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1. Homework exercise

The following exercise is the homework exercise of October 10 (hand in at latest thursday
october 20 before the start of the exercise class).

Exercise 1.1. Let Q = {±1,±i,±j,±k} be the quaternion group.

(1) Determine the conjugacy classes of Q.
(2) Give the one-dimensional representations of Q.

(3) Prove that Q̂ consists of four one-dimensional representations and one two-dimensional
irreducible representation.

(4) Give the character table of Q.

2. Introduction

In this supplement to Serre [2, §2.5] we discuss the center of the group algebra of a
finite group G. We also give an alternative apprach to the canonical decomposition of a
representation ([2, §2.6]).

We discuss the structure of the group algebra in detail. We relate it explicitly to the
structure theory of semisimple algebras. In addition we study the Fourier transform of
a finite group and its inverse. This part of the supplement is an addition to Serre [2,
§6.1-§6.3].

3. Primitive idempotents in the center of the group algebra

A will always be a finite dimensional associative commutative C-algebra with unit 1.
An element a ∈ A is called an idempotent if a2 = a. Two elements a, b ∈ A are called
mutually orthogonal if ab = 0.

Suppose that a, b ∈ A are mutually orthogonal idempotents. Then

(a+ b)2 = a2 + b2 + 2ab = a+ b+ 0 = a+ b,

so a+ b ∈ A is also an idempotent.

Example 3.1. (i) If a ∈ A is an idempotent, then so is 1− a, since

(1− a)2 = 1− 2a+ a2 = 1− 2a+ a = 1− a.

The idempotents a and 1− a are mutually orthogonal since a(1− a) = a− a = 0.
(ii) Consider p± ∈ C[Sn] given by

p+ =
1

n!

∑
σ∈Sn

eσ, p− =
1

n!

∑
σ∈Sn

ε(σ)eσ,

1
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where ε(σ) ∈ {±1} is the sign of the permutation σ. Then p+ and p− are mutually orthog-
onal idempotents in C[Sn]. Indeed,

p2
− =

1

(n!)2

∑
σ,τ∈Sn

ε(στ)eστ =
1

n!

∑
σ∈Sn

ε(σ)eσ = p−,

p+p− =
1

(n!)2

∑
σ,τ∈Sn

ε(τ)eστ =
1

n!
#{τ ∈ Sn | ε(τ) = 1}p+ −

1

n!
#{τ ∈ Sn | ε(τ) = −1}p+ = 0

and p2
+ = p+ is immediate.

The second example suggests that the construction of mutually orthogonal idempotents
in group algebras has something to do with representation theory (we have seen that Cp+

realizes the trivial representation in the regular representation of Sn, and Cp− realizes the
sign representation). This is indeed the case, as we shall see in a moment.

An idempotent a ∈ A is called primitive if the following properties hold: a 6= 0 and if
a = b+ c with b, c ∈ A mutually orthogonal idempotents, then either b = 0 or c = 0.

Lemma 3.2. Suppose a, b ∈ A are primitive idempotents. Prove that ab = 0 iff a 6= b.

Proof. We prove ab 6= 0 iff a = b.
Let a, b ∈ A be primitive idempotents such that ab 6= 0. Then

a = ab+ a(1− b)

is a decomposition of a in mutually orthogonal idempotents (A is commutative!). Since a
is primitive and ab 6= 0 we conclude that a(1− b) = 0, hence a = ab. Reversing the role of
a and b we also conclude that b = ab. Hence a = b. Thus ab 6= 0 implies a = b. Conversely,
if a = b then ab = a2 = a 6= 0. �

Corollary 3.3. The set {ai}i of primitive idempotents of A is a finite, linear independent
set.

Proof. It is a linear independent set for if
∑

i λiai = 0 (λi ∈ C, all but finitely many zero),
then 0 = aj

∑
i λiai = λjaj for all j by the previous lemma, hence λj = 0 for all j. Since

A is finite dimensional we conclude that {ai}i is a finite set. �

If B and C are commutative associative algebras with units 1B and 1C over C, then the
direct sum

B ⊕ C

is a commutative associative algebra with respect to the multiplication (b, c)(b′, c′) =
(bb′, cc′), and with unit element 1 = (1B, 1C). The two algebras B and C naturally embed
as ideals in B ⊕ C via b 7→ (b, 0) and c 7→ (0, c) respectively. We write simply b for (b, 0)
(b ∈ B) and c for (0, c) (c ∈ C). Note that BC = 0 in B⊕C (meaning bc = 0 for all b ∈ B
and c ∈ C).
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Exercise 3.4. Let B and C be two commutative, associative, finite dimensional unital
algebras over C. Let {bj}j and {ck}k be the set of primitive idempotents of B and C
respectively. Show that {bj}j ∪ {ck}k is the set of primitive idempotents of B ⊕ C.

Proposition 3.5. Let {ai}i be the set of primitive idempotents in A. Then

1 =
∑

i

ai.

Proof. With induction to dim(A). There is nothing to prove if dim(A) = 1 (then 1 is the
only primitive idempotent in A).

Suppose dim(A) > 1. If 1 ∈ A is primitive, then it is the only primitive idempotent. For
if a ∈ A is another primitive idempotent then 0 6= a = a · 1, hence by the above lemma
a = 1.

Thus it suffices to prove the induction step in case 1 ∈ A is not primitive. In that
case there exists 0 6= b, c ∈ A pairwise orthogonal idempotents such that 1 = b + c. Set
A(b) := Ab := {ab | a ∈ A}, and similarly A(c). Then A(b), A(c) ⊂ A are unital subalgebras
with unit elements b and c respectively. In addition, A = A(b) + A(c) since 1 = b+ c and
A(b) ∩ A(c) = {0} since bc = 0. Hence

(3.1) A = A(b)⊕ A(c)

as vector spaces. Since in addition A(b)A(c) = 0, we conclude that A is isomorphic to the
direct sum of the two subalgebras A(b) and A(c).

Now A(b) 6= 0 6= A(c) since b ∈ A(b) and c ∈ A(c), hence dim(A(b)) < dim(A) and
dim(A(c)) < dim(A). By the induction hypothesis, b =

∑
j bj and c =

∑
k ck with {bj}j

(resp. {ck}k) the set of primitive idempotents of A(b) (resp. A(c)). Then Exercise 3.4
completes the proof. �

Lemma 3.6. Suppose {ai}i is a set of mutually orthogonal, nonzero idempotents of A.
If {ai}i is a linear basis of A then it is the set of primitive idempotents of A (hence, in
particular, 1 =

∑
i ai).

Proof. Just as in the proof of the proposition,

A =
⊕

i

A(ai)

as algebras, and A(ai) 6= 0 since ai ∈ A(ai). The extra assumption that {ai}i is a linear
basis of A gives A(ai) = Cai, hence ai is the only primitive idempotent of A(ai). Exercise
3.4 completes the proof. �

Recall from Exercise 5 of the extra set of exercises of October 3 that the subspace F (G)
of Fun(G) consisting of class functions is a commutative subalgebra with respect to the
convolution product

(f ∗ h)(z) :=
∑

x,y∈G:
xy=z

f(x)h(y), z ∈ G
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on Fun(G) (f, h ∈ Fun(G)). The unit element of Fun(G) with respect to convolution
product is δe(g) := δe,g (g ∈ G).

Frobenius defined irreducible characters of a finite group G as the set of primitive idem-
potents of F (G) with respect to convolution product. We relate now Frobenius’ notion of
an irreducible character to the modern definition using representation theory.

Proposition 3.7. Define for π ∈ Ĝ (i.e. π : G → GLC(Vπ) is an irreducible linear
representation of G),

χ̃π :=
dim(Vπ)

#G
χπ ∈ F (G),

where χπ is the irreducible character associated to π and χπ(g) = χπ(g) (g ∈ G). Then:

(i) {χ̃π}π∈Ĝ is a linear basis of F (G),
(ii) δe =

∑
π∈Ĝ χ̃π,

(iii) {χ̃π}π∈Ĝ is the set of primitive idempotents of F (G) with respect to the convolution
product.

Proof. (i) We proved this last week, see [2, §2.5, Thm. 6].
(ii) For g ∈ G, ∑

π∈Ĝ

χ̃π(g) =
1

#G

∑
π∈Ĝ

dimC(Vπ)χπ(g)

=
1

#G
rG(g) = δe(g),

where rG is the character of the regular representation of G and the last identity follows
from [2, §2.4, Prop. 5].
(iii) In view of (i), (ii) and the previous lemma it suffices to prove that {χ̃π}π∈Ĝ is a set
of mutually orthogonal idempotents, i.e. that

(3.2) χ̃π ∗ χ̃π′ = δπ,π′χ̃π

for π, π′ ∈ Ĝ. For this we use the following slight generalization

(3.3)
1

#G

∑
x∈G

χπ(x)χπ′(xz−1) =
δπ,π′

dimC(Vπ)
χπ(z), z ∈ G, π, π′ ∈ Ĝ

of Exercise 3 of the extra set of exercises of October 3, which can be proved using the
orthogonality relations for the matrix coefficients of the irreducible linear G-representations
(cf. also Exercise 3.8). But then (3.3) implies for all z ∈ G,(

χ̃π ∗ χ̃π′
)
(z) =

∑
x∈G

χ̃π(zx−1)χ̃π′(x)

=
dimC(Vπ)dimC(Vπ′)

(#G)2

∑
x∈G

χπ′(x)χπ(xz−1)

= δπ,π′χ̃π(z),
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where we used that χπ(g−1) = χπ(g) in the second equality. �

Exercise 3.8. (i) For π ∈ Ĝ let {πij}i,j be the matrix coefficients with respect to an
orthonormal basis of Vπ (where we have endowed Vπ with a scalar product turning π into
a unitary representation). Set

(3.4) π̃ij :=
dim(Vπ)

#G
πij.

Prove that
π̃ij ∗ π̃′kl = δπ,π′δj,kπ̃il

for π, π′ ∈ Ĝ.
(ii) Derive (3.2) as consequence of (i).

4. The canonical decomposition

Exercise 5 of the extra set of exercises of October 3 shows that

f 7→ ψf :=
∑
g∈G

f(g)eg

defines an isomorphism ψ : Fun(G)
∼−→ C[G] of algebras (with the convolution product on

Fun(G)). It restricts to an isomorphism of commutative algebras

ψ : F (G)
∼−→ Z(C[G]),

where Z(C[G]) is the center of the group algebra C[G]. We write for π ∈ Ĝ,

pπ := ψχ̃π =
dimC(Vπ)

#G

∑
g∈G

χπ(g)eg ∈ Z(C[G]).

Proposition 3.7 now immediately gives

Corollary 4.1. (i) {pπ}π∈Ĝ is a linear basis of Z(C[G]),
(ii) ee =

∑
π∈Ĝ pπ with ee ∈ C[G] the unit element,

(iii) {pπ}π∈Ĝ is the set of primitive orthogonal idempotents of Z(C[G]).

Lemma 4.2. (i) Let π ∈ Ĝ and write Vπ for its representation space. Then

pπ|Vπ′
= δπ,π′ idVπ′

for all π′ ∈ Ĝ.
(ii) Let σ : G→ GLC(V ) be a finite dimensional linear G-representation. Then there exists
a unique decomposition

(4.1) V =
⊕
π∈Ĝ

V (π)

in G-invariant subspaces such that, for all π ∈ Ĝ, (χV (π) |χπ′) = 0 for π′ ∈ Ĝ unless
π′ = π (V (π) is called the π-isotypical component of σ. The decomposition (4.1) is called
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the canonical decomposition of V ).

(iii) For a representation σ : G→ GL(V ) we have V (π) = pπV for all π ∈ Ĝ (here we use
the fact that the representation space V inherits the structure of a C[G]-module).

Proof. Part (i) is an immediate consequence of [2, §2.5, Prop. 6]. By Corollary 4.1, we
have a direct sum decomposition

V =
⊕
π∈Ĝ

pπV,

and pπV ⊆ V are G-invariant since pπ lies in the center of the group algebra. If V '⊕
π′∈Ĝ dπ′Vπ′ then pπV ' dπVπ by (i), hence(

χpπV |χπ′
)

= dπ

(
χπ |χπ′

)
= δπ,π′dπ

for all π′ ∈ Ĝ. Thus V =
⊕

π∈Ĝ pπV is a decomposition satisfying the properties as stated
in (ii). It thus remains to prove the uniqueness. Suppose

V =
⊕
π∈Ĝ

V (π)

is a second decomposition with V (π) ⊆ V G-invariant subspaces such that
(
χV (π) |χπ′

)
= 0

if Ĝ 3 π′ 6= π. The last condition implies V (π) ' dπVπ for all π ∈ Ĝ, hence pπV (π′) =

δπ,π′V (π′) for all π, π′ ∈ Ĝ by (i). But then

V (π) =
∑
π′∈Ĝ

pπV (π′) = pπV

for all π ∈ Ĝ. �

Lemma 4.3. Let π ∈ Ĝ and σ : G→ GL(V ) a finite dimensional linear G-representation.
Then

V (π) =
∑
W

W

with the sum over G-invariant subspaces W ⊆ V such that W ' Vπ as G-representations.

Proof. Since V (π) ' dπVπ, the inclusion ⊆ is clear. Conversely, if W ⊆ V is a G-invariant
subspace such that W ' Vπ, then pπ|W = idW , hence W = pπW ⊆ pπV = V (π). �

5. The Fourier transform of a finite group

As a special case of the canonical decomposition we have for the regular representation
ρ : G→ End(C[G]),

(5.1) C[G] =
⊕
π∈Ĝ

A(π)
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with A(π) = pπC[G] ' dim(Vπ)Vπ given by

A(π) =
∑
Iπ

Iπ

with the sum over left ideals Iπ ⊆ C[G] such that Iπ ' Vπ as left C[G]-module.

Lemma 5.1. Let π, π′ ∈ Ĝ, then

(i) A(π) ⊆ C[G] is a subalgebra with unit pπ.
(ii) A(π)A(π′) = {0} if π 6= π′.

In other words, (5.1) is a direct sum of algebras.

Proof. Since A(π) = pπC[G] for π ∈ Ĝ this follows from the fact that the pπ (π ∈ Ĝ) are
mutually orthogonal idempotents in the center Z(C[G]) of the group algebra C[G]. �

Theorem 5.2. For all π ∈ Ĝ we have

A(π) ' End(Vπ)

as algebras.

Proof. Note that dim(A(π)) = dim(Vπ)2 = dim(End(Vπ)) since A(π) ' dim(Vπ)Vπ. Hence
it suffices to show that the algebra map

A(π) → End(Vπ), a 7→ a|Vπ ,

with a|Vπ the action of a ∈ A(π) on the representation space Vπ, is surjective. Since A(π′)
acts as zero on Vπ if π′ 6= π it suffices to show that for each f ∈ End(Vπ) there exists
an a ∈ C[G] such that f(v) = a · v for all v ∈ Vπ. This is a special case of the theorem
below. �

Theorem 5.3 (Special case of the density theorem). Let π ∈ Ĝ. For each f ∈ EndC(Vπ)
there exists an a ∈ C[G] such that f(v) = a · v for all v ∈ Vπ.

Proof. We give two proofs. The first proof is quick and uses the orthogonality relations
of the matrix coefficients of π. It has the disadvantage though that it does not generalize
to the more general setup of semisimple algebras. The second proof, which is based on
abstract representation theoretic arguments, does generalize to this setting.
First proof: Let Fπ : C[G] → EndC(Vπ) be given by Fπ(a) := a|Vπ (a ∈ C[G]). Let {ei}n

i=1

be an orthonormal basis of Vπ (with respect to the scalar product on Vπ turning π into an
unitary representation). Then e∗i (·)ej (1 ≤ i, j ≤ n) is a linear basis of EndC(Vπ) and for
g ∈ G,

Fπ(g) =
n∑

i,j=1

e∗j(π(g)ei)e
∗
i (·)ej =

n∑
i,j=1

πji(g)e
∗
i (·)ej.

Suppose Fπ is not surjective. Then there exists a nonzero linear functional η on EndC(Vπ)
which vanishes on the image of Fπ. The linear functional η is characterized by a choice of
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complex numbers λij ∈ C, not all zero, such that η(e∗i (·)ej) = λij for all 1 ≤ i, j ≤ n. But
then for all g ∈ G,

0 = η(Fπ(g)) =
n∑

i,j=1

λijπji(g),

which contradicts the fact that the πij are linearly independent in Fun(G) (the linear
independence of the πij is an immediate consequence of the orthogonality relations of the
πij).
Second proof: Fix a linear basis {v1, . . . , vn} of Vπ and consider the finite dimensional
linear G-representation

(5.2) E := Vπ ⊕ Vπ ⊕ · · · ⊕ Vπ

(n summands). Define for 1 ≤ i, j ≤ n intertwiners eij ∈ End(G)(E) by

eij(u1, . . . , un) := u
(j)
i , uj ∈ Vπ

where u
(j)
i is the r-vector with jth entry ui and zeros everywhere else. We now use the

following

Lemma 5.4. End(G)(E) =
⊕n

i,j=1 Ceij.

Proof. For 1 ≤ i ≤ n define ιi ∈ Hom(G)(Vπ, E) and pi ∈ Hom(G)(E, Vπ) by

ιi(u) = u(i), u ∈ Vπ,

pi(u1, . . . , un) = ui, uj ∈ Vπ.

Let h ∈ End(G)(E). Then for 1 ≤ i, j ≤ n we have hij := pj ◦ h ◦ ιi ∈ End(G)(Vπ), hence it
equals λijidVπ for some λij ∈ C by Schur’s lemma. But then

h(u1, . . . , un) =
n∑

i=1

h(u
(i)
i )

=
n∑

i=1

(h ◦ ιi)(ui)

=
n∑

i,j=1

(hij(ui))
(j)

=
n∑

i,j=1

λiju
(j)
i

=
n∑

i,j=1

λijeij(u1, . . . , un).
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Hence h ∈
∑n

i,j=1 Ceij. Finally, {eij}n
i,j=1 is a linear independent set in End(G)(E). This

follows from the fact that

ps ◦ eij ◦ ιr = δi,rδj,sidVπ , 1 ≤ i, j, r, s ≤ n,

which in turn follows from a direct computation,

(ps ◦ eij ◦ ιr)(u) = (ps ◦ eij)(u
(r))

= δi,rps(u
(j))

= δi,rδj,su.

�

We continue with the proof of the special case of the density theorem. Fix f ∈ End(Vπ).
Define h ∈ EndC(E) by

h(u1, . . . , un) = ((f(u1), . . . , f(un)).

Then for all 1 ≤ i, j ≤ n,

h(eij(u1, . . . , un)) = h(u
(j)
i )

= f(ui)
(j)

= eij(h(u1, . . . , un)),

hence h ◦ ξ = ξ ◦ h for all ξ ∈ End(G)(E). Set x := (v1, . . . , vn) ∈ E. Then

C[G]x ⊆ E

is a G-invariant subspace, hence there exists a G-invariant subspace F ⊆ E such that
E = C[G]x⊕F . Let ξ ∈ End(G)(E) be the projection onto C[G]x along this decomposition.
Then

(f(v1), . . . , f(vn)) = h(x)

= h(ξ(x))

= ξ(h(x)) ∈ C[G]x,

showing that there exists an a ∈ C[G] such that

(a · v1, . . . , a · vn) = a · x = h(x) = (f(v1), . . . , f(vn)),

hence f = a|Vπ = Fπ(a) by linearity. �

Corollary 5.5. The algebra C[G] is isomorphic to the direct sum algebra
⊕

π∈Ĝ EndC(Vπ).

The isomorphism F : C[G]
∼−→

⊕
π∈Ĝ EndC(Vπ) is explicitly given by

F (a) :=
(
Fπ(a)

)
π∈Ĝ

with Fπ(a) := a|Vπ ∈ EndC(Vπ) for a ∈ C[G] (in particular, Fπ(eg) = π(g) for g ∈ G and

π ∈ Ĝ). The algebra map F is called the Fourier transform of the finite group G.
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Exercise 5.6. (i) Let V be a finite dimensional complex vector space. Show that

Z(EndC(V )) = CidV .

(ii) Combine (i) and Corollary 5.5 to give another proof that {χ̃π}π∈Ĝ is the set of primitive
idempotents of Z(C[G]).

Theorem 5.7 (Inversion formula). The inverse of the algebra isomorphism F : C[G]
∼−→⊕

π∈Ĝ EndC(Vπ) is explicitly given by

(5.3) F−1(f) =
∑
g∈G

(∑
π∈Ĝ

dim(Vπ)

#G
TrVπ(π(g−1)fπ)

)
eg

for f = (fπ)π∈Ĝ with fπ ∈ EndC(Vπ).

Proof. Since the right hand side of (5.3) is linear in f it suffices to prove (5.3) for f = F (ex)
(x ∈ G arbitrary). Then

fπ = Fπ(ex) = π(x), π ∈ Ĝ.
In that case the right hand side of (5.3) thus becomes∑

g∈G

(∑
π∈Ĝ

dim(Vπ)

#G
TrVπ(π(g−1x))

)
eg =

∑
g∈G

(∑
π∈Ĝ

dim(Vπ)

#G
χπ(g−1x)

)
eg

=
1

#G

∑
g∈G

rG(g−1x)eg

=
∑
g∈G

δg,xeg = ex,

which yields the desired result. �

For a finite group G, write (Fun(G), ∗) for the associative algebra of complex valued
functions on G with respect to convolution product and (Fun(G), ·) for the commutative
associative algebra of complex valued functions on G with pointwise product.

Exercise 5.8 (Plancherel formula). Let u, v ∈ C[G] and write u and v as u =
∑

x∈G a(x)ex

and v =
∑

y∈G b(y)ey with a(·), b(·) ∈ Fun(G). Show that

#G
∑
x∈G

a(x−1)b(x) =
∑
π∈Ĝ

dim(Vπ)TrVπ

(
uv|Vπ

)
.

Corollary 5.9 (Discrete Fourier transform). For a ∈ Fun(Z/nZ) define â ∈ Fun(Z/nZ)
by

â(r) =
∑

s∈Z/nZ

a(s)e2πirs/n.
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The discrete Fourier transform ̂ : (Fun(Z/nZ), ∗) ∼−→ (Fun(Z/nZ), ·), a 7→ â, is an iso-
morphism of algebras, and

a(s) =
1

n

∑
r∈Z/nZ

â(r)e−2πirs/n ∀ a ∈ Fun(Z/nZ).

(Fourier inversion).

Proof. The irreducible representations of Z/nZ are one-dimensional since Z/nZ is abelian.

We can thus identify Ẑ/nZ with the set {χr}r∈Z/nZ of irreducible characters of Z/nZ, which

are given by χr(s) = e2πirs/n.

Recall the algebra isomorphism ψ : (Fun(Z/nZ), ∗) ∼−→ C[Z/nZ] given by ψ(a) =∑
r∈Z/nZ a(r)er. We also have an isomorphism

φ :
⊕

π∈Ẑ/nZ

EndC(Vπ)
∼−→ (Fun(G), ·)

of algebras as follows. An element b ∈
⊕

π∈Ẑ/nZ EndC(Vπ) is in fact a choice b = (br)r∈Z/nZ

of complex numbers br, with br ∈ C the component in the one-dimensional subalgebra
EndC(Vχr

) ' C. Then φ(b) is defined to be the function on Z/nZ mapping r to br for all
r ∈ Z/nZ.

Let F : C[Z/nZ]
∼−→

⊕
π∈Ẑ/nZ EndC(Vπ) be the Fourier transform of Z/nZ. Then we

get an algebra isomorphism

̂ := φ ◦ F ◦ ψ : (Fun(G), ∗) ∼−→ (Fun(G), ·), a 7→ â.

Writing out the explicit formulas we get for a ∈ Fun(Z/nZ),

â(r) = Fχr
(ψ(a))

= Fχr
(

∑
s∈Z/nZ

a(s)es)

=
∑

s∈Z/nZ

a(s)e2πirs/n,
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which coincides with the definition of â as given in the statement of the corollary. For the
inversion formula, write f = ψ(a) =

∑
s∈Z/nZ a(s)es, then, by the explicit formula for F−1,∑

s∈Z/nZ

a(s)es = f

= F−1(F (f))

=
∑

s∈Z/nZ

( ∑
r∈Z/nZ

1

n
χr(−s)Fχr

(f)
)
es

=
∑

s∈Z/nZ

1

n

( ∑
r∈Z/nZ

â(r)e−2πirs/n
)
es,

hence, for all s ∈ Z/nZ,

a(s) =
1

n

∑
r∈Z/nZ

â(r)e−2πirs/n.

�

We have the following generalization of Corollary 5.9:

Theorem 5.10. Let A be a finite abelian group. Since A is abelian, the irreducible repre-

sentations of A are one-dimensional, hence Â can (and will) be identified with the set of

irreducible characters of A. Define for f ∈ Fun(A) its Fourier transform f̂ ∈ Fun(Â) by

f̂(χ) :=
∑
a∈A

f(a)χ(a).

Then ̂ : (Fun(A), ∗) ∼−→ (Fun(A), ·) is an isomorphism of algebras and we have the inver-
sion formula

f(a) =
1

#A

∑
χ∈Â

f̂(χ)χ(a−1)

for all f ∈ Fun(A) and a ∈ A.

Exercise 5.11. Prove Theorem 5.10.

6. Semisimple algebras

If B is a finite dimensional, associative, unital algebra over C then there are the obvious
notions of a B-submodule, intertwiners between B-modules, and irreducible B-modules.
The regular representation of B is B itself, viewed as left B-module using the multiplication
in B. The submodules of B are precisely the left ideals of B. The irreducible submodules
of B are called the simple left ideals of B. Note that a left ideal I ⊆ B is automatically a
vector subspace (since B is unital, hence I is closed under multiplication by C1, i.e. it is
closed under scalar multiplication).
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In case B = C[G] is the group algebra of a finite group G, a left C[G]-module is the same
as a linear representation of G, and C[G]-submodules, intertwiners and irreducible modules
are subrepresentations, intertwiners and irreducible linear G-representations respectively.

Definition 6.1. A finite dimensional, associative, unital algebra B over C is called semisim-
ple if B is the sum of its simple left ideals.

In particular, the group algebra C[G] of a finite group G is a semisimple algebra. There
is an important structure theorem for semisimple algebras due to Wedderburn generalizing
Lemma 5.1, Theorem 5.2 and Corollary 5.5.

Theorem 6.2. Let B be a finite dimensional, associative, semisimple, unital algebra over
C. Then

B ' EndC(V1)⊕ · · · ⊕ EndC(Vr)

as algebras for some finite dimensional complex vector spaces Vi. Such an isomorphism
can be realized as follows. Let {Ii}i be representatives of the isomorphism classes of simple
left ideals of B. This set is finite. Set

B(i) :=
∑

I

I

with the sum over left ideals I ⊆ B isomorphic to Ii. Then B(i) ⊆ B is a two-sided ideal,
B(i)B(i′) = 0 if i 6= i′ and

B =
⊕

i

B(i)

as algebras (this is the canonical decomposition of the regular representation in case B =
C[G]). Furthermore, B(i) ' EndC(Ii) as algebras, with map given by

b 7→ b|Ii
, b ∈ B(i).

Proof. We do not give the proof of the theorem. It follows closely the line of arguments
which we used for the group algebra in the previous section (for the density theorem, using
a slightly adjusted version of the second proof of Theorem 5.3). For details see, e.g., [1,
Chpt. XVII]. �

Example 6.3. The subalgebra

B :=

{(
a b
0 c

)
| a, b, c ∈ C

}
of the algebra of 2×2 complex-valued matrices is not semisimple. One can for instance eas-
ily show that B is not the sum of simple ideals. Or, if B would be semisimple, then it would
be a direct sum of endomorphism spaces. Since B is three dimensional the only possibility
would be B ' C⊕ C⊕ C. But B is not commutative, which gives the contradiction.



14 ALGEBRA 3; REPRESENTATIE THEORIE. AANVULLING 2

References

[1] S. Lang, Algebra, Graduate Texts in Mathematics 211, Springer Verlag.
[2] J.-P. Serre, Linear Representations of Finite Groups, Graduate Texts in Mathematics, 42, Springer-

Verlag, New York, 1977.


