants to know all possibilities. For this purpose
a model as explained below is favorable. Furthermore a new method has been
developed to apply time averaging potentials in the Ioffe-Pritchard trap. This
method opens a wide range of experiments. The details and derivation will be
explained in the following paragraphs.
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Figure 7.1: Schematic drawing of the Time Orbiting Potential (TOP) trap.
Figure a. and a’. show the stable trap. The cloud (denoted by the grey circle)
is in the center of the quadrupole field. Figure b. and b’. show the TOP. The
center of the quadrupole field is rotated around the cloud center. The averaged
potential in radial direction is as in figure b’.
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Chapter 8

Setup

8.1 Magnetic Trap Model

8.1.1 Introduction

Part of the research project of the quantum gases group at the Amolf institute
is to examine oscillations of Bose Einstein Condensates. To excite an oscillation
in a condensate the trapping potential needs to be modulated. For this purpose
extra coils are mounted next to the Ioffe trap (from now on named as helper
coils, see figure 8.2). In this chapter will be derived how the trapping potential
behaves as a function of the currents through all the coils.

A Ioffe-Pritchard [22] trap consists of four ‘racetrack’ shaped coils with the
centers on the x- and y-axes. These coils are called the Ioffe-coils. Two pairs of
circular coils are placed on the z-axis as seen in figure 8.1. The magnetic field
around the trap center of a Ioffe quadrupole (IQ) trap can be represented in
cylindrical coordinates by: [23]

Bρ(ρ, φ, z) = −αρ sin(2φ)− 1

2
βρz, (8.1)

Bφ(ρ, φ, z) = −αρ cos(2φ), (8.2)

Bz(ρ, φ, z) = B0 +
1

2
βz2 − 1

4
βρ2, (8.3)

(8.4)

with α the gradient in radial direction, β the curvature in axial (z) direction and
B0 the magnitude of the magnetic field in the trap center. Around the center
of the magnetic field, where (B(ρ, φ, z) − B0)/B0 ¿ 1, the magnitude of the
magnetic field can be approximated by:

B(ρ, z) = B0 +
1

2

(

α2

B0
− β

2

)

ρ2 +
1

2
βz2. (8.5)
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I

Figure 8.1: A schematic drawing of the Ioffe quadrupole trap. The bottom left
image shows the magnetic field in positive z-direction along the z-axis. The
bottom right image shows the radial quadrupole field confining in radial direction.
The arrows in the upper figure indicate the flowing direction of the current.

The current flows as shown in figure 8.1. The setup is symmetric with re-
spect to the center point, with the currents flowing antisymmetric. Therefore
the magnitude of the magnetic field is zero in the center. For the current flowing
as in figure 8.1 it can be shown that the contributions of the endcaps (the loops
at the end of the Ioffe coils) cancel in the center of the trap. Therefore this
derivation is based upon infinite long rods.

The helper coils are mounted in a similar configuration as the main coils
(see figure 8.2). The currents of the helper coils are controlled independently.
Therefore the contributions of the endcaps to the field do not cancel by defini-
tion. The formulae (8.5) and (8.4) cannot be applied for these coils, and this
configuration cannot be solved analytically. However, our aim is to have a tool
to gain insight in the trap shape as a function of the applied currents. Thus an
model based on numerical calculations also suffices.

The approach to obtain a good, flexible model is as follows. A numerical
calculation is made of the field produced by one coil. The obtained data points
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axial helper coils

Ioffe helper coils

compensation coils

main Ioffe bars

pinch coils

Figure 8.2: A part of the technical drawing of the magnetic trap used. The coils
are denoted in the figure. The arched coils are the helper coils.

are fitted to an appropriate function. The magnetic field is proportional to the
current. Therefore calculating the field for one current through the coil makes it
trivial to formulate a function for the magnetic field as a function of the current.
This procedure is done for all coils separately. By adding these components one
obtains an expression for the total magnetic field as a function of the currents
through all separate coils.

The fitted function is a polynomial since the magnetic field of a wire loop
theoretically behaves as a power law [20]. The data points are fitted to a poly-
nomial with only the appropriate terms. The selection criteria for these terms
are explained in paragraph 8.1.4.

This method seems very crude. However, it provides a semi-analytical model
describing the trapping potential very accurately. The model is capable of a very
fast calculation of the potential as a function of any current through any of the
nine coils. This provides a powerful tool to use next to the experiments.

Three different regions are of interest. Therefore this procedure has been
followed three times. The examined regions are:

- Magneto Optical Trapping stage, the model is calculated over a region of
2× 2× 2 cm.
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- The compressed cloud stage, the model is calculated over a region of 1 ×
1× 10mm.

- The condensate stage, the model is calculated over a region of 10 × 10 ×
100µm.

These three regions have been treated separately to have an applicable model
to all stages.

8.1.2 Model derivation

Figure 8.2a and 8.2b show the coils involved in the magnetic trap. The coils
shown are:

- Ioffe coils, to create the quadrupole field in the xy-plane. This field pro-
vides the radial confinement.

- Pinch coils, to create the trapping potential in axial direction.

- Compensation coils, to compensate for the B-field in the center created by
the pinch coils

- Ioffe helper coils, to manipulate the quadrupole field.

- Ioffe axial coils, to manipulate the axial field.

- RF-coils, for the Radio Frequency field to do the evaporative cooling.

- Earth field compensation coils (not drawn), to compensate for the earth
magnetic field. These coils are also used to create the B0.

The earth field compensation coils are located on a large distance from the
trap, and therefore not drawn. The degrees of freedom in this setup are the
currents through the coils and the frequency of the RF-coil.

8.1.3 Numerical calculation

In this and the following section only the Ioffe-helper coils will be treated. The
same procedure has been followed for the other coils.

Figure 8.3 shows a Ioffe-helper coil. It is made of two thin layers of copper.
The calculation has been made by integrating the field produced by an infinite
thin wire over the region of the copper.

The field of a infinitely thin wire carrying a steady current I is given by the
Biot-Savart law [20]

B(r) =
µ0

4π
I

∫

dl′ × r
r3

, (8.6)
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Figure 8.3: A schematic drawing of a Ioffe-helper coil. The measures are used
in the numerical calculation of the field.

where the integration is evaluated over the wire. For the Ioffe-helper coil the
integral is evaluated in two separate parts: one for a half loop and one for a
straight wire (from now on named as a rod) of finite length. One obtains the
contributions of the second curvature and rod by making a rotation around the
y-axis. The total magnetic field of the Ioffe-helper coil is then given by:

B(x, y, z) = 2





Bcurv,x(x, y, z)−Bcurv,x(−x, y,−z)
Bcurv,y(x, y, z) +Bcurv,y(−x, y,−z)
Bcurv,z(x, y, z)−Bcurv,z(−x, y,−z)





+2





Brod,x(x, y, z)−Brod,x(−x, y,−z)
Brod,y(x, y, z) +Brod,y(−x, y,−z)
Brod,z(x, y, z)−Brod,z(−x, y,−z)



 , (8.7)

where the factor 2 appears for the two windings of the coil. The current dis-
tribution through the wire is assumed to be uniform. The two windings are
assumed to be on the same point and infinitely thin. This results in two inte-
grals as shown in Appendix C. These integrals have been numerically calculated
over the regions stated in paragraph 8.1.1. A resolution of 20 points in all three
dimensions has been used. This resolution has been chosen the same for all
calculations. The magnetic field of the Ioffe-helper coil is shown in figure 8.4.
The coil is located as in figure 8.3 and carries a current of 1A. This corresponds
with a field of 0.113G in the trap center.

8.1.4 Fitting

The data points are fitted to a polynomial of fourth order in three dimensions.
Some terms are zero on symmetry arguments. These are left out in the fitting.
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Figure 8.4: Plots of the magnetic field generated by the Ioffe helper coil placed
on the negative y-axis. The left graph shows the magnetic field component in
y-direction. These plots are based on the numerical calculation made.

Figure 8.5 shows three plots of the field components on different axes. For ex-
ample Bx is an odd function in x, thus all even terms are left out in the fitting.
With these nine conditions (all possible combinations of B{x,y,z} and {x, y, z}
the final fitting is done. Fitting to a complete polynomial resulted in negligible
coefficients associated with these terms.
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Figure 8.5: The magnetic field components along different axes. According to
such symmetry arguments even or odd terms can be left out in the fitting. See
text for more explanation.

The method used gives an algebraic expression of the magnetic field compo-
nents around the region of interest as described in section 8.1.1. The coefficients
in the expression have no analytical form. However, the coefficients can be eas-
ily physically interpreted. For example in a Ioffe-Quadrupole configuration the
interpretation of the coefficients appearing in the potential is as follows:

- 0th order, is the offset

48



- 1st order, is zero since the field is symmetric around the origin of the
coordinate system

- 2nd order radial is the harmonic term of the quadrupole part

- 2nd order axial, is the curvature of the dipole

- 3rd order, is zero for the same reason as the 1st order

- 4th order radial, is the anharmonicity

Accuracy The accuracy of the numerical calculation is determined by the
accuracy of the trap dimensions. The error on the measures is 1mm. This
results in errors in the field of < 0.5%. The error on the fitting procedure is:
< 0.1%.

8.2 Model results

8.2.1 Comparison with main Ioffe trap

The model of the Ioffe-helper coils has been verified by integrating the formulae
(C.6) and (C.9) over the region of the main Ioffe-coils. The gradient of the
resulting field (from four coils) in the center of the trap is compared with ex-
periments. The gradient was numerically calculated to be 362G/cm with this
model. This differs 2.4% from the measured value (353G/cm). The discrep-
ancy may be explained because the Ioffe bars were treated as square racetracks,
whereas in reality they are not (see figure 8.2). The endcaps have a more com-
plex form. From this point on the model used for the real trap was a previously
made1 numerical model. This model describes the trap in more detail. The gra-
dient calculated by this model is: 356.5G/cm, which yields a better agreement
with the measured value.

8.2.2 Anharmonicities

Harmonic radius The region on which the approximation of the potential
to a harmonic potential is valid is called the harmonic radius. The harmonic
radius has been studied in axial and radial direction. A dipole field is created
in axial direction by the pinch and compensation coils (see figure 8.1). This is
by definition a parabola around the trap center. In figure 8.6a is the correction
factor is plotted versus the axial and radial distance from the trap center.

The system is not rotationally symmetric in the xy-plane although the po-
tential is assumed to be. In view of the quadrupole symmetry of the Ioffe bars
and the axial symmetry of the dipole field one expects an angular dependance
in the potential of the radial harmonic radius. The two most extreme cases are

1by Robert Spreeuw from the University of Amsterdam
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on one of the axes and 45◦ turned exactly between the x- and y-axis. Both
have been calculated by the model and show no difference within the region of
interest. Figure 8.6b shows the correction to the harmonic approximation.

The harmonic radius is defined as the radius for which the corrections are
25%. In axial direction the deviation is only 2% over the valid region of our
model (see figure 8.6a). In radial direction this is found to be: 43µm.
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Figure 8.6: The correction of the real trap to a harmonic trap in both radial and
axial direction. It is clear that the axial direction can be much better approxi-
mated by a harmonic potential than the radial direction.

Anharmonic terms The anharmonicities in axial direction can be neglected
as seen in the previous paragraph. The derived field in radial direction (for
z = 0) is given by:

B(r) = B0 +B2 · r2 +B4 · r4, (8.8)

B0 = 0.89 [G], (8.9)

B2 = 7.13 · 108 [ G/m2], (8.10)

B4 = −2.86 · 1017 [ G/m4], (8.11)

The coefficients look big because r is given in meters. The ratio between the
fourth order (anharmonic) term and second order (harmonic) term is plotted as
a function of r in figure 8.7.

8.2.3 Influence of the endcaps

Generally the endcaps of the racetracks are neglected in theoretical calculations
of Ioffe-Pritchard type of traps. This is allowed because most components cancel
in the trap center. In the xy-plane the endcaps contribute in the same manner
to the quadrupole field as the rods. Here the contributions have been calculated
for a thin-wire racetrack of the dimensions centered in our Ioffe-bars located
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Figure 8.7: Ratio of the contribution of the anharmonic over the harmonic
term. The ratio is plotted as a function of the displacement from the trap in
radial direction.

on the negative y-axis. The contributions of the endcaps to the gradients on
the x- and y-axes have been found to be +6% and +25% in x- and y-direction
respectively.

Z-gradient Off-axis the endcaps are expected to produce a gradient in z-
direction. This can be seen as follows: in figure 8.8a only the contributions of
the endcaps to the magnetic field are plotted. The coils will be labelled by its
location: ±X0 for the coils on positive and negative x-axis and ±Y0 for those
located on the y-axis (see figure 8.8b). We also use X0 = Y0. It is clear that a
quadrupole field is produced in the xy-plane and on the z-axis all contributions
cancel. Now we look just off the z-axis, for example along (0, dy, z) with dy
positive and small compared to all other dimensions. The distance to the centers
of the coils at ±X0 is now:

√

X2
0 + dy2 ' X0. Therefore the contributions in

z-direction of the endcaps at ±X0 hardly change. However, the distances to the
coils located at ±Y0 is now: ±Y0 +dy. The contribution from the ±X0 endcaps
together will be bigger than the contribution of the ±Y0 combined. Therefore, a
gradient in z-direction will appear off axis. However, the effect of this gradient
has been calculated to be negligible (17mG/m).

Tilted endcaps Another aspect which can affect the trap shape is the method
of winding the Ioffe-bars. On one side of the Ioffe-bars the windings of the
endcaps are parallel to the x- or y-plane (see figure 8.9a). However, on the other
side the windings have to be tilted in order to obtain a coil (see figure 8.9b).
The windings of the lower endcap are tilted from down-left to up-right, just as
the upper endcap. The components in x and y-directions cancel because the
opposite endcaps produce a component in opposite direction.The same applies
for the horizontal ones. However, the endcaps create a component in z-direction.
This component is the same from the endcap at the other side of the Ioffe bar.
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Figure 8.8: Figure a. shows a three-dimensional representation of directions
of the contributions of the endcaps to the magnetic field. The straight section
of the helper coils only contribute in the xy-plane. On the x- and y-axis the
contributions add up. On the z-axis, the contributions cancel. Off z-axis this
leads to a gradient. Figure b. shows the placement of the coils and the denotation
of the coils as used in the text.

However, on the z-axis, the contribution from the horizontal endcap is bigger
than the contribution of the tilted one. All four endcap-pairs generate the a
z-component of the same size. However, the direction of the horizontal ones is
opposite to the contributions of the vertical ones. Therefore no additional field
component is created on the z-axis due to this tilt in the endcaps.

Endcaps in our model The numerical calculation of the main trap assumes
infinitely thin endcaps. This assumption can have an influence on the gradient
in radial direction. Our calculated gradients in xy-direction will have to be
corrected for these effects.

8.2.4 Octopole aspects

The Ioffe helper coils can create an additional homogeneous or quadrupole field
as seen above. Suppose the currents are switched such that they run in each rod
opposite to the neighboring rods (see figure 8.10a). This creates an octopole field
as seen in figure 8.10b. This effect is calculated to be too small to noticeably
change the quadrupole aspects of the main field (< 0.1%). Therefore radial
octopole excitations are not possible to excite in this manner. The measures
indicated in figure 8.10a show the location of rods if the Ioffe helper coils are
approximated by thin infinite long rods.
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(a) (b)

Figure 8.9: Two photographs of the endcaps of the trap. At one side (figure a)
the endcaps are in the same plane as the bars. At the other side (figure b) the
windings have to be tilted to obtain a coil. This generates a field component in
the z-direction.

8.3 Dressed trap

The final step in Bose Einstein Condensation is the cooling of the atoms by
evaporative cooling. This process is based on selectively removing hot atoms
from the trap. It is often compared with blowing away the hot water vapor
atoms above a cup of coffee. This removes the hottest atoms and therefore
cools the region just above the cup. The coffee rethermalizes by evaporating
more atoms. Heat is removed from the coffee and therefore the cup of coffee
is cooled. In this process little of the coffee is lost although the cooling is very
efficient.

In magnetic traps an electro-magnetic field is used to selectively induce a
transition to a different Zeeman state2. The untrapped Zeeman states are re-
moved from the trap. For fields used in our case the Zeeman splitting corre-
sponds to frequencies in the Radio-Frequency regime. The potential energy of
an atom corresponds to its position in the magnetic field. The RF-field induces
a transition to an untrapped Zeeman-shifted energy level of the atom. The high-
est energy atoms can be removed efficiently by ramping the RF-frequency down.

If one modulates the trapping potential before the evaporative cooling pro-
cess, the evaporative cooling needs to be taken into account in calculating the

2The Zeeman state is defined by the mF quantum number which describes the spin state.
Spin state and Zeeman state are both used to describe the state. Their definition is identical.
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Figure 8.10: The octopole field as created by the Ioffe helper coils. The currents
in every rod runs in opposite direction to the neighboring rods. This generates
an octopole field as shown in figure b. The measures denoted in figure a. show
the location of the rods if the Ioffe helper coils are approximated by thin wire
racetracks.

magnetic field. Therefore we need to include the evaporation process in our
model. A widely used model to describe the evaporative cooling is the dressed
trap picture. In this picture the trapping potential is treated to be deformed by
the RF-field. The derivation goes as follows.

The equation of motion for a magnetic dipole in a time-dependant field is
given by:

d

dt
m(t) = γm(t)× [B0 +B1(t)], (8.12)

γ =
gFµB
h̄

,

where B0 is the static part of the field, B1(t) the time-dependant part (in our
case the RF-field) and γ the gyromagnetic ratio of the atoms. B1(t) is assumed
to be perpendicular to B0 and rotating around it with an angular velocity ω.
The components can be written as:

ω0 = −γB0, (8.13)

ω1 = −γB1, (8.14)

We can choose our coordinate system such that B0 points along the positive
z-axis. If we now look from a frame rotating with angular frequency ω around
the z-axis (the restframe of B1(t)) the magnetic moment becomes:

(

d

dt
m(t)

)

rot

=
dm

dt
− ωez ×m(t), (8.15)
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Using equation (8.12) in (8.15) , one obtains:

(

d

dt
m(t)

)

rot

= m(t)× [∆ωez − ω1ex], (8.16)

with ∆ω = (ω−ω0). This is the same situation as if the dipole precesses around
a static effective field given by:

Beff =
1

γ
[∆ωez − ω1ex]. (8.17)

If we now describe the potential (U = µ ·B) in the restframe we obtain the
so called dressed potential :

Bdressed = mF γ

(

B1 ±
1

γ

√

(ω − ω0)2 + ω2
1

)

, (8.18)

where the plus or minus sign depends on the sign of the Zeeman state of the
atom. The minus sign corresponds to low-field seekers and the plus sign to high-
field seekers. Here ω is the rotation of the field, in the case of evaporative cooling
this is the frequency of the RF-field; ω1 can be interpreted as the Rabi-frequency
of the dressing.

The details of the properties of evaporative cooling process goes beyond the
outline of this report. A treatment in greater detail can be found in [24] or [25].
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Chapter 9

Applications of the model

Time Orbiting Potentials have been widely used to achieve BEC’s in magnetic
traps [21]. Generally a gradient is applied in the radial direction and the axial
direction. A TOP trap with an adjustable aspect ratio has been reported [26].
This so called zTOP oscillates the bias field in three in stead of two dimensions.

In this thesis the application of an ordinary TOP and a newly developed TOP
trap will be explained. The former will be called the Pinch TOP. The latter
principle is based on a Ioffe-Quadrupole trap. The trapping in axial direction
is done by a dipolar field. The trapping in radial direction is done by a normal
quadrupole field (see figure 9.1a and 9.1b). The quadrupole contribution will be
oscillated. Two applications will be treated. First a Double TOP-trap, second
a method to obtain an elliptic deformation of the trapping potential in the
xy-plane.

9.1 Pinch-TOP

Suppose the direction of the current in one pinch coil is reversed. This config-
uration will be called Anti Helmholtz Configuration (AHC) as opposed to the
previous Helmholtz Configuration (HC). The pinch coils now create a gradient
in stead of a dipolar field. If the compensation coils are switched off a gradient
is present in all directions. This implies a field zero in the trap center. By apply-
ing a rotating bias field with the Ioffe helper coils an ordinary TOP is created.
The aspect ratio of the trap is proportional to the ratio of the currents through
the pinch coils and the Ioffe coils. This system has been calculated by the model.

Aspect ratio’s of ωρ/ωz = 1 : 2 can be achieved in our trap. This implies
that this type of trap can realize BEC’s with aspect ratio’s from ωρ/ωz = 25 : 1
up to ωρ/ωz = 1 : 2. Trapping atoms in shallow traps is found to be hard to
realize. Therefore experimental realization of these ’pancake’ aspect ratio’s can
be difficult.
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9.2 Double TOP

Suppose the offset field is gently decreased to a negative value. Figure 9.1c
shows the axial trapping potential. In the process of changing to this negative
offset the cloud will be split into two parts. However, in the resulting double
trap there is a zero in the magnitude of the field. Therefore the trapped atoms
will undergo Majorana losses and the condensate will not be stable. Suppose
now the center of the quadrupole field is rotated around the z-axis. The rotating
frequency is large compared to the trapping frequency and slow compared to
the Larmor frequency. The atoms cannot follow this fast change in potential
and see the time average. The potential at an instant time is given by:

U(x, y, z, t) = |(xα+Bb cosωrt)x̂+ (yα+Bb sinωrt)ŷ +Bz(x, y, z)ẑ| (9.1)

where, α is the gradient of the quadrupole field, Bb the magnitude of the ro-
tating field, Bz the field in axial direction and ωr the angular frequency of the
rotating field.

After time-averaging equation (9.1) one obtains for the trapping potential
near the z-axis (small r):

U(r, z) =
√

B(0, z)2 +B2
b +

16α2

(B(0, z)2 +B2
b )
r2 (9.2)

r =
√

x2 + y2 (9.3)

From this we see that at points where the axial field Bz vanishes, there is
still an offset field created by the bias-field. Therefore the centers of the small
wells will also have a non-zero field (see figure 9.1e and 9.1f). The averaged
dipole field in z-direction is now given by:

U(0, z) =

√

(B0 +
1

2
βz2)2 +B2

b (9.4)

where β is the curvature of the dipole field. Combining (9.4) and (9.3) we
derive:

U(r, z) =

√

(B0 +
1

2
βz2)2 +B2

b +
16α2

(B0 +
1
2βz

2)2 +B2
b

r2 (9.5)

This rotating field will have a circle where the field is periodically zero. In
literature this is called the circle of death. This circle should be large compared
to the size of the trapped cloud to avoid Majorana losses.
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This Double TOP provides the trapping potential for two condensates in
a completely symmetric manner. As far we know the realization of two con-
densates in a Ioffe Quadrupole trap by purely magnetic means has never been
reported. It opens a wide range of experiments to examine the interaction be-
tween to condensates.

9.2.1 Experimental approach

Condensation scheme The experimental scheme to condensate rubidium
atoms in the double trap is as follows. The start of the condensation scheme is
as explained in the general introduction. The TOP is switched on just before
the compression and evaporative cooling stages. The evaporative cooling is
performed to a temperature above the critical temperature Tc. The cloud has
at this point a size smaller than the radius of the TOP. The offset field is
gradually set negative and the cold cloud is split. Finally evaporative cooling is
done to cool the cloud below Tc. Figure 9.2 shows a scheme of the condensation
process in the Double TOP. In the first 10 seconds the cloud is evaporated to an
intermediate frequency of νRF,int. The temperature of the cloud at this point
depends on the B0 and νRF,int. The temperature can be calculated by

T =
h̄

kB
∆ν = νRF,int −

2πgFµBmF

kB
B0, (9.6)

where ∆ν is the difference of νRF,int and the frequency corresponding to B0.
For the following 2 seconds the RF evaporation frequency is kept constant.
During this time the B0 is ramped to a negative value of Bsplit. This splits
the cloud in two. The following 600ms the B0 is kept constant and the RF-
frequency is ramped down to an end value of νRF,end. Then the evaporation
is kept constant for a time τplain, the cloud is let to thermalize. Depending on
the value of νRF,end two cold thermal clouds or two condensates are obtained.
Then two time parameters are introduced τhold and τexp to hold the cloud in
the trap and let it expand respectively. These parameters will be used later on.

Optimal intermediate RF-frequency The splitting of the clouds leads to
heating. Therefore it is expected to be most efficient to split the cloud as hot as
possible. However, for a negative B0 the TOP has a circle of death as explained
above. Therefore the size of the cloud should be smaller than this radius whilst
being split. This radius is expected to be the radius to obtain the highest number
of atoms in the double trap. From this radius one can calculate the temperature
of a cloud which fits in the trap. This will be named the trap depth. Figure 9.3
shows the radius and the trap depth of the TOP as a function of the amplitude
of the TOP. Figure 9.4a shows the size of the trap as a function of the inter-
mediate evaporation frequency νRF,int. Figure 9.4b shows the temperature as
a function of the intermediate or end evaporation frequency.
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The volume of the cloud is changed due to the splitting of the cloud. The
change of the volume of the cloud in time is a measure for the heating. The
normalized volumes for clouds at different temperatures have been plotted as
a function of the field in figure 9.5. All four plots have been calculated by our
semi-analytical model described above. From these plots one should determine
the optimal evaporation end frequency.

Experimental results are shown in chapter 10.

9.3 Elliptic trap

The quadrupole field can be approximated by a quadratic potential for small val-
ues r. The anharmonic terms contributing to the potential are often neglected.
However, this anharmonicity can be exploited to obtain different trapping fre-
quencies in x− and y−directions.

Suppose the potential in x−direction is described by:

U(x) =
√

α2x2 +B2
0 (9.7)

where α is the gradient of the trapping field and B0 is the offset field in axial
direction. This potential can be expanded around x = 0 as:

U(x) = B0 +
α2

2B0
x2 − α4

8B3
0

x4 +O(x6) (9.8)

Suppose, furthermore, an oscillating homogeneous bias field is applied in the
x-direction. This is equivalent to shifting the trap back and forth. The shifting
is done fast compared to the trap frequency in radial direction, therefore the
atoms see the averaged potential. The average is given by:

Ū(x) =

∫ 2π

φ=0

√

α2 + (x+A sinφ)2 +B2
0 (9.9)

=

∫ 2π

φ=0

B0 +
α2

2B0
(x+A sinφ)2 − α4

8B3
0

(x+A sinφ)4 (9.10)

= C0 + C2x
2 − πα4

4B3
0

x4, (9.11)

C2 =

(

πα2

B0
− 3A2πα4

4B3
0

)

(9.12)

where A is the amplitude of the modulation and C0 the offset of the averaged
potential. The harmonic trapping frequency is given by [18]:

ω =

√

µBgFmF

m
· 2C2 (9.13)
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From (9.11) and (9.13) we derive that the trapping frequency in x-direction
of the averaged potential is given by:

ωx =

√

µBgFmF

m
·
√

2

(

πα2

B0
− 3A2πα4

4B3
0

)

(9.14)

From the first term we see that applying a bigger offset field opens the trap
(this is the same in y-direction). However, the second term shows that the
trap opens as the amplitude of the modulation increases. This modulation in
x-direction does not affect the y-direction, therefore this method can be used to
generate different trapping frequencies in x- and y-directions. Figure 9.6 shows
the ellepticity as a function of the bias field. These plots have been calculated
by our semi-analytical model.

This ellipticity in the xy-plane can be used for different purposes:

- radial quadrupole oscillations. Driving the amplitude of this asymmetry
can excite quadrupole oscillations. Breathing modes (x/y are in phase)
and second order quadrupole modes (x/y are out of phase) can be realized.

- generating vortices. Different amplitudes of the modulations in x- and
y-directions are applied. These amplitudes are given by cos θ and sin θ.
An opened trap under an angle of θ is obtained. Changing this θ can stir
the condensate around the z-axis. Vortex formation due to stirring a con-
densate has been demonstrated by Madison, et. al [27]. The stirring was
done with a focused laser beam generating differences in radial trapping
frequencies of the order of 10%. For a current of 5A through the helper
coils we have an asymmetry in radial direction of 20%1.

One should note that the trap is only opened in the center. Further outside
the region of interest the trapping potential is not changed. Due to the anhar-
monicities the trap is flattened out in the center. This approximation indicates
the presence of an harmonic radius created by this method. A surprising effect
is that the harmonic radius increases due to this field averaging. The lowering
of the trapping frequency and the same asymptote for large r require a more
harmonic trap in the center. Figure 9.7c shows the averaged trapping potential
in x- and y-directions and the original (non-averaged) trap. Figure 9.7a and
9.7b show the ellipticity for different oscillation amplitudes.

1Vortex formation by purely magnetic means with an ellipticity in the xy-plane of the same
order has been reported by Hodby, et. al [28]. However, this has been achieved by an ordinary
TOP where the quadrupole field follows an ellipse around the center in stead of a circle.
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Figure 9.1: The principle of Time Orbiting Potentials. Figure a. and b. show
the magnitude of the field of a normal Ioffe-Quadrupole trap in axial and radial
direction respectively. If the external B0 is lowered below zero the magnitude of
the field is as in figure c. and d. Due to the field zeroes high losses of atoms will
occur. If the quadrupole field in radial direction is rotated around the z-axis the
averaged potential in radial direction will look as in figure f. The dotted lines
indicate the instantaneous potential halfway the cycle. This time averaging will
create a trapping potential in axial direction as in figure e.
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Figure 9.3: Figure a. shows the radius of the TOP as a function of the current.
The linear dependence follows simply from applying an homogeneous field to a
pure quadrupole field. This linearly shifts the trap center. Figure b. shows the
trap depth in µK as a function of the TOP amplitude. This indicates how hot
the cloud maximally can be due to the evaporation by the circle of death in a
double TOP.
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Figure 9.5: The volume of the trap as a function of the magnetic field. The
different plots are for different temperatures (sizes) of the cloud. The plots are
normalized for plotting convenience.
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Chapter 10

Experimental Results

10.1 Verification of our model

10.1.1 Field produced by Ioffe-helper coil

The model calculated in chapter 8.1.2 is tested by measuring the field produced
by one Ioffe helper coil. The results are shown in figure 10.1. The curve plotted
is as calculated by the semi-analytical model. A good agreement is found.
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Figure 10.1: The field as produced by one Ioffe helper coil. The coil carries a
current of 1A. The dots indicate the measured values. The line the prediction
by the developed model.

10.1.2 Trap center shift

A static current is applied in Helmholtz configuration to the vertical Ioffe helper
coils. This homogeneous field shifts the trap center. The shift is measured to
be 6.7µm/A. This differs by 6% from the predicted value (6.33µm/A). Fitting
the model of the main trap to experimental data will give a better agreement.
In our system 1A corresponds with 0.226G in the trap center according to the
model.
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10.1.3 Offset due to the TOP

From equation (9.5) we see that the TOP increases the offset field. This B0

is measured as a function of the amplitude of the TOP. The B0 is measured
by scanning the end of the evaporation ramp down. A condensate is obtained
before all atoms are lost from the trap. Therefore the last atoms left in the trap
have very low energy and we can assume this is the real B0.

Theoretical calculations were done threefold. First equation (9.5) was used.
Second the model was applied to the dressed trap which was then averaged over
the TOP cycle (the evaporation is by adiabatic passage, see paragraph 8.3).
Third the model was applied by making the assumption that the atoms are
non-adiabatically removed from the trap. The latter two resulted in comparable
curves of B0 as a function of the TOP amplitude. The results are shown in figure
10.2.

The measured values experience twice the expected effect of the TOP. This
discrepancy remains to be explained.
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Figure 10.2: B0 measurement, see text for explanation of experiment. For our
experiment 1G corresponds with 4.5A in the Ioffe helper coils. The crosses are
the measured data-points. The first 4 points resulted in a BEC. This indicates
that the measured B0 is the real B0. The two plots show the B0 as calculated by
our model and as found from formula (9.5) .

10.2 Double TOP

10.2.1 Displacement

The first derivative of the averaged potential in z-direction is given by:
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dU(r, z)

dz
=

2β(B0 + βz2)
√

B2
b + (B0 + βz2)

z. (10.1)

This has a maximum at z = 0 and two minima at z = ±
√

−B0/β if B0 < 0.
From this we see that the displacement of two clouds in the Double TOP is
independent of the amplitude of the bias field. During this experiment the am-
plitude of the TOP was 3A, corresponding with 0.68G in the trap center.

The displacement has been measured as a function of the B0 in the system.
The measurement has been made by cooling a cloud as described in paragraph
9.2.1. The evaporative cooling is performed to an end frequency above the
condensation temperature. The B0 is decreased from 400mG down to the mea-
sured point in steps of 50mG separated in time by 70ms. The cloud is let
to thermalize for 500ms. An absorption image is taken after 4ms expansion
time. The center of the clouds is determined by a Gaussian fit through the data
points. Figure 10.3 shows the measured points and the curve calculated by the
model. The calculated displacement is systematically bigger than the measured
displacement. As seen above the displacement is a function of the B0 and the
curvature β in z-direction. If we correct the curvature in our model for the value
as measured in the experiment we obtain a better agreement with the measured
data points.

The discrepancy seen around zero B0 is due to the fact that the cloud is
stretched at that point. Due to the noise it is hard to distinguish between a
stretched cloud with structure and without. Therefore these points should be
neglected.
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Figure 10.3: Displacement of a cloud from the trap center due to a negative
B0 applied. The dotted curve indicates the results from the model. The line is
the result from the model after correction for the measurements done in section
10.1.2. For the points around zero the cloud is stretched and does not have a
double component. Therefore it is hard determine the center of the could.
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10.2.2 Axial trapping frequency in double trap

The axial trapping frequency has been measured by oscillating the cloud in ax-
ial direction. By determining the center of mass of the cloud as a function of
the time one obtains the trapping frequency. The experimental procedure to
excite this oscillation is as follows. The B0 is gently ramped down to a value of
−0.55G as explained above. After thermalization of the cloud it is evaporated
further to obtain a small dense cloud. Then the B0 is nonadiabatically jumped
to −0.8G. This changes the trapping potential instantaneously to one where
the cloud is not in its stable state. Therefore the cloud starts to undergo an
oscillation in axial direction. The position of the cloud is measured as a func-
tion of the holding time in this last potential. The measurement is performed
to obtain information on the trapping frequency. Therefore the timespan of
the measurement is too short to obtain any information on damping of the
oscillation. The data points have been fitted to a sine (see figure 10.4). The
trapping frequency derived from this fit is: ωz = 2π · 26.8(1)Hz. Our model
gives 2π ·28.7Hz. If we force agreement with radial displacement measurements
as seen in paragraph 10.1.2 we obtain from our model: 2π · 27.9Hz, differing by
4% from the measured value. The amplitude of this oscillation is of the order
of 100µm. In this region axial anharmonicities become important. This effect
lowers the real trapping frequency for high amplitude oscillations as compared
to low amplitude oscillations.
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Figure 10.4: Center of mass oscillation of a could in one well of the double trap.
The line indicates a fit to a non-decaying sine wave. The fit corresponds to a
frequency of ωz = 2π · 26.8(1)Hz

10.2.3 Anharmonic trap

For small positive B0 values the trap becomes anharmonic in z-direction. This
can be explained from formula (9.5) . The averaged B0 increases more for the
points where the non-averaged B0 is close to zero. This effect ‘flattens’ the lowest
part of the well. Trapping a cloud in such a well results in a cloud stretched in
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axial direction. To prove this effect a measurement has been made by switching
the trap from a stable harmonic trap instantaneously to this anharmonic region.
The trapped thermal cloud has the density profile corresponding to a harmonic
trap. The flattening of the trap bottom reduces the axial confinement around
the trap center. The cloud undergoes an oscillation by splitting up in two more
dense parts, and coming back in the center after this oscillation. The images
in figure 10.5 show the density distribution as a function of the holding time in
the anharmonic trap. This proves the possibility to tune the anharmonicities
in axial direction. No quantitative measurements have been performed on this
aspect.

10.3 Double BEC

Cooling to two Bose Einstein Condensates in the Double TOP has been real-
ized. To proof a cold cloud is really a condensate generally two methods are
used. To be able to understand these two criteria extra theory on Bose Einstein
Condensation has to be done.

10.3.1 Theory of determination of a BEC

Cold gases of temperatures below the critical temperature (T < Tc) can be
described by the so-called Gross-Pitaevskii equation [29]

(

− h̄
2∇2

2m
+ U(r) + g|φ(r)|2

)

φ(r) = µφ(r), (10.2)

where φ(r) is the macroscopic wavefunction describing the condensate, U(r) the
trapping potential and g is the interaction parameter given by: g = 4πh̄2a/m,
with a the scattering length. At high densities and positive a the mean-field
interaction, given by the third term on the left, becomes dominant over the
kinetic energy term, given by the first term from the left. Therefore the kinetic
energy term can be neglected. This is called the Thomas-Fermi approximation.
[29] In this approximation equation (10.2) can be solved easily. The density
distribution in the condensate is now given by:

nBEC(r) = |φ(r)|2 =
1

g
(µ− U(r)) (10.3)

We see that the density profile is inversely proportional to the trapping poten-
tial. Therefore in the case of a harmonic potential the density profile becomes
parabolic:

nBEC(r) = nBEC(0)

(

1−
(

x

x0

)2

−
(

y

y0

)2

−
(

z

z0

)2
)

(10.4)

It can be shown that for a hot thermal cloud in a harmonic trap the density
distribution is given by a Gaussian distribution [18]:
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nth(r) = nth(0)
∏

i

e−(ri/Li)
2

, (10.5)

with i ∈ {x, y, z} where Li =
√

2kbT/mω2
i , with ωi the trapping frequency in

direction i.

As explained in the general introduction measurements in BEC experiments
generally consist of an absorption image. Essentially this is an integration of
the density along one coordinate. From the Lambert-Beer law (3.16) it shows
that the detected optical density is proportional to the column density. For the
thermal distribution the column density is given by:

CDth =

∫ ∞

x=−∞

nth(0)e
−( xx0

)2 + ( yy0 )
2 + ( zz0 )

2

dx (10.6)

= x0

√
πnth(0)e

−(( yy0 )
2 + ( zz0 )

2

(10.7)

where x is the direction of propagation of the light. We see that the column
density is described by a Gaussian. For a condensate in a harmonic trap we
obtain:

CDBEC =

∫ +Xint

x=−Xint

nBEC(0)

(

1−
(

x

x0

)2

−
(

y

y0

)2

−
(

z

z0

)2
)

dx

= nBEC(0)

[

x
(

1− y2 − z2
)

− 1

3
x3

]x=+Xint

x=−Xint

=
4

3
nBEC(0)

(

1− y2 − z2
)

3

2 (10.8)

Xint =

√

1−
(

y

y0

)2

−
(

z

z0

)2

The integration limits ±Xint have to be chosen such that the density distri-
bution does not become negative. From this result we see that the absorption
images have to be fitted to equation (10.8) .

We can distinguish now the difference between a hot thermal cloud and a
condensate by looking at the density distribution of the atoms. If this results in
a Gaussian shape the cloud is non-condensed, if it results in equation (10.8) the
cloud it is condensed. By fitting the density to a Gaussian distribution with an
inverted parabola on top of it one can also determine the fraction of condensed
atoms in the sample.

Expansion If the Thomas-Fermi approximation is assumed, the cloud has a
parabolic shape as seen above. If the trapping potential is switched off com-
pletely the cloud expands freely. It can be shown that during this expansion
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the parabolic distribution of the cloud is preserved [34]. In the limit of a large
aspect ratio of the unexpanded cloud (β = ωz/ωρ ¿ 1) and ωρτ À 1 the radii
of the condensate are given after an expansion time τ by [35]:

Rρ(texp) = Rρ(0)
√

1 + ω2
ρτ

2 (10.9)

Rz(texp) = Rz(0)

[

1 + βωzτ arctan(ωρτ)

]

(10.10)

It is clear that the radial size (given by equation (10.9) ) expands much faster
than the axial size (given by equation (10.10) ). If we now look after a certain
expansion time the cloud has become spherical. After even longer expansion
the radial size is bigger than the axial size and the expanded cloud becomes a
pancake.

For a thermal cloud the kinetic energy term dominates over the mean-field
interaction term. The kinetic energy is an isotropic property of the sample.
Therefore the expansion of a thermal cloud is isotropic and leads for long times
to a spherical cloud.

Concluding, by looking at the expansion of a sample one can determine the
fact if there is a condensate or not. In the case of a mixed sample the thermal
part will blow away spherically and in the center a dense part will be expanding
mainly in radial direction.

10.3.2 Experimental proof of BEC

As explained above by looking at the density distribution one can distinguish
between a thermal cloud and a BEC. Figure 10.6b shows an absorption image of
two clouds above Tc after 4ms of expansion time. The clouds have been cooled
as described above. The evaporation end-frequency was νRF,end = 900 kHz. The
B0 has been measured to be ν0 = 767(2) kHz in this series of measurements. In
figure 10.6a an axial cut through the center of the left cloud is shown. The line
shown is a Gaussian fit to the optical density. It is clear that this cloud is not
condensed.

The same measurement is repeated, but now with an evaporation end fre-
quency of νRF,end = 790 kHz, corresponding to 23 kHz above B0. Again an
absorption image and an axial cut through the left cloud is shown in figure
10.7a and 10.7b. The line is a fit to formula (10.8) . It is clear that this cloud
is a pure condensate. To our knowledge two Bose Einstein Condensates created
in a Ioffe quadrupole trap by purely magnetic means has never been reported
before. By making use of a light sheet repulsive to the atoms Andrews, et.
al. [36] obtained two condensates in an Ioffe quadrupole trap. However, these
condensates are highly asymmetrical.
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10.3.3 Lifetime in the split trap

The lifetime of a thermal cloud in the double trap has been measured. The
experimental procedure was as follows. The cloud was split as explained above.
The intermediate evaporation frequency νRF,int (see section 9.2.1) was set to
a value of 1.8MHz to obtain a dilute cloud. The end evaporation frequency
νRF,end was set to a value of 900 kHz to obtain a non-condensed cloud. The
number of atoms has been measured as a function of the plain evaporation time
τplain.

Lifetime with TOP Two series of measurements have been made. One se-
ries with the TOP on during the plain evaporation and one series with the TOP
switched off at the start of the plain evaporation. Figure 10.8 shows the re-
sults with the TOP on. Atoms can reach the energy of the plain evaporation
frequency due to collisions. This process will remove atoms from the trap. Col-
lisional processes occur with a certain probability. As one can see from figure
10.8 the decay process cannot be fit to a single exponential decay. Reasons for
this can be the fact that the position of the cloud in the trap is not stable.
The center position of the cloud varied within 8µm over this series of measure-
ments. This can be due to a center of mass oscillation of the cloud. The cloud
is calculated to have a 1/e-radius of 4.5µm in the trap. With fluctuations of at
maximum 8µm the cloud cannot reach the circle of death (20µm). Therefore
this does not generate detectable extra losses.
The explanations of which processes can induce losses are rather speculative.
One explanation is that the wings of the cloud are moved through the RF-
evaporation radius due to this oscillation. This performs extra evaporative
cooling, and generates extra losses. However, after a certain time the cloud
has become smaller due to the losses. At that time the evaporation point is not
reached anymore and the decay process slows down. This would explain the two
exponential fits shown in figure 10.8. However, the evaporation process in our
time-dependant trap is not fully understood. Therefore no calculations could
be made to verify this statement.

Lifetime without TOP The measurement as described above has been re-
peated without the TOP. The experimental scheme was almost the same as
above. The only change was that the TOP has been turned off at the starting
point of the plain evaporation. Again the number of atoms has been measured
as a function of the plain evaporation time. Figure 10.9 shows the results. A
decrease in atom number has been observed until 14ms after the TOP has been
switched off. From that point on no atoms were left in the trap. This is at-
tributed to Majorana loss. The decay process depends on the size of the region
where the magnetic field is smaller than the Larmor frequency. In this region
the field changes direction. The atoms are actively depolarized. We therefore
do not expect an exponential decay. However, the axial trapping frequency has
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been measured to be ωz = 2π · 26.8Hz as presented in paragraph 10.2.2. This
corresponds to an oscillation period of: 37ms. All atoms have passed the point
of zero-magnetic field after half an oscillation period. If the losses are very effi-
cient, all atoms would be lost after 18ms. This trapping frequency is derived for
an harmonic trap. In the case without the TOP the trap is not harmonic over
the region of the cloud. Therefore the atoms are moved slightly faster towards
the center. This implies a lifetime off less than 18ms. This might explain the
lifetime of the cloud being 14ms as we observed.

10.4 Colliding condensates

No quantitative measurements have been made on the collisional properties of
Bose Einstein Condensates. However, it has been qualitatively demonstrated to
show the possibilities of having two condensates in a Ioffe quadrupole trap.

The two condensates trapped in the Double TOP have been accelerated to-
wards each other. This is done by instantaneously switching the trapping poten-
tial from the double TOP back to the original harmonic trap. The confinement
of the condensates is not affected by this. Therefore no shape-oscillations are
induced. The axial position of the condensates in the harmonic trap at time t
is simply given by:

zc(t) = ±A · cos(ωzt) (10.11)

where at time t = 0 the potential is switched to the harmonic potential. The
distance between the two condensates is 2A at time t = 0. The relative velocity
of the two condensates at the colissional point (z = 0) is given by:

vrel = 2|żc(tc)| = 2ωzA (10.12)

where tc is the time of the collision occurring, given by tc = π/(2ωz). The atoms
in the condensates do not collide if the relative velocity of the condensates is
smaller than the critical velocity in the condensate. However, if the velocity
is higher than the critical velocity atoms get scattered out of the condensate.
This scattering has first been measured by Raman, et al. [37]. The collisional
process in a condensate has been observed by Stenger, et al. [38]. The ex-
periment was done by means of Bragg spectroscopy. Two beams were counter
propagated through an elongated BEC. The condensate absorbs momentum
from both beams. This simulates a collision. It was observed that below the
speed of sound little momentum was transferred to the condensate.

The speed of sound is given by:

c =

√

g n

m
, (10.13)
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g =
4πh̄2a

m
(10.14)

with g, the coupling constant to the potential, n the density and a the scattering
length. For our case the speed of sound is calculated to be: c = 6.15mm/s.

We collided two condensates at a speed large (vrel = 27.4[mm/s]) compared
to the speed of sound. A movie of this collision is shown in figure 10.10. After
the collision we observe a shockwave of atoms flying out from the collisional
point. These scattered atoms undergo an oscillation in the trap. The radial
trapping frequency is of the order of 400Hz therefore the time for half an oscil-
lation is: 1

2·400 = 1.25ms. This corresponds to the time interval that the atoms
disappear and reappear on z-axis as is observed for expansion times: 15−18ms).
The stripe indicates the concentration of the atoms on the axis.
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Figure 10.5: Anharmonic trap oscillation. The trap is switched from a harmonic
trap instantaneously to a anharmonic trap with a flattened bottom. It is clear
that two parts move outside and back inside again. This measurement is taken
with a thermal cloud.
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Figure 10.6: An absorption image of a double cloud after 4ms of expansion
time. νRF,end = ν0 +133 kHz. Both clouds are visible. The left image shows an
axial cut through the left cloud. The fit corresponds to formula (10.7) . It is
clear that this cloud is not condensed.
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Figure 10.7: An absorption image of a double cloud after 4ms of expansion
time. νRF,end = ν0 + 23 kHz. The right cloud is very faint. This is because the
camera is under an angle and is focused on the left cloud. The left image shows
an axial cut through the left cloud. The fit corresponds to formula (10.8) . It
is clear that this cloud is a BEC.
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Figure 10.9: The lifetime of a thermal cloud in the double trap. After the normal
splitting method the TOP is turned off. After 14ms no atoms are left. See text
for more details.
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Figure 10.10: A movie of the collision of two Bose Einstein Condensates.
νRF,end = ν0 + 50 kHz. One should note that the series on the left has time-
intervals of 0.6ms and the series on the right 3ms. After the collision (holding
time of 12ms) a shockwave of scattered atoms is observed. These scattered atoms
undergo an oscillation in the trap.
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Chapter 11

Conclusion

A very complete model describing the trapping potential has been developed.
Although the approach is crude and does not result in an analytical form it
has proven to be very powerful. As a result of this model various new type of
experiments in Ioffe-Quadrupole traps have been presented. The first realization
of two Bose Einstein Condensates in a Ioffe-Quadrupole trap by purely magnetic
means has been demonstrated. The collisional process has been demonstrated
briefly by colliding two condensates.
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Appendix A

Bessel Functions

A.1 Frequency modulation

Suppose a field is oscillating at angular frequency ω. The frequency is modulated
with frequency ωM and amplitude A in frequency space. The field is then given
by:

E(t) = E0 sin (ωt+A sinωM t) . (A.1)

To solve this equation we make use of Jacobi’s expansions of the two func-
tions [15]:

cos(z sin θ) = J0(z) + 2

∞
∑

n=1

J2n(z) cos 2nθ

sin(z sin θ) = 2

∞
∑

n=0

J2n+1(z) sin(2n+ 1)θ (A.2)

where Jn(a) is the Bessel coefficient of order n and argument a. A general
property of Bessel function is that J−n(z) = (−1)nJn(z). Therefore we can
write (A.2) as:

cos(z sin θ) =

∞
∑

n=−∞

J2n(z) cos 2nθ

sin(z sin θ) =

∞
∑

n=−∞

J2n+1(z) sin(2n+ 1)θ

We can also state:

cos(z sin θ) =
∞
∑

n=−∞

J2n(z) cos 2nθ
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sin(z sin θ) =

∞
∑

n=−∞

J2n+1(z) sin(2n+ 1)θ (A.3)

because the terms with positive order cancel with the corresponding terms with
negative order. Therefore we can rewrite equations A.3 as:

cos(z sin θ) =

∞
∑

n=−∞

Jn(z) cosnθ

sin(z sin θ) =

∞
∑

n=−∞

Jn(z) sinnθ (A.4)

If we now make use of:

sin(a+ b) = sin a cos b+ cos a sin b (A.5)

we can combine (A.1) and (A.4) to obtain:

E(t) = E0 sin (ωt+A sinωM t)

= E0 [sinωt cos(A sinωM t) + cosωt sin(A sinωM t)]

= E0

[

sinωt

∞
∑

n=−∞

Jn(A) cosnωM t

+cosωt

∞
∑

n=−∞

Jn(A) sinnωM t

]

= E0

∞
∑

n=−∞

Jn(A) (sinωt cosnωM t+ cosωt sinnωM t)

= E0

∞
∑

n=−∞

Jn(A) sin(ωt+ nωM t) (A.6)

A.2 Amplitude modulation

An oscillating field can generally be described by:

E(t) = E0 cos(ωt+ φ0) (A.7)

We choose the offset phase zero (φ0 = 0). In amplitude modulation processes
E0 is varied. If we apply an sinusoidal amplitude modulation to equation (A.7)
we obtain:

E(t) = E0(1 +A cosωM t) cosωt (A.8)

where ωM is the modulation frequency and A is the modulation depth. By
means of simple trigonometry we can rewrite equation (A.8) as:
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E(t) = E0

[

cosωt+
A

2
cos(ω + ωM )t+

A

2
cos(ω − ωM )t

]

(A.9)

Here we see two sidebands appear which are in phase. This distinguished
amplitude modulated signals from frequency modulated ones.
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Appendix B

Laser setup

B.1 Slave mount

The design goal of the source laser system was frequency stability. This re-
quired the development of a new slave laser mount. Previously used housings
were lacking stability for our purposes. The previously used mount was manu-
factured by Newport (model 700C ). A schematic drawing is shown in figure B.1.
Unstable aspects of this design are for example that the laser diode is mounted
on the Peltier element. The other side of the Peltier element is mounted on the
housing. This housing holds the collimator lens. Changes in the temperature
difference between the diode and the mount changes the relative position of the
diode and the lens. This makes the collimation of the beam less stable.

A rather unstable effect is the mounting of the collimator lens. The lens
is mounted in a threaded hole. The lens is adjusted to the right position by
screwing it in and out. The position of the lens is not stable because the tread
has backlash.

A new mount has been developed to obtain a more stable solution. Figure
B.2 shows a drawing of the mount. The mount is designed to have a low thermal
mass. Therefore the bandwidth of the feedback of the temperature stabilization
is larger. The laser diode and collimator lens are connected to each other without
any moveable parts. A translation stage is used to optimize the position of the
collimator lens. Two rods of the appropriate diameter are dropped into the
empty space. These are glued to the mount and to the lens. The mount is
expected to be more stable. No deviations could be detected at the time of
writing this report.

85



Clamping plate

Front plate

laser diode

Peltier element Housing

Collimator lens

Figure B.1: Schematic drawing of the previously used Newport mount. The diode
is directly mounted on the peltier element. Temperature fluctuations changes the
alignment of the diode.

40

FrontviewSideview

34

holding rods

clamping plate
laser diode

laser diode
front facet

heatsink
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mounting thread

Peltier element

Figure B.2: Slave laser mount, measures are in mm. The mount is made of
aluminium except for the layer of perspex. The aluminium is to have a good
thermal contact between the diode and the peltier. The perspex is to make the
diode electrically disconnected from the ground.
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Figure B.3: photograph of the lasermount. The euro-cent coils are to indicate
the scale.
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Appendix C

Ioffe helper coil derivations

Curvature Figure C.1 shows a Ioffe-helper coil. The denoted dimensions are
listed in table C. The magnetic field produced by an wire segment carrying a
current I is given by the Biot-Savart law 8.6

B(r) =
µ0

4π
I

∫

dl′ × r
r3

, (C.1)

where the integral is evaluated over the wire. The wire length element dl′

pointing along the direction of the current and the vector r′ are given by:

dl′ = dl





− sin θ
0

cos θ



 = a dθ





sin θ
0

cos θ



 (C.2)

r′ =





a cos θ
y0

h+ a sin θ



 (C.3)

The magnetic field at point r = (x, y, z) produced by the upper curvature is
given by:

Bcurv(x, y, z) =
µ0

4π
I

∫

curv

dθ
1

|r′ − r|3 dr
′ × (r′ − r) (C.4)

=
µ0

4π
I

∫

curv

dθ
1

|r′ − r|3





− sin θ
0

cos θ



×





a cos θ − x
y0 − y

h+ a sin θ − z



(C.5)

Simplifying the outer product results in the following integral for the upper
curvature:

Bcurv(x, y, z) =
1

aout − ain

∫ π

θ=0

∫ aout

r=ain





−(y0 − y) cos θ
r − x cos θ + h sin θ − z sin θ

−(y0 − y) sin θ
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measure symbol value
inner radius ain 18 mm
outer radius aout 36 mm
rod length 2H 79 mm

displacement from coordinate origin y0 -37 mm

Table C.1: The magnitudes of the measures as used in the numerical calculation.

· 1

((y0 − y)2 + (a cos θ − x)2 + (h− z + a sin θ)2)
3/2

(C.6)

The integration limits are denoted in figure C.1.
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q
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H

z

y
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Figure C.1: Ioffe-helper coil shown in three perspectives. Figure a. and b.
show the view along the y and x-axis respectively. Figure c. shows a three-
dimensional figure of the coil. The coil is drawn as a the infinitely thin wire
which is integrated over the region of the copper.

Rod For one of the straight parts the vectors in the integral dl and r′ are
written as:

dl =





0
0
dl



 = |r− r′|





0
0
1



 dθ (C.7)

r′ =





a− x
y0 − y
z′ − z



 (C.8)
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Including this in 8.6 we can write the magnetic field as:

Brod(x, y, z) =
µ0

4π
I

∫ +H

z′=−H

dθ
1

|r′ − r|2 dl× r
′

=
µ0

4π
I

∫ +H

z′=−H

dθ





−(y0 − y)
a− x
0





· 1

((y0 − y)2 + (a cos θ − x)2 + (h− z + a sin θ)2)
3/2

(C.9)

Equations C.6 and C.9 are to be evaluated numerically.
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Appendix D

Rubidium properties

Rb
(I=3/2)

87

D 795 nm

D 780.1nm

5S 1/2

5P3/2

5P1/2

6.83 Ghz

818 MHz

72.3 Mhz

157.1 Mhz

267.2 Mhz

F=1

F=2

F=0

F=3

F=1

F=1

F=2

F=2

1

2

Figure D.1: The energy level scheme of the two lowest excited 87Rblevels. The
spacing of the levels are indicated in Mhz and nm.
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Figure D.2: The transition probabilities as derived from the Clebsch-Gordan
coefficients for 87RbD2 line. The numbers next to the rectangles indicate the
Zeeman sublevel characterized by mF . The transition probabilities are normal-
ized such that the probabilities are integers. For the σ− polarization one can
change all the mF numbers to −mF in the σ

+ diagram.
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