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1 Introduction

A Bose-Einstein condensate can be viewed as a macroscopic quantum mechanical
matter-wave. The constituent bosons (particles with integer spin) are cold enough
to let their de Broglie wavelengths overlap. As a result of Bose statistics [1, 2] the
system has gone through a phase transition: The particles gather in a single quan-
tum ground state and act coherently. Bose-Einstein condensation (BEC) is related
to superfluidity and to superconductivity. Superconductivity, vanishing electrical re-
sistance in a conductor at low temperature, was discovered by Kamerlingh-Onnes [3]
as a result of his development of advanced cooling techniques that led to the lique-
faction of helium in 1908 [4]. It was Kapitza who first used the term superfluidity
to characterize the frictionless flow observed in liquid helium below a temperature
of 2.2 K (known as the λ-point), observed by him [5] and separately by Allen and
Misener [6] in 1938. That same year also marked the start of vivid developments
in theory when Fritz London [7] hypothesized on a relation between the behavior of
liquid helium below the λ-point and BEC, and Tisza [8] connected BEC to super-
fluidity, for a review see [9]. Important steps towards cooling matter to even lower
temperatures were made in the 1980s [10–12] with the development of magnetic
trapping and evaporative cooling techniques for atomic hydrogen.

In 1995, after the introduction of laser cooling for alkali atoms [13–16], Bose-
Einstein condensates of rubidium and sodium in the gas phase were realized [17,18].
The crisp images of these macroscopic matter-waves generated huge enthusiasm
amongst experimental and theoretical physicists. In the same year, also evidence for
BEC in Li was reported [19] (see also [20–22]). This was especially intriguing because
it showed that in a trap a BEC with attractive interactions can be stable, unlike
the situation for a uniform gas. Experiments on Bose-Einstein condensates provide
ample possibility to develop and test theory for macroscopic quantum phenomena
also relevant for the description of superfluidity and superconductivity [7, 23–25].

1.1 1D Bose gas

The key ingredient for the quantum phenomena of BEC, superfluidity and su-
perconductivity is long-range order of the phase of the macroscopic wavefunction
(see [25, 26] and [27] p.31). Long-range order appears in a three-dimensional ho-
mogeneous system of bosons at finite temperature. Mermin and Wagner [28] and
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2 Introduction

Hohenberg [29] proved that in lower-dimensional systems the situation is signifi-
cantly different: In two dimensions (2D) phase coherence does only exist at T = 0
and in one dimension (1D) phase order decays algebraically even at zero tempera-
ture. From these considerations it was established that BEC at finite temperature
does not exist in 2D and 1D. The study of lower-dimensional quantum degenerate
systems could promote better understanding of often complex ordering phenomena
and was therefore pursued in experiments soon after the first alkali BEC’s were re-
alized. For example in 2D the locally coherent Bose gas supports vortex-antivortex
pairs whose unbinding leads to the Kosterlitz-Thouless transition [30]. Experimen-
tally, lower dimensional systems can be realized by strongly confining atoms to their
motional ground state in one or two dimensions using magnetic or optical trapping,
while applying a very weak harmonic potential in the residual dimension(s).

In contrast to the homogeneous case, BEC in 2D and 1D does occur in a trap [31].
Ketterle and van Druten [32] studied lower-dimensional systems of a finite number of
non-interacting bosons, in the presence of external harmonic confinement and found
that the transition temperature increases for lower dimensions. For experimentally
realistic parameters, one-dimensionally trapped atoms exhibit interactions. These
interactions in 1D can be modelled using the 3D atomic scattering length [33].
Petrov, Shlyapnikov and Walraven [34] included atomic interactions in their de-
scription and identified several, at that time experimentally unexplored, regimes of
quantum degeneracy in trapped 1D gases. The 1D Bose gas is of particular interest
because exact solutions for the many-body eigenstates can be obtained [35]. Further-
more, the finite-temperature equilibrium can be studied using the exact Yang-Yang
thermodynamic formalism [36–38], a method also known as the thermodynamic
Bethe Ansatz. The 1D regime in ultracold atomic Bose gases was first reached
in experiments in the year 2001 [39–41]. Peculiarly, in 1D atoms become more
strongly interacting for decreasing density. In the low density limit one has a Tonks-
Girardeau gas of impenetrable bosons that was first realized using optical trapping
in 2004 [42,43].

In the experiments described in this thesis we magnetically trap atoms in a tube-
like geometry. This ‘waveguide’ for atoms is created using the magnetic field from
current carrying wires on a microchip. Using this ‘atom chip’ [44, 45] we realize
a trapped one-dimensional Bose gas in the weakly interacting regime. Due to the
finite-temperature we have a system that can be described as a degenerate 1D gas in
thermal contact with a surrounding 3D thermal gas. Even for the lowest tempera-
tures reached (∼ 100 nK) finite-temperature effects reduce the phase coherence and
we observe a BEC with a fluctuating phase. When we lower the atomic density, at
constant temperature, the system becomes more strongly interacting and reduction
of the phase-order destroys the condensate. We observe in this process, for the first
time, a gas that obeys the exact Yang-Yang thermodynamics [46].
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Figure 1.1: Waveguide potential for atoms. A waveguide is created when the circular magnetic field

of a chip wire (I) is compensated with a perpendicular bias magnetic field Bbias. Three-dimensional

confinement is achieved by creating end-caps with currents I1 and I3.

1.2 Integrated atom optics

Rapid developments in microfabrication techniques enable spectacular advances in
fundamental physics. The ‘atom-chip’ [44,45] is an example of a device that enables
us to manipulate matter waves on the nanometer scale using integrated circuits.
The idea of an atom chip was launched in 1995 by Weinstein and Libbrecht [47], the
authors proposed to trap ultracold atoms in the magnetic field of micropatterned
conductors, thus having them hover only micrometers away from the chip surface.
Thermal insulation of the ultracold atoms is assured by placing the chip in an
ultra high vacuum environment. Later that same year, the first BECs in atomic
gases [17,18] were realized using large electromagnet-based traps. In 2001 two groups
independently made a next step and created a BEC on a chip [44, 45]. With the
realization of an atomic matter wave on a chip the field of ‘integrated atom optics’
was born. At the time of writing more than a dozen labs worldwide do experiments
with BECs on a chip, for a recent review see [48]. An introductory account of the
Amsterdam work on atom chips can be found in [49].

Atoms can be magnetically trapped when their magnetic moment is anti-parallel
to the local magnetic field. The trapping potential is proportional to the magnetic
field strength. The simplest chip trap is a waveguide, illustrated in Fig. 1.1, that
is created when the circular magnetic field of a chip wire (I) is compensated with
a perpendicular bias magnetic field. End-caps are realized with currents I1 and
I3. With short distances between the trapped atoms and the current source, field
gradients are large, hence microtraps can provide much stronger confinement than
conventional electromagnet traps. Therefore the chip trap is ideally suited to study
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atoms confined to one-dimension. The versatility of integrated atom traps can be
extended using radio-frequency dressed potentials [50] a technique that we have
recently explored in our setup [51]. Another promising recent development is the
use of permanent magnetic material to trap atoms on a chip. Such traps do not
suffer from ohmic heating and thus allow for the integration of large arrays of traps
with a very high density [52].

1.3 This thesis

The outline of this thesis is as follows. Chapter 2 provides some theoretical back-
ground relevant to the experiments described in this thesis. The emphasis is on the
description of a Bose gas confined to one dimension. In Ch. 3 the experimental setup
is outlined. Details are given of the design and construction of the microtrap. Ch. 4
describes how we realize Bose-Einstein condensates in our microtrap. Subsequently,
in Ch. 5, we treat a condensate as a macroscopic wave and use theory borrowed
from optics to study atom coherence. In particular, we describe how we extract the
temperature of an elongated quasi-condensate by measuring its width after focus-
ing. Finally, in Ch. 6 experiments are compared to exact theory that goes beyond
the macroscopic condensate description. The first observation of exact Yang-Yang
thermodynamics on an atom chip is described.



2 Theoretical background

2.1 Introduction

This chapter provides some theoretical background to the subsequent experimental
chapters. The experimentally important concepts of magnetic trapping and evap-
orative cooling are briefly described. The main part of this chapter provides a
summary of theory for the one-dimensional (1D) Bose gas at low temperature (and
the cross-over to it from a 3D trapped gas) that is relevant for our experiment.

The 1D Bose system has attracted much interest because it has properties signifi-
cantly different from that in higher dimensions. Counterintuitively, repulsive bosons
in 1D become more strongly interacting with decreasing density. The theoretical de-
scription of such a many-particle system with strong interactions is challenging: As
interactions increase in importance theoretical approaches that treat the gas as non
interacting (ideal Bose gas) or weakly interacting (mean-field) break down. Already
in the 1960s theorists were able to do much better, however. Helped by the sim-
ple symmetry of the 1D geometry Girardeau, Lieb and Liniger, and Yang and Yang
were able to construct exact solutions for the many-body quantum system. Solutions
were found for impenetrable bosons, known as the Tonks-Girardeau (TG) gas, by
Girardeau [53] and for bosons with finite delta-function interaction by Lieb and Lin-
iger [35] [54], using a Bethe Ansatz [55]. The model of 1D delta interacting bosons
is integrable and therefore exactly solvable. Yang and Yang found analytic integral
equations for the thermodynamics of the Lieb-Liniger gas [36] at any finite temper-
ature and interaction strength. Their method is also known as the thermodynamic
Bethe Ansatz.

With the spectacular advances in experiments with ultracold atomic gases in
the 1990s this theoretical work became of experimental relevance and the first 1D
condensates were realized in 2001 [39–41]. The importance of exactly solvable models
for experiments with quantum gases was first pointed out by Olshanii in 1998 [33].
Until recently, however, most experimental attention was to the zero-temperature
case of the Lieb-Liniger gas. In particular, there was a run to reach the strongly
interacting Tonks-Girardeau (TG) gas. The TG regime was reached experimentally
in 2004 in two groups. The group of Immanuel Bloch used a 2D optical lattice
and added a weak periodic potential along the third axis to increase the effective
mass of the bosons [42]. David Weiss and coworkers used a different laser scheme
that removed the need for the complicating third periodic potential [43, 56–58]. It

5
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was the paper by Kheruntsyan and coworkers [59] of 2003 that elaborated on the
connection between Yang-Yang thermodynamics and cold atom experiments, the
authors could identify new physical regimes using their exact calculations of the
local pair correlation function.

Besides the strictly one-dimensional case, in practice many experiments [39, 50,
60] are performed in the cross-over from a three-dimensional to a one-dimensional
system. Moreover, one works in a trap as opposed to the homogeneous case. The
dimensional cross-over is of crucial importance in the description of our experimental
data and is therefore given special attention in this chapter. In experiments on our
trapped cold atomic clouds we turn two knobs: atom number and temperature. By
turning these knobs we probe a variety of different physical regimes that are mostly
separated by smooth cross-overs rather than sharp phase transitions. Besides the
only true phase transition that we encounter: Bose-Einstein condensation, three
cross-overs are met:

• cross-over from a three-dimensional to a one-dimensional system,

• cross-over from a decoherent to a coherent atomic sample in 1D,

• cross-over from a weakly interacting to a strongly interacting gas in 1D.

The outline of this chapter is as follows. Section 2.2 introduces the basics of
magnetic trapping. In Sec. 2.3 the commonly used approach to the ideal Bose gas
and the phenomenon of Bose-Einstein condensation is summarized. We discuss the
homogeneous and trapped cases in 3D and 1D as well as the dimensional cross-over.
Section 2.4 deals with weakly interacting (quasi-)condensates in 3D, in 1D and in
the dimensional cross-over. Phase-fluctuating condensates, and the relation between
the phase coherence length and the temperature of a quasi-condensate are studied
in Sec. 2.4.4. Section 2.5 is dedicated to the exact results for 1D repulsive bosons by
Tonks-Girardeau, Lieb-Liniger and Yang-Yang. In section 2.5.3 we present a new
finite-temperature model that explains our experimentally obtained data very well
(see also Ch. 6). The weakly interacting 1D gas is treated using the exact Yang-Yang
thermodynamic solutions thus incorporating both the cross-over from a decoherent
to a coherent system and the cross-over from weak to strong interactions. In Sec. 2.6
we give an overview of the discussed regimes that can be characterized by the three
parameters: interaction strength, radial confinement and temperature. These pa-
rameters span a three dimensional space. We specifically describe two subspaces:
(a) interaction strength versus radial confinement at T = 0 (Sec. 2.6.1); (b) inter-
action strength versus temperature in the 1D limit (Sec. 2.6.2). Section 2.7 briefly
touches on previous models for finite-temperature degenerate systems. Finally, in
Sec. 2.8 we give some theoretical background for the experimentally important tool
of evaporative cooling.

2.2 Magnetic trapping

Magnetic trapping is due to the Zeeman effect: The energy of the atomic state
depends on the magnetic field due to the interaction of the magnetic moment of the
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atom with the magnetic field, for a detailed description see e.g. [61–63]. A Zeeman
sublevel of an atom with given total electronic angular momentum J and nuclear
spin I can be labelled by the projection mF of the total atomic spin F ≡ I + J
on the axis of the field B and by the total F ranging from |I − J | to I + J . We
are specifically dealing with the electronic ground state (J = S = 1/2) of 87Rb
(I = 3/2) so that F = 1 or F = 2. For these states the Zeeman energy shift can
be calculated with the Breit-Rabi formula [63]. For the special case of atoms in
the doubly polarized state (F = 2,mF = 2) the Breit-Rabi formula yields a linear
Zeeman shift

U(B) = U(0) + 2gFμB|B|, (2.1)

where gF ≡ (gJ + 3gI)/4, with gJ = 2.00233113(20) [61] the fine structure Landé
g-factor, gI = −0.0009951414(10) [61] the nuclear g-factor, U(0) the energy in zero
field and μB being the Bohr magneton. Because of the increasing energy in Eq. (2.1)
with increasing magnetic field, atoms in the state (F = 2,mF = 2) are “low-field
seekers” that can be trapped in a local magnetic-field minimum. The other Zeeman
states for 87Rb that can be magnetically trapped for moderate field values are F =
2,mF = 1 and F = 1,mF = −1. In a region of small magnetic field the precession of
the atomic magnetic moment is so slow that the changing field direction as a result of
the atomic motion cannot be followed adiabatically. Atoms traversing such a region
can undergo a so-called Majorana spin-flip to an untrapped state. To avoid this loss
mechanism access of the atoms to low magnetic field regions should be prevented
by arranging a non-zero magnetic field strength at the potential minimum.

To describe the thermodynamics of a trapped gas it is convenient for future
reference to approximate the confining potential as a power-law trap of the general
form [31]

U(x, y, z) = ax|x|1/δ1 + ay|y|1/δ2 + az|z|1/δ3 , (2.2)

where
δ =

∑
i

δi, (2.3)

with δ = 0 for 3D box-like, δ = 3/2 for 3D harmonic and δ = 3 for a spherical-
quadrupole trap. The lowest order, and therefore tightest, magnetic trapping po-
tential that has a non-zero minimum is 3D harmonic and can be written as

U(x, y, z) = U0 +
1

2
mω2

xx
2 +

1

2
mω2

yy
2 +

1

2
mω2

zz
2, (2.4)

where ωi is the single-particle oscillator frequency and m is the atomic mass.
A magnetic-field configuration that is 3D harmonic near the minimum was in-

troduced by Ioffe [64] for plasma confinement. It was first proposed and used by
Pritchard [65] to trap neutral atoms and is known as the Ioffe-Pritchard (IP) trap.
Following Luiten [66] we define α = (∂B⊥/∂ρ)x=x0 and β = (∂2Bx(0, 0, x)/∂x

2)x=x0 ,
and write the magnetic field for the IP configuration in polar coordinates

B⊥(ρ, φ, x) = αρ sin(2φ)− 1
2
βρ(x− x0),

Bφ(ρ, φ, x) = αρ cos(2φ),
B‖(ρ, φ, x) = B0 + 1

2
β(x− x0)

2 − 1
4
βρ2.

(2.5)
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Indeed the magnetic field is approximately harmonic close to the center of the IP
trap, for magnetic field values close to B0 (the value of the magnetic field in the
trap bottom). The harmonic approximation is valid for trapped atom clouds with a
temperature much lower than μBB0/kB. Using equations (2.1), (2.4) and (2.5) we
find the trap frequencies in axial and radial direction

ω‖ =

√
μBgFmF

m
β, (2.6)

ω⊥ =

√
μBgFmF

m
(
α2

B0

− β

2
) (2.7)

In the high-temperature limit, if the thermal energy of atoms in a IP-trap is much
larger then the energy corresponding to the trap bottom, kBT � μBB0, we can
approximate the IP potential, resulting from Eq. (2.1) and Eq. (2.5), in the two
radial directions by a linear and in the axial direction by a harmonic shape. The
factor δ, Eq. (2.3), equals 5/2 in this case.

Strong trapping forces are generated by high magnetic field gradients. Weinstein
and Librecht [47] realized that when creating a trapping field at a distance r from
a wire that carries a current I, the field gradient scales as I/r2. Microtraps thus
provide an advantage over conventional electromagnets to tightly confine atoms.

The simplest wire-based trap is illustrated in Fig. 1.1. A current-carrying wire
(along x) whose magnetic field is compensated by a homogeneous field Bbias (along
y) forms a waveguide. Around the minimum (r0), the field in the radial direction
(yz-plane) is quadrupolar. This waveguide can be closed at the end points by adding
two perpendicular current-carrying wires (along y) thus creating an H. End caps
can also be made by bending the leads of the x-wire in the y-direction to create a
Z shape. One can estimate the field gradient of such a trap using the field for an
infinitely thin wire

r0 =
μ0

2π

I

Bbias

, (2.8)

B′(r0) = −μ0

2π

I

r2
0

, (2.9)

with μ0 = 4π · 10−7NA−2. For example, with a current of 1 A and Bbias = 100 G we
have r0 = 20 μm and a huge gradient B′(r0) = 5 · 104 G/cm.

2.3 Ideal Bose gas

In the ideal-gas description, atoms are considered as non-interacting quantum-
mechanical particles. For homogenous ultracold dilute Bose gases in 3D this de-
scription can be found in textbooks such as [67]. This treatment has been extended
for power-law potentials [31, 68], and for lower dimensional systems [32,69].
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In a 3D homogenous gas of bosons the average occupation number Ni of states
with energy εi obeys Bose statistics

Ni =
1

eβ(εi−μ) − 1
=

ze−βεi

1− ze−βεi
, (2.10)

where β = (kBT )−1. The fugacity z and the chemical potential μ are related by
z = eβμ. The total atom number N is found by summing over all quantum states i

N =
∞∑
i=0

Ni. (2.11)

This sum diverges for z → 1 because the term N0 = z/(1 − z) diverges in the
thermodynamic limit (we take ε0 = 0 from here on). Splitting off the diverging
term N0, replacing the rest of the sum by an integral (one state per phase space
element ΔrΔp = h3) the equation of state for N atoms occupying a volume V
becomes

N

V
=

4π

h3

∫ ∞

0

dp p2 1

z−1eβp2/2m − 1
+

1

V

z

1− z
. (2.12)

This can be written in the form [67]

n(z, T ) =
1

Λ3
T

g3/2(z) +
N0

V
, (2.13)

where n = N/V is the particle density,

ΛT =
√

2π�2/mkBT , (2.14)

is the thermal de Broglie wavelength and g3/2 is the Bose or Polylog function defined
by

gα(z) =
∞∑

j=1

zj/jα. (2.15)

For the ground-state particle density we have

N0

V
= n0 =

1

V

z

1− z
(2.16)

and for the density in the excited states

ne =
1

Λ3
T

g3/2(z). (2.17)

Note that g3/2(z) is finite for z → 1 (g3/2(1) = 2.612 . . . ), and thus ne is limited,
ne ≤ g3/2(1)/Λ3

T . At a given density, for low enough temperature, μ tends to zero
from below and we have z → 1; the Bose gas is saturated. All extra particles
added at constant temperature will be accommodated in the ground state. The
ground state becomes macroscopically occupied giving rise to the phenomenon of
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Bose-Einstein condensation. At the transition, the critical density and temperature
are

nc =
1

Λ3
T

g3/2(1), (2.18)

Tc =
2π�

2

mkB

(
n

g3/2(1)

)2/3

. (2.19)

A phase space density can be defined as the number of particles occupying a volume
equal to the de Broglie wavelength cubed

Φ = nΛ3
T . (2.20)

At the critical point the phase space density is Φ = g3/2(1). We make use of
Eq. (2.19) to write down the temperature dependence of the fraction of particles in
the ground state

N0

N
= 1−

(
T

Tc

)3/2

. (2.21)

Homogeneous 2D and 1D ideal gas

Unlike the 3D case, for a 2D system in the thermodynamic limit the population of
the ground state remains microscopic for decreasing temperatures down to T → 0.
One can say that there is no BEC in a finite-temperature ideal homogeneous 2D
Bose gas. Similarly in 1D, in the thermodynamic limit the population of the ground
state remains microscopic for any T indicating the absence of BEC in this system.

One can define a degeneracy temperature Td for lower-dimensional systems that
indicates the transition from the classical regime to the regime where a quantum
treatment is needed because the thermal de Broglie wavelength starts to exceed the
average interparticle separation. For a homogeneous Bose gas in 1D the semiclassical
approach yields

n(z, T ) =
1

ΛT

g1/2(z), (2.22)

the 1D equivalent of Eq. (2.13) for 3D. Note that g1/2(z) diverges as z → 1, con-
sistent with the absence of a macroscopically occupied ground state in 1D in the
semiclassical approximation. Degeneracy for a one-dimensional homogeneous Bose
gas is thus reached for

Td =
�

2n2
1

2mkB

, (2.23)

where n1 is the 1D density.

2.3.1 Ideal Bose gas harmonically trapped in 3D and 1D

We now turn to the D-dimensional ideal Bose gas in the presence of external har-
monic confinement Vext(r) =

∑D
i=1mω

2
i r

2
i /2. We assume kBT � �ωi, consequently
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we can use the semiclassical approximation and replace the sum in Eq. (2.11) by an
integral. The semiclassical energy of the atoms trapped in the external potential is

ε(r,p) =
p2

2m
+ Vext(r). (2.24)

The density distribution of the thermal atoms as a function of position and mo-
mentum respectively is then obtained by integration (over momentum and position
respectively) yielding

n(r) =
1

ΛD
T

gD/2

[
ze−βVext(r)

]
, (2.25)

n(p) =
1

(mω̄ΛT )D
gD/2

[
ze−βp2/2m

]
, (2.26)

where ω̄ = (ΠD
i=1ωi)

1/D.
It was shown in [32] that upon lowering the dimension the critical temperature

becomes higher. The expression for the critical temperature in a 1D trapped gas
obtained in [32] is

N =
kBTc

�ω
ln

2kBTc

�ω
. (2.27)

2.3.2 Ideal Bose gas in the 3D-1D cross-over

If the 3D harmonic trap is highly anisotropic and needle shaped with ω⊥ � ω‖
and kBT ≈ �ω⊥ we have a cross-over from 3D to 1D for the ideal Bose gas. Only
a few radial quantum states are occupied, therefore radially we can no longer use
the semiclassical approximation from Sec. 2.3.1. In this cross-over case we sum
explicitly over the radially exited states j of the harmonic oscillator with degeneracy
(j + 1). For the axial direction we use the local density approximation (LDA): We
treat the gas as locally homogeneous with a spatially varying chemical potential
μ(x) = μ−mω2x2/2 [70]. The resulting axial atomic density nl is

nl(x) =
∞∑

j=0

(j + 1)
1

ΛT

g1/2

[
eβ(μ(x)−j�ω⊥)

]
. (2.28)

2.4 Weakly interacting (quasi-)condensate

Consider a harmonically trapped gas in the low temperature limit far below the
condensation temperature: T � Tc and N0/N → 1, i.e. we have an almost pure
Bose-Einstein condensate. Nearly all particles occupy the ground state and the
atomic density becomes high. When the interaction energy exceeds the harmonic
oscillator level splitting we can no longer neglect the effect of interatomic interac-
tions.

Bogoliubov [71] adopted a mean-field approach to approximate the many-body
wavefunction for the weakly interacting Bose gas, in order to obtain the excitation
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spectrum for the zero-temperature limit (see Sec. 2.4.4). For an inter-particle sepa-
ration that is much larger than the range of the atomic interaction potential and for
low collision energies atomic interactions can be described using only s-wave scat-
tering. The mean-field interaction energy can then be written as μ = ng, where n
is the 3D atomic density and g the coupling constant

g =
4π�

2a

m
, (2.29)

where a is the s-wave atomic scattering length (a = 5.24 nm for 87Rb in the state
F = 2,mF = 2 [72]). The Gross-Pittaevski (GP) equation is a mean-field expression
for the ground-state wavefunction ψ[

− �
2

2m
∇2 + Vext(r) + g|ψ(r)|2

]
ψ(r) = μψ(r), (2.30)

where Vext(r) is an external confining potential. Equation (2.30) is a non-linear
Schrödinger equation, normalized as

N =

∫
dr|ψ(r)|2. (2.31)

A Bose-Einstein condensate in the 3D mean-field regime is characterized by long-
range order of the phase. The correlation length lc = �/

√
mng, the typical length

scale associated with the atomic interaction energy, should be much smaller than
the decay length of the phase coherence for any mean-field theory to hold.

2.4.1 Mean-field in three dimensions

We take the external potential in Eq. (2.30) to be a 3D isotropic harmonic trap
Vext(r) = mω2r2/2. A trapped Bose-Einstein condensate in the mean-field regime
can be treated in the local density approximation (LDA) provided μ� �ω. In this
limit, the atomic density changes on a length scale much larger than that of the
correlations in the gas, consequently we can treat the gas as locally homogeneous
with a spatially varying chemical potential [70]. This amounts to neglecting the first
(kinetic energy) term in Eq. (2.30); the mean-field energy of the trapped condensate
exactly compensates the external potential energy. We have, for the spatial region
where Vext < μTF , a cloud with a parabolic Thomas-Fermi (TF) profile in all three
directions

nTF (r) =
μTF − Vext(r)

g
, (2.32)

and nTF = 0 elsewhere. The peak chemical potential μTF is determined by the total
particle number N0. For a harmonic potential, the result is

μTF =
�ω

2

(
15N0a

l

)2/5

, (2.33)

where l =
√

�/mω is the ground-state size.
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2.4.2 Mean-field 1D

If in an ultracold gas under strong radial confinement the thermal energy drops
below the radial level splitting (kBT � �ω⊥), the atomic motion in transverse
directions is frozen and we speak of a one-dimensional system. For temperatures
much lower than the degeneracy temperature (T � Td) [Eq. (2.23)], and sufficiently
high density we have a weakly interacting gas that can be treated similarly to the 3D
case using a mean-field theory. The resulting 1D system exhibits quasi-long-range
order of the phase at zero temperature (the phase coherence decays algebraically)
[34]. Therefore we do not speak of a true condensate but rather of a quasi-condensate
(under sufficient axial harmonic confinement full phase coherence can be regained,
see Sec. 2.4.4). We can now write for the 1D mean-field interaction energy μ ≈
g1n1 � �ω⊥, where we use the effective 1D coupling found by Olshanii [33]

g1 =
2�

2a

ml2⊥

(
1− C a√

2l⊥

)−1

, (2.34)

with the constant C = 1.4603 . . . [33] and the transverse oscillator length l⊥ =√
�/mω⊥. In our experimental situation l⊥ � a and the second term on the right-

hand-side of Eq. (2.34) is a small correction. This 1D mean-field gas has the shape of
the harmonic-oscillator ground state in the transverse direction. Along the axis we
can use the LDA and find the parabolic Thomas-Fermi shape for the harmonically
trapped case.

2.4.3 Mean-field 3D-1D crossover

The dimensional cross-over at T = 0 for a quasi-condensate with μ ≈ �ω⊥ was
treated in the mean-field regime by Menotti and Stringari [73] and by Gerbier [74].
The cross-over is approached from the 3D side where the chemical potential is much
higher then the axial level splitting (μ� �ω‖): The condensate is in the GP regime
and the density profile is parabolic both in axial and radial directions. Upon re-
duction of the linear density and consequently of the chemical potential we pass
the dimensional cross-over regime (μ ≈ �ω⊥) and reach the regime μ � �ω⊥. This
results in a shape change of the radial density profile from parabolic when μ� �ω⊥
to the gaussian shape of the harmonic oscillator ground state for μ� �ω⊥. As long
as μ � �ω‖ the axial shape stays parabolic. The characteristics of the condensate
change gradually when going from elongated 3D to 1D. There is no transition point
but a transition region. Gerbier [74] found a simple interpolation for the calculation
of the chemical potential across the transition

μ = �ω⊥
(√

1 + 4anl − 1
)
, (2.35)

where the local linear density nl is used without information on the axial potential.
This approximate function Eq. (2.35) yields values that were found to be very ac-
curate in comparison with exact numerical results obtained by Menotti [75]. The
linear density profile in the external axial potential Vext = mω2

xx
2/2 can be found in
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the local density approximation using1

n(x) =
1

4a

Vext(L)− Vext(x)

�ω⊥

[
Vext(L)− Vext(x)

�ω⊥
+ 2

]
, (2.36)

L =
l2x
l⊥

√
2μ

�ω⊥
, (2.37)

where lx,⊥ =
√

�/mωx,⊥. We can define a cross-over point by equating the chemical
potential Eq. (2.35) to the transverse oscillator strength (μco = �ω⊥), yielding

nl,co =
3

4a
. (2.38)

For 87Rb in the F = 2,mF = 2 state (a = 5.24 nm) the cross-over to 1D is reached
at a linear density nl,co ≈ 150 μm−1.

2.4.4 Excitations in elongated quasi-condensates

This section follows the lines of the review article on low-dimensional trapped gases
by Petrov and coworkers [76] and in particular their treatment of finite temperature
excitations of condensates with fluctuating phase (quasi-condensates) in the 1D
regime, that is relevant to the experiments described in this thesis. The treatment
starts from the 1D case. Petrov et al. [77] showed that a similar treatment holds for
elongated 3D condensates.

In the mean-field regime at T = 0 long range order decays algebraically [28,29].
At finite T , the phase coherence decays exponentially with a characteristic phase
coherence length lφ. In a trap, if lφ exceeds the condensate halflength L, we have
a true condensate. While for lφ < L we have a quasi-condensate with fluctuating
phase. In a quasi-condensate at sufficiently low temperatures so that lφ � lc density
fluctuations are suppressed by the atomic interactions. The appearing phase fluc-
tuations at finite temperature stem from thermal excitations of elementary modes
of oscillation along the axis of the cloud. Bogoliubov [71] derived the excitation
spectrum of a homogeneous weakly interacting Bose gas at zero temperature. His
treatment was generalized for the spatially non-uniform case by de Gennes [78]. The
Bogoliubov-de Gennes equations yield the energies of the elementary excitations of
phase and density of the condensate

ε(k) =
√
E(k)[E(k) + 2μ], (2.39)

where E(k) = �
2k2/2m is the free-particle spectrum. The spectrum Eq. (2.39)

is phonon-like for energies in the order of or smaller than μ. The energies are
ε(k) ≈ cs�k, with the speed of sound cs =

√
μ/m. For larger momenta the spectrum

is particle like with ε(k) ≈ E(k) + μ. At low enough temperature, T � Td, μ, the
assumption that density fluctuations are small is justified. Then the fluctuations of

1In the 2004 article by Gerbier [74] there are a few typographical errors in the corresponding
equations.
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the phase alone follow the same phonon-like Bogoliubov-de Gennes equations [76].
The gas can be viewed as consisting of the sum of a macroscopic wave-function
containing contributions with wave-vectors k � 1/lc, with lc = �/

√
mμ, and a

small component including the contributions with k ∼ 1/lc.
Theory for excitations of quasi-condensates can be extended to include non-zero

temperature in the Bogoliubov-Popov approach [79, 80]. Petrov et al. worked out
the case of a harmonically trapped, phase-fluctuating condensate for 1D [34] and
elongated 3D [77] systems. We repeat some of their results below.

Phase fluctuations originate from thermal excitations of Bogoliubov modes of
oscillation along the condensate axis. The phase coherence length is inversely pro-
portional to the quasi-condensate temperature, therefore lφ can be used as a ther-
mometer for phase fluctuating condensates

lφ =
�

2n1

mkBT
. (2.40)

Below a temperature Tφ the phase coherence extends over the whole harmonically
trapped cloud (lφ = L) and a true condensate is regained

Tφ =
�

2n1

mkBL
. (2.41)

The mean-field approach is not valid anymore at high temperatures or low den-
sities such that lc � lφ. In that case the density fluctuates strongly like in a non-
degenerate gas. It is important to point out here that these strong density fluctu-
ations imply that the usual (perturbative) Bogoliubov approach to the degenerate
gas must break down, since the Popov approximation (expanding the fluctuations
around the average density) can no longer be relied upon. In the next section we will
show that, luckily, for this regime exact solutions for the many-body wavefunction
are known.

2.5 Exact solutions in 1D

This section discusses exactly solvable models for interacting bosons in 1D. Solutions
were found for impenetrable bosons by Girardeau [53] and for bosons with finite
delta-function interaction by Lieb and Liniger [35]. Remarkably, Yang and Yang
found integral equations describing the thermodynamics of the Lieb-Liniger gas [36]
at any finite temperature. Figure 2.1 shows a cartoon of atomic density distributions
in 1D for T = 0 (adapted from Ref. [43]). For increasing values of the interaction
parameter γ, the interatomic separation increases, and the size of the wave-functions
decreases.

2.5.1 Tonks-Girardeau

For a system of impenetrable point-like bosons in 1D the wave-function and ground
state energy were derived by Girardeau [53]. By definition impenetrability means
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Figure 2.1: (a) Cartoon of atomic density distributions for the Lieb-Liniger gas at T = 0 [43]. For

increasing values of the interaction parameter γ the interatomic separation increases and the size of

the wave-functions decreases. Top: 1D quasi-condensate where atomic waves overlap. Middle: for

decreasing density the atomic waves become more localized. Bottom: at very low density the atomic

wave-functions exclude each other similar to ideal fermions, for T = 0 we have a Tonks-Girardeau

gas. (b) Momentum distribution for a Tonks-Girardeau gas of impenetrable bosons at zero temperature

(straight line). The corresponding distribution for an ideal Fermi gas is shown for comparison (dashed

line). Adapted from Ref. [33].

that the wave-functions of two bosons vanishes when the two atoms are at the same
position. Girardeau realized that this is just like the case of ideal fermions, in that
case as a result of the exclusion principle. Consequently the ground-state wave-
function for interacting bosons ψB can be mapped to a system of ideal free spinless
fermions ψF by multiplying the Fermi wave-function by −1 upon particle exchange.
For a ring of length L:

ψB = |ψF | ∝
∏
j>l

| sin[πL−1(xj − xl)]|. (2.42)

This wave-function varies smoothly everywhere except for the position where two
particles meet, where it vanishes and has a cusp. While the density distribution of
these “fermionized” bosons is identical to that of ideal fermions, their momentum
distributions w(k) are distinctly different. An analytic rigorous upper bound for
w(k) was first given by Lenard [81]. Later the long-range and short-range expansions
for w(k) were derived [82, 83]. Following Olshanii [33], we plot w(k) in Fig. 2.1(b).
For comparison the momentum distribution for the ideal Fermi case, with kF =
π (N − 1) /L, is also plotted.
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2.5.2 Lieb-Liniger

Lieb and Liniger [35] found the ground-state wave-function for bosons with repulsive
delta-function interaction of any strength on a one-dimensional ring (a box of length
L with periodic boundary conditions). The Hamiltonian for the Lieb and Liniger
system is

H = − �
2

2m

N∑
j=1

∂2

∂x2
j

+ g1

∑
i>j

δ(xi − xj), g1 > 0. (2.43)

The dimensionless ‘Lieb and Liniger’ parameter γ is then introduced

γ =
mg1

�2n1

, (2.44)

where n1 = N/L. Using the Bethe Ansatz [55] Lieb and Liniger showed that the k’s
in the Ansatz satisfy

(−1)N−1 exp (−ikL) = exp

[
i
∑
k′
θ(k′ − k)

]
, (2.45)

where θ is a phase shift obeying

θ(k) = −2 tan−1 (k/γn1), −π < θ < π. (2.46)

Lieb [54] also analyzed the excitation spectrum of the Lieb-Liniger gas and found
that besides a phonon-like “type I” excitation spectrum, a “type II” branch exist.
While the type I excitations match the Bogoliubov phonon spectrum (Sec. 2.4.4)
that is valid in the weak coupling limit, the type II excitations do not exist in the
Bogoliubov approach. The new branch in the spectrum is associated with “hole-
like” excitations: A hole is an omitted k value and is created when a particle with
ki is taken to kN .

The 1D system shows a peculiar behavior: the system becomes more strongly
interacting as the density decreases. This counter-intuitive effect can be qualitatively
understood through the γ parameter. It can be interpreted as the ratio of the
interaction energy εint = n1g1 to the characteristic kinetic energy of the atoms
εkin ≈ �

2n2
1/2m. Lowering the density, reduces the kinetic energy faster than the

interaction energy, thus for low density (γ � 1) we have a strongly interacting
gas (Tonks-Girardeau), while in the opposite limit for (γ � 1) we have a weakly
interacting gas (1D mean-field).

A nice hybrid theoretical and numerical approach to calculate the excitation
spectrum of the Lieb-Liniger gas was taken by Caux and Calabrese [84]. From
their results for 0.25 < γ < 100 it becomes clear that for zero temperature hole-like
excitations are important only for γ � 1. We shall see in the following that already
at weak coupling (γ � 1) but for finite temperature deviations from the Bogoliubov
treatment become important.
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2.5.3 Yang-Yang

Yang and Yang [36] extended the Lieb-Liniger treatment to non-zero temperatures.
Their method is also known as thermodynamic Bethe Ansatz [37, 38]. Yang and
Yang included the effect of thermal excitations by allowing the existence of a whole
collection of omitted momentum states (holes), with density ρh(k) besides the den-
sity of occupied momentum states ρ(k). Yang and Yang were then able to derive
analytic expressions for the thermodynamics of this gas. Their main result is formed
by the two integral equations

ε(k) = −μ+
�

2k2

2m
− kBTg1

2π

∫ ∞

−∞

dq

(g1m/�2)2 + (k − q)2
ln {1 + exp [−ε(q)/kBT ]},

(2.47)
where ε is defined by

ρh/ρ = exp[ε(k)/kBT ], (2.48)

and

2πf(k) = 1 +
2g1m

�2

∫ ∞

−∞

ρ(q)dq

(g1m/�2)2 + (k − q)2
, (2.49)

for
f(k) = ρ+ ρh. (2.50)

Equation (2.47), where μ is the chemical potential, can be solved for ε by iteration.
Subsequently ρ can be obtained by iterating Eq. (2.49).

Extra information is obtained [59] by differentiating the free energy per particle
FN−1 with respect to γ at constant density and temperature

g(2) =
2m

�2n2
1

[
∂(FN−1(γ, τ))

∂γ

]
n,τ

, (2.51)

where g(2) is the local pair correlation function that expresses the (normalized)
probability to find two particles at the same position. In a mean-field conden-
sate, interactions stabilize the density and g(2) ≈ 1. While ideal bosons experience
“bunching” and have g(2) = 2, the opposite holds for ideal fermions with g(2) = 0
(“anti-bunching”). Fermionized bosons in the TG limit also have g(2) = 0.

Figure 2.2(a) shows the numerical solution of the Yang-Yang equations for 1/γ ∝
nY Y for different values of the dimensionless temperature parameter

t =
2kBT�

2

mg2
1

. (2.52)

We plot the values: t=2000 (red), t=1000 (black), t=500 (blue), (numerical data
obtained by Kheruntsyan [59, 85]). The exact numerical result (solid lines) is com-
pared with the behavior in the mean-field regime (dashed lines) and with the ideal
Bose gas result (dotted lines). The Yang-Yang thermodynamic equations yield a
smooth equation of state nY Y (μ, T ), including the region around μ(x) = 0. This
deviates dramatically from both the ideal-gas description (diverging density as μ
approaches zero from below, cf. Eq. (2.22)) and the quasi-condensate description
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Figure 2.2: (a) Equation of state of the uniform weakly interacting 1D Bose gas for three different

values of the temperature parameter t = 2kBT�
2/mg2

1 : t=2000 (red); t=1000 (black); t=500 (blue).

The exact numerical result (solid lines) is compared with the behavior in the mean-field regime (dashed

lines) and with the ideal Bose gas result (dotted lines). (b) The local correlation g(2) versus μ/kBT

for the same values of t as above. The solid curves are exact numerical results, while the dashed line

indicates the mean-field value and the dotted line the behavior of the ideal Bose gas.

(μ = n1g1; vanishing density as μ approaches zero from above). Hence the exact
solutions are crucial for a correct description of the Bose gas in the region around
μ = 0 as is described in more detail in Ch. 6.

Fig. 2.2(b) shows the local correlation g(2) versus μ/kBT for the same values
of t as above. The solid curves are exact numerical results, while the dashed line
indicates the mean-field value and the dotted line the behavior of the ideal Bose
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gas. The calculated value of the local pair correlation function g(2) varies smoothly
between ≈ 1 and � 2 in the plotted range of μ. This differs from the ideal-gas value
of 2 and the quasi-condensate value of ≈ 1.

2.6 Overview of ultracold Bose gas regimes

2.6.1 Regimes for T = 0
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Figure 2.3: Phase diagram for T = 0, in the plane Nω‖/ω⊥ versus l⊥/a, based on Fig. 1 of Ref. [73].

The dashed line indicates Nω‖/ω⊥ = (ω‖/ω⊥)3/2l⊥/a for ω‖/ω⊥ = 1/400. The red line indicates the

parameter range covered in our experiment.

The transitions between the various regimes for the T = 0 case, that were summa-
rized above, have been studied for a trapped gas by several authors [34, 73]. We
follow here the approach by Menotti and Stringari [73]. These authors describe
atoms trapped in an elongated harmonic trap with ω⊥ � ω‖. The longitudinal
confinement is weak and for high enough atom number N the atomic interaction
energy largely exceeds the axial level splitting (μ � �ω‖) and the local density
approximation can be used.

A schematic phase diagram is plotted in Fig. 2.3. The line Nω‖/ω⊥ = l⊥/a indi-
cates the cross-over from the 3D cigar from the 1D mean-field regime. Using μ = �ω⊥
in Eq. (2.36) it follows that this is equivalent to the criterium nl = 3/4a [74]. The
line Nω‖/ω⊥ = (l⊥/a)−2 indicates the cross-over from 1D mean-field to the Tonks-
Girardeau gas. This demarkation, marked by γ = 1 in the homogeneous case, is
found when the interaction energy equals the kinetic energy: π2

�
2n2

1/2m = g1n1

for the harmonically trapped case, solved in Ref. [73]. The dashed line indicates
the cross-over from the parabolic 1D mean-field regime to the ideal gas or gaus-
sian condensate regime where the axial level splitting is large compared to the
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atomic interaction energy and the LDA can not be used. We draw the dashed
line Nω‖/ω⊥ = (ω‖/ω⊥)3/2l⊥/a for ω‖/ω⊥ = 1/400, the aspect ratio of the trap used
in Chapters 5 and 6. In our experiment we vary the number of atoms in the quasi-
condensate between 103 and 104, while l⊥/a = 36. The covered range is indicated in
red in Fig. 2.3. It is clear that the physics of one-dimensional atomic gases plays an
important role in our experiments. Secondly, for our aspect ratio we do not reach
the TG regime when the atom number is lowered.

2.6.2 Regimes in 1D
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Figure 2.4: Diagram of states for the homogeneous 1D Bose gas in the plane T/Td versus γ =
mg1/�

2n1. The degeneracy temperature in 1D is given by Td = �
2n2

1/2mkB . The area shaded in red

indicates the parameter range covered in our experiment.

The system of delta-function interacting bosons in 1D can be effectively charac-
terized by the combination of the dimensionless coupling parameter γ [Eq. (2.44)]
and the reduced temperature τ = T/Td, with Td the 1D degeneracy temperature
[Eq. (2.23)]. Using the exact values of g(2) [Eq. (2.51)] Kheruntsyan and cowork-
ers [70] have classified various physical regimes for the interacting Bose gas in 1D
at finite temperature. The diagram of states is shown in Fig. 2.4. Above the degen-
eracy temperature two regimes are indicated. For small γ we are in the ‘decoherent
classical’ or non-degenerate ideal Bose gas regime were g(2) ≈ 2. For large γ, strong
interactions result in high temperature fermionization, characterized by g(2) → 0.
Below the degeneracy temperature four regimes are distinguished. For γ � 1 we
have a degenerate Tonks-Girardeau gas with g(2) → 0. For τ � γ � 1 we have
the mean-field regime and the finite temperature correction to the zero-temperature
result for the local correlations is small: g(2) ≈ 1. In this regime quantum fluctu-
ations of the phase dominate over thermal fluctuations. For higher temperatures
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γ � τ � √
γ we have a mean-field quasi-condensate characterized by thermal fluc-

tuations of the phase, interactions stabilize the density so that g(2) � 1. If we
increase the temperature further

√
γ � τ � 1 phase coherence is destroyed and we

enter the decoherent quantum regime with g(2) � 2. The parameter range covered in
the experiments described in this thesis, indicated in red, ranges from the classical
regime via the decoherent quantum regime into the mean-field regime.

2.7 Previous models for T > 0

2.7.1 Semi-ideal Bose gas

In the situation of a three-dimensional harmonically trapped cloud (kBT, μ � �ω)
just below the condensation temperature T/Tc � 1, the number of non-condensed
atoms is large and can not be neglected. In a first approximation [86] we suppose
that condensed and non-condensed fractions can be separated spatially because the
spatial extent of the BEC is much smaller than that of the thermal cloud so the
two parts do not have much spatial overlap. It is further assumed that the BEC
is not influenced by the presence of the thermal atoms and maintains its TF pro-
file [Eq. (2.32) and Eq. (2.33)]. The quantum saturated thermal cloud however is
repelled by the mean-field interaction energy 2gnTF (r) with the much denser con-
densate in the trap center. The factor 2 accounts for collisions between atoms in
different quantum states. To find the density distribution of the thermal atoms for
this case we use Eq. (2.25) with D = 3 that can be written as

nT (r) =
1

Λ3
T

g3/2

[
eβ[μ−Veff(r)]

]
, (2.53)

where we use the effective potential Veff(r)− μ = Vext(r)− μTF + 2gnTF (r).

2.7.2 Self-consistent Hartree-Fock

When dealing with the system as described in the previous section a more refined
approximation can be made by taking into account not only the influence of the
condensate on the thermal atoms but also vice versa. This problem can be solved
numerically in an iterative process and is referred to as a self-consistent Hartree-Fock
(HF) approach [87,88]. The self-consistent potential for the thermal atoms is

Veff(r)− μ = Vext(r) + 2gn0(r) + 2gnT (r)− μ. (2.54)

The condensate profile is affected by the density of the thermal atoms:

n0(r) = max

{
0,
μ− Vext(r)− 2gnT (r)

g

}
. (2.55)

Fixing the total atom number fixes the chemical potential of the thermal fraction
μ = gn0(0) + 2gnT (0). This self-consistent HF approach gives accurate results in
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the 3D case [89] but has been shown to fail in the description of experimentally
obtained profiles when the gas approaches the one-dimensional regime: kBT, μ �
2�ω⊥ [60]. The breakdown of this HF method when approaching the 1D regime
and μ ≈ 0, can be seen as follows: In 1D, since g1/2(z) → ∞ as μ ↑ 0 (Sec. 2.3)
for any peak density n(0), one can always find a self-consistent HF solution, in
the semiclassical approximation for the axial distribution, which has n0 = 0, and
μ < Vext(0). Note also that the local value of the two particle correlation function
g(2) differs significantly from both the values 2 and 1 assumed in this approach for
the thermal atoms and the condensate atoms respectively (Fig. 2.2).

Luttinger liquid

Another mean-field approach, that will not be discussed further here, is employing
the Luttinger liquid (see Haldane [90–93]). It is used mainly for strongly interact-
ing systems and has the same region of validity as Bogoliubov-Popov: lφ � lc. The
Luttinger-liquid approach to one-dimensional Bose gases with delta-function interac-
tion was discussed in detail by Cazalilla [94]. The method has been used successfully
to describe the dynamics of phase fluctuations in mean-field condensates [95,96].

2.8 Evaporative cooling

An important tool in atom cooling that provides the final increase in phase-space
density that ultimately leads to Bose-Einstein condensation is evaporative cooling.
In this process the high-energy tail of the Maxwell-Boltzmann velocity distribu-
tion of the trapped atoms is selectively removed, for example using radio-frequency
(RF) induced spin flips. The remaining atoms collide elastically and re-thermalize.
The energy per particle decreases and the sample is cooled. Theory describing the
evaporative cooling process can be found in [97–100]. We repeat here only the key
equations that can be used to calculate the efficiency of the evaporative cooling
process. We add specific calculations for the case of the Ioffe-Pritchard trap in the
high temperature limit with δ = 5/2 that do not appear in the cited references. A
treatment of the IP trap that is valid in the complete range from the high to the
low temperature limit can be found in Ref. [100].

If the atomic density of trapped alkali atoms is not too high (n < 1020 m−3)
three body collisions (that lead to losses via spin exchange) are rare and for typical
experiments on alkali atoms the trap lifetime is limited by collisions with background
gas. For a trap depth ε the truncation parameter is η = ε/kBT . Evaporative
cooling works most effectively if the truncation parameter η is kept constant. This
can be achieved by ramping down the trap barrier during the cooling process, so
called forced evaporation. The timescale for evaporative cooling is set by the elastic
collision time

1

τel
=
√

2n0vthσ, (2.56)

where σ = 8πa2 is the s-wave collisional cross-section and vth =
√

8kBT/πm the
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Figure 2.5: (a) Minimum value for the ratio of good to bad collisions plotted as a function of the

truncation parameter. Comparison between the 3D parabolic potential (δ = 3/2, solid line) and the

2D linear 1D harmonic potential (δ = 5/2, dashed line). (b) The efficiency parameter of evaporative

cooling γ versus the truncation parameter η for δ = 3/2 (solid lines) and δ = 5/2 (dashed lines). In

each case, three different lines are given for ratio of good to bad collisions R of 5000 (blue), 1000

(black) and 200 (red).

thermal velocity. For efficient evaporative cooling the ratio R of “good” elastic
collisions to “bad” collisions with background gas should exceed a minimal value
R = τloss/τel > Rmin, where τloss is the trap lifetime. If R > Rmin the collision rate
increases with decreasing temperature and the regime of run-away evaporation is
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entered. Run-away evaporation is most easily reached for steep traps where the
density of states decreases rapidly with decreasing temperature as can be seen in
the comparison between the 3D harmonic trap [δ = 3/2, Eq. 2.2] and the steeper
1D harmonic 2D linear trap (δ = 5/2) in Fig. 2.5(a). The minimal value for the
ratio of good to bad collisions is given by

Rmin(δ, η) =
λ(δ, η)

α(δ, η)[δ − 1/2]− 1
, (2.57)

where α is the key parameter of the evaporative cooling process, which expresses
the temperature decrease per particle lost, and λ is the ratio of the evaporation time
to the elastic collision rate. The parameters α and λ can be calculated using the
following expressions.

Used below are the incomplete gamma functions P and R, defined as (see ap-
pendix in Ref. [98])

P (a, η) =
1

Γ(a)

∫ η

0

ta−1e−tdt, (2.58)

R(a, η) =
P (a+ 1, η)

P (a, η)
, (2.59)

where Γ(a) is the Euler gamma function. The average energy of the escaping atoms
is (η + κ)kBT , where the parameter κ for the case of a power-law trap is

κ = 1− P (7/2 + δ, η)

ηP (3/2 + δ, η)− (5/2 + δ)P (5/2 + δ, η)
. (2.60)

This leads to an expression for α for forced evaporative cooling at constant η (see
p. 194 of Ref. [99])

α(δ, η) =
η + κ(δ, η)− [3/2 + γ̃(δ, η)]

3/2 + γ̃(δ, η) + κ(δ, η)[δ − γ̃(δ, η)]
, (2.61)

where the scaling parameter γ̃ [see Ref. [98], Eq. (99)] for a power-law trap is

γ̃ = −3

2
+

(
3

2
+ δ

)
R(3/2 + δ, η). (2.62)

Finally, the parameter λ, expressing the ratio of the evaporation time to the elastic
collision rate is given by

λ(δ, η) =

(
1−

[
3

2
+ δ

]
[1−R(3/2 + δ, η)]α(δ, η)

) √
2 exp(η)

η − (5/2 + δ)R(3/2 + δ, η)
.

(2.63)
Once the condition R > Rmin is fulfilled it is useful to calculate the overall figure

of merit for the effectiveness of the evaporation process given by the parameter
γe,tot, that expresses the relative increase in phase space density with decreasing
atom number

γe,tot =
ln(Φfinal/Φinitial)

ln(Nfinal/Ninitial)
. (2.64)
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This global parameter is maximal when γe = −d(ln Φ)/d(lnN) is optimized at all
times. From Eq. (10) of Ref. [99] we find

γe(δ, η, R) =
α(δ, η)[δ + 3/2]

1 + λ(δ, η)/R
− 1. (2.65)

The calculated values of γe for the cases δ = 3/2 and δ = 5/2 are plotted in
Fig. 2.5(b). In the case δ = 5/2 for R = 1000 the overall maximal efficiency γe = 2,
provided η ≈ 7. This means that a typical gain of 6 orders of magnitude in phase
space density costs 3 orders of magnitude in atom number.
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3.1 Introduction

In this chapter the experimental setup is described. It begins with a general discus-
sion of our design considerations followed by a description of the five main parts of
the setup. The central and most innovative part of the experimental setup is formed
by the microtrap that is treated with some detail.

The concept of the “atom chip” combines the advantages of scale reduction and
reproducibility with the possibility to trap atoms under very strong confinement.
The confining force for atoms is proportional to the gradient of the magnetic field
strength. Figure 3.1 illustrates that chip traps can have very high gradients with a
simple example: the side guide. This tube-like atom trap is created with a chip in
the xy-plane at z = 0, when the field from a current I through a wire along x is
compensated by a homogeneous bias field Bbias along y. A trap occurs at a distance
z0 from the chip surface. The trap position and the gradient of the magnetic field
at that point are given by the Biot-Savart law, and can be written as

z0 =
μ0I

2πBbias

, (3.1)

∂B

∂z
=

μ0I

2πz2
, (3.2)

where μ0 is the magnetic permeability of free space. For a current of 2 A and a bias
field of 40 G, the trap is 100 μm away from the surface where the gradient is 4 kG/cm.
Moreover this gradient grows quadratically with decreasing wire current at constant
bias field. We exploit this feature to trap ultracold atoms at low density in extremely
elongated traps to eventually reach the regime where the transverse atomic motion
is frozen out due to the strong confinement and the low atomic interaction energy:
the gas becomes one-dimensional. This 1D regime requires small atomic interaction
energy that can be achieved by reducing the total number of trapped atoms and
hence the linear density.

This chapter is organized as follows. After a general discussion on the design
criteria in Sec. 3.2, we describe the design and construction of the microtrap in
Sec. 3.3. Thermal properties of the microtrap are discussed in Sec. 3.4. In Sec. 3.5
the layout of our ultra-high vacuum system is given, Sec. 3.6 explains the dispenser

27
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Figure 3.1: Creating a two-dimensional trap with a wire and an external field. Top: wire field, center:

external field, bottom: resulting total field. The left-hand column shows magnetic field lines and the

right-hand column gives the magnitude of the field at y = 0 for a wire current I = 2 A and an external

field Bbias = 40 G. In this example, the trap forms at a distance r0 = 100 μm from the wire axis, and

the gradient at the trap center is |B′(r0)| = 4 kG/cm, assuming an infinitely thin wire (Fig. adapted

from [101])

.

atom source. Sec. 3.7 deals with the design and control of the magnetic field coils
around the vacuum system. An overview of the laser setup is given in Sec. 3.8. In
Sec. 3.9 we give some details on the imaging system including a discussion of the
achieved optical resolution and a signal-to-noise analysis. Section 3.10 covers the
computer system used to control the experiment. Finally, concluding remarks are
given in Sec. 3.11.

3.2 Design considerations

The design of the setup was inspired by two successful experiments on Bose-Einstein
condensation in microelectronic traps performed in the year 2001 in the groups of
Jacob Reichel in Münich and Claus Zimmermann in Tübingen [44, 45] and by the
work of Schmiedmayer and his group at the university of Heidelberg [102]. Especially
the Münich experiment was attractively simple albeit that only small condensates
were obtained. For our design a relatively small number of atoms in the condensate
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(∼ 104) was enough to reach our first aim, the study of one-dimensional condensates.
In this section some of our design choices that have led to the construction of a stable
and productive setup are layed out. For the modelling of the magnetic field we used
the Mathematica software (Wolfram) with the radia add-on that was written at the
European Synchrotron Radiation Facility in Grenoble.1

Single chamber

On a chip, thanks to the strong confinement, BECs can be produced an order of
magnitude faster than with conventional traps, in only one second of evaporative
cooling. The background-pressure-limited lifetime of a BEC at a pressure in the
10−10 mbar range is in the order of 10 s. Efficient loading of a magneto-optical-trap
(MOT) requires a partial pressure of at least 10−9 mbar. Many experimental set-
ups meet both requirements by connecting two vacuum chambers through a small
aperture and maintaining the required pressure imbalance by differential pump-
ing. In that case atoms are magneto-optically cooled at the high-pressure side and
subsequently transferred to the low pressure region through the aperture, as was de-
scribed for example in Kai Dieckmann’s thesis [103]. The atoms can be transferred
in a beam [14, 104–106] or as a cloud using a magnetic transfer scheme [107, 108].
On an atom chip however, ten times faster cooling, allows a ten times higher back-
ground pressure. This takes away the need to load a “BEC”-chamber from a separate
“vapor”-chamber. Instead enough pressure difference can be attained by inducing
a pressure gradient in time. This was done in ref. [109] by loading the MOT from
a pulsed atom source and in ref. [110] using light induced atom desorption. We
load our MOT by pulsing a rubidium dispenser. A few seconds after the end of
the pulse the pressure has dropped sufficiently to reach BEC in the same vacuum
compartment.

Free space versus mirror MOT

We have adopted the mirror-magneto-optical-trap (mirror-MOT) technique that was
introduced by Reichel et al. [111]. The working of the mirror-MOT is identical to
that of the standard 3D MOT [112] the only difference is that the laser beams in
the plane of the MOT coils are reflected off a mirror (see Fig. 3.2). Upon reflection
the circularly polarized light changes handedness thus maintaining the proper hand-
edness with respect to the quadrupole magnetic field vectors. Using this method
limited optical power (≈ 50 mW total) is sufficient to trap and cool enough atoms
close to a surface to eventually reach BEC.

Stainless steel versus glass cell

In cold atom experiments worldwide virtually each lab has its own vacuum system
and magnetic field coil design. The use of a small glass cell, to perform the main
physics experiments in, is popular. It allows a dense packing of magnetic field coils

1download free at www.esrf.eu/Accelerators/Groups/InsertionDevices/Software/Radia
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close to the center of the experiment while sufficient optical access is maintained.
In our case the multitude of electrical feedthroughs and the water feedthrough for
cooling of the chip, required for our microtrap, makes the use of a single glass
cell less straightforward. In the original Münich setup [44] the pumping speed was
limited because the chip mount and current leads formed a bottle neck. Besides good
access for pumping another advantage of a stainless-steel chamber is the easy use
of double-sided AR coating on the windows (difficult for glass cells) that improves
the imaging quality. Thirdly the application of wires in vacuo to produce strong
magnetic-field gradients relaxes the requirements on the proximity of magnetic-field
coils considerably. In our case the final reason to choose a stainless steel chamber was
the availability of a finished nicely crafted vacuum chamber with an octagonal cross-
section (180 mm diameter) that was produced in the Huygens Laboratory, Leiden,
The Netherlands [113]. This chamber gives ample optical access and provides for
the easy connection of many electrical feedthroughs.

A very elegant alternative approach was followed by the group of Jacob Reichel
in a new generation of experimental setups where they have replaced the top cover
of their cell with an already connected microchip [114] combining easy connection,
good optical access and the possibility of cooling the chip without compromising the
pumping speed.

Efficient and reproducible chips enable wider applicability

The development of efficient and reproducible “atom chips” could facilitate the quick
setup of new cold-atom experiments world wide at a reduced cost. In this way more
researchers could do experiments on ultracold atoms: physical systems that are
governed completely by quantum mechanics. Such a development would bring the
world of quantum mechanics closer to our daily experience.2

Advantages of scale reduction

Another advantage of the use of small current-carrying wires to trap atoms is the
dynamical flexibility. It is easy to rapidly switch off 2 A of current in a chip wire
because of the low resistance and low inductance. This is in sharp contrast to the
high voltages needed to push down the hundreds of amperes of current in the large
coils used in conventional BEC machines. The chip wires can be switched rapidly
in about 30 μs limited by the current source bandwidth, contrarily the magnetic
bias fields that are generated by the outside coils have a relatively long switching
time of 1.2 ms limited by the current source voltage. The chip setup allows also to
economize on the lasers because small BEC’s are efficiently produced from modest
initial atom numbers. There is no need for a high power tapered-amplifier diode or
a titanium-sapphire laser. In our setup for example we use only three simple diode
lasers. By keeping the laser setup small we reduce costs but we also reduce the
man hours of maintenance. The complete setup involves only one optical table with

2An example of such an initiative is the on-line atom chip experiment in Germany
(www.physnet.uni-hamburg.de/ilp/sengstock/en/ELearning.php).
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room for both the lasers and the vacuum system with the atom chip, with a total
footprint of only 4 m2.

Formulation of design criteria

In the design process, that involved three successive test traps before reaching the
final microtrap, we have identified the following essential elements:

• The magnetic trap should have a large enough capture volume,

• The trap should provide an adequate mode match with the optically cooled
atom cloud.

• To start evaporative cooling the atomic collision rate should be raised. This
is achieved by increasing the magnetic field gradient. During this compression
the trap should always be deep enough so that the heated atoms are not
squeezed out of the trap.

From these key requirements we can derive typical values for the currents to be used
in the wire layers. The required currents in turn impose constraints on the thermal
properties of the microtrap.

3.3 Microtrap for cold atoms

The core of the experimental setup is formed by the microtrap for cold atoms shown
in Fig. 3.2(a). This trap consists of three layers of current-carrying wires. The
surface layer is formed by a silicon substrate coated with a patterned gold layer. On
this “atom chip” a Z-shaped wire is defined that is usually operated at a current of
2.25 A. Behind the substrate are two layers containing three parallel copper wires
each, in the x and y-direction, respectively. These “miniwires” have a diameter of
300 μm and typically run at 10 A. The design and development of the microtrap
assembly formed by the chip, the miniwires and their mount was the crucial and
most innovative step in the buildup of our experimental setup.

Microtrap elements – mirror-MOT

For the effective implementation of a mirror-MOT the mirror should reflect the
cooling laser beams under a 45◦ angle without birefringence. Metallic coatings are
well suited for this purpose. Our metal of choice is gold because it has a high
reflectivity of ≈ 98% at 780 nm, it does not oxidize like silver or aluminium and
it has a similarly high electrical conductivity necessary for the on-chip wires. The
surface dimensions of the chip (16 × 25 mm) are adjusted to the diameter of the
MOT beams.
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Figure 3.2: (a) Chip mount with orientation of the two layers of miniwires (blue and red), the orientation

of the H-current is indicated in green and the position of the on-chip Z-wire in white. (b) Schematic

of the mirror-magneto-optical-trap. Cooling light beams in the yz−plane reflect on the chip surface

(beams along x are omitted for clarity). The handedness of the circular polarization is indicated with

the red arrows (σ+ and σ− are defined in the propagation direction of the light). The course of the

H-current is indicated in green. The quadrupole coils are shown in black. Black arrows indicate the

current direction.

Microtrap elements – wire-MOT

We start the trapping and cooling process with a mirror-MOT stage where the
quadrupole magnetic field is generated by the MOT coils (see 3.7). In a second
step we replace this quadrupole field by a magnetic field that is generated by the
miniwires, the wire-MOT stage. The proper magnetic field is essentially generated
with a current I on the surface of the mirror that follows a H-shape (green line in
Fig. 3.2) and a homogeneous bias field By along y. The central section of the H in
the x-direction together with By form a side guide along x. We estimate the trap
position and gradient using Eq. (3.1); with a current of 10 A along x [equally divided
over three parallel red wires in Fig. 3.2(a)] and By = 5 G we find the trap minimum
at z0 = 4 mm where the gradient is 12.5 G/cm. The wire sections of the H that run
in the y-direction provide a confining gradient along x. The currents in the “legs”
of the H run in opposite directions. Therefore the magnetic field is zero in the trap
center and the field lines point outwards in the xz-plane for positive z. In a volume
of radius z0 the magnetic field resembles the ideal quadrupole configuration for a
MOT reasonably well. For z0 = 4 mm this volume is comparable to the volume
where the cool light beams intersect.
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Microtrap elements – magnetic trap

After the optical cooling stages we magnetically trap the atoms in a Ioffe-Pritchard
(IP) magnetic field configuration (see Sec. 2.2). For the IP field we invert the
current in one of the miniwires along y [blue wires in Fig. 3.2(a)] thus turning the
quadrupole field into an IP-field configuration. In the subsequent stage we transfer
the atoms to the on-chip Z-wire [white wire in Fig. 3.2(a)] that provides a strongly
confining potential. In this stage the miniwires are only used to give small corrections
to the fields and gradients and eventually to generate the focusing pulse used for
experiments described in Chapters 5 and 6.

3.3.1 Layout and construction

In the description of the wire pattern layout we refer to the frame of reference in
Fig. 3.2, where the center of the chip surface is at the origin. A detailed drawing
including the dimensions of the boron nitride ceramic disc is shown in Fig. 3.3(b).
The 300-μm-diameter Kapton-coated copper miniwires run along x and y in two
layers centered at z = −0.5 mm and z = −0.8 mm respectively. The spacing
between the wires within one layer is 0.65 mm and 3 mm, for the wires along x
and y respectively. These wire layers exactly fit in grooves in the boron-nitride
ceramic disc that is machined with a CNC computer-controlled mill. An exploded
view of the chip mount parts is shown in Fig. 3.3(a). We machine our ceramic disc
from boron-nitride because it is as easily machinable as Macor but has a thermal
conductivity that is 20 times higher.

All parts are bonded with Epo-tek H77 epoxy except for the silicon substrate
that was glued to the boron-nitride ceramic with Epo-tek 377. The miniwires are
electrically connected using standard vacuum-compatible sub-D-type gold plated
connector pins. We strip the Kapton from the end of the miniwire and press it,
along with a piece of bare copper, into the male pin. The resistance of the miniwires
(including the connection to the male pins) is 10 mΩ. With a current of 10 A
typically 1 W per wire is dissipated over the whole length of the wire resulting
in negligible heating. At a current of 20 A the wire sections that are suspended
in free space between the connector pins and the ceramic disc start to heat up
moderately. All copper elements used in the microtrap assembly are made of oxygen-
free high-conductance (OFHC) copper. The copper heat sink is connected with four
bolts (M3) to the end cap of a stainless-steel (type 316L) rod with an outer (inner)
diameter of 16 mm (8 mm). This rod is welded to a CF40 flange for insertion
into the vacuum system . A polyvinyl chloride (PVC) tube of 6 mm diameter runs
coaxially inside the stainless-steel rod. Cooling water enters the system through the
inner (PVC) tube. Water flows out of the tube towards the stainless-steel to copper
interface, where it removes heat from the microtrap assembly, before flowing back
on the outside of the PVC tube. We typically run 0.1 l/min of tap water through
the system.

The gold-coated silicon substrate or “atom chip” was produced using the facilities
of the Amsterdam nanoCenter (located at AMOLF, the FOM Institute for Atomic
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(a) (b)

Figure 3.3: (a) Exploded view of chip mount. (1) silicon chip with gold layer; (2) miniwires; (3)

connector pins (male); (4) Boron-Nitride ceramic element; (5) female connector pin; (6) copper heat

sink; (7) water-cooled stainless steel rod. (b) Dimensions of boron-nitride ceramic disc. The exact

position of the miniwires and their numbering is indicated. All sizes are in mm.

part description supplier
electrical feedthrough Sub-D 15 pin Allectra
D-sub connector pins (fe)male gold plated Allectra
Kapton insulated wires 1mm diameter Allectra
Kapton insulated wires 0.3mm diameter Allectra
boron-nitride ceramic high purity grade Saint Gobain
UHV compatible epoxy low outgassing Epo-tek H77/377

Table 3.1: Parts used in the microtrap assembly and their supplier.

and Molecular Physics). The production will be described in detail in the forth-
coming thesis by J.J.P. van Es [115]. Here we describe the production process only
briefly. Furthermore the treatment of the wire layout is restricted to the 125-μm-
broad Z-wire that was used for all experiments described in this thesis. A few of the
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eight other wires present on the chip were employed during the work described here.
Especially one neighboring wire was used as an antenna to perform radio-frequency
evaporative cooling. A 300-μm-thick high-purity silicon substrate is covered with
two layers of different types of photo-resist resulting in a total layer thickness of
∼ 2 μm. The resist is exposed to UV-light through an optically patterned mask
(produced at MESA+, University of Twente, The Netherlands). Developing the
double resist layer results in a resist pattern that has an undercut. A very smooth
1.8-μm thick gold layer is deposited onto the substrate using vapor deposition. A
lift-off procedure, that is facilitated by the undercut in the resist, finally shows the
wires that are defined by ≥ 5-μm-wide gaps in the gold layer. We use a Z-shaped
wire because it is the most simple way to generate a IP field configuration with a
single wire and a bias field [116]. In addition, such a Z trap can be easily compressed
by increasing the bias field By. If we compress in this way, the trap is automatically
deep enough and the heated atoms are not squeezed out. In our first chip design we
incorporated only very elongated traps made of narrow wires, as a result the radial
compression was too high and the axial trap depth too low to achieve high enough
atom number and density to reach BEC. The Z-wire height is fixed at 1.8 μm by
the chip production process. In choosing the width w and length d of the central
section of the Z-wire we have to make a compromise between on the one hand high
attainable trap frequencies (small w) and a large trapping volume (large d and large
I) while ensuring on the other hand to keep the ohmic heating within bounds (small
d, small I, large w). Our resulting Z-wire is shown in Fig. 3.4; it has a 3-mm-long
125-μm-wide central section with leads that fan out, thus limiting the total resis-
tance to 0.7 Ω. This low resistance allows us to run a relatively high current of
2.25 A through the wire without overheating the chip thus ensuring a large enough
trap volume.3 At this current and with a 40-G bias field the trap minimum sits at
z0 = 90 μm where the gradient of the magnetic field is 3.7 kG/cm. An excellent
starting point for evaporative cooling.

Assembly

In the assembly process special care is taken to create optimal epoxy adhesion lay-
ers. The two epoxy components were carefully weighted on a precision balance and
mixed. We heat the mix to ≈ 40◦C to decrease the viscosity. This mixture is de-
gassed in a desiccator for one minute. Keeping the epoxy for longer in vacuo harms
the mixture because essential chemical components get extracted. The epoxy was
cured in air at 150◦C for 1 hour. During the warm up trajectory the epoxy becomes
very fluid and tends to creep onto the mirror surface. To prevent this from happen-
ing the chip edges were designed to extend 1 mm over the supporting boron-nitride
layer. In Fig. 3.5 we show some pictures taken during the construction process of
the microtrap.4 The assembly process is performed in several curing stages. In

3An order of magnitude higher current density was reached with a total current of 1 A in a
5-μm-wide chipwire: 1011A/m2.

4Large part of the chip mount production was performed by the fine-mechanical engineer
W. van Aartsen at the University of Amsterdam.
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Figure 3.4: Layout of the chipwires, dimensions of the chip are 25× 16 mm2.

the first curing stage the ceramic disc is glued onto the copper heat sink and the
connector pins for the chip wires are glued in place. In the subsequent curing stage
the miniwires and their connector pins are glued into the groves in the ceramic disc.
After removing the excess epoxy with a mill and careful cleaning we place a drop
of Epo-tek 377 in the middle of the ceramic disc and glue the microchip on it in
the last curing stage. We press the chip in its exact position with a special mold
and a weight that has only 3 needle-like contact points with the chip to do minimal
damage to the very soft gold layer. The alignment error of the on-chip Z-wire with
respect to the miniwires achieved in this way was smaller than 50 μm. The eight on-
chip wires are connected to the contact pins with 20 μm-diameter aluminium wires
with a wire bonding technique.5 Each contact pad was bonded with 10 wires except
for the Z-wire where we have used 14 wire bonds. The microtrap wires are then
connected to a set of sub-D-type vacuum feedthroughs. The maximum bake-out
temperature for the chip mount in the vacuum system is limited to 180 ◦C by the
Kapton around the copper wires and the used epoxy. After bake out, the chip mount
was compatible with ultra high vacuum conditions as expected; the experiment is
operated at a pressure of 10−10 mbar.

5Wire bonding was performed by J. Rövekamp at the National institute for subatomic physics
(NIKHEF) in Amsterdam.
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Figure 3.5: Snapshots of the construction process of the microtrap. Top row (from left to right):

gluing the miniwires into the grooves in the boron-nitride ceramic. Miniwires are pressed in place

for a curing stage. Microtrap assembly with another pressing mold just before the placement of the

microchip. Lower row (from left to right) removing the weight that pressed the chip in place while

curing. Resulting chip mount with all eight chipwires wire-bonded to their connector pins. View of the

microchip assembly after complete wiring to the vacuum feedthroughs.

3.4 Thermal properties of the microtrap

For the design of the microtrap assembly an analysis of the thermal properties
was performed. We measure a steady-state total thermal resistance of 10 K/W
when we send a current through the on-chip Z-wire and cool with a water flow of
0.1 l/min. Measurements of the steady-state thermal resistance of the mount and
of the heating as a function of time were reproduced by a Finite Element Method
(FEM) simulation and were compared to an analytic study of the heat flow through
the chip mount [117]. In Sec. 3.4.1 we use the heat equation to get an analytic handle
on the FEM simulation results that are presented and discussed in Sec. 3.4.2.



38 Experimental Setup

3.4.1 Thermal conduction – analytic approach

Heat flow in a homogeneous medium, characterized by its specific heat c, density ρ
and thermal conductivity σ, is described by the heat equation

∂T

∂t
=

c

ρσ
∇2T. (3.3)

We look for solutions to this partial differential equation for a model system that
represents the microtrap assembly. Figure 3.6 illustrates the dimensions used in
describing the finite system of length l. The area S is equal to that of a heat
source, in our case a gold layer of width w and length d of which the thickness
h determines the resistance. In a system that is symmetric around an axis (z)
the heat equation can be solved using Fourier series [118]. From the Fourier series
we can obtain estimations of the thermal behavior in two limiting cases where the
heat flow is approximately symmetric around z: (i) close to the wire in the regime
(l − z) < w � d; (ii) for large distances (l − z) � d. We write the solution to the
heat equation in one dimension. At position z = l, a constant power P is dissipated,
while at z = 0 the temperature is kept constant

δT (z, t) =
P

σS
z +

∞∑
n=1

An sin knze
−γnt, (3.4)

γn =
σ

ρc
k2

n, kn =
(2n− 1)π

2l
. (3.5)

Here An are the Fourier coefficients and kn the wavevectors. The first term in
Eq. (3.4) gives the stationary solution for t → ∞, while the temporal evolution is
expressed through the relation between the relaxation constant γn and the wavevec-
tor kn. From the relation Eq. (3.5) we see that the relaxation time γ−1

n increases
with the square of the wavelength 2π/kn of the contributing Fourier component.
Equation (3.4) gives access to comprehensive estimates for the stationary and dy-
namical thermal properties of our chip mount. These estimates can be used to gain
insight in the more realistic FEM analysis.

(i): At small distances, close to the gold-silicon interface [(l − z) < w � d], we
have the simple case of one-dimensional flow and the stationary term in Eq. (3.4)
yields for the thermal resistance Rt = Δz/σS in a layer of thickness Δz. Let us
assume that this homogeneous heat flow approximation holds for depths up to w/2.
The thermal resistance of such a silicon layer is then 1 K/W with w = 125 μm.
An estimate for the time constant for the heating of this layer can be found from
Eq. (3.5). The Fourier component with the longest relaxation time γ−1(k) corre-
sponds to k = π/w and by inserting the values for silicon (Table 3.2) we find a
relaxation time of ∼20 μs. Thus, this thin silicon layer heats op on a timescale
much faster than the timescale of the experiment and the steady-state value forms
an inevitable lower bound on the thermal resistance if we use silicon as a substrate.
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l

Figure 3.6: Schematic drawing (not to scale) of the chip mount indicating the layer structure and the

dimensions used for the thermal analysis. Some properties of the layers are listed in Table 3.2. The

dimensions can be found in Table 3.3.

Fig. material heat conductivity specific heat density
3.6 σ [W/Km] c [J/kgK] ρ [kg/m3]
(1) gold 300 132 19.3·103

(2) silicon 148 710 2330
(3) Epo-tek 377 0.2 1.0·103 1175
(4) Boron Nitride 27 1468 1900
(5) Epo-tek H77 0.66 1.0·103 2.5 · 103

(6) copper 400 385 8920

Table 3.2: some physical properties of the materials used for the fabrication of the microtrap.

(ii): In the limit of distances large compared to the radial dimensions [(l− z) � d])
we look at the heating of the total mount, also an approximately one-dimensional
problem. An estimate for the heating time constant is found again from Eq. (3.5).
The largest part of the mount is formed by the copper heat-sink of length 40 mm.
We insert the values for copper (Table 3.2) and find a relaxation time of 6 seconds.

For intermediate distances w � (l− z) � d the heat flow problem has to be treated
in two dimensions. At this distance range (and within the silicon) the system can
be approximated by a line-like heat source of infinite length on a silicon half-space
substrate. The temperature increase at the gold silicon interface as a function of
time is then given by the incomplete gamma function [119]

δT (t) =
hwρej

2

2πσ
Γ

(
0,
cρw2

4π2σt

)
, (3.6)
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where j is the current density, ρe is the electrical resistivity, and h is the wire
thickness. This function is plotted in Fig. 3.7(b).

3.4.2 Thermal conduction – Finite Element Method

For a more detailed three-dimensional study of the thermal properties of our chip
mount design a finite element method (FEM) simulation was performed using the
MSC-Marc software package [117]. The chip mount was modelled with 2500 ele-
ments where the smallest elements near the heat source have a size of 2 μm. The
chipwire was simulated by imposing an uniform heat load at the wire surface area
of 125 × 3000 μm2. The modelled layers from top to bottom and their respective
thickness are listed in table 3.3. A three-dimensional image of a quarter section of
the modelled mount with the equilibrium temperature distribution for 1 W heat
load is shown in Fig. 3.7(a). The epoxy layers with their low thermal conductance
form a distinct barrier for the heat flow to the next layer. The heating process after
the heat load is turned on is also calculated dynamically. The temperature rise at
three positions on the symmetry axis is shown in Fig. 3.7(b). The equilibrium values
for the thermal resistance of the modelled layers at the symmetry axis are listed in
table 3.3. Two values for the thickness of the Epo-tek 377 layer were simulated
because this thickness is not exactly known experimentally. The measured value for
the total thermal resistance is 9.9±0.1 K/W. The dynamic FEM results [Fig. 3.7(b)]
show that in the first 6 ms (inset) the temperature at the silicon-gold interface is
already at half its final value, and that the realistic heating exceeds that of the an-
alytic expression for a semi-infinite silicon slab of Eq. (3.6) already within the first
millisecond (as expected from the Fourier analysis). On the long timescale of 6 s
we see that only the copper is still getting warmer (in agreement with the Fourier
analysis) but that the total equilibrium value is approached already to within 3%.
This dynamical behavior was found to be in qualitative agreement with measure-
ments performed on a neighboring chipwire with a smaller width of 10 μm for times
between 10−4 s and 10 s. What is the relevant process for our experimental situa-
tion? One experimental cycle takes a constant 10 s or 20 s and is repeated typically
more than 20 times. This cycling together with the constant flow of cooling water
through the chip mount will guarantee a constant long-term temperature stability
of the microtrap. The current pulses through the chipwire take ∼1 s or longer by
which time the steady-state situation is almost reached. We conclude that for our
purposes the value of the steady-state thermal resistance is the relevant quantity that
has to be minimized in our design. The epoxy layer that bonds the silicon sub-
strate to the boron-nitride ceramic layer forms the largest contribution to the total
equilibrium thermal resistance (see table 3.3). Therefore this epoxy layer was the
focus of our attempts to improve the total thermal conductance of the mount. Our
favorite epoxy that we use in other parts of the mount (Epo-tek H77) is filled with
ceramic grains to increase the thermal conductivity. These grains with a diameter of
≈ 20 μm make it impossible to create thin layers. We therefore employed the same
type of epoxy with proven low outgassing rate but without the filler (Epo-tek 377) to
bond the silicon layer to the boron-nitride ceramic. We have tested Epo-tek 377 by
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Figure 3.7: (a) Finite element method simulation of thermal properties of the chip mount. Shown here

is a quarter section of the mount with the equilibrium temperature distribution for a heat load of 1 W

generated at the gold wire location. The modelled layers from top to bottom are silicon, Epotek 377

(20 μm), boron-nitride, Epotek H77 and copper. The epoxy layers with their low thermal conductance

clearly form a barrier for the heat flow to the next layer. (b) Dynamic thermal results of the finite-

element-method simulation. Shown here is the temperature increase in the first 6 s after a heat load

of 1 W at the gold wire location is turned on for three positions on the symmetry axis: silicon-gold

interface (black straight line), boron-nitride-Epotek 377 interface (red dashed line) and copper-Epotek

H77 interface (green dotted line). The inset shows a zoom of the first 6 ms. Here the curve for the

incomplete gamma function, Eq. (3.6), that models an infinite silicon layer is shown for comparison

(blue dash-dotted line). This comparison shows that already in the first millisecond the heat flow has

encountered the first epoxy layer and the heating is faster than for the case of the semi-infinite silicon

slab.

bonding microscope slides and studying the layer homogeneity and thickness under
an optical microscope. Spreading the epoxy (prepared as described in Sec. 3.3.1)
over one of the surfaces followed by curing of the bond under pressure resulted in
the inclusion of air bubbles in the epoxy layer. An almost perfectly homogeneous
filling was obtained when a drop of epoxy was deposited in the middle of one of
the parts before putting the parts together under pressure. The “smearing” method
resulted in a layer thickness of 25 μm. The “drop” method resulted in thin layers of
12±3 μm and was used for the fabrication. The layer thickness achieved in the final
chip mount fabrication could not be measured. We assume that the Epo-tek 377
layer is thicker than the test results because the (mechanically milled) boron-nitride
surface is less smooth than that of the microscope test slides. We had to apply more
epoxy per bonded area than was used for the tests. We estimate the layer thickness
between 20 μm and 80 μm. These thicknesses were used in the FEM simulation re-
sults. Within the simulated range the FEM thermal resistance agrees quantitatively
with the measured value. The accuracy of the measurement and simulation of the
thermal conductance do not allow to establish the thickness of the first epoxy layer
with good accuracy. The important contribution to the total thermal resistance
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layer thickness R thermal thickness R thermal R thermal
measured

[μm] [K/W] [μm] [K/W] [K/W]
silicon 300 1.6 300 1.5
Epo-tek 377 20 4.0 80 7.3
boron-nitride 1000 0.9 1000 0.4
Epo-tek H77 80 1.6 80 1.1
copper 40 103 0.4 40 103 0.4
total 41 103 8.5 41 103 10.7 9.9± 0.1

Table 3.3: Thermal resistance of constituting chip mount layers from FEM simulation compared to

the experimentally measured value. Simulations were performed for 20 μm and 80 μm thick Epo-tek

377 layers. The experimentally measured value is shown in the last column.

however suggests that we can still improve the performance, for example by finding
an epoxy that is a better thermal conductor or finding a way to make thinner layers.

3.5 Vacuum system

Our vacuum setup is shown in Fig. 3.8 [113]. It is built up around a science chamber
with an octagonal cross section (1). The octagon contains both the microtrap (8) and
dispenser atom sources (9). Ultra high vacuum (UHV) conditions are maintained
using the combination of an ion getter pump (IGP) (6) and a titanium sublimation
pump (TSP) (5). Both are located in the pump section that can be separated
from the science chamber with a gate valve (3). The pressure can be monitored
with a Bayard-Alpert type ionization gauge (7). The microtrap is connected with
a custom-made 4+1-way cross (10) that is pumped with an additional small ion-
getter pump (11). The science chamber and the pump section can be separately
evacuated using a turbo molecular pump through valves (2) and (4) respectively. A
100-W halogen light bulb is positioned in the science chamber to aid the bake out.
All parts are made of the commonly used stainless steel type (304) except for the
science chamber, the 4+1-way cross and the chip mount where we have used the less
magnetic stainless steel type (316L).

Seven glass windows give optical access to our vacuum chamber. Five CF40
windows, with a double sided AR coating, are centered at x = 0 in the yz-plane
A sixth CF40 window is centered at the x-axis and is placed at the backside of
the vacuum vessel. The CF100 window that seals off the front side of the octagon
is uncoated. The conductance from the science chamber to the 5-way cross at the
center of the pump section is about 30 l/s justifying the choice of an ion getter pump
with a pumping speed of 40 l/s (Physical Electronics 2082040, controller: Perkin
and Elmer Digitel 500). The addition of a Titanium sublimation pump (Varian 916-
0061, controller: Varian 929-0023) increases the pumping speed for reactive elements
but does not pump noble gases. The pressure is monitored with a Bayard-Alpert
type ionization gauge (Varian UHV-24p, controller: Varian). We can close the gate
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Figure 3.8: Vacuum Setup: (1) science chamber, (2) and (4) venting valves, (3) gate valve, (5) Ti

sublimation pump, (6) ion getter pump 40 l/s, (7) ion gauge, (8) microtrap, (9) dispenser atom source,

(10) 4+1-way cross, (11) ion getter pump 2 l/s. The scale of the figure is indicated using the size of a

central flange.
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valve (VAT 10836-CE01) to preserve vacuum in the pump section while opening the
science chamber to replace the chip mount or the atom dispensers. Both sections
can be evacuated with a turbo pump through all-metal valves (Varian). We pump
the 4+1-way cross with the chip mount and its electrical feedthroughs with an extra
2 l/s ion getter pump (Varian 919-0520, controller: Varian minivac) to be sure that
this remote piece does not act as a virtual leak.

We reach a vacuum pressure in the 10−11 mbar using the following procedure.6

We clean all vacuum parts in an ultrasonic, bath first with acetone and then with
ethanol. Secondly we use materials with low outgassing rates in the the microtrap
design (see Sec. 3.3). After assembly we perform a vacuum bake out at a temperature
of 180 ◦C limited by the Kapton insulation of the minitrap wires and the two types of
UHV compatible Epoxy (Epotek H77 and 377) used in the minitrap. The octagonal
chamber was opened several times to exchange the minitrap and the dispensers while
maintaining UHV in the pump part by closing the gate valve. We typically bake
during seven days while pumping with a 63 l/s turbo-molecular pump (Pfeiffer).
We then combine the turbo with IGP pumps. Subsequently we valve off the turbo
pump and let the system cool down. We then start the TSP and let it fire during
one minute at 47 A each 32 hours. This procedure leads to a pressure below the
sensitivity limit of the ion gauge, this indicates a pressure of ≈ 10−11 mbar.

3.6 Dispenser pulsed atom source

We use a non-evaporable getter as a source for rubidium atoms. These so-called
dispensers are commercially available (SAES Getters) and are widely used in cold-
atom experiments [109]. The dispensers used in our experiment are centimeter-
sized stainless-steel containers filled with rubidium chromate and a reducing agent.
Rubidium atoms are released when the reduction reaction is initiated upon heating
the container above a threshold temperature (600 ◦C for cesium [120]). We heat the
dispenser resistively by applying a current pulse of 11-20 A during 2-4 s.7 Heating
and cooling down can be achieved in this way within 5 s thus altering the gas pressure
on the same timescale. The dispensers used in our experiment have an active length
of 12 mm and contain ∼ 4.5 mg of Rb. We found only one study in the literature
detailing on the flux from alkali dispensers [120]. Succi and coworkers quote a cesium
flux at 5 A dispenser current of 10 mg/min. If this flux can be compared to the Rb
case (not specified anywhere) the dispenser would be empty after 450 minutes of
continuous operation. Our dispensers were used extensively for about one year and
were not empty at the time of replacement. We have mounted our dispensers close
to the atom chip on a thick copper high-power vacuum feedthrough (MPF AO756-
1-CF, 4-pin power feedthrough copper conductors 23A; 1250V). The assembly is
shown in Fig. 3.9. The 6.4-mm-diameter copper rods allow the essential rapid cool

6N.B. all pressure readings are at the position of the ionisation gauge unless explicitly stated
otherwise.

7The exact pulse shape and duration depend on details of the experiment like the exact cycle
time.
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Figure 3.9: Two dispenser atom sources on CF-40 UHV feedthroughs shown with their orientation

with respect to the microtrap. The size of the chip is 25 × 16 mm2. Note that the orientation of the

dispensers was changed prior to the experiments of Ch. 4-6 (see text for details).

down of the dispenser after the end of the current pulse. The opening slit of the
dispenser is placed close to the chip but the direct line of sight to the center of
the MOT is blocked by the rim of the microtrap assembly to prevent a harmful
stream of hot atoms from passing through the cold cloud. A bare copper wire runs
parallel to the dispenser with counter-propagating current to minimize the generated
magnetic field at the position of the MOT. In our setup that was operated in the
years 2006/2007 we have pointed the opening slit of the dispensers in the opposite
direction facing away from the MOT. By mounting the dispensers in this way we
avoid a possible coating of the chip mount with Rb. In initial experiments we had
noticed that Rb atoms that had stuck to the microtrap assembly would desorb from
the microtrap during the magnetic trapping stage at the moment the assembly heats
up. These desorbed Rb atoms had a detrimental effect on the magnetic trapping
lifetime. Changing the direction of the rubidium atom beam emerging from the
dispenser had no effect on the number of atoms that we could trap in the MOT.
The problem of the decreased trap lifetime due to desorbed rubidium was completely
solved in the most recent setup where we (i) directed the Rb beam away from the
chip; (ii) reduced ohmic heating by reducing the chipwire resistance and improving
the thermal conduction of the chip mount and (iii) heated the chip mount to 40◦C
at moments that the experiment was not running to clean the chip mount from
possible Rb contamination. This heating is done by circulating warm water through
the cooling water circuit (circulating bath Tamson TC6B).
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Figure 3.10: Magnetic field coils: (1) compensation coils, (2) vacuum chamber, (3) MOT coils, (4)

bias coils. The outer diameter of the six outside coils is 200 mm.

Light-induced atom desorption

To change the pressure even more rapidly one can use light-induced atom desorption
(LIAD) in addition to the dispensers [110, 121]. For LIAD a strong halogen light
bulb or a LED that emits in the near UV is switched on during the MOT loading
stage to desorb atoms from the vacuum system surface [121]. The efficiency of
this method is determined by the ratio of the illuminated surface area to the total
vacuum system area. This ratio can be made optimal for glass vacuum cells more
easily than for stainless steel chambers. We have performed promising preliminary
studies using a light emitting diode array with diodes that emit 700 mW of blue
light with a central wavelength of 455 nm (Luxeon V Star royal blue), illuminating
the inside of the science chamber through the big CF100 window (Fig. 3.8). Until
the time of writing we had not enough reason however to change the current working
setup based on pulsed dispensers.

3.7 Magnetic field coils

Figure 3.10 displays the magnetic field coil configuration around the vacuum cham-
ber. These coils are used, together with the microtrap wires, for magneto-optical
and magnetic trapping, and manipulation of cold atom samples. All coils are com-
pactly wound with copper wire of rectangular cross-section: 0.8×1.4 mm2 (Romal).
The wire coating is specified for temperatures up to 200 ◦C. In this section we briefly
describe the characteristics of the miniwires and the magnetic-field coils
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• microtrap wires: A total of six copper miniwires (the layout of these is de-
scribed in Sec. 3.3.1 and Fig. 3.3) with a resistance of 0.1 Ω inside the vacuum
provide both magnetic fields of 1 G/A and gradients 5 G cm−1A−1 at a dis-
tance of 2 mm. The six wires are operated at a current of 10 A using three
bipolar power supplies (Kepco BOP 20-10) and one unipolar version (Kepco
ATE 6-10) all with a bandwidth of around 16 kHz. These very versatile mini-
wires serve many purposes and are used for example for the MOT field, to
generate an IP type magnetic trap and for the atom-focusing experiments.
The on-chip Z-wire with R = 0.7 Ω is operated at I ≤ 2.25 A using a Kepco
ATE 15-3 power supply.

• compensation coils: Six coils (1) are added to generate a homogeneous field
and a gradient in arbitrary direction, and can be used to compensate the fields
from the microtrap wires in any direction. The six compensation coils have
128 windings each. The coils of radius R = 100 mm are placed at a distance
of 1.8R from the center. This is larger than the optimal distance of R/2 where
the B-field curvature is zero, the so-called Helmholz configuration. The B-field
along the axis in the trap center has a magnitude of 1.84 G/A per coil set and
a curvature of B′′ = 0.04 G/cm2. Each coil has a resistance of 1.5 Ω and a
self-inductance of 6 mH. The compensation coils are multi purpose. They are
used for example to cancel the earth magnetic field, to steer the magnetic field
minimum and to add to the bias field in the highly compressed last stage of
the BEC production. We run up to 11 A through each coil in a pulsed fashion.
Each pair of coils for a specific direction is driven by a single power supply. We
use bipolar linear regulated current amplifiers (Kepco BOP 36V, 12A) with a
bandwidth of 10 kHz. The switching time for the compensation coils is limited
to 2.2 ms by the coil inductance.

• MOT coils: A set of gradient coils (3) is used to generate the quadrupole
magnetic field for magneto optical trapping. This coil set was constructed
together with the vacuum chamber in the Huygens laboratory in Leiden [113].
For an optimal gradient, coils of diameter R should be placed at a distance
R/2 from the center. In our case the distance is 2R, a compromise between
coil efficiency and available space. The coils fit exactly around a CF40 flange
and have an outer diameter of 130 mm. The 624 turns per coil are wound
on a hollow water-cooled w-shaped profile. Each coil has a resistance of 1 Ω
and a self-inductance of 24 mH. Each can carry 10 A of current when cooled
with water at a flow rate of 5 ml/s. The resulting field gradient on the axis
in the center of the trap is about 2.3 G cm−1A−1. We drive the current with
one switched-mode power supply per coil (Delta SM 35-45). The current is
shut-off in 0.5 ms using power MOSFETS (Thomson STE53NA50 500V; 53A).

• bias coils: An additional pair of coils (4) strengthens the homogeneous field
in the y-direction that forms a waveguide together with the miniwires and
chipwires. This is used in the last stage of the BEC production where we
apply a magnetic field of 40 G in the y-direction. These bias coils with 100
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square windings (130 mm sides) each, have a resistance of 0.7 Ω, and a self-
inductance of 2 mH, and switch in 1.2 ms. The magnetic field in the center is
1.23 G/A. We use a 20 V, 20 A power supply for each coil (Kepco BOP). The
bias coils are water cooled and sustain 20 A if pulsed with a 50% duty cycle.

3.8 Lasers

We use only three simple diode lasers: a grating stabilized master laser for cooling
and probing at 780 nm, a diode laser locked by injection to the master laser and
a repumper grating stabilized diode laser at 795 nm. A modular buildup of the
laser setup makes it possible to move or reconfigure separate parts. The master
and amplifier lasers are placed together on a 75× 90 cm2 breadboard. A schematic
drawing is shown in Fig. 3.12. The repumper assembly, not drawn here, fits on
a 60 × 60 cm2 breadboard and consists simply of a spectroscopy setup, electro-
optical and mechanical switches and fiber couplers. All breadboards are placed in
black cardboard boxes to prevent scattered light from reaching the main vacuum
chamber. On the inside of the boxes egg-box-shaped foam damps acoustic noise.
Sheets of sorbothane between the optical table and the breadboards provide for
extra mechanical damping.

Master laser

The master laser is a commercial (Toptica DL100) external-grating-feedback diode
laser that operates near the 87Rb D2 line (780 nm) and has 90 mW output power.
Half of the available light is frequency-shifted and amplified by injection-seeding a
second diode laser for cooling and probing. The other half is frequency-shifted and
used for optical pumping.

FM lock

The master laser is frequency stabilized on the cross-over (co) line of the Fg = 2 →
Fe = 1 and the Fg = 2 → Fe = 3 transitions as indicated in Fig. 3.11. This cross-over
line is 212 MHz red-detuned with respect to the Fg = 2 → Fe = 3 cooling transi-
tion. We perform saturated absorption spectroscopy in a 10 cm-long 1”-diameter
cylindrical room-temperature Rb vapor cell. The spectroscopy beams are 10-times
expanded to a diameter of 20 mm and effectively probe the whole cell. To lock
our laser we use a frequency-modulation (FM) scheme [123]. We create frequency
sidebands on the light signal with an Electro-Optic phase modulator (EOM)[Nova
Phase EO-PM-R-020-C1]. The EOM’s electrical driving circuit is made resonant
with the 20 MHz driving signal obtained from a “Pound Drever Driver” (Toptica
PDD110). The low-voltage sine wave (2 V peak-to-peak) yields 4% modulation
depth of the laser intensity. Subsequently the spectroscopy signal is recorded on a
fast photo diode (PD in Fig. 3.12, Thorlabs DET110) and fed in the Pound Drever
Driver where it is phase-shifted and mixed with the 20 MHz oscillator to obtain
a dispersive lock signal. The lock signal finally enters a PID controller (Toptica
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Figure 3.11: Energy level diagram for 87Rb showing the relevant laser frequencies [122]: (1) probe,

(2) master laser lock point, (3) optical pump, (4) MOT/molasses cooling, (5) repump.

PID110) that stabilizes the laser frequency on two channels: (i) fast feedback is
achieved by direct modulation of the laser current; (ii) the external cavity grating
angle is regulated with a Piezo-electric crystal to compensate for long-term drifts.
We have abandoned the cheaper option of generating sidebands by direct modula-
tion of the laser diode current because the sidebands, however small, end up in the
light needed for the MOT. The presence of the sidebands appeared to be detrimental
in the compressed MOT optical cooling stage probably because the red sidebands
give rise to scattering and therefore heating.

Repumper

A second grating-stabilized diode laser (Toptica DL100) is locked to the Fg = 1 →
Fe = 2 transition of the 87Rb D1 line at 795 nm. This “repumper” light serves in
the optical cooling process to pump atoms that have fallen in the dark hyperfine
ground-state back to the Fg = 2 for further cooling. We again use an FM lock.
In this case we directly modulate the laser current via a bias-T. This solution is
cheaper than the use of an EOM. As mentioned above the disadvantage is that the
frequency sidebands end up in the light used for the main experiment. The presence
of the sidebands is not critical for the repumping process however.
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Figure 3.12: Laser setup of the master laser with injection lock of a diode laser that acts as an

amplifier. See text for a description of the various elements.

Frequency shifter and amplifier

Half of the laser light from the master laser is frequency shifted in a double-pass
Acousto Optic Modulator (AOM) (Isomet 1205C-02) setup. The frequency of the
laser light can thus be tuned between +1Γ and−13Γ with respect to the cooling tran-
sition where Γ/(2π) = 6 MHz is the natural linewidth. Two mW of frequency-shifted
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light is amplified by injection-seeding a 120 mW diode (Sharp GH0781JA2C).8 The
light is injected by sending it through the output polarizing beamsplitter cube of
a 30 dB optical isolator (Linos), see Fig. 3.12. The slave laser is mounted and
temperature-stabilized in a convenient commercially available mount (OFR PAL-
TE-9.0-780). The free-running diode gives 120 mW of optical power at 784 nm.
Operating at T = 11◦C and I = 139 mA we get about 100 mW of injection-locked
light out. We direct the light on two paths, one for probing and the other for cool-
ing. Switching between the two with a bandwidth of 1 MHz is performed with a
second EOM (Linos). Both probe and cooling light pass through mechanical shut-
ters (Vincent Associates, Uniblitz, LS2T2) before entering single-mode polarization-
maintaining fibers (coupler: Schäfter & Kirchhoff 60 SMS-1-4-A8-07).

Optical pumping

In order to trap the cold atoms magnetically, we pump them to the doubly polarized
Fg = 2;mF = 2 state. Optical pumping is performed by simultaneously illuminating
the atoms with circularly polarized pump and repump light while the quantization
axis is defined by a homogeneous magnetic field along the light axis. The pump
light is tuned to the Fg = 2 → Fe = 2 transition of the D2 line by shifting the
master light 55 MHz to the red with an AOM (Isomet 1206C-02). Both pump and
repump light beams are transferred to the vacuum chamber through polarization-
maintaining fibers. The beams are re-collimated to a 1/e2 diameter of 10 mm with
beam expanders (Shäfter & Kirchhoff 60FC-4-M60-10). Both beams have about two
times the saturation intensity I0 = 1.67 mW/cm2. Pump, repump and probe are
made circularly polarized with separate λ/4-plates before they are overlapped with
two non-polarizing beam-splitter cubes (Thorlabs).

MOT

For the MOT operation we couple 38 mW of cooling light and 7.5 mW of repump
light from polarization maintaining fibers using beam expanders (Shäfter & Kirch-
hoff 60FC-T-4-M90-10) resulting in a 1/e2 diameter of 15 mm. After the cooling-light
output coupler we place a polarizer (Melles Griot 03 PBS 015) to avoid polarization
effects originating from temperature-dependent residual birefringence in the fibers.
The cooling light is subsequently divided equally over 4 beams with central intensity
5I0. Cooling light and repump light are overlapped on a polarizing beam-splitter
cube. The repump light has a total intensity of 6I0 divided over four beams.

3.9 Imaging system

A polarization-maintaining fiber transports the probe light to the main vacuum
chamber. The diverging gaussian beam is collimated to a 10 mm 1/e2 diameter

8The total cooling power was increased by 25% by replacing the 120 mW diode by a 150 mW
type ( Roithner RLT780-150GS) in 2007.
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with a beam expander (Shäfter & Kirchhoff). The light is made circularly polar-
ized and overlapped with the pump and repump beams on a 50/50 non-polarizing
beamsplitter (Thorlabs). The beams enter the vacuum system in the horizontal
plane through a CF40 window that is anti reflection coated on both sides. The
trap center is imaged with a three times magnifying (Mag=3) relay telescope onto
a camera (Roper Scientific Coolsnap ES) see Fig. 3.13. Lens L1 with a diameter
d = 31.5 mm and a focal length of f = 100 mm (Melles Griot 01 LAO 126/076) can
be moved with a translation stage to select the object plane (y-direction) and to
select the object area (xz-plane). Lens L2 with a diameter d = 50 mm and a focal
length of f = 300 mm has a larger diameter to avoid vignetting.9 (Melles Griot
01LAO256/076). All imaging optics including the camera are rigidly mounted to
the optical table using 1.5” posts or solid metal blocks. Fixing the translation stage
after positioning lens L1 helped in reducing interference fringes in the images. The
imaging beam travels through vacuum or is enclosed by lens tubes on most of its
path to reduce the disturbing effect of air turbulence.

We probe our polarized atomic samples with circularly polarized light on- or
near-resonance with the Fg = 2 → Fe = 3 cycling transition while defining the
quantization axis with a weak (2 G) homogenous magnetic field in the propagation
direction of the light (except for in situ measurements, where the quantization axis
is defined by the IP magnetic field that points perpendicular to the propagation
direction of the light). The number of scattered photons when probing with light
with intensity I at a detuning δ from resonance for a duration τ can be found from

Nscat = τ
s

s+ 1

Γ

2
, (3.7)

s =
I/I0

1 + 4δ2/Γ2
, (3.8)

where the saturation parameter s is related to the saturation intensity I0. The
probe light intensity I is 0.3 mW/cm2. With an exposure time τ of 70 μs we find
from equation (3.7) Nscat = 200 for the number of scattered photons at resonance.
During illumination atoms are displaced by the recoil of the scattered photons. We
can estimate the root mean square displacement transverse to the line of sight with
vrecτ

√
Nscat/3. Inserting the recoil velocity of vrec = 5.9 mm/s we find that 200

recoils give a displacement of 3 μm. This displacement is smaller than the optical
resolution limit of 4 μm (see below) and of the order of the effective pixel size in the
object plane of 6.45/Mag = 2.15 μm (see below).

Imaging camera

We have chosen an interline transfer CCD camera (Roper Scientific Coolsnap ES).
It contains a Sony ICX285 CCD chip, data is read out via dark lines between the
rows of illuminated pixels. A matrix of micro lenses directs most of the light to the

9An aberration occurs if part of the light that enters the optical system is truncated further
along its path.
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Figure 3.13: Schematic of the imaging setup. A cloud of atoms close to the chip mount is imaged

on a CCD camera with a collimated beam from a fiber using a pair of achromatic doublet lenses, the

light is circularly polarized after passing through a λ/4 plate. The lenses form a confocal telescope with

magnification f2/f1=3. Part of the light cone that scatters from the atoms towards the first imaging

lens is blocked by the chip mount effectively reducing the numerical aperture of the imaging system

(dashed line).

pixels. In this way a quantum efficiency of 30% at 780 nm is obtained. The “interline
transfer” technique commonly used in consumer cameras has reached a sensitivity
that is not much less than with the frame transfer technique widely applied in cold
atom experiments. In the frame transfer CCD’s typically all pixels in the top half
of the chip are illuminated, followed by readout that is done by first transferring all
charges all the way to the covered lower chip half before the collection of charges
in horizontal direction. This transfer scheme slows down the readout rate. The
Sony ICX285 CCD chip has 1392 × 1040 = 1.5 × 106 pixels with 6.45 μm square
size. The AD converter generates 12-bit digital data. At the probing light level we
saturate about 60% of the full well of 16000 electrons in one pixel, staying nicely
in the regime of linear response of the camera. The pixel readout rate is 20 MHz
with a RMS readout noise of 8 electrons per pixel. With a dark current of one
electron per pixel per second at room temperature cooling is not required for our
purpose. The readout time per image is 1.5 × 106/20 × 106s−1 = 75 ms. It is
possible to read out only pixels within a predefined region of interest (ROI). The
readout time is reduced proportional to the fraction of vertical lines in the ROI. We
typically use a ROI extending over all 1392 pixels horizontally and only 300 pixels
vertically resulting in a readout time of less then 30 ms. Keeping the time between
the absorption image and the “flat field” normalizing image short reduces the effect
of interference fringes in the resulting images.

Optical resolution

A theoretical resolution limit for imaging with a lens can be given by the Rayleigh
criterion: two point sources are resolved if the center of the Airy disc of one overlaps
with first dark ring of the other. In formula: dmin = 1.22λf/d, where λ is the
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wavelength of the light, f is the focal length and d the diameter of the lens [124].
The numerical aperture NA and its inverse, the F-number, are given by 1/F =
NA = f/d. In our setup lens L1 (see Fig. 3.13) has an F-number of 3.17 resulting
in a resolution limit dmin = 3 μm. We measure a minimal 1/e2 radius feature size
of 5.6 μm. This corresponds to a minimal second-order moment of an intensity
distribution of 2.8 μm and an 1/e radius of 4 μm.

Magnification

To determine the magnification of our imaging system we have used the accurately
known dimensions of our chip patterns. We have trapped two clouds of atoms in
steep potential wells created with a single chip wire with a separation of 1034±10 μm.
In an absorption image the cloud separation was 485± 4 pixels. Inserting the pixel
size of 6.45 μm we find a magnification of 3.03± 0.04.

Absorption imaging

The probe beam travelling in the y-direction with initial intensity distribution
I0(x, z) passes an atomic cloud and casts a shadow on the camera. The light is
absorbed by the atoms following Lambert-Beer’s law

I(x, z) = I0(x, z)e
−D(x,z). (3.9)

The optical density profile is the integrated atomic density along the line of sight
multiplied by the absorption cross section D(x, z) = σ

∫
dy n(x, y, z) where σ =

3λ2/(2π) for circularly polarized light and polarized atoms. We find D in Eq. (3.9)
from the ratio I(x, z)/I0(x, z) by taking a sequence of three images. First the
absorption image Iabs(x, z) secondly a “flat field” image Iff(x, z) without atoms
and finally a dark background image Ibg(x, z). The background corrected ratio
is I/I0 = (Iabs − Ibg)/(Iff − Ibg).

3.10 Experimental control

The experiment is controlled with the help of a single PC in combination with ana-
log and digital cards. Images from the CCD camera are read out and processed
directly using the same computer. We give a brief description of the used compo-
nents and the functionality of the control device here. A more detailed description
of the experimental control including the software written in LabView (National In-
struments) will appear in [115]. During each experimental cycle of 10 to 20 seconds
atoms are trapped and cooled and subsequently a series of digital images is collected.
The control involves two tasks: first the programming of digital and analog outputs
and second the image processing.
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device type manufacturer connections
Industrial PC IPC-535 Spectra 12 PCI slots
digital card DIO-64 Viewpoint Systems 64 DO
Analog output 1 PCI-6713 National Instruments 8 AO
Analog output 2 PCI-6713 National Instruments 8 AO
Analog output 3 PCI-6713 National Instruments 8 AO
Analog input PCI-6014 National Instruments 8 AI
Camera card PCI Roper Scientific Camera control

Table 3.4: Overview of used hardware for experimental control (AI= Analog Input, AO= Analog

Output, DI=Digital Input, DO= Digital Output).

3.10.1 Output control

The hardware used in the experimental control is listed in table 3.4.We use an
industrial computer (Spectra IPC-535) with 12 available PCI slots in a 19” housing.
It runs on Microsoft Windows XP and has a 2.8 GHz pentium 4 processor. The PCI
cards involved are: Viewpoint DIO-64 for digital control and timing, three National
Instruments PCI-6713 analog output cards and one analog input card (National
Instruments PCI-6014). We program 18 bipolar analog outputs (±10 V) and 31
TTL outputs with sub-μs time precision in steps of 10 μs. An overview of the
control lines involved is listed in table 3.5. Before the start of each cycle a timing
sequence of typically 104 steps is loaded into the memory of the Viewpoint DIO-64
card. During an experimental cycle the clock on the DIO card governs the timing and
triggers the analog output cards guaranteeing reliable timing precision undisturbed
by other processes that run on the PC. The TTL signals from the DIO card are
shaped with line drivers and connected to a BNC break-out box with twisted pair
flat cables to avoid reflections and cross-talk.

3.10.2 Radio frequency source

We generate a radio frequency (RF) signal for forced evaporative cooling with a
direct digital synthesis (DDS) evaluation board (Analog Devices). The DDS board
is programmed using 8 parallel data lines, 6 address lines and 6 other lines. In this
way the RF amplitude and frequency can be controlled with the same 10 μs timing
precision as the rest of the control signals. The frequency resolution was set to 24
bits corresponding to 12 Hz. A more detailed description of the DDS system will
appear elsewhere [115].

Image processing

Three images of maximally 1.5 106 pixels are collected in ≈ 75 ms per image. Subse-
quently the two dimensional optical density is calculated and displayed in real time.
Two simple gaussian fits are performed separately to estimate atom number and
cloud size “on the fly”. The set of three images is stored in the lossless 16 bits pgm
format for further analysis.
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analog digital
cool/probe EOM camera trigger
cool/probe AOM probe shutter
pump AOM cool shutter
repump EOM repump 1 shutter
dispenser repump 2 shutter
miniwire 1 pump shutter
miniwire 2 MOT coils on/off
miniwire 3 RF on/off
miniwires 4, 5 and 6 DDS 1-8 data
compensation coils 1 DDS 1-6 address
compensation coils 2 DDS 1-6 other
compensation coils 3 AO trigger 1
MOT coil 1 AO trigger 2
MOT coil 2 AO trigger 3
Y bias coils
chipwire Z
chipwire box
RF amplitude

Table 3.5: Overview of used analog and digital control lines.

3.11 Concluding remarks

The described setup forms a state of the art machine for cold atom experiments
that is especially suited for studying the 1D regime. In the design emphasis was
put on simplicity and compactness, resulting in a reliable and stable setup for BEC
production. The design and thermal analysis of the novel microtrap are discussed
in some detail forming a basis for improvements and more general applications. The
next chapter describes how this setup is used. One elementary cycle that leads to
the production of a BEC every 10 seconds is detailed.



4 Realizing Bose-Einstein
condensation

4.1 Introduction

This chapter describes one trapping and cooling cycle that is used to reach Bose-
Einstein condensation (BEC) in the microtrap that was described in Ch. 3. The first
part (Sec. 4.2) describes the magneto-optical cooling steps and a rapid evaporative
cooling stage that we apply to reach an elongated three-dimensional BEC. Sec-
tion 4.2.7 describes the specific scheme that was used to reach the cross-over to the
1D quasi-condensate regime. In Sec. 4.3, we characterize the roughness of the trap-
ping potential for our quasi-condensates. This roughness stems from non-straight
current flow in the trapping wire. We discuss how we have reduced the influence of
this roughness and we give an estimate for the smoothness of the resulting potential.

4.2 Trapping and cooling sequence

Our goal in the trapping and cooling sequence is to reach quantum degeneracy with
the highest atom number possible. A spherical gaussian cloud of radius r containing
N atoms has a central density n0 = Nπ−3/2r−3. The phase space density in the
trap center is Φ = n0Λ

3
T , with ΛT the thermal de Broglie wavelength, Eq. (2.14).

Bose-Einstein condensation in a three-dimensional ideal Bose gas is reached for
Φ > 2.612 (see Ch.2). The successive steps, discussed here, that increase the phase
space density of a cloud of atoms and finally lead to Bose condensation are generally
applied in BEC labs worldwide. Specific for our experimental setup is the use of
miniwires to generate the magnetic potentials for the cooling and trapping stages.
In short, the procedure is as follows. In the first step we load our mirror-MOT [111]
secondly we apply a short compressed MOT [125] stage. Subsequently the atoms are
optically pumped to a single magnetic Zeeman state followed by magnetic trapping
in the miniwire trap. A transfer to the magnetic potential of the on-chip Z-wire
enables us to compress the trapping volume thereby increasing the inter-atomic
collision rate. Finally, we perform forced evaporative cooling using radio frequency
induced spin flips. A single 1.2 s RF ramp leads to the fast and relatively efficient
production of a Bose-Einstein condensate of ∼ 104 atoms. These steps are described
below in more detail.

57
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4.2.1 MOT

We start the trapping and cooling sequence by resistively heating the dispenser
described in Sec. 3.6. The hot (T > 600 ◦C) rubidium atoms that escape from the
dispenser thermalize by collisions with the walls of the vacuum chamber. At room
temperature and a 87Rb pressure of 10−9 mbar we have Φ = 10−25. The largest gain
in phase space density is reached in the first cooling step with the magneto-optical
trap (MOT): We trap 5 · 107 atoms and reach Φ = 10−9. Specifically, we use the
mirror MOT [111] configuration (see Sec. 3.3), where four cooling laser beams with
15 mm 1/e2 diameter and 9 mW of power per beam impinge on the central trapping
area (see Fig. 3.2). The two beams in the yz-plane reflect at a 45◦ angle on the
surface of our micro-electronic chip. This scheme creates the three orthogonal beam
pairs needed for a 3D MOT while the center of the MOT is only millimeters away
from the chip surface. The cooling light is detuned 2.7 Γ to the red with respect
to the F = 2 → F = 3 cycling transition of the D2-line and the central intensity
is 6I0, where the saturation intensity is I0 = 1.67 mW/cm2 and Γ/2π = 6 MHz is
the natural linewidth of the atomic transition. We overlap a repumper light beam
with the same diameter with all four cooling beams. The repumper is resonant
with the F = 1 → F = 2 transition of the D1-line, and the central intensity is
at saturation (1.49 mW/cm2). The quadrupole magnetic field in this initial stage
is generated with the MOT coils (Sec. 3.7) that produce a gradient of 15 G/cm.
The dispenser, see Sec. 3.6, is pulsed on by resistive heating during a 4 s 12 A
current pulse. After switching off the current, the dispenser cools down within 4 s.
The vacuum pressure recovers for 6 s after the end of the dispenser pulse before we
prepare for the second cooling step by transferring the atoms to a miniwire-based
MOT. A schematic overview of the cooling and trapping sequence described here is
shown in Table 4.1. We ramp down the current in the MOT coils while ramping on
current in the miniwires in combination with a homogeneous bias field of 5 G in the
+y direction. A −4 G bias field component in the z direction is added to match
the ideal quadrupole field optimally [126]. The miniwires and their dimensions are
shown in Fig. 3.3. In the positive x direction miniwires 4, 5, and 6 carry a current
of 2 A each, while miniwires 1 and 3 are operated at +3.5 A and −3.5 A along y
respectively. The transfer takes 80 ms and the resulting miniwire quadrupole field
compresses the MOT magnetic field to a gradient of 30 G/cm at a distance of 1.2 mm
from the chip.

4.2.2 Compressed MOT

The next important increase in phase space density is achieved with the compressed
MOT technique [125]. In this 6 ms cooling stage we reduce the light pressure, that
arises from the scattered cooling photons, by decreasing the repumper intensity by
two orders of magnitude while we increase at the same time the detuning of the
cool light from 2.7 Γ to 13 Γ. Consequently a larger fraction of the the MOT atoms
will end up in the dark F = 1 ground state, hence the alternative nomenclature
for this trick: “transient dark MOT”. The compressed MOT stage results in a
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Dispenser
MOT coil 1
MOT coil 2
bias coil By
mini-wires 4,5,6
mini-wires 1,3
miniwire 2
chip Z-wire
RF 
cool light
Repumper
Pump
detuning/(2-6MHz) 2.7 2.7 5.5 2.7 13 0
duration [ms] 4000 6000 80 105 6 0.4 10 38 400 1200
atom number [10^6] 50 50 50 40 40 40 20 20 20 0.04
temperature [ K] 100 100 100 100 100 30 40 40 500 1.3μ

π

Table 4.1: Timeline for the trapping and cooling sequence. In the first step we load our mirror-MOT,

secondly we apply a short compressed MOT stage. Subsequently the atoms are optically pumped

to a single magnetic Zeeman state followed by magnetic trapping in the miniwire trap. A transfer

to the magnetic potential of the on-chip Z-wire enables us to compress the trapping volume thereby

increasing the inter-atomic collision rate. Finally, we perform forced evaporative cooling using radio

frequency induced spin flips. A single 1.2 s RF ramp leads to the fast and relatively efficient production

of a Bose-Einstein condensate.

dense cold cloud with a lower atom number but a much higher phase space density
(N = 4 · 107; T = 30 μK; n0 = 5 · 1016 m−3; Φ = 2 · 10−6) compared to the standard
MOT.

4.2.3 Optical pumping

An optical pumping stage transfers the atoms to the magnetically trappable F =
2,mF = 2 Zeeman state. First the MOT light and quadrupole field are switched off.
A small bias field, By = 2 G defines a quantization axis for the atoms. Two co-linear
circularly polarized beams also point in the y direction: a resonant repump beam
(D1; F = 1 → F = 2) and the pump beam, tuned to the F = 2 → F = 2 transition
of the D2-line. An optical pumping pulse of 400 μs at an intensity ∼ 3 mW/cm2

per beam transfers nearly all atoms to the doubly polarized state.

4.2.4 Minitrap

The spin-polarized atoms can now be captured in the Ioffe-Pritchard magnetic trap.
To exactly mode match the optically cooled cloud (T = 30 μK) with a radius
(r ≈ 0.5 mm) to the trapping potential we need trap frequencies ω =

√
2kBT/mr2 =
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2π × 23 Hz. These low frequencies can only be reached in a chip trap that is very
shallow due to gravitational sag. Our best results (N = 2 · 107; Φ = 1 · 10−6) were
achieved by lifting the trap bottom B0 to 8 G resulting in a trap with an axial
frequency of 16 Hz and a radial frequency of 46 Hz. Miniwire current settings are:
6.65 A, for wires 4,5 and 6; 9.8 A, for wires 1 and 3, and -2.5 A through miniwire 2.
The cartesian field vector from the external bias coils is (Bx, By, Bz) = (8, 17, 0) G.

4.2.5 Z-trap – compression

After having loaded the miniwire trap we start a magnetic field ramp that adiabat-
ically transfers the atoms to a potential made with the on chip Z-wire. The Z-wire
current is ramped to 2.25 A in 28 ms while the miniwires are turned off. In order
to increase the axial harmonic confinement frequency we leave on miniwire 2 (see
Fig. 3.3) with −2 A of current. We adiabatically compress the cloud in two steps.
We ramp down B0 (in the x direction) from 8 G to 2.2 G in 400 ms while in the last
200 ms we also increase By from 17 G to 40 G. After this transformation the trap
frequencies are ω‖ = 2π × 35 Hz in the axial and ω⊥ = 2π × 3.3 kHz in the radial
direction.

4.2.6 Reaching BEC by evaporative cooling

The final increase in phase space density of six orders of magnitude that ultimately
leads to degeneracy is achieved by evaporative cooling [98,99]. In Sec. 2.8 a treatment
of the evaporative cooling process along the lines of [99] is given for the specific
case of our IP trap, in the regime where the confining potential is radially linear
and axially harmonic. We selectively remove the high-energy tail of the Maxwell-
Boltzmann velocity distribution of the trapped atoms using radio-frequency (RF)
induced spin flips. Hot atoms are resonantly excited with a RF signal from a DDS
(Sec. 3.10.2) that is connected to a chip wire neighboring the Z-trap wire. For our
starting condition (N = 2 · 107; Φ = 1 · 10−6;T ≈ 45 μK) the elastic collision rate,
Eq. (2.56), 1/τel = 4 s−1. By adiabatic compression of the IP-trap at constant atom
number we reduce the trap volume with a factor β ≈ 140, thereby boosting the
scatter rate by that same factor (1/τel ∝ β). In this case the temperature scales as
T ∝ √β, and goes up to ≈ 0.6 mK. As our trap, with depth ε = 38 G (2.5 mK), is
not quite deep enough to maintain η > 7 needed for a γe > 2 (see Fig. 2.5), we apply
an evaporation knife at a constant height of 38.5 G (ωRF/2π =27 MHz, ε = 36.3 G)
during the adiabatic compression ramp, to guarantee homogeneous evaporation at
all times.

After compression we start a logarithmic frequency sweep from 27 MHz to a
final value of ∼ 1.55 MHz with a duration of 1.2 s. Condensation is reached at
an atom number of 7 · 104 and a temperature of 1.3(1) μK. The central density at
condensation is 3 · 1020 m−3 leading to a scatter rate of 3 · 103 s−1. The overall
efficiency is γe,tot = 2.6. In Fig. 4.1 (left) we show absorption images taken on the
day that the first condensates were produced in our setup in the spring of 2006.
Pictures are taken after 11 ms of free expansion and correspond to lowering the RF
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Figure 4.1: (left) Absorption images of ultracold atom clouds, taken after 11 ms of free expansion,

correspond to lowering the RF evaporation knife from 1.63 MHz (top) to 1.59 MHz (middle) and

finally 1.57 MHz (bottom). (right) horizontal cut through the displayed absorption images. A clear

transformation from the gaussian thermal distribution above Tc (◦) to a bimodal distribution (◦), and

finally the Thomas-Fermi shape of an almost pure condensate (◦). The black line corresponds to a

gaussian fit to the data at 1.63 MHz, the temperature resulting from this fit is 1.4(1) μK.

evaporation knife from 1.63 MHz (top) to 1.59 MHz (middle) and finally 1.57 MHz
(bottom). The panel at the right in Fig. 4.1 shows a horizontal cut through the
displayed absorption images. A clear transformation is visible from the gaussian
thermal distribution above Tc (◦) to a bimodal distribution (◦), and finally the
Thomas-Fermi shape of an almost pure condensate (◦).

4.2.7 Axial relaxation – reaching BEC in the 3D-1D cross-
over

For the experiments on the Bose gas in the dimensional cross-over regime from 3D
to 1D that are described in Ch. 5 and Ch. 6 we have used the following adapted
procedure. After the first 400 ms of compression of the Z-wire trap we start a linear
evaporation ramp of 600 ms from 27 MHz to 1.7 MHz. Before reaching degeneracy
we relax the axial confinement to a final trap with ω‖/2π = 8.5 Hz along x, and
ω⊥/2π = 3280 Hz, and a bottom corresponding to ωRF/2π = 1.518(2) MHz; for
comparison �ω⊥/kB = 158 nK. The current in the Z-wire is set at 2.25 A, and the
distance of the cloud to the chip surface is 90 μm. In this final trap a slower forced
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Figure 4.2: RF frequency ramp that was employed for the achievement of an elongated condensate.

We start by applying 400 ms of plain evaporation during the compression of the magnetic trap. Followed

by a rapid cooling ramp (600 ms) before we carefully relax the trap axially and cool to degeneracy slowly

in order to create an elongated condensate that is in equilibrium at the end of the last 300 ms of plain

evaporation.

evaporation stage is performed, where we ramp the RF frequency from 1.7 MHz
to ∼ 1.55 MHz in 450 ms. An additional 300 ms of plain evaporation at the final
RF frequency allows the damping of residual quadrupole collective oscillations in
the cloud to the point where these oscillations are no longer visible within our
experimental resolution. We slow down the evaporation process before reaching
BEC to avoid shock cooling: if the cooling goes faster than the axial thermalization,
local patches of BEC are formed along the axis. These patches subsequently collapse
into the central potential resulting in large quadrupole oscillations [127]. We reach
degeneracy at an atom number of 4 · 104, thus the overall efficiency is γe,tot = 2.2.
The RF ramp is shown in Fig.4.2. To penetrate further into the 1D regime we can
purposely reduce the atom number by performing the first RF ramp from 27 MHz
to 1.7 MHz much faster, for example not in 600 ms but in 160 ms. In the latter case
the linear density of a quasi-condensate is 50 μm−1, well below the cross-over value
of 150 μm−1 (see 2.4.3).

4.3 Potential roughness

Our typical trapping distance d = 90 μm is of the same order as the typical axial
size of a cold cloud. At this relatively large distance the effect of potential corru-
gations due to wire roughness at large spatial frequencies (� 1/d) is strongly sup-
pressed [128, 129]. Only residual, long-wavelength (λ ∼ d) deviations from straight
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current flow in the trapping wire are visible as small (< 1 mG) potential pertur-
bations. The relative potential roughness is ΔB/B ∼ 10−5. This roughness corre-
sponds to a few tens of nanokelvins in energy and thus disturbs our condensates that
have a chemical potential of ∼ 160 nK. In order to minimize the effect of the resid-
ual wire corrugations we look for a “sweet spot” along the trap axis. We displace
the trap center in the x direction by sending additional currents through miniwires
1 (−y) and 3 (+y). The resulting magnetic field gradient gives an approximately
linear displacement of 400 μm/A. In Fig. 4.3 a scan along the x-axis is shown, sub-
sequent traces are shown displaced in the vertical direction to increase the visibility.
Linear density traces are taken for increasing miniwire current in steps of 50 mA,
corresponding to approximately 20 μm axial displacement per step. The red curve
is taken in a region where the potential is smoothest: our sweet spot.

After the identification of the sweet spot we have characterized the axial trapping
potential with standard methods using both the measurement of in situ density
profiles at high T [129] and the dipole mode oscillation frequency in the trap center.
The relative potential roughness at d = 90 μm is ΔB/B ∼ 10−5 and can be compared
to the value of ΔB/B ∼ 10−5 quoted by Krüger et al., be it much closer to the chip
(d = 10 μm) [130]. Our potential is much smoother than the original trap wire used
by the Orsay group that was nicely characterized in Ref. [129].

Note that we have followed here a pragmatic approach to circumvent the effect of
wire corrugations. For the present work, a full analysis of the cause of the irregular
cloud shapes in Fig. 4.3 was not performed. Another way to suppress potential
roughness was presented in Ref. [131]. There, a new method for strong suppression of
the corrugation (employing ac modulation) was demonstrated. Evidence for strong
suppression of the corrugation was obtained from the increase of the damping time
of the center-of-mass motion, while the optical images still showed some residual
apparent roughness in the 10-nK range. This apparent roughness was attributed to
residual noise in the imaging system.
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Figure 4.3: Linear density traces of condensates imaged in situ for varying axial trap center position.

Traces are taken for increasing miniwire 1 and 3 current with steps of 50 mA, corresponding to approx-

imately 20 μm axial displacement. In the graph subsequent traces are displaced vertically to increase

the visibility. The red curve indicates our “sweet spot”, the region where the potential is smoothest.



5 Focusing phase-fluctuating
condensates

5.1 Introduction

The term ‘atom optics’ stems from the possibility to translate techniques and theory
from optics to the field of atomic physics. Work with atomic and molecular beams
dates back to the first half of the twentieth century [132]. Paul and Friedburg [133,
134] first implemented optical imaging with neutral atoms in 1950. Early examples
of the exchange of roles of light and matter are the idea by Balykin and Letokhov
to focus an atomic beam using an optical potential [135] and their experimental
demonstration of the reflection of atoms on an evanescent light wave mirror [136].
Such a light mirror was later used in Amsterdam with the aim of creating a BEC
with all optical means [137, 138]. With the achievement of BECs as a source of
coherent atomic waves, the step to the experimental demonstration of an atom laser
was small [139–142]. Immanuel Bloch and coworkers demonstrated a variety of
atom-optical manipulations: reflection, focusing, and the storage of an atom laser
beam in a resonator [143]. In the last decade, the group of Alain Aspect made
detailed progress in the study of atom lasers [144–148]. A theoretical treatment
of the propagation of atom-laser beams was given by Bordé [149, 150]. Coherent
atomic waves are a promising tool, analogous to lasers, but with the possibility
of a much smaller wavelength and therefore higher spatial resolution. A further
application is the use of atomic waves in a Sagnac interferometer that can lead to
huge sensitivity improvements over ring laser gyroscopes. The Sagnac phase shift
of a particle traversing an interferometer is proportional to the mass energy of the
interfering particle, this is 1010 times larger for an atom than for a photon [151].
Dave Pritchard and his group performed pioneering experiments using an atomic
beam for interferometry [152] in the early 1990s.

Another optical technique applied to atoms was demonstrated in Amsterdam,
where a non-equilibrium BEC was focused in free flight [127]. We have extended
this atom-focusing technique, also building on the work in Ref. [153], to equilibrium
clouds, that are in the cross-over from the three-dimensional to the one-dimensional
regime. We have used the technique to study the axial momentum distribution
of these gases. In this chapter we present data showing the focusing of clouds in
the quasi-condensate regime. We are able to extract the temperature from the
focal width of quasi-condensates. In this way we have implemented a novel tool

65
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Figure 5.1: Principle of focusing an atomic cloud. We apply a short, strong axial harmonic potential

yielding a kick to the atoms proportional to their distance from the trap center, followed by free

propagation. As a result the atoms come to a focus, at which time (tfocus) the axial density distribution

reflects the axial momentum distribution before focusing.

for cold atom thermometry. We derive the relation between the focal width and
the temperature by explicitly exploiting the wave nature of atoms: An elongated
(quasi-)condensate as it propagates freely after its release from the trap is described
as a macroscopic wavefunction. It obeys the Schrödinger equation that has the same
form as the paraxial wave equation for light.

We have also obtained focusing results for cold clouds in a regime where atomic
interactions and non-zero temperature lead to reduced coherence, and a quasi-
condensate description is not always applicable. Those results are described in
Ch. 6.

The concept of focusing an elongated cloud is as follows: We apply a short,
strong axial harmonic potential yielding a kick to the atoms proportional to their
distance from the trap center (analogous to the action of a lens in optics), followed
by free propagation. As a result the atoms come to a focus, at which time (tfocus) the
axial density distribution reflects the axial momentum distribution before focusing.
The focusing concept is illustrated in Fig. 5.1. Since the focusing brings all atoms
together axially, the signal level is high, even for a single realization. As we will
show, averaging over a few shots is sufficient to obtain high signal-to-noise ratio.

The outline of this chapter is as follows. We start in Sec. 5.2 by giving a brief
summary of concepts known from optics like the ABCD matrix, the Huygens-Fresnel
integral and gaussian beam propagation. We proceed in Sec. 5.3 by exploiting the
equivalence of the paraxial wave equation and the Schrödinger equation in 1D to
outline the theory for matter wave propagation through linear ABCD systems. We
extend the existing work on nonideal light beams [154, 155] and matter wave prop-
agation [146, 148–150] by making a connection between the quality factor M2 of
a nonideal atomic beam and the temperature of a quasi-condensate. This treat-
ment enables us to derive the relation between the focal width of quasi-condensates
and the temperature, given in Sec. 5.4. In Sec. 5.5 we summarize the behavior of
a weakly interacting quasi-condensate in a time-dependent trap with scaling equa-
tions [156–158]. The experimental methods and results of the novel quasi-condensate
thermometry method are presented in Sec. 5.6. In Sec. 5.7 we discuss the experimen-
tal limits of the presented method. We conclude this chapter and give an outlook
in Sec. 5.8.
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5.2 Gaussian and nonideal optical beams and ABCD

matrices

As an introduction to atom optics some basics of gaussian beam optics and ABCD
matrices are briefly summarized following Ref. [124]. Additionally, we discuss the
treatment of nonideal light beams, using the quality factor M2 that was developed
by Siegman [159] and Bélanger [160] in the early 1990s.

x1
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C D(   )z
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Figure 5.2: Overall ABCD matrix for the propagation of an optical ray through a cascade of optical

elements.

In textbook optics [161, 162] an ABCD matrix describes the transformation of
the vector of position x and slope x′ of a light ray as it propagates from a plane
z1 to a plane z2 through a cascade of optical elements as is shown in Fig. 5.2. In
matrix form (

x2

x′2

)
=

(
A B
C D

)(
x1

x′1

)
. (5.1)

The ABCD matrix has unit determinant

AD −BC = 1. (5.2)

For a complete system, with many elements, the overall ABCD ray matrix is simply
computed by multiplication of matrices of the individual optical elements and regions
of free space that a light ray passes.

5.2.1 Paraxial wave equation and Huygens-Fresnel integral

We consider a monochromatic light wave that propagates mainly along the optical
axis and has a slowly varying envelope. We write the general complex wave like

Ẽ(x, y, z) ≡ ũ(x, y, z)eikz, (5.3)

where k = 2π/λ is the wavevector of the light.1 The propagation of this beam is
governed by the electromagnetic wave equation that follows from Maxwell’s equa-
tions and the appropriate boundary conditions. In the wave equation the second
partial derivative in z may be dropped if∣∣∣∣∂2ũ

∂z2

∣∣∣∣� min {
∣∣∣∣2k∂ũ∂z

∣∣∣∣ ,
∣∣∣∣∂2ũ

∂x2

∣∣∣∣ ,
∣∣∣∣∂2ũ

∂y2

∣∣∣∣}. (5.4)

1We use the imaginary number i instead of −j used by Siegman.
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The propagation of ũ(x, y, z) in free space can then be described with the paraxial
wave equation in the form [

∇2
r + 2ik

∂

∂z

]
ũ(r, z) = 0, (5.5)

where r ≡ (x, y) are the transverse coordinates and ∇r is the laplacian operator
working on these transverse directions. The paraxial wave approximation is valid if
the inequality (5.4) is satisfied. This is typically applicable for waves that propagate
at an angle of less than 30◦ with the optical axis [124].

The propagation of paraxial beams can be calculated alternatively using Huy-
gens’ integral. A wave (writing only one transverse dimension for brevity) ũ(x) is
transported from the plane z1 to the plane z2 by

ũ(x2) =

∫ ∞

−∞
K(x2, x1)ũ(x1)dx1, (5.6)

where K(x2, x1) is the Huygens kernel. If the criterium (5.4) is met, it can be written
in the Fresnel approximation

K(x2, x1) =
1√

2iπB
exp

[
i

2B
(Ax2

1 − 2x2x1 +Dx2
2)

]
, (5.7)

where, for a given optical system A,B and D are the same constants that appear
in the ABCD matrix of that system derived using geometric optics, Eq. (5.1) and
Eq. (5.2). By inserting Eq. (5.7) in Eq. (5.6) we get the Huygens-Fresnel integral

ũ(x2) =

∫ ∞

−∞

1√
2iπB

exp

[
i

2B
(Ax2

1 − 2x2x1 +Dx2
2)

]
ũ(x1)dx1. (5.8)

A set of solutions to both the paraxial wave equation and the Huygens-Fresnel
integral is formed by the gaussian beams of the form

ũ(x, z) = q̃ exp

[
ik

x2

2R(z)
− x2

w2(z)

]
, (5.9)

we have used the complex radius of curvature, defined as

1

q̃
≡ 1

R(z)
+ i

λ

πw2(z)
, (5.10)

where R(z) is the radius of curvature and w(z) is the 1/e2 intensity half width. The
variation of the complex radius of curvature along z is

q̃(z) = q̃0 + z − z0, (5.11)

with the complex source point q̃0 = q̃(z0). This leads to

w2(z) = w2
0

[
1 +

(z − z0)
2

z2
R

]
, (5.12)
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with w0 the minimum transverse size, and

R(z) = z +
z2

R

z
. (5.13)

Where the Rayleigh range

zR ≡ πw2
0

λ
, (5.14)

is the distance the beam travels from the waist w0 until the diameter increases by
a factor

√
2. It is shown for example in [124] using the Huygens-Fresnel integral

[Eq. (5.8)] that for a general system characterized by an ABCD matrix the complex
beam parameter q̃ transforms according to the relation

q̃2 =
Aq̃1 +B

Cq̃1 +D
. (5.15)

Thus a gaussian beam can be propagated through cascaded optical elements using
the cascaded ABCD matrix for those elements.

5.2.2 Nonideal beam

w
(f)

=
W

(f)

f

W0

w0

Figure 5.3: Focusing of a Gaussian light beam (dashed line) and a nonideal light beam (solid line)

with the same size at the lens position but M2 = 1.5; the dash dotted line intersects the axis at the

geometrical focus f of the lens.

To treat monochromatic beams in the paraxial approximation that are not diffraction
limited and have ripples in phase and amplitude at any transverse plane, Siegman
[159] and Bélanger [160] have introduced a treatment analogous to that for gaussian
beams. Consider a beam size W (z)2 ≡ [2Δx(z)]2, where Δx2 is the second-order
moment [Eq. (5.30)] of the transverse intensity profile of the general beam. The
complex radius of curvature can be generalized for arbitrary beams [159]

1

Q
=

1

R
+ i

λM2

πW 2
, (5.16)
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where R approximates the mean radius of curvature and M2 is the so-called beam
quality factor that is an invariant coefficient of the beam. Just like for gaussian
beams, it follows from the Huygens-Fresnel integral [Eq. (5.8)] that the generalized
radius of curvature for an arbitrary beam obeys the relation [160]

Q2 =
AQ1 +B

CQ1 +D
. (5.17)

This formalism now allows the propagation of arbitrary paraxial beams through
ABCD systems. As a simple example we write the propagation rule for the beam
size of an arbitrary beam as it propagates through free space starting from its waist
at z0 where the beam attains its minimum size W0

W 2(z) = W 2
0

[
1 +M4

(
λ

πW 2
0

)2

(z − z0)
2

]
. (5.18)

A comparison of an ideal gaussian beam and a distorted beam with M2 = 1.5 is
plotted in Fig. 5.3.

5.3 Atom optics and ABCD matrices

In this section the step from light optics to atom optics is made. In Sec. 5.3.1 the
equivalence of the paraxial wave equation and Schrödinger’s equation for matter
waves is discussed. Further, via the Huygens-Fresnel integral applied to matter
waves we arrive in Sec. 5.3.2 at a formulation of the ABCD matrices for atoms. In
Sec. 5.3.3 we relate the temperature of a non-interacting gas to its focal width.

5.3.1 Schrödinger equation and Wigner function

The application of techniques from optics to matter waves can be established by
exploiting the analogy between the paraxial wave equation for light Eq. (5.5) and
the Schrödinger equation for matter waves:[

�
2

2m
∇2

x + i�
∂

∂t
+ Vext(x)

]
ψ(x, t) = 0. (5.19)

As in Sec. 5.2 we restrict ourselves here to one single transverse dimension. Note
that the Schrödinger equation Eq. (5.19) is equivalent to the paraxial wave equation
[Eq. (5.5)] with the correspondences [149]:

t←→ z,
m

�
←→ k, Vext ←→ 0, ψ ←→ ũ. (5.20)

In the Schrödinger equation the wavefunction Ψ(x, t) propagates in time equivalently
to the wavefront ũ(x, z) along the axis z. Additionally, for a wave propagating in a
medium with refractive index n(x) = n0−n2x

2/2, as in a “duct” (see [124] p. 652 and
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the Errata) the correspondence for a harmonic oscillator potential Vext = mω2x2/2
is

ω2 ←→ n2

n0

. (5.21)

Because of this equivalence, the ABCD matrix formalism and the Huygens-Fresnel
integral can also be applied to the wavefunction Ψ to calculate its propagation
through a cascade of harmonic potentials and sections of free space.

Let us look at a matter wave Ψ(x, t) obeying Eq. (5.19) with, in general, a
distorted density and phase distribution. The distribution in momentum2 space
Ψ̄(k) can be found by taking the Fourier transform of Ψ(x), defined as

Ψ̄(k) =
1√
2π

∫ ∞

−∞
Ψ(x)e−ikxdx. (5.22)

Before continuing with the ABCD formalism for matter waves, it is useful to
briefly digress and introduce the Wigner distribution function (WDF). The Wigner
distribution function W (x, k) characterizes the state of a quantum system in phase
space [154,163–165]

W (x, k, t) ≡ 1

2π

∫ ∞

−∞
Ψ(x+ x′/2, t)Ψ∗(x− x′/2, t)e−ikx′

dx′, (5.23)

were ∗ denotes the complex conjugate. The projections of the WDF have a physical
meaning. The density distribution is∫ ∞

−∞
W (x, k, t)dk = |Ψ(x, t)|2, (5.24)

and the momentum distribution is∫ ∞

−∞
W (x, k, t)dx = |Ψ̄(k, t)|2. (5.25)

The integral over the whole Wigner chart yields the total probability, equal to 1 for
a normalized wavefunction ∫ ∞

−∞

∫ ∞

−∞
W (x, k, t)dxdk = 1. (5.26)

Unless stated otherwise we will indeed take W (and Ψ) to be normalized in this way.
The Huygens-Fresnel integral [Eq. (5.8)] acts on the Wigner distribution function

as a coordinate transformation. Specifically, let two functions f(x) and g(x) be
related by the Huygens-Fresnel integral. Then the Wigner functions of f(x) and
g(x) are related by [155]

Wg(x2, k2) = Wf (x1, k1), (5.27)

2For notational convenience we actually use the wavevector k instead of the momentum p = �k.
Note for instance that the phase space area ΔxΔk is dimensionless.
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where the coordinate transformation can be written in the ABCD form(
x2

k2

)
=

(
A B
C D

)(
x1

k1

)
. (5.28)

In this way we can conveniently express the transformation of a matter wave in
phase space when it traverses a system of cascaded potentials represented by the
total ABCD matrix.

5.3.2 ABCD matrices for matter waves

The aim of this section is to find the propagation of the second-order moments of a
wavepacket through an ABCD system that represents our atom focusing experiment.
Part of this section follows the work by Bastiaans [155].

Wigner chart

We start by drawing the simple Wigner chart for a one-dimensional, minimum-
uncertainty (“Heisenberg-limited”), atomic wavepacket (with the same mathemati-
cal form as an ideal gaussian beam). The wavefunction is

ΨH(x) =

(
1

2πΔx2

)1/4

e−x2/(2Δx)2 . (5.29)

The density distribution is symmetric around x = 0 (and k = 0). In the case
〈x〉 = 〈k〉 = 0, the second-order moments of the density distribution Δx2(t) and the
momentum distribution Δk2(t) are defined as

Δx2(t) =

∫ ∞

−∞
x2|Ψ(x, t)|2dx, (5.30)

Δk2(t) =

∫ ∞

−∞
k2|Ψ̄(k, t)|2dk. (5.31)

For ΨH(x) [Eq. (5.29)] the product ΔxΔk = 1/2, indeed the wavepacket is Heisen-
berg limited. Using this relation and Eq. (5.23) we arrive at the Wigner distribution
function of the minimum-uncertainty wavepacket

WH(x, k) =
1

π
e−

k2

2Δk2− x2

2Δx2 . (5.32)

A graphical representation of WH(x, k) is shown in Fig. 5.4.

propagation of second-order moments

In addition to the second-order moments of position and momentum [Eq. (5.30)] it
is useful to define a ‘mixed moment’ Δxk employing the WDF

Δxk(t) = Δkx(t) =

∫ ∞

−∞

∫ ∞

−∞
xkW (x, k, t)dxdk, (5.33)
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Figure 5.4: The Wigner distribution function (WDF) characterizes the state of a quantum system in

phase space. Shown here is the Wigner distribution function of a minimum uncertainty wavepacket.

The propagation of the second-order moments Δx2,Δk2,Δxk and Δkx of a wavepacket
that propagates through an ABCD system, between times t1 and t2, is also conve-
niently written in matrix form [155]

(
Δx2(t2) Δkx(t2)
Δxk(t2) Δk2(t2)

)
=

(
A B
C D

)(
Δx2(t1) Δkx(t1)
Δxk(t1) Δk2(t1)

)(
A B
C D

)T

. (5.34)

The ABCD matrices have unit determinant, therefore Eq. (5.34) shows that the
determinant of the matrix of moments at t2 equals that at t1: The determinant is
an invariant of the propagation in this system

Δx2(t)Δk2(t)−Δxk(t)Δkx(t) ≡
(
M2

2

)2

. (5.35)

This determinant defines what was called the M2 factor for matter waves by Riou
and coworkers [146,148].

As an example, we write down M2 for a classical ideal gas in a harmonic trap.
Such a classical Boltzmann gas assumes a gaussian shape in a harmonic potential.
Atoms do not interact and the density distribution can be treated separately for
each direction. Consider a gas in thermal equilibrium so that the average position
and momentum are not related and Δxk = 0. In the axial direction the position
spread is given by

ΔxT =

√
kBT

mω2
‖
, (5.36)

while the Boltzmann gas has a momentum spread

ΔkT =
1

�

√
mkBT . (5.37)
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Equation (5.35) then yields the quality factor for a trapped Boltzmann gas

M2

2
=
kBT

�ω‖
. (5.38)

Intuitively, it counts the number of thermally occupied modes of the axial harmonic
oscillator potential.

Equation (5.34) describes how the second-order moments of a wavepacket prop-
agate through a general ABCD system. The next step is then to write down the
ABCD matrices corresponding to the specific transformations in phase space that
we encounter in our focusing experiment. The focusing procedure consists of two
stages: In the first stage we pulse on the harmonic potential V (x) = mω2x2/2. In the
second stage the magnetic potential is completely switched off, and the wavepacket
propagates freely.

harmonic potential ABCD matrix

Consider a classical particle with position x and velocity p(t)/m = �k(t)/m in
the harmonic potential V (x) = mω2x2/2. The particle motion is described by the
equations

dx

dt
=

�k(t)

m
,

�
dk

dt
= mω2x(t). (5.39)

The general solution for the propagation of the particle from a time t1 to a later
time t2 is

x2 = x1 cosωt+
�

mω
k1 sinωt. (5.40)

From Eq. (5.40) and its derivative we can see that the ABCD matrix acting on the
pair (x, k) is(

x2

k2

)
=

(
cosωt �

mω
sinωt

−mω
�

sinωt cosωt

)(
x1

k1

)
≡MC

(
x1

k1

)
. (5.41)

To solve the Schrödinger equation for a quantum mechanical particle in a har-
monic oscillator potential, Namias [166] has introduced the so-called fractional order
Fourier transform (FrFT).3 To model our focusing potential we write the fractional
Fourier transform for matter waves in the matrix representation. The ABCD matrix
corresponding to the standard Fourier transform for matter waves acting on the pair
(x, k) is

MFT =

(
0 �/mω

−mω/� 0

)
, (5.42)

3This mathematical method was applied later on in the field of optics by Mendlovic, Ozaktas and
Lohmann [167,168]. These authors made the connection between the fractional Fourier transform
and the propagation of waves in a “duct”.
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with ω the frequency of the harmonic oscillator. The ABCD matrix of a FrFT can
be defined as

Mq
FrFT = MFT, (5.43)

so that if MFrFT is applied q times, the full Fourier transform is regained. MFrFT

can be written in the general form that corresponds exactly to the classical matrix
in (5.41)

MFrFT = MC, (5.44)

where
ωt = p

π

2
=

π

2q
,

with p the fractional order of the FrFT. We have the full Fourier transform for p = 1.
The fractional Fourier transform generates a rotation of the Wigner distribution
function over an angle ωt in phase space (x, k) with a scaling factor �/mω [as is
illustrated in Fig. 5.5(b)]. The value ωt = π/2 corresponds to the standard Fourier
transform that exactly interchanges the role of position and momentum.

free evolution ABCD matrix

Free temporal evolution of a matter wave simply means k2 = k1 and x2 = x1+�kt/m.
In ABCD matrix form we write

Mfree =

(
1 �t/m
0 1

)
. (5.45)

The above matrix is equivalent to the action of the Fresnel transform on the Wigner
function. Using Eq. (5.27) we find that free propagation results in a shearing defor-
mation of the Wigner distribution along the x-direction

W (x, k, t) = W (x+
�t

m
k, k, t), (5.46)

as is illustrated in Fig. 5.5(c).
From relation (5.34) and using M2 [Eq. (5.35)] we get for the propagation of

Δx2(t) of a wavepacket

Δx2(t2) = A2Δx2(t1) + 2ABΔxk(t1) +B2 (M2/2)2

Δx2(t1)
. (5.47)

Filling in the elements of Mfree and starting from t = tfocus, the time of the narrowest
width, where Δxk = 0 we arrive at the equation that describes the free propagation
of a matter wave

Δx2(t) = Δx2
0

[
1 +M4

(
�

2mΔx2
0

)2

(t− tfocus)
2

]
, (5.48)

where we have written Δx(tfocus) ≡ Δx0 for brevity. This is equivalent to the relation
(5.18) when the correspondence (5.20) is used.
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atomic wave focusing ABCD matrix

Finally, by multiplying MFrFT and MFree we obtain the complete ABCD matrix for
the focusing of an atomic wave. We apply the magnetic lens in a pulsed fashion
with a pulse time tp followed by a free propagation time tfree ≡ t− tp

M =

(
cosωtp − tfreeω sinωtp

�

mω
sinωtp + �tfree

m
cosωtp

−mω
�

sinωtp cosωtp

)
. (5.49)

To find the focus time we require A = 0

tfocus = tp +
cosωtp
ω sinωtp

. (5.50)

The scaling time tscale gives the relation between initial velocity and final position

B(tfocus) =
�

mω sinωtp
=

�

m
tscale. (5.51)

With the above insights, the procedure can be simply extended to also include
ramps in the potential of the form ω2(t) = ω2

0 + αt, as is used in the experiments
described in Sec. 5.6. This leads to an ABCD matrix similar to (5.49) that can be
obtained by integration of Eq. (5.39).

5.3.3 Temperature of a focused non-interacting gas

In the case of a gas of non-interacting particles we can treat each particle separately.
We can subsequently calculate the propagation for an ensemble of non-interacting
particles through any ABCD system. Specifically, we calculate the width of a ther-
mal ensemble that is focused using our procedure represented by an ABCD matrix
such as (5.49). The width of the focused cloud yields the temperature of a gas.

The propagation of point particles in the classical limit is equivalent to the light-
ray limit in optics. The gaussian density distribution of the Boltzmann gas along
the trap axis is

nl(x) = n0 exp [−βE(x)] = n0 exp

[
−1

2
βmω2

‖x
2

]
, (5.52)

where n0 is the density in the trap center and β = (kBT )−1. Using the temporal
scaling of the gaussian cloud we find the evolution of the axial density distribution
in time

nl(x, t) =
n0ΔxT

Δx̃(t)
exp

[
−1

2

( x

Δx̃

)2
]
, Δx̃(t) =

√
Δx2

TA
2(t) + Δk2

TB
2(t), (5.53)

where we have used the matrix elements A(t) and B(t) and the thermal position
and momentum spread ΔxT and ΔkT respectively [Eq. (5.36) and Eq. (5.37)].

For the case of a 3D harmonically trapped ideal Bose gas, at a temperature above
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degeneracy, the density distribution is given in a semiclassical approximation by
Eq. (2.25). It is useful to introduce the axial and radial harmonic oscillator lengths
l‖ =

√
�/mω‖ and l⊥ =

√
�/mω⊥ respectively. We arrive at the linear density nl

along x by integrating Eq. (2.25) over both radial directions

nl(x) =
l4⊥
Λ5

T

g5/2(ze
−βmω2

‖x2/2). (5.54)

If the cloud is focused in the axial direction we have access to the density np in
momentum space [obtained after integration of Eq. (2.26)]

np(p‖) =
l4⊥

mω‖Λ5
T

g5/2(ze
−βp2

‖/2m). (5.55)

This momentum distribution translates into a spatial distribution in the focus as a
function of the scaling time [as in Eq. (5.51)]

nT (x, tscale) =
l4⊥

ω‖tscaleΛ5
T

g5/2(ze
−βmx2/2t2scale). (5.56)

Note that for interacting clouds the treatment is not so straightforward (see Sec. 5.5).
Note also that for 1D clouds the semiclassical treatment of the radial momentum
distribution will fail.

5.4 Quasi-condensate as nonideal atomic beam

A quasi-condensate, at a temperature below
√
γTd, can be described as a macro-

scopic wavefunction obeying the Gross-Pitaevski equation [Eq. (2.30)] with a stable
Thomas-Fermi like density profile but a phase that fluctuates along the symmetry
axis [77] as was discussed in Sec. 2.4.4. The macroscopic wavefunction can be written
as

ΨQ(x) =
√
nl(x)e

iφ(x), (5.57)

where nl is the linear atomic density obeying Eq. (2.36). This quasi-condensate
wavefunction is governed by inter-atomic interactions until its release from the trap
when the interaction energy vanishes almost instantaneously (see Sec. 5.5 and refer-
ences there). From that time onwards the atomic wave is well described by the linear
Schrödinger equation in 1D, Eq. (5.19) and we can apply the ABCD formalism for
matter waves to study its behavior. Note that the normalization of ΨQ is such that∫ |Ψ(x)|2dx = N , the total particle number.

While the density of the 1D quasi-condensate is stable, the phase can fluctuate.
Low energy excitations of elementary modes in the energy range �ω‖ < ε � μ
result in an increased axial momentum spread. The excitations, that obey the
Bogoliubov-de Gennes equations, with an energy spectrum given by Eq. (2.39) have
a Bose distribution [Eq. (2.11) and μ = 0]. The k = 0 mode of this spectrum is
simply the ground state that has an arbitrary constant phase. All higher modes are
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orthogonal to the ground state mode and have zero spatial average. The wavevector
k counts the number of nodes in the corresponding mode.

In order to find the relation between the quasi condensate temperature and its
width at the time of focus we exploit the analogy between the quasi-condensate
matter wave ΨQ and the nonideal optical beam of Sec. 5.2.2. Following Riou et
al. [146, 148] we have given the quality factor M2 for matter waves in Eq. (5.35).
Equation (5.34) showed that M2 is invariant under linear ABCD transformations.
We extend the work by Riou here by giving a physical interpretation of the qual-
ity factor by relating M2 to the quasi-condensate temperature. We have seen in
Sec. 5.3.2 that our focusing procedure is composed of a rotation followed by a shear-
ing deformation of the Wigner chart. Figure 5.5 shows a schematic representation of
the focusing process. An initial BEC in a cigar shaped trap has a large spatial extent
and a small momentum spread [Fig. 5.5(a)]. The application of a harmonic potential
pulse with frequency ω and duration tp, performs a rotation with an angle θ = ωtp
[Fig. 5.5(b)]. Free evolution, finally, performs a shearing deformation. The focus
is reached when Δx reaches its minimum: �Δk/mω sin θ [Fig. 5.5(c)]. At tin the
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Figure 5.5: Schematic representation of the focusing process as a deformation of the WDF. (a) An

initial BEC in a cigar shaped trap has a large spatial extend and a small momentum spread. (b) The

application of a focussing pulse performs a rotation with an angle θ. (c) Free evolution performs a

shearing deformation. The focus is reached when Δx reaches its minimum �Δk/mω sin θ.

WDF of the equilibrium quasi-condensate at rest is aligned with both the position
and momentum axes; i.e., there is no correlation between position and momentum,
hence the mixed moment Δxk = 0. Therefore, we can simplify Eq. (5.35) as

M2

2
= Δx(tin)Δk(tin). (5.58)

The axial momentum width Δp(T ), that is broadened by the thermal fluctuations
of the phase, is expressed by the second-order moment of the projection of the
WDF of ΨQ. A calculation of Δp for a harmonically trapped cloud, from the phase
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fluctuation spectrum employing the local density approximation, was performed by
Gerbier et al. [74, 169], who find the approximate relation

Δp2(T ) ≈
(
α�

L

)2

+

(
β�

lφ(T )

)2

, (5.59)

with α = 2.0, β = 0.65 and where the phase coherence length lφ is inversely propor-
tional to the temperature. The phase coherence length is given for the 1D homoge-
neous case by Eq. (2.40). For a harmonically trapped condensate in the 3D to 1D
cross-over lφ can be conveniently expressed as a function of the peak linear density
nl(0) [74] if the local density approximation is employed

lφ =
�

2nl(0)

mkBT
. (5.60)

The quasi-condensates in the experiments discussed in this chapter have T ≈ 102 nK
and nl(0) ≈ 102 μm−1. For these numbers Eq. (2.40) yields lφ ≈ 6 μm; much smaller
than the cloud length L ≈ 102 μm. Equation (5.59) then simplifies to

Δp = �Δk =
β�

lφ
. (5.61)

Equation (5.58) relates the momentum width, Eq. (5.61), to the M2 factor. We
write Δx(tin) = κL and arrive at

M2 = 2βκ
L

lφ
, (5.62)

where κ ≈ 1/
√

5 for our typical parabola-like clouds.
Equation (5.62) allows us to express relation (5.48) explicitly as a function of the

phase coherence length. We arrive at the expression for the free-space propagation
of a phase-fluctuating quasi-condensate

Δx2(t) = Δx2
0

[
1 +

(
2βκ

L

lφ

)2 (
�

2mΔx2
0

)2

(t− tfocus)
2

]
. (5.63)

In Sec. 5.6 we use Eq. (5.63) in a model to fit our experimental results. This will
allow us to determine lφ, and subsequently to extract the temperature of the quasi-
condensate from Eq. (5.60).

5.5 Weakly interacting condensate in a time de-

pendent trap

The treatment of quasi-condensate propagation that was given in the previous sec-
tion holds in the limit of vanishing interatomic interactions. In this section we
treat the first part of the focusing process including interactions. We study the
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time evolution of a trapped (quasi-)condensate in a changing harmonic potential.
Three-dimensional trapped condensates respond differently to a change in potential
as compared to the 1D trapped case. Our condensates are in the cross-over from
3D to 1D. It will be shown however that for small evolution times (our condensate
is released shortly after the change in harmonic potential) the 3D and 1D solutions
give quantitatively very similar results.

The trapped three-dimensional condensate has a parabolic shape in all spatial
dimensions, see Sec. 2.4.1. The evolution of the cloud size can be described with
scaling solutions [156–158]. We follow the notation of Castin and Dum [156]. The
key point of this approach is that a parabolic cloud shape is maintained if the
strength of the harmonic potential is changed in time. In particular, if the cloud is
suddenly released from the trap it will expand maintaining its parabolic shape. The
scaled cloud size bi in direction i = x, y, z evolves like

b̈i =
ω2

i (0)

bi(t)bx(t)by(t)bz(t)
− ω2

i (t)bi(t). (5.64)

In Sec. 5.6 we will show a numerical solution of (5.64) for our experimental focus
pulse ω‖(t), for the case of the 3D cigar with ω‖ ≡ ωx >> ωy = ωz ≡ ω⊥. Here
we consider a sudden opening of a cylindrically symmetric trap at t = 0, Eq. (5.64)
then simplifies to

d2

dτ 2
b⊥ =

1

b3⊥(t)b‖(t)
,

d2

dτ 2
b‖ =

ε2

b2⊥(t)b2‖(t)
, (5.65)

where we have introduced the dimensionless time parameter τ = ω⊥(0)t and the
small inverse aspect ratio ε = ω‖(0)/ω⊥(0) � 1. To zeroth order in ε, sufficient for
our experiments with ε ≈ 1/400, we find the solution for Eq. (5.65): b‖ = 1, i.e. the
axial expansion of the cloud is negligible. The radial expansion scales as

b⊥(τ) =
√

1 + τ 2, (5.66)

and grows linearly for t � ω−1
⊥ , i.e. shortly after release. We solve Eq. (5.64) nu-

merically for more complicated, realistic temporal potential changes. An example
is given in Fig. 5.6 where the red curves correspond to the shape oscillation in a
3D cloud that would appear if the focus pulse (an increase of the axial trapping
frequency by a factor of three at t = 0) would be left on indefinitely. This results
in large anharmonic amplitude oscillations showing the nonlinear character of the
system. There is a visible difference between the periods of these large oscillations
and that of small harmonic amplitude oscillations that have a quadrupole frequency
ωQ =

√
5/2ω‖ (dashed red lines in Fig. 5.6) [170]. The condensates in our experi-

ments are in the cross-over from the 3D to the 1D regime. This alters the scaling
equation. In the 1D limit the axially compressed condensate will remain in the ra-
dial ground state as long as the axial dynamics is slow compared to the radial trap
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Figure 5.6: Large amplitude oscillations of an elongated BEC in a harmonic trap shows nonlinear

behavior; red lines are solutions for the 3D case, the 1D solutions are drawn in blue. (a) Scaled radial
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yielding ωQ =
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5/2ω‖ in 3D and ωQ =
√

3ω‖ in 1D. (c) A comparison of the axial inward velocity

for 3D and 1D directly after the start of an oscillation shows that the difference is negligible in the first

5 ms.

frequency and the interaction energy is negligible compared to the radial vibration
energy μ� �ω⊥. In that limit the scaling equation reads

b̈‖ =
ω2
‖(0)

b2‖(t)

(
ω⊥(t)

ω⊥(0)

)4

− ω2
‖(t)b‖(t). (5.67)

Figure 5.6 shows a comparison of the 1D and 3D results. The blue dashed line
indicates the quadrupole frequency ωQ =

√
3ω‖ expected for small-amplitude oscil-

lations. In Fig. 5.6(c) we plot ḃ‖ for the 1D and 3D case. For our focusing pulse
of 5.4 ms (see Sec. 5.6), that is much shorter than the axial harmonic oscillator
time, the difference between the inward velocity for the 1D and the 3D solution is
negligible. We calculate a focus time for the 1D case that is only 0.3% longer than
that for the 3D case. We model a sudden release from the trap by ω⊥ → 0 at the
time of release thus cancelling the first term on the right hand side of Eq. (5.67)
from the time of release onwards.
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Figure 5.7: (a) Linear density of an elongated Bose gas after 20.5 ms of free expansion. Each

single realization shows strong random density modulations, while the average density distribution is

smooth and reproducible. An example single realization is shown in black, and the inset shows the

corresponding optical density image before integration along z. The density distribution found after

averaging 50 images is shown in red. The final frequency of the evaporation RF is 1.53 MHz for these

images. (b) Our magnetic microtrap configuration, indicating the Z-wire on the atom chip, the two

orthogonal sets of three miniwires, and the orientation of the frame of reference.

5.6 Experiments

The experimental procedure for the quasi-condensate focusing experiments starts
with the generation of an elongated degenerate cloud as described in Sec. 4.2.7.
For a final RF frequency of 1.53 MHz we have an almost pure quasi-condensate
with an atom number of 8 · 103 and a linear density in the trap center of 80 μm−1,
corresponding to μ ≈ 0.6�ω⊥, i.e. on the 1D side of the dimensional cross-over
(ω⊥/2π = 3.28 kHz, �ω⊥/kB = 158 nK, as stated in Sec. 4.2.7). We perform three
types of measurements on the gas using absorption imaging in time-of-flight (after
free fall from the trap), in situ (in the trap), and focus (after the application of a
focusing pulse). We vary atom number and temperature of the gas by changing
the final RF frequency. The gas is probed using absorption imaging with circularly
polarized light resonant with the |F = 2〉 → |F ′ = 3〉 transition of the 87Rb D2
line at one third of the saturation intensity. For the time-of-flight and in focus
data described below, the quantization axis is defined by a small magnetic field of
By = 2 G along the imaging axis, and the illumination time is 80 μs. For the in situ
measurements a shorter pulse of 20 μs is used to reduce blur due to heating of the
atoms from photon recoil.

We start the description of our results with the time-of-flight data. A typical ab-
sorption image, and the resulting linear density along the axis is shown in Fig. 5.7(a).
Each individual realization shows strong density fluctuations (black line), while av-
eraging over 50 images result in a smooth distribution (red line). These fluctuations
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Figure 5.8: Fits to an average over 8 absorption images of a bimodal cloud during focusing. (a)

Absorption image corresponds to final RF frequency of 1.57 MHz and a time of 17.3 ms after the start

of the focus pulse. (b) Gaussian fit to thermal part, central area is excluded from the fit. (c) Data

with fitted pedestal subtracted. (d) Gaussian fit to the central peak after subtraction of the pedestal.

(e) Residue of the fit. The color coding of the optical density is indicated with a scale bar, each image

size is 430× 430 μm2.

develop from the initial phase fluctuations of the degenerate gas and have been stud-
ied in detail for elongated 3D condensates with μ > �ω⊥ [171–173]. Images like these
clearly establish the phase-fluctuating character of our one-dimensional atom clouds
corresponding to M2 � 1. A quantitative analysis of the axial density fluctuations
is cumbersome, a point we will come back to in Sec. 5.8. Furthermore, the radial
expansion, visible in the z direction, is also of limited use for characterizing temper-
ature and chemical potential in our regime of μ < kBT and kBT ≈ �ω⊥, because
the radial expansion is then dominated by the radial ground-state energy [39]. As
we will now discuss, much more information can be readily obtained from the focus
data.

The magnetic focusing pulse is created by ramping up the axial trapping fre-
quency from 8.5 Hz to 20 Hz in 0.8 ms, maintaining this for 3.8 ms, and ramping
back down to 8.5 Hz in 0.8 ms, as is illustrated in Fig. 5.9. The axial trapping
potential is changed by sending a current of (5, -0.23, 5)A through miniwires 1, 2
and 3 respectively [see Fig. 5.7(b)]. This is followed by a sudden switch-off of the
magnetic trap. During the focusing pulse the cloud length reduces by only 15%,
see Fig. 5.6. After switching off the magnetic trap, the cloud expands in the radial
direction on a timescale of 1/ω⊥ (cf. Sec. 5.5), so that the interactions vanish rapidly
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compared to the relevant axial timescale and the subsequent axial contraction can
be treated as free propagation. After a free propagation time of ≈ 15 ms the cloud
comes to an axial focus.

As an example, Fig. 5.8 shows an absorption image of a partly condensed cloud
taken 17.3 ms after the start of the focus pulse corresponding to a final RF frequency
of 1.57 MHz; we have averaged over 8 images. We perform a bimodal gaussian fit to
the 2D atomic density distribution and extract atom number and axial and radial
dimensions of the thermal and condensed parts of the bimodal cloud. The axial
shape of the quasi-condensate upon focusing changes from approximately parabolic
in the trap (see Sec. 2.4.3) to an approximately Lorentzian shape in the focus as
was shown in Ref. [169]. In addition to that, the focal shape is blurred by the finite
resolution limit of our detection optics. To treat density distributions with arbi-
trary shapes we measure the second-order moment [Eq. (5.30)] of the axial density.
In practice, we do this by fitting the axial density distribution with the gaussian
function aexp[−x2/2Δx2], where Δx is the second-order moment of the fitted Gaus-
sian distribution. This procedure is expected to give good estimates for the position
spread in the focal region where the atomic density distribution is well approximated
by a gaussian, while it would overestimate the second-order moment for a trapped
pure quasi-condensate profile [Eq. (2.36)].

We use the following hybrid model to describe the complete time evolution
of a quasi-condensate during the focusing process. For the first part, the quasi-
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condensate in the trap during a focusing pulse, we use the scaling equations (Sec. 5.5).
We numerically integrate the scaling equations for our exact values of ω(t). Subse-
quently, to model the free evolution after release from the trap, we use the nonideal
atomic beam description [Eq. (5.63)]. We match the two parts by calculating the
cloud size Δx(tp) and inward velocity Δẋ(tp) at the end of the focus pulse (t = tp)
from the scaling equations and impose these as boundary conditions for Eq. (5.63).
These boundary conditions fix the “far-field divergence” of the matter wave and
thereby the relation between M2 and Δx0, leaving only a single free fitting param-
eter.

In Fig. 5.9 we show experimental focus data for an almost pure quasi-condensate
of 8 · 103 atoms, corresponding to a final RF frequency of 1.53 MHz; each data
point is obtained from a gaussian fit to an average over three absorption images.
We fit the experimental data with the hybrid model (straight line) based on the
scaling solution during the focus pulse and the nonideal matter wave, after that
[Eq. (5.63)]. Indicated with the dotted line is the result of the scaling equation
alone for a quasi-condensate. For comparison we show the classical trajectory of
a point particle starting at rest calculated with the ABCD formalism (dash-dotted
line). The timing of the axial potential pulse is indicated as the shaded area. The
focus time resulting from the scaling equations is tfocus = 20.9 ms. The fit results
in Δx0 = 3.2 ± 0.6 μm and M2 = 21 ± 4. Assuming that M2 is constant during
the focus pulse, and with the peak linear density obtained from the in situ data,
nl(0) = 80 μm−1, we find from Eq. (5.62) and Eq. (5.60) T = 0.16± 0.04 μK.

In Fig. 5.10 we show the fit results for the partly condensed cloud, for a final RF
frequency of 1.57 MHz (as in Fig. 5.8) corresponding to a thermal cloud containing
Nex = 5.5±0.3 ·103 and a condensed part of N0 = 1.3±0.1 ·103. The thermal cloud
radial expansion (�) is approximately linear for t� ω−1

⊥ [Eq. (5.66)], while the axial
size shows the effect of focusing (•). The much smaller axial size of the condensed
part is indicated with (�). From a fit to the radial expansion of the thermal part we
extract T = 0.46 ± 0.01 μK. We calculate the axial size for this temperature with
Eq. (5.53) and find the drawn black curve. The measured axial size at t = 0 clearly
exceeds ΔxT [Eq. (5.36)] of an ideal Boltzmann gas. We attribute the broadening
to the repulsive force of the non-negligible atomic interactions in the trap. We
have modelled the effect of interactions using a reduced effective initial potential
Veff = mω2

effx
2/2 with ωeff = 6.7 s−1 < ωx to match the calculated and measured

initial sizes. If we calculate the propagation of the cloud width upon applying the
same focus potential as before we obtain the dashed line in Fig. 5.10. The dash-
dotted line indicates a fit to the central peak using the hybrid model where we have
not only used Δx0 as fitting parameter but have additionally let tfocus free in the
fitting process. The resulting focus time is 18.1 ms, shorter than the 20.9 ms that
we find for condensates of 8 · 103 atoms. We discuss this effect of a reduced focus
time in Sec. 5.7.

In practice we have measured the in focus distribution at a fixed time t = 20.9 ms.
Figure 5.11 shows results of in focus measurements when we lower the final RF
frequency. In Fig. 5.11(a) we show the cloud temperatures determined from the
quasi-condensate focal width (�). The error bars are estimated based on the finite
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Figure 5.10: Experimental focus data for the thermal and condensed parts of a partially condensed

cloud. The thermal cloud radial expansion (�) is approximately linear for t � ω−1
⊥ , while the axial size

is clearly focussed (•). The much smaller axial size of the condensed part is indicated with (�), the

dash-dotted line is the result of a fit using a hybrid model (see text). From a fit to the radial expansion

of the thermal part we extract T = 0.46 ± 0.01 μK. We calculate the axial size for this temperature

and find the drawn (dotted) curves when we neglect (include) the repulsion of the thermal atoms by

the condensate in the trap.

optical resolution of Δx = 2.8 ± 0.6 μm and on a 20% error in Δx0 as found in
the fit of Fig. 5.9. We compare the results with a temperature determined from the
radial expansion energy of the thermal pedestal of the bimodal clouds (�). In the
latter temperature determination, the contribution to the expansion energy from
the ground state has been neglected. The dash-dotted line is to guide the eye and
indicates a ratio of 11 of the trap depth (set by ωRF) and the cloud temperature.
The dashed line corresponds to �ω⊥/kB. In Fig. 5.11(b) we show the atom number
in the condensate (�) and in the thermal component (•). We discuss here the
discrepancies between the two presented temperature measurements. We expect
that the radial expansion data overestimate the temperature for T � �ω⊥ where the
radial size is dominated by the size of the harmonic oscillator ground state. On the
other hand, for the central peak width, we have seen in Fig. 5.10 that the focus time
shifts towards lower values for degenerate clouds at higher temperatures and lower
linear densities indicating deviations from the quasi-condensate model that can be
the reason for the deviating results for ωRF � 1.55 MHz. The presence of density
fluctuations can explain the effect of a shift of the focus towards earlier times for
higher final RF values as will be discussed below (see also Ch. 6).

It was shown in Fig. 5.9 that the quasi-condensate focusing description works fine
for condensates with atom numbers ∼ 8 ·103. For lower atom numbers, however, we
see deviations as is illustrated by the observed reduced focus time for condensates
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Figure 5.11: Characterization of the measured atomic clouds as a function of the final RF frequency

ωRF, as determined from Gaussian fits to the in focus data. (a) Temperature from the radial (�) size

of the broad Gaussian fit to the in focus data. The dash-dotted line is to guide the eye and indicates a

ratio of 11 of the trap depth (set by ωRF) and the cloud temperature. The dashed line corresponds to

�ω⊥/kB . (b) Atom number from the in focus data: wide distribution (•) and central peak (�).

with lower atom number (triangles in Fig. 5.10). Figure 5.12 shows focus traces
for varying atom number for the same final ωRF = 1.52 MHz of the evaporation
trajectory, each datapoint comes from a gaussian fit to an absorption image averaged
over typically 4 images. For comparison the focus data for N = 8 · 103 presented
in Fig. 5.9 are also plotted (black). We reduce the atom number by reducing the
duration of the first part of the RF evaporative cooling ramp, while leaving the last
part of the ramp unchanged. When the atom number is lowered we observe that
the time of narrowest waist comes earlier. Additionally the waist size increases with
decreasing atom number.

5.7 Discussion

The observed reduced focus time and increased focal width when the atom number is
lowered, as presented in Fig. 5.12, likely stem from deviations in the degenerate cloud
during the focus pulse from the mean-field description. This can be qualitatively
understood in the following way: Although our experimentally observed clouds are
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Figure 5.12: Experimental focus data for varying atom number. When the atom number is intentionally

decreased we observe that the time of narrowest waist comes earlier. Atom numbers are indicated in

the legend. The dashed line indicates the resolution limit.

in the cross-over from 3D to 1D we can best understand the effects of reduced
coherence by considering the pure 1D case, corrections for the cross-over case do
not qualitatively change the argument. When the atom number is lowered, even at
constant temperature, the chemical potential decreases, cf. Fig. 2.2. As a result,
the relative importance of the density fluctuations increases as is also visible in
Fig. 2.2: Decreasing μ for constant finite temperature leads to an increasing two-
particle local correlation g(2). We conclude that, by reducing the atom number
at constant temperature, we enter the regime where T � √

γTd (see Sec. 2.6.2)
and the local value of g(2) becomes larger than 1. This means that the atomic
density fluctuates and that the quasi-condensate starts to behave more and more
like a decoherent thermal cloud. This results in a broadened focus that moves
to earlier focus times as the coherence is reduced. The reduced focus time for
decoherent clouds can also be seen in Fig. 5.9 by comparing the dotted line for a
quasi-condensate with the dash-dotted line for non-interacting particles. In Ch. 6
we present a more detailed quantitative description of this reduced coherence based
on the Yang-Yang thermodynamics.

We observe very narrow density distributions with Δx waists down to 3 μm.
These small features are close to the resolution limit of our optical system, see
Sec. 3.9. The optical resolution could be improved, for example, by placing an
objective lens in vacuo or outside a new and smaller vacuum system.
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5.8 Conclusion and outlook

We have presented a model that describes the propagation of a quasi-condensate
when it is focused in free flight. This model enables us to quantitatively extract
the temperature of a phase-fluctuating quasi-condensate from the atom-beam qual-
ity factor M2. We have thus implemented a quasi-condensate thermometer. The
temperature of the quasi-condensate is a direct measure of the phase coherence. By
measuring the momentum spread of a focused quasi-condensate we probe the first-
order correlation function. These correlations are the fundamental ingredient for the
collective behavior of degenerate gases and of importance in possible applications of
coherent matter waves like the guided-wave atom-interferometer [96].

We have also seen deviations from the quasi-condensate description in the regime
where the mean-field approach is not valid, i.e. for low linear atomic density and
relatively high temperature so that T � √

γTd. We will show in Ch. 6 that especially
in this regime of reduced coherence the focus method is very useful to provide
information on the correlations in the gas.

As was mentioned in Sec. 5.6 the analysis of the phase fluctuations after time-of-
flight is cumbersome. The difficulties stem from the large modulation depth of the
density fluctuations as shown in Fig. 5.7(a). We therefore can not use the analysis
method developed by Petrov et al. [77, 171]. As an outlook we suggest a possible
alternative approach, that we have tested preliminarily: A phase reconstruction
method. This method is based on the description of the quasi-condensate as a matter
wave, like light in the paraxial approximation. Employing the continuity equation it
is possible to reconstruct the phase of a general wave in 1D from two measurements
of the density distribution of this wave taken shortly after one another [174,175]. In
practice, we can not take two subsequent images of the same cloud because of the
destructive absorption imaging method. However we know from theory and repeated
measurements that the in situ density distribution is smooth and reproducible from
shot to shot. The constant in situ density distribution can therefore serve as the
first density measurement. Single time-of-flight density measurements could then be
sufficient to reconstruct the phase of the matter wave. The implementation of this
method and the analysis of its range of validity are beyond the scope of this thesis
but form a nice outlook for further study.

Another topic for further study could be to use extensions of the ABCD for-
malism to describe a (trapped) weakly interacting gas. One could make use of an
extended ABCD formalism that was given by Paré and Bélanger [176] to model light
propagation in non-linear (Kerr) media. Additionally, a recent preprint by Impens
and Bordé attacks the same problem [177].
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6 Yang-Yang thermodynamics on
an atom chip

In this chapter we describe measurements on the behavior of a weakly
interacting nearly one-dimensional (1D) trapped Bose gas at finite
temperature. We perform in situ measurements of spatial density
profiles and show that they are very well described by a model based
on exact solutions obtained using the Yang-Yang thermodynamic for-
malism, in a regime where other, approximate theoretical approaches
fail. We demonstrate Bose gas focusing as a means to gain exper-
imental access to the axial momentum distribution of the gas, and
find good agreement with the in situ results.

6.1 Introduction

Reducing the dimensionality in a quantum system can have dramatic consequences.
For example, the 1D Bose gas with repulsive delta-function interaction exhibits a
surprisingly rich variety of physical regimes that is not present in 2D or 3D (see
Sec. 2.6). This 1D Bose gas model is of particular interest because exact solutions
for the many-body eigenstates can be obtained using a Bethe ansatz (Sec. 2.5.2).
Furthermore, the finite-temperature equilibrium can be studied using the Yang-
Yang thermodynamic formalism [36–38], a method also known as the thermody-
namic Bethe ansatz (Sec. 2.5.3). The experimental achievement of ultracold atomic
Bose gases in the 1D regime [39–41, 178] has attracted renewed attention to the
1D Bose gas problem [73,84,179–181] and is now providing previously unattainable
opportunities to test the Yang-Yang thermodynamics.

In this chapter, we present the first direct comparison between experiments and
theory based on the Yang-Yang exact solutions. The comparison is done in the
weakly interacting regime and covers a wide parameter range where conventional
models fail to quantitatively describe in situ measured spatial density profiles. Fur-
thermore, we show that Bose gas focusing allows experimental access to the equi-
librium momentum distribution of the 1D gas, which is difficult to obtain through
other means.

Theory for the 1D Bose gas is summarized in Ch. 2. In brief, for a uniform 1D
Bose gas, the key parameter is the dimensionless interaction strength γ = mg1/�

2n1,
where m is the mass of the particles, n1 is the 1D density, and g1 is the 1D coupling
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constant. An overview of the regimes in 1D is shown in Fig. 2.4. At low densities
or large coupling strength such that γ � 1, the gas is in the strongly interacting or
Tonks-Girardeau regime [42, 43, 53]. The opposite limit γ � 1 corresponds to the
weakly interacting gas. Here, for temperatures below the temperature of quantum
degeneracy Td = �

2n2
1/2mkB, one distinguishes two regimes [59]. (i) For sufficiently

low temperatures, T � √
γTd, the equilibrium state is a quasi-condensate with

suppressed density fluctuations and fluctuating phase. The system can be treated
by the mean-field approach and by the Bogoliubov theory of excitations. The 1D
character manifests itself through long-wavelength phase fluctuations resulting in a
finite phase coherence length lφ = �

2n1/mkBT which greatly exceeds the mean-field
correlation length lc = �/

√
mn1g1. (ii) The temperature interval

√
γTd � T � Td

corresponds to the quantum decoherent regime [59], where both the density and the
phase fluctuate. Here, the condition lc � lφ required for the existence of a quasi-
condensate is no longer satisfied and the system can be treated as a degenerate ideal
gas combined with perturbation theory in g1. At temperatures near the crossover
to the quasi-condensate, T ∼ √

γTd, neither of the above mentioned approximate
theoretical approaches work and one has to rely on the numerical solution to the
exact Yang-Yang equations, as we show in this chapter.

Experiments on 1D Bose gases are usually carried out in harmonic traps with
strong transverse confinement and weak confinement along the symmetry axis, ω⊥ �
ω‖. A trapped gas is in the 1D regime if both temperature and chemical potential
are small with respect to the radial excitation energy, kBT, μ� �ω⊥. The effective
1D coupling can be expressed through the 3D scattering length a as g1 � 2�ω⊥a
if a � (�/mω⊥)1/2 [33][Eq. (2.34)]. Various physical regimes of a harmonically
trapped 1D gas have been discussed in Refs. [34,70,76,85]. The above classification
of the regimes for the uniform gas can be applied locally to the trapped gas if the
conditions for the local density approximation (LDA) are met [70, 76, 85]. It was
recognized early on that the physics of the degenerate part of the trapped cloud is
already effectively 1D if the weaker condition μ < �ω⊥ is satisfied [39–41,178].

We experimentally investigate the behavior of a weakly interacting trapped Bose
gas (γ ≈ 10−2) in the regime where μ < �ω⊥ and kBT � �ω⊥. Similar measurements
to our in situ data were previously performed at higher chemical potentials and
higher temperatures [60], in which case the observed density profiles were found to
be in disagreement not only with a pure quasi-condensate description and with an
ideal-gas description, but also with a model based on a Hartree-Fock approximation.
Our approach here is different in that we fit the data using a model based on the
solutions to the exact Yang-Yang equations [36,59] and use these fits to extract the
chemical potential and the temperature of the gas. The model describes our in situ
data very well, in contrast to the more conventional descriptions.

The outline of this chapter is as follows. In Sec. 6.2 a short summary of the used
methods is given. In Sec. 6.3 and Sec. 6.4 we describe the data obtained with the in
situ and in focus methods respectively. In Sec. 6.5 the presented data are discussed
and compared with theory. Finally, in Sec. 6.6, we conclude this chapter and give
an outlook to further experimental and theoretical investigations.
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6.2 Methods

For (nearly) 1D clouds, it is difficult to obtain experimental access to the axial
momentum distribution. The conventional time-of-flight method does not work for
this purpose, mainly because the cloud hardly expands axially beyond its long initial
length. In addition, we observe strong density fluctuations, similar to the example
given in Fig. 5.7(a), that develop in time-of-flight from the initial phase fluctuations
of our 1D degenerate clouds further complicating the analysis. Previous work for
elongated 3D condensates with μ > �ω⊥ can be found in Refs. [171, 172]. Bragg
spectroscopy has been demonstrated as a means to obtain the axial momentum
distribution of phase-fluctuating condensates [172], but this requires averaging over
many realizations of the experiment.

We gain experimental access to the axial momentum distribution using Bose
gas focusing a technique that is described in detail in Ch.5. In brief, we apply a
short, strong axial harmonic potential yielding a kick to the atoms proportional to
their distance from the trap center (analogous to the action of a lens in optics),
followed by free propagation. As a result the atoms come to a focus, at which
time the axial density distribution reflects the axial momentum distribution before
focusing. Initial phase fluctuations do not lead to density fluctuations in the focus,
but instead result in a finite width of the cloud [127]. Since the focusing brings all
atoms together axially, the signal level is high, even for a single realization. As we
will show, averaging over a few shots is sufficient to obtain high signal-to-noise ratio.

The core of our experimental setup is a magnetic microtrap that is described in
Sec. 3.3. The experimental procedure to prepare our cold atom samples is described
in Ch. 4. In short, we trap 2 × 107 87Rb atoms in the F = 2,mF = 2 state in a
tight magnetic trap near the chip surface, and perform forced evaporative cooling
by applying a radio frequency (RF) field. The frequency ωRF is ramped down
from 27 MHz to 1.7 MHz relatively quickly (in 180 ms) to purposely reduce the
atom number. Apart from that the experimental procedure is identical to that
of Ch. 5. Before reaching degeneracy we relax the axial confinement to a final
trap with ω⊥/2π = 3280 Hz, ω‖/2π = 8.5 Hz, and a bottom corresponding to
ωRF/2π = 1.518(2) MHz. The current in the Z-wire is set at 2.25 A, and the
distance of the cloud to the chip surface is 90 μm. In this trap we perform a slower
ramp (450 ms) to the final RF frequency. An additional 300 ms of plain evaporation
allows the damping of residual quadrupole collective oscillations in the cloud to the
point where these oscillations are no longer visible.

6.3 In situ density profiles

In Fig. 6.1(a)-(e) we show the linear density of atomic clouds in the magnetic trap
for different final RF frequencies. These data were obtained by in situ absorption
imaging and integrating the atom number along z. The absolute atom number was
calibrated using time-of-flight data. Each curve is an average of ∼ 18 images taken
under identical circumstances. Since all of our data was taken for μ < �ω⊥, we
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expect1 that the interactions will significantly affect only the distribution in the
radial ground state, while the population in the radially excited states can to a good
approximation be described by the ideal-gas distribution. This leads to the following
model that was used to analyze the in situ data.

We start from the solution to the Yang-Yang integral equations for a finite-
temperature uniform 1D Bose gas at thermal equilibrium [36]. As was shown in
Sec. 2.5.3, this yields numerical results for both the equation of state nY Y (μ, T )
and the local pair correlation function g(2) [59]. The local density approximation
is then used to account for the axial potential via a varying chemical potential
μ(x) = μ−V (x). This approach is expected to be valid as long as the axial potential
is smooth on the scale of the relevant correlation lengths [70,85].

Our axial trapping potential was characterized with standard methods using
both the measurement of in situ density profiles at high T [129] and the dipole
mode oscillation frequency in the trap center. The curvature in the trap center
corresponds to a frequency of 8.5 Hz, while for larger |x| (in the wings of the warmer
clouds) the curvature corresponds to a frequency of 6.4 Hz [128].

Since our temperature is on the order of the radial level splitting, �ω⊥/kB =
158 nK, the fraction of the gas which occupies radially excited states can not be
neglected. We account for this fraction by summing over radially excited states
[radial quantum number j, degeneracy (j + 1)] and treating each radial state as an
independent ideal 1D Bose gas in thermal equilibrium with the gas in the radial
ground state, μj(x) = μ(x)− j�ω⊥. Within this model the density is given by

nl(x, μ, T ) = nY Y (μ(x), T ) +
∑∞

j=1
(j + 1)ne(μj(x), T ). (6.1)

For the radially excited states, we use the result of the LDA for the 1D ideal
gas, ne(μ, T ) = g1/2(exp(μ/kBT ))/ΛT where g1/2 is a Bose function and ΛT =
(2π�

2/mkBT )1/2 is the thermal de Broglie wavelength (see Sec. 2.3.2). In this model,
the radially excited states act as a bath for particle and energy exchange with the
radial ground state. The resulting fits are shown as solid lines in Fig. 6.1(a)-(e) and
describe our data very well. The fitted values of T and μ are displayed in Fig. 6.2.

6.4 In focus density profiles

We now turn to the in focus measurements which give access to the axial momentum
distribution of the gas (see Ch. 5). The focusing pulse is created in the same way
as described in Sec. 5.6, by ramping up the axial trapping frequency from 8.5 Hz to
20 Hz in 0.8 ms, maintaining this for 3.8 ms, and ramping back down to 8.5 Hz in
0.8 ms. This is followed by a sudden switch-off of the magnetic trap. During the
focusing pulse the cloud length reduces by less than 20%. After switching off the
magnetic trap, the cloud expands in the radial direction on a timescale of 1/ω⊥, so
that the interactions vanish rapidly compared to the relevant axial timescale and the

1For our trap parameters the condition μ < �ω⊥ corresponds to n < 3/4a ≈ 150 μm−1, see
Sec. 2.4.3
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subsequent axial contraction can be treated as free propagation. We experimentally
observe that the cloud comes to an axial focus after a free propagation time of 13 ms.
The focus time is reduced as compared to the measurements performed at higher
linear densities that were presented in Sec. 5.6; these data could be modelled using
a mean-field description. The observed earlier time of focus for the data presented
here indicates the failure of the mean-field description – as was already hinted at in
Sec. 5.7, Fig. 5.12 – that will be discussed in the next section.

In Fig. 6.1(f)-(i) we show the axial density distribution obtained in the focus,
averaged over typically 10 shots, for final RF frequencies similar to the in situ data
in Fig. 6.1 (a)-(e). Here, in contrast to the in situ results, one can clearly distinguish
a narrow peak from a broad pedestal for RF values below 1.56 MHz [Figs. 6.1(h)-
(j)]. The Yang-Yang solution does not yield the momentum distribution and thus
it can not be used to fit to the in focus data. Instead, to quantify the observation
of the bimodal structure we first fit a 2D Gaussian to the wings of the atomic
density distribution. In a second step we fit a narrow Gaussian to the residual peak
in the center. The fitted curves are shown after integration in the z direction in
Fig. 6.1(f)-(j), and describe the observed in focus distributions well.

6.5 Analysis and discussion

Fig. 6.2(c) shows the resulting atom numbers in the wide and narrow part of the
momentum distribution; we also plot the atom numbers from the Yang-Yang model
in the radial ground state, in the radially excited states, and atoms in the radial
ground state experiencing μ(x) > 0. Comparing the in situ and the in focus data, we
conclude that: (i) the momentum distribution becomes bimodal around the point
where the global chemical potential μ crosses zero and becomes positive; and (ii)
the narrow part of the momentum distribution is dominated by the atoms in the
radial ground state (described by nY Y ), while the wide part is dominated by atoms
in the radially excited states.

A further comparison between the in focus and in situ results can be made as
follows. Estimates for the temperature can be obtained from the Gaussian fit to
the wide part of the in focus data, by assuming that the tails (where degeneracy is
negligible) are well described by Boltzmann statistics. The resulting temperatures
are shown in Fig. 6.2(a). The agreement with the temperature extracted from the in
situ data is reasonable. We attribute the remaining discrepancy to the approxima-
tions implicit in the above interpretation of the Gaussian fit results, which neglects
the discrete radial level structure and the contribution of the radial ground state to
the wide part of the axial momentum distribution.

The failure of both the ideal-gas and quasi-condensate descriptions is illustrated
in Fig. 6.1(c)-(e). The key point here is the following. The Yang-Yang thermody-
namic equations yield a smooth equation of state nY Y (μ, T ), including the region
around μ(x) = 0, as is plotted in Fig. 2.2. This deviates dramatically from both the
ideal-gas description (diverging density as μ approaches zero from below) and the
quasi-condensate description (vanishing density as μ approaches zero from above).
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The region in μ(x) (and consequently in nY Y (x)) where this discrepancy is signif-
icant is particularly large for our parameters, and the Yang-Yang thermodynamic
solutions are essential for a proper description of the in situ data. For example,
for our trap parameters and T = 140 nK [as in Fig. 6.1(e)] the point T =

√
γTd

(or equivalently lφ = 2lc) corresponds to nY Y = 20 μm−1. At this temperature
the Yang-Yang equation of state deviates significantly from the ideal-gas and quasi-
condensate description over the range 2 � nY Y (x) � 30 μm−1 and the calculated
value of the local pair correlation function g(2) varies smoothly between 1.1 and 1.8
in this range (see Fig. 2.2). This differs from the ideal-gas value of 2 and the quasi-
condensate value of ≈ 1, and confirms the breakdown of the Hartree-Fock model of
Ref. [60] which sets g(2) = 2.

6.6 Conclusion and outlook

In conclusion, we have found excellent agreement between in situ measurements of
the spatial linear density of a nearly 1D trapped Bose gas and a model based on
the exact Yang-Yang solutions. We have measured the corresponding momentum
distribution for which currently no theoretical comparison is available. We expect
that these results will stimulate further theoretical and experimental studies of Yang-
Yang thermodynamics. In addition, our findings should be relevant to experiments
performed at similar linear densities and temperatures, such as guided-wave atom
lasers [147] and atom-chip based interferometers [96].

Figure 6.1 on next page: Linear atomic density from absorption images obtained in situ (a)-(e) and in
focus (f)-(j). The data from top to bottom correspond to lowering the value of the final RF evaporation
frequency as indicated. In situ: solid black lines are fits using Yang-Yang thermodynamic equations
(see text). The values of μ and T resulting from the fits are shown in the figure. Red line: ideal Bose
gas profile showing divergence for μ = 0. Green line in (e): quasi-condensate profile with the same
peak density as the experimental data. In focus: blue lines are the sum of two independent Gaussian
fits – one to the wings (light blue) and one to the central part of the atomic density distribution.



6.6 Conclusion and outlook 97

0

25

50

0

25

50

0

25

50

0

25

50

-400 0 400
0

25

50

0

50

100

0

50

100

0

50

100

150

1580 kHz
T    = 0.62μK
μ/kB=-0.43μK

  

in situ

 

(a)

1562 kHz
T    =0.44μK
μ/kB=-0.06μK

 

 

 

(b)

 n
l(μ

m
-1
)

1556 kHz
T    =0.38μK
μ/kB=0.00μK     

 

 

 

(c)

1532 kHz
T    =0.14μK
μ/kB=0.07μK     

 

 

(d)1544 kHz
T    =0.27μK
μ/kB=0.06μK

1578 kHz

x (μm) 

  

(e)

1560 kHz  

  

in focus  

(f)

1554 kHz

 

 

 

 

(g)

1530 kHz

  

 

(h)

0

150

300

 

 

 

(i)1542 kHz

-400 0 400
0

150

300

 

 

x (μm)

(j)

Figure 6.1: Linear atomic density from absorption images obtained in situ (a)-(e) and in focus (f)-(j).
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Figure 6.2: Characterization of the measured atomic clouds as a function of the final RF frequency

ωRF , as determined from fits of the Yang-Yang model to the in situ data and Gaussian fits to the in

focus data. (a) Temperature from the in situ data (�) and from the radial (�) and axial (•) size of

the broad Gaussian fit to the in focus data. The dash-dotted line is to guide the eye and indicates a

ratio of 11 of the trap depth (set by ωRF ) and the cloud temperature. The dashed line corresponds

to �ω⊥/kB . (b) Chemical potential from the Yang-Yang fit. The dashed line indicates �ω⊥/kB . (c)

Atom number from the in focus data: wide distribution (•) and central peak (�); from the Yang-Yang

model fit to the in situ data: atoms in the radial ground state (�), in radially excited states (◦), and

atoms in the radial ground state experiencing μ(x) > 0 (�).
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Summary

This thesis describes the study of an ultracold gas of bosonic atoms that is magnet-
ically confined to a one-dimensional (1D) geometry. The confining field is generated
with a micro-electronic circuit. This microtrap for atoms or ‘atom chip’ is particu-
larly suited to generate a tight waveguide for atoms close to the chip surface.

Systems of ultracold bosons are interesting because in 3D a phase transition oc-
curs to a Bose-Einstein condensate (BEC) when the sample is cooled to the point
where the de Broglie wavelengths are comparable to the average interparticle sep-
aration. The quantum-mechanical ground state becomes macroscopically occupied
and a BEC is formed that is characterized by long-range phase coherence. This
long-range order is the origin of macroscopic phenomena in many-body quantum
systems like superconductivity and superfluidity. In 2D and 1D systems, at finite
temperature, long-range order is destroyed due to a large population of excited
states.

In this thesis we investigate the (coherence) properties of a finite-temperature 1D
Bose gas with repulsive interactions. This system is of particular interest because it
forms the textbook example for the many-body quantum-mechanical systems that
can be exactly solved using the Bethe Ansatz. Moreover, using a method developed
by Yang and Yang, exact expressions for the thermodynamics of this system of
repulsive bosons in 1D can be given. The method by Yang and Yang is of wide
relevance because it is the simplest example for obtaining the thermodynamics of
the complete class of exactly solvable models for many-body quantum mechanical
systems in 1D, e.g. the Heisenberg spin chain and the Hubbard model.

In experiments described in this thesis we cool a gas of 87Rb that is trapped in a
waveguide to a temperature below 160 nK corresponding to the level splitting of the
confining potential in the radial direction. Then, the gas of a few thousand atoms
is confined to one dimension because radial motion is frozen. We find excellent
agreement between measurements of the equation of state of a trapped gas of 87Rb
atoms and numerical solutions to the exact Yang-Yang thermodynamics.

In our 1D-gas samples thermally-driven fluctuations of the phase result in a
reduced coherence length. The axial momentum distribution is the Fourier transform
of the spatial correlation function and can therefore be used as a probe for the
coherence in the gas. We use the technique of Bose gas focusing, that is equivalent
to the action of a lens in optics, to measure the momentum distribution of the gas
in the Fourier plane. This method allows us to probe correlations that go beyond
the Yang-Yang description. At the time of writing the first theoretical calculations
of the correlations are being performed that can be compared with our experimental
observations.

Part of this thesis describes how we have constructed the microtrap for the
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realization of BEC and the attainment of the 1D regime. Design considerations and
analysis of the thermal properties of the microtrap, when a relatively high current
is sent through tiny wires, are presented.



Samenvatting

Dit proefschrift beschrijft het experimentele onderzoek naar een extreem koude gas-
wolk van atomen. De koude atomen zitten opgesloten in een magneetveld in een
vacuümomgeving zodat ze niet in aanraking komen met een warme wand. Voor
dit onderzoek ontwikkelden we een miniatuur atoomval; zeer kleine stroomdraden
op een chip zorgen voor het benodigde magneetveldminimum vlak boven die chip
zoals te zien is in Fig. 1.1 in de inleiding. Deze ‘atoomchip’ maakt het mogelijk
een langwerpige atoomwolk zo strak samen te knijpen dat er een lijn van atomen
ontstaat: een eendimensionaal gas op een chip.

Als we materie afkoelen tot dicht bij het absolute nulpunt in temperatuur,
−273◦C (of nul Kelvin), kunnen uitzonderlijke verschijnselen optreden. Zo ontdekte
Heike Kamerlingh-Onnes al in 1911 in zijn lab in Leiden dat wanneer hij het metaal
kwik tot 4 K afkoelde een elektrische stroom door het kwik geen weerstand meer
ondervond. Hij noemde het fenomeen supergeleiding. Ook bleek aan het eind van
de jaren dertig dat vloeibaar helium dat tot 2 K is afgekoeld stroomt zonder enige
frictie; het wordt supervloeibaar. In de loop van de twintigste eeuw is duidelijk
geworden dat deze “super” fenomenen verklaard kunnen worden met behulp van
een theorie die in 1924 werd geformuleerd. In dat jaar ontdekte Albert Einstein
dat een zeer koud gas van bosonen (deeltjes met heeltallige spin) een fase overgang
kan doormaken naar een Bose-Einstein condensaat (BEC). Atomen in zo’n conden-
saat gedragen zich als golven. Deze golven worden beschreven door de quantum-
mechanica. Omdat in het BEC alle atoomgolven samen vallen (coherent zijn) kun je
zeggen dat er een superatoom ontstaat. Zo’n superatoom werd voor het eerst gezien
in twee labs in de VS in 1995. Je kunt een BEC, ter grootte van een tiende millimeter,
afbeelden met een geavanceerde camera. De wereld van de natuurkundigen stond
op zijn kop. Meer dan tien jaar later zijn er meer dan 50 labs over de hele wereld
waar Bose-Einstein condensaten gemaakt worden. In ons Amsterdamse lab op de
vijfde verdieping recht boven het water van de Nieuwe Achtergracht maakten we in
2006, na drie en een half jaar bouwen aan de opstelling, ons eerste Bose-Einstein
condensaat. We gebruikten hiervoor de vernieuwende atoomchip techniek.

In de experimenten die beschreven worden in dit proefschrift maken we een
extreem koud gas van ongeveer tienduizend atomen. Het gaswolkje is opgesloten in
een langgerekte magneetval op de genoemde atoomchip, de wolk is ongeveer 0.2 mm
lang en heeft een diameter van slechts 0.0004 mm. Het gas bestaat uit atomen
van het metaal rubidium dat vergelijkbaar is met natrium dat bijvoorbeeld zorgt
voor het gele licht uit de lampen boven de snelweg. We koelen het rubidium gas
af tot een temperatuur beneden 160 nK (honderdzestig miljardste Kelvin). Bij
die temperatuur hebben de atomen te weinig energie om te kunnen bewegen in de
richting van strakke opsluiting van de val en kunnen ze alleen nog maar vrij bewegen
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langs de as, hierdoor ontstaat effectief een eendimensionaal (1D) gas.
Dit proefschrift beschrijft vervolgens onze studie naar de eigenschappen van het

extreem koude, eendimensionale gas. Het gas gedraagt zich in 1D anders dan in drie
dimensies, waar je een geheel coherent BEC hebt, omdat in 1D trillingen langs de as
de coherentie van de wolk verstoren. Het Bose gas in 1D is extra bijzonder omdat,
alleen in 1D, het quantum-mechanisch gedrag van alle atomen in het gas exact te
berekenen is. Zo laten we voor het eerst zien dat experimentele waarnemingen goed
overeen komen met exacte berekeningen vanuit theorie die al in 1969 was ontwikkeld
door de Nobelprijswinnaar C.N. Yang en zijn broer C.P. Yang.

Het bestuderen van de (gereduceerde) coherentie in 1D is interessant omdat
deze coherentie juist het essentiële ingrediënt is voor de “super” fenomenen zoals
supervloeibaarheid en supergeleiding in systemen die met behulp van de theorie
van Bose en Einstein beschreven worden. Als we het 1D gas beter begrijpen leidt
dat misschien tot een beter inzicht in het complexe gedrag van veel (gedeeltelijk)
coherente deeltjes in hogere dimensies.

We maken in onze experimenten gebruik van de directe analogie tussen licht-
golven zoals die beschreven worden in de klassieke optica en de materiegolven van
de quantum-mechanica. Om de coherentie in onze langgerekte gaswolken te bepalen
gebruiken we een truc uit de optica: we focusseren onze materiegolf en meten de
breedte in het focus; hoe breder het focus hoe minder coherentie. Op deze manier
kunnen we extra informatie over het 1D gas krijgen die niet uit de Yang-Yang theorie
komt.

Een groot deel van het werk dat ten grondslag ligt aan dit proefschrift bestond
uit het bouwen van een state of the art experimentele opstelling. Het meest innova-
tieve onderdeel daarvan is onze specifieke manier om de atoomchip te maken en te
combineren met dunne draadjes (0.3 mm doorsnede) onder de chip. We beschrijven
hier hoe we deze micro-atoomval ontwierpen en bouwden.



Nawoord

Veel mensen in het Van der Waals-Zeeman instituut en daarbuiten hebben op vele
manieren bijgedragen aan het onderzoek waarvan dit proefschrift het verslag is. Op
deze plaats wil ik al die mensen bedanken.

En passant, hoorde ik van Robert in de nazomer van 2002 dat Klaasjan naar de
UvA zou komen en nog een promovendus zocht voor zijn nieuwe project. Daarnaast
zou Jook met zijn groep terugkomen naar het WZI om de Quantum gassen groep te
versterken. Met in de ene hand een recent artikel, waarin handige Duitsers beschrij-
ven hoe ze voor het eerst een BEC op een chip maakten, en in de andere hand de
Vidi beurs wist Klaasjan direct mijn interesse te wekken: dat konden wij ook; en
wel binnen een jaar . . . . Tijdens de eerste voortgangsbespreking leidde deze ambitie
tot een glimlach op het gezicht van Jook, die ons overigens wijselijk in de waan liet.
In de lente van 2006, na drie en een half jaar non stop bouwen en experimenteren,
zouden we ons eerste BEC op een chip maken.

Ten eerste wil ik Klaasjan bedanken, voor het grote vertrouwen dat hij in mij
stelde bij het ontwerp en de bouw van het experiment. En zeker ook voor de con-
sciëntieuze manier waarop hij mij opleidde als natuurkundige, met oog voor detail.
Jook wil ik bedanken voor zijn uitstekende supervisie. Met enthousiaste en wel-
gemikte vragen legde hij de kern bloot van de problemen waarmee wij worstelden.
Of het nu de verdeling van bosonen betrof of een trillingsdempende kunststof. Jan-
Joris schreef de software for atom chips (en bleef schijnbaar ongestoord ondanks
mijn onophoudelijke vragen om “een kleine verbetering”), ook fabriceerde hij de
chips (niet alleen nummer 94) en de geavanceerde RF bron waarmee het experi-
mentele apparaat uiteindelijk groeide tot een gesmeerde machine. Leuk ook om een
aantal “van Es” clean-room kneepjes te kunnen leren. Philipp wens ik veel succes
met het doen van nieuwe experimenten (zonder al te veel te hoeven bouwen).

Praktisch alles over diodelasers en hoe je daarmee atomen koelt leerde ik tijdens
mijn afstuderen van Ronald. Ik had de mazzel dat hij ook nog de hands-on kennis
van Dirk Voigt, Bas Wolschrijn, Rik Jansen, Nandini Bhattacharya, en degenen die
voor hen kwamen aan mij doorgaf. Mijn fascinatie voor het vakgebied is absoluut
gewekt, tijdens de bijeenkomstenen van de kletsclub (om met Cor te spreken). Ik
mocht meedoen met het gesprek tussen de generaties wetenschappers die de ideale
onderzoeksschool vormden, comfortabel gezeten tussen Flateriaanse stapels papier-
werk in de ruime (pre asbest) professors kamer van Ben. Ik wil Ben en Robert
bedanken voor het bieden van een omgeving op topniveau zonder pretenties. Cor,
in het leer gestoken rondscheurend op een zware motor, verloor nooit de bravoure
van de natuurkunde van de jaren vijftig. Ook ontsloot hij het zware houten kabinet
zodat ik nog een Babinet-Soleil compensator op een neoklassiek voetstuk, van de
oude Zeeman zelf, heb kunnen gebruiken voor een spectroscopie experiment (helaas
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bleken de oppervlakken niet vlak genoeg voor laserlicht).
Het tweelingexperiment dat met een vergelijkbaar doel als het onze werd opge-

bouwd aan de andere zijde van een zwaar gordijn in dezelfde labruimte C5.13 vormde
de afgelopen jaren een belangrijke stimulans. Many thanks for the companionship
to Iuliana, René, Thomas en Shannon. Further thanks for Vlad, the stoical war-
rior in the freezing lab with the big lasers. De jongens van de werkplaats, waar
ik maanden heb doorgebracht, leverden een cruciale bijdrage aan de experimentele
opstelling. Onder andere droegen bij: Harry, Fred, Diederik, Joost, Cees en bovenal
Wim, die met zijn precisie het Leidse instrumentmakers ambacht wist te koppelen
aan de eisen van de nanotechnologie. In de elektronische werkplaats bedank ik in
het bijzonder Hans en het onafscheidbare duo Johan en Alof. In het constructie
bureau tekenden Ron en Hans sneller dan ik met nieuwe ideetjes kwam terwijl Eric
de thermische analyse van de atoomchip deed. In de voetsporen van Bert Zwart,
doolde ik door ongekende ruimtes en daalde ik af langs geheime trappen in de kelders
van het instituut. Op zoek naar de juiste flens of een (op een koopje van Philips
overgenomen) flowkast. Paul Vlaanderen, ik denk met plezier terug aan mijn jaren
als practicum assistent. Op het practicum maakte ik later ook kennis met de ver-
frissende experimenten van Tom Hijmans die ik al waardeerde om zijn ongezouten
kritiek op maffiose onderzoeksclans of hele vakgebieden die, naar zijn mening, onzin
produceren.

I would like to acknowledge the collaboration with the theory section of the Quan-
tum Gases Group: Dima Petrov, Micha Baranov and Gora Shlyapnikov thanks
for clear and sure answers to all theory related questions. Many thanks to Karen
Kheruntsyan for the nice collaboration over the last year that culminated in the
Yang-Yang article. Jean-Sébastien Caux wil ik bedanken voor de introductie in de
exact oplosbare wereld die hij Klaasjan en mij gaf (met 300 km/u richting Par-
ijs snellend). Ik bedank Wim Vassen en alle leden van zijn groep voor de goede
discussies tijdens de bijeenkomsten van het Amsterdam Quantum Collective. To-
bias, die ik de afgelopen jaren vreemd genoeg vooral in het weekend op een feest
of in het café sprak, wil ik veel succes wensen met zijn kunststuk. Dank aan de
andere afstudeerders, promovendi, postdocs en gasten met wie ik in de loop der
jaren samenwerkte: Tycho Huussen, Paul Cleary, Yu Tao Xing, Steve Gensemer
(one day cities will be full of green robotic vehicles), Carolijn van Ditzhuijzen, An-
tje Ludewig, Sebastian Kraft, Piotr Deuar, Femius Koenderink, Liza Huijze en alle
anderen. Mark Golden en Luuk Lusink thanks voor de (financiële) ondersteuning.
Dank ook aan Rita Vinig en anderen op het secretariaat. Mirjam “studioboven”
Wilbrink verzorgde het omslag ontwerp.

Tenslotte, alle vrienden hartelijk dank; Kanne bedankt; Akke veel dank voor
de steun. Helaas kan Jan mijn promotie niet meer meemaken. Van hem leerde ik
klussen. Ik heb veel aan hem te danken. Esmee, bedankt voor je eindeloze support,
goede raad en liefde, terwijl ik vaak met het experiment in slaap viel, ervan droomde,
en er weer mee opstond. Zonder jou was het nooit gelukt.


