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1 Introduction

When thinking about rational agents facing choices, one appealing math-
ematical model recurs in the literature. From Borges’ short story ‘The
Garden of Forking Paths’ to a large number of technical paradigms some-
times at war, sometimes at peace, all invoke the picture of a branching
tree of finite sequences of events with epistemic indistinguishability rela-
tions for agents between these sequences, reflecting their limited powers of
observation. Indeed, tree models for computation, with branches standing
for process evolutions over time, have long been studied in computer sci-
ence, cf. [23, 24, 6, 1, 11]. Philosophers have studied similar models, now
enriched with epistemic relations, for studying the behavior of intelligent
human agents facing choices: see Thomason & Gupta [28], Belnap et al.
[4] and Horty [15]. Epistemic models of events over time have also been
proposed in computer science by various authors, witness Fagin et al. [7]
and Parikh & Ramanujam [20, 21]. And finally, ’dynamic logics’ of commu-
nication and information flow in the tradition of Baltag, Moss & Solecki [3]
have tree models of events as their natural broader habitat.

Bringing together knowledge and temporal change is a natural move in
modeling, but it is also a potentially dangerous one from a complexity per-
spective, as has been pointed out forcefully in Halpern & Vardi [12]. The
context is clear from the literature cited just now. On the one hand, Ra-
bin’s Theorem tells us that the full monadic second-order logic of the tree
of events ordered by the relation of ‘initial segment’, and provided with
some finite set of successor functions is decidable [24]. This explains the
decidability of purely temporal logics of events such as CTL, and others.
Likewise, the tree-like nature of models explains the decidability of many
modal logics (see [17]). In a slogan, ‘Trees are Safe’. But on the other hand,
we know that the monadic second-order logic, indeed, even the monadic
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Π1
1-theory of the grid N× N is undecidable (see [13]). A grid is like a tree,

but successors meet, and the resulting confluent structure is known to cause
undecidability in many areas of modal logic ([16]), witness in particular the
work of Gabbay et al. on ’product models’ [9]. In one more slogan: ‘Grids
are Dangerous’.

Now, epistemic temporal logics live at a dangerous edge here. Even
though they use Rabin-style tree models, they introduce additional epis-
temic indistinguishability relations which generate a ‘second dimension’,
and if the language gets too powerful, enough grid structure can be encoded
to cause undecidability. Illustrations for this again come from a wide range
of papers. E.g., Thomas [27] points out, following Läuchli, how introducing
a relation of ‘simultaneity’ into the Rabin tree makes the monadic second-
order logic undecidable. Likewise, Halpern & Vardi show how epistemic-
temporal logics of agents with Perfect Recall and No Learning can become
undecidable [12]. But the situation is delicate, as small changes in an epis-
temic temporal language or class of models can affect the complexity of the
logic in drastic ways.

In this paper, we position ourselves close to the edge of undecidability
in a straightforward system of epistemic temporal logic. We will discuss a
number of complexity results, on both sides of the edge, while pointing out
how results from all different traditions mentioned here help illuminate the
landscape. In doing so, we also have a broader aim. The area that we are
describing consists of a number of different frameworks, whose practition-
ers either do not know about relevant work by others, or are not even on
speaking terms. We feel that this is an unfortunate situation, since much
is to be gained by seeing the commonality of one area of research here. As
we shall see, issues are often the same, and notions and techniques can be
borrowed freely. Our paper is one such contribution toward a merge.

2 Epistemic Temporal Logic

This section describes the basic models that we will use in this study. The
intended interpretation is of a group of agents interacting in a social situ-
ation. For example, a group of agents having a conversation or playing a
game. We are interested in how the agents’ knowledge about the situation
may change over time. Let Σ be a set of events. The events are the build-
ing blocks of our models, i.e., the primitive descriptions of a social situation.
For example, an event might be a move in some game, or an message sent
from one agent to another agent or even to a group of agents. The first
basic assumption is that not all agents are aware of all events. The other
assumptions we make involve the nature of time in our models.

First of all, we assume there is a global discrete clock (which the agents
may or may not be aware of). Second we assume that the agents only have
a finite capacity to remember events. This capacity may be unbounded,
but at every moment the agents can be aware of only a finite number of
events. Thus even if an infinite number of events have taken place, at any
moment each agent will only be aware of a finite number of them. Therefore,
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we assume moments are elements of N and so there is a finite past with a
possibly infinite future. Below we give the formal details of our models.

2.1 Our Models

Let Σ be any set. The elements of Σ are called events. Given any set X, let
X∗ denote the set of finite strings over X and Xω the set of infinite strings
over X. Elements of Σ∗ ∪Σω will be called histories. Given H ∈ Σ∗ ∪Σω,
let len(H) denote the length of H, i.e. the number of characters (possibly
infinite) in H. Given H,H ′ ∈ Σ∗ ∪ Σω, we write H � H ′ if H is a finite
prefix of H ′. If H � H ′ we say that H is an initial segment of H ′ and H ′

is an extension of H. Let FinPre(H) = {H | ∃H ′ ∈ H such that H � H ′}
be the set of finite prefixes of the elements of H.

DEFINITION 1. Let Σ be any set. A set H ⊆ Σ∗∪Σω is called a protocol
provided FinPre(H) ⊆ H.

Intuitively, a protocol is the set of all possible ways an interactive sit-
uation may evolve. Given a protocol H and a finite history H ∈ H, let
ExtH(H) = {H ′ | H ′ ∈ H,H � H ′} be the set of extensions of H from
H. If no confusion will arise we will write Ext(H) instead of ExtH(H). We
write Ext<ω(H) for the set of finite extensions of H and Extω(H) for the
set of infinite extensions of H. Given t ∈ N and a history H, we write
Ht for the unique initial segment of H of length t.

DEFINITION 2. Suppose A is a finite set of agents and Σ a finite set of
events. A pair 〈H, {∼i}i∈A〉 is an epistemic temporal frame based on a
set of events Σ if H ⊆ Σ∗ ∪ Σω is a protocol and each ∼i is an equivalence
relation on FinPre(H).

Note that in the definition of an epistemic temporal frame, the set of
events is assumed to be finite. Typically, with only few exceptions, we will
be interested in finitely branching models. Thus, in general, an epistemic
temporal frame can be pictured as a forest of finitely branching trees (there
may be more than one root) with relations between finite branches of the
trees. This corresponds to the situation that at any moment only finitely
many events may take place and there may be uncertainty about the initial
situation. For this paper, we are typically interested in trees. That is, unless
otherwise stated, we assume that our protocols have a root. We now move
to assumptions about the reasoning capabilities of our agents.

DEFINITION 3. An epistemic temporal frame 〈H, {∼i}i∈A〉 based on Σ
satisfies the property no learning, or no miracles, provided for all finite
histories H,H ′ ∈ H and events e ∈ Σ such that He ∈ H and H ′e ∈ H, if
H ∼i H

′ then He ∼i H
′e.

DEFINITION 4. An epistemic temporal frame 〈H, {∼i}i∈A〉 based on Σ
satisfies the property perfect recall provided for all finite histories H,H ′ ∈
H and events e ∈ Σ such that He ∈ H and H ′e ∈ H, if He ∼i H

′e then
H ∼i H

′.

Intuitively, perfect recall means that the set of histories an agent considers



4 Johan van Benthem and Eric Pacuit

possible can only decrease or remain the same. The no learning property,
which we sometimes refer to as the more suggestive ‘no miracles’ property,
says that the uncertainty of the agents cannot be erased by the same event.
Epistemic temporal frames that satisfy no learning and perfect recall will
play an important role for us in this paper (see Section 4).

DEFINITION 5. An epistemic temporal frame 〈H, {∼i}i∈A〉 is synchronous
if for all finite histories H,H ′ ∈ H, if H ∼i H

′ then len(H) = len(H ′).

Intuitively, if a frame satisfies the synchronous property, the value of the
global clock is common knowledge. If a frame is not synchronous, then it is
said to be asynchronous. There are a number of other assumptions that
can be made about the interaction between the epistemic relation and time.
The reader is referred to [7] for more information.

There have been a number of different modal languages proposed to rea-
son about the above structures (see the Handbook chapter [14] for a dis-
cussion). The differences typically center around whether the temporal op-
erators are ‘branching’ or ‘linear’. We will say more about this distinction
below. Our strategy will be to first introduce a modal logic with linear tem-
poral operators, then to present a stronger language with features of both
branching and linear time operators. Let At be a finite or countable set of
atomic propositions. We are interested in language with various combina-
tions of the following modalities: Pφ (φ is true sometime in the past), Fφ
(φ is true sometime in the future), Y φ (φ is true at the previous moment),
Nφ (φ is true at the next moment), Kiφ (agent i knows φ) and CBφ (the
group B ⊆ A commonly knows φ).

Duals of the above operators are denoted as usual (eg., let 〈i〉φ denote
¬Ki¬φ). If X is a sequence of modalities from {P, F, Y,N} let LX

n be
the language with n knowledge modalities K1, . . . ,Kn together with the
modalities from X. If X is a sequence of modalities, then LX

C will be the
language LX

n closed under the common knowledge modality C. Let LETL

be the full epistemic temporal language, i.e., it contains all of the above
temporal and knowledge operators.

We now introduce a PDL-style language intended to capture features of
both linear and branching time language. Let A be a (finite) set of agents
and recall that Σ is a (finite) set of events. Define the language LΣ(A)
inductively as follows:

φ := p | ¬φ | φ ∧ ψ | 〈α〉φ

α := a | ?p | α;β | α ∪ β | α∗

where p ∈ At, a ∈ Σ ∪ A and σ ∈ Σ. Let LΣ(A)− be the language LΣ(A)
which allows expressions of the forms 〈σ−〉φ.

Regardless of whether the language has branching time or linear time
temporal operators, formulas are assumed to express properties about finite
histories. The difference lies in format of the satisfaction relation. That
is, in a linear temporal logic setting, formulas are interpreted at pairs H, t
where H is a ‘maximal’ (possibly infinite) history and t is an element of
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N. The intended interpretation of H, t |= φ is that on the branch H at
time t, φ is true. In the branching time setting, essentially we only need
the moment. That is, formulas can be interpreted at finite histories H. In
the interest of a unified approach we will interpret formulas at branch-time
pairs. However, it what follows it will be useful to take the branching time
interpretation. This will be used to draw parallels with existing results in
temporal modal logic and products of modal logics [9].

This move between a branching time interpretation and a linear time
interpretation can, in part, be justified by the following observation. Let
M and N be two bisimular Kripke structures. Let w and v be two bisimular
states in M and N respectively, and consider the tree unravelings of M and
N , denoted Tree(w,M) and Tree(v,N ). Consider the temporal language
with only linear time future looking operators (F and N). This language
can be interpreted over the tree structures Tree(w,M) and Tree(v,N ).
Let H and H ′ be two paths in Tree(w,M) and Tree(v,N ) respectively in
which matching nodes at each stage along the paths are bisimular. It is not
hard to show that for each temporal formula φ, φ is true at H, t iff φ is true
at H ′, t.

An epistemic temporal model based on an epistemic temporal frame
〈H, {∼i}i∈A〉 is a tuple 〈H, {∼i}i∈A, V 〉 where V is a valuation V : At →
2FinPre(H). Formulas are interpreted at pairs H, t where t ∈ N and H ∈ H
has length longer than t (typically we assume H is infinite). Truth for the
languages LX

n where X is a sequence of modalities is defined as usual. See
[7] and [14] for details. We only remind the reader of the definition of the
knowledge and some temporal operators:

• H, t |= Pφ iff there exists t′ ≤ t such that H, t′ |= φ

• H, t |= Fφ iff there exists t′ ≥ t such that H, t′ |= φ

• H, t |= Kiφ iff for eachH ′ ∈ H andm ≥ 0 ifHt ∼i H
′
m thenH ′,m |= φ

We now turn to the LΣ(A) language. This language is intended to be
(strictly) stronger than the language described above. Before defining truth
in a model we introduce a relation Rα on the set FinPre(H), where α is
defined by the above grammar. Let H,H ′ be finite sequences of events and
V a valuation (assigning sets of atomic propositions to finite sequences).
Suppose σ ∈ Σ and i ∈ A.

• HRσH
′ iff H ′ = Hσ if σ ∈ Σ

• HRiH
′ iff H ∼i H

′

• HRσ−H
′ iff len(H) > 1 and H = H ′σ

• HR?pH
′ iff H = H ′ and p ∈ V (H).

• HRα;βH
′ iff there exist H ′′ such that HRαH

′′ and H ′′RβH
′

• HRα∗H
′ iff for some n, HRn

αH
′ (i.e. Rα∗ = R∗α)
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Truth is defined as usual for atomic propositions and boolean connectives,
we only give the definition of the modal operator:

• H, t |= 〈α〉φ iff there exists H ′ ∈ H and m ∈ N such that HtRαH
′
m

and H ′,m |= φ

In what follows, if H is a finite history, we may write H |= φ to mean
H ′, len(H) |= φ where H ′ is any infinite extension of H.

3 Living at the Edge

Having set up our basic framework, we now want to demonstrate some key
facts about the border line between decidable and undecidable epistemic
temporal logics. We will mostly assume that we have tree models with
finitely many events only, starting from a single root. Instead of setting
up a huge grid of possible model classes and languages, which tends to
make the total picture somewhat diffuse, we high-light a few major stages,
including one new highly undecidable epistemic tree logic. The main line
of our observations is not all that new by itself, but our presentation and
variety of sources is. We can only sketch our proofs here: the technical
Appendix has further details.

3.1 LETL over arbitrary models
First, consider our complete language on arbitrary epistemic tree models,
without constraints on the interaction of epistemic relations and events.

THEOREM 6. The satisfiability problem for the language LETL over arbi-
trary models is RE.

Proof. This logic is the fusion of multi-agent epistemic S5 with common
knowledge, plus some complete axiomatization of our basic temporal lan-
guage, while the tree structure adds one more axiom:

〈i〉φ→ Fφ ∨ P (H⊥ ∧ Fφ)

This says that any epistemic alternative is reachable in the tree by going up,
or by going down to the root (where H⊥ holds) and then moving up again.
Here the operator ’F ’ refers to the branching future in the above sense. One
can show that this logic is complete for multi-S5 models without special
conditions on event relations Re. Such a model M can be unraveled in the
standard modal style to an epistemic tree model, where epistemic relations
between nodes (finite sequences of worlds in M) are just copied from those
in M for their last members. �

The special axiom in the preceding formulation reflects the assumption that
agents know the current protocol. One could also give up on this, allowing
models with different trees, while agents are not sure which one they are in.

We do not know if this general logic is decidable, though we suspect
that it is, by the general results on transfer of decidability for fusions of
modal logics surveyed in Gabbay, Wolter et al. [9]. Of course, behaviour
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of specific agents will take place in models satisfying additional epistemic-
temporal constraints. But before going there, let’s first consider the purely
temporal part of our language over a still more specific structure.

3.2 Purely temporal languages on standard tree models

The Rabin Tree ([27]) consists, in our terms, of all finite sequences of events
from some given finite set, with the binary relation of ’initial subsequence’
plus successor functions taking a sequence H to He, for each e ∈ Σ.

THEOREM 7 (Rabin [24]). The monadic second-order logic of the Rabin
Tree is decidable.

This landmark result explains the decidability of many modal and temporal
logics, as first pointed out by Gabbay [8]. It applies particularly well to our
setting here, since the Rabin Tree has both points and branches, represented
as special sets of points.

THEOREM 8. The satisfiability problem for LETL with respect to tree mod-
els is decidable.

Proof. Validity for us is not on one model, but on all protocol models.
However, this variety can be encoded as follows in a single Rabin tree. A
formula φ involving finitely many events e is true in all protocol models if
∀A(’subtree(A)’ ⇒ (φ)A) is true on the Rabin Tree over that finite event
set. Here (φ)A is the obvious syntactic relativization of the formula φ to
the unary predicate variable A, and ’subtree(A)’ expresses that A is closed
under taking initial segments. �

3.3 Idealized epistemic agents have a highly undecidable tree
logic

Let us now consider the usual idealizations of epistemic logic. Agents have
perfect memory, and seeing new events will not confuse them: that is, we
have the above Perfect Recall, and No Learning properties. The resulting
interaction of temporal and epistemic structure makes trees look more like
grids, and indeed, undecidability strikes. We highlight this result, because
it is indicative of the ’danger zone’ that we are in. The results to follow
are reminiscent of those by Halpern & Vardi [12], but our models and lan-
guage are slightly different, while we also use a by now more standard tiling
technique.

THEOREM 9. The satisfiability problem of LΣ(A) with respect to epistemic
temporal frames that satisfy no learning is Σ1

1-complete.

Of course, this also implies that if both no-learning and perfect recall are
satisfied, then satisfiability problem is Σ1

1-complete. For perfect recall alone,
we have the following two theorems.

THEOREM 10. The satisfiability problem with respect to synchronous epis-
temic temporal frames that satisfy perfect recall is Σ1

1-complete.
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THEOREM 11. The satisfiability problem with respect to the language LΣ(A)−

with respect to epistemic temporal frames that satisfy perfect recall is Σ1
1

complete.

We first remind the reader of a few relevant facts about tiling arguments.
Let T be a finite set of tile types and for T ∈ T , let right(T ), left(T ), up(T )
and down(T ) be the colors of T . The tiling problem (for the first quadrant)
asks is there a function t : N× N → T such that for each n,m ∈ N

right(t(n,m)) = left(t(n+ 1,m))
up(t(n,m)) = down(t(n,m+ 1))

The function t is called a tiling of N×N. The recurrent tiling problem asks,
given a set of tiles T with a distinguished tile T1 ∈ T , if there is a tiling
t such that T1 occurs infinitely often in the first row. We will make use of
the following Theorem of Harel.

THEOREM 12 ([13]). The recurrent tiling problem is Σ1
1-complete.

It turns out that for frames satisfying perfect recall alone, we must appeal
to the following Lemma. This Lemma states that if we can tile every finite
square of the plane then we can tile the entire plane. We first need some
notation. By a (n × n)-tiling of the plane, we mean a function t(n) :
{(i, j) | 0 ≤ i ≤ n, 0 ≤ j ≤ n} → T that satisfies the conditions described
above (i.e., the tiles match vertically and horizontally). We say two tilings
t(n) and t(m) are consistent if one tiling extends the other tiling. Thus
each (n × n)-tiling can be thought of as a sequence of partial consistent
tilings.

LEMMA 13. Suppose that for each n > 0, there is at least one (but only
finitely many) partial tilings t(n). Then there is a tiling of the entire plane.

The proof uses König’s Lemma and can be found in the appendix.
We restrict attention to the class of models to generated by two events

l and r. That is, suppose that Σ = {l, r} and consider epistemic temporal
frames whose protocol is a subset of Σ∗ ∪ Σω. The proof of the theorems
above proceeds by encoding a recurrent tiling problem using the language
LΣ(A). Let T = {T1, . . . , Tk} be a finite collection of tiles and let t1, . . . , tk
be propositional letters corresponding to the k different tile types. Our goal
is to find a formula φT that is satisfiable iff there is a recurrent tiling of
N×N using the tiles from T . We begin by describing the formula φT . The
details can be found in the appendix. The formula φT consists of three
parts: 1. a formula which forces the extensions of a finite history to have
a particular structure, 2. a formula which forces a grid structure and 3. a
formula which places tiles on the grid.

That is, we define a formula φT such that ifH, t |= φT then the extensions
of Ht can be pictured as follows (details are found in the appendix).
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We can think of the above model as representing half of the N×N grid. The
idea is to think of the infinite r-path as the y-axis and the first infinite l-path
as the x-axis (the fact that the truth value of p alternates between the paths
will be used below). We now show how force the second half of the grid.
That is, we need a formula that will be satisfied if there are infinitely many
infinite “up” paths. The trick will be to consider the following program

αu :=?p; l; 1; ?¬p; l; 2; ?p

Making a step of the above program corresponds to making a ‘zig-zag’ move
through the tree between points which will cross between different branches.

3.4 Decidable versions without interaction of epistemic and
temporal parts

The preceding results show where we have oversteppend the bounds of de-
cidability on tree models with additional epistemic relations. However, we
can step back a little, and look at a slightly weaker language where we have
common knowledge in the epistemic component, and its analogues of P and
F in the temporal side. What we do not allow, however, in this language is
the sort of mixing of temporal and epistemic steps that was crucial to the
encoding of tiling cf. the above zig-zag move of αu.

It might seem that this does not help, as epistemic relations of this neat
sort behave like relations of simultaneity. And Läuchli proved that the first-
order theory of the Rabin tree expanded with a binary ’equilevel’ predicate
for nodes is undecidable. But Thomas [27] provides a more fine-grained
perspective: he shows that the monadic second-order theory of the Rabin
Tree with an ’equilevel’ predicate remains decidable provided that we let
the second-order quantification run over linear chains, rather than arbi-
trary subsets. More succinctly: ’Path Logic’ over the Rabin Tree with an
equilevel predicate is decidable. Note that Path Logic extends our tempo-
ral languages, since these talk about initial segments and extensions of the
current finite history.

THEOREM 14. The logic of the language LP,F
C over synchronous tree mod-

els is decidable.
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Proof. Thomas shows how Path Logic can be embedded into the monadic
second-order theory of the Rabin tree, by sending chains to pairs of subsets
(A,B) where A encodes the left-most branch on which the chain lies, while
B encodes which nodes are on the chain. More precisely, B ’goes left’ at
levels not represented on the chain, and it ’goes right’ at levels where the
chain has a node. The equilevel predicate for two nodes is then expressed by
saying that they are one-element chains, whose B-sequences go right at the
same place. Now, our epistemic relations are subrelations of the ’equilevel’
predicate , which latter corresponds roughly to the transitive closure of their
union. But we can encode this epistemic language into that of Path Logic
by modifying the chain representation. �

3.5 Epistemic temporal logics over non-tree models
Against this background, here is how one can think of earlier work on
epistemic-temporal models. Halpern & Vardi consider models where ei-
ther the initial model may be infinite, or there may be infinite branching.
In particular, in this case, even the ’unmixed’ language of 3.4 above leads
to undecidability with the assumptions of No Learning or Perfect Recall,
because the grid structure now arises as follows. One starts from an infinite
model in one direction, and lets the temporal axis form the other one. Note
that this was not available to us in the above, since the levels of our event
trees were finite. In addition, Halpern & Vardi have many further relevant
results, which we do not survey here.

This concludes our statement of some typical results on decidability and
undecidability over epistemic temporal tree models. Not surprisingly, the
boundary has to do with the transition from mere trees to grid encod-
ing using the additional epistemic structure. The epistemic setting adds
some special flavor, however, in that the small differences which affect the
complexity represent very concrete assumptions about agents’ capabilities,
and what we can say about these. Moreover, we have shown how one can
learn about relevant results here from traditions that look prima facie quite
different: earlier work on epistemic temporal logic, tree languages in the
foundations of computation, and current work on products of modal logics.

4 Dynamic Epistemic Logic

Our take on epistemic temporal logic is mostly within the broad tradition
of Fagin et al. [7] and Parikh & Ramanujam [20, 21]. One current family
of logics which diverges slightly from these, though still clearly within the
same spirit, is that of ’dynamic epistemic logic’ (‘DEL’, [10, 22, 2]). Here,
epistemic actions are described per se, such as announcing a true propo-
sition, or performing some more complex type of communication. These
are encoded explicitly in ’action models’ A consisting of the relevant events
and the preconditions for their occurrence, plus agents’ epistemic relations
over these, representing their partial powers of observation. In the strict
version of DEL, preconditions for actions are defined by purely epistemic
formulas. What agents learn from such epistemic events, given some cur-
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rent epistemic model M, is encoded by a new ’product model’ M×A, where
agents are uncertain between worlds (s, e) and (t, f) iff they were uncertain
between both the old worlds s, t and the observed events e, f . The language
for these models has the usual epistemic operators, plus modalities 〈A, e〉φ
interpreted as follows:

M, s |= 〈A, e〉φ iff M× A, (s, e) |= φ

The resulting logic is decidable, and it revolves around so-called ’reduction
axioms’ allowing for compositional analysis of the effects of epistemic ax-
ioms. E.g., a typical reduction axiom is that for agents’ knowledge after a
public announcement:

[!P ]Kiφ↔ (P → Ki[!P ]φ)

We refer to the literature for more precise definitions and more elaborate
results on complete dynamic-epistemic logics (cf. van Benthem [29], Baltag
& Moss [3], van Benthem [30], van Eijck & Kooi [32], and van Ditmarsch,
van der Hoek & Kooi [33]).

Prima facie, DEL does not look like epistemic-temporal logic at all: since
there is no explicit mention of time. And vice versa, ETL does not look
much like dynamic-epistemic logic, since it does not explicitly describe the
epistemic events that lead to the construction of successive models by agents.
What we want to illustrate now, as a sample of our ’convergence’ view on
the whole area of epistemic temporal reasoning, is that these appearances
are misleading. The two approaches have much to offer to one another,
precisely, because they are so close that borrowing is easy and natural. We
develop this theme in a number of separate topics.

4.1 Representing DEL models inside ETL models
Product update involves three major ingredients with a logical ‘reflection’,
as was first observed in van Benthem 2001:

(a) Product update implies Perfect Recall: , (x, a) ∼i (y, a) implies x ∼i y

(b) Product also propagates uncertainty (there are ‘No Miracles’): if x ∼i

y , then after performance of a in both cases, (x, a) ∼i (y, a)

(c) Moreover, ’no miracles’ holds uniformly: Actions are either always
distinguishable, or never: if (x, a) ∼i (y, b), then, whenever u ∼i v,
also (u, a) ∼i (v, b) if the latter moves can be performed at all.

These principles can be translated into axioms of our epistemic temporal
logic in a straightforward manner. But here, we are rather concerned in
the immediate semantic connection. Given any initial model M and action
model A representing all possible events plus agents’ observational pow-
ers over these, we can form a natural epistemic tree model Tree(M,A) as
follows. Nodes are finite sequences of events, and the successive epistemic
models of the DEL-style process are the horizontal levels of the tree. Events
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only take place when their precondition is satisfied. Note that this is a tree
model whose initial epistemic model at the root can be arbitrary: there is
no special restriction to finiteness (though van Benthem [30], Sadzik [26]
do explore this special case, looking for epistemic bisimulations between
different finite levels).

In particular, the epistemic decoration of the tree models Tree(M,A)
is rather special, since it obeys the above three constraints. Indeed, van
Benthem & Liu [31] prove the following representation result:

THEOREM 15. An epistemic tree model M is bisimilar to a model of the
form Tree(M,A) if and only if it satisfies (a) Perfect Recall, (b) Uniform
No Miracles, and (c) for any event e, the set of nodes where e can take place
is closed under epistemic bisimulations inside M.

Thus, product update corresponds to a special epistemic temporal logic.
As stated before, we can unpack the content of the conditions to the usual
axioms for Perfect Recall (Ki[a]φ → [a]Kiφ) and No Learning, where the
uniform version of the latter would require the use of universal modalities
Eφ, Uφ stating that φ holds at some world, at all worlds, resp. (cf. Black-
burn, de Rijke & Venema [5]):

E(〈a−〉> ∧ ¬Ki¬〈b−〉>) → U(〈a−〉¬Ki¬φ→ Ki[b−]φ)

Thus, in a sense, dynamic-epistemic logic describes the behaviour of spe-
cial idealized agents on epistemic temporal trees, much as we discussed in
preceding sections. But this is not all to the story, since DEL also has
some further special features. In particular, in the light of Section 3, its
decidability calls for explanation!

More can be said here. E.g., ’No Miracles’ is a much more plausible ver-
sion of propagating ignorance than the usual formulations of No Learning,
which seem to say that the passage of time never helps increase knowledge.
This improvement reflects the fact that DEL gives a deeper analysis of the
processes that drive information change, instead of merely describing the
Grand Stage where all agents live in time.

4.2 Why is DEL decidable?

Using the above observations, one can analyze the principles of DEL-style
calculi in our epistemic temporal logic. But when we do, we end up in a
very restricted fragment of our languages:

THEOREM 16. Over models of the form Tree(M,A), DEL corresponds
to the epistemic-temporal language of epistemic logic plus one-step future
operators 〈e〉.

Thus, we do not reach the expressive power needed for undecidability in
our earlier arguments. For DEL proper, this can be seen as follows. The
reduction axioms of the standard calculi translate every formula into an
equivalent one without action modalities, and one then uses the decidabil-
ity of the purely epistemic language. This is a sort of ’one-dimensional
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reduction’ of a two-dimensional system. But actually, something stronger
holds. Suppose that events can have preconditions in the epistemic tempo-
ral language, as happens in many concrete communications scenarios which
refer, e.g. to the past of the current conversation. In its most blunt form,
the precondition for e to occur is then just this: 〈e〉>.

THEOREM 17. The logic of the epistemic temporal language with only op-
erators 〈e〉 on models with Perfect Recall and No Miracles is decidable.

Proof. This can be derived from the decidability result for the modal
’product logic’ PDL×Km in Gabbay, Wolter et al. [9], by embedding our
language into it. The models for this logic may be viewed as grids with
an ’epistemic’ PDL direction and a ’temporal’ one-step K-direction. Still,
no embedding of tiling problems is possible, because the language does not
contain a true universal modality or transitive closure modality accessing
all points of the grid (cf. also Marx & Mikulas [16]). �

4.3 Program structure, true future, and undecidability

DEL style logics do become undecidable when the complete future is added.
This would happen, e.g., if one adds sequential structure to action models,
modeling, say, conversational processes involving composition and iteration.
The landmark paper Miller & Moss [18] proves many relevant results, in-
cluding this surprising effect of combining two decidable logics:

THEOREM 18 (Miller & Moss). The dynamic-epistemic logic of public an-
nouncement with program iterations is undecidable.

This shows that the undecidability phenomena already noted in Halpern
& Vardi for the language with common knowledge and true future even occur
in very restricted settings, where events are just announcements. Indeed,
Miller & Moss show that iterated announcement of one single proposition
3> suffices. However, in the light of our ETL-based Section 3, their analysis
also leaves open questions. One of them has to do, again, with our assump-
tion of finite levels. It is unknown whether their undecidability results hold
when initial models are assumed to be finite.

4.4 Decidable fragments; tomorrow and yesterday

Our epistemic temporal analysis also suggests various additions to the stan-
dard language of DEL which still remain decidable. One typical illustration
is the addition of the temporal past of an epistemic process (van Benthem
[30]). Yap [34] and Sack [25] analyze such additions, and propose valid
axioms. Here is the general setting.

THEOREM 19. The logic of the epistemic temporal language with one-step
future operators 〈e〉 and one-step past operators 〈e−〉 on models with Perfect
Recall and No Miracles is decidable.

Proof. This follows from a simple modification of the above-mentioned
decidability proof for PDL×K given in Gabbay, Wolter et al. [9]. �
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We conjecture that decidability still holds when we add many-step Past
operators, at least, on our rooted finite-event trees. Logics such as this can
discuss what agents knew at the previous stage, but they can also include
preconditions for events that reach back in time, such as ”saying P if you
have not already done so”.

4.5 Protocols and model constructions

But there are still further features to the comparison of DEL and ETL.
First, it is sometimes claimed that DEL lacks an essential resource avail-
able in our epistemic temporal models, viz. the choice of a protocol, i.e.,
a set of ’relevant histories’. Now, this is not true, since the above mod-
els Tree(M,A) do have explicit restrictions on their available runs, since
events can only occur when their precondition is satisfied. Thus, DEL has
an explicit calculus for preconditions, as these are encoded in the action
models, and these are again available inside the formal language through
the modalities 〈A, e〉φ. On the other hand, given the special epistemic for-
mat for these preconditions, one can only define special protocols, via local
restrictions, that must be stated in a purely epistemic language. A more
general approach here would merge the two ideas. On the one hand, it
seems a good idea to make the protocols explicit in the language, as DEL
does. On the other hand, one needs a richer repertoire of definitions for
realistic protocols, including temporal operators in their formulation. This
can be achieved in the following ’Logic of Protocols’:

The language is similar to our LΣ(A) language. We first introduce a
PDL style language for representing protocols in the object language. A
protocol can have the following syntactic form

e | α;β | α ∪ β | α∗ | skip | φ?

where e ∈ Σ is an event and φ is a formula of LETL. For example, the
protocol (e ∪ skip)∗ represents the set of histories that contain the event e.
A test-free protocol α is simply a regular expression; and so it represents
the set of histories that match α. Another more interesting example is a
‘Liar Protocol’. Let send(i, B, p) be the event agent i sends the message
p to the group of agents B, i.e., i announces p to the set of agents B.
Then ((Ki¬p?; send(i,A, p))∪(Kip?; send(i,A,¬p))∪skip)∗ represents a liar
protocol. That is, if i knows p then i publically announces ¬p, if i knows
¬p then i publically announces p, or i does not say anything.

For each protocol α introduce a modal operator Nα to the language. The
intended interpretation of Nαφ is that φ is true at the next moment in all
extensions of the current history compatible with the protocol α. Thus truth
is defined as H, t |= Nαφ if H ′ ∈ H,H �α H ′ and H ′, t |= φ, where �α

is an extension relation much like the previously define Rα relations. This
addition, though very useful in practice, is arguably a matter of convenience:

THEOREM 20. ETL with explicit protocols is no more expressive than ETL
by an effective translation.
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Introducing explicit protocols is also akin to the use of ’knowledge programs’
in Fagin et al. [7]. We forgo the precise connection here.

Our conclusion is that older and newer approaches to dynamic actions
and epistemic logic all meet in the same arena of epistemic logic, and that
insights can be transferred in illuminating ways.

5 Conclusions

This paper has tried to show that epistemic temporal models are a natural
meeting place for logical studies from many different directions. In Section
2, we have defined some basic structures that seem to recur in most major
studies of agents’ interaction and information. In Section 3, we discussed
the decidable/undecidable boundary where many of the interesting issues
live concerning agent behaviour. We found that these issues also lead to a
natural combination of insights from a number of different traditions: epis-
temic temporal logics in computers science, but also logics of computation,
modal logics of products, and dynamic-epistemic logics.

Concerning the relation between these frameworks, our view is this. Epis-
temic logics in the style of Fagin et al, and Parikh et al. are largely the
same, even up to mutual mathematical representation (cf. [19]). The sit-
uation with these logics vis-à-vis dynamic-epistemic logics is a bit more
complex, but Section 4 has shown some natural merges that combine ideas
from both sides. In particular, the tendency one sometime finds to play up
differences between these approaches as different ’world views’ seems both
pointless from a mathematical viewpoint, and harmful from a conceptual
or a practical point of view, as it impedes mutual flow of ideas.

Indeed, many further examples of such traffic can be found, which we
had to leave out for reasons of space. E.g., we also have new results (not
reported on here) on less-than-ideal agents with bounded memory in the
same combined setting. In particular, one can show that the epistemic-
temporal logic of memory-free agents reduces to a decidable purely temporal
logic over trees (cf. van Benthem [29], van Benthem & Liu [31]): this is the
opposite, so to speak, of the reduction found in dynamic-epistemic logic.
But perhaps the more exciting perspective is when bounded agents and idea
agents meet. In that setting, speaking about the knowledge of bounded
agents introduces global universal and existential modalities, which may
interact with the one-step future logic for the ideal ones. We conjecture that
the resulting logics can get undecidable again, reflecting the difficulties of the
interplay in a society with a diversity of agents. But there are many other
possible confluences. E.g., the explicit treatment of model constructions in
dynamic-epistemic logic is also reminiscent of that in process algebra, and
again, in this way, one more connection would be made in the broad area
of process theories for agents that can know things and display rational
intelligent behavior.

Still more broadly, our approach would suggest a turn in perspective, from
competition between frameworks to cooperation. Compare the situation in
the 1930s, when many different models were proposed for computation. In-
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stead of creating different churches, logicians started looking for similarities
and equivalences (at some appropriate level), and the result was Church’s
Thesis, usually taken to mean that the field had a stable and mathemati-
cally respectable topic. Likewise, convergence, if not downright equivalence,
between epistemic temporal logics of agents might signal to a broader world
that there is a core notion of genuine interest here concerning ’intelligent
interaction’, rather than a set of warring religions. Seeing the differences
may make for short-term gains in terms of project funds and reputation,
seeing the analogies leads to the long-term gain of a common cause.
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Appendix

A Technical Proofs for Section 3.3

Definition of φT : Let φS be the conjunction of the following formulas.

1. Only r∗ − l∗ paths: [r∗; l; l∗]¬〈r〉>

2. Infinitely many infinite l-paths: [r∗; l∗]〈l〉>

3. Infinite r-path: [r∗]〈r〉>

4. Even p paths: [(r; r)∗][l∗]p

5. Odd ¬p paths: [r; (r; r)∗][l∗]¬p

Let φu be the conjunction of the following two formulas

1. “Up moves” are always possible: [r∗; l∗]((p→ 〈1〉¬p) ∧ (¬p→ 〈2〉p))

2. There are infinitely many “Up moves”: [l∗][α∗u]〈αu〉>

Finally, we place the tiles on our tree.

1. Exactly one tile is placed at each node: φ1 := [(r; r)∗; l∗](
∨k

i=1 ti ∧∧
1≤i<j≤k ¬(ti ∧ tj))

2. Place tiles going across: φ2 := [(r; r)∗; l∗](
∨

right(Ti)=left(Tj)
(ti∧〈l〉tj))
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3. Place tiles going up: φ3 := [(r; r)∗; l∗](
∨

up(Ti)=down(Tj)
(ti ∧ 〈αu〉tj))

4. And only enough tiles are placed: φ4 := [(r; r)∗; l∗](
∧

up(Ti) 6=down(Tj)
(ti →

¬〈αu〉tj))

Let φT := φS ∧ φu ∧ φ1 ∧ φ2 ∧ φ3 ∧ φ4.

We first note that given a tiling of N × N, we can build a satisfying model
of φT . In the interest of space we will not give the full proof. The key idea
is to remove all vertical lines from the grid and tree the remaining structure
as a tree rooted at (0, 0).

LEMMA 21. Suppose that t is a tiling of N × N using tiles from T . Then
φT is satisfiable.

Before proceeding to the proof of Theorem 9 we state some facts which are
immediate consequences of the definition of truth in a model.

LEMMA 22. Suppose that ti and tj are tiling propositions and H, t |= φT .
For for each H ′,H ′′ ∈ Ext<ω(Ht) if H ′ |= ti, H ′′ |= tj and H ′Rαu

H ′′ then
up(ti) = down(tj).

LEMMA 23. Suppose that ti and tj are tiling propositions and H, t |= φT .
For for each H ′,H ′′ ∈ Ext<ω(Ht) if H ′ |= ti, H ′′ |= tj and H ′RlH

′′ then
right(ti) = left(tj).

LEMMA 24. Suppose that the epistemic temporal frame 〈H, {∼i}i∈A〉 sat-
isfies the no learning property. Then for all finite histories H,H ′ ∈ H, if
HRαuH

′ then HlRαuH
′l.

LEMMA 25. Suppose that F = 〈H, {∼i}i∈A〉 satisfies perfect recall, then
for each H,H ′ ∈ H such that Hl,H ′l ∈ H, if HlRαuH

′l then HRαuH
′.

Proof of Theorem 9 Our goal is to show, under the assumption of no
learning, that we can generate a tiling of the plane from satisfying model
of φT . The strategy is to show that there is a function f from N × N into
Ext<ω(Ht) such that the following function

• t(n,m) = Ti iffdef f(n,m) |= ti.

is a tiling of N×N. We will show that such a function can be extracted from
a satisfying model. Note that we are not providing an explicit definition of
the function, but rather proving that such a function exists. First of all,
since H, t |= φ1, f is well-defined. Start by defining f(0, 0) = T where
H, t |= t. We now show that f(n,m) has been defined then we can define
both f(n+ 1,m) and f(n,m+ 1).

LEMMA 26. Suppose that H, t |= φT , (n,m) ∈ N×N, f(n,m) = HtH
′ and

HtH
′ |= ti. Then there are finite histories Hr and Hu such that

1. HtH
r,HtH

u ∈ Ext<ω(Ht) and Hr,Hu ∈ Lang((rr)? · l?),

2. HtH
r |= tj where right(Ti) = left(Tj), and
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3. HtH
u |= tk where up(Ti) = down(Tk).

Proof. Suppose thatH, t |= φT and let (n,m) ∈ N×N with f(n,m) = HtH
′

and HtH
′ |= ti. First of all, note that by the definition of truth in a model,

H ′ is of the form an even number of rs followed by some number of ls.
Since H, t |= φ2 there is a tj such that HtH

′l |= tj . Furthermore, this
tj is unique because of the structure of the frame. Hence right(Ti) = Tj .
Thus the history Hr = H ′l satisfies the appropriate properties. The proof
of the existence of Hu is analogous. Since H, t |= φ3 and HtH

′ |= ti,
there is some H ′′ such that HtH

′Rαu
HtH

′H ′′ and HtH
′H ′′ |= tk with

up(Ti) = down(Tk). Then Hu = H ′′ satisfies the appropriate properties.
�

Thus if f(n,m) is defined, we can define f(n + 1,m) and f(n,m + 1). All
that remains is to show that we can “complete the square”. Suppose that
f(n,m), f(n,m+1) and f(n+1,m) have all been assigned finite extensions
of Ht as described in the Lemma 26. Call these histories H(n,m), H(n,m+1)

and H(n+1,m) respectively, where

• t(n,m) = Ti, t(n,m+ 1) = Tj and t(n+ 1,m) = Tk; and

• up(t(n,m)) = down(t(n,m + 1)) and right(t(n,m)) = left(t(n +
1,m)); and

Then we must show that there is a finite extension H(n+1,m+1) of Ht that
has the required properties. That is such that H ′ |= tl where

LEMMA 27. Suppose that H(n,m),H(n,m+1) and H(n+1,m) have been defined
as above. Then there is a finite history H(n+1,m+1) ∈ Ext<ω(Ht) such that
there is a unique tile proposition with H(n+1,m+1) |= t and

1. right(Tj) = left(T ) and

2. up(Tk) = down(T ).

Proof. Let H(n,m),H(n+1,m) and H(n,m+1) be defined as above. And
define H(n+1,m+1) = H(n,m+1)l. First note that H(n+1,m+1) exists since
H, t |= φS (specifically because of the second conjunct in φS). By Fact
2, right(Tj) = left(T ). Thus we need only show that up(Tk) = down(T ).
SinceH(n,m)Rαu

Hn,m+1, by Lemma 24,H(n+1,m) = H(n,m)lRαu
H(n,m+1)l =

H(n+1,m+1). Thus H(n+1,m) |= tk ∧ 〈αu〈t. Hence by Fact 1, up(Tk) =
down(T ). �

Finally, we must show that there is a formula such that, if satisfiable, implies
that a particular tile occurs infinitely often along the x-axis. Let T0 ∈ T be
a tile and t0 the corresponding propositional variable. Consider the formula
φt0 := [l∗]〈l; l∗〉t0Note that H, t |= φt0 implies that t0 is true infinitely often
on the first branch extending Ht. This proves Theorem 9.
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Proof of Lemma 13 Suppose that for each n > 0, there is at least one
(but only finitely many) partial tilings t(n). We can use this fact to define
a tree where the nodes of the tree are (n× n)-tilings of the plane. The tree
is defined as follows. For each n ≥ 0, there is a finite set of (n × n)-tilings
t
(n)
1 , . . . , t

(n)
k . Let Tn be the tree with a root r (which is not a tiling) and

nodes which are all the (n′ × n′)-tilings for 0 ≤ n′ ≤ n. For each 1 ≤ l ≤ n,
put an edge from t(l−1) to t(l) if t(l−1) and t(l) are consistent. Finally put
edges from the root node r to all (0, 0)-tilings. Then it is easy to see that the
tree T = ∪n<ωTn (where the union of two trees is defined to be the union
of the nodes and the branches) is finitely branching and has infinitely many
nodes. Thus by König’s Lemma there is an infinite branch. This infinite
branch is a tiling of the plane.

Proof of Theorem 10 and Theorem 11 In light of Lemma 13 we need
only show that we tile every finite square of the plane.

DEFINITION 28. Call a sequence H1, . . . ,Hn+1 of elements of Ext(Ht) a
αu sequence of length n if

1. H1RαuH2RαuH3 · · ·RαuHn+1

If, in addition, H1 = Htl
n, then we call the sequence a n-αu sequence of

length n.

The idea is that given any such sequence of histories, we can read off a
(n × n)-tiling. That is we must define a function t(n) : {(i, j) | 0 ≤ i ≤
n, 0 ≤ j ≤ n} → T that satisfies the tiling properties. We begin by defining
for each i = 1, . . . , n+ 1, t(n)(n, i− 1) = T iff Hi |= t.

We first check that for i = 0, . . . , n− 1, up(t(n)(n, i)) = down(t(n)(n, i+
1)). This is a consequence of Fact 1. Thus with any αu sequence of n
histories can be used to tile a vertical line of length n. We now need to show
that from a n-αu sequence of length n, we can find at least n αu-sequences
of length n. If we can find n such sequences, then we can tile the vertical
lines in the n × n square. Say that two αu sequences H1, . . . ,Hn+1 and
H ′

1, . . . ,H
′
n+1 are Rl-connected if for each i = 1, . . . n+1, HiRlH

′
i. By the

Lemma ??, the vertical lines generated from an n-αu sequence will be Rl-
connected. I.e., for m = 1, . . . , n, the m-αu sequence will be Rl-connected
to the (m+ 1)-αu sequence.

Let H1, . . . ,Hn+1 be a n-αu sequence of length n. By the definition of
truth in a model, for each j = 1, . . . n + 1, there is a kj ≥ 0 such that
Hj = H ′lkj and H ′ ∈ Ext<ω(Ht). For each H ∈ Ext<ωHt let H− be H ′lm

if H = H ′lm+1 and H otherwise. The perfect recall property ensures that if
for each j = 1, . . . , n+1, kj > 0, then H−

1 , . . . H
−
n+1 is a (n−1)-αu sequence

of length n. Thus if for each j = 1 . . . , n+ 1, kj ≥ n, then we are done.
However, in general, there may be some kj < n. Thus we must force the
model to be such that for each j = 1, . . . , n+1, kj ≥ n. First of all note that
if we assume synchronicity then for each j = 1, . . . , n + 1, kj = n. Hence
we have proved Theorem 10. In fact, the synchronous property is stronger



The Tree of Knowledge in Action: Towards a Common Perspective 21

than what is needed. Essentially, if we can force that if Htr
mlnRαu

HtH
′′

then H ′′ = rm′
ln

′
where n′ ≥ n, then we can prove the result. It is easy

to see that this property will hold for any extension if Ht if the following
formulas is satisfied at H, t

φl := [r∗; l∗](〈l−〉> → [αu]〈l−〉>)

Note the use of the converse operator. Thus we have shown Theorem 11.
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