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CHAPTER 1

In Praise of Strategies

Johan van Benthem1

ABSTRACT. This programmatic note high-lights a major theme in my lecture
notes “Logic in Games” (van Benthem 1999 – 2002): the need for explicit logics
that define agents’ strategies, as the drivers of interaction in games. Our text
outlines issues, recalls recent results, and raises new open problems. Results are
mainly quoted, and the emphasis is on new notions and questions. For more
details on the various topics discussed, see the relevant references. 2

1. Strategies as first-class citizens

Much of game theory is about the question whether strategic equilibria exist. But
there are hardly any explicit languages for defining, comparing, or combining
strategies as such: the way we have languages for actions and plans, maybe the
closest intuitive analogue to strategies. True, there are many current logics for
describing game structure – but these tend to have existential quantifiers saying
that “players have a strategy” for achieving some purpose, while descriptions of
these strategies themselves are not part of the logical language (cf. Parikh & Pauly
2003, van der Hoek, van Otterloo & Wooldridge 2005).3 In contrast with this, I
consider strategies ‘the unsung heroes of game theory’ – and I want to show how
the right kind of logic can bring them to the fore. One guide-line of adequacy for
doing so, in the fast-growing rain forest of ‘game logics’, is the following. We
would like to explicitly represent the elementary reasoning about strategies un-
derlying basic game-theoretic results, starting from, say, Zermelo’s Theorem or
Backeward Induction. Or in more general terms, we want to explicitly represent
agents’ reasoning about their plans.

1Amsterdam and Stanford, http://staff.science.uva.nl/˜johan/
3Van Benthem 1999-2003 calls this general tendency of hiding crucial information behind exis-

tential quantifiers “∃-sickness”, and gives many more instances in logic.
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6 1. IN PRAISE OF STRATEGIES

2. Games as models for modal process logics

Logic of strategies must start with logical analysis of games. In particular, modal
logic fits naturally with extensive games, viewed as process models from computer
science, viz. labeled transition systems with some special annotation for players’
activities (cf. van Benthem 2002). Just to be concrete, Figure 1 shows a simple
2-step game between two players i, j, with possible moves a, b, c, d marked at
players’ turns, while p is an atomic predicate stating some property of outcomes
(‘i wins’ is a possible candidate, but so are others):

j

i i

a b

p p

c d

p p

c d

FIGURE 1. Two-step game between players i and j.

Basic modal logic Extensive game trees like these may be viewed as unfoldings, or
state spaces, for some multi-agent process. Labeled modalities 〈a〉φ then express
properties of nodes, namely, that some move a is available leading to a next node
in the game tree satisfying φ. In this setting, modal operator combinations describe
potential interaction. For instance, in a self-explanatory notation, the formula

[movej ]〈movei〉φ
says that, at the current node of evaluation, player i has a strategy for responding
to j’s initial move which ensures that φ results after two steps of play.4

Extending this modal analysis to extensive games up to some finite depth k, and
using alternations 2323 · · · of modal operators up to length k to reach the end-
points of the game tree, we can express the existence of winning strategies and
the like in fixed finite games. Indeed, given this connection, with games of finite
depth, standard logical laws have immediate game-theoretic import. In particular,
consider the valid law of Excluded Middle in the following modal form

2323 · · ·φ ∨3232 · · · ¬φ,
where the dots indicate the depth of the tree. This expresses the determinacy of
these games: either the second player or the first has a stategy for ensuring φ. This

4In what follows, like here, we often refer only to the union movek of all available moves for
players k. But of course, the game of Figure 1 also contains more specific information about moves,
such as the following modal truth at the root: [a]〈d〉p ∧ [b]〈c〉p.



2. GAMES AS MODELS FOR MODAL PROCESS LOGICS 7

is exactly the content of Zermelo’s Theorem that all finite zero-sum two-player
games of perfect information are determined.

Modal µ-calculus Unfortunately, such modal game-by-game definitions are not
‘generic’, as they depend on the particular model considered – and Zermelo’s in-
ductive argument is rendered much more faithfully by means of just one fixed
formula in the modal µ-calculus (Bradfield & Stirling 2006). To make the relevant
point more generally, let us first define the following ‘forcing modality’ in games:

M, s |= {i}φ iff
player i has a strategy for the sub-game starting at s which
guarantees that only nodes will be visited where φ holds, what-
ever the other player does.

Forcing talk is widespread in games, and it is an obvious target for logical formal-
ization. Note that, for convenience, {i}φ also talks about intermediate nodes, not
just end nodes of the game. The existence of a winning strategy for player i can
then be expressed as the special case

{i}(end→ wini).

Here, end is a proposition letter for end nodes, or a complex modal formula saying
that no move is possible, and wini is a proposition letter saying that player i wins
at the current node.

Here is an explicit definition for this assertion in the modal µ-calculus, using some
further obvious proposition letters and action symbols for indicating players’ turns
and moves at nodes of the game tree. In this formula, the symbol j is used for the
other player in the game:

{i}φ = νq · (φ ∧ (turni ∧ 〈movei〉q) ∨ (turnj ∧ [movej ]q)).

This definition is faithful to the obvious recursive meaning of having a strategy for
player i, regardless of what the others do – and it is also generic, since it works in
all games viewed as models M for our language.5

Propositional dynamic logic But now to strategies as such! An obvious candidate
for defining these is propositional dynamic logic PDL, combining propositions
about nodes in the game tree with programs defining transition relations between
such nodes. 6 Without loss of information, a strategy for player i is a binary
relation between nodes. At turns for player i, it picks out one transition, at turns
for the others, it allows all available moves. Here is a simple fact for a start:

5Incidentally, we use a greatest fixed-point operator νq· here, rather than a smallest fixed-point
operator µq·, for easier extension to infinite games later on. See Gheerbrant 2010 for many more details
on fixed-point logics over finite game trees.

6For instance, in Figure 1, strategies may be thought of a sets of move arrows. Player i has
two functional strategies, giving a unique move at the root, and player j has four strategies, with two
independent choices for going left or right.
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FACT 1.1. General PDL-programs now define strategies σ.

Note that, in general, these programs may denote arbitrary transition relations, not
just uniquely valued functions. Such relations constrain i’s moves at her turns,
without necessarily narrowing them down to just a single one. This possible non-
determinacy makes eminent sense for our plans of action, and by extension, also
for a broader notion of strategies in games.

Now, we can define an explicit version of the earlier forcing modality, indicating
the strategy involved – even without the full power of the modal µ–calculus:

FACT 1.2. For any program expression σ, PDL can define the explicit forcing
modality {σ, i}φ stating that σ is a strategy for player i forcing the game, against
any play of the others, to pass only through states satisfying φ.

The precise definition is an easy exercise in modal logic (cf. van Benthem 2002).

But PDL has further uses in this setting. Consider any finite game M with a
strategy σ for player i. As a relation, σ is a finite set of ordered pairs (s, t). Thus,
it can be defined by enumeration as a program union, if we define these ordered
pairs. To do so, assume we have an ‘expressive’ model M , where states s are
definable in our modal language by formulas defs.7 Then we define transitions
(s, t) by formulas defs; a; deft, with a the relevant move. This gives:

FACT 1.3. In expressive finite extensive games, all strategies are PDL-definable.

Of course, this is a trivial result, but it does suggest that PDL is on the right track.

Van Benthem 2002 also discusses further issues about PDL as a ‘calculus of strate-
gies’. For instance, suppose that player i plays strategy σ, and at the same time,
j plays strategy τ . What end nodes are reachable in this way? This calls for an
operation on strategies describing the joint strategy of {i, j} – which is just the
intersection σ ∩ τ of the relations σ, τ .8

Thus, propositional dynamic logic is a good starting point for logics of strategies,
since it can define explicit strategies in simple extensive games. In the next sec-
tions, we will extend it to deal with more realistic game structures, such as pref-
erences and imperfect information. But for here, we end with an open problem
concerning the purely modal action part of games.

Stronger modal logics of strategies? The modal µ–calculus is a natural strength-
ening of PDL for defining strategic equilibria, but it has no explicit programs or
strategies, as its formulas merely define properties of states. Is there a counterpart

7This expressive power can be achieved in several ways, e.g., using backward temporal modalities
which can describe the total history leading up to s (cf. Rodenhauser 2001).

8Adding intersections takes us outside of PDL proper, but it still yields a simple modal language.
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to the µ–calculus which also extends PDL in terms of defining corresponding tran-
sition relations? Hollenberg 1996 proposes to use the PDL-operations, but these
are biased toward terminating programs, whereas the µ–calculus treats terminating
and infinite processes on a par. For instance, a natural strategy of ‘keep playing a’
would guarantee infinite a–branches witnessing true greatest fixed-point formulas
of the form νp · 〈a〉p.9

PROBLEM 1.1. Design an explicit action version of the modal µ–calculus.10

3. Preference structure and more realistic games

Real games add an agent dynamics to mere action structure, by encoding prefer-
ences for players over outcome states, or utility values beyond ‘win’ and ‘lose’. In
this case, defining the so-called Backward Induction procedure for solving exten-
sive games, rather than just Zermelo winning positions, becomes a benchmark for
game logics. Many solutions have been proposed for this purpose, mostly involv-
ing modal languages for both moves and preference order,11 with a modality

〈prefi〉φ : player i prefers some node where φ holds to the current one.

Definitions for the Backward Induction strategy in modal preference logic have
been published by Board, Bonanno, and many others: cf. Harrenstein 2004, De
Bruin 2004 and the references therein. For concreteness, we cite just one instance,
from van Benthem, van Otterloo & Roy 2006, using the following frame corre-
spondence on finite structures:

FACT 1.4. The BI strategy is definable as the unique relation σ satisfying the
following axiom for all propositions p – viewed as sets of nodes – for all players i:

(turni ∧ 〈σ∗〉(end ∧ p))→ [movei]〈σ∗〉(end ∧ 〈prefi〉p).

Properly deciphered, this modal axiom expresses a form of game-theoretic Ratio-
nality: “players never play strictly dominated moves, given that they keep playing
the strategy at future stages”. This frame correspondence is not yet an explicit def-
inition of our earlier sort: the reader might have expected a PDL-program defining
the above σ with added preference modalities in test conditions. I do not know if
the Backward Induction strategy can be defined in such a simple format, but van
Benthem & Gheerbrant 2010 transforms the above modal description into explicit
definitions in richer fixed-point logics over finite game trees.

9Even with terminating programs, more strategies may be needed, as in the ‘continuous fragment’
studied in Fontaine 2010, which properly extends PDL to allow any fixed-point recursions that always
stop by iteration stage omega.

10We discuss an alternative view of defining strategies in fixed-point logics in our Postscript.
11Relevant recent work on on modal preference languages that fit with games is found in van

Otterloo 2005, Liu 2008, van Benthem, Girard & Roy 2007.
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Betterness, preference, and expectation Actually, the situation to be analyzed is
subtle conceptually. A game gives players’ direct preferences over outcomes. The
Backward Induction algorithm then lifts these to a binary order among nodes that
does not just represent what players prefer, but what they expect to happen, given
rationality assumptions about how the other players will proceed. Thus, the result-
ing binary order is more like the plausibility relations used to interpret conditional
beliefs in doxastic logic, generated from a mixture of preference and assumptions
about behaviour of other players. We will return to this issue of strategies mixed
with beliefs in the Postscript to this paper.

Action and preference once more As in the preceding section, we conclude with
a less standard sort of problem. Modal preference logics work with betterness
comparisons between worlds. But in adding preference to PDL, our recommended
strategy language, we have two levels for putting it: states, but also transitions
between states. The latter move would make sense, e.g., in analogy with dynamic-
epistemic logics where events are treated on a par with states (Baltag, Moss &
Solecki 1998).12 How can one develop such a more radical preferential action
logic PDL? Working at its two levels also makes sense in philosophy: think of
the distinction made in ethics between ‘deontology’ and ‘consequentialism’. The
latter compares the worlds resulting from actions when judging our duties, the
former qualifies those actions themselves as ‘better’ or ‘obligatory’.

PROBLEM 1.2. Design a dynamic preference logic on both worlds and actions.

4. Epistemic logic and extensive games with imperfect information

Next, consider extensive games of imperfect information, which involve ‘infor-
mation sets’, or equivalence relations ∼i between nodes which players i cannot
distinguish. These games naturally model a combined epistemic modal language
including knowledge operators Kiφ interpreted in the usual manner as

φ is true at all nodes that are ∼i -related to the current one.

As pointed out in van Benthem 2001, this language can make crucial distinctions
such as knowing ‘de dicto’ that one has a move with effect φ, versus having some
move of which one knows ‘de re’ that it yields φ:

Ki〈a ∪ b〉φ versus Ki〈a〉φ ∨Ki〈b〉φ.

Moreover, as epistemic relations describe what agents can observe in the course of
a game, this language can define special properties of agents through modal frame
correspondences. An example is the following analysis of the important property
of Perfect Recall for a player i in a game model M :

12Van der Meyden 1996 goes in this direction, with preferences between transition relations.
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FACT 1.5. The axiom Ki[a]P → [a]Kip holds for i w.r.t. any proposition p iff M
satisfies Confluence: ∀xyz : ((xRay ∧ y ∼i z)→ ∃u : (x ∼i u ∧ uRaz)).

Similar analyses work for other powers of memory or observation for agents (cf.
Fagin et al. 1995). For instance, as a converse to Perfect Recall, agents satisfy the
principle of ‘No Miracles’ when their epistemic uncertainty can only disappear by
observing two subsequent events which they can distinguish.

Now once again for explicit strategies! As before, we can add PDL-style programs
here to define players’ strategies under the new circumstances. But there is a twist.
Especially relevant then are the ‘knowledge programs’ of Fagin et al. 1995, whose
only test conditions for actions are knowledge statements for agents. In such pro-
grams, the actions prescribed for an agent can only be guarded by conditions which
the agent knows to be true or false. It is easy to see that knowledge programs
can only define uniform strategies, i.e., transition relations where a player always
chooses the same move at any two game nodes which she cannot distinguish epis-
temically. A converse also holds, modulo some assumptions on expressiveness of
the game language defining nodes in the game tree (van Benthem 2001):

FACT 1.6. On expressive finite games of imperfect information, the uniform strate-
gies are precisely those definable by knowledge programs in epistemic PDL.

But there is still more to games of imperfect information. As with adding pref-
erences, there are two levels for making our base logic PDL epistemic. One can
connect worlds, as with the above language with standard epistemic modalitiesKi.
But one can also place epistemic structure on the moves themselves, as happens in
dynamic epistemic logic.13

Epistemized PDL is also a good setting for pursuing a more general aspect of
strategies, the famous distinction between ‘knowing that’ and ‘knowing how’ (Go-
chet 2006). Strategies are ways of achieving goals, and hence they represent pro-
cedural know-how:

PROBLEM 1.3. Define what it means to ‘know a strategy’ in epistemic PDL, and
then develop a version of DEL with explicit strategies.

In particular, in an epistemic setting, there is a plausible desideratum that strategies
σ should be epistemically transparent, in the sense that when a part of σ has been
played, players know at all intermediate stages that playing the rest will achieve
the intended result. When players have Perfect Recall in the above sense, this
just amounts to knowing the intended effects at the start. But in general, defining
epistemic transparency in a generic manner seems non-trivial.

13This raises the issue what sort of games correspond to models for dynamic-epistemic logic.
This has been determined precisly in van Benthem, Gerbrandy & Pacuit 2007, in terms of Perfect
Recall, No Miracles, and Bisimulation Invariance for the domains of events.
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5. Ignorance about the future, beliefs and expectations

The phrase ‘imperfect information’ covers two intuitively different senses of knowl-
edge, which are sometimes confused. One is observation uncertainty: players may
not have been able to observe all events so far, and so they do not know just where
they are in the game tree. This ‘past-oriented’ knowledge and ignorance is found
in DEL or epistemic temporal logics (van Benthem & Pacuit 2006). But in ac-
tion and games of perfect information, there is still ‘future-oriented’ expectation
uncertainty: players may not know where the game is heading since they do not
know what others, or they themselves, are going to do. Modeling the latter type of
knowledge and ignorance intuitively involves current uncertainty between whole
future histories in branching tree of actions, or even between players’ strategies
(i.e., whole ways in which the game might evolve). Here are a few observations
on what this means for strategies.

Branching epistemic temporal models In tree-like models for branching time,
‘legal histories’ h represent possible evolutions of a given game. At each stage of
the game, players are in a node s on some actual history whose past they know,
either completely or partially, but whose future is yet to be fully revealed:

s

h′

h

This can be described in an action language with knowledge, belief, and added
temporal operators. We first consider games of perfect information about the past,
with ŝ a the result of extending the current history up to s with action a:

(a) M,h, s |= Faφ iff ŝ a lies on h and M,h, ŝ a |= φ
(b) M,h, s |= Paφ iff s = s′̂ a, and M,h, s′ |= φ
(c) M,h, s |= Kiφ iff M,h′, s |= φ for all histories h′

equal for i to h up to stage s.

Intuitively, along such trees, as moves are played publicly, players receive ‘public
announcements’ of these. This validates logical laws for knowledge:

FACT 1.7. The following valid principle is the temporal equivalent of the key
dynamic-epistemic reduction axiom for public announcement:14

Fa3iφ↔ (Fa> ∧3iFaφ).

As in the earlier modal setting, this implies a form of Perfect Recall: agents’
present uncertainties are always inherited from past ones.

14For ease of verification, we use a formulation with an existential modality 3i = ¬Ki¬.



5. IGNORANCE ABOUT THE FUTURE, BELIEFS AND EXPECTATIONS 13

Adding beliefs Next, players i will typically have have beliefs about the further
course of the game. To model this, we add binary relations ≤i of relative plausi-
bility between histories, and we introduce a doxastic modality (which we take to
be existential here for convenience):

(d) M,h, s |= [B, i]φ iff M,h′, s |= φ for all histories h′

coinciding with h up to stage s
and most plausible for i.

Beliefs may change gently or drastically over time, and the plausibility relation
encodes agents’ revision policies. For instance, let Bi

s be the set of most plausible
histories for i at h, s, while s′ lies on h at some stage later than s. Let some history
in Bs agree with h up to s′: the actual history is compatible with i’s expectations.
Then a conservative agent i would let the most plausible histories at s′ be the
intersection of the most plausible ones in Bi

s with all continuations of s′. But
when some unexpected move a is played at s, leading to a history that was not in
the most plausible set, a totally new choice needs to be made.

Again, logics will express features of such revision behaviour. Here are two rele-
vant valid axioms for both scenarios (similar principles occur in Bonanno 2007 on
temporal AGM theory):15

FACT 1.8. The following laws hold for belief revision along game trees:

〈B, i〉Fa> → (Fa〈B, i〉φ↔ (Fa> ∧ 〈B, i〉Faφ)).

Fa〈B, i〉φ↔ (Fa> ∧ 〈B, i〉(Fa> ∧ Faφ)).

Temporal models, protocols, and strategies In this setting, there is an issue
of how to model the strategies that players follow on branching temporal ‘play-
grounds’. First of all, a temporal tree model is itself a restricted family of histo-
ries, often called a protocol (Fagin, Halpern, Moses & Vardi 1995, van Benthem,
Gerbrandy, Hoshi & Pacuit 2007). A protocol models a process with certain re-
strictions on the sequences of events that can occur. But in this sense, a strategy,
too, is like a protocol, since a players’ restriction to certain moves amounts to play-
ing a restricted set of histories of the total game. On the other hand, it also makes
sense to distinguish the protocol, as a global constraint defining the total game,
from the strategies, further internal choices that players can have in restricting that
global protocol. One could then define a strategy as a map from nodes to available
histories from that node.16

15For convenience, we use the existential belief modality in stating the next result.
16Technical caveat: One cannot in general identify a strategy with just a subset of all the total

histories, since strategies are ‘subforests’ rather than ‘subtrees’, containing instructions for playing
‘counterfactually’ at later nodes that will not be reached.
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Now temporal models are just given: there is no definition of their set of histories
inside the above logical languages. But when strategies are considered as further
restrictions of the models, we can indeed talk about them explicitly in terms of
definable submodels of the complete given tree, allowing us to discuss dynamic
matters like changing strategies. Technically, this can be done either in terms of
sets of nodes, or sets of histories at nodes. Van Benthem & Pacuit 2007 proposes a
simple language for this purpose merging ideas from temporal logic with dynamic
logics for plans of action for players – but this is only a start (Wang 2010 is a much
more elaborate development):

PROBLEM 1.4. Develop doxastic-epistemic temporal logics of explicit strategies.

Richer temporal game models Once strategies become first-class citizens again
in this manner, further issues of modeling arise. For instance, the natural uncer-
tainty one can have between strategies (“Am I playing a simple automaton, or a
sophisticated learner?”) cannot be modeled in the above fashion, since it is not
about being unsure about histories, but about whole subtrees. This requires full-
fledged epistemic game models with worlds including whole strategy profiles. Van
Benthem to appearA, Chapter 10, discusses a hierarchy of models for this purpose.

6. Public announcement and changing games

An extensive game, or a branching temporal model, may be viewed as a complete
static description of all the histories that a game might go through. Now we shift
our logical perspective to dynamic-epistemic logics that change models. What
happens to strategies and their logics then?

Promises and intentions Here is one concrete illustration of game change affect-
ing strategies. One can break the impasse of a bad Backward Induction solution by
making promises. E.g., in the following game, the bad equilibrium (1, 0) can be
avoided by j’s promise that she will not go left – and the new equilibrium (99, 99)
results, making both players better off by restricting the freedom of one of them!

i

(1, 0) j

(0, 100) (99, 99)

i

(1, 0) j

(99, 99)

Thus, changing a game tree to a submodel consisting of those nodes satisfying
some announced proposition can drastically affect strategic behaviour. Indeed,
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van Otterloo 2005 has a logic of strategic ‘enforceability’ plus preference, where
models change by reliably announcing players’ intentions.17 18

More generally, this perspective highlights an issue that seems somewhat neglected
in game theory: what happens to solutions when we make changes in games? In
logical model theory, one studies the preservation behaviour of assertions when
models change under various constructions (taking sub-models, forming products,
etcetera): this perspective also makes eminent sense here.

Rational game dynamics Public announcement and its effects on strategies has
many further uses. Van Benthem 2003 uses iterated public announcement of ‘Ra-
tionality’ assertions to analyze game solution procedures: the procedure ends when
a first fixed-point is reached where the model no longer changes. At that stage, Ra-
tionality has become common knowledge, and only strategy profiles remain that
fall under the relevant solution concept. Now this operates at the level of strategic
games, which we will largely ignore in this paper, even though it raises interesting
logical issues of its own.19 But a similar analysis applies to extensive games. Let
us call a move a dominated if the player who owns it has another move whose final
outcomes would all be better than those reachable by playing on after a.

FACT 1.9. The Backward Induction solution for extensive games is obtained through
repeated announcement of the assertion “no player chooses a strictly dominated
move in the current game”.

Here is how this would work out for a Centipede game, with three turns as indi-
cated, branches indicated by name, and pay-offs indicated for i, j, in that order:

i

x

j

y

i

z

u

(1, 0) (0, 5) (6, 4)

(5, 5)

Stage 0 of the announcement procedure rules out branch u, Stage 1 then rules
out z, while Stage 2 finally rules out y. We suppress some technicalities here:

17Other game changes might include addition of moves, which seems to call for product-update
techniques: cf. van Benthem, van Eijck & Kooi 2006.

18Admittedly, one might rephrase this setting in our earlier temporal models by coding up all
possible changes beforehand in one ‘Super Game’, but that would lose the flavour of understanding
strategic behaviour in a stepwise manner.

19The structure of strategic games calls for epistemic-preferential logics of matrices or ‘grid
structures’ rather than trees, and matching logical languages may differ in spirit from the above. We
leave their study for another occasion.
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with a little more care, the announcement procedure really records all Backward
Induction moves, also those off the eventually chosen path.20

Similar points apply to dynamic scenarios where games change through actions of
belief revision rather than knowledge update.

Matching languages and logics for strategies The preceding models and scenar-
ios call for dynamic-epistemic languages of both games and strategies. We start
with a simple toy example.

If we use PDL for strategies and moves in extensive games as before, the simplest
combination with dynamics would be the combined modal logic PDL+PAL adding
public announcements [!φ]. Essentially, the latter modality describes a relativiza-
tion to the sub-model defined by φ, and it is easy to show that PDL is closed under
relativization in both its propositional and its program parts.21

FACT 1.10. The logic PDL+PAL is axiomatized completely by merging the sepa-
rate laws of PDL and PAL, while adding the following reduction axiom:

[!φ]{σ}φ↔ (φ→ {σ|φ}[!φ]φ).

For PDL plus full DEL-style product update, cf. van Benthem, van Eijck & Kooi
2006, and for µ–calculus versions, van Benthem & Ikegami 2007.

The wrong way around? Maybe the above reduction axiom misses the real issue
in strategy analysis. It explains what old plan I should have had in order to make
some new plan work in the changed game model. But usually, the issue is the other
way around. I already have a plan σ for playing game G to obtain a certain effect
φ. Now G changes to G′: my machine lost some functionality, my game got some
extra moves, and the like. How should I then revise that current plan σ to get some
intended effect ψ in the new game G′? This is not answered by our system.22

However this may be, the above logics are clearly just a start. We need much richer
languages that can also deal with preferences and other crucial game structure:

PROBLEM 1.5. Give a logic that can deal with strategies under real game change.

20There are many other options here: instead of the temporally ‘forward-looking’ assertion of
Rationality, van Benthem 2003 also discusses temporally ‘backward-looking’ announcements where
players remind themselves of the legitimate rights of other players, and build up trust. In line with this,
type space models for games (cf. Brandenburger 2007) allow for much greater freedom in assumptions
about other players – turning, one might say, Game Theory into a Theory of Players.

21The key to the syntactic relativization is a recursive operation π|φ for programs π which sur-
rounds every atomic move with tests ?φ.

22There may be analogies here with open model-theoretic problems concerning PDL with model
change. For instance, there is no good Łoś-Tarski theorem syntactically characterizing those PDL
formulas that are preserved under sub-models.
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Coda: announcement games Here is another way of thinking. Instead of using
announcements over arbitrary games and abstract strategies, one can also view an-
nouncements themselves as actions in a ‘conversation game’. In that case, strate-
gies rather have to do with what assertions are available, and how these lead to
intended effects for the players. Cf. Agotnes & van Ditmarsch 2009 for more on
such ‘knowledge games’.

7. A more global level: logics of powers

Here is another approach to our topic, moving to a ‘coarser’ input-output view of
social interaction than extensive games by hiding the strategies, so to speak.

Powers over outcomes and dynamic game logic A global view of games only
cares about outcomes, not about local moves on the way to the end result. This is
the level of powers for players i, being the sets of outcomes X for which i has a
strategy forcing the game to end inside X , whatever the other players do. This is
the level of the ‘forcing modality’ defined in Section 1, and it supports its own style
of modal logic over modal ‘neighbourhood models’ (van Benthem & Blackburn
2006), including bisimulations and other basic notions.

Here is also where Parikh’s dynamic game logic lives (DGL, Parikh & Pauly
2003). Its models M encode forcing relations ρG,isX for players i in atomic
games G, played from some initial sate s.23 This notion is then lifted inductively
to the right powers for both players in complex games G formed using further
operations of ‘dual’ d, ‘choice’ ∪, ‘sequential composition’ ; , and ‘iteration’ ∗.
The matching forcing modality is this:

M, s |= {G, i}φ iff ∃X : ρG,isX ∧ ∀x ∈ X :M,x |= φ.

The laws of this logic reflect basic properties of powers for players i, j:

C1 if ρG,isY and Y ⊆ Z, then ρG,isZ. Monotonicity
C2 if ρG,isY and ρG,jsZ, then Y, Z overlap. Consistency

In the usual version of dynamic game logic, they also satisfied Determinacy:

C3 if not ρG,isY, then ρG,js(S − Y ), and the same for j versus i.

Conversely, these three conditions are also all that must hold:

FACT 1.11. Families F1, F2 of subsets of some set S satisfying C1, C2, C3 are
the powers for players i, j at the root of some determined two-step game.

The result also extends to games with imperfect information (van Benthem 2001),
using just the first two conditions C1, C2.

23Here it is crucial that the same game can be played from different starting states.
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The power analysis fits naturally with the Thompson Transformations in game the-
ory (Osborne & Rubinstein 1994) for games of imperfect information with players
having Perfect Recall. It is also the level at which logicians view ‘logic games’ of
evaluation, model comparison, or proof (van Benthem 2007C).

For concreteness, we state some crucial compositional axioms of DGL (cf. Pauly
2001 for details on the model theory and axiomatics):

FACT 1.12. The following principles are valid in modal forcing semantics:

{G1;G2}φ↔ {G1}{G2}φ {G1 ∪G2}φ↔ {G1}φ ∨ {G2}φ
{Gd}A↔ ¬{G}¬A {?P}ψ ↔ (P → ψ).

The soundness arguments for these axioms involve some basic reasoning with
strategies. But this reasoning is the essence of what makes the logic tick, so let’s
formalize it explicitly!

‘Strategizing’ logics of powers

DGL describes the compositional structure of the games under sequential opera-
tions, on the model of PDL with neighbourhood semantics.24 But now we want to
formalize its reasoning about strategies explicitly, i.e., we need to ’strategize’ it:

PROBLEM 1.6. Add strategies to DGL, with modalities {σ, i,G}φ for “strategy σ
for player i forces outcome φ in game G”; and determine the logic.

There are grounds for optimism. We already know that making witness objects
for existential quantifiers explicit can be done with beneficial effects in the study
of proof and computation. Artemov 1998’s ‘logic of proofs’ did this for modal
provability logic, replacing boxes 2 for ‘provability’ by boxes [t] containing terms
t for proofs or pieces of evidence – and it has been extended to deal with general
epistemic evidence by the ‘New York School’.25

One obvious attempt would ‘do a double PDL’ on Dynamic Game Logic, by also
bringing in a description of strategies in our earlier spirit. Here is an illustration.
Viewing a strategy as something which we can unpack into a ‘head’ (the first move
to be played) and a ‘tail’ (the rest), we have that

{σ, i,G ∪H}φ↔ {tail(σ), i, G}φ ∨ {tail(σ), i,H}φ.

What is the right semantic setting for making precise sense of this?26 DGL expres-
sions are interpreted on abstract board models, while strategies seem to live inside

24Dealing with parallel game composition is another story: see below.
25Renne 2006 adds explicit strategies linking up with dynamic epistemic logic.
26Note the direction: DGL analyzes strategies top-down into substrategies in component games.

What about bottom-up strategy construction laws like {σ, i, G}φ→ {〈LEFT;σ〉, i, G ∪H}φ?
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concrete games. Van Benthem 1999-2002 (Chapter 5) proposed using two lan-
guages for this purpose – one game-external over ‘board models’, and one-game
internal, referring to turns, moves, and other procedural features.

Parallel operations There are also further natural game constructions affecting
strategies. DGL is about sequential game operations: what about concurrency, and
operations for parallel play – surely, a natural scenario in practice? Van Benthem,
Ghosh & Liu 2007 propose a concurrent dynamic game logic CDGL that works
with non-determined games. Its crucial axiom is a simple reduction for game
products G1 × G2 where players pay simultaneously without any intermediate
communication:

{G1 ×G2, i}φ↔ {G1, i}φ ∧ {G2, i}φ.

But again, explicit strategies are missing, so we have an obvious extension of our
earlier question, viz. to ‘strategize’ CDGL.27

Temporal logics once more Finally, opening up existential modalities of abilities
for agents also seems natural in temporal logics. Consider the logic of agency STIT
(Belnap et al. 2001) which describes agents’ powers for ‘seeing to it that’ certain
states of the world are realized without mentioning explicit actions. The intuition
underlying STIT is that of some agents acting simultaneously, knowing only their
own action, but not that of the others – something reminiscent of games with a
mild form of imperfect information, as well as our epistemic temporal logics, but
now enriched with an intersection operation for parallel action.

PROBLEM 1.7. Develop an explicit action/strategy-based version of STIT, analyz-
ing its time steps as parallel actions for a bunch of players.

I conclude with a few brief illustrations of two further directions. Our main interest
has been finite extensive games with individual players. Let us now look at larger
groups, and after that, at wider temporal horizons.

8. Coalition logics and group strategies

Most game logics deal with two individual players, though game theory also deals
with coalitions of players. Now consider the logic of agents’ powers in Pauly 2001.
Here {G}φ means that the agents in the group G can achieve a set of outcomes
all of which satisfy the proposition φ. In such a language we can talk about group
powers, and interesting new principles emerge. For instance, if the groups G, H
are disjoint, the following principle describes their cooperation:

({G}φ ∧ {G}ψ)→ {G ∪H}(φ ∧ ψ).

27For other relevant game logics of concurrency, see Section 9.
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But as usual in logics of powers, no explicit actions or strategies are provided. But
it is clear what we really want to say here:

FACT 1.13. The following principle is valid:

({G, σ}φ ∧ {H, τ}ψ)→ {G ∪H,σ#τ}(φ ∧ ψ)
with σ#τ for intersection of strategies (viewed as relations).

There are many further interesting laws at this explicit strategy level that describe,
e.g., how powers of a coalition combine powers for subgroups.

PROBLEM 1.8. Give an explicit action/strategy version of Coalition Logic.

Coalition logic becomes more powerful when explicit preferences of the players
are added in the form of suitable modal operators. Van der Hoek 2007 shows what
significant collective scenarios can be analyzed then.

9. Infinite games and linear logics

From finite to infinite games Infinite never-ending processes are as fundamen-
tal as finite terminating ones, and modern logics of computation favour neither
perspective over the other. Likewise, infinite games are crucial, for instance, in
evolutionary game theory. Such games, too, can be analyzed with explicit logics
of strategies, taking whole histories as outcomes.

This suggests returning to our earlier temporal logics of Section 5, and one good
starting point is again our idea that a minimal logic of explicit strategies should at
least be able to represent basic game-theoretic arguments.

Here is an illustration. One obvious candidate beyond Zermelo’s Theorem in Sec-
tion 2 is the Gale-Stewart Theorem. It says that all infinite two-player games of
perfect information, viewed as topological trees, where the winning condition for
one of the players is an open set, are determined. The key point in the proof of this
result is a universally valid principle of ‘Weak Determinacy’:

“A player i either has a winning strategy, or the other player j
has a strategy making sure that i never reaches a stage in the
game where she has a winning strategy.”

This calls for a temporal logic describing these powers. Here is a natural candidate,
using our earlier forcing modalities plus a temporal modality G (‘always in the
future’). Weak Determinacy then becomes a formula of the system:

FACT 1.14. {i}φ ∨ {j}G¬{i}φ is a valid law for infinite games.

PROBLEM 1.9. Find a complete temporal logic of players’ powers over infinite
games. And ‘strategize’ it using some suitable logic of protocols.
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Game semantics for linear logic Finally, here is a related area of logic where
strategies are crucial, viz. the game semantics of Abramsky 1997 for linear logic
and concurrency in general. Reasoning about strategies is crucial to understanding
the validity of the axioms of linear logic. The protagonist in their verification is an
evergreen from game theory, viz. the ‘Copy Cat’ strategy (or ‘Tit for Tat’) copying
moves from one game played in parallel with another. But again, these strategies
are not explicitly represented in the language of linear logic. A basic linear axiom
like A⊕Ad, with ⊕ for ‘parallel disjunction’ of games, is interpreted as follows:

In each concrete game of the form A ⊕ Ad (i.e., A played
in parallel with its role-switched version), the distinguished
player P has a winning strategy.28

This is even less informative than the global power formulas of Parikh’s DGL,
which talk about different propositions true after the game. And so we ask:

PROBLEM 1.10. Develop a logic of strategies which formalizes the soundness
arguments for linear logic, and make further statements about the course of games.

This would again call for a merge of logics of strategies like we had before with a
language that can describe complex game structure.

Strategies and proofs The case of linear logic also raises a more general issue.
Linear logic arose originally from mathematical proof theory. Now it has been
known ever since Lorenzen’s dialogue games (cf. van Benthem 2007C) that a
proof is like a strategy for winning an interactive debate, cast as a ‘logic game’.29

Thus, proof theories or type theories with explicit proof terms are an explicit cal-
culus of strategies! But in this paper, we have mainly followed a model-theoretic
take on games and strategies, leading to modal logics of actions and processes,
and strategies in the style of dynamic logic. How the two broad styles of think-
ing about strategies, proof-theoretic and model-theoretic, are related in general
remains a deep issue beyond the scope of this paper.

10. Conclusion

Explicit logics of strategies are desirable, feasible, and most of all: fun to explore!

28Other parallel operations in logic occur with Ehrenfeucht games comparing different models.
29We will not go further into the general issue of ‘game logics’ versus ‘logic games’ – though this

entanglement, too, seems relevant to our view of strategies. For instance, as we have seen, strategies in
games can be made explicit using formulas in logical languages. But logical formulas can be interpreted
in evaluation games over suitable models. But then, their truth amounts to stating that there exists a
winning strategy for the Verifier in this game. The spiral goes on and on.
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11. Postscript

In the years since this paper was written, a number of relevant things have hap-
pened. The following is a brief list, without any attempt at completeness.

Fixed-point logics for game solution Van Benthem & Gheerbrant 2010 is an ex-
ploration of Backward Induction in fixed-point logics on trees, showing how three
approaches coincide: unique recursive definitions in terms of Rationality, limits of
iterated announcements of Rationality, and limits of upgrade procedures produc-
ing common belief in Rationality. In particular, following an idea from Baltag,
Smets & Zvesper 2009, it is shown how strategies in extensive games can also be
seen equivalently as plausibility orders among leaves which encode conditional
beliefs, linking up between action views and epistemic-doxastic views of games.
Much more mathematical background on relevant fixed-point logics is found in
Gheerbrant 2010, Fontaine 2010. From the perspective of explicit logics of strate-
gies, fixed-point logics are interesting, since their static existence statements also
carry procedural information about how to reach solutions via the standard built-in
fixed-point approximation procedures.

Logics of protocols Hoshi 2009 is an extensive study of protocols in dynamic-
epistemic logic, including new complete logics, and applications to epistemology.
Protocols are represented only partly in these languages, however, through local
assertions about the availability of announcements, or of general events that carry
‘procedural information’. The thesis Wang 2010 is a systematic development of a
fully explicit view of protocols using PDL techniques, and so far, the most exten-
sive representative of a larger CWI project on logics of communication protocols
that has also produced papers like van Eijck, Kuppusamy & Wang 2009, van Eijck,
Sietsma & Wang 2009.

Logics of strategies and automata perspectives A bunch of papers emananat-
ing from Indian researchers has developed various logics of strategies taking ideas
from automata theory and dynamic logic, Cf. Ramanujam & Simon 2008A, Ra-
manujam & Simon 2008B, Ramanujam & Simon 2009, Pacuit & Simon 2010.
Ghosh 2008 is also relevant as a congenial ’strategization’ of dynamic logic.

Logics for epistemic foundations of game theory Strategies have also received
renewed logical attention in current logical studies of the epistemic foundations
of game-theoretic solution procedures. The dissertations Dégrémont 2010 and
Zvesper 2010 contain a wide spectrum of issues, from strategic games to extensive
games. In particular, Dégrémont and Roy 2009 and Baltag & Smets 2009 study
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effects of update procedures in terms of Agreement or Rationality that gradually
eliminate strategy profiles. Apt & Zvesper 2010 links logical procedures with
computational perspectives on game solution algorithms.

Logics of strategies and agency In the agency tradition, various authors have
proposed extensions of current framworks with explicit actions and strategies. Van
der Hoek, Walther & Wooldridge 2007 adds strategies to Alternating Temporal
Logic (a rich logic for players’ power in games allowing simultaneous action),
Chatterjee, Henzinger & Piterman 2007, too, propose explicit logics of strategies,
while Xu 2010 adds actions to the STIT logic of agency from the philosophical
tradition.

Connections with learning theory Strategies in long-term informational pro-
cesses are related to learning mechanisms. Dégrémont & Gierasimczuk 2009 show
how Learning Theory can be linked with dynamic-epistemic-temporal logics, and
Gierasimczuk 2010 is a full-fledged study, including a logical study of learning
strategies. Agotnes & van Ditmarsch 2009 studies a special case in more depth:
‘knowledge games’ over epistemic models.

Finally, two recent books are relevant: van Benthem toappear A on information-
driven logical dynamics of agency, and van Benthem to appearB on logic in games.
A source of recent information on current developments are the “Yearbooks on
Logics for Dynamics of Information and Preferences”, edited by D, Grossi, L.
Kurzen & F. Velazquez Quesada (ILLC Amsterdam), as well as the LORI webpage
on Logics of Rationality and Intelligent Interaction www.lori.org.
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